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Adaptive Screen-Space Sampling for Volume Ray-Casting

Abstract
This work is concerned with adaptive screen-space sampling for volume ray-casting. The goal is to reduce the
number of rays being cast into the scene and, thus, the overall number of sampling points. We guarantee reliable
images through explicit error control using an error estimator that is founded in the field of finite element methods
(FEM). FEM theory further provides a well-founded theory to prove the efficiency of the presented algorithm via
convergence analysis. We, therefore, compare the convergence behavior of our method against uniform subdivi-
sions and a refinement scheme that was presented in the context of CPU volume ray-casting [Lev90]. Minimizing
the number of sampling points is of interest for rendering large datasets where each evaluation might need an ex-
pensive decompression. Furthermore, with increasing screen resolutions high-resolution images are created more
efficiently with our method.

1. Introduction and Related Work

The goal of this work is to reduce the number of sampling
points via error-controlled adaptive screen-space sampling.
That is, the sampling frequency is increased in image regions
where color variations across space is high (e.g., edges), and
it is decreased in homogeneous image regions. The heart of
such methods are criteria to estimate this variance and the re-
sulting image-space error. In contrast to previous work that
also deals with adaptive image discretization, the strength
of our method lies in an ubiquitous error estimator founded
in the FEM theory [Bra07, AO00]. To guarantee interactiv-
ity independent from the screen resolution, we interconnect
the adaptive refinement with progressive image generation:
Approximations of the exact image are iteratively computed
and displayed until the algorithm has converged to pixel ac-
curacy. For volume rendering, we use ray-casting.

Whereas adaptive methods in image space are common in
the area of ray-tracing, less attention has been paid to similar
approaches in the volume rendering domain [HKRSW06].
In volume visualization, [Lev90] introduced adaptive image-
space subdivision combined with progressive image gener-
ation for performance improvement. He uses a simple er-
ror measure, where missing features are accepted as pay-
off for speed. To reduce aliasing artifacts, adaptive stochas-
tic ray tracing has been introduced [PS89]. The refinement
process is driven by the variance of neighboring samples.
Especially for isosurface rendering, there have been fur-
ther improvements, also handling missing features [AAN05,
GM07, DWL05]. Most of these methods are built on re-

finement criteria specific to surface rendering relying on
the surface normals. Consequently, they cannot be easily
adapted to general volume rendering. Further improvements
of image-space techniques can be achieved by considering
spatial [KSSE05, AAN05] and temporal coherence, or even
both [DWL05, WLWD03].

Recently, methods that combine adaptive sampling in im-
age and object space have been suggested. [Lju06] use a
multi-resolution volume scheme to guide the sampling den-
sity along rays. The sampling density in image space is de-
termined by projecting volume block statistics back to the
image plane. [KSKE07] suggested a combined method for
texture-based volume rendering. Their main motivation is to
deal with large compressed data directly on the GPU. Since
decompression is expensive, they apply an oracle that deter-
mines a local sampling distance being used to skip samples.
Their method is successful in reducing the number of sam-
pling points. However, their approach is restricted to texture-
based volume rendering and not suited for a progressive ap-
proach.

Although almost all of these approaches are effective in
improving the performance, less attention is paid to explicit
error control. Error metrics are mostly based on spatial and
temporal heuristics. Our method is motivated by FEM the-
ory, which provides a well-founded theoretical framework
connecting approximation schemes, error estimators, refine-
ment schemes, and the corresponding convergence behavior
of the approximative solution [AO00]. By translating com-
mon problems from the area of volume rendering into the
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language of FEM (Sections 2, 3), we are able to demonstrate
the efficiency of the proposed algorithm in terms of conver-
gence behavior (Section 7). We, therefore, compare it to uni-
form screen-space subdivisions and a previously presented
refinement scheme [Lev90].

2. Problem Defintion from the Perspective of FEM

FEM is a numerical method that is used to find approxi-
mate solutions for partial differential equations. The basic
idea consists of a lattice-like partition of a specified domain
Ω into geometric primitives [Bra07], the finite elements, on
which approximate solutions can be computed much sim-
pler.

To underline the motivation of using FEM methods for
volume rendering, we first translate the common prob-
lem of approximating the widely used emission-absorption
model [HKRSW06] to the language of FEM. If other optical
models [Max95] are used, additional approximation errors
(Section 3) might arise (e.g., due to the approximation of
gradients), which are not covered in this work.

2.1. Emission-Absorption Model

Given a volume Ω ⊂ ℛ3, a scalar absorption function A, a
scalar emission function E defined over Ω and a normalized
vector field W that describes the propagation of light through
the volume †, the emission-absorption model leads to a par-
tial differential equation, which determines the radiance I
(see [HHS93] for a general discussion)

∇I ⋅W +AI = E in Ω,

I = 0 on ∂Ω.
(1)

Let wx denote a parametrization by arc length of the light
ray of −W that originates in x, ends at the boundary of Ω,
and has length Lx. Then the integral form of Equation (1) is
given by

I(x) =
∫ Lx

0
E
(
wx) exp

(
−

∫ t

0
A(wx)ds

)
dt. (2)

2.2. Approximation

In order to render an image, we are only interested in the
values of I on a surface S (the viewport) embedded in Ω.
That is, we are looking for a function

u := I∣S (3)

defined in some function space V (S). In general, finding a
closed formula for the exact solution u ∈ V (S) is not possi-
ble. Therefore, a discretization method is applied that com-
putes a sequence (n = 0, ...,∞) of approximative solutions

† We call W a vector field to emphasize that light rays following W
might be either parallel, perspective or even curved rays.

Symbol Short Explanation
A Scalar absorption function
E Scalar emission function
W Vector field that describes the propaga-

tion of light
I Radiance
S Viewport
u ∈V (s) Exact solution of the emission-

absorption model
un ∈V (s) Approximative solution of the

emission-absorption model
Tn Set of cells of the discrete space Vn

Q⊂ S Set of points whose values uniquely de-
termine a function in Vn

q ∈ Q Evaluation point
ϕq Basis function corresponding to the

evaluation at point q ∈ Q
ℐn(u) ∈Vn Nodal interpolant
u(q) Exact value of the volume rendering in-

tegral in q
Ih(q) Approximation of the volume rendering

integral

Table 1: Table of mathematical symbols that are used in this
work.

un that converge to the exact solution u. The approximation
error that arises and which we seek to minimize, is measured
using the L2 error norm

η = ∥u−un∥S :=
(∫

S
(u−un)

2 dx
) 1

2

. (4)

3. Error Estimator

In this section we thoroughly derive the proposed error es-
timator. We use the following notations, which are founded
in FEM theory (see also Table 3): Let Tn be the set of cells
of the discrete space Vn and Q ⊂ S the set of points whose
values uniquely determine a function in Vn. Then, the nodal
interpolant is given by

ℐn(u) = ∑
q∈Q

u(q)ϕq (5)

where u(q) is the exact value of the volume rendering inte-
gral (Equation (2)) and ϕq the basis function corresponding
to the evaluation point q. Given an approximation Ih(q) of
the volume rendering integral, the function un is finally given
by

un = ∑
q∈Q

Ih(q)ϕq (6)

Given Equations (5) and (6), the total approximation error
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Figure 1: A piecewise analytic function (a) and the corresponding estimated regularity (red indicates high regularity, while
black indicates low regularity) (b). Convergence graph comparing uniform vs. h-adaptive vs. hp-adaptive approximations. For
analytical functions such as (a), hp-adaptivity leads to a faster convergence than h-adaptivity only.

η can be bounded by:

η = ∥u−un∥S ≤ ∥u−ℐn(u)∥S +∥ℐn(u)−un∥S. (7)

The first term on the right hand side represents the error of
the viewport discretization, which can be reduced by refin-
ing the function space Vn by subdividing the cells. The sec-
ond term represents the error due to the approximation of the
volume rendering integral. It can be minimized by increas-
ing the number of sample points employed in the quadrature
formula.

To control the adaptive refinement, we consider the local
error contributions on each cell T ∈ Tn

ηT = ∥u−un∥T ≤ ∥u−ℐn(u)∥T︸ ︷︷ ︸
:=ηT

Vn

+∥ℐn(u)−un∥T︸ ︷︷ ︸
:=ηT

Ih

.
(8)

The error quantity η
T
Ih

can be controlled, for example, via
adaptive ray integration. In this work, we focus on the esti-
mation of the viewport error η

T
Vn

. To localize image regions
with large error contributions, we estimate η

T
Vn

using an hi-
erarchical a-posteriori error estimator [AO00]. As we do not
have any knowledge of the exact solution u, we compare two
subsequent approximations:

η
T
Vn ≈ ∥un−1−un∥T = (

∫
T
(un−1−un)

2 dx)
1
2 . (9)

The integral on the right hand side is a 2D polynomial of de-
gree k = 4. It can be solved numerically, for example, using
a Gaussian quadrature rule

η
T
Vn ≈

N

∑
i=1

φ(xi)wi, (10)

with N being the number of points xi for which the polyno-
mial is evaluated and wi being the weights. For the compu-
tation we separate the polynomial into two 1D polynomials
and choose N = 3≤ 2k−1.

4. h- vs p- vs. hp- FEM

We distinguish three versions of the finite element method:
the h-, p- and hp-version. The most popular is h-FEM, where
the convergence of the approximative solution is achieved by
increasingly finer grids. In p-FEM convergence is achieved
by increasing the polynomial degree on a uniform grid of
fixed-size finite elements. The basic idea of hp-FEM is to
combine the advantages of h- and p-adaptivity to improve
the convergence: In regions of high frequency, a fine grid
and low polynomial degrees are chosen. In regions where
u is smooth, a coarse grid with high polynomial degrees is
preferable.
Depending on the regularity of the function u, which gives
us a hint about the smoothness of the function, this leads to a
method that converges algebraically, or even exponentially,
to the exact solution. For analytical functions with high reg-
ularity p-refinement is dominant so that hp-adaptivity leads
to a faster convergence than h-adaptivity only (Figure 1).

In the case of volume rendering, the order of convergence
is constrained by the smoothness of the signal that results
from the input data mapped to color and opacity values by a
transfer function ‡. Real data often has many discontinuities
and, thus, hardly leads to any p-refinement. More sophis-
ticated reconstruction kernels [HVTH02] can improve the
convergence behavior as they increase the smoothness of the
input data. However, often high-frequency transfer functions
are desired to distinguish different materials in the final im-
age. Consequently, hp-adaptivity would result in marginal
benefit for highly inhomogeneous data.

In this work, we focus on h-adaptivity subdividing image
regions of high frequency and bilinear interpolation for im-
age reconstruction.

‡ Assuming the emission-absorption model.
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Figure 2: Comparison of uniform vs. adaptive ray integration. Using a constant sampling distance results in visible image
artifacts (a). These are identified by our adaptive ray integrator (b). Our simple step doubling scheme for the ray integration
results in an improved image quality (c).

5. Adaptive Screen Space Sampling

The algorithm that is presented in this section iteratively
computes approximations un of the exact solution u. In
this work, the exact solution is defined by the emission-
absorption model (Equation (1)). We start with a coarse uni-
form grid. The adaptive refinement into quadratic cells is
stored in a quadtree data structure. Each iteration computes
a new discrete approximation un that converges against u
following a standard loop from adaptive finite element the-
ory [AO00]:

1. Estimate η
T (Equation (8)) for each new quadtree leaf.

2. Mark a fixed number m of those cells that have the biggest
impact on the total error η (Equation (4)).

3. Refine the marked cells, i.e., create four new quadtree
leafs for each marked cell. Together with the new
quadtree leafs, new evaluation points arise.

4. Compute an approximation of the volume rendering inte-
gral (Equation (2)) for the new evaluation points.

5. Reconstruct the new approximation un (Equation (2)) and
render the solution to the screen.

The loop runs, until the algorithm converges to pixel ac-
curacy, or a user-specified error bound is reached. It is in-
terrupted whenever the camera moves or the transfer func-
tion changes. To guarantee interactivity independent from
screen resolutions, we interconnect the adaptive with pro-
gressive refinement. The image quality, thus, progressively
improves.

6. Implementation Details

Our current prototype is implemented in C++ and
OpenGL/GLSL requiring a Shader Model 4.0 GPU. The
work of the algorithm is distributed between CPU and GPU

leaving the data structures on the CPU. Error estimation, ray-
casting and reconstruction of the final image are carried out
on the GPU.

The estimator computes the approximation error ηT only
on the set of new leafs that were generated in the previous it-
eration. Output is a 1D single-channel floating-point texture
with m entries (Section 5) that is read back to main memory
for the following steps.

To mark those m cells that contribute the most to the total
error, we employ a heap data structure on the quadtree leafs
that is updated each time new leafs are created, which leads
to a cost of O(m logn) for sorting the quadtree leafs. The
parameter m can be adjusted by the user.

The refinement creates new leafs and with each new leaf
a maximum of five evaluation points is generated: one at the
cell’s center and four at the midpoints of the cell’s edges. In
either case, a new evaluation point for the cell’s center arises,
which leads to a minimum of one sample per new leaf. Note,
that a sample is never computed twice.

For each new evaluation point standard ray-casting is per-
formed to compute an approximation of the volume render-
ing integral. To control the error η

T
Ih

, we employ a simple
step doubling. Similar to the error measure for the viewport
refinement, we compare two subsequent refinements. In each
integration step, two color values are taken into account: one
is computed using the full stepsize (h) according to the cur-
rent sampling distance, and one is computed using two half
steps (h/2.0). The squared difference of both color values
gives us a hint about the accuracy associated with the cur-
rent stepsize. If the difference falls below the requested er-
ror bound, the evaluation is accepted and the stepsize is in-
creased. Otherwise the stepsize is decreased and again two
integration steps are performed to measure the difference be-
tween the two results. The error bound for the ray integration
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(a) (b) (c) (d)

Figure 3: High-resolution direct volume rendering (2k× 2k) of a CT scan of an engine block (a) and iso-surface rendering of
a distance field (c). In each case, the corresponding convergence graphs are given on the right (b,d). The y-axis represents the
approximation error (log-scale) while the x-axis denotes the number of computed rays. Red depicts the convergence behavior
of our approach and blue depicts the convergence behavior of standard uniform discretizations.

can be chosen by the user, and it is independent from the er-
ror bound that is used for screen-space sampling.

In a last step, the approximation is rendered to the screen
by reconstructing un on a uniform grid. In this work, we use
a fixed polynomial degree of p= 2 for the interpolation (Sec-
tion 4).

7. Results

To determine the efficiency of our algorithm, we compared
the convergence behavior of our method to a uniform sub-
division of the image space and to the adaptive refinement
scheme proposed by [Lev90] (Section 7.3).

7.1. Datasets

We have applied our method to the following datasets:

Head: The dataset depicted in Figure 2 is a CT scan of
human head. The byte data is given on a uniform grid with a
resolution of 256×256×225.

Engine: The dataset depicted in Figure 3 (a) is a CT scan
of an engine block. The byte data is given on a uniform grid
with a resolution of 256×256×256.

Dragon: The dataset depicted in Figure 3 (b) is a dis-
tance field. The float data is given on a uniform grid with a
resolution of 256×256×256.

Mixing Layer: The dataset depicted in Figure 4 de-
scribes the mixing of two fluids. The float data is given on a
uniform grid with a resolution of 682× 61× 132. Figure 4
shows a direct volume rendering of the magnitude of the ve-
locity field that emerges during mixing.

7.2. Setup

As the goal of this work is the reduction of sampling points
while simultaneously keeping the approximation error low,
we have chosen the following setup for the convergence
analysis: As we do not have any knowledge about the ex-
act solution u, we replaced it with an extremely oversampled
version, i.e. an image resolution of 2k× 2k and a sampling
distance of 1/4096 along the ray.
The convergence graphs then compare the number of rays
that are shot for each evaluation point against the approxi-
mation error (y-axis) given by the relative L2 error:

ηrel = ∥u−un∥S /∥u∥S. (11)

7.3. Convergence

To determine the convergence behavior, we first compared
our adaptive approach to a uniform discretization of the im-
age plane (Figure 3).

Comparing convergence graphs of adaptive and uniform
image-space subdivions (Figures 3, 4), it can clearly be seen
that our adaptive approach leads to a faster convergence in
all our examples. That is, fewer rays are needed for a desired
image quality.

We further compared our adaptive refinement scheme to
Levoy’s adaptive image-space subdivision [Lev90]. The ba-
sic idea of the error metric proposed in [Lev90] is to consider
the variance of the values at the cells’ corner pixels. To incor-
porate this error estimator into our method, we modified the
estimation-stage of our algorithm. This allows for a direct
and fair comparison of the error estimators, although the re-
sulting overall algorithm is not the same as the one proposed
in [Lev90].

The results of the comparison are summarized in Figure 4.
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The convergence graph shows the relative error ηrel (Equa-
tion (11)) of the different refinement schemes: uniform vs.
[Lev90] vs. this paper. As expected, both adaptive methods
outperform the uniform refinement. Levoy’s error estimator
produces images with lower error in the beginning (less than
1282 rays). For more than 2562 rays, considerably better re-
sults are achieved by our estimator.

The better convergence behavior of Levoy’s approach
in the beginning is because it is more sensitive to edges.
Whereas our approach distributes rays more evenly, Levoy’s
approach resolves edges more quickly.
In linear image regions with strong slope, however, our ap-
proach is more efficient. Consider a linear function with
slope 1, which is perfectly represented (with zero error) by
a linear interpolant regardless of the underlying discretiza-
tion. Levoy’s error estimator, which is based on the variance
of the corner pixels, will always indicate an approximation
error regardless of the grid and, thus, would refine those re-
gions without reducing the error.

This behavior can be seen in Figure 4 (middle row). The
color of the red block on the left fades slowly into the back-
ground. This is well approximated by the bilinear interpo-
lation using rather coarse cells. The variance of the corner
pixels is rather large, which leads to an unnecessarily strong
refinement in this region applying Levoy’s error metric (Fig-
ure 4(f)). The hierarchical error estimator presented in this
paper notices the good approximation behavior in this rather
linear region of the image and focuses the refinement on the
interior edge of the red block (Figure 4(g)).

7.4. Performance

The initial grid has a resolution of 256× 256 and the num-
ber of cells to refine in one iteration is m= 1000. Using these
parameters, 7 iterations are needed to produce an image with
an approximation error of 10−2 for the dataset shown in Fig-
ure 4. In our current implementation a single iteration takes
about 20 up to 40 ms, for a screen resolution of 5122 and
20482, respectively §.

8. Conclusion and Future Work

We introduced an adaptive algorithm that is used in the field
of finite element methods to GPU-based volume rendering.
We have shown that we are able to reduce the number of
rays being cast into the scene and, thus, the overall number
of sampling points while minimizing the approximation er-
ror. In the future, we will use the adaptive screen-sampling
in combination with out-of-core techniques. In that case, a
minimization of the number of sample points is of special

§ The performance was measured on a system equipped with an
Intel Core 2 Duo CPU with 3.0 GHz and an NVIDIA GeForce
8800GT GPU.

importance, since each evaluation needs an expensive de-
compression.

Our work focused on explicit error control. Performance
issues were not covered yet. Future work, therefore, will
comprise an improved implementation of the algorithm us-
ing CUDA. Thus, all steps of the algorithm can be executed
on the GPU and we do not have to distribute the workload
between GPU and CPU, which currently reduces the perfor-
mances.

Finally, in this work we focused on h-adaptivity. Even
better convergence behavior might be achieved with hp-
adaptivity in combination with higher-order reconstruction
kernels.
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Figure 4: Top: Direct volume rendering of a dataset from computational fluid dynamics (682× 61× 132, float dataset) (a)
and corresponding convergence graph (b). Middle: Cutout of the image showing a uniform (256×256) viewport discretization
(c), an adaptive discretization based on Levoy’s algorithm [Lev90] using 2562 rays (d) and our adaptive discretization with
2562 rays (e). Bottom: Quadtree of Levoy’s discretization (f) and our algorithm (g). Whereas edges at the border of the volume
are detected by Levoy’s algorithm, edges inside the volume are missed. A more consistent approximation is achieved by our
adaptive discretization. Data courtesy of Pierre Comte.
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