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Abstract We present an exact rational solver for mixed-integer lin-
ear programming that avoids the numerical inaccuracies inherent in the
floating-point computations used by existing software. This allows the
solver to be used for establishing theoretical results and in applications
where correct solutions are critical due to legal and financial conse-
quences. Our solver is a hybrid symbolic/numeric implementation of LP-
based branch-and-bound, using numerically-safe methods for all bind-
ing computations in the search tree. Computing provably accurate solu-
tions by dynamically choosing the fastest of several safe dual bounding
methods depending on the structure of the instance, our exact solver is
only moderately slower than an inexact floating-point branch-and-bound
solver. The software is incorporated into the SCIP optimization frame-
work, using the exact LP solver QSopt ex and the GMP arithmetic
library. Computational results are presented for a suite of test instances
taken from the Miplib and Mittelmann collections.

1 Introduction

Mixed-integer programming (MIP) is a powerful and flexible tool for modeling
and solving decision problems. Software based on these ideas is utilized in many
application areas. Despite their widespread use, few available software packages
provide any guarantee of correct answers or certification of results. Possible inac-
curacy is caused by the use of floating-point (FP) numbers [14]. FP calculations
necessitate the use of built-in tolerances for testing feasibility and optimality,
and can lead to calculation errors in the solution of linear-programming (LP)
relaxations and in the methods used for creating cutting planes to improve these
relaxations.

Due to a number of reasons, for many industrial MIP applications near op-
timal solutions are sufficient. Cplex, for example, defaults to a relative MIP
optimality tolerance of 0.001. Moreover, when data describing a problem arises
from imprecise sources, exact feasibility is usually not necessary. Nonetheless,
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accuracy is important in many settings. Direct examples arise in the use of
MIP models to establish fundamental theoretical results and in subroutines for
the construction of provably accurate cutting planes. Furthermore, industrial
customers of MIP software request modules for exact solutions in critical appli-
cations. Such settings include the following.

– Feasibility problems, e.g., chip verification in the VLSI design process [1].
– Compiler optimization, including instruction scheduling [22].
– Combinatorial auctions [21], where serious legal and financial consequences

can result from incorrect solutions.

Optimization software relying exclusively on exact rational arithmetic has
been observed to be prohibitively slow, motivating the development of more
sophisticated techniques to compute exact solutions. Significant progress has
been made recently toward computationally solving LP models exactly over the
rational numbers using hybrid symbolic/numeric methods [7,10,12,16,17], in-
cluding the release of the software package QSopt ex [6]. Exact MIP has seen
less computational progress than exact LP, but significant first steps have been
taken. An article by Neumaier and Shcherbina [19] describes methods for safe
MIP computation, including strategies for generating safe LP bounds, infeasibil-
ity certificates, and cutting planes. The methods they describe involve directed
rounding and interval arithmetic with FP numbers to avoid incorrect results.

The focus of this article is to introduce a hybrid branch-and-bound approach
for exactly solving MIPs over the rational numbers. Section 2 describes how
rational and safe FP computation can be coupled together, providing a fast and
general framework for exact computation. Section 3 describes several methods
for computing valid LP bounds, which is a critical component of the hybrid
approach. Section 4 describes an exact branch-and-bound implementation within
SCIP [1,2] and includes detailed computational results on a range of test libraries
comparing different dual bounding strategies. The exact solver is compared with
an inexact branch-and-bound solver and observed to be only moderately slower.

2 Hybrid Rational/Safe Floating-Point Approach

Two ideas for exact MIP proposed in the literature, and tested to some ex-
tent, are the pure rational approach [7] and the safe-FP approach [9,19]. Both
utilize LP-based branch-and-bound. The difference lies in how they ensure the
computed results are correct.

In the pure rational approach, correctness is achieved by storing the input
data as rational numbers, by performing all arithmetic operations over the ra-
tionals, and by applying an exact LP solver [12] in the dual bounding step. This
approach is especially interesting because it can handle a broad class of problems:
MIP instances described by rational data. However, replacing all FP operations
by rational computation will increase running times noticeably. For example,
while the exact LP solver QSopt ex avoids many unnecessary rational com-
putations and is efficient on average, Applegate et al. [7] observed a greater
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slowdown when testing an exact MIP solver that relied on rational arithmetic
and called QSopt ex for each node LP computation.

In order to limit the degradation in running time, the idea of the safe-FP ap-
proach is to continue to use FP-numbers as much as possible, particularly within
the LP solver. However, extra work is necessary to ensure correct decisions in
the branch-and-bound algorithm. Correctness of certain computations can be
ensured by controlling the rounding mode for FP operations. Valid dual bounds
can often be obtained by post-processing approximate LP solutions; this type
of safe dual bounding technique has been successfully implemented in Con-

corde [5] for the traveling salesman problem. A generalization of the method
for MIPs is described in [19]. Furthermore, the idea of manipulating the round-
ing mode can be applied to cutting-plane separation. In [9], this idea was used
to generate numerically safe Gomory mixed-integer cuts. Nevertheless, whether
the safe-FP approach leads to acceptable running times for general MIPs has
not been investigated. Although the safe-FP version of branch-and-bound has
great advantages in speed over the pure rational approach, it has several disad-
vantages. Everything, including input data and primal solutions, is stored as FP
numbers. Therefore, correct results can only be ensured for MIP instances that
are given by FP-representable data and that have a FP-representable optimal
solution if they are feasible. Some rationally defined problems can be scaled to
have FP-representable data. However, this is not always possible due to the lim-
ited representation of floating-point numbers, and the resulting large coefficients
can lead to numerical difficulties. The applicability is even further limited as the
safe dual bounding method discussed in [19] requires, in general, lower and up-
per bounds on all variables. Weakness in the safely generated bound values may
also increase the number of nodes processed by the branch-and-bound solver.
Additionally, due to numerical difficulties, some branch-and-bound nodes may
only be processable by an exact LP solver.

To summarize, the pure rational approach is always applicable but introduces
a large overhead in running time while the safe-FP approach is more efficient
but of limited applicability.

Since we want to solve MIPs that are given by rational data efficiently and ex-
actly we have developed a version of branch-and-bound that attempts to combine
the advantages of the pure rational and safe-FP approaches, and to compensate
for their individual weaknesses. The idea is to work with two branch-and-bound
processes. Themain process implements the rational approach. Its result is surely
correct and will be issued to the user. The other one serves as a slave process,
where the faster safe-FP approach is applied. To achieve reasonable running
time, whenever possible the expensive rational computation of the main process
will be skipped and certain decisions from the faster safe-FP process will be sub-
stituted. In particular, safe dual bound computations in the slave process can
often replace exact LP solves in the main process. The rational process provides
the exact problem data, allows to correctly store primal solutions, and makes
exact LP solves possible whenever needed.
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Algorithm 1 Branch-and-bound for exactly solving MIPs

Input : (MIP) max{cTx : x ∈ P} with P := {x ∈ Rn : Ax ≤ b, xi ∈ Z for all i ∈ I},
A ∈ Qm×n, b ∈ Qm, c ∈ Qn, and I ⊆ {1, . . . , n}.

Output : Exact optimal solution x⋆ of MIP with objective value c⋆ or conclusion that
MIP is infeasible (c⋆ = −∞).

1. FP-problem: Store (FP-MIP) max{c̃Tx : x ∈ P̃} with P̃ := {x ∈ Rn : Ãx ≤ b̃, xi ∈

Z for all i ∈ I}, Ã ∈ Mm×n, b̃ ∈ Mm, and c̃ ∈ Mn.

2. Init: Set L := {(P, P̃ )}, L := −∞, xMIP to be empty, and cMIP := −∞.

3. Abort: If L = ∅, stop and return xMIP and cMIP.

4. Node selection: Choose (Pj , P̃j) ∈ L and set L := L \ {(Pj , P̃j)}.

5. Dual bound: Solve LP-relaxation max{c̃Tx : x ∈ L̃P j} approximately.

(a) If L̃P j is claimed to be empty, safely check if LPj is empty.

i. If LPj is empty, set c⋆ := −∞.

ii. If LPj is not empty, solve LP-relaxation max{cTx : x ∈ LPj} exactly. Let
x⋆ be an exact optimal LP solution and c⋆ its objective value.

(b) If L̃P j is claimed not to be empty, let x⋆ be an approximate optimal LP solu-
tion and compute a safe dual bound c⋆ with max{cTx : x ∈ LPj} ≤ c⋆.

6. Bounding: If c⋆ ≤ L, goto Step 3.

7. Primal bound:

(a) If x⋆ is approximate LP solution and claimed to be feasible for FP-MIP, solve
LP-relaxation max{cTx : x ∈ LPj} exactly. If LPj is in fact empty, goto Step 3.
Otherwise, let x⋆ be an exact optimal LP solution and c⋆ its objective value.

(b) If x⋆ is exact LP solution and truly feasible for MIP:

i. If c⋆ > cMIP, set xMIP := x⋆, cMIP := c⋆, and L := c⋆.

ii. Goto Step 3.

8. Branching: Choose index i ∈ I with x⋆
i /∈ Z.

(a) Split Pj in Q1 := Pj ∩ {x : xi ≤ ⌊x⋆
i ⌋}, Q2 := Pj ∩ {x : xi ≥ ⌈x⋆

i ⌉}.

(b) Split P̃j in Q̃1 := P̃j ∩ {x : xi ≤ ⌊x⋆
i ⌋}, Q̃2 := P̃j ∩ {x : xi ≥ ⌈x⋆

i ⌉} .

Set L := L ∪ {(Q1, Q̃1), (Q2, Q̃2)} and goto Step 3.

The complete procedure is given in Alg. 1. The set of FP-representable num-
bers is denoted by M; lower and upper approximations of x ∈ Q are denoted
x ∈ M and x ∈ M, respectively. The slave process, which utilizes the safe-FP
approach, works on a MIP instance with FP-representable data. It is set up in
Step 1 of the algorithm. If the input data are already FP-representable, both pro-
cesses solve the same MIP instance, i.e., P̃ := P and c̃ := c in Step 1. In principle,
this results in employing only the safe-FP approach except for some necessary
exact LP solves. Otherwise, an approximation of the MIP with P ≈ P̃ , c ≈ c̃
or a relaxation with P ⊆ P̃ , c = c̃ is constructed; called FP-approximation and
FP-relaxation, respectively. The choice depends on the dual bounding method
applied in the slave process (see Sect. 3).
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On the implementation side, we maintain only a single branch-and-bound
tree. At the root node of this common tree, we store the LP relaxations of both
processes: max{cTx : x ∈ LP} and max{c̃Tx : x ∈ L̃P}. In addition, for each
node, we know the branching constraint that was added to create the subproblem
in both processes. Branching on variables, performed in Step 8, introduces the
same bounds for both processes.

The use of primal and dual bounds to discard subproblems (see Steps 5, 6,
and 7) is a central component of the branch-and-bound algorithm. In particular,
in the exact MIP setting, the efficiency strongly depends on the strength of the
dual bounds and the time spent generating them (Step 5). The starting point of
this step is the approximate LP solution of the slave process. It is obtained by
an LP solver that works on FP-numbers and accepts rounding errors; referred
to as inexact LP solver. Depending on the result, we safely check whether the
rational LP, i.e., the exact LP relaxation, is also infeasible or we compute a safe
dual bound by post-processing the approximate LP solution. Different techniques
are discussed in Sect. 3 and are computationally evaluated in Sect. 4. We only
perform the exact but expensive dual bound computation of the main process if
it is necessary (Step 5(a)ii).

Dual and primal bounds are stored as FP-numbers and the bounding in
Step 6 is performed without tolerances; a computed bound that is not FP-
representable is relaxed in order to be safe. For the primal (lower) bound L, this
means L < cMIP if the objective value cMIP of the incumbent solution xMIP is not
in M.

Algorithm 1 identifies primal solutions by checking LP solutions for integral-
ity. This check, performed in Step 7, depends on whether the LP was already
solved exactly at the current node. If so, we exactly test the integrality of the
exact LP solution. Otherwise, we decide if it is worth solving the LP exactly. We
deem it worthy if the approximate LP solution is nearly integral. In this case,
we solve the LP exactly, using the corresponding basis to warm start the exact
LP solver (hopefully with few pivots and no need to increase the precision) and
perform the exact integrality test on the exact LP solution. In order to correctly
report the optimal solution found at the end of Step 3, the incumbent solution
(that is, the best feasible MIP solution found thus far) and its objective value
are stored as rational numbers.

This hybrid approach can be extended to a branch-and-cut algorithm with
primal heuristics and presolving; but the focus of this article is on the develop-
ment of the basic branch-and-bound framework.

3 Safe Dual Bound Generation Techniques

This section describes several methods for computing valid LP dual bounds.
The overall speed of the MIP solver will be influenced by several aspects of the
dual bounding strategy; how generally applicable the method is, how quickly the
bounds can be computed and how strong the bounds are, because weak bounds
can increase the node count.
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3.1 Exact LP Solutions

The most straightforward way to compute valid LP bounds is to solve each
node LP relaxation exactly. This strategy is always applicable and produces the
tightest possible bounds. Within a branch-and-bound framework the dual sim-
plex algorithm can be warm started with the final basis computed at the parent
node, speeding up the LP solution process. The fastest exact rational LP solver
currently available isQSopt ex [7]. The strategy used by this solver can be sum-
marized as follows: the basis returned by a double-precision LP solver is tested
for optimality by symbolically computing the corresponding basic solution, if it is
suboptimal then additional simplex pivots are performed with an increased level
of precision and this process is repeated until the optimal basis is identified.
This method is considerably faster than using rational arithmetic exclusively
and is usually no more than two to five times slower than inexact LP solvers.
For problems where the basis determined by the double-precision subroutines of
QSopt ex is not optimal, the additional increased precision simplex pivots and
additional exact basic solution computations significantly increase the solution
time.

3.2 Basis Verification

Any exactly feasible dual solution provides a valid dual bound. Therefore, valid
dual bounds can be determined by symbolically computing the dual solution
corresponding to a numerically obtained LP basis, without performing the extra
steps required to identify the exact optimal solution. If the dual solution is
feasible, its objective value gives a valid bound. If it is infeasible, an infinite
bound is returned. Within the branch-and-bound algorithm, an infinite dual
bound will lead to more branching. Due to the fixing of variables, branching
often remediates numerical problems in the LP relaxations. This strategy avoids
the extended precision simplex pivoting that can occur when solving each node
LP exactly, but it can increase the number of nodes.

3.3 Primal-Bound-Shift

Valid bounds can also be produced by correcting approximate dual solutions. A
special case occurs when all primal variables have finite upper and lower bounds.
The following technique was employed by Applegate et. al. in the Concorde

software package [5] and is described more generally for MIPs by Neumaier and
Shcherbina [19]. Consider a primal problem of the form max{cTx : Ax ≤ b, 0 ≤
x ≤ u} with dual min{bTy + uTz : ATy + z ≥ c, y, z ≥ 0}. Given an approxi-
mate dual solution ỹ, z̃, an exactly feasible dual solution ŷ, ẑ is constructed by
setting ŷi = max{0, ỹi} and ẑi = max{0, (c − AT ŷ)i}. This gives the valid dual
bound bT ŷ + uT ẑ. When working with a FP-relaxation of the original problem,
this bound can be computed using floating-point arithmetic with safe directed
rounding to avoid the symbolic computation of the dual feasible solution. The
simplicity of computing this bound suggests it will be an excellent choice when
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applicable. However, if some primal variable bounds are large or missing it may
produce weak or infinite bounds, depending on the feasibility of ỹ, z̃.

3.4 Project-and-Shift

Correcting an approximate dual solution to be exactly feasible in the absence of
primal variable bounds is still possible. Consider a primal problem of the form
max{cTx : Ax ≤ b} with dual min{bTy : ATy = c, y ≥ 0}. An approximate
dual solution ỹ can be corrected to be feasible by projecting it into the affine
hull of the dual feasible region and then shifting it to satisfy all of the non-
negativity constraints, while maintaining feasibility of the equality constraints.
These operations could involve significant computation if performed on a single
LP. However, under some assumptions, the most time consuming computations
can be performed only once at the root node of the branch-and-bound tree and
reused for each node bound computation. The root node computations involve
solving an auxiliary LP exactly and symbolically LU factoring a matrix; the
cost of each node bound computation is dominated by performing a back-solve
of a pre-computed symbolic LU factorization, which is often faster than solving
a node LP exactly. This method is more generally applicable than the primal-
bound-shift method, but relies on some conditions that are met by most, but
not all, of the problems in our test set. A detailed description and computational
study of this algorithm can be found in [20]. A related method is also described
by Althaus and Dumitriu [4].

3.5 Combinations and Beyond

The ideal dual bounding method is generally applicable, produces tight bounds,
and computes them quickly. Each of the four methods described so far represents
some trade-off between these conflicting characteristics. The exact LP method
is always applicable and produces the tightest possible bounds, but is computa-
tionally expensive. The primal-bound-shift method computes valid bounds very
quickly, but relies on problem structure that may not always be present. The ba-
sis verification and project-and-shift methods provide compromises in between,
with respect to speed and generality. Also, since the relative performance of
these dual bounding methods strongly depends on the (sub)problem structure
it may change throughout the tree. Therefore, a strategy that combines and
switches between the bounding techniques is the best choice for an exact MIP
solver intended to efficiently solve a broad class of problems.

In Sect. 4, we will evaluate the performance of each dual bounding method
presented here and analyze in what situations which technique works best. In
a final step, we then study different strategies to automatically decide how to
compute safe dual bounds for a given MIP instance. The central idea is to apply
fast primal-bound-shift as often as possible and if necessary employ another
method depending on the problem structure. In this connection, we will address
the question of whether this decision should be static or dynamic.
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In the first version (“Auto”), we decide on the method dynamically in Step 5.
At each node primal-bound-shift is applied, and in case it produces an infi-
nite bound one of the other methods is applied. The drawbacks are that it
allows for unnecessary computations and that it requires an FP-relaxation for
the slave process in order to support primal-bound-shift. Alternatively, we can
guess whether primal-bound-shift will work (“Auto-Static”). Meaning the dual
bounding method is selected depending on the problem structure at the begin-
ning, in Step 1, and remains fixed throughout the tree. This allows us to work
with FP-approximations whenever we do not select primal-bound-shift.

Beyond that, we will analyze whether it is a good idea to compute safe
dual bounds only if they are really required, i.e., at nodes where the unsafe
bound would lead to pruning (“Auto-Limited”). Furthermore, we experiment
with interleaving our actual selection strategy with exact LP solves to eliminate
special cases where weak bounds cause the solver to keep branching in subtrees
that would have been cut off by the exact LP bound (“Auto-Ileaved”).

4 Computational Study

In this section, we investigate the performance of our exact MIP framework
employing the different safe dual bounding techniques discussed above: primal-
bound-shift (“BoundShift”), project-and-shift (“ProjectShift”), basis verification
(“VerifyBasis”), and exact LP solutions (“ExactLP”). We will first look at each
method on its own and then examine them within the branch-and-bound algo-
rithm. At the end, we discuss and test strategies to automatically switch between
the most promising bounding techniques.

The discussed algorithms were implemented into the branch-and-bound algo-
rithm provided by the MIP framework SCIP 1.2.0.8 [1,2,23], using best bound
search for node selection and first fractional variable branching. To solve LPs
approximately and exactly we call Cplex 12.2 [15] and QSopt ex 2.5.5 [6],
respectively. Rational computations are based on the GMP library 4.3.1 [13].
All benchmark runs were conducted on 2.5 GHz Intel Xeon E5420 CPUs with
4 cores and 16 GB RAM each. To maintain accurate results only one compu-
tation was run at the same time. We imposed a time limit of 24 hours and a
memory limit of 13 GB. The timings used to measure computation times are
always rounded up to one second if they are smaller.

Our test set contains all instances of the Miplib 3.0 [8] and Miplib 2003 [3]
libraries and from the Mittelmann collections [18] that can be solved within
2 hours by the inexact branch-and-bound version of SCIP (“Inexact”).
This gives a test suite of 57 MIP instances (30:70:4 5:0 95:100, acc-0,
acc-1, acc-2, air03, air05, bc1, bell3a, bell5, bienst1, bienst2, blend2,
dano3 3, dano3 4, dano3 5, dcmulti, egout, eilD76, enigma, flugpl, gen,
gesa3, gesa3 o, irp, khb05250, l152lav, lseu, markshare1 1, markshare4 0,
mas76, mas284, misc03, misc07, mod008, mod010, mod011, neos5, neos8,
neos11, neos21, neos897005, nug08, nw04, p0033, p0201, pk1, qap10, qnet1 o,
ran13x13, rentacar, rgn, stein27, stein45, swath1, swath2, vpm1, vpm2).
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Table 1. Root node dual bound:
Relative difference to “ExactLP”
dual bound and additional computa-
tion time “DB” in geometric mean.

Setting Zero S M L ∞ DB (s)

BoundShift 13 26 2 0 16 1.0

ProjectShift 19 31 5 0 2 2.8

VerifyBasis 57 0 0 0 0 1.3

ExactLP 57 0 0 0 0 1.4

Auto 20 35 2 0 0 1.3

Auto-Static 21 34 2 0 0 1.3

Auto-Ileaved 20 35 2 0 0 1.3
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Figure 1. Comparison of safe dual
bounding times “DB” at root.

Note that we also analyzed the performance on the other, harder, instances of
the libraries by looking at the final gap and the number of branch-and-bound
nodes processed within a certain time limit. The conclusions drawn here, on the
smaller suite, were confirmed by these results.

4.1 Root Node Performance

We start with evaluating the root node behavior of the dual bounding methods.
Our performance measures are: time overhead and bound quality. The perfor-
mance profile, see [11], in Fig. 1 visualizes the relative overhead times for the
safe dual bounding methods. For each of them, it plots the number of instances
for which the safe dual bounding step was performed within a given factor of
the bounding time of the fastest method. Table 1 presents the geometric mean
of these additional safe dual bounding times in seconds (“DB”) and states the
number of instances for which a certain dual bound quality was achieved.

This quality is given by the relative difference between the computed safe dual
bound c⋆ and the exact LP value c⋆⋆ := max{cTx : x ∈ LPj}. However, we actu-
ally compare the FP-representable upper approximations of both values, as used
in Alg. 1, and define the relative difference as d := (c⋆ − c⋆⋆)/max{1, |c⋆|, |c⋆⋆|}.
The corresponding columns in Table 1 are: “Zero” difference for d = 0, “S(mall)”
difference for d ∈ (0, 10−9], “M(edium)” difference for d ∈ (10−9, 10−3], and
“L(arge)” difference for d ∈ (10−3,∞). Column “∞” counts the worst case be-
havior, i.e., infinite dual bounds.

We observe that basis verification has similar behavior as exact LP for the
root node. However, as we will see in the next section, it will give an improvement
over the exact LP solver when expensive basis repair steps are required to find
the exact solution.

As expected, primal-bound-shift is the fastest method. However, it produces
infinite dual bounds on 16 instances in contrast to only 2 fails for project-and-
shift and no fails for basis verification. This is, the bases obtained by Cplex are
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Table 2. Overall performance. “slv”
is number of instances solved, “DB” is
safe dual bounding time.

Geometric mean
for instances solved
by all settings (37)

Setting slv Nodes Time (s) DB (s)

Inexact 57 18 030 59.4 —

BoundShift 43 24 994 110.4 13.9

ProjectShift 49 18 206 369.3 238.1

VerifyBasis 51 18 078 461.8 329.8

ExactLP 51 18 076 550.7 419.0

Auto 54 18 276 92.6 17.5

Auto-Static 53 18 276 100.2 19.8

Auto-Ileaved 55 18 226 91.4 18.4

Auto-Limited 48 22 035 89.9 12.0
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Figure 2. Comparison of overall solving
times “Time”.

often dual feasible and even optimal and project-and-shift meets its requirements
most of the time. Still, the finite bounds provided by primal-bound-shift are of
very good quality; most of them fall into the “Zero” and “S(mall)” categories.
Thus, when primal-bound-shift works we expect to obtain strong bounds and
whenever it fails we assume basis verification or project-and-shift to be applica-
ble.

Where basis verification is in most cases only up to 10 times slower than
primal-bound-shift, project-and-shift is up to 100 times slower at the root node
because of the expensive initial set-up step. However, as we will see, the overhead
incurred by the set-up step of project-and-shift often pays off when it is applied
within the entire branch-and-bound tree.

4.2 Overall Performance

We will now analyze the effect of the dual bound methods on the overall per-
formance of the exact MIP solver and compare it with the inexact branch-and-
bound version of SCIP (“Inexact”). Table 2, reports the number of instances
that were solved within the imposed limits (Column “slv”), for each setting. On
37 instances, all settings succeeded. For this group (“all solved”), we present
in Table 2, the number of branch-and-bound nodes “Nodes”, the solution time
“Time” in seconds, and the additional time spent in the safe dual bounding step
“DB” in seconds, all in geometric mean for each method. In addition, Fig. 2
gives a performance profile comparing the solution times. For a setting where an
instance had a timeout, it is reported with an infinite ratio to the fastest setting.
Thus, the intersection points at the right boarder of the graphic reflect the “slv”
column.

The observations made for the root node carry forward to the application in
the branch-and-bound algorithm. Primal-bound-shift leads to the fastest node
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processing. Basis verification has a slightly better performance than solving LPs
exactly. However, basis verification is often outperformed by project-and-shift.

A closer look reveals that primal-bound-shift introduces not only a small
overhead at the root but throughout the tree as well. For the individual instances
it could solve, we usually experience a slow-down of at most 2. The few large
slow-down factors of up to 10 can be explained by a node increase due to a small
number of missing variable bounds and by expensive exact LP calls. However,
due to its limited applicability we solved only 43 instances.

In contrast, project-and-shift solves 49 instances. That is, the often observed
good dual bound quality at the root node seems to stay throughout the tree. We
already pointed out the big overhead this costs at the root node. Nevertheless,
the method is fast on the rest of the tree and leads to an acceptable slow-down
compared to the inexact code. In mean, it is only 6 times slower on the “all
solved” group. In this fashion, most of the instances solved by this setting are
only up to 20 times slower than the inexact code. If we compare project-and-shift
with basis verification we see a similar and often better performance for project-
and-shift. Still, on some instances basis verification works better. For example,
it solves two more instances of our test set. We examined different problem
characteristics and found the number of non-zeros in the constraint matrix to
be a good criterion for choosing between project-and-shift and basis verification.
In the automatic dual bound selection strategies, we prefer project-and-shift as
long as the matrix has at most 10,000 non-zeros.

4.3 Combinations

We already gave some remarks concerning a strategy that automatically chooses
a dual bounding method. Another important observation for this purpose is that
replacing FP-approximations by FP-relaxations does not affect the performance
much: running project-and-shift on an FP-relaxation gave similar results on our
test set. Therefore, we decided to always set up an FP-relaxation in Step 1. This
way, we are allowed to apply primal-bound-shift at any node we want to.

The automatic decision process used in the “Auto” run works as follows. At
every node, we first test whether primal-bound-shift produces a finite bound.
If not, we choose project-and-shift or basis verification depending on the struc-
ture of the constraint matrix as explained above. The root node results for the
combined versions are presented in Table 1 and Fig. 1; the overall performance
results can be found in Table 2 and Fig. 2. Note that we excluded “Auto-Limited”
from Table 1 as it never computed safe finite bounds at the root node and that
we only included the best auto setting in the performance profiles as their graphs
look very similar.

The experiments show that “Auto” actually combines the advantages of all
dual bounding methods. We can solve all 43 instances that primal-bound-shift
solved as well as 11 additional ones by automatically switching to other dual
bounding methods at the nodes.

In Sect. 3.5, we discussed three possible improvements for the automatic dual
bound selection procedure. The first one, to only guess whether primal-bound-
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shift will work, is implemented in the test run “Auto-Static”. The guess is static,
i.e., does not change throughout the tree; we skip primal-bound-shift if more
than 20% of the problem variables have lower or upper bounds with absolute
value larger than 106. Comparing both automatic settings shows that it is no
problem to actually test at each node whether primal-bound-shift works, and it
even leads to a slightly improved performance.

The second idea was to interleave the strategy with exact LP calls whenever
a node is very likely to be cut off (“Auto-Ileaved”). This does not apply often,
but is helpful when it does. We solved one more instance to optimality without
introducing a significant time overhead on the other instances. The third exten-
sion was to only compute bounds safely if they are actually used for a crucial
decision, i.e., if the unsafe bound with tolerances would lead to cutting off a node.
Looking at the overall behavior for the corresponding test run “Auto-Limited”,
it is not clear whether this is a good idea in general. It only solved 48 instead
of 54 instances. On the other hand, we experienced that on harder instances
the node count at timeout strongly increases, i.e., the node processing is much
faster on average. However, we cannot draw any conclusions about the quality
of this approach on harder instances as in this setting, the primal-dual-gap does
not improve steadily. Further testing is needed here, e.g., by applying additional
safe dual bounding steps at selected levels of the tree.

5 Conclusion

From the computational results we can make several key observations. Each
dual bounding method studied has strengths and weaknesses depending on the
problem structure. Automatically switching between these methods in a smart
way solves more problems than any single dual bounding method on its own.
Of the 57 problems solved within two hours by the floating-point branch-and-
bound solver, 55 could also be solved exactly within 24 hours and the solution
time was usually no more than 10 times slower. This demonstrates that the
hybrid methodology can lead to an efficient exact branch-and-bound solver, not
limited to specific classes of problems. As our focus has been exclusively on
the branch-and-bound procedure, we have compared the exact solver against a
floating-point solver restricted to pure branch-and-bound. The exact solver is still
not directly competitive with the full version of SCIP with its additional features
enabled. However, it is realistic to think that the future inclusion of additional
MIP machinery such as cutting planes, presolving, and primal heuristics into
this exact framework could lead to a full featured exact MIP solver that is not
prohibitively slower than its inexact counterparts.
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