Application of Multistage Stochastic Programming in Strategic Telecommunication Network Planning

Diplomarbeit
bei Prof. Dr. Dr. h.c. mult. Martin Grötschel

vorgelegt von Jonas Schweiger* am Fachbereich Mathematik der Technischen Universität Berlin

Berlin, 22. Juli 2010

Hiermit versichere ich die selbstständige und eigenhändige Anfertigung dieser Arbeit an Eides statt.

Contents

Zusammenfassung (German Summary) iii
Acknowledgments v

1. Introduction 1
2. Traditional Valuation of Investment Opportunities 5
2.1. Net Present Value 6
2.2. Decision Tree Analysis 8
3. Real Options 11
3.1. Types of Real Options 11
3.2. Real Options in the Literature 13
3.3. Types of Financial Options 14
3.4. Introduction to Mathematical Finance 16
3.4.1. Discrete Time Models 17
3.4.2. The Cox-Ross-Rubinstein-Model 20
3.4.3. The Black-Scholes Model 22
3.5. Revisiting the Assumptions from Finance 24
4. Multistage Stochastic Optimization 27
4.1. Introduction 27
4.2. The Scenario Formulation 30
4.3. The Node Formulation 31
4.4. Risk Measures 33
4.4.1. Value-at-Risk 35
4.4.2. Average Value-at-Risk 36
4.4.3. Multi-Period Risk Measures 38
5. Modeling UMTS Radio Networks and Demand Evolution Over Time 41
5.1. A Mathematical Model for UMTS Network Coverage and Capacity 41
5.1.1. Signal Propagation 42
5.1.2. Coverage 44
5.1.3. Cell Power 44
5.1.4. Load Control and Cell Areas 49
5.1.5. Adding Capacity Through Carrier and Technology Upgrades 51
5.1.6. Transforming Traffic to Load 54
5.1.7. Technological and Regulatory Requirements 55
5.2. Stochastic Model of Demand Evolution 56
5.2.1. Modeling Uncertainty by a Stochastic Process 59
5.2.2. Sampling Paths 59
5.2.3. Scenario Tree Construction 61
6. Optimizing Network Evolution 65
6.1. The Modeling Idea 66
6.2. Notation 67
6.3. Multistage Stochastic Program for the Expected Profit 69
6.3.1. Decision Variables 69
6.3.2. The Model 71
6.3.3. Assignment of Service- and Coverage Variables 72
6.4. Multistage Stochastic Program for Average Value-at-Risk 74
6.5. Problem Specific Presolving 75
6.5.1. Fixing Service and Coverage Variables Without Impact 75
6.5.2. Implicit Integer Variables 75
6.5.3. Pixel Aggregation 76
6.5.4. Reusing Service Variables as Coverage Variables 78
6.5.5. Presolving the Coverage Requirement 79
6.5.6. Mandatory Coverage Requirement 80
7. Computational Experiments 83
7.1. Planning Scenarios 84
7.2. Scenario Trees 85
7.3. Parameters 86
7.4. The Effect of Presolving 90
7.5. Computational Results 92
8. Conclusions 101
A. Tables with Detailed Results 105
List of Tables 139
Bibliography 143

Zusammenfassung

Telekommunikation ist eine wesentliche Grundlage für die Informationsgesellschaft in der wir leben. Sowohl in der Geschäftswelt als auch im Privaten wird die ständige Verfügbarkeit von mobiler Telekommunikation heutzutage vorausgesetzt. Nachdem am Anfang die Sprachnutzung überwog, erzeugen nun Datendienste und mobiles Internet die Hauptlast in den Netzen und bestimmen den Ausbau der Netzinfrastruktur. Im Jahr 2009 erzeugten 19 Millionen Nutzer über 33 Millionen Gigabyte Verkehrvolumen mit mobilen Datendiensten. UMTS-Netze in Deutschland enthalten über 120000 Mobilfunkzellen an über 39000 Standorten. Die vier deutschen Netzbetreiber investierten zwischen 1998 und 2008 über 28 Milliarden Euro in ihre Netzinfrastruktur (alle Zahlen stammen aus [14]).

Diese Zahlen verdeutlichen, dass eine sorgfältige Verwendung der verfügbaren Ressourcen sich wesentlich auf die Profitabilität eines Netzbetreibers auswirken kann. Das Netz sollte möglichst gut an die bestehende Nachfrage angepasst sein. Da sich die Nachfrage mit der Zeit verändert, ergibt sich Bedarf die Infrastruktur entsprechend mitentwickeln. Die Veränderung der Nachfrage ist schwer vorherzusagen und stellt eine starke Unsicherheitsquelle dar. Die strategische Netzplanung hat daher die Unsicherheit zu berücksichtigen, und die geplante Netzevolution sollte sich an veränderte Marktbedingungen anpassen. Die Verwendung von Planungsmethoden unter Berücksichtigung von Unsicherheit kann daher die Profitabilität erhöhen und einen Wettbewerbsvorteil darstellen.

Mathematische Modellierungs- und Optimierungsmethoden sind leistungsfähige Werkzeuge für die Planung von Fest- und Funknetzen gleichermaßen, die in den vergangen 20 Jahren in diesen Bereich vielfach erfolgreich eingesetzt wurden [36]. Stochastische Optimierung ist ein Ansatz um Planungsprobleme mit ganz oder teilweise unsicheren Planungsdaten anzugehen. Der Ausbau eines Funknetzes wird üblicherweise in Jahres- oder Quartalsabschnitten geplant, so dass wir von mehrstufiger stochastischer Optimierung sprechen.

In dieser Arbeit werden mathematische Modelle und effiziente Optimierungsmethoden für die strategische Planung von zellulären Funknetzen vorgestellt. Wir modellieren die Nachfrageentwicklung als stetigen, stochastastischen Prozess und approximieren ihn durch diskrete Szenariobäume. Ein dreistufiger Ansatz wird für die Erzeugung von unregelmäßigen Szenariobäumen verwendet, die die Grundlage der stochastischen Programme sind.

Wir beschreiben ein realistisches Systemmodell für ein UMTS-Funknetz. Unter Berücksichtigung von realistischen Signalausbreitungseigenschaften des Umfeldes und der Interferenz innerhalb des Netzes erfasst das Model mit Netzabdeckung und Netzkapazität dessen wesentliche Eigenschaften. Passend zu unserem Op-
timierungsansatz leiten wir Zellflächen von Abdeckungseigenschaften und der kapazitiven Auslastung der Funkzellen ab.

Wir formulieren das Netzplanungsproblem als mehrstufiges stochstisches Programm mit Ganzzahligkeitsbedingungen. Die zugehörengen deterministisch-äquivalenten Probleme sind gewöhnliche gemischt-ganzzahlige Programme (MIPs), die wir mit modernen, kommerziellen MIP-Lösern lösen. Dabei verwenden wir speziell entwickelte Presolving-Methoden, um die Problemgröße zu reduzieren, und die Instanzen einer Lösung zugänglich zu machen.

Mit Hilfe von Untersuchungen für realistische Planungsszenarien überprüfen wir unseren Planungsansatz. Wir nutzen sowohl Daten aus öffentlich zugänglichen Quellen als auch ein Planungsszenario eines deutschen Netzbetreibers, um Ausbaupläne und finanzielle Bewertungen fr̈ UMTS-Funknetze zu berechnen. Dabei betrachten wir neben dem erwarteten Gewinn auch ein Risikomaß als Zielfunktionen.

Der Planungsansatz soll anhand von Szenarien studiert werden, in denen neben der unsicheren Verkehrentwicklung möglichst alle weiteren Parameter bekannt sind. Deshalb untersuchen wir die Entwicklung eines UMTS-Netzes zwischen den Jahren 2004 und 2010. Für diesen Zeitraum sind die meisten Parameter öffentlich zugänglich und unterliegen nicht länger der Geheimhaltung durch die Netzbereiber.

Die meisten der formulierten Programme werden innerhalb von 10 Stunden optimal bis auf 0.5 \% Optimalitätslücke gelöst. Im Vergleich zur traditionellen Planung auf der erwarteten Bedarfsentwicklung liefert unser Ansatz signifikant bessere Ergebnisse. Die Ergebnisse verdeutlichen den Bedarf nach stochastischen Planungsmethoden, da die berechnenten Netzentwicklungen in den einzelnen Szenarien stark von einander abweichen. Die Optimierung mit dem Ziel der Minimierung des Risikomaßes Average Value-at-Risk bringt dagegen nur noch geringe Verbesserungen. Auch die genau Kenntnis über die zukünftige Entwickung, die einer Relaxierung der Nicht-Antizipativitäts-Bedingungen entsprechen, liefert nur noch wenig Mehrwert.

Der hier untersuchte Planungsansatz lässt sich auf andere Funktechnologien übertragen. Mit der Nachfolgetechnologie von UMTS names LTE steht bereits ein Kandidat in den Startlöchern. Das Systemmodel ist hierfür geringfügig anzupassen. Auch kann es sinnvoll sein, ein erweitertes Nachfragemodell zu verwenden, das beispielsweise auf anderen stochastischen Prozessen basiert. Weiterhin scheint eine Übertragung für die Planung von leitungsgebundenen Zugangsnetzen wie dem deutschlandweit geplanten Glasfaserausbau möglich. Eine detaillierte Analyse hierzu wird im Rahmen der Arbeit jedoch nicht durchgeführt.

Acknowledgments

First, I want to thank Andreas Eisenblätter. He had the first idea, which after many fruitful discussions led to this final version of this thesis. I acknowledge the unlimited support and supervision in all stages of the development. Thanks for the revisions of previous versions of this work and providing always helpful and constructive comments.

Thanks to Hans-Florian Geerdes, my first supervisor at ZIB. During the work on my thesis, I remembered and appreciated very often that he forced me to use parameter files and to develop scripts for every little task that can be automated. Today, I enjoy watching the computer doing the work for me.

I thank Prof. Dr. Martin Grötschel and the ZIB optimization department for providing a great working atmosphere. It was always a pleasure working, eating, and drinking (coffee) with you. Thanks also for the innumerable tips regarding ${ }^{\mathrm{LA}} \mathrm{T}_{\mathrm{E}} \mathrm{X}, \mathrm{TikZ}$, and all the other technical and editorial details. Special thanks to Timo Berthold, Gregor Hendel, Kai Hennig, and Stefan Vigerske for reading and correcting parts of this text.

Additionally, I want to thank Prof. Dr. Römisch and Stefan Vigerske for very constructive ideas and proposing the used of the Scenred tool for the construction of scenario trees. This improved the content of this thesis very much.

Thanks to Uli Türke for his valuable suggestions regarding the system model.
I thank Tobias Achterberg and Daniel Junglas for their help with Cplex. Daniel was always available for help with the Рутнол interface. Tobias contributed by discussing my models and he gave many tips for reformulations and parameter tunings.

I want to thank my friend Dario Götz. We began to study mathematics together. I appreciate his support in the first semesters and in all the moments of joy as well as frustration. The times, where we visited lectures and studied for exams together, were the best in my studies. Thanks for that!

I wish to thank my family and especially my parents. They always supported me and I never lacked love, attention, and (financial) security. Without their support I would have never been able to go my way, like I did.

Last but not least, I want to thank my lovely girlfriend Judith. Her support means very much for me. She pushed me when I was not motivated, made me relax when I was over-worked, and lifted me up whenever I felt over-challenged. Thank you!

Contents

1. Introduction

Telecommunication is fundamental to the information society we live in. In both, the private and the professional sector, mobile communication is nowadays taken for granted. Having started primarily as a service for speech communication, data service and mobile Internet access are now driving the evolution of network infrastructure. In the year 2009, 19 million users generated over 33 million gigabyte of traffic using mobile data services. The 3rd generation networks (3G or UMTS) in Germany comprises over 39000 sites with about 120000 cells. From 1998 to 2008, the four network operators in Germany invested over 28 billion euros in their infrastructure (all figures taken from [14]).

A careful allocation of the resources is thus crucial for the profitability of a network operator: a network should be dimensioned to match customers demand. As this demand evolves over time, the infrastructure has to evolve accordingly. The demand evolution is hard to predict and thus constitutes a strong source of uncertainty. Strategic network planning has to take this uncertainty into account, and the planned network evolution should adapt to changing market conditions. The application of superior planning methods under the consideration of uncertainty can improve the profitability of the network and creates a competitive advantage.

Mathematical modeling and optimization is a powerful tool for network planning [36]. Stochastic programming provides modeling approaches for planning problems where some or all the data is unknown. The evolution of the network can be divided into several stages such that we face a multistage problem. Multistage stochastic programming is, thus, a suitable framework to model strategic telecommunication network planning.

We start by investigating several methods for the monetary valuation of investment opportunities. The most traditional ones, net present value and decision tree analyis, are not satisfying. Net present value is a static framework which leads to poor results in the presence of uncertainty and many possibilities to react un unforseen events. Decision tree analysis can capture flexibility but is limited to discrete time horizons and probability distributions. Moreover, the tree has to be formulated explicitly which is hardly possible in our case. In both framework, future cash-flows are discounted with a risk-adjusted discount rate, which can hardly be determined.

The real options approach proposes to used the market for the monetary valuation of investment opportunities. The results are expected to be more reliable since no risk-adjusted discount rate has to be estimated. The project, however, has to be embedded in an appropriate market to fulfil the conditions. This is hardly possible in our application.

1. Introduction

In the literature, stochastic programming is suggested to value real options in the absence of a market embedding. The results is an implicit evaluation of the scenario tree and hence a risk-adjusted discount has to be used. We therefore formulate our network planning problem as a multistage stochastic program.

In stategic telecommunication network design, we identified the future demand as the main source of uncertainty. The future traffic volume is modelled in a stochastic manner. Using a three-stage approach, comprising the modelling as an abstract stochastic process, sampling of paths, and the construction of scenario trees based on the sample path, we obtain a stochastic demand model.

We set up a system model for UMTS radio networks that captures the coverage and capacity behavior of the network. Service by the network is assume to be provided only to mobile devices with cell the cells service area. Both, coverage and capacity, are considered to compute service areas of the cells. By this means, cell capacity is also transferred to a spacial measure which is appropriate for our purpose.

Based on the stochastic demand model and the cell areas for the respective traffic volumes, we formulate deterministic equivalent problems for the network design problem. These deterministic equivalents are ordinay mixed-integer programs which can be solved with state-of-the-art branch-and-cut based solvers. Several presolving routines are applied to reduce the problem size and make the instances computationally tractable.

To demonstrate the practical applicability of the approach, we conduct computational experiments on two realistic planning scenarios. We choose a setting that allows to perform experiments on realistic data without guessing to many parameters. We thus focus on a setting in which most parameters have become publicly accessible and are no longer a trade secret of the industry. This is nowadays the case for the introduction of UMTS, starting around the year 2003. Therefore, the evolution of a UMTS network from the year 2004 to the year 2010 is studied. Historical observation of the traffic volumes are used to calibrate the model.

Strategic planning the next technology generation of cellular networks, called LTE, is eventually ongoing at all German network providers. The technologies developed in this thesis are applicable to this setting as well.

Outline. This thesis is structured as follows. In the remainder of this section, we define the notation used in this thesis. We then discuss different frameworks to determine the value of an investment opportunity: Two traditional frameworks in Chapter 2 and the real options framework in Chapter 3. We study the applicability of the powerful tools provided by financial mathematics to value real options, and we explain which nesessary assumptions are not fulfilled for the application of this tool for the problem under consideration.

Therefore, stochastic optimization is the framework of choice to optimize the network evolution such that the expected value of the network is maximized. We introduce the stochastic programming framework in Chapter 4.

The system model of a UMTS network and a stochastic demand model is given in Chapter 5. Based on this, we present optimization models for the network evolution in Chapter 6. Presolving routine to make the problems computationally tractable are also provided.

Computational experiments on realistic datasets and their results are described and analyzed in Chapter 7. Conclusions are presented in Chapter 8.

Mathematical Programming

This section provides definitions of the types of mathematical programs used in this thesis. A more detailed introduction to linear and mixed-integer programming can be found for example in [65].
Definition 1: Let $m, n \in \mathbb{N}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$, and $I \subseteq N=\{1, \ldots, n\}$. The optimization problem

$$
\begin{array}{ll}
\min & c^{T} x \\
\text { s.t. } A x \leq b \\
& x_{i} \in \mathbb{Z} \\
& x \in \mathbb{R}^{n} \tag{1.4}
\end{array} \quad \forall i \in I
$$

is called mixed-integer (linear) program (MIP). A MIP is called
an integer program (IP), if $I=N$,
a linear program (LP), if $I=\varnothing$.
A minimization problem can be easily transformed into a maximization problem and vice versa. Therefore, a MIP can be equivalently be defined as a maximization problem. Furthermore, the inequality system $A x \leq b$ can be transformed into a system of equalities by adding auxiliary slack variables.

A vector $x \in \mathbb{R}^{n}$ is called feasible solution of the MIP if it fulfills the conditions (1.2) and (1.3). We call a feasible solution x optimal if the objective function can not be improved by another feasible solution, i. e., if no feasible $y \in \mathbb{R}^{n}$ exists such that $c^{T} y>c^{T} x$.

An LP can be associated to each MIP by omitting the integrality constraints (1.3). We say that the integrality constraints are relaxed. The resulting LP is called LP-relaxation. The optimal solution value of the LP-relaxation is a lower bound for the optimal solution value of the MIP and is called LP-bound. The relative gap between a lower bound and the objective function value of a feasible solution is a measure for the solution quality.
Definition 2: Let \bar{c} be the objective function value of a feasible solution and $\underline{c} \leq \bar{c}$

1. Introduction

SI prefixes			IEC prefixes		
Value	Abbr.	Name	Value	Abbr.	Name
1000^{1}	k	kilo	1012^{1}	Ki	kibi
1000^{2}	M	mega	$1012{ }^{2}$	Mi	mebi
1000^{3}	G	giga	$1012{ }^{3}$	Gi	gibi
$1000{ }^{4}$	T	tera	$1012{ }^{4}$	Ti	tebi
1000^{5}	P	peta	1012^{5}	Pi	pebi

Table 1.1.: Common unit prefixes
the a lower bound on the objective function value. The relative gap is defined by

$$
\text { relative gap }= \begin{cases}\infty & \text { if } \bar{c}=0 \text { and } \underline{c} \neq \bar{c} \tag{1.5}\\ 0 & \text { if } \bar{c}=\underline{c}=0 \\ \left|\frac{c-\bar{c}}{\bar{c}}\right| & \text { else }\end{cases}
$$

Even though general MIP solving is an $\mathcal{N} \mathcal{P}$-hard optimization problem [5], instances with a large number of variables and constraints can often be solved by state-of-the-art MIP solvers, such as Cplex [46], Gurobi [37], or SCIP [1,80].

Unit Prefixes

Large cuantities are commonly scaled by powers of thousands or powers of 1024. Prefixes, like kilo, mega, giga, are used to indicate the scaling. We distinguish the SI decimal prefixes and the IEC binary prefixes. The International System of Units (SI from the French Système international d'unitès) specifies a set of unit prefixes that reflect powers of 1000 . An examples is kilo with is abbreviated by the letter k and means 1000^{1} os the respective unit. The International Electrotechnical Commission (IEC) specifies unit prefixes that reflect powers of 1012 which are primarily used in the electronic and computer related field. Their names are similar to the SI prefixes but still allow a clear distinction. Table 1.1 gives an overview of the most common prefixes in both systems.

2. Traditional Valuation of Investment Opportunities

The evaluation of investment opportunities is challenging talk that arises in many business situations. An investment opportunity is interpreted as a project that incurs a series of investment outlays and in return generates a series of revenues. Selecting only profitable projects and among several possible projects the one with maximal profit is a common task for management and decision makers. One metric of profitability is the expected value of the investment opportunity at the time the decision has to be taken. Several approaches have been studied and became standard in the management literature.

All approaches rely on the ability to discount future cash-flows. Discounting is used to scale cash-flows occurring at different times. Typically, investors are riskaverse; they prefer less risk to more. For taking a risk, investors therefore ask for a risk-premium. This also effects the time preferences for monetary values. Having one unit today is preferred to having one unit in one year. On the other hand, one money unit that an investor gets next year is only worth the fraction $\frac{1}{r}$ today. The appropriate discount factor r, also called discount rate, depends on the riskiness of the investment. The riskier the investment is supposed to be, the higher is the discount factor for future cash-flows.

The most prominent approach of the evaluation of investment opportunities is Net Present Value (NPV) analysis. The NPV of a project is the sum of all discounted expected cash-flows that occur during the planned lifetime of the project. While this is a feasible approach when no uncertainty is present, difficulties arise when future cash-flows are uncertain and management has the flexibility to alter the operational strategy.

Decision Tree Analysis (DTA) is one attempt to capture flexibility. The idea is to construct a tree with event nodes and decision nodes, where discounted cashflows are associated to the edges. By backwards solving the tree, the expected present value and optimal decision strategies can be computed. In highly uncertain environments with many decisions and alternatives, however, the decision tree suffers from a combinatorial explosion. Finding the appropriate discount is also a problem.

With the advances in mathematical finance another approach emerged: Real Option Analysis. The idea is to interprete the options that form flexibility as financial options and value them using the methods from mathematical finance. This gives a powerful tool to model flexibility and gives methods to derive market driven values for investment projects. To capture the abilities and limitations of this ap-

2. Traditional Valuation of Investment Opportunities

proach, some background from finance is necessary. We therefore dedicate the real options approach a separate chapter, even though by now it can be called "traditional" as well.

In the remainder of this chapter we present in Section 2.1 the net present value approach and in Section 2.2 the decision tree approach in more detail. The real options approach will be studied in Section 3.

2.1. Net Present Value

The most common tool for the evaluation and comparison of investment opportunities or projects is the Net Present Value (NPV) Analysis. The net present value of a project is the sum of all discounted cash-flows that incur during its lifetime. NPV is a metric for the current value of a project, but is inappropriate in uncertain environments.

In the following, we assume a discrete time model where cash-flows may occur only at a certain points in time. The set of time points is called time horizon and is denoted by $\mathcal{T}=\{0, \ldots, T\}$. To facilitate the notation we assume that the periods between two points are of equal duration.

First, we introduce the NPV if all cash-flows are certain and argue that it is a correct method for valuation. Then, we define the NPV under uncertainty and show the limitations of the approach.

Net Present Value Under Certainty

In an environment without uncertainty all cash-flows during the lifetime are known in advance. Let C_{t} cash-flow in period t.

Since the cash-flows are certain, an investor is indifferent of investing in the project or putting the money on a bank account, but he will only invest in the project if the return is at least as high as the return of the bank account.

The value of funds on a bank account increases in every period by a factor of the interest rate r. A value of x in period 0 , will be worth $x(1+r)^{t}$ in period t. In return, to have x at t, only $\frac{x}{(1+r)^{t}}$ are needed at time 0 . Under the assumption that unlimited amounts can be deposited or borrowed from a bank account at the same interest rate r, all future cash-flows can be discounted by the rate r. If the cashflow C_{t} is negative, an investment is required and the amount $\frac{C_{t}}{(1+r)^{t}}$ would have to be deposited at time 0 to cover this expense. If C_{t} is positive, the project generates revenues, which are worth $\frac{C_{t}}{(1+r)^{t}}$ at time 0 . This amount could be extracted from the bank account at time 0 and the revenue would exactly balance the account.

The NPV of a project is then defined as the sum of all discounted future cashflows:

$$
\begin{equation*}
\mathrm{NPV}:=\sum_{t=0}^{T} \frac{C_{t}}{(1+r)^{t}} \tag{2.1}
\end{equation*}
$$

Interpretation. Being the sum of all discounted cash-flows, the NPV is the current value of the investment opportunity. Thus, a positive value is the amount we could extract at time 0 from the bank account and the project's revenues would still cover all its expenses. A negative value means that this amount needs to be deposited to cover all future expenses. Consequently, the NPV rule says that projects with positive NPV are favorable and should be executed while projects with negative NPV are unprofitable and should be rejected.

NPV is a metric for project merit and can therefore be used to compare alternative projects.
Trigeorgis [84] puts NPV in a bigger picture and states that in the absence of uncertainty "NPV is the only currently available valuation measure consistent with a firm's objective of maximizing its shareholders' wealth".

Net Present Value Under Uncertainty

In reality, future market prices for raw materials and final products are often not known with certainty. Many other sources of uncertainty might be present and have an effect on future cash-flows. Cash-flows are no longer deterministic, but stochastic with some underlying probability distribution. Summing up discounted cash-flows is not longer appropriate. Therefore, expectations regarding the future cash-flows are used.

The Risk-Adjusted Discount Rate. The uncertainty about the cash-flows generated by a project introduce risk for the investor. Investors, however, tend to be risk-averse and expect a risk-premium in form of a higher expected return of the investing in risky projects. Therefore, discounting has to be done using a risk-adjusted discount rate, which is higher than the risk-free interest rate. The risk-adjusted interest rate is also called opportunity cost of capital, since it represents the rate of return an investor expects from projects with a similar riskiness. Determining or even estimating riskiness of projects is very difficult. Finding appropriate risk-adjusted discount rates is not always possible and often subject to the risk preference of the decision maker. On the other side, the outcome of a NPV analysis strongly depends on the discount rate and using an inappropriate rate can lead to poor and unprofitable investment decisions. This is one of the mayor back-draws of the NPV approach when future cash-flows are uncertainty.

Definition. For a given risk-adjusted discount rate \widehat{r} and a series of (uncertain) cash-flows the NPV is defined by

$$
\begin{equation*}
\mathrm{NPV}:=\sum_{t=0}^{T} \frac{\mathbb{E}\left[C_{t}\right]}{(1+\widehat{r})^{t}} \tag{2.2}
\end{equation*}
$$

By $\mathbb{E}[$.$] we denote the expectation operator and assume that all expectations exist.$

2. Traditional Valuation of Investment Opportunities

Flexibility. Flexibility is the option to react to observations of unforeseen events by revising and correcting decisions. By using expectations, NPV handles uncertainty in the forecasted cash-flows, but the ability to react to changing market conditions is neglected by NPV analysis. This is a source of valuation errors and might result in poor investment decisions.

2.2. Decision Tree Analysis

Another commonly used tool for project valuation and decision support is decision tree analysis. The idea is to represent decisions and stochastic events as nodes in a tree. The tree structure is suitable to visualize the different alternatives in the lifetime of a project and to determine optimal decision strategies, depending on the outcome of the stochastic events.

The path from the root to a leaf contains all the information on the events occurred and the decisions taken.

The evaluation of the tree is done from the leaves to the root. At each node, the expected remaining NPV is calculated. At event nodes, the expectation over all events and at decision node, the most profitable decision is taken.

Example. Suppose a company has the option to build a production plant. It comes in two sizes; a big and a small size. If the small size is built, an upgrade can be built after one period. The sales price of the products is uncertain. Starting at 100 at time 0 , the price increases with probability 0.4 by 40 percent and decreases with probability 0.6 by 30 percent in each of the two periods. The big production size can produce three units of the product and the small only one. No capacity downgrade or shutdown is possible. Building the big plant involves cost of 450, while building the small plant only costs 150 , both occurring at time 0 . The upgrade costs another 150 which has to be paid in period one. Products are sold in periods one and two. All cash-flows have to be discounted with a risk-adjusted rate of 0.15 . The decision tree for this project is depicted in Figure 2.1.

Typically decision nodes are drawn rectangular and event (or chance) nodes round. Terminal nodes are drawn as triangles. Edges from event nodes are labeled with the probability p of the event. Edges from decision nodes are labeled with the decision. The number in brackets is the discounted cash-flow generated by the edge; either revenues from product sales or expenses for construction works. Numbers above nodes show the sum of the NPV of the subtree. The highlighted edges show which decisions are taken.

Let us first look at the subtree corresponding to building the small plant. If the price goes up, upgrading the facilities is optimal since the value of the "yes" branch is $311.2-130.4=180.8>103.7$. The sum if the expected discounted cashflows at the decision to upgrade is thus 180.8. If the price decreases, upgrading is no longer optimal since the value of the "yes" branch in this case is $155.6-130.4=$ 25.2, which is smaller than 51.9. At the time of the decision, the sum of the

Figure 2.1.: Example of a decision tree, decisions taken indicated by red arcs
expected discounted cash-flows is 51.9. Adding the discounted sales incomes and weighting with the probability of the price going up or down in the first period, the value of building the small plant is 188.7 minus the construction cost, thus 38.7.

If the big plant is build, no more flexibility exists. The sum of the expected, discounted cash-flows is 473.5. Subtracting the investment cost of 450 yield a value of building the big plant of 23.5 .

The maximize the value, the small plant should be build and upgraded, if the price develops favorable. The value of the project is then 38.7.

Disadvantages. Even though decision tree analysis is superior to NPV analysis, since it can capture flexibility to a certain degree, it still has the same major backdraw: Choosing the appropriate discount rate. What is the appropriate discount rate in this case anyway? In the example above we compare two projects; Building the big or the small plant. In the worst case, the big plant generates a discounted loss of 156.2 if the price decreases twice. In the best case a discounted win of 359.8 can be realized. Building the small plant and eventually the upgrade generates a win of 285.9 in the best and a loss of 52.0 in the worst case. Clearly, building the big plant is the riskier project and should have been discounted with a higher rate.

2. Traditional Valuation of Investment Opportunities

Using the same discount rate over time is also critical, since it implies that uncertainty is revealed continuously over time. In the worst case, at very node in the tree a different discount rate has to be chosen.

Another problem is the combinatorial explosion of decision trees with many decisions and many different outcomes of the random variables. Constructing the tree can be non trivial as well if more complicated constraints on the possible decisions are present.

The last back-draw we want to mention is the discrete time setting. Not only does the tree get bigger and bigger if the discretization gets finer, but some processes can be monitored continuously and decision can be taken at any point in time. Infinite time horizons, are also not possible in this setting.

3. Real Options

With the success of mathematical finance with its abilities to compute prices for financial derivatives, another approach to value projects arose: Real Options. An investment opportunity is viewed as a collection of options on future cash flows and methods from finance are used to compute prices for these options on "real" assets, thus the term "real option". The Flexibility to modify the operational strategy is considered by adding appropriate options to the collection of options that form the project. These options are valued in a suitable market model. The resulting values are driven by the market and thus risk-neutral. In particular, they do not rely on risk-adjusted discount rates, which was one of the main drawbacks of net present value and decision tree analysis.

Even though the approach is appealing, its correct application is elaborate. One sticking point is that typically neither the real option itself nor the underlying assets are tradable. In the standard mathematical finance models a perfect and complete market is assumed, which can be used to hedge against all risks. This allows to calculate risk-neutral prices with the property of being arbitrage-free in the market model. To make the valuation approach work, the real options have to be embedded in such a market. Several ways to do this have been proposed, but apparently there are situation where no suitable embedding can be found.

In the remainder of this chapter we present the most common types of real options and give a literature review about application areas of the approach. Then, standard terminology and notation from mathematical finance is introduced together with common market models. A critical summary of the assumptions from finance, together with a discussion about usability of the real options approach will end this chapter.

3.1. Types of Real Options

The collection of real options that form an investment opportunity typically contains several types of options. The most common types will be presented in the following.

The Option to Wait. In many situations investments can be undertaken not only at some unique point in time, but during a time window. Thus, management has the option to wait until conditions are favorable to decide on the execution. Delaying has the advantage that more information regarding market developments might be revealed.

3. Real Options

In terms of the real options view on investment opportunities, the option to wait is the option to purchase the remaining options in the basket by paying the initial investment needed to start the project. The option is only exercised if the market conditions are favorable and the initial investment will pay off by the remaining options and their corresponding cash-flows. Otherwise, the project is not started and all the remaining options turn worthless.

The option to wait and defer an investment is especially valuable in the absence of competition. Generally, competition is important to take into account when modeling real options.

The Option to Default During Construction. Often projects are run in several stages and an abandonment of the project is possible before starting the next stage.The option to default during construction has a value, when the investment does not require one outlay, but a series of expenses. The option is exercised if the remaining expenses are expected to be higher than the expected revenues. In staged projects, the outlay in each stage is the price for acquiring the option to continue in the next stage.

The Option to Expand or Contract. This option reflects the scalability of many projects. Production plants are often scalable to some degree. This might concern buying additional machinery to extend production or to shut down parts of the plant.

Capacity expansion typically involves costs and thus the option to expand is only exercised if the conditions are favorable. The option to contract enables the management to reduce the scale of the project by, for example, reducing the production in a factory. This causes the abandonment of future revenues to save operational expenses.

The Option to Abandon. Many projects can be abandoned before the planned lifetime ends. Facilities and technologies are often still of value and can be sold on the market.

Interdependent and Compound Options. Typical investment projects comprise several options effecting each other. The option to default is an example of a compound option, since it involves several options: one for each period when defaulting is possible, but they are highly interdependent. Each of them has to be exercised to acquire the next. The value of the option to default in some period, hence, depends on the exercise strategy in the preceeding periods.

When options interact with each other they cannot be valued independently anymore. They have to be seen as one compound option. The exercise decision of an option in the compound depends also on the exercise strategy of the other options; in particular, on the exercise history of the other options. When the
decision to exercise does not only depend on the current state of the system but on the history, we call an option path-dependent. Interactions among options and path-dependence add significant complexity to the valuation. The determination of optimal exercise strategies is also very important.

3.2. Real Options in the Literature

The term "real option" was coined by Myers [62] in 1977. Since then, the study and application of real option has generated innumerable publications. Anyhow, we try to give an overview without claiming completeness.

In the mid 1980s, people started to investigate on real options by considering one option at a time.

Several authors contributed in the area of investment timing and stages investments. McDonald and Siegel [57] focus on the option to wait. Staged investment and the option to default during construction is discussed by Majd and Pindyck [55]. They assume that an investment has to be made with a limited investment level per time period. Therefore, investment has to be done continuously (but with possible breaks) over a time period and investment levels have to be determined. Bar-Ilan and Strange [6] model investments with several stages that take time to complete and where the staged investments have to be done at once, in contrast to the continuous model from Majd and Pindyck. Paddock, Siegel and Smith [68] investigated on staged investment in the context of offshore petroleum leases, where the three stages are: Exploration, development and extraction.

Options concerning the scalability of projects are another big branch. Pindyck [71] studies capacity choice where the demand is stochastic; an idea which is extended by Dixit and Pindyck [24]. The option to shut down and restart can also be seen in the light of scalability of projects. It has been studied by McDonald and Siegel [56]. Project abandonment is investigated by Myers and Majd [63].

Several publications target to present the real options to a broader public, especially corporate managers. Examples are publication by Luehrman [53,54], where the first runs under heading "Manager's Tool Kit", and Copeland and Tufano [19].

Various books about real options have been published. The prominent ones are by Trigeorgis [84] and Dixit and Pindyck [23], but there are several more, i.e., $[17,18]$.

The real options approach has been used in several applications, such as natural resources [9,68,82], telecommunication [38, 42], technology adoption [3, 47, 58], electricity [21,48,76], research and development (R\&D) [44,89].

Several publications, i.e., $[2,8,52]$, deal with the problems in the practical implementation of real option analysis and show the limitations.

The idea to model and value real options by means of multistage stochastic programming can be found in $[85,87]$ and in the PhD-thesis of Wang [86], which is our main reference in this context.

3. Real Options

3.3. Types of Financial Options

Financial instruments that are derived from traded assets, such as stocks or bond, are called derivatives. Options are a special class of derivatives, where the buyer has the right, but not the obligation, to take some specified action.

Let us first review the definitions of the most common options in practice: call and put options. These products are often called plain vanilla options. In contrast to these standard options a variety of exotic options are traded, among them options depending on the average, minimum or maximum price of the underlying and barrier products.

Two types of options are distinguished: European and American. European options can only be exercised at a specified point in time, called expiry. American options, in contrast, can be exercised anytime within a time window, normally from the emission until the expiry. American options are more sophisticated since different exercise strategies have to be considered. Options are assumed to be of European type if not specified otherwise.

Plain Vanilla Options

Let us examine the most common types of options.

The European Call Option. We will first give a formal definition of the call option.
Definition 3 (Call Option): The holder of a call option with underlying S, strike K, and expiry T has the right but not the obligation to buy one unit of S for the price K. European call options can be exercised only at time T, American call options anytime before T.

Any rationally acting investor exercises the option if the price S_{t} is higher than then the strike, otherwise he gets the asset at the same or a smaller price at the market. In the case of exercise, the asset can be sold directly and the holder of the option has an instant win of

$$
\begin{equation*}
S_{t}-K . \tag{3.1}
\end{equation*}
$$

In practice options are mostly not settled by exchanging the asset, but by paying the difference (3.1). The resulting payoff profile for the call option is

$$
\begin{equation*}
C^{(\text {call })}:=\left(S_{t}-K\right)^{+} \tag{3.2}
\end{equation*}
$$

where (. $)^{+}$is the positive part defined by

$$
(x)^{+}:=\max (0, x)
$$

Figure 3.1(a) shows a plot of the payoff profile.

Figure 3.1.: Payoff profiles of plain vanilla options with strike K

The Put Option. The counterpart to call options are put options. They allow participation if the value of the asset decreases.
Definition 4 (Put Option): The holder of a put option with underlying S, strike K, and expiry T has the right but not the obligation to sell one unit of S for the price K. European put options can be exercised only at time T, American put options anytime before T.

The payoff profile for the put is

$$
\begin{equation*}
C^{(\mathrm{put})}:=\left(K-S_{t}\right)^{+} \tag{3.3}
\end{equation*}
$$

The plot in Figure 3.1(b) shows the payoff profile. We see that the holder profits from decreases in the value of the underlying asset.

Exotic Options

Innumerous types of non-standard options exist. To get an impression, we present some of them. Let S be an asset. We present only the European version options.

Options whose payoff is based on the average price of an asset are called Asian option. Often discrete monitoring dates are used of average, such that the average price is defined by

$$
S_{t}^{\mathrm{av}}=\frac{1}{|\mathbb{T}(t)|} \sum_{k \in \mathbb{T}(t)} S_{k},
$$

where $\mathbb{T}(t)$ is the set of monitoring dates that is smaller than t. The average price can now used to define payoff profiles for call and put option

$$
\begin{aligned}
& C_{\mathrm{apP}}^{\text {call }}:=\left(S_{t}^{\mathrm{av}}-K\right)^{+} \\
& C_{\mathrm{avP}}^{\text {put }}:=\left(K-S_{t}^{\text {av }}\right)^{+}
\end{aligned}
$$

To make the confusion complete, Asian options can be of European or American type, referring to the possible exercise only at expiry or anytime before that.

3. Real Options

The payoff of Lookback options is based on the minimum or maximum price of an asset. Examples are the lookback put and lookback call with the respective payoff profiles

$$
\begin{aligned}
& C_{\text {look }}^{\text {call }}:=S_{T}-\min _{t \in[0, T]} S_{t} \\
& C_{\text {look }}^{\text {put }}:=\max _{t \in[0, T]} S_{t}-S_{T} .
\end{aligned}
$$

Another mechanism to create exotic options are barriers. If the value of the underlying hits or passes a thresholds, the payoff profile of the option is changed. Classical barrier mechanisms are up-and-in, which only activates a payoff if the value of the underlying was at some point on or higher than the barrier, up-andout, which only pays if the value of the underlying was never superior of the barrier, down-and-in and down-and-out which work similarly.

American options

In contrast to European options that can be exercised only at the expiry, American options can be exercised any time before at at the expiry. Pricing is therefore much more complicated and will not be discussed in detail. We refer to the textbooks [29, 45,81].

Anyhow, we want to point out the key issues. The value of an option can be seen from two perspectives: from the investors and the sellers point of view. An investor is not willing to pay more for an American option than the expected payoff if the option is exercise optimally. In probability theory this is formulated using optimal stopping times. Since exercise can be anytime between the emission and the expiry, the subjective preference is also involved. Fortunately, in complete markets it suffices to maximize the expected payoff under the equivalent martingale measure. The seller of the option, on the other side, has to hedge the option. The hedging strategy must be chosen such that it covers the claims for all optimal stopping strategies.

Asymmetry of Risk

The most important point in the definitions of options is that the holder has the right but not the obligation to perform some action. This results in an asymmetry of risk. The holder profits from movements in one direction-up for calls, down for puts-, but has limited downside risk if the value of the underlying goes in the opposite direction.

3.4. Introduction to Mathematical Finance

The idea in valuing real options is to interpret them as options on traded assets and apply methods from mathematical finance to calculate values and prices.

Therefore, we want to give a brief introduction to pricing methods in mathematical finance. An understanding of the ideas and methods and especially of the assumptions in this field is useful in the application of real options.

First, we want to make some assumptions that are common to all the market models described here.

- No transaction costs
- No taxes
- No limitations in short-selling
- Money can be borrowed and deposited in unlimited amounts at the same interest rate
- Arbitrarily sharable assets

Short-selling means selling an asset that the trader does not own. The trader borrows it and sells it on the market. When he buys it back, the price difference is his profit. This way, it is possible to participate if the value of the asset goes down. The last point says that an investor can hold any fractional quantity of an asset.

Throughput this presentation, we assume that the assets do not pay dividends and that the interest rate is constant over time. All options are of European type.

3.4.1. Discrete Time Models

In this section, we present the results from the chapters 1 and 5 from Föllmer and Schied [29]. We also use the notation from this book. We do not aim for a complete review of the topic, but for an intuitive introduction and overview on the most interesting phenomena and principles in stochastic finance in discrete time. Of particular importance is the "fundamental theorem of asset pricing" which ensures the existence of probability measures under which expectations result in fair prices. We start from a description of the market model.

The market model.

A finite time horizon $\mathcal{T}=\{0, \ldots, T\}$ is assumed in this discrete setting. The market consists of $d+1$ assets. Assets can be bonds, stocks, currencies, commodities, and others. We assume that the initial prices at time 0 are deterministic.

Prices. The prices of the assets are described by non-negative random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. The random variable $S_{t}^{k}(\omega)$ denotes the value of 1 unit of asset k at time t in scenario $\omega \in \Omega$. If no confusion can occur, we omit the specification of the scenario and identify $S_{t}^{k}=S_{t}^{k}(\omega)$.

The prices at time t are combined to a random vector $S_{t}=\left(S_{t}^{0}, S_{t}^{1}, \ldots, S_{t}^{d}\right)$. The stochastic process $\left(S_{t}\right)_{t \in \mathcal{T}}$ describes the price system.

The 0th asset S_{t}^{0} is the risk-free bond. It yields the risk-free interest rate r. Let $S_{0}^{0}=1$ be the initial value of the bond at time $t=0$. Then the value in the later

3. Real Options

periods is

$$
\begin{equation*}
S_{t}^{0}=(1+r)^{t} \tag{3.4}
\end{equation*}
$$

Trading Strategies. A trading strategy has to specify the quantities of the assets in the portfolio. In every period the portfolio can be restructured depending on the development of the prices. The trading strategy, thus, also depends on the realization of the price process.

To understand the mechanics, we start with an example. At time 0 the prices are known and an initial portfolio $\xi_{1}=\left(\xi_{1}^{0}, \ldots, \xi_{1}^{d}\right)$ has to be chosen. The value ξ_{1}^{k} specifies the quantity of asset k in the portfolio at this point. The initial value of the portfolio is given by the scalar product $\xi_{1} \cdot S_{0}=\sum_{i=0}^{d} \xi_{1}^{i} S_{0}^{i}$. In period 1 , after the prices have changed, the value of the portfolio is $\xi_{1} \cdot S_{1}=\sum_{i=0}^{d} \xi_{1}^{i} S_{1}^{i}$. At this point the portfolio can be restructured. The new quantities are given by the random vector ξ_{2}. Following this pattern in each period $t \in\{0, \ldots, T-1\}$ quantities for the portfolio $\xi_{t+1}=\left(\xi_{t+1}^{0}, \ldots, \xi_{t+1}^{d}\right)$ are chosen. The trading strategy $\left(\xi_{t}\right)_{t \in\{1, \ldots, T\}}$ is also a stochastic process since it depends on the development of the prices.

The selection of the portfolio has to fulfill two important properties. First, the selection is allowed to depend only on the observation of the prices up to time t. No at time t unknown events can influence the selection. Second, the selection has to be self-financing. This means that the restructuring has to preserve the portfolios value. This is expressed by the condition

$$
\begin{equation*}
\xi_{t} \cdot S_{t}=\xi_{t+1} \cdot S_{t} \quad \text { for all } t=1, \ldots, T-1 \tag{3.5}
\end{equation*}
$$

The left-hand side is the value before and the right-hand side the value after restructuring.

Discounting. The risk-free bond S_{t}^{0} is used for discounting. The discounted prices process X is defined by the component-wise division

$$
\begin{equation*}
X_{t}:=\frac{S_{t}}{(1+r)^{t}} \tag{3.6}
\end{equation*}
$$

We define the discounted value process V for a trading strategy ξ by

$$
\begin{align*}
& V_{0}:=\xi_{1} \cdot X_{0} \tag{3.7}\\
& V_{t}:=\xi_{t} \cdot X_{t} \quad \text { for all } t=1, \ldots, T \tag{3.8}
\end{align*}
$$

Arbitrage. Let us now formally define what arbitrage is.
Definition 5 (Arbitrage opportunity): A self-financing trading strategy is called an arbitrage opportunity if its discounted value process V satisfies

$$
\begin{equation*}
V_{0} \leq 0, \quad V_{T} \geq 0 \text { almost surely }, \quad \text { and } \quad \mathbb{P}\left(V_{T}>0\right)>0 . \tag{3.9}
\end{equation*}
$$

A market model is said to be arbitrage-free if it permits no arbitrage opportunities.

According to definition 5 an arbitrage opportunity is a trading strategy, that has zero or even negative value in the beginning, but non-negative value in the end and with positive probability the strategy yields a strictly positive profit. In the following we assume the market model to be arbitrage-free.

European Contingent Claims. With this description of the market, we can define financial derivatives. We consider European contingent claims which are nonnegative random variables on $\left(\Omega, \mathcal{F}_{T}, \mathbb{P}\right)$. At expiry T the claim is settled by paying the payoff according to the payoff profile. Contingent claims are general options whose payoff profile can depend on the development of the market but also of other factors, such as the weather and outcomes of sports events. We are interested in claims whose payoff is a function underlying asset. A European contingent claim C is called a derivative of the underlying assets $S^{0}, S^{1}, \ldots, S^{d}$, if its payoff profile is a function of the assets prices, i.e., there exists a function f such that

$$
\begin{equation*}
C=f\left(\left(S_{t}^{0}\right)_{t \in \mathcal{T}}, \ldots,\left(S_{t}^{d}\right)_{t \in \mathcal{T}}\right) \tag{3.10}
\end{equation*}
$$

If there is a trading strategy ξ such that the final value of the portfolio equals the payoff of the claim C

$$
\begin{equation*}
C=\xi_{T} \cdot S_{T} \quad \text { almost surely. } \tag{3.11}
\end{equation*}
$$

the contingent claim is replicable. A trading strategy fulfilling (3.11) is called replicating portfolio. The arbitrage-free price of a replicable claim is the initial value of the replicating portfolio. For non-replicable claims more than one fair price can exist without generating arbitrage.

Market models in which all contingent claims can be replicated are called complete.

From the sellers point of view, replicating portfolios is of great importance. They allow hedging, which means that the seller of a claim can source the risk arising from the potential future payoff out to the market. In this context the replicating portfolio is called hedge.

Arbitrage-Free Pricing

In the following, we present the principles of risk-neutral pricing. Since a full presentation of all the details goes beyond the scope of this work, we present the key ideas and refer to Föllmer and Schied [29] for the details.

The absence of arbitrage in a market model is strongly related to the existence of special measures: martingale measures. They have the nice property that the discounted price processes of all assets are martingales under this measure. Martingales are the mathematical representation of fair games.

The following theorem states the relationship between martingale measures and arbitrage.

3. Real Options

Theorem 3.1 (Fundamental Theorem of Asset Pricing): A market model is arbitrage-free if and only if the set \mathcal{P} of equivalent martingale measures is non-empty.

The impact of martingale measure lies in their pricing capability. The set $\Pi(C)$ of arbitrage-free prices of a claim C is described by expectations under martingale measures.

Theorem 3.2: The set of arbitrage-free prices of a claim C is non-empty and given by

$$
\begin{equation*}
\Pi(C)=\left\{\left.\frac{1}{(1+r)^{t}} \mathbb{E}^{*}[C] \right\rvert\, \mathbb{P}^{*} \in \mathcal{P} \text { and } \mathbb{E}^{*}[C]<\infty\right\} \tag{3.12}
\end{equation*}
$$

where $\mathbb{E}^{*}[$.$] denotes the expectation with respect to \mathbb{P}^{*}$.
Theorem 3.2 is particularly useful in complete markets. In these markets, the martingale measure is unique which by Eq. (3.12) implies that the price is also unique and can be calculated as the discounted expected payoff of the claim.

3.4.2. The Cox-Ross-Rubinstein-Model

In the time discrete setting, complete markets have a simple structure. Not only can all claims can be replicated, there is exactly one martingale measure and one unique arbitrage-free price. The probabilistic structure is also simple. A set $A \in$ \mathcal{F}_{T} is an atom, if for every $B \in \mathcal{F}_{T}$ with $B \subseteq A$, we have either $\mathbb{P}(B)=0$ or $\mathbb{P}(B)=\mathbb{P}(A)$. It can thus be interpreted as an scenario that cannot be split. The following theorem states that a complete market only distinguishes finitely many scenarios.
Theorem 3.3: If a market model is complete, then the number of atoms in $\left(\Omega, \mathcal{F}_{T}, \mathbb{P}\right)$ is bounded by $(d+1)^{T}$.

On the basis of this theorem, John Cox, Stephen Ross and Mark Rubinstein [20] described a market model, which consists of only two assets: the risk-free bond and one risky asset. The bond has an interest rate r and its value is given by

$$
S_{t}^{0}=(1+r)^{t}
$$

The asset behaves in a tree-like fashion. From S_{t}^{1} it moves with probability p to the high value $S_{t}^{1}(1+a)$ and with probability $1-p$ to the low value $S_{t}^{1}(1+b)$. Like this, it spans a binary tree with probabilities on the arcs as depicted in Figure 3.2. The model is often called CRR-model or binomial model.

Let us describe the model by first defining the sample space

$$
\begin{equation*}
\Omega=\{a, b\}^{T} . \tag{3.13}
\end{equation*}
$$

The elementary events $\omega \in \Omega$ are called scenarios. Let

$$
\begin{equation*}
Y_{t}(\omega):=y_{t} \quad \text { for } \omega=\left(y_{1}, y_{2}, \ldots, y_{T}\right) \tag{3.14}
\end{equation*}
$$

Figure 3.2.: Representation of a binary scenario tree with time horizon $\mathcal{T}=\{0,1,2\}$, nodes are labeled with their probabilities for $p=0.6$
be the projection on the t th coordinate. The price of the risky asset at time t is given by

$$
\begin{equation*}
S_{t}^{1}(\omega)=S_{t-1}^{1}(\omega)\left(1+Y_{t}(\omega)\right)=S_{0}^{1} \prod_{k=1}^{t}\left(1+Y_{k}(\omega)\right) \tag{3.15}
\end{equation*}
$$

Like that the t th coordinate of ω specifies whether the price goes from S_{t-1}^{1} to the high value or to the low value.

Arbitrage-free Pricing. The following theorem specifies under which condition the CRR-model is arbitrage-free and also give a martingale measure.
Theorem 3.4: The CRR-model is arbitrage-free if and only if $a<r<b$. In this case it is complete, and there is a unique martingale measure \mathbb{P}^{*}. The martingale measure is characterized by the fact that the random variables $Y_{1}, \ldots, \Upsilon_{T}$ are independent under \mathbb{P}^{*} with common distribution

$$
\begin{equation*}
\mathbb{P}^{*}\left(Y_{t}=a\right)=p^{*}=\frac{r-b}{a-b} \quad \text { for } t=1, \ldots, T \tag{3.16}
\end{equation*}
$$

A formal proof can be found in [29]. The risk-free probability of a scenario $\omega \in \Omega$ is now easily calculated by

$$
\begin{equation*}
\mathbb{P}^{*}(\omega)=p^{*\left|\left\{t \mid Y_{t}(\omega)=a\right\}\right|}\left(1-p^{*}\right)^{\left|\left\{t \mid Y_{t}(\omega)=b\right\}\right|} \tag{3.17}
\end{equation*}
$$

Pricing in the CRR-model is now an easy task. The price is just the expectation of the discounted payoff with respect to the martingale measure. If the payoff is $C(\omega)$ then is price $\pi(C)$ is:

$$
\begin{equation*}
\pi(C)=\sum_{\omega \in \Omega} \mathbb{P}^{*}(\omega) \frac{C(\omega)}{(1+r)^{T}} \tag{3.18}
\end{equation*}
$$

3. Real Options

The CRR-model is of great importance not only because it is an easy model which allows to calculate arbitrage-free prices even for path dependent options, but it also has the nice property that the prices converge against the prices given by the continuous Black-Scholes Model if some regularity assumption are fulfilled.

3.4.3. The Black-Scholes Model

The Black-Scholes model is the most famous pricing model in continuous time. It was published by Fischer Black and Myron Scholes [7] in 1973. Robert Merton was also working with them on the topic but published a separate paper [59]. Merton and Scholes were awarded with the Nobel Prize in Economics in 1995 for their work. Black could not be awarded, since he died in 1993 and the Nobel Prize can only be awarded to living persons.

The Market Model. The Black-Scholes model assumes a continuous time horizon $[0, T]$, where T normally is the maturity of the option which is to be priced. In its easiest form, the market contains only a riskless bond and one risky asset. The dynamics of the bond are characterized by continuous compounding with rate r such that the value at time t is given by

$$
\begin{equation*}
S_{t}^{0}=e^{r t} \tag{3.19}
\end{equation*}
$$

where $S_{0}^{0}=1$ is the initial value of the bond.
The dynamic of the risky asset is given by a stochastic differential equation (SDE):

$$
\begin{equation*}
\mathrm{d} S_{t}^{1}=\mu S_{t}^{1} \mathrm{~d} t+\sigma S_{t}^{1} \mathrm{~d} W_{t} \tag{3.20}
\end{equation*}
$$

The left side of equation (3.20) is the infinitesimal change in the stock price. The change consists of a deterministic drift $\mu S_{t}^{1} d t$ with drift coefficient μ and a stochastic perturbation $\sigma S_{t}^{1} d W_{t}$. The parameter σ is called volatility and describes the degree of fluctuation in the price. By W_{t} we denote a standard Brownian motion in the probability space $(\Omega, \mathcal{F}, \mathbb{P})$. For theory of stochastic processes, we refer to text books from probability theory [49] or from finance [81]. Theory and solution methods for stochastic differential equation can be found in [66].

One solution of the $\operatorname{SDE}(3.20)$ with start value S_{0}^{1} is

$$
\begin{equation*}
S_{t}^{1}=S_{0}^{1} \exp \left(\sigma W_{t}+\left(\mu-\frac{1}{2} \sigma^{2}\right) t\right) \tag{3.21}
\end{equation*}
$$

This process is called geometric Brownian motion. Figure 3.3 shows three realizations of the geometric Brownian motion on the interval $[0,1]$. The smooth line shows the drift component. Deviations from the drift are caused by the perturbating effect of the Brownian motion.

Figure 3.3.: Three realizations of geom. Brownian motion with $\sigma=0.4$ and $\mu=0.1$, the red line indicates the drift $e^{\mu t}$

The Black-Scholes Formula. In this model several options can be priced explicitly and it is very useful to approximate the value of exotic options numerically. In particular Black and Scholes derived explicit formulas to price the European call with maturity T and strike K. They showed that the price process $c(t, x)$ of the call, which takes the time t as first and value of the underlying asset as second argument, is a continuous function that satisfies the Black-Scholes partial differential equation

$$
\begin{equation*}
c_{t}(t, x)+r x c_{x}(t, x)+\frac{1}{2} \sigma^{2} x^{2} c_{x x}(t, x)=r c(t, x) \quad \text { for all } t \in[0, T), x \geq 0 \tag{3.22}
\end{equation*}
$$

The final value of the price process has to be the payoff profile of the call, so that the terminal condition is

$$
\begin{equation*}
c(T, x)=(x-K)^{+} \tag{3.23}
\end{equation*}
$$

This partial differential equation can be solved and $c(t, x)$ is given by
$c(t, x)=x N\left(d_{+}(T-t, x)\right)-K e^{-r(T-t)} N\left(d_{-}(T-t, x)\right), \quad$ for all $t \in[0, T), x \geq 0$
where

$$
d_{ \pm}(T-t, x)=\frac{1}{\sqrt{T-t}}\left[\log \frac{x}{K}+\left(r \pm \frac{\sigma^{2}}{2}\right)(T-t)\right]
$$

3. Real Options

and N is the cumulative standard normal distribution

$$
N(y)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-\frac{z^{2}}{2}} \mathrm{~d} z
$$

This shows various things. The price of the option does not depend on the drift parameter μ if the geometric Brownian motion, which in practice is very hard to determine or even estimate. The volatility is much easier to observe. Furthermore, a hedging rule can be found in the derivation of the PDE (3.22). The seller of the option has to hold $c_{x}\left(t, S_{t}^{1}\right)$ units of the asset. The first partial derivative of the option price in the direction of the underlying price is called delta, thus the name Delta-Hedge. In theory this trading strategy allows a perfect replication of the European call, but adjusting of the positions have to be done continuously, which is obviously not applicable in practice.

Risk-Neutral Pricing. The Black-Scholes Model is complete, which implies the existence of a unique martingale measure. We do not go into the details here, but we want to state how this can be used to approximate the value of options. Details can be found in [81].

The theorem of Girsanov is used to derive a description of the behavior of the risky asset under the martingale measure \mathbb{P}^{*}. The dynamic is given by

$$
\begin{equation*}
d S_{t}^{1}=r S_{t}^{1} d t+\sigma S_{t}^{1} d \tilde{W}_{t} \tag{3.25}
\end{equation*}
$$

where \tilde{W}_{t} is a standard Brownian motion under the martingale measure \mathbb{P}^{*}. Note that the drift coefficient from (3.20) has been replaced by the risk-free interest rate and has no longer influence on the dynamics. This reflects that the drift does not have influence on the price of the call option.

Prices can be computed by a similar pricing formula to the discrete time model

$$
\begin{equation*}
\pi(C)=e^{-r t} \mathbb{E}^{*}[C] \tag{3.26}
\end{equation*}
$$

is still valid. The paths of the assets can be approximated using (3.25), such that the expected value can be approximated by Monte Carlo simulations or other simulation techniques.

3.5. Revisiting the Assumptions from Finance

In section 3.1 we have seen that options arising from flexibility in project management have a similar structure than financial option, but can they be priced with the same models?

Borison [8] gives a summary over the different approaches to justify the applicability of the results from mathematical finance. We adopt his criticism and
present multistage stochastic programming as a framework to maximize the expected profit in a net present value sense in incomplete markets. By that execution strategies for compound real options are computed.

In the previous section, we have seen that risk-neutral prices can be computed in markets where all risks can be hedges by trading the markets' assets. The CRR-model and the Black-Scholes Model are complete, meaning that every derivative can be replicated by a trading strategy in the market. In particular, the underlying of the derivative is traded in a hedging strategy. In most real options, the project value is the underlying. To make it tradable, a twin security as to be identified. It is a traded asset whose value is perfectly or at least highly correlated to the value of the project. Portfolios of traded assets are possible to be used as twin securities as well. Having a twin security, a lot a real options can be priced by financial methods, since their payoffs can be replicated with trading the twin security. Finding reasonable twin securities is however difficult, if not impossible, in most cases.

This shows two problems in the application of real option analysis: Finding twin securities is difficult and sometimes not possible. Even if a twin security can be found, its stochastic behavior has to be modeled. In the Black-Scholes Model assumed that the underlying behaves like geometric Brownian motion. Hence, to apply the standard Black-Scholes Model, the twin security has to follow a geometric Brownian motion.

In the absence of a suitable twin security, the parameter needed to apply the Black-Scholes Model can be estimated. This however is contradictory to the assumptions of the model and the prices will no longer have an interpretation. Some authors (i.e. [53]) argue that even though the prices are not correct, qualitative insights are still possible.

Another approach to justify the use of simple financial models to price real options is the Marketed Asset Disclaimer (MAD). In this concept, which is described for example in [18], the NPV of the project without flexibility is used as twin security. The parameter required of the financial pricing model are estimated by Monte-Carlo Simulations are other techniques and then prices are calculated on this basis. Again, the condition that risks can be hedged in the market is violated. Additionally, the pricing model makes assumptions about the assets probability distribution. If the Black-Scholes Model is used, it is assumed that the value of the project is a geometric Brownian motion. This assumption is not fulfilled in most applications.

If the real options refers to applying standard methods from finance, in particular the Black-Scholes Model, to the problem of valuing investment opportunities in uncertain environments, the method is of little practical use or at least has to be applied very carefully. Anyhow, we think it is more than that. The view on flexibility, namely as option to perform some action in the future, is very natural and appealing. This explains the great success of methods carrying the label "real options".

3. Real Options

Big efforts have been made to use the real options idea in incomplete environments, which means in environments were risks from the project cannot be hedged with traded assets.

Various authors distinct two types of risks. Market risks can be hedged within the market, while idiosyncratic or private risks are company specific, such that no hedging is possible. The idiosyncratic risks make the market incomplete. Typically the uncertainty in future cash-flows is decomposed by risk type. The market part is priced using no-arbitrage pricing and the private part is valued by subjective estimates on probabilities and risk-preferences. This results in an integration of financial pricing theory and decision analysis. Examples of this approach are [83] and [60]

The market in the telecommunication sector usually only consists of a few competitors; many of them international companies present in different markets and regions. The competitors typically follow different business strategies that are often expressed by different network evolution strategies. The technology leader typically adopts the latest technologies early and builds a network with large coverage. The market follower typically starts the construction at a later point and concentrates on the locations where a high usage is expected. Finding a twin asset for the value of a telecommunication network of a specific technology and market seems difficult under this circumstances. A market driven valuation of the investment opportunity can thus not be expected. The real options framework, however, is still a powerful tool to model and conceptualize options in investment opportunities.

Richard de Neufville and Tao Wang [86-88] distinct two types of real options: real options "in" and "on" projects. Their definition of real options "on" projects concerns investment opportunities which are present for various participants in the market and can thus be replicated. The project itself with all the technological aspects is seen as a black box. This corresponds to the traditional approach to real options in a complete market. Real options "in" project, on the other side, describe the flexibility in the project including technological details. The types of risk and flexibility cannot be valued by the market. This is the classical situation where no suitable twin security can be found. In his PhD-thesis [86] Wang states that these options are often highly interdependent and compound options, which also makes the classical pricing approach difficult to apply.

He proposes to use stochastic mixed-integer programming to evaluate real options "in" projects. The objective is to compute execution strategies for real options that maximize the discounted profit of the investment. In the absence of a complete market, the value is not market driven, but in a net present value sense.

4. Multistage Stochastic Optimization

The evolution of telecommunication networks takes place in a volatile, rapidly changing environment. The strategic planning of the network evolution should consider the uncertainty in the planning parameters. In the previous section, the real options framework is presented as a framework to model investment opportunities in uncertain environments and evaluate its profitability. Unfortunately, the assumption of tradability of the underlying or the existance of a twin asset is not fulfilled in our appication. Since the construction of a telecommunication network is a stagewise process that involved large time horizons, we use multistage stochastic programming to compute network evolution strategies that are adapted to the evolution of the uncertain parameters and that maximize the profit in a net present value sense.

In the chapter, we introduce some concepts of multistage stochastic programming and common deterministic equivalent formulations. More details on (multistage) stochastic programming can be found for example in [22] and [77]. In the remainder of this chapter we first present the general concept of multistage stochastic programming and introduce some notation. Next, we present two formulations; the scenario and the node formulation. Last, we introduce the concept of risk measures and present two representatives in more detail.

4.1. Introduction

Traditionally, optimization was performed in a deterministic setting. All parameters are assumed to be known in advance, otherwise, some expectation is used. In many areas, however, uncertainty is an important part of the problem and neglecting it leads to poor planning decisions. Stochastic programming is a framework that allows optimization under uncertainty. In multistage stochastic programming uncertainty is resolved gradually. The random parameters are described by a stochastic process over time, whose distribution is known. The realization of the process can be observed at discrete points in time and recourse actions are possible. This results in an iterated observation-decision scheme, where a decision on recourse actions follows each observation of the stochastic process. Figure 4.1 gives a graphical representation of the observation-decision scheme.

We consider a discrete time horizon \mathcal{T} and assume that the set is either finite or countable infinite. Later, we will restrict ourself to finite time horizons. We identify the time points by their index and write $\mathcal{T}=\{1,2, \ldots, T\}$ or $\mathcal{T}=\{1,2, \ldots\}$.

The stochastic parameters are described by a stochastic process on a probability

4. Multistage Stochastic Optimization

Figure 4.1.: Graphical representation of the iterated decision-observation scheme
space $(\Omega, \mathcal{F}, \mathbb{P})$. We denote the random data process by $\left(\mathbb{X}_{t}\right)_{t \in \mathcal{T}}$. The realization in scenario $\omega \in \Omega$ is thus $\left(\mathbb{X}_{t}(\omega)\right)_{t \in \mathcal{T}}$. With $\mathbb{X}_{[t]}=\left(\mathbb{X}_{1}, \ldots, \mathbb{X}_{t}\right)$, we denote the history of the data process up to time t. The data for the first period is assumed to be deterministic. The information incorporated in the stochastic process is described by a series of σ-algebras

$$
\begin{equation*}
\mathcal{F}_{t}:=\sigma\left(\mathbb{X}_{[t]}\right)=\sigma\left(\mathbb{X}_{1}, \ldots, \mathbb{X}_{t}\right), t \in \mathcal{T} \tag{4.1}
\end{equation*}
$$

Since \mathbb{X}_{1} is deterministic, corresponding σ-algebra \mathcal{F}_{1} is trivial, i. e.,

$$
\mathcal{F}_{1}=\{\varnothing, \Omega\}
$$

The information that stem from observing the process is increasing. This is expressed by successive inclusions of the σ-algebras:

$$
\begin{equation*}
\mathcal{F}_{1} \subseteq \mathcal{F}_{2} \subseteq \ldots \subseteq \mathcal{F}_{t} \subseteq \ldots \tag{4.2}
\end{equation*}
$$

A series of σ-algebras satisfying (4.2) is called filtration.
At every point $t \in \mathcal{T}$ in time, recourse actions are possible. Recourse actions are represented by vector valued random variables, i.e., different recourse actions are possible for distinct realizations. We denote the random variables corresponding to period t with x_{t}. The decision strategy up to time t is denoted by $x_{[t]}=\left(x_{1}, \ldots, x_{t}\right)$. We assume without loss of generality, that the number d_{t} of decisions in stage t is independent of the realization of \mathbb{X}_{t}.

The decisions have to be non-anticipative, meaning that x_{t} only depends on the realization of the data process up to period t and not on future events. In terms of σ-algebras, we demand that the random variable x_{t} is measurable with respect to \mathcal{F}_{t}.

Typically, not all decisions are feasible. The set of feasible decisions in period t may depend on the decisions taken in the previous periods and on the evolution of the random data process. We, thus, denote the set of feasible solutions in stage t with $\mathcal{X}_{t}\left(x_{[t-1]}, \mathbb{X}_{t}\right)$. Since first stage decision are deterministic, we denote the set of feasible first stage decisions by \mathcal{X}_{1}.

Costs are associated with the decisions. The objective in stochastic programming is often a function of the costs occurring in all stages and scenarios. Costs can be
random, too. For example, prices for raw material might not be known in advance. The cost occurring in period t depends on the decision x_{t} and on the stochastic data process \mathbb{X}_{t} and is denoted by $f_{t}\left(x_{t}, \mathbb{X}_{t}\right)$. Since \mathbb{X}_{1} is determinisic, the cost for the first stage decision are not random. The cost function is denoted by $f_{1}\left(x_{1}\right)$.

Several ways for aggregating the cost into one objective function are known. Traditionally, the expected value of the cost is optimized. Other functionals that are more adverse to risk are also widely employed, see Section 4.4 for an introduction to risk measures. For now, we assume that the objective is to minimize the expected costs. Revenues are interpreted as cost with a negative sign, thus, expected profit can be maximized equivalently.

A generic multistage stochastic optimization problem can be written as
$\operatorname{Min}_{x_{1} \in \mathcal{X}_{1}} f_{1}\left(x_{1}\right)+\mathbb{E}\left[\inf _{x_{2} \in \mathcal{X}_{2}\left(x_{[1]}, \mathbb{X}_{2}\right)}\left\{f_{2}\left(x_{2}, \mathbb{X}_{2}\right)+\mathbb{E}\left[\inf _{x_{3} \in \mathcal{X}_{3}\left(x_{[2}, \mathbb{X}_{3}\right)}\left\{f_{3}\left(x_{3}, \mathbb{X}_{3}\right)+\mathbb{E}[\ldots]\right\}\right]\right\}\right]$

By recursively defining the cost-to-go function

$$
\begin{equation*}
\mathcal{Q}_{t}\left(x_{[t-1]}, \mathbb{X}_{t}\right):=\inf _{x_{t} \in \mathcal{X}_{t}\left(x_{[t-1]}, \mathbb{X}_{t}\right)} f_{t}\left(x_{t}, \mathbb{X}_{t}\right)+\mathbb{E}\left[\mathcal{Q}_{t+1}\left(x_{[t]}, \mathbb{X}_{t+1}\right)\right] \tag{4.4}
\end{equation*}
$$

we can reformulate (4.3) to

$$
\begin{equation*}
\operatorname{Min}_{x_{1} \in \mathcal{X}_{1}} f_{1}\left(x_{1}\right)+\mathbb{E}\left[\mathcal{Q}_{2}\left(x_{[1]}, \mathbb{X}_{2}\right)\right] \tag{4.5}
\end{equation*}
$$

Equations (4.4) and (4.5) hide the complexity of the multistage problem, but the interpretation fits nicely in the decision-observation scheme depicted in Figure 4.1; in every stage the decision is taken such that the sum of current and expected future cost is minimized.

The problem is said to be linear if the objective function is linear and the sets of feasibile solutions are described by linear constraints. The random data process can thus be interpreted as a series of random vectors and matrices of suitable dimensions

$$
\mathbb{X}_{t}=\left(c_{t},\left(B_{\tau}^{(t)}\right)_{\tau=1, \ldots, t-1}, b_{t}\right)
$$

such that cost and feasible decision sets have the form

$$
\begin{align*}
f_{t}\left(x_{t}, \mathbb{X}_{t}\right) & =c_{t} x_{t} \tag{4.6}\\
\mathcal{X}_{t}\left(x_{[t-1]}, \mathbb{X}_{t}\right) & =\left\{x_{t} \in \mathbb{R}^{d_{t}} \mid \sum_{\tau=1}^{t} B_{\tau}^{(t)} x_{\tau} \leq b_{t}\right\} . \tag{4.7}
\end{align*}
$$

A problem of this form is called (Multistage) Stochastic Linear Program (SLP). Models containing equality constraints can be easily transformed to a system of inequalities using standard transformations.

4. Multistage Stochastic Optimization

Integer requirements on some of the variables yield a (Multistage) Stochastic Mixed-Integer (Linear) Program (SMIP). Let \mathcal{J}_{t} denote the index set of the variables at time t that have to meet integer requirements and $x_{j t}$ the j th component of the vector x_{t}. Then, the feasible sets in SMIPs have the form

$$
\begin{equation*}
\mathcal{X}_{t}\left(x_{[t-1]}, \mathbb{X}_{t}\right)=\left\{x_{t} \in \mathbb{R}^{d_{t}} \mid \sum_{\tau=1}^{t} B_{\tau}^{(t)} x_{\tau} \leq b_{t}, x_{j t} \in \mathbb{Z}, j \in \mathcal{J}_{t}\right\} . \tag{4.8}
\end{equation*}
$$

Of course, stochastic linear programs are the special form of stochastic mixedinteger programs, where the sets \mathcal{J}_{t} are empty for all t.

In the following two sections, we present two common formulations of deterministic equivalents of (4.3) , as they will be necessary to approach the solution of (4.3) numerically.

4.2. The Scenario Formulation

For each scenario $\omega \in \Omega$, the random data process is realized and a decision strategy has to be found. To emphasize the dependence on the scenario $\omega \in \Omega$, we denote the random data by $\left(\mathbb{X}_{t}(\omega)\right)_{t \in \mathcal{T}}$ and the corresponding decision strategy by $\left(x_{t \omega}\right)_{t \in \mathcal{T}}$.

This notation obfuscates that the decision at stage t depends only on the observation and decision up to this time and not on the entire scenario. The variable $x_{t \omega}$ as mapping from Ω to $\mathbb{R}^{d_{t}}$ has to be measurable with respect $\mathcal{F}_{t}=\sigma\left(\mathbb{X}_{[t]}\right)$. This implies that decisions which base on the same observation of the stochastic process have to coincide. This is ensured by the non-anticipativity constraints:

$$
\begin{equation*}
x_{t \omega}=x_{t \tilde{\omega}} \quad \text { for all } \omega \neq \tilde{\omega} \text { with } \mathbb{X}_{[t]}(\omega)=\mathbb{X}_{[t]}(\tilde{\omega}), t \in \mathcal{T} \tag{4.9}
\end{equation*}
$$

This allows to state the scenario formulation of a stochastic program:

$$
\begin{array}{rll}
\operatorname{Min}_{x_{1}, x_{2}, \ldots, x_{n}} \mathbb{E}\left[f_{1}\left(x_{1 \omega}\right)+f_{2}\left(x_{1 \omega}, \mathbb{X}_{2}(\omega)\right)+f_{3}\left(x_{2 \omega}, \mathbb{X}_{3}(\omega)\right)+\ldots\right] \\
\text { s. t. } & x_{1 \omega} \in \mathcal{X}_{1} & \text { for all } \omega \in \Omega \\
& x_{t \omega} \in \mathcal{X}_{t}\left(x_{[t-1] \omega}, \mathbb{X}_{t}(\omega)\right) & \text { for all } t \in \mathcal{T}, t>1, \omega \in \Omega \\
& x_{t \omega}=x_{t \tilde{\omega}} & \text { for all } \omega \neq \tilde{\omega} \text { with } \mathbb{X}_{[t]}(\omega)=\mathbb{X}_{[t]}(\tilde{\omega}), t \in \mathcal{T} \tag{4.10d}
\end{array}
$$

Minimizing the expected cost is the objective (4.10a). Constraints (4.10b) and (4.10c) ensure feasibility and (4.10d) ensures non-anticipativity. The non-anticipativity constraints couple different scenarios. In the absence of these constraints, the problem decomposes to $|\Omega|$ independent subproblems. This makes this formulation very amenable for decomposition approaches.

Let us in the following assume a finite time horizon $(|\mathcal{T}|<\infty)$ and a finite probability space $(|\Omega|<\infty)$. The expectation can then be easily computed as

$$
\sum_{\omega \in \Omega} \mathbb{P}(\omega)\left(f_{1}\left(x_{1 \omega}\right)+f_{2}\left(x_{1 \omega}, \mathbb{X}_{2}(\omega)\right)+\ldots+f_{T}\left(x_{T-1 \omega}, \mathbb{X}_{T}(\omega)\right)\right)
$$

In the linear case the stochastic program can then be formulated as a MIP. The stochastic process consists of matrices and vectors of appropriate dimension

$$
\mathbb{X}_{t}(\omega)=\left(c_{t \omega},\left(B_{\tau \omega}^{(t)}\right)_{\tau=1, \ldots, t}, b_{t \omega}\right)
$$

The SMIP can now be stated as a regular MIP, which is called Deterministic Equivalent Model (DEM):

$$
\begin{array}{lll}
\text { Min } & \sum_{\omega \in \Omega} \mathbb{P}(\omega) \sum_{t=1}^{T} c_{t \omega} x_{t \omega} \\
& \\
\text { s.t. } & \sum_{\tau=1}^{t} B_{\tau \omega}^{(t)} x_{\tau \omega} \leq b_{t \omega} & \text { for all } \omega \in \Omega \tag{4.11c}\\
& x_{t \omega}=x_{t \tilde{\omega}} & \text { for all } \omega \neq \tilde{\omega} \text { with } \mathbb{X}_{[t]}(\omega)=\mathbb{X}_{[t]}(\tilde{\omega}), t=1, \ldots, T
\end{array}
$$

$$
\begin{equation*}
x_{j t \omega} \in \mathbb{Z}, \quad \text { for all } \omega \in \Omega, j \in \mathcal{J}_{t}, t \in \mathcal{T} \tag{4.11d}
\end{equation*}
$$

$$
\begin{equation*}
x_{j t \omega} \in \mathbb{R} \quad \text { for all } \omega \in \Omega, j \notin \mathcal{J}_{t}, t \in \mathcal{T} \tag{4.11e}
\end{equation*}
$$

4.3. The Node Formulation

The scenario formulation with explicit non-anticipativity constraints is intuitive, but treating the non-anticipativity constraints implicitly allows for a much more compact formulation. The idea is to group variables that have to be equal due to the non-anticipativity constraints and add just one representative to the model.

Nodes represent the different information states, i.e., the realizations of $\mathbb{X}_{[t]}$. The node belonging to the deterministic initial information is the root. Each node, except the root, is connected with the node corresponding to its information history up to the previous period. The information history is unique such that each node, except the root, has exactly one direct predecessor and the result is a tree. The tree completely describes the probability distribution and is called scenario tree. Each scenario is represented by a path from the root to a leaf. The transformation from scenarios with non-anticipativity constraints to a scenario tree is depicted in Figure 4.2.
This procedure is also feasible if the distribution of \mathbb{X}_{t} is continuous or infinitely many scenarios exist. Then the tree has infinitely many nodes and edges. In the following, we restrict ourselves to probability spaces with finitely many scenarios and finite time horizons.

4. Multistage Stochastic Optimization

Figure 4.2.: Transformation from scenario with non-anticipativity (NA) constraints as dashed lines to scenario tree.

Let us introduce some notation. Let $(\mathcal{N}, \mathcal{E})$ be a scenario tree with node set \mathcal{N} and edge set \mathcal{E}. For a node $n \in \mathcal{N}$ we denote with $t(n)$ the corresponding stage, with $p(n)$ its father, and with $p^{k}(n)$ the k th predecessor of n. The history of a node n is represented by the path from n to the root. The path is denoted by $\mathcal{P}(n)$. The set of nodes belonging to stage t is denoted by $\mathcal{N}(t)$. With $\mathbb{P}(n)$, we denote the probability that node n is realized. Table 4.1 gives an overview on the notation used.

A realization of the stochastic data process corresponds to each node of the tree. The data process and the variables are, thus, not given per scenario ω, but per node n. The formulation of a multistage stochastic program which is based on a scenario tree is thus called node formulation. We omit the general version and present directly the formulation for the linear case. In this case, the random data process again contains vectors and matrices of suitable dimensions:

$$
\mathbb{X}(n)=\left(c_{n},\left(B_{\bar{n}}^{(n)}\right)_{\bar{n} \in \mathcal{P}(n)}, b_{n}\right)
$$

The decisions in node n might be constrained by decisions in former periods, i.e., decisions corresponding to the nodes on the path from the root to n. Therefore, a constraint matrix $B_{\bar{n}}^{(n)}$ for each node \bar{n} on the path from n to the root is given. The expected cost is calculated by weighting the cost in each node according to its probability:

$$
\begin{equation*}
\sum_{n \in \mathcal{N}} \mathbb{P}(n) c_{n} x_{n} \tag{4.12}
\end{equation*}
$$

Name	Domain	Interpretation
$(\mathcal{N}, \mathcal{E})$		The scenario tree
\mathcal{N}		Nodes in scenario tree
\mathcal{S}	$\subseteq \mathcal{N}$	Set of scenarios, i.e., the leaves of the scenario tree
$\mathcal{P}(n)$	$\subseteq \mathcal{N}$	The path from node n to the root including the node itself
$t(n)$	$\in \mathcal{T}$	The stage of node n
r	$\in \mathcal{N}$	The root of the tree
$p(n)$	$\in \mathcal{N}$	The unique father of node n in the scenario tree
$p^{i}(n)$	$\in \mathcal{N}$	The i th ancestor of node n in the scenario tree
$\mathbb{P}(n)$	$\in[0,1]$	Probability of node n

Table 4.1.: Notation related to scenario trees

The deterministic equivalent program in the node formulation is then:

$$
\begin{array}{lll}
\text { Min } & \sum_{n \in \mathcal{N}} \mathbb{P}(n) c_{n} x_{n} & \\
\text { s. t. } & \sum_{\bar{n} \in \mathcal{P}(n)} B_{\bar{n}}^{(n)} x_{\bar{n}} \leq b_{n} & \text { for all } n \in \mathcal{N} \\
& x_{j n} \in \mathbb{Z} & \text { for all } j \in \mathcal{J}_{t(n)}, n \in \mathcal{N} \\
& x_{j n} \in \mathbb{R} & \text { for all } j \notin \mathcal{J}_{t(n)}, n \in \mathcal{N} \tag{4.13d}
\end{array}
$$

Minimizing the expected cost is the objective (4.13a). The decisions in node n are possibly constrained by all decisions in the previous stages. Thus, in (4.13b) all decisions corresponding to nodes in the path $\mathcal{P}(n)$ appear in the constraint. The domains of the variables constitute the last two rows of the program.

We see that the non-anticipativity constraints are not stated explicitly anymore but that decisions are non-anticipative by construction. The compactness of the node formulation makes this formulation favorable for the solution with general MIP solvers.

4.4. Risk Measures

The quantification of risk is an important subject in stochastic optimization. The meaning of the word risk is not clearly defined. Generally, decisions that incorporate a higher probability of high losses are considered riskier. Consider, for example, the two normal distributions from Figure 4.3. Both have the same mean, but different variance. We use the notation $\mathbb{X}_{1} \sim \mathcal{N}(0,1.5)$ to express that \mathbb{X}_{1} follows a normal distribution with mean 0 and variance 1.5. \mathbb{X}_{2} has variance 2.2, such that $\mathbb{X}_{2} \sim \mathcal{N}(0,2.2)$. The density of \mathbb{X}_{1} with the low variance is more concentrated around the mean. If the corresponding random variables represent profit, the probability of obtaining a high loss (profit <-4, say) is much higher for \mathbb{X}_{2}

4. Multistage Stochastic Optimization

Figure 4.3.: Density functions of two Gaussian random variables with mean $\mu=0$ and different variance σ
than for \mathbb{X}_{1}. The random variable with the higher variance is therefore considered more risky. Apparently, the expected value is not suitable to capture the different risk profiles.

Risk measures serve to quantify risk. A risk measure ρ is a mapping from the random variables to the real numbers:

$$
\begin{equation*}
\rho: \mathcal{L}^{1}(\Omega, \mathcal{F} ; \mathbb{R}) \rightarrow \mathbb{R} \tag{4.14}
\end{equation*}
$$

The space $\mathcal{L}^{1}(\Omega, \mathcal{F} ; \mathbb{R})$ consists of all integratable functions from the measurable space (Ω, \mathcal{F}) to the real numbers. Unless otherwise specified, we assume all random variables to be in $\mathcal{L}^{1}(\Omega, \mathcal{F} ; \mathbb{R})$. Furthermore, we assume that the random variables describe profits, i. e., larger values are better. This point is not handled uniformly throughout the literature. Even though both notions are equivalent (costs are just negative profits), the formulas differ if smaller values are considered favorable.

A decent risk measure should fulfill some desirable properties. Artzner, Delbaen, Eber and Heath [4] specify four desirable properties of a risk measure and call such risk measures coherent.
Definition 6: A mapping $\rho: \mathcal{L}^{1}(\Omega, \mathcal{F} ; \mathbb{R}) \rightarrow \mathbb{R}$ is called coherent risk measure if it fulfills the following four properties:

1. Monotonicity: If $\mathbb{X} \leq \mathbb{Y}$ almost surely, then $\rho(\mathbb{Y}) \leq \rho(\mathbb{X})$.
2. Translation invariance: If $m \in \mathbb{R}$, then $\rho(\mathbb{X}+m)=\rho(\mathbb{X})-m$.
3. Positive homogeneity: If $\lambda \geq 0$, then $\rho(\lambda \mathbb{X})=\lambda \rho(\mathbb{X})$.
4. Subadditivity: $\rho(\mathbb{X}+\mathbb{Y}) \leq \rho(\mathbb{X})+\rho(\mathbb{Y})$.

Figure 4.4.: Cdfs and inverse Cdfs for two Gaussian random variables. Short notation: $V_{i}^{@ R}:={\mathrm{V} @ \mathrm{R}_{0.1}\left(\mathbb{X}_{i}\right)}$

For a detailed introduction to risk measures, we refer to [29] and [70]. In the following, we present two risk measures; Value-at-Risk and Average Value-at-Risk.

4.4.1. Value-at-Risk

The Value-at-Risk (V@R) is a risk measure that is widely used in economics. It specifies a loss that is not exceeded with a given probability.

Let \mathbb{X} be a random variable on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ representing profit. We use the usual short notation

$$
\mathbb{P}(\mathbb{X}<t):=\mathbb{P}(\{\omega \in \Omega \mid \mathbb{X}(\omega)<t\})
$$

to denote the probability that \mathbb{X} is smaller than t. Similar notations are used for all other comparison operators.
We adopt the definition for the Value-at-Risk from [29].
Definition 7: The Value-at-Risk at confidence level $\alpha \in(0,1)$ is defined as

$$
\mathrm{V@R}_{\alpha}(\mathbb{X})=-\sup \{m \mid \mathbb{P}(\mathbb{X}<m) \leq \alpha\}=-\inf \{m \mid \mathbb{P}(\mathbb{X} \leq m)>\alpha\}
$$

The meaning of the $\mathrm{V} @ \mathrm{R}$ is that losses larger than ${\mathrm{V} @ \mathrm{R}_{\alpha}(\mathbb{X}) \text { occur only with }}^{(1)}$ probability not exceeding α. The size of the losses in theses cases is, however, not quantified.

The V@R is strongly related with the cumulative distribution function (CDF) of \mathbb{X}. The Cdf of \mathbb{X} is defined by

$$
F_{\mathbb{X}}(t):=\mathbb{P}(\mathbb{X} \leq t)
$$

The V@R can now be expressed by the CdF:

$$
\operatorname{V@R}_{\alpha}(\mathbb{X})=-\inf \left\{t \mid F_{\mathbb{X}}(t)>\alpha\right\}
$$

4. Multistage Stochastic Optimization

If the CDF is continuous and strictly increasing, the $\mathrm{V} @ \mathrm{R}$ is the negative of the unique solution t of $F_{\mathbb{X}}(t)=\alpha$. In this case, the cumulative distribution function is invertible and we have

$$
{\mathrm{V} @ \mathrm{R}_{\alpha}(\mathbb{X})=-F_{\mathbb{X}}^{-1}(\alpha), ~}_{\text {den }}
$$

The Cdfs for the two Gaussian distributed random variables are depicted in Figure 4.4(a). The V@R with $\alpha=0.1$ is significantly higher for \mathbb{X}_{2}, which has a higher variance. If, however, the confidence level is choose 0.5 , both variables have the same $\mathrm{V} @ \mathrm{R}$ of 0 and thus have the same riskiness in this measure. This is because the V@R only captures the probability of a loss, but does not quantify the amount of capital loss in the tail of the distribution. Furthermore, the Value-atRisk is not subadditive and hence not coherent (cf. [69]). A coherent risk measure, which is closely related to $\mathrm{V} @ \mathrm{R}$, is the Average Value-at-Risk.

4.4.2. Average Value-at-Risk

The Average Value-at-Risk (AV@R) overcomes the shortcomings of V@R. The AV@R is the expectation of the losses that exceed the $\mathrm{V} @ \mathrm{R}$ and therefore accounts for all unfavorable realizations.
Definition 8: The Average Value-at-Risk at confidence level $\alpha \in(0,1)$ is defined as

$$
\operatorname{AV@R}_{\alpha}(\mathbb{X})=\frac{1}{\alpha} \int_{0}^{\alpha}{\mathrm{V} @ R_{\gamma}(\mathbb{X}) \mathrm{d} \gamma}^{2}
$$

The integration ensures that the tail of the distribution enters into the measurement of risk. Other common names for the Average Value-at-Risk are "Conditional Value-at-Risk" or "Expected Shortfall". In [69] the AV@R is shown to be a coherent risk measure.

If the cumulative density function is invertible, the AV@R can be obtained by integrating the inverse CDF:

$$
\operatorname{AV@} \mathrm{R}_{\alpha}(\mathbb{X})=-\frac{1}{\alpha} \int_{0}^{\alpha} F_{\mathbb{X}}^{-1}(\gamma) \mathrm{d} \gamma
$$

The negative inverse CdFs for two Gaussian random variables with different variance is plotted in Figure $4.4(\mathrm{~b})$. The area under the plot is larger for the variable with higher variance, indicating a higher AV@R.

AV@R as the Solution of a Minimization Problem

Rockafella and Uryasev [73] showed that the Average Value-at-Risk is the solution of a minimization problem. This is particularly interesting since the problem can be formulated as a linear program. Adding a few auxiliary variables allows us to use the non-linear risk functional AV@R as objective function for our stochastic programs.

First, we present the minimization representation of AV@R.

Theorem 4.1 (Fundamental minimization formula [73]): Let \mathbb{X} be a random variable with finite expectation representing profit and $\alpha \in(0,1)$ a fixed confidence level. Then the function

$$
\begin{equation*}
\phi_{\alpha}(\mathbb{X}, y)=y+\frac{1}{\alpha} \mathbb{E}\left[(y+\mathbb{X})^{-}\right] \tag{4.15}
\end{equation*}
$$

as a function of y is finite, convex, and hence continuous. The Average Value-at-Risk is given by

$$
\begin{equation*}
\operatorname{AV}^{\mathrm{V}} \mathrm{R}_{\alpha}(\mathbb{X})=\min _{y} \phi_{\alpha}(\mathbb{X}, y) \tag{4.16}
\end{equation*}
$$

The $\mathrm{V} @ \mathrm{R}$ is a minimizer, such that,

$$
\operatorname{AV@R}_{\alpha}(\mathbb{X})=\phi_{\alpha}\left(\mathbb{X},{\left.\mathrm{V} @ R_{\alpha}(\mathbb{X})\right)}\right.
$$

The Average Value-at-Risk can, thus, be calculated by solving the optimization problem (4.16). Even though $\phi_{\alpha}(\mathbb{X}, y)$ is non-linear, the optimization problem can be linearized by adding additional variables and constraints. The AV@R is the optimal value of the following stochastic program:

$$
\begin{align*}
\operatorname{AV@R}_{\alpha}(\mathbb{X})=\min & y^{0}+\frac{1}{\alpha} \mathbb{E}\left[y^{-}\right] \tag{4.17a}\\
\text {s.t. } & y^{0}+\mathbb{X}(\omega)=y_{\omega}^{+}-y_{\omega}^{-} \quad \text { for all } \omega \in \Omega \tag{4.17b}\\
& y^{0} \in \mathbb{R},\left(y^{+}, y^{-}\right) \in \mathbb{R}_{\geq 0}^{\Omega \times \Omega} \tag{4.17c}
\end{align*}
$$

The program (4.17) is a stochastic two-stage linear program with random right hand side. Risk measures that are expressed as the solution of certain two-stage stochastic programs are called polyhedral. For the precise definition and structural properties of polyhedral risk measures, we refer to [25]. Polyhedral risk measures have the nice property that, when used as objective function for stochastic programs, the resulting programs are still stochastic programs with additional variables and constraints. Thus, the standard MIP technology can be applied to their deterministic equivalents.

Consider for example a multi-stage stochastic program in node formulation (cf. program (4.13)). The profit is defined as a random variable v in the last stage of the problem. The corresponding stochastic program with the Average Value-at-Risk

4. Multistage Stochastic Optimization

of the profit as objective function is:

$$
\begin{array}{lll}
\text { Min } & y^{0}+\frac{1}{\alpha} \mathbb{E}\left[y^{-}\right] & \\
\text {s.t. } & A x_{r} \leq b & \\
& \sum_{\bar{n} \in \mathcal{P}(n)} B_{\bar{n}}^{(n)} x_{\bar{n}} \leq b_{n} & \text { for all } n \in \mathcal{N} \backslash\{r\} \\
& v_{n}=v_{p(n)}-c_{n} x_{n} & \text { for all } n \in \mathcal{S} \\
& y^{0}+v_{n}=y_{n}^{+}-y_{n}^{-} & \text {for all } n \in \mathcal{S} \\
& x_{j n} \in \mathbb{Z} & \text { for all } j \in \mathcal{J}_{n}, n \in . \\
& x_{j n} \in \mathbb{R} & \text { for all } j \notin \mathcal{J}_{n}, n \in . \\
& v_{n} \in \mathbb{R} & \text { for all } n \in \mathcal{S} \\
& y^{0} \in \mathbb{R} & \\
& \left(y_{n}^{+}, y_{n}^{-}\right) \in \mathbb{R}_{\geq 0}^{2} & \text { for all } n \in \mathcal{S} \tag{4.18j}
\end{array}
$$

Apart from the constraints (4.18b), (4.18c) that ensure feasible decision and the domain constraints (4.18f) and $(4.18 \mathrm{~g})$, the model has constraints to compute the AV@R. Constraint (4.18d) defines the value at the leaf nodes and constraint (4.18e) corresponds to constraint (4.17b). The value v_{n} is calculated for all scenarios $n \in \mathcal{S}$, i. e., all leaves of the tree. (4.18h), (4.18i), and (4.18j) specify the domains of the auxiliary variables. According to (4.17a), the objective is to minimize the minimum of $y^{0}+\frac{1}{\alpha} \mathbb{E}\left[y^{-}\right]$over all admissable decisions. Eichhorn and Römisch [25] have shown that both minima can be computed jointly. They also study the structure of such problems. Studies of structural properties of Average Value-at-Risk based stochastic programs can also be found in [79].

4.4.3. Multi-Period Risk Measures

The Average Value-at-Risk is designed to measure the risk for one random variable. It is therefore a suitable measure for the risk of a value process in a single period, i.e., at the end of the time horizon. In multistage stochastic programs, however, a non-anticipative value process might carry risk in all periods. Several extensions have been proposed to measure multi-period risk. One idea is to combine several single-period risk measures to a multi-period risk measure by scalarization. Consider, for example, a value process v_{t}, confidence levels α_{t}, and weights γ_{t}. The weighted sum of the single-period AV@Rs

$$
\begin{equation*}
\sum_{t=2}^{T} \gamma_{t}{\mathrm{AV} @ \mathrm{R}_{\alpha_{t}}\left(v_{t}\right)} \tag{4.19}
\end{equation*}
$$

constitutes a multi-period risk measure. The first stage is not considered in the sum, since the value is deterministic and, thus, does not carry risk. The weighted
average (4.19) can be used as objective function for a multistage stochastic program. The linearization and the deterministic equivalent program is similar to (4.17) with auxiliary variables and the respective constraints for all periods. The multistage stochastic program with (4.19) as objective function is given by:

$$
\begin{array}{lll}
\text { Min } & \sum_{t=2}^{T} \gamma_{t}\left(y_{t}^{0}+\frac{1}{\alpha_{t}} \sum_{n \in \mathcal{N}(t)} \mathbb{P}(n) y_{n}^{-}\right) & \\
\text {s. t. } & A x_{r} \leq b & \\
& \sum_{\bar{n} \in \mathcal{P}(n)} B_{\bar{n}}^{(n)} x_{\bar{n}} \leq b_{n} & \text { for all } n \in \mathcal{N} \backslash\{r\} \\
& v_{n}=v_{p(n)}-c_{n} x_{n} & \\
& y_{t(n)}^{0}+v_{n}=y_{n}^{+}-y_{n}^{-} & \text {for all } n \in \mathcal{N} \\
& x_{j n} \in \mathbb{Z} & \text { for all } n \in \mathcal{N} \\
& x_{j n} \in \mathbb{R} & \text { for all } j \in \mathcal{J}_{n}, n \in \mathcal{N} \\
& v_{n} \in \mathbb{R} & \text { for all } j \notin \mathcal{J}, n \in \mathcal{N} \\
& y_{t}^{0} \in \mathbb{R} & \text { for all } n \in \mathcal{N} \\
& \left(y_{n}^{+}, y_{n}^{-}\right) \in \mathbb{R}_{\geq 0}^{2} & \text { for all } t \in \mathcal{T}, t>1 \tag{4.20j}\\
& \text { for all } n \in \mathcal{N}
\end{array}
$$

The inner sum in the objective calculates the expectation of the negative part of the $y_{t}^{0}+v_{t}$ as required for the $\mathrm{AV@R}$ calculation:

$$
\mathbb{E}\left[\left(y_{t}^{0}+v_{t}\right)^{-}\right]=\sum_{n \in \mathcal{N}(t)} \mathbb{P}(n) y_{n}^{-}
$$

This and several other multi-period risk measures are presented in [25] and [26].
4. Multistage Stochastic Optimization

5. Modeling UMTS Radio Networks and Demand Evolution Over Time

Mobile telecommunication network are complex systems. In this chapter, we describe a widely used system model for UMTS radio networks and present a stochastic model for the demand evolution over time. The objective is to provide a realistic model to be used for optimization. We therefore do not focus on predictions of the future, but adopt the perspective of a network provider before the commercial introduction of UMTS. This focus allows us to set up a realistic model that allows to demonstrate the applicability of our approach.

In the following section, we present a system model for UMTS networks. Even though with LTE the next generation of mobile telecommunication networks is waiting in the wings, we present a system model for the UMTS technology. We do not aim for the most detailed system model but choose a level of abstraction that is suitable to describe the aspects of coverage and capacity needed in the optimization model presented in Chapter 6.

After the system model is set up in Section 5.1, a stochastic model for the demand evolution is developed in Section 5.2. The focus for the demand model is not to predict the future demand evolution. Instead we present observations of historical traffic volumes and choose a model that adopts to that observations. This allows us to set up a realistic stochastic model without predictions about the future since this would leed us to much in the direction of economics.

5.1. A Mathematical Model for UMTS Network Coverage and Capacity

The system model is used to evaluate the optimization of the network evolution over time. Therefore, we choose a high level network description. The focus is on the UMTS technology and its extensions. Coverage and capacity are the main determinantes of 3G network performance. Coverage is primarily treated as a function of the received signal level, while (soft) capacity is a matter of resources and interference. The interdependence between both aspects makes the problem hard. This work is based on Geerdes [33], and we adopt the notation and definitions from there. For detailed descriptions of 3 G networks we refer to $[43,51,64]$

We define a mobile telecommunication network as a collection \mathcal{C} of cells. A particular selection of cells and their parameters is refered to as network configuration. Each cell has a transmission/reception unit that provides access to the radio

5. Modeling UMTS Radio Networks and Demand Evolution Over Time

network. The unit is part of a base station installed at a site. Typically a site hosts between 1 and 3 cells. The radio signal emitted by the transmission unit of a cell $i \in \mathcal{C}$ provides network access to the mobile devices located within the cell area \mathcal{A}_{i}. Depending on the occasion the term cell either refers the cell area or the transmission/reception unit.

Two communication directions exist within a cell; the direction from the base station to the mobile devices is called downlink, while the reverse direction is called uplink. The uplink is considered the limiting direction for coverage, the downlink is considered the limiting direction for capacity (given higher downlink than uplink traffic). Since capacity is the limiting factor in our model, we only consider the downlink.

Signals are transmitted on different channels. Common channels and dedicated channels are distinguished. The common channels are used to spread information to all the mobile devices in the cell. Signals on a dedicated channels are specific to that channel and can only be decoded by the addressed mobile device in the cell. The mayor part of the data is transmitted on dedicated channels.

Services. A cell can provide different services, such as voice or video telephony, data streaming or Internet browsing. The set of available services in a planning scenario is denoted by \mathcal{R}. Depending on the service properties, the supporting dedicated channel needs to fulfill bandwidth and quality requirements.

The Carrier-to-Interference Ratio (CIR) is a measure for the quality for the dedicated channel. The CIR is defined as the fraction of the received signal strength on the dedicated channel and the total interference:

$$
\text { CIR }:=\frac{\text { Received Signal }}{\text { Noise }+ \text { Interference }}
$$

In this work, we forgo the exact definition, which can be found in [33].
Each service s requires a minimum channel quality in form of a CIR target μ_{s}. Successful operation of the service requires

$$
\begin{equation*}
\mathrm{CIR} \geq \mu_{s} \tag{5.1}
\end{equation*}
$$

Perfect Power Control. Power control regulates the transmission power on the dedicated channels such that CIR requirements are met (if possible). We assume perfect power control, which regulates the transmission power such that Ineq. (5.1) is always met with equality, i.e., the quality requirement of the dedicated channel is exactly met but not oversatisfied. The assumption of perfect power control ensures a proper coupling of the powers of the cells in the network and is a requirement for the formulation of the interference coupling system present in Section 5.1.3.

5.1.1. Signal Propagation

When traveling from the transmitter to the receiver, radio signals loose intensity. The amount of attenuation the signal suffers depends on the distance between the

Figure 5.1.: Data from the Momentum Berlin scenario
sender and the receive as well as on the propagation properties of the environment. Several components influence the attenuation.

Path loss here refers to the median signal attenuation. Usually it is modeled as a deterministic function of the distance and the propagation properties of the environment. The dynamic components of attenuation are called fading. Fading components further contribute to attenuation. The effect of obstacles in the transmission path is captured by shadow fading. For moving users, the shadow fading varies in the time scale of seconds. Signal variations in the time scale of a few milliseconds are referred to as fast fading. Fast fading mainly constitutes of multi-path fading, i. e., signal taking different paths from the transmitter to the receiver [33]. Fading is difficult to capture in detail and thus usually modeled by random variables. For network planning purposes fading effects are typically neglected. We follow this habit in this work.

The inverse of attenuation is called channel gain. Quantities, such as attenuation and channel gain, have a high dynamic range and are commonly stated on a logarithmic scale in decibel (dB). The decibel value of the unit-less ratio of two positive quantities $a>0$ and $b>0$ is:

$$
10 \log _{10}(a / b) \mathrm{dB}
$$

A path loss of 10^{10} thus corresponds to a channel gain of 10^{-10} or 100 dB . All formulas in this thesis are given in linear scale unless stated otherwise. In the following, the term path loss refers to the path loss component of the channel gain, and is denoted with $\gamma_{i}(x) \in[0,1]$ for a signal from cell i to some point $x \in \mathcal{A}$. The values of the path loss function for some antenna in the Berlin scenario are depicted in Figure 5.1(b).

5.1.2. Coverage

Locations that receive the signal from a cell with sufficient strength and quality are covered by the cell. While the signal strength only depends on the emitted power and the signal attenuation, the signal quality also depends on the interference from other transmissions in the network and noise at the receiver. The signal quality hence depends on the network configuration.

Mobile devices determine the signal strength and quality of the surrounding cell by sensing the cell's pilot channels. The pilot channel is a common channel on which each cell sends essential cell information. If $p_{i}^{(\mathrm{P})}$ denotes the power a cell i emits on the pilot channel, the received signal strength in $x \in \mathcal{A}$ is $\gamma_{i}(x) p_{i}^{(\mathrm{P})}$.

The received pilot signal strength, also referred to as E_{c}, is a measure for signal strength. An E_{c}-level greater or equal to some threshold $\pi_{\mathrm{E}_{\mathrm{c}}}$ is required for successful receptions:

$$
\begin{equation*}
\gamma_{i}(x) p_{i}^{(\mathrm{P})} \geq \pi_{\mathrm{E}_{\mathrm{c}}} \tag{5.2}
\end{equation*}
$$

A point $x \in \mathcal{A}$ has E_{c}-coverage if condition (5.2) is fulfilled for some cell i. The E_{c}-covered area by cell i is denoted by $\mathcal{A}_{i}^{\mathrm{E}_{\mathrm{c}}}$.

Signal quality is measured through the $\mathrm{E}_{\mathrm{c}} / \mathrm{I}_{0}$-level, which describes the ratio of received E_{c}-level and interfering signals. While the E_{c}-level and consequently the E_{c}-coverage can be calculated for each individual cell, the calculation of the $\mathrm{E}_{\mathrm{c}} / \mathrm{I}_{0}$-level requires knowledge about the interfering signals. For this reason, the $\mathrm{E}_{\mathrm{c}} / \mathrm{I}_{0}$-level can only be computed if the cell powers for all cells in the network are known. A point has $\mathrm{E}_{\mathrm{c}} / \mathrm{I}_{0}$-coverage if the $\mathrm{E}_{\mathrm{c}} / \mathrm{I}_{0}$-level greater or equal to the threshold $\pi_{\mathrm{E}_{\mathrm{c}} / \mathrm{I}_{0}}$.

A pixel has coverage if it has E_{c} - and $\mathrm{E}_{\mathrm{c}} / \mathrm{I}_{0}$-coverage. The pixel covered by a cell form the cell area. In the following we assign each cell i a cell area \mathcal{A}_{i} where E_{c} and $\mathrm{E}_{\mathrm{c}} / \mathrm{I}_{0}$-coverage is given. Due to the complexity of $\mathrm{E}_{\mathrm{c}} / \mathrm{I}_{0}$-level computations, $\mathrm{E}_{\mathrm{C}} / \mathrm{I}_{0}$-coverage is not considered explicitly in the site selection planning process. The cell areas used in the planning process will be subsets of the E_{c}-covered area, whose shape depends on the traffic intensity. This can be viewed as an implicit assumption of $\mathrm{E}_{\mathrm{c}} / \mathrm{I}_{0}$-coverage. Geerdes [33] provides procedures that optimize the cell configurations for a given site selection. This should be done in a second step considering $\mathrm{E}_{\mathrm{C}} / \mathrm{I}_{0}$-coverage as well.

5.1.3. Cell Power

Power values are commonly specified in dBm , which is decibel over 1 mW . The power of $a \mathrm{~W}$ corresponds to

$$
10 \log _{10} a+30 \mathrm{dBm}
$$

Unless explicitly stated otherwise, all formulas are in linear form throughout this thesis.

The total output powers of the transmission units are stored in the column vector $p=\left(p_{i}\right)_{i \in \mathcal{C}}$. The total transmission power p_{i} of a cell i is split into the power used for common channels $p_{i}^{(\mathrm{C})}$ and the power used for dedicated channels $p_{i}^{(\mathrm{D})}$. The vectors $\boldsymbol{p}^{(\mathrm{C})}$ and $\boldsymbol{p}^{(\mathrm{D})}$ hold the values for common and dedicated channel powers, respectively. Power control mechanisms regulate the power level of each dedicated channel of a cell. This affects also the total transmission power of the cell. The total powers are given by:

$$
\begin{equation*}
p=p^{(\mathrm{C})}+p^{(\mathrm{D})} \tag{5.3}
\end{equation*}
$$

Of course, the total power is limited. The maximum transmit power is denoted with $p_{\max }$, and the powers have to fulfill the constraint

$$
p_{i} \leq p_{\max }
$$

The Interference-Coupling System

In UMTS networks, interference is a key driver for network performance in general and cell power in particular. The assumption of perfect power control is the fundament of interference-coupling. In the following, we briefly introduce a model for the interference-coupling of the cells in a network. The resulting coupling system can be used to approximate the expected powers of the cells in the network. The level of detail in the presentation focuses on the needs of the application in the network planning procedure. A detailed derivation and description can be found in [33].

The effect of the CIR-inequality (5.1) is that for a successful transmission on the dedicated channels, the received signal strength has to achieve some ratio to the interfering signals. We assume perfect power control such that the CIR-inequality is always met with equality. From this equality an interference-coupling system can be derived that models the interdependence of the cell powers of the cells in the network. The fraction of the power of cell j that is received in cell i as interference is stated by the interference-coupling coefficient $c_{i j}$. The interferencecoupling system relates the power of cell i the powers of all other cells:

$$
\begin{equation*}
p_{i}=c_{i i} p_{i}+\sum_{j \neq i} c_{i j} p_{j}+p_{i}^{(\eta)}+p_{i}^{(\mathrm{C})} \tag{5.4}
\end{equation*}
$$

The first summand on the right side of Eq. (5.4) is the amount of intra-cell interference. The second summand specifies the interference from the other cells, called inter-cell interference.

Arranging the coupling coefficients in a interference-coupling matrix $\boldsymbol{C}=\left(c_{i j}\right)_{i, j \in \mathcal{C}}$ and writing Eq. (5.4) in vector notation gives the interference-coupling system:

$$
\begin{equation*}
\boldsymbol{p}=C \boldsymbol{p}+\boldsymbol{p}^{(\eta)}+\boldsymbol{p}^{(\mathrm{C})} \tag{5.5}
\end{equation*}
$$

5. Modeling UMTS Radio Networks and Demand Evolution Over Time

The coupling matrix C and the noise power $\boldsymbol{p}^{(\eta)}$ depend on the traffic situation such that the system (5.5) might be infeasible or undefined. In this case, the traffic load cannot served with the available transmission power and load control kicks in to reduce the traffic intensity. We assume perfect load control. Perfect load control scales the traffic, such that the remaining traffic is served with maximum cell power. Therefore, traffic scaling factors $\lambda_{i} \in[0,1]$ are introduced. The traffic scaling reduces the power on the dedicated channel such that the coupling equation (5.4) becomes

$$
\begin{equation*}
p_{i}=\lambda_{i}\left(c_{i i} p_{i}+\sum_{j \neq i} c_{i j} p_{j}+p_{i}^{(\eta)}\right)+p_{i}^{(\mathrm{C})} \tag{5.6}
\end{equation*}
$$

In the vector notation this reads

$$
\begin{equation*}
\boldsymbol{p}=\operatorname{diag}(\boldsymbol{\lambda})\left(\boldsymbol{C} \boldsymbol{p}+\boldsymbol{p}^{(\eta)}\right)+\boldsymbol{p}^{(\mathrm{C})} \tag{5.7}
\end{equation*}
$$

where $\operatorname{diag}(\lambda)$ is the matrix that has the elements of λ as diagonal entries.
Perfect load control says that if the traffic is scaled down, the cell must transmit at its maximum power. This implies complementarity of the two constraints

$$
\begin{equation*}
p_{i} \leq p_{\max } \quad \text { and } \quad \lambda_{i} \leq 1 \tag{5.8}
\end{equation*}
$$

such that one of the two inequalities has to be met with equality.
For a more detailed presentation, we refer to Geerdes [33], where also results on the uniqueness and existence of solutions for the system comprising of the coupling system (5.7) and the complementarity constraints (5.8) are given.

Generalized Pole Equations for Cell Power

By introducing the other-to-own interference ratio as the quotient of inter- and intracell interference, the coupling equations (5.6) can be simplified and the inter-cell interference is treated as an affine function of the cell's own transmission power. The other-to-own interference ratio is often called little i or just i. To avoid confusion with the index, we use the symbol ι instead. The other-to-own interference ratio l_{i} for cell i is defined by

$$
\begin{equation*}
\iota_{i}:=\frac{\sum_{j \neq i} c_{i j} p_{j}}{c_{i i} p_{i}} \tag{5.9}
\end{equation*}
$$

The ratio ι_{i} is well-defined for all cells i with $c_{i i}>0$. The cell power is positive since $p_{i} \geq p_{i}^{(\mathrm{C})}>0$. Substituting the interference terms in Eq. (5.6) gives

$$
\begin{equation*}
p_{i}=\left(1+\iota_{i}\right) \lambda_{i} c_{i i} p_{i}+\lambda_{i} p_{i}^{(\eta)}+p_{i}^{(\mathrm{C})} \tag{5.10}
\end{equation*}
$$

Isolating p_{i} provides a formula for the power value

$$
\begin{equation*}
p_{i}=\frac{\lambda_{i} p_{i}^{(\eta)}+p_{i}^{(\mathrm{C})}}{\left(1+\iota_{i}\right) \lambda_{i} c_{i i}} \tag{5.11}
\end{equation*}
$$

Using the complementarity of the two inequalities in (5.8) yield the following lemma:
Lemma 5.1: For any cell $i \in \mathcal{C}$ with $c_{i i}>0$, the following identities hold:

$$
\begin{align*}
& p_{i}= \begin{cases}\frac{p_{i}^{(\eta)}+p_{i}^{(\mathrm{C})}}{\left(1+l_{i} c_{i i}\right.} & \text { if }\left(1+\iota_{i}\right) c_{i i}<\frac{p_{\max }-p_{i}^{(\mathrm{C})}-p_{i}^{(\eta)}}{p_{\text {max }}}, \\
p_{\text {max }} & \text { otherwise. }\end{cases} \tag{5.12a}\\
& \lambda_{i}= \begin{cases}1 & \text { if }\left(1+\iota_{i}\right) c_{i i}<\frac{p_{\max }-p_{i}^{(\mathrm{C})}-p_{i}^{(\eta)}}{p_{\text {max }}}, \\
\frac{p_{\max }-p_{i}^{(\mathrm{C})}}{p_{\max }\left(1+\iota_{i} c_{i i}+p_{i}^{(\eta)}\right.} & \text { otherwise. }\end{cases} \tag{5.12b}
\end{align*}
$$

The equations (5.12) are referred to as generalized pole equations. Eq. (5.12a) is suitable to approximate the cell power when the rest of the network, in particular the inter-cell interference, is not known. In this case, an estimate for the other-toown interference ratio t_{i} is used and just the coupling element $c_{i i}$ and the noise power $p_{i}^{(\eta)}$ have to be calculated.

Expected Interference-Coupling and Cell Power

Noise power and the coupling matrix depend on the traffic in the network and can be computed for each traffic snapshot of the network. The coupling system or the pole equation can then be used to compute the cell powers. Sampling traffic snapshots in a Monte-Carlo fashion can be used to approximate the expectation of this values. We avoid the time consuming task by computing the expected coupling matrix and the expected noise power directly. This procedure is also presented in Geerdes [33].

Orthogonality. Code division multiple access (CDMA) is used to separate the signal from different transmission links. Within the same cell, separation is strengthened via orthogonal codes in the downlink. The base station encodes the original signals destined for the different users in the cell using distinct codes (scrambling codes). The encoded signals are added and transmitted. Each receiver can decode the original signal it is supposed to receive from the transmitted data stream. The orthogonality of the codes ensures signals encoded with different codes can (ideally) be perfectly separated in the decoding procedure such that the signals do not interfere.

In practice, however, orthogonality is partly lost during transmission due to disturbances in the transmitted data stream. The amount of orthogonality loss

5. Modeling UMTS Radio Networks and Demand Evolution Over Time

depends on the signal propagation properties of the environment. The loss is greater in areas where the signals are reflected and refracted by obstacles and thus might take different paths from the sender to the receiver, such as densely build areas. The loss is smaller in less cluttered areas. We model the orthogonality loss as a parameter $\omega(x) \in[0,1]$ that depends on the location x of the receiver. A factor of $\omega(x)=0$ means that orthogonality is perfectly preserved, while $\omega(x)=1$ means that orthogonality is completely lost. Further details can be found in [33].

User Load Intensity. For each service $s \in \mathcal{R}$ a user intensity function $T_{s}(x)$ specifies the number of users that are expected to use the service in pixel $x \in \mathcal{A}$. The location and number of the users are modeled as an inhomogeneous spatial Poisson point process. The number of users in any measurable subset $\mathcal{S} \subseteq \mathcal{A}$ is Poisson-distributed with parameter $\int_{\mathcal{S}} T_{\mathcal{S}}(x) \mathrm{d} x$. With this data, traffic snapshots can be sampled. We use the user intensity function to calculate user load intensities.

The load generated by one user of service s in point x is specified by the user loading factor $l_{s}(x)$. The load of a user depends on the loss of orthogonality, a channel-activity factor α_{s} and the CIR-target of the service. The activity factor reflects the fraction of time, the service maintains the channel busy. For speech telephony, control channels suggest values of $\alpha_{s} \geq 0.5$ since on average each party is speaking half of the time. For video telephony we have $\alpha_{s}=1$, since video is transmitted continuously. The downlink user loading factor is defined by

$$
\begin{equation*}
l_{s}(x):=\frac{\mu_{s} \alpha_{s}}{1+\omega(x) \mu_{s} \alpha_{s}} \tag{5.13}
\end{equation*}
$$

The user load intensity combines the user intensity function with the user loading factor. The total normalized user load intensity $T_{l}(x)$ specified the total load intensity in each point $x \in \mathcal{A}$ and is defined by

$$
\begin{equation*}
T_{l}(x):=\sum_{s \in \mathcal{R}} l_{s}(x) T_{s}(x) \tag{5.14}
\end{equation*}
$$

The expectation of the coupling elements $c_{i j}$ can now be computed as integrals over the cell area \mathcal{A}_{i} :

$$
\begin{align*}
\mathbb{E}\left[c_{i i}\right] & =\int_{\mathcal{A}_{i}} \omega(x) T_{l}(x) \mathrm{d} x \tag{5.15}\\
\mathbb{E}\left[c_{i j}\right] & =\int_{\mathcal{A}_{i}} \frac{\gamma_{i}(x)}{\gamma_{j}(x)} T_{l}(x) \mathrm{d} x \tag{5.16}
\end{align*}
$$

Indeed, there would be not intra-cell interference if orthogonality were perfectly preserved ($\omega(x)=0$).

Expected Noise Power. Noise from external sources is aggregated in a noise function $\eta(x)$. Noise comprises thermal noise, equipment noise and interference from sources other than the UMTS network. The noise power is the power that would be needed to achieve a proper reception in the case of complete absence of interference. Without intra system interference (intra- and inter cell interference), perfect power control would ensure that the transmission power is just the noise power. The expected noise power is given by

$$
\begin{equation*}
\mathbb{E}\left[p_{i}^{(\eta)}\right]=\int_{\mathcal{A}_{i}} \frac{\eta(x)}{\gamma_{i}(x)} T_{l}(x) d x \tag{5.17}
\end{equation*}
$$

Approximating Expected Cell Powers. The ability to compute expected coupling coefficients and noise power gives us the main ingredients to approximate the cell powers by applying the pole equation (5.12a). We assume that the cell is not in overload $\left(\lambda_{i}=1\right)$. How the cell areas $\tilde{\mathcal{A}}_{i}$ are determined in order to meet this assumption is explained in Section 5.1.4. Moreover, an estimation $\tilde{\tau}_{i}$ of the other-to-own interference ratio t_{i} is used.

Given an approximation for the cell area $\tilde{\mathcal{A}}_{i}$ and an estimate other-to-own interference ratio $\tilde{\tau}_{i}$, we can now use the pole equation to approximate the expected cell power. Unfortunately, the right-hand side of Eq. (5.12a) is not linear in $p_{i}^{(\eta)}$ and $c_{i i}$, so that we cannot calculate the expected power by replacing $p_{i}^{(\eta)}$ and $c_{i i}$ with its expectations. The approximation, anyhow, is reasonable well as Geerdes demonstrates [33]. Therefore, we define the approximated expected cell power \tilde{p}_{i} of a not overloaded cell by

$$
\begin{equation*}
\tilde{p}_{i}:=\frac{p_{i}^{(\mathrm{P})}+\mathbb{E}\left[p_{i}^{(\eta)}\right]}{1-\left(1+\tilde{\tau}_{i}\right) \mathbb{E}\left[c_{i i}\right]} \tag{5.18}
\end{equation*}
$$

Cell Load. Finally, we can define the approximated load \tilde{L}_{i} of cell i as the fraction of the maximum power that is used

$$
\begin{equation*}
\tilde{L}_{i}:=\frac{\tilde{p}_{i}}{\bar{p}_{\max }} \tag{5.19}
\end{equation*}
$$

Cell load describes the amount by which the capacity of a cell is used and is an important performance indicator for wireless networks. Cells with a load above some threshold are considered overloaded and do likely not satisfy the traffic demand. The service quality for the users will be reduced, no new users will be accepted and eventually users will be dropped. For planning purposes cell load not higher than 60 percent is aimed at.

5.1.4. Load Control and Cell Areas

A key driver for the development of the network over time is the (anticipated) evolution of the traffic demand. A network design that is fit to service a specific

5. Modeling UMTS Radio Networks and Demand Evolution Over Time

traffic load intensity will eventually become overloaded when the traffic scales up. For the purpose of strategic network planning, the network shall be evolved in such a way that overload is penalized.

We therefore do not use an approach that relies on servicing traffic from a fixed cell area fractionally (as proposed in Section 5.1.3). Instead, we reduce the effective cell area in order to confine traffic and thus to prevent overload. To this end, we define cell service areas as the subset of the E_{c}-covered area wherein all traffic can be serviced without exceeding a cell load target. When the cell is empty, the entire traffic in the cell can be serviced and the cell service area is equal the area covered by the cell. When the cell gets loaded, first the users from the cell border are excluded from service. The reduction of the service area is achieved by strengthening the requirement on the received pilot power that is needed to access the network. Figure 5.2(a) shows the service areas for different traffic intensities in a sample cell in the Momentum Berlin scenario.

With the introduction of cell service area, we distinguish covered and serviced pixels. Our notion of coverage refers to pure E_{c}-coverage, which is not effected by variations of the traffic. In practive, however, coverage consists of $\mathrm{E}_{\mathrm{C}}-$ and $\mathrm{E}_{\mathrm{c}} / \mathrm{I}_{0^{-}}$ coverage. The cell borders suffer most from interference and are the first places to loose $\mathrm{E}_{\mathrm{c}} / \mathrm{I}_{0}$-coverage when the network gets loaded. The service areas can thus be seen as a way to mimic $\mathrm{E}_{\mathrm{c}} / \mathrm{I}_{0}$-coverage as well.

Let $L^{(\mathrm{t})} \in[0,1]$ be the load target, i. e., a load that is desirable for operation. The service area for cell i is denoted by $\mathcal{A}_{i}^{(s)}$. The power and load of a cell depends on the traffic but also on the area where service is provided. For a given traffic pattern, we denote by $L_{\mathcal{A}_{i}^{(s)}}$ the approximated expected load for the cell area $\mathcal{A}_{i}^{(s)}$. The sets $\mathcal{A}_{i}^{(s)}$ are constructed in such a way that

$$
\begin{align*}
\mathcal{A}_{i}^{(s)} & \subseteq \mathcal{A}_{i}^{\mathrm{E}_{\mathrm{c}}} \tag{5.20}\\
L_{\mathcal{A}_{i}^{(\mathrm{s})}} & \leq L^{(\mathrm{t})} \tag{5.21}
\end{align*}
$$

We construct the sets by including pixel with decreasing received power until the load limit is reached or until the pixels are not E_{c}-covered anymore. If constructed by this algorithm, the sets have the form

$$
\begin{align*}
\mathcal{A}_{i}^{(s)} & =\left\{x \in \mathcal{A} \mid \gamma_{i}(x) p_{i}^{(\mathrm{P})} \geq \max \left(\pi_{i}^{(s)}, \pi_{\mathrm{E}_{\mathrm{c}}}\right)\right\} \tag{5.22}\\
& =\left\{x \in \mathcal{A}_{i}^{\mathrm{E}_{\mathrm{c}}} \mid \gamma_{i}(x) p_{i}^{(\mathrm{P})} \geq \pi_{i}^{(s)}\right\}
\end{align*}
$$

The threshold $\pi_{i}^{(s)}$ is the minimal received power needed to satisfy the load target condition (5.21). With increasing traffic, the load generated in the service area increases. As a consequence the minimum feasible received power $\pi_{i}^{(s)}$ increases and the service area shrinks. Figure 5.2(a) illustates the service areas for different load intensities.

Figure 5.2.: Cell areas for different load intensities

5.1.5. Adding Capacity Through Carrier and Technology Upgrades

Traffic volumes observed over the last years in the mobile networks would be impossible without techniques to improve plain UMTS cell capacity. The use of more radio spectrum and advanced transmission techniques is standard in state-of-the-art 3G networks. In the following, we describe the most important steps for cell capacity improvements and how we mimic these measures in our model.

In Section 5.1, we presented a system model for a UMTS network working on a single carrier. In practice, however, network operator have several methods to enhance the system such that it provides more capacity. One method is to activate additional frequency blocks, so called carriers, for transmissions. Since different frequency bands are used, both carriers do not interfere. The formulas from Section 5.1 remain valid for calculating cell powers, just the load that is handled by each carrier is reduced. In a system that is upgraded from one to two carriers, each carrier handles half the load such that the total capacity is doubled.

The UMTS standard itself also evolves. Nowadays, all providers in Germany use High Speed Downlink Packet Access (HSDPA, sometimes also called 3.5G or UMTS-broadband) to enhance downlink speed and capacity. HSDPA uses different modulation and coding techniques and different power management mechanisms that allow substantial speedups. At the same time, HSDPA is still an interference limited system. A complementarity system similar to the one for UMTS can be derived [32]. With HSDPA+, the network operator already have the next evolution step at hand. In Germany, one network provider already offers HSDPA + and two of the other three plan on introducing HSDPA+ by the end of 2010 [67]. With High Speed Uplink Packet Access (HSUPA) a technology update for the uplink

5. Modeling UMTS Radio Networks and Demand Evolution Over Time

is also available and widely employed. Details on technical aspects and speed measurements in HSDPA and HSUPA can be found in [43].

We refere to additional carriers and technology updates as technology upgrades. Both types of upgrades are applied at cell level. In several cases, upgrading involves only a software update at the base station. We therefore neglect expenses upgrades might cause.

Technology upgrades reduce the impact of a single user to the cell load and, thus, add capacity to the system. We take account for this by scaling the user intensity. Therefore, we introduce a technology scaling parameter $f_{i}^{(\text {tech })} \in(0,1]$ for each cell $i \in \mathcal{C}$. Each upgrade accounts for a reduction of the traffic scaling parameter. For standard UMTS on one carrier we have $f_{i}^{(\text {tech })}=1$. If an additional carrier is activated, each carrier takes half the traffic and the scaling parameter is $f_{i}^{(\text {tech })}=\frac{1}{2}$.

We assume a finite, ordered set $\left\{u_{1}, \ldots, u_{k}\right\}$ of upgrades. The upgrades can only be installed in order, such that u_{i} can only be installed if u_{i-1} is already installed. Each upgrade u_{i} constitutes a factor of $f_{u_{i}}$ to the the technology scaling parameter. If the first i upgrades are installed, the scaling parameter is given by

$$
f_{i}^{(\mathrm{tech})}=\prod_{l=1}^{i} f_{u_{l}}
$$

We assume the entire set of upgrades is available from the beginning. This can be extended such that the number of available upgrades increases as time passes.

The technology scaling parameter reduces impact of the traffic by scaling the user intesity. For the power calculation of cell i the scaled user intensity function

$$
\begin{equation*}
\bar{T}_{s^{*}}(x):=f_{i}^{(\text {tech })} T_{S^{*}}(x) \tag{5.23}
\end{equation*}
$$

is used. It is, however, easier to incorporate the scaling factor into Eq. (5.18), i. e., the formula for approximated cell power. Both, the coupling elements and the noise power, are linear in $T_{s^{*}}(x)$, see (5.15) and (5.17). Instead of appyling the scaling to the user intensity function, we can equivalently modify the approximation formula (5.18) to

$$
\begin{equation*}
\tilde{p}_{i}:=\frac{p_{i}^{(\mathrm{P})}+f_{i}^{(\text {tech })} \mathbb{E}\left[p_{i}^{(\eta)}\right]}{1-\left(1+\tilde{\iota}_{i}\right) f_{i}^{(\text {tech })} \mathbb{E}\left[c_{i i}\right]} \tag{5.24}
\end{equation*}
$$

Of course, in this case coupling elements and noise power have to be calculated using the unscaled user intensity function given by Eq. (5.27).

Upgrade strategy

The technology upgrade strategy is not subject to the optimization procedure, but done by a simple rule in a preprocessing step. In Section 5.1.4, we introduced the
cell service areas, whose size depends on the cell load. The service area is the area where service can be provided and the cell load stays within limits. A shrinking service area, thus, indicates that the cell is at its capacity limits. The update rule says that a cell is upgraded every time, the service area shrinks by a certain degree. This procedure is repeated until the maximum number of upgrades is reached.

The service area contains all pixel whose received pilot power are sufficiently large:

$$
\begin{equation*}
\mathcal{A}_{i}^{(s)}=\left\{x \in \mathcal{A} \mid \gamma_{i}(x) p_{i}^{(\mathrm{P})} \geq \max \left(\pi_{i}^{(s)}, \pi_{\mathrm{E}_{\mathrm{c}}}\right)\right\} . \tag{5.22}
\end{equation*}
$$

In a loaded cell $\left(L_{\mathcal{A}_{i}^{\mathrm{E}_{\mathrm{c}}}}>L^{(\mathrm{t})}\right)$, the maximum is taken in $\pi_{i}^{(s)}$, i. e., the service area does not have its maximum range anymore. Dividing the inequality in (5.22) by the cell power yields a condition on the pathloss

$$
\mathcal{A}_{i}^{(s)}=\left\{x \in \mathcal{A} \left\lvert\, \gamma_{i}(x) \geq \frac{\max \left(\pi_{i}^{(s)}, \pi_{\mathrm{E}_{\mathrm{c}}}\right)}{p_{i}^{(\mathrm{P})}}\right.\right\}
$$

When $\pi_{i}^{(s)}$ increases, the required $\gamma_{i}(x)$ also increases. This quantity is the measure for our updating rule. Whenever the required $\gamma_{i}(x)$ increases by a factor U, an upgrade is installed (as long as the maximum number of upgrades has not been reached).

To put this into formulas, denote with $\gamma_{i}^{\mathrm{E}_{\mathrm{c}}}$ the pathloss that is needed to meet the E_{c}-coverage threshold

$$
\gamma_{i}^{\mathrm{E}_{\mathrm{c}}}=\frac{\pi_{\mathrm{E}_{\mathrm{c}}}}{p_{i}^{(\mathrm{P})}}
$$

and with γ_{i}^{s} the pathloss that is needed to be within the service area at the current upgrade level

$$
\gamma_{i}^{\mathrm{s}}=\frac{\max \left(\pi_{i}^{(s)}, \pi_{\mathrm{E}_{\mathrm{c}}}\right)}{p_{i}^{(\mathrm{P})}}
$$

An upgrade is installed, if

$$
\frac{\gamma_{i}^{\mathrm{s}}}{\gamma_{i}^{\mathrm{E}_{\mathrm{c}}}}>U
$$

and another update is possible. Figure 5.2(a) illustrates the service areas for different numbers of upgrades. The service area is more extended if more updates are applied.

5.1.6. Transforming Traffic to Load

The traffic that is expected to be generated by mobile data services describes the demand evolution. In Section 5.2, a stochastic model for the evolution of the monthly traffic per capita is developed. In the following we describe a model to transform a traffic volume generated in a fixed period of time into a load intensity. This transformation allows for an evalutation of the coverage and capacity properties of the cells given a fixed traffic volume.

Increasing traffic should increases the load in the network. The increased load is cause by two effects: The number of users increases and the users use the service more intensively and generate more traffic. In a growing market both effects should be present and cannot be separated by just examing the traffic volumes. The user intensity function $T_{S}(x)$ describes the number of users that are expected to use the service s in pixel x. Via the total normalized user load intensity $T_{l}(x)$, the user intensity function is one input of the calculation of cell powers (cf. (5.14)). Therefore, the traffic volume per capita is expressed in terms of users of a reference service. In combination with the population density, this allows to calculate a user intensity function for the reference service that reflects the load caused by that traffic volume.

Let V denote the traffic volume per capita in KiB per month. Assume a fixed reference service s^{*}, i.e., speech telephony. With $v_{s^{*}}$ we denote the average data rate of the reference service specified in bit/s. The traffic is not generated uniformly over the day. We focus on the so called busy hour, which is the hour during the day in which on average the most traffic is generated and assume the same busy hour for all cells. Measuring the performance in the busy hour is desired since it represents the average peak load. Let $\beta \in[0,1]$ be the fraction of the traffic that occures in the busy hour. The traffic volume generated in the busy hour of one day is thus given by

$$
\frac{\beta V}{30}
$$

assuming that a mounth has 30 days on average. The fraction

$$
\begin{equation*}
\frac{1024 \cdot 8 \beta V}{3600 \cdot 30} \tag{5.25}
\end{equation*}
$$

represents the data rate in the busy hour per capita in bit/s. We introduce the notion of Reference Service Equivalents (RSE). One RSE is the amount of traffic that is equivalent to one user of the reference service in the busy hour and is thus a measure for traffic volume. The number of reference service users that are equivalent to a traffic volume of $T \mathrm{KiB}$ is denoted with $\mathrm{RSE}(T)$. Dividing (5.25) by the average data rate of the reference services gives

$$
\begin{equation*}
\operatorname{RSE}(V)=\frac{1024 \cdot 8 \beta V}{3600 \cdot 30 v_{s^{*}}} \tag{5.26}
\end{equation*}
$$

Symbol	Unit	Meaning
V	$\mathrm{KiB} /$ Month/Capita	Average traffic volume per month per capita
β		Fraction of total traffic volume spent in busy hour
m		Market share
s^{*}		Reference service
$v_{s^{*}}$	$\mathrm{bit} / \mathrm{s}$	Data rate of reference service
RSE		Reference Service Equivalents
$\operatorname{RSE}(T)$	RSE	Number of reference service users equivalent to T KiB
$\rho(x)$		Population in pixel x
$T_{s^{*}}(x)$	RSE	Reference service users in pixel x

Table 5.1.: Overview of symbols regarding transformation from traffic volume to load

Since V specifies the traffic volume per capita, $\operatorname{RSE}(V)$ specifies the traffic volume in RSE/capita. Multiplying $\operatorname{RSE}(V)$ with the population $\rho(x)$ in a pixel and the market share m of the operator yields the number of reference users that would cause the given traffic in the network of the operator. This forms the desired user intensity function $T_{S^{*}}(x)$:

$$
\begin{equation*}
T_{S^{*}}(x):=m \operatorname{RSE}(V) \rho(x) \tag{5.27}
\end{equation*}
$$

5.1.7. Technological and Regulatory Requirements

Limited Construction Activities

The activation of new sites is assumed to involve construction activities; antennas have to be mounted, equipped with transmission units, and connected to the network. The same holds true if a new cell is to be opened on an existing site; technicians have to mount and configure the transmission unit. We assume that the capacity of constructing new sites and activating new cells is limited. This is a reasonable assumption, since the deployment of a network involves the construction of ten-thousands of cells.

Coverage Requirements

From participants in the mobile telecommunication mass market a minimum coverage is expected and stipulated by license terms as for example in Germany [12]. In Section 5.1.4 we introduced the cell service area, which is the part of the covered area from which all traffic can be serviced without exceeding some load treshold. The area where the cell provides coverage might be larger. The coverage constraints are thus not formulated on basis of the service area but on the basis of coverage areas. The coverage areas is defined as that part of the E_{c}-covered area tat can be serviced assuming a base-line traffic intensity. We therefore choose the coverage area of a cell as the service area forsome base-line traffic intensity. Figure 5.2

5. Modeling UMTS Radio Networks and Demand Evolution Over Time

shows the coverage area and a service area of a cell. Using this definition, the service area is a superset of the coverage area if the traffic is below the base-line traffic.

We denote the coverage area of cell i with $\mathcal{A}_{i}^{(c)}$. The total coverage area $\mathcal{A}^{(c)}$ of a network configuration is the union of all coverage areas of cell installed:

$$
\mathcal{A}^{(c)}=\bigcup_{i \text { is installed }} \mathcal{A}_{i}^{(c)}
$$

Let $w: \mathcal{A} \rightarrow \mathbb{R}_{\geq 0}$ be a function weighting the planning area, such as a some population density or constant value. The coverage requirement is fulfilled, if the weight of the total coverage area exceeds the required percentage of the weight of the planning area. The required percentage is expressed by the parameter $\alpha \in$ $[0,1]$. The coverage requirement is satisfied if

$$
\begin{equation*}
\int_{\mathcal{A}^{(c)}} w(x) \mathrm{d} x \geq \alpha \int_{\mathcal{A}} w(x) \mathrm{d} x \tag{5.28}
\end{equation*}
$$

Coverage requirements may also apply only in certain parts of the area, as for example in Germany. There, the LTE technology is suitable to replace wired broadband Internet connections in poorly populated areas. Therefore, the providers are forced to provide access to communities with up to 5000 habitants, then to the ones with 5000 to 20000 , then with cities with up to 50000 habitants, and so on. Each new step can be made if the area of the previous has 90 percent coverage [28]. The coverage requirement holds in a region $\mathcal{S} \subseteq \mathcal{A}$ if

$$
\begin{equation*}
\int_{\mathcal{A}^{(c)} \cap \mathcal{S}} w(x) \mathrm{d} x \geq \alpha \int_{\mathcal{A} \cap \mathcal{S}} w(x) \mathrm{d} x . \tag{5.29}
\end{equation*}
$$

\mathcal{S} could be the area of communities with up to 5000 habitants. In our computational experiments, however, we only include constraints of the form (5.28).

5.2. Stochastic Model of Demand Evolution

In many situations decision have to be taken while the future evolution of influencing parameters is uncertain. Traditional optimization models do not account for uncertainty but assume deterministic data, e.g., by optimizing for only one possible realization of the stochastic parameters at a time or for some expectation. The stochastic optimization framework explicitly accounts for uncertainty by including several scenario (weighted by probabilities) into the optimization model. The dynamics in the mobile telecommunication markets are difficult to capture and predict. A variety of factors, such as prizes, attractiveness, market acceptance of the services, and competition, influence the market. Especially when a new mobile telecommunication technology is introduced, it is unclear how the market will accept the new products which then become possible.

Figure 5.3.: Monthly traffic volume per capita in Germany (DE) and Switzerland (CH) through fixed DSL and mobile networks

Capturing the stochastic nature of the parameters is a difficult task. Pflug and Römisch [70] determine three sources of information for the modeling of uncertainty:

- historical data
- theoretical considerations
- expert opinion

All three sources have their strengths and weeknesses. The information of historical data is of arguable value for future realizations, especially in changing environments such as developing markets. Theoretical considerations are important, but in complex environments with lots of interrelations hardly suitable as the only source of a model. Expert opinion can anticipate developments that cannot be captured by the other sources. Incorporating the decision makers expectation regarding future developments into the stochastic model also strengthens the acceptance of the solution of the optimization procedure and should, thus, not be disregarded.

The development of proper models (stochastic or deterministic) to predict future market developments is subject to economics and not the scope of this work. We therefore take the perspective of a mobile network operator prior to lauching a UMTS network. This allows to demonstrate the methodology in a setting where less parameter need to be guessed since historical data is present. The stochastic demand model is set up such that the observed traffic development could be a sample path of the stochastic process.

Figure 5.4.: Three stage approach for scenario tree construction

We assume that the traffic evolution is independent of our actions and, thus, neglect the existance of endogenous uncertainty. The traffic model is thus more suitable for a market follower than for the market leader.

From the network planning point of view, demand is the anticipated traffic from (future) customers. Two key parameters thus influence the demand in a network: The number of customers and the amount of traffic generated each user. The average traffic per capita over a time period is a quantity that aggregates the number of users and the average traffic volume. Figure 5.3 shows the development of the average monthly traffic volume per capita over several years in the DSL network in Germany and the mobile networks in Germany and Switzerland. The traffic data was extracted from official statistics provided by the German Bundesnetzagentur [13-16] and the Swiss Amtliche Fernmeldestatistik [10,11]. Statistics of the total population in the respective countries was retrieved from the European statistic service "Eurostat" [27] and the Swiss "Bundesamt für Statistik" [30]. The mobile traffic levels in both countries show a similar behavior. The volume generated through the mobile networks is still two orders of magnitude smaller than for DSL, but still increasing steeply. Similar to the DSL plot a growth slow down can be expected for the mobile services, where the volume was increasing at more moderate rates from 2003 onwards. The prediction of the exact growth curve or even the saturation level is however difficult.

In the following, a three stage approach to compute scenario trees is described. Scenario trees are the basis of stochastic optimization. In the first stage, we model random influences as a stochastic process. Second, the time horizon is discretized and sample paths from the stochastic process are drawn. A large number of samples is usually necessary to capture the probabilistic nature of the process. Third, a scenario tree is constructed. The tree approximates the information structure (i.e., the increase of information over time) inherent in the scenarios (and the probabilities) with as few nodes and scenarios as possible. The scenario tree is the input for a stochastic program that can be solved numerically. Figure 5.4 shows the scheme of the scenario tree construction.

5.2.1. Modeling Uncertainty by a Stochastic Process

The first step is to determine the random influences. In practice, almost all quantities are subject to uncertainty. For stochastic optimization, however, it is reasonable to focus on the parameters with the highest impact. In this way, the effect of uncertainty on the optimization problem and, especially, on the solution of the problem can be studied (and hopefully understood). The selection of random influences in the model is a modeling decision and can be discussed like any other modeling decision.

In our application, we assume future demand to be the main source of uncertainty. The large dynamic range in the traffic observations, depicted in Figure 5.3, indicates that prediction errors can lead to poor planning decisions. The demand can be further decomposed into two factors. The intensity is a measure for the acceptance of the technology in the market. The spatial distribution of the demand is the other factor. The spatial distribution might vary over time. In this work, we focus on the demand intensity, i.e., the total demanded traffic volume. The spacial distribution is given by a non-uniform population distribution which is scaled accounding to the demand intensity.

Next, the uncertain parameters are modeled as a stochastic process. The traffic in the mobile networks has commonly been perceived as exponentially growing in the timehorizon under consideration (cf. Figure 5.3). The geometric Brownian motion is appropriate to model exponential growth with random disturbance. The geometric Brownian motion was introduced in Section 3.4.3 and is a stochastic process \mathbb{X}_{t}, that solves the stochastic differential equation:

$$
\begin{equation*}
\mathrm{d} \mathbb{X}_{t}=\mu \mathbb{X}_{t} \mathrm{~d} t+\sigma \mathbb{X}_{t} \mathrm{~d} W_{t} \tag{5.30}
\end{equation*}
$$

The change of the value of \mathbb{X}_{t} consists of a deterministic term $\mu \mathbb{X}_{t} \mathrm{~d} t$ and a random term $\sigma \mathbb{X}_{t} \mathrm{~d} W_{t}$ with a standard Brownian motion W_{t}.

5.2.2. Sampling Paths

The geometric Brownian motion is used to sample paths. A solution of the stochastic differential equation (5.30) with boundary condition $\mathbb{X}_{0}=s$ is

$$
\begin{equation*}
\mathbb{X}_{t}=s e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma W_{t}} \tag{5.31}
\end{equation*}
$$

A standard Brownian motion can thus be transformed into a geometric Brownian motion using Eq. (5.31).

Several methods for the simulation of Brownian motions exist. Glasserman [35] gives an overview over sampling methods for path of geometric and standard Brownian motions. We use the straight forward approach and sample the random increments. To describe the approach, first we state the definition of the standard Brownian motion:
Definition 9: A stochastic process $\left(W_{t}\right)_{t \in[0, T]}$ satisfying

5. Modeling UMTS Radio Networks and Demand Evolution Over Time

Figure 5.5.: Observed traffic and 20 sample paths of geometric Brownian motion (grey)
i) $W_{0}=0$
ii) the mapping $t \mapsto W_{t}$ is almost surely continuous on $[0, \mathrm{~T}]$
iii) the increments $\left\{W_{t_{1}}-W_{t_{0}}, W_{t_{2}}-W_{t_{1}}, \ldots, W_{t_{k}}-W_{t_{k-1}}\right\}$ are independent for any k and any $0 \leq t_{0}<t_{1}<\ldots<t_{k} \leq T$
iv) the increment $W_{t}-W_{s}$ is normally distributed with mean 0 and variance $t-s$ for any $0 \leq s<t \leq T$
is called (standard) Brownian motion on $[0, T]$.
The Brownian motion is a stochastic process on a filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right), \mathbb{P}\right)$. Definition 9 instructs how the paths of the Brownian motion can be approximated: Starting at $\widetilde{W}_{0}=0$ the increments are drawn and the resulting points are connected to a piecewise linear, continuous function. We denote the approximated path with \widehat{W}_{t}. For a discretization $0=t_{0}<t_{1}<\ldots<t_{k}=T$ of [$0, T$], the Brownian motion at t_{i} for $1 \leq i \leq k$ is sampled by

$$
\begin{equation*}
\widetilde{W}_{t_{i}}=\widetilde{W}_{t_{i-1}}+\sqrt{t_{i}-t_{i-1}} Z_{i} \tag{5.32}
\end{equation*}
$$

where the $\left(Z_{i}\right)_{i \in\{1, \ldots, k\}}$ is a sequence of independent normally distributed random variables with mean 0 and variance 1 . The value at the intermediate points is the linear interpolation between the two neighboring points. At the support points $t_{i}, i \in\{0, \ldots k\}$, the sample is exact in the sense that the joint distribution of the sampled points coincides with the joint distribution of the Brownian motion at this points. Between the support points, the Brownian motion is only approximated.

Each path represents a possible evolution of the demand. The discretization is chosen such that the value of process is sampled at the points in time where decision have to be made. Historical data helps to get a reasonable choice of the parameters of the geometric Brownian motion. Figure 5.5 shows the observed traffic data and 20 sample paths of the geometric Brownian motion. The sampled paths all have the same probability, so a large number of samples is needed to capture the characteristics of the distribution.

5.2.3. Scenario Tree Construction

The power of stochastic optimization lays in the consideration of different future evolutions of key parameters in the optimization model. In multistage stochastic optimization, tree structured processes are most suitable to describe randomness. They have the property that scenarios share the first part of the random path until the path splits. Until the splitting point, these parts are not distinguishable and the future evolution cannot be predicted. Only the conditional distribution of future events is known at that time. Repeatedly splitting of bundles of scenarios makes the problem multistage.

The path of two Geometric Brownian motion coincide almost surely only at time $t_{0}=0$. For all times $t>0$, two path take almost surely distinct values. The same hold true for our discrete approximation, since two independent normally distributed random variables almost surely take distinct values. The formulation of multistage stochastic program as described in Section 4 with the sample paths as stochastic process yield a two-stage program. The decisions to be taken at $t_{0}=0$ are first stage decisions. The decisions at times $t>0$ do not interact anymore and are regarded as second stage decisions.
To regain a multistage program with more than two stages, the information structure described by the sample paths is approximated by a tree structured stochastic process, i.e., a scenario tree. The construction of scenario trees on the basis of sample paths is done by Scenred, a tool for scenario reduction and scenario tree construction. Scenred constructs a scenario tree from a given set of scenarios by minimizing an appropriate metric on the space of probability distributions. The choice of the metric and the construction method is based on stability results that have been obtained for certain classes of optimization problems. Stability results relate the optimal value of the optimization problems for different input distributions with the distance of the respective distributions. Thereby, the difference in the optimal values and the solution sets can be bounded by a function of the distance of the respective input distributions. This is refered to as stability. Stability results are known for some classes of multistage stochastic programs, such as linear programs with random objective function and random right hand side [39-41,74] For stability results for two-stage stochastic mixed-integer programms, see [75,78]. For multistage mixed-integer stochastic programs with more than two stages, stability results are difficult to obtain and for the optimiza-

5. Modeling UMTS Radio Networks and Demand Evolution Over Time

Figure 5.6.: Scenario trees constructed with Scenred on original and logarithmic transformed paths, colors represent the probabilites
tion models that are examined in this work, no suitable stability results are known so far. Scenred was written by Holger Heitsch [39] and is distributed as part of the GAMS package [31] or can be obtained by the authors on request.

The focus on the choice of the input parameters for the tree construction with Scenred is on obtaining trees that cover large parts of the value range of the sample paths. At the same time, we seek a moderate number of nodes in the tree, since additional nodes can lead to mathematical programs that are computational intractable. Since the dynamic range of the values of the paths increases, Scenred judges the last periods much more important than the beginning and generates the mayor part of the path splits and tree nodes in the last periods, see Figure 5.6(a). To achieve a more balanced tree, Scenred is applied to the logarithm of the sample paths. The inverse transformation is applied to the resulting scenario tree. The result of this procedure is visualized in Figure 5.6(b).

Figure 5.7 shows a graphical represention of a scenario tree which approximates 300 sampled paths. The colors of the nodes indicate their probability.

The Expected Demand Evolution

The expected demand evolution is described by the expectation of the geometric Brownian motion. The expected path of the geometric Brownian motion is the solution of Eq. (5.30) with $\sigma=0$:

$$
\mathrm{d} \mathbb{X}_{t}=\mu \mathbb{X}_{t} \mathrm{~d} t
$$

This is an ordinary differential equation which for the start value s has the solution

$$
\mathbb{X}_{t}=s e^{\mu t}
$$

Figure 5.7.: 300 sample paths (grey) and the scenario tree constructed by Scenred. The node colors indicate their probability.

Notation

Let \mathcal{N} denote the set of nodes in the scenario tree. For a node n, let $p(n)$ denote its father and $p^{k}(n)$ the k th ancestor along the path from n to the root of the tree such that $p(n)=p^{1}(n)$. Each node in the tree has a probability to be realized, which is denoted by $\mathbb{P}(n)$. Each path from the root to a leaf represents a scenario, i. e., a realization of the entire stochastic process. The leaves of the scenario tree thus characterize a scenario and the set of leaves is denoted by \mathcal{S}. The path from a node n to the root of the tree is denoted by $\mathcal{P}(n)$.
5. Modeling UMTS Radio Networks and Demand Evolution Over Time

6. Optimizing Network Evolution

The construction of a mobile telecommunication network is a process that takes years of time and binds a lot of capital. The demand for mobile telecommunication services is uncertain such that careful planning of the evolution of the network under consideration of uncertainty is beneficial. The main decision in the evolution of a network is where and when to build new cells.

We follow two objectives which go hand in hand. First, we seek a monetary valuation for the opportunity to invest into a mobile telecommunication network. Second, we seek optimal strategic decision regarding the evolution of the network. The strategic decisions are the placement of sites and cells. Planning network evolution involves a large planning horizon since the network cannot be build from one day to the other but has to be build stagewise and over years. Therefore planning decision in the later periods should depend on all information available in that moment. The decisions in the beginning should be made to have flexibility to react to foreseen and unforeseen events and developments in the future.

In Section 2 and Section 3 we introduced three valuation methods for investment opportunities.

Net Present Value Analysis. We have a highly uncertain environment with lots of flexibility such that net present value analysis on the expected cash flows is not the appropriate valuation method. What are the expected cash flows in this case anyway? They highly depend on the evolution of the network. Net present value analysis has to be complemented by a procedure to compute plans for network evolution.

Decision Tree Analysis. Decision tree analysis allows to consider uncertainty and flexibility but suffers from a combinatorial explosion. Each path from the root to a leaf represents a realization of the random parameters and a particular choice for all decisions.

Consider the special case of the problem to select up to n cells out of k candidates. This is a deterministic problem but there are $\binom{k}{n}$ possible selections. For 120 candidate locations and 10 cells to select this gives more than 10^{14} possibilities that would have to be considered. Generating the entire tree envolves the enumeration of all possible combinations of decisions. Clearly, this is computationally not feasible for realistic problem sizes.

6. Optimizing Network Evolution

Real Options Analysis. The real options framework, presented in Chapter 3, seems promising. The option to build a telecommunication network is a compound option. The compound option consists of the options to build cells from a candidate set. These options are american options on the revenues generated in the cells with the installation cost as strike. The revenue that is generated in a cell depends on the neighboring cells since a cell is not assumed to generate extra revenue if the cell area is already covered. The option is path dependent and compound with the options to build the other cells in the network. This makes the evaluation very difficult.

Another issue arises if we recall the argumentation of Section 3.5 where the assumptions of the mathematical model for the valuation of real options are discussed. The mathematical model assumes that the underlyings of the options are traded in a complete market and can be used for hedging. For a correct valuation of the option, a tradable twin security has to be identified that replicates the value of the underlying. For the option on the entire investment opportunity, the stock of a competitor could serve as twin asset. This will be the case if the value of the stock is perfectly correlated with value of the telecommunication network. Since competitors follow different business strategies this correlation is difficult to obtain.

For the real options on the contruction of an individual cell, the application of the financial toolbox (cf. Section 3.4) is even harder to justify. The underlying is the value of the revenues generated in a cell. This can hardly be replicated by traded assets in the market.

Richard de Neufville and Tao Wang distinguish real options "on" and "in" projects. The option to construct a cell is an option "in" the project of constructing the network. De Neufville and Wang argue that for real options "in" project, market-driven values cannot be expected. They propose the application of stochastic mixed-integer programming to valuate real options. Risk-adjusted interest rates have to be used to discount the future cash flows. The result is a procedure that maximizes the net present value of the project. This is done by implicitly evaluating the decision tree.

6.1. The Modeling Idea

Before we start with the mathematical formulation of the model, we want to present the key ideas. We seek a monetary valuation for the investment opportunity to build and operate a mobile telecommunication network. The aim is therefore to find a construction plan that maximizes the profit. Two objective functions are investigated and compared; the expected discounted profit and the conditional value at risk of discounted value process at the end of the planning horizon. The expected profit is just the the sum of the discounted cash-flows. The discounted value is the aggregation of all discounted cash-flows.

We distinguish two types of of cash-flows. The outgoing cash-flows are the
costs for the construction and the operation and maintenance of the network installations. The calculation of the cost is straight-forward (see Section 7.3). All other sources of outgoing cash-flows, such as cost for the administration and the backbone network, are neglected.

Modelling the incoming cash-flows is more challenging. We consider charges for telecommunication services as only source of income. The income that a network operator can generate depends on the quality of the network it offers. From a costumers point of view, lacks of network coverage and lacks of capacity are two reasons for dissatisfaction with the network quality. An operator with poor quality in any of the two dimensions will loose clients and income. We therefore introduced the load dependent service areas and assume that service is provided only to costumers within the service areas of activated cells. Clients using volume based contracts will use the service and get charges for the traffic caused. Clients with a flat rate will likely choose an operator that can provide service in the locations the clients use to populate. We assume that income is generated in the service areas. The hight of the incoming cash-flow in a pixel depends on the population in the pixel and the network traffic generated per habitant. We present the exact calculation used for the computational experiments in Section 7.3.

A coverage model is set up. A variable per cell and time point describes if the cell is active at that time. In this case, the pixels within the service area of the cell generate revenues. Pixels that are in the service area of more than one cell generate the revenues only once. Binary variables indicate if a pixel is in the service area of an actived cell.

6.2. Notation

Before we can formulate the model, some notation has to be introduced. The notation used in the optimization model is summarized in Table 6.1. In Section 5.2 we introduced the traffic volume per capita as measure for the demand. We consider a scenario tree describing the evolution of the uncertain traffic volume.

Cells and Cell Areas. The planning area is discretized into three-dimensional pixel such that \mathcal{A} in the following represents the set of pixel and $x \in \mathcal{A}$ refers to a pixel. We assume a set \mathcal{C} of canditate locations for cells.

The service area $\mathcal{A}_{n i}^{(s)}$ in node n is a subset of the planning area. We assume that a cell $i \in \mathcal{C}$ can satisfy the demand for telecommunication services only within the service area. The shape of the service area is determined by the load control mechanism introduced in Section 5.1.4 und thus dependent of the uncertain traffic evolution. The set of potentially servicing cells $\mathcal{C}_{n x}^{(s)}$ of a pixel x in a node n is given by

$$
\mathcal{C}_{n x}^{(s)}=\left\{i \in \mathcal{C} \mid x \in \mathcal{A}_{n i}^{(s)}\right\}
$$

6. Optimizing Network Evolution

The coverage area is the area where the signal has sufficient strength and that permits the service to all pixel under a medium traffic assumption. The coverage area is used to formulate the constraint on the required coverage. Under load control, service can be offered to all users in the service area. The coverage area of cell i in node n is denoted by $\mathcal{A}_{n i}^{(c)}$ and the set of servers that cover a pixel is given by

$$
\mathcal{C}_{n x}^{(c)}=\left\{i \in \mathcal{C} \mid x \in \mathcal{A}_{n i}^{(c)}\right\}
$$

Cost. The main sources of costs occurs at the cells. Capital expenditures (CAPEx) are spent to install the cell. This includes the cost for buying the land, construction if the mast and other facilities, the acquisition and installation of the transmission equipment and all other expenditures related to the initial setup of the cell. Operational expenditures (OpEx) incur during the lifetime of the cell. OrEx include maintenace, electricity and all other expenditures related to operation of the cell. We denote CArEx and OrEx for cell i in node n by $c_{n i}^{(c a p)}$ and $c_{n i}^{(o p)}$, respectively. All costs are denoted by non-negative numbers. We assume that cells are installed at the beginning of a period. Construction delay is not considered. This means that the cells can provide service and OpEx have to be spent for the entire period . While CAPEx is assumed to occur at the beginning of a period, OrEx is charged at the end. This is reflected in the discount factors of the discounted costs. Cost have to be discounted by the risk-adjusted interest rate in this model. Throughout the chapter quantities discounted at the risk-adjusted interest rate are denoted by a hat. The discounted cost are defined by

$$
\begin{aligned}
\widehat{c}_{n i}^{(c a p)} & =\frac{c_{n i}^{(c a p)}}{(1+\widehat{r})^{t(n)-1}} \\
\widehat{c}_{n i}^{(o p)} & =\frac{c_{n i}^{(o p)}}{(1+\widehat{r})^{t(n)}}
\end{aligned}
$$

In fact, we assume deterministic costs. This means that CapEx and OpEx do not depend on the node in the tree, but on the stage. For ease of notation we index it by the node as above.

Revenues. The revenue $C_{n x}$ in pixel x and in node n is modeled as a function dependent of the uncertain traffic volume V_{n}, the population density $\rho(x)$, and the time $t(n)$:

$$
C_{n x}=g\left(V_{n}, \rho(x), t(n)\right)
$$

We assume that the revenue in each pixel is non-negative, hence $C_{n x} \geq 0$.
The revenues have to be discounted with a risk-adjusted interest rate \widehat{r}. The discounted revenue $\widehat{C}_{n x}$ of pixel x in node n is denoted by $\widehat{C}_{n x}$. Costumers are
typically charged after they received the services such that we assume that the revenues are generated at the end of each period and discounted accordingly

$$
\widehat{C}_{n x}=\frac{C_{n x}}{(1+\widehat{r})^{t(n)}} .
$$

6.3. Multistage Stochastic Program for the Expected Profit

The aim of the optimization procedure is to determine an optimal network evolution plan, i.e., a plan when to activate which cell. All technical and regulatory requirements described in Section 5.1 have to be fulfilled by a feasible solution and have to be included in the model. We formulate a multistage stochastic integer program that optimizes the expected net present value. The net present value is the sum of all future discounted cash-flows, i.e., the discounted revenues and the discounted expenditures.

6.3.1. Decision Variables

The model includes four types of decision variables.
The decision for the activation of the cells is represented by the binary activation variable $y_{n i}$. The model sets $y_{n i}=1$ if cell i is already built and active in node n and $y_{n i}=0$ otherwise. We only consider cell construction, removing already constructed cells is not allowed. The difference $y_{n i}-y_{p(n) i}$ is thus non-negative and is one if and only if the cell is built in node n and 0 otherwise.

According to the coverage requirement introduced in Section 5.1.7, the provider can start the operation of the network if sufficient coverage is provided. We assume that cells can be built in all periods, but the network can start operation and provide service only if the coverage requirement is fulfilled. Binary variables c_{n} indicate whether enough coverage is provided in node n. The coverage requierement is formulated on the bases of the coverage areas of the cells. Binary coverage variables $x_{n x}^{(c)}$ are set to 1 if and only if the pixel x is within the coverage area of an active cell in node n. This definition allows a close form expression for the coverage variable

$$
\begin{equation*}
x_{n x}^{(c)}=\min \left(1, \sum_{i \in \mathcal{C}_{n x}^{(c)}} y_{n i}\right) \tag{6.1}
\end{equation*}
$$

Binary service variables $x_{n x}^{(s)}$ indicate if a pixel is serviced by the network. Service is provided in pixels that are within the service area of an active cell and only if sufficient coverage is provided. The value of the service variable is thus given by

$$
\begin{equation*}
x_{n x}^{(s)}=\min \left(c_{n}, \sum_{i \in \mathcal{C}_{n x}^{(s)}} y_{n i}\right) \tag{6.2}
\end{equation*}
$$

6. Optimizing Network Evolution

Name	Domain	Interpretation
Sets		
\mathcal{A}	$\subseteq \mathbb{R}^{3}$	Planning area, usually divided into three-dimensional pixel
\mathcal{C}		Canditate set of cells
$\mathcal{A}_{n i}^{(s)}$	$\subseteq \mathcal{A}$	Service area of cell i in node n
$\mathcal{A}_{n i}^{(c)}$	$\subseteq \mathcal{A}$	Coverage area of cell i in node n
$\mathcal{C}_{n x}^{(s)}$	$\subseteq \mathcal{C}$	Cells that can provide service to pixel x in node n
$\mathcal{C}_{n x}^{(c)}$	$\subseteq \mathcal{C}$	Cells that can cover pixel x in node n
Scenario Tree		
\mathcal{N}		Nodes in scenario tree
\mathcal{S}		Set of scenarios, i. e., the leaves of the scenario tree
$\mathcal{P}(n)$	$\subseteq \mathcal{N}$	The path from node n to the root
$p(n)$	$\in \mathcal{N}$	The unique father of node n in the scenario tree
$p^{k}(n)$	$\in \mathcal{N}$	The k th ancestor of node n in the scenario tree
$\mathbb{P}(n)$	$\in(0,1]$	Probability of node n

Coefficients and Parameters

\widehat{r}	$\in \mathbb{R}_{\geq 0}$	Risk adjusted interest rate
K_{n}	$\in \mathbb{N}$	construction limit per timeperiod
α_{n}	$\in[0,1]$	Coverage requirement parameter
$w_{n x}$	$\in \mathbb{R}_{\geq 0}$	Weights on pixel
$C_{n x}$	$\in \mathbb{R}_{\geq 0}$	Revenue generated by pixel x at node n
$\widehat{C}_{n x}$	$\in \mathbb{R}_{\geq 0}$	Discounted revenue generated by pixel x at node n
$c_{n i}^{(c a p)}$	$\in \mathbb{R}_{\geq 0}$	Capital expenses for cell i at node n
$\widehat{c}_{n i}$ cap $)$	$\in \mathbb{R}_{\geq 0}$	Discounted capital expenses for cell i at node n
$c_{n i}^{(o p)}$	$\in \mathbb{R}_{\geq 0}$	Operational expenses for cell i at node n
$\widehat{c}_{n i}^{(o p)}$	$\in \mathbb{R}_{\geq 0}$	Discounted operational expenses for cell i at node n

Decision Variables

$y_{n i}$	$\in\{0,1\}$	Cell i is active at node n
$x_{n x}^{(s)}$	$\in\{0,1\}$	Pixel x has service by any active cell at node n
$x_{n x}^{(c)}$	$\in\{0,1\}$	Pixel x is covered by any active cell at node n
c_{n}	$\in\{0,1\}$	Coverage requirement is met at node n

Table 6.1.: Variables and coefficients in optimization models

The coverage requirement is reflected by the complementarity of the following equations:

$$
\begin{align*}
& \sum_{x \in \mathcal{A}} w_{n x} x_{n x}^{(c)} \geq \alpha_{n} \sum_{x \in \mathcal{A}} w_{n x} \tag{6.3}\\
& x_{n x}^{(s)}=0 \quad \text { for all } x \in \mathcal{A} \tag{6.4}
\end{align*}
$$

Ineq. (6.3) is the discrete version of the coverage condition (5.28). The left side determines the weight of the covered area in node n. The covered area has to be greater than α_{n} times the total weight for the coverage requirement to be fulfilled. Complementarity means that either of the two conditions has to hold true. The complementarity has to be ensured independently in all nodes of the scenario tree.

6.3.2. The Model

We now formulate a deterministic equivalent model for the multistage stochastic optimization problem. A summary of the decision variables and parameters in the model can be found in Table 6.1.

$$
\begin{array}{ll}
\max & \sum_{n \in \mathcal{N}} \mathbb{P}(n)\left[\sum_{x \in \mathcal{A}} \widehat{C}_{n x} x_{n x}^{(s)}-\sum_{i \in \mathcal{C}}\left(\widehat{c}_{n i}^{(c a p)}\left(y_{n i}-y_{p(n) i}\right)+\widehat{c}_{n i}^{(o p)} y_{n i}\right)\right] \\
\text { s.t. } \sum_{i \in \mathcal{C}_{n x}^{(s)}} y_{n i} \geq x_{n x}^{(s)} & \text { for all } n \in \mathcal{N}, x \in \mathcal{A} \\
\sum_{i \in \mathcal{C}_{n x}^{(c)}} y_{n i} \geq x_{n x}^{(c)} & \text { for all } n \in \mathcal{N}, x \in \mathcal{A} \\
y_{n i} \geq y_{p(n) i} & \text { for all } n \in \mathcal{N}, i \in \mathcal{C} \\
\sum_{i \in \mathcal{C}}\left(y_{n i}-y_{p(n) i}\right) \leq K_{n} & \text { for all } n \in \mathcal{N} \\
& \sum_{x \in \mathcal{A}} w_{n x} x_{n x}^{(c)} \geq\left(\alpha_{n} \sum_{x \in \mathcal{A}} w_{n x}\right) c_{n} \\
\sum_{x \in \mathcal{A}} x_{n x}^{(s)} \leq|\mathcal{A}| c_{n} & \text { for all } n \in \mathcal{N} \\
y \in\{0,1\}^{\mathcal{N} \times \mathcal{C}}, x^{(s)} \in\{0,1\}^{\mathcal{N} \times \mathcal{A}}, x^{(c)} \in\{0,1\}^{\mathcal{N} \times \mathcal{A}}, c \in\{0,1\}^{\mathcal{N}} \tag{6.5g}
\end{array}
$$

The objective is to maximize the expected net present value. The expectation operator is easily evaluated for discrete probability distributions. In this case we sum the discounted cash-flows of all nodes and weight them by there probability. Within the brackets the total discounted cash-flow in node n is computed. The first sum within the brackets computes the revenues while the second computes the CapEx and the OpEx in the node.

Constraint (6.5a) ensures the correct setting of the service variables. The variables $x_{n x}^{(s)}$ can only be set to 1 , if at least one of the potential services is active,

6. Optimizing Network Evolution

i. e., $\sum_{i \in \mathcal{C}_{n x}^{(s)}} y_{n i} \geq 1$. The following constraint (6.5b) does the same for the coverage variable $x_{n x}^{(c)}$.

Deactivation of cells is not allowed. This is reflected by monotonicity of the activation variables $y_{n i}$ and is ensured by constraint (6.5c). For the father of the root node r of the scenario tree, artificial variables $y_{p(r) i}=0$ are included. Constraint (6.5 d) ensures that the construction limit is not violated. The difference $y_{n i}-y_{p(n) i}$ is 1 if the cell is build in node n. The sum, thus, counts the number of cells built in node n which is limited by the construction limit K_{n}.

The constraints (6.5e) and (6.5f) ensure the complementarity of condition (6.3) and (6.4). If enough coverage is provided, $c_{n}=1$ and (6.3) holds true. Constraint (6.5f) is void in this case. If in return $c_{n}=0$, constraint (6.5e) is always fulfilled and constraint (6.5f) forces all $x_{n x}^{(s)}$ to 0 .

The domains of the decision variables are specified in (6.5g).

6.3.3. Assignment of Service- and Coverage Variables

With Eq. (6.1) and Eq. (6.2) we provided explicit formulas for the coverage and service variables. However, the values of the variables set by the model might not fulfill the equations, even in optimal solutions.

The coverage variables are driven to one by the coverage condition (6.5e). The model, however, only ensures that Ineq. (6.5e) is met with equality. Setting the coverage variable like in Eq. (6.1) is always feasible and optimal.
Lemma 6.1: Let $\left(x^{(s)}, x^{(c)}, y, c\right)$ be a feasible (possibly suboptimal) solution of (DEMExp). Let $\bar{x}^{(c)}$ be defined by Eq. (6.1). Then $\left(x^{(s)}, \bar{x}^{(c)}, y, c\right)$ is feasible with the same objective function value.

Proof. Consider a coverage variable $x_{n x}^{(c)}$. The variable appears in exactly two constraints:

$$
\begin{align*}
\sum_{i \in \mathcal{C}_{n x}^{(c)}} y_{n i} & \geq x_{n x}^{(c)} \tag{6.5b}\\
\sum_{x \in \mathcal{A}} w_{n x} x_{n x}^{(c)} & \geq\left(\alpha_{n} \sum_{x \in \mathcal{A}} w_{n x}\right) c_{n} \tag{6.5e}
\end{align*}
$$

If Eq. (6.1) is not fulfilled for the variable, then $\sum_{i \in \mathcal{C}_{n x}^{(c)}} y_{n i} \geq 1$, but $x_{n x}^{(c)}=0$. Replacing $x_{n x}^{(c)}$ by $\bar{x}_{n x}^{(c)}$ is feasible without changing any other variable. Furthermore, the coverage variables do not appear in the objective function which, thus, is not changed by the substitution. Repeating the argument for all coverage variables proofs the lemma.

Corollary 6.2: Let $\left(x^{(s)^{*}}, x^{(c)^{*}}, y^{*}, c^{*}\right)$ be an optimal solution of (DEMExp). Let $\bar{x}^{(c)}$ be defined by Eq. (6.1). Then $\left(x^{(s)^{*}}, \bar{x}^{(c)}, y^{*}, c^{*}\right)$ is also an optimal solution.

Similar conclusions can be drawn regarding the service variables. The objective function is the driver of the service variables. In a suboptimal solution and for service variables with $\widehat{C}_{n x}=0$, Eq. (6.2) might not hold.
Lemma 6.3: Let $\left(x^{(s)}, x^{(c)}, y, c\right)$ be a feasible solution of (DEMExp). Let $\bar{x}^{(s)}$ be defined by Eq. (6.1). Then $\left(\bar{x}^{(s)}, x^{(c)}, y, c\right)$ is feasible. If $\bar{x}_{n x}^{(s)} \neq x_{n x}^{(s)}$ for a node n and a pixel x with $\widehat{C}_{n x}>0$, then the solution is not optimal and $\left(\bar{x}^{(s)}, x^{(c)}, y, c\right)$ has a larger objective function value.
Proof. Consider a service variable $x_{n x}^{(s)}$. The variable occurs in exactly two constraints:

$$
\begin{align*}
\sum_{i \in \mathcal{C}_{n x}^{(s)}} y_{n i} & \geq x_{n x}^{(s)} \tag{6.5a}\\
\sum_{x \in \mathcal{A}} x_{n x}^{(s)} & \leq|\mathcal{A}| c_{n} \tag{6.5f}
\end{align*}
$$

Suppose Eq. (6.2) does not hold for $x_{n x}^{(s)}$. Then $\sum_{i \in \mathcal{C}_{n x}^{(s)}} y_{n i}=c_{n}=1$, but $x_{n x}^{(s)}=0$. This implies that setting $x_{n x}^{(s)}=1$ is feasible. If the revenue $\widehat{C}_{n x}$ is positive, this increases the objective function value.
Corollary 6.4: Let $\left(x^{(s)^{*}}, x^{(c)^{*}}, y^{*}, c^{*}\right)$ be an optimal solution of (DEMExp). Eq. (6.2) holds for all $x_{n x}^{(s)}$ with $\widehat{C}_{n x}>0$. Let $\bar{x}^{(s)}$ be defined by Eq. (6.2). Then $\left(\bar{x}^{(s)}, x^{(c)^{*}}, y^{*}, c^{*}\right)$ is also an optimal solution.

These results show that given an optimal solution of (DEMExp), a simple postprocessing step suffices to obtain an optimal solution where the coverage and service variables have the form (6.1) and (6.2), respectively.

The objective is maximization the expected profit over the lifetime of the network. Setting all variables to 0 is a feasible solution with objective function value 0 which corresponds to the strategy not to build a network. The model would thus never deliver a solution with expected loss. This does not mean the NPV has to be non-negative in all scenarios. As long as the expectation is non-negative, losses can occur in single scenarios.

The expectation for profits is the driver for network evolution. This is also reflected in the model. The service variables $x_{n x}^{(s)}$ are the only variables with positive objective function value. Setting the service variables to one is thus the only way to generate profit. Constraint (6.5a) says that one server has to be activated for a pixel to be serviced. The constraint, thus, connects the profit with the availability and construction of cells.

6. Optimizing Network Evolution

6.4. Multistage Stochastic Program for Average Value-at-Risk

In Section 6.3, the aim was to obtain a network evolution plan which maximizes the expected profit. In this section, the model is extended to the optimization of a more risk-adverse risk measure. Therefore, a value process is defined and the multi-period AV@R presented in Section 4.4.3 is applied.

The discounted value process is used to apply the AV@R in each period. The (discounted) value process v_{n} for node n is defined by

$$
\begin{equation*}
v_{n}=v_{p(n)}+\sum_{x \in \mathcal{A}} \widehat{C}_{n x} x_{n x}^{(s)}-\sum_{i \in \mathcal{C}}\left(\widehat{c}_{n i}^{(c a p)}\left(y_{n i}-y_{p(n) i}\right)+\widehat{c}_{n i}^{(o p)} y_{n i}\right) \tag{6.6}
\end{equation*}
$$

The value composes of the value at the parent node and the discounted additional value in node n. Now, we state the deterministic equivalent optimization model with the multi-period Average Value-at-Risk as objective function. All constraints are from the expectation based model (DEMExp) are present.

$$
\begin{array}{lr}
\max \sum_{t=2}^{T} \gamma_{t}\left(y_{t}^{0}+\frac{1}{\alpha_{t}} \sum_{n \in \mathcal{N}(t)} \mathbb{P}(n) y_{n}^{-}\right) & \text {(DEM } \\
\text { s.t. } v_{n}=v_{p(n)}+\sum_{x \in \mathcal{A}} \widehat{C}_{n x} x_{n x}^{(s)}-\sum_{i \in \mathcal{C}}\left(\widehat{c}_{n i}^{(c a p)}\left(y_{n i}-y_{p(n) i}\right)+\widehat{c}_{n i}^{(o p)} y_{n i}\right) \\
y_{t(n)}^{0}+v_{n}=y_{n}^{+}+y_{n}^{-} & \text {for all } n \in \mathcal{N} \\
\sum_{i \in \mathcal{C}_{n x}^{(s)}} y_{n i} \geq x_{n x}^{(s)} & \text { for all } n \in \mathcal{N} \\
\sum_{i \in \mathcal{C}_{n x}^{(c)}} y_{n i} \geq x_{n x}^{(c)} & \text { for all } n \in \mathcal{N}, x \in \mathcal{A} \\
y_{n i} \geq y_{p(n) i} & \text { for all } n \in \mathcal{N}, x \in \mathcal{A} \\
\sum_{i \in \mathcal{C}}\left(y_{n i}-y_{p(n) i}\right) \leq K_{n} & \text { for all } n \in \mathcal{N}, i \in \mathcal{C} \\
\sum_{x \in \mathcal{A}} w_{n x} x_{n x}^{(c)} \geq\left(\alpha_{n} \sum_{x \in \mathcal{A}} w_{n x}\right) c_{n} & \text { for all } n \in \mathcal{N} \\
\sum_{x \in \mathcal{A}} x_{n x}^{(s)} \leq|\mathcal{A}| c_{n} & \text { for all } n \in \mathcal{N} \\
y \in\{0,1\}^{\mathcal{N} \times \mathcal{C}}, x^{(s)} \in\{0,1\}^{\mathcal{N} \times \mathcal{A}}, x^{(c)} \in\{0,1\}^{\mathcal{N} \times \mathcal{A}}, c \in\{0,1\}^{\mathcal{N}} \\
v \in \mathbb{R}^{\mathcal{N}}, y^{0} \in \mathbb{R}^{\mathcal{T}}, y^{+} \in \mathbb{R}_{\geq 0}^{\mathcal{N}}, y^{-} \in \mathbb{R}_{\geq 0}^{\mathcal{N}} &
\end{array}
$$

The objective function is the weighted average of the single period AV@Rs. Constraint (6.7a) sets the value variable v_{n} and constaint (6.7b) sets the auxilary vari-
ables for the AV@R calculation. The domains of the auxilary variables are given in (6.7c).

The results from Section 6.3 .3 can be easily adjusted to this model, but not presented here.

6.5. Problem Specific Presolving

In the following, we present several presolving routines to reduce the problem size in terms of variables and constraints.

6.5.1. Fixing Service and Coverage Variables Without Impact

Variables and constraints that do not have an impact in the model can be eliminated in a presolving step. Service variables for pixel that do not generate cashflow have no impact on the objective function. Fixing these variables to 0 in an optimal solution is always feasible and and the resulting solution is also optimal. This fixing should hence be done in a presolving step and the variables should not be included into the model. In this case, the corresponding service constraints (6.5a) are redundant and also deleted. The same applies to coverage variables with weight 0 . In the following, we therefore assume $\widehat{C}_{n x}>0$ and $w_{n x}>0$.

6.5.2. Implicit Integer Variables

In the model (DEMExp), all variables are explicitly declared binary. The integrality condition, however, can be relaxed for many variables since integrality is ensured by the structure of the problem in all optimal solutions. Variables with this property are referred to as implicit integer variables. A binary variable $x \in\{0,1\}$ can thus be replaced by a continuous variable $x \in[0,1]$. Implicit integer variables do not need to be considered for branching. They will take integral values in the LP-optimum, if all integer variables take integral values.

Branching on these variables can still be beneficial for the solution process. Therefore, most solvers identify implicit integer variables during preprocessing. To some solvers, like SCIP, the information that a variables is implicit integer can be passed directly and possibly speed up the solution process. In the following, we investigate the effect of relaxing the integrality condition of service and coverage variables.
Lemma 6.5: Let $\left(x^{(s)^{*}}, x^{(c)^{*}}, y^{*}, c^{*}\right)$ be an optimal solution of program (DEMExp) where the integrality conditions for all service variables and all coverage variables are relaxed. Let π be the objective function value. Then the following holds:
i) All service variables $x_{n x}^{(s)^{*}}$ have integral values.

6. Optimizing Network Evolution

ii) Coverage variables can take values between 0 and $\min \left(1, \sum_{i \in \mathcal{C}_{n x}^{(c)}} y_{n i}{ }^{*}\right)$. Rounding up or setting according to Eq. (6.1) yields an optimal solution to (DEMExp).

Proof. Consider an optimal solution $\left(x^{(s)^{*}}, x^{(c)^{*}}, y^{*}, c^{*}\right)$. A service variable $x_{n x}^{(s)^{*}}$ occurs in exactly two constraints:

$$
\begin{gather*}
\sum_{i \in \mathcal{C}_{n x}^{(s)}} y_{n i} \geq x_{n x}^{(s)^{*}} \tag{6.5a}\\
\sum_{x \in \mathcal{A}} x_{n x}^{(s)} \leq|\mathcal{A}| c_{n} \tag{6.5f}
\end{gather*}
$$

The positive objective function value pushes the variable to the upper bound provided by these constraints:

$$
x_{n x}^{(s)^{*}}=\min \left(c_{n}{ }^{*}, \sum_{i \in \mathcal{C}_{n x}^{(s)}} y_{n i}{ }^{*}\right)
$$

Since $c_{n}{ }^{*}$ and $y_{n i}{ }^{*}$ are integral, $x_{n x}^{(s)}{ }^{*}$ is integral.
Consider a node n. If the coverage indicator variable $c_{n}{ }^{*}$ is 0 , all coverage variables are forced to 0 and take the value specified in Eq. (6.1).

If $c_{n}{ }^{*}=1$, sufficiently many coverage variables take positive values as to fulfill the coverage requirement Eq. (6.5e). The coverage variables are only restricted by constraint

$$
\begin{equation*}
\sum_{i \in \mathcal{C}_{n x}^{(c)}} y_{n i}{ }^{*} \geq x_{n x}^{(c)}{ }^{(c} \tag{6.5b}
\end{equation*}
$$

Since the right side is integral, rounding up is always feasible as is setting according to Eq. (6.1). This does not change the objective function value and, hence, the resulting solution is optimal.

The lemma states that omitting the integrality condition of the service and the coverage variables does not change the structure of the solution. The obtained network evolution plan is still optimal and an integer feasible solution can be computed by rounding. Service variables corresponding to pixel which generate no revenues ($\widehat{C}_{n x}=0$) can be fixed to 0 . The variables and the corresponding constraints are, therefore, not included in the model.

6.5.3. Pixel Aggregation

The planning area is usually divided into rectangular pixels by a grid. A high resolution in the pixel grid results in a large number of pixels. For every pixel the model needs to determine if it has coverage and service. The model thus comprises one variable and one constraint for each of this decisions. The number of pixels
$|\mathcal{A}|$ clearly dominates the number of candidate cells $|\mathcal{C}|$ and the number of nodes in the scenario tree $|\mathcal{N}|$ such that the size of the model is mainly determined by $|\mathcal{A}|$. Significant reductions in the problem size are possible if pixels with the same covering or servicing cell are merged. The service variables corresponding to two pixels with the same set of serving cells will have the same value in an optimal solution. The pixel can thus be merged and the corresponding variables can be aggregated in the model. The same holds for the coverage variables. This results in a different discretization of the planning area depending of whether service or coverage is considered. Since the service areas change over time, a different discretization is computed for each node.

To formalize the idea of pixel aggregation, let us first consider coverage. In Section 6.3.3, we show that the values of coverage variables in an optimal solution can be set according to Eq. (6.1):

$$
x_{n x}^{(c)}=\min \left(1, \sum_{i \in \mathcal{C}_{n x}^{(c)}} y_{n i}\right)
$$

This implies that variables with the same covering cells have the same values:

$$
\begin{equation*}
\mathcal{C}_{n x}^{(c)}=\mathcal{C}_{n y}^{(c)} \quad \Longrightarrow \quad x_{n x}^{(c)}=x_{n y}^{(c)} . \tag{6.8}
\end{equation*}
$$

This allows the aggregation of all pixels with the same set of covering cells. Let $\mathcal{G}_{n}^{(c)} \subseteq 2^{\mathcal{C}}$ denote the set consisting of the sets of potential covering cells in node n :

$$
\mathcal{G}_{n}^{(c)}=\left\{\mathcal{C}_{n x}^{(c)} \mid x \in \mathcal{A}\right\} .
$$

For a set of cells $G \in \mathcal{G}_{n}^{(c)}$, let $\mathcal{A}_{n G}^{(c)}$ denote the set of pixels, which can be covered by all cells in G and by not other cell:

$$
\mathcal{A}_{n G}^{(c)}=\left\{x \in \mathcal{A} \mid \mathcal{C}_{n x}^{(c)}=G\right\}
$$

According to (6.8), the values of the coverage variables coincide of all pixel in $\mathcal{A}_{n G}^{(c)}$:

$$
x_{n x}^{(c)}=x_{n y}^{(c)} \quad \text { for all } x, y \in \mathcal{A}_{n G}^{(c)}
$$

Therefore, coverage variables can be indexed by the set of potential covering cell rather then by pixel:

$$
x_{n x}^{(c)} \longrightarrow x_{n G}^{(c)}
$$

This yields the following modifications in the constraints (6.5b) and (6.5e):

$$
\begin{align*}
\sum_{i \in G} y_{n i} & \geq x_{n G}^{(c)} & & \text { for all } n \in \mathcal{N}, G \in \mathcal{G}_{n}^{(c)}, \tag{6.9}\\
\sum_{G \in \mathcal{G}_{n}^{(c)}} w_{n G} x_{n G}^{(c)} & \geq\left(\alpha_{n} \sum_{x \in \mathcal{A}} w_{n x}\right) c_{n} & & \text { for all } n \in \mathcal{N}, \tag{6.10}
\end{align*}
$$

6. Optimizing Network Evolution

where $w_{n G}$ is defined by

$$
w_{n G}=\sum_{x \in \mathcal{A}_{n G}^{(c)}} w_{n x}
$$

Typically, $\left|\mathcal{G}_{n}^{(c)}\right|$ is much smaller than $|\mathcal{A}|$. Hence the size of the model is decreased significantly.

The same procedure can be applied to the service variables. Their value in an optimal solution is given by Eq. (6.2):

$$
x_{n x}^{(s)}=\min \left(c_{n}, \sum_{i \in \mathcal{C}_{n x}^{(s)}} y_{n i}\right)
$$

Corresponding to (6.8), this implies

$$
\begin{equation*}
\mathcal{C}_{n x}^{(s)}=\mathcal{C}_{n y}^{(s)} \quad \Longrightarrow \quad x_{n x}^{(s)}=x_{n y}^{(s)} \tag{6.11}
\end{equation*}
$$

Constructing $\mathcal{G}_{n}^{(s)}$ and $\mathcal{A}_{n G}^{(s)}$ similar to $\mathcal{G}_{n}^{(c)}$ and $\mathcal{A}_{n G}^{(c)}$, we can also re-index the service variables:

$$
x_{n x}^{(s)} \quad \longrightarrow \quad x_{n G}^{(s)}
$$

This has effects on the objective function and the constraints (6.5a) and (6.5f). They get changed as follows:

$$
\begin{array}{ll}
\max & \sum_{n \in \mathcal{N}} \mathbb{P}(n)\left[\sum_{G \in \mathcal{G}_{n}^{(s)}} \widehat{C}_{n G} x_{n G}^{(s)}-\sum_{i \in \mathcal{C}}\left(\widehat { c } _ { n i } ^ { (c a p) } \left(y_{n i}-\right.\right.\right. \\
\left.\left.\left.y_{p(n) i}\right)+\widehat{c}_{n i}^{(o p)} y_{n i}\right)\right] \\
\sum_{i \in \mathcal{C}_{n x}^{(s)}} y_{n i} \geq x_{n G}^{(s)} & \text { for all } n \in \mathcal{N}, G \in \mathcal{G}_{n}^{(s)} \tag{6.14}\\
\sum_{G \in \mathcal{G}_{n}^{(s)}} x_{n G}^{(s)} \leq\left|\mathcal{G}_{n}^{(s)}\right| c_{n} & \text { for all } n \in \mathcal{N}
\end{array}
$$

Again, this transformation typically yields a large reduction of the number of variables and constraints.

The aggregated coverage and service variables behave exactly like the disaggregated ones such that aggregated versions of Eq. (6.1) and (6.2) are valid. Therefore, the aggregated service variables are also implicit integer and the results from Section 6.3.3 and Section 6.5.2 are valid for aggregated model.

6.5.4. Reusing Service Variables as Coverage Variables

The equations (6.1) and (6.2) reveal that the values of coverage and service variables are mainly determined by the cell activation variables of the cells that can
provide coverage or service, respectively. Suppose a node n and two pixel x and y, where the cell of possible servers of x is equal to the set of possibly covering cell of y :

$$
\mathcal{C}_{n x}^{(s)}=\mathcal{C}_{n y}^{(c)}
$$

Equations (6.1) and (6.2) say that the values of the corresponding variables $x_{n x}^{(s)}$ and $x_{n y}^{(c)}$ coincide if the coverage requirement is fulfilled, i.e., $c_{n}=1$. If the coverage requirement is not fulfilled, the service variables are forced to 0 . In this case, setting the coverage variables to 0 is always feasible. Therefore, there is an optimal solution that features the following implication:

$$
\begin{equation*}
\mathcal{C}_{n x}^{(s)}=\mathcal{C}_{n y}^{(c)} \quad \longrightarrow \quad x_{n x}^{(s)}=x_{n y}^{(c)} \tag{6.15}
\end{equation*}
$$

This becomes even clearer if we consider the aggregated form for the service and coverage variables. For each group G of cells, for an optimal solution we can assume:

$$
x_{n G}^{(s)}=x_{n G}^{(c)}
$$

The values of coverage variables are less restricted than those of service variables. If the coverage requirement not is fulfilled, coverage variables can take arbitrary values while service variables are forced to 0 . An identification of coverage and service variables is thus only beneficial for a set G of cells for which both, the coverage and the service variable are included in the model. In this case, the coverage variable is substituted by the corresponding service variable in constraint (6.10) and the corresponding constraints (6.9) are eliminated. By this transformation $\sum_{n \in \mathcal{N}}\left|\mathcal{G}_{n}^{(s)} \cap \mathcal{G}_{n}^{(c)}\right|$ constraints and variables can be eliminated from the model.

6.5.5. Presolving the Coverage Requirement

Before a network can start operation, an appropriate level of coverage has to be provided. The decision variable c_{n} determines if the coverage requirement is fulfilled in scenario node n. If $c_{n}=0$, then the service and coverage variables corresponding to that node have to be set to 0 as well.

A large number of cells might be necessary to provide enough coverage. The aim of this presolving procedure is to determine nodes, whose coverage requirement cannot be fulfilled. In this case, we can fix $c_{n}=0$ and consequently the corresponding coverage and service variables. Hence, these variables and the corresponding constraints can be eliminated from the model.

The effect is twofold. First, the problem size is reduced. Second, the LP-relaxation is strengthened. In the LP-relaxation, c_{n} may take fractional values and, hence, allows positive values for some service variables. The fixing to 0 , therefore, potentially decreases the objective of the LP-relaxation and provides a stronger bound.

6. Optimizing Network Evolution

Consider a node $n \in \mathcal{N}$. The coverage provided in n depends on the cells that are active. The decision whether sufficient coverage can be provided in a node only depends on the construction activities on the path from the node to the root and is deterministic. Since the order of the construction of cells is not important, we look for a set of cells that provides maximal coverage. We have to take the total construction limit until node n into account. Service decisions can be ignored. Coverage variables are just needed for the considered node. The following model, thus, computes the maximal achievable coverage in node $n \in \mathcal{N}$:

$$
\begin{align*}
& \max \sum_{x \in \mathcal{A}} w_{n x} x_{n x}^{(c)} \\
& \text { s.t. } \sum_{i \in \mathcal{C}_{n x}^{(c)}} y_{n i} \geq x_{n x}^{(c)} \tag{6.16a}\\
& \quad \sum_{i \in \mathcal{C}} y_{n i} \leq \sum_{\bar{n} \in \mathcal{P}(n)} K_{\bar{n}} \tag{6.16b}\\
& \quad y \in\{0,1\}^{\mathcal{C}}, x^{(c)} \in\{0,1\}^{\mathcal{A}} \tag{6.16c}
\end{align*}
$$

The objective function is exactly the right-hand side of the coverage constraint (6.5e). Constraint (6.16a) ensures that coverage variables corresponding uncovered pixels are set to 0 . Constraint (6.16b) ensures that the total construction limit is not violated.

If the objective function value of (MaxCov) is smaller than $\alpha_{n} \sum_{x \in \mathcal{A}} w_{n x}$, the coverage requirement cannot be fulfilled in node n. In a presolving routine, model (MaxCov) should be run for every node in the scenario tree.

In model (MaxCov), pixel aggregation is also possible and further reduces the problem size. In all optimization settings studied in Chapter 7, these models are solved to optimality within a few seconds.

6.5.6. Mandatory Coverage Requirement

Sometimes the coverage requirement is mandatory, i. e., forced by the regulation authorities. The choice of not fulfilling the coverage requirement and not operating the network is not given.

The coverage requirement variables in Model (DEMExp) are fixed to 1 in those nodes for which the coverage requirement is demanded. This fixing can make the problem infeasible if the required coverage can not be provided. In this case model (MaxCov) can be used to determine the the nodes where the coverage requirement can be fulfilled.

The coverage requirement is monotone in the sense that if it is fulfilled in a node, it will also fulfilled in all nodes in the underlying subtree. The constraints (6.5e) and (6.5f) are thus only needed for the first node on each path from the root to a leaf where the requirement has to be fulfilled. The respective constraints
corresponding to nodes in the later stages are redundant and can thus be deleted from the model. The corresponding coverage variables do not appear anymore and can also be deleted from the model.
6. Optimizing Network Evolution

7. Computational Experiments

In this chapter, we report about computational experiments. Two realistic planning scenarios, presented in Section 7.1, are used to study our approach. The planning procedure is conducted for two time horizons with period lengths of 3 and 12 months, respectively. Two different scenario trees for the annual planning are compared. The scenario trees are presented in Section 7.2. Before coming to the results, the remaining parameters are specified in Section 7.3. Reducing the problem size of the deterministic equivalent problems by presolving routines is essential to make the problem computationally tractable. The problem size in terms of variables and constraints can be reduced by a factor 200, yielding mixedinteger programs with about 620000 variables and constraints (from 127 mill. variables and constraints without presolving). The results are presented in detail in Section 7.4.

Most instances are solved within 10 hours up to a 0.5% optimality gap by the Cplex MIP solver. Four variations of the models presented in Chapter 6 with different optimization goals are used :

- Maximization of the expected profit
- Minimization of the Average Value-at-Risk
- Relaxation of the non-anticipativity constraints and maximization of the profit for each scenario
- Maximization of the profit of the expected demand evolution and evaluation of the resulting network evolution plan in the different scenarios

Since we use a node formulation (cf. Section 4.3), the non-anticipativity constraints are not stated explicitly. A relaxation of the non-anticipativity constraints in the scenairo formulation causes a decompositions into independent subproblems for each scenario. This corresponds to solving the deterministic problem corresponding to each root-leaf path individually.

The results from all four approaches are compared and presented in Section 7.5. The construction of a UMTS network is profitable in all planning scenarios and parameter settings. The positive 40%-AV@R in two parameter setting, however, indicates that the risk of losses is present.

Comparing the different optimization goals, we observe that the difference in the objectives of the first three is rather small. The expected profit increases only by at most 2.2% if the non-anticipativity constraints are relaxed. In the Berlin

	Area	Pixel	Number	Pixel with	Population	Candidates	
	$\left[\mathrm{km}^{2}\right]$	Size $[\mathrm{m}]$	of Pixel	$\rho(x)>0$	Estimate	Sites	Cells
Berlin	56.25	50	22500	22211	750000	65	193
Hamburg	4682.34	50	1872936	296538	1800000	477	1476

Table 7.1.: Key properties of planning scenarios
scenario, the AV@R can be decreased by 4.4% compared to the solution of the maximization of the expected profit by relaxing the non-anticipativity constraints. Optimizing for AV@R almost reaches this bound. In the Hamburg scenario, the AV@R of the expected profit maximization solution is improved by at most 2.5% by maximizing for AV@R and by at most 2.5 \% by relaxing the non-anticipativity constraints. In Hambrug the absolute AV@R difference between the different approaches is, however, small compared to the expected profit.

In traditional planning, the expectation of uncertain parameters is often used to perform deterministic optimization. The resulting configuration evaluated in the different scenarios delivers an (often significantly) poorer expected profit and AV@R than our stochastic programming approach. In practice, however, the network evolution plan should be recalculated regularly and this approach should yield better results.

7.1. Planning Scenarios

We study our methods in two realistic planning scenarios. The first is a publicly available dataset of the inner city area of Berlin, which was developed in the Momentum project. The second is a realistic dataset of Hamburg, which is provided by a German network operator. Table 7.1 gives an overview over the scenario data.

Berlin. The Berlin scenario is published as part of the Momentum project [61] and can be downloaded from http://momentum.zib.de. The Momentum project provides three publicly available UMTS planning scenarios from which we use the Berlin scenario. The scenario contains realistic data, such as equipment data, average load grids, land use as well as land cover information, and a reference network design.

The planning area of this scenario covers the inner city of Berlin. The area comprises $56.25 \mathrm{~km}^{2}$ and is divided into 22500 square pixel of 50 m width and height. It reaches from Tiergarten in the West, the former airport Tempelhof in the South, Lichtenberg in the East to Prenzlauer Berg in the North. In total about 750000 persons live in this area. The land use in the planning area is visualized in Figure 5.1(a).

Figure 7.1.: The scenario trees for annual planning, colors visualize probabilities

As candidate sites we use the sites in the reference network. The antennas are mounted without mechanical but with a 6 degree electrical tilt. Since the numbers of sites and cells are relatively small, we plan on cell basis, i.e., we face a cell selection problem rather than a site selection problem.

Hamburg. The second scenario describes the city of Hamburg and the surrounding rural area with some smaller cities. The population distribution and the candidate site locations are provided by a German network provider. The remaining scenario parameters, such as noise ratios, information on the services and equipment are taken from the Momentum project. For reasons of confidentiality, this thesis does not contain visualizations of the scenario data.

The planning area is considerably larger than in the Berlin scenario; it comprises $4682.34 \mathrm{~km}^{2}$ divided into 1872936 pixel. The pixel also have a resolution of 50 m in both directions. Since the planning area contains large rural areas, the population is concentrated in the city of Hamburg and some smaller cities and villages. The total population of 1.8 million habitants is distributed among only 16 percent of the pixels. The number of pixel containing population is displayed in the fifth column of Table 7.1.

The scenario contains 1476 cells at 477 sites in a reference network. Due to the large number of cells, we plan on site basis, i. e., we decide which sites to build.

7.2. Scenario Trees

All scenario trees are generated with the methods described in Section 5.2.3. The logarithmic transformation proposed there is applied.

We conduct experiments for two time horizons. First, we perform an annual planning from 2004 to 2010. There, we compare two different scenario trees, which

7. Computational Experiments

Figure 7.2.: The scenario tree for quarterly planning, colors visualize probabilities
are illustrated in Figure 7.1. The trees have a similar structure until the year 2007 and then the tree with 34 nodes spreads more and covers a larger value range. The second time horizon ranges from 2008 to 2010 and we plan on a quarterly basis. Experiments are only conducted on one scenario tree with 53 nodes, which is depicted in Figure 7.2.

All trees result from a tree construction on the basis of 300 sampled paths. A drift parameter of $\mu=1.6$ and different volatilities σ are used; $\sigma=0.6$ for the annual planning and $\sigma=0.8$ for the quarterly planning.

7.3. Parameters

Several parameters need specification. Let \mathcal{N} be the set of nodes in the scenario tree and V_{n} the monthly traffic per capita in KiB in node $n \in \mathcal{N}$. With $T_{n}^{s^{*}}(x)$ we denote the user intensity function of the reference service that corresponds to the traffic in node n. With $t(n)$ we denote the year that node n represents. We start with the specification of costs and revenues. Table 7.2 summarizes the remaining parameters.

Costs

For the monetary valuation, knowledge of the costs for the construction and the maintenance of network components, such as base stations and cells, is needed. In a case-study supported by E-Plus Gerpott [34] estimated capital and operational expenses for UMTS sites. He distinguished whether the UMTS equipment is mounted on top of an existing GSM site or built from scratch. Costs are, of course, considerably higher in the latter case. In both scenarios, the candidates are taken from the reference network, hence we assume that GSM sites are installed in all candidate locations. Gerpott gives a total investment volume of $60900 €$ in this case. We assume this is the investment volume in the year 2008. Of course,
prices for equipment decrease over the years. We assume that in the year 2004 a CAPEx investment of $100000 €$ was necessary and inter- and extrapolate between these values linearly. The CAPEx $c_{n i}^{(c a p)}$ for site i in year t is thus given by

$$
\begin{equation*}
c_{n i}^{(c a p)}=60900+\frac{t(n)-2008}{2004-2008}(100000-60900) . \tag{7.1}
\end{equation*}
$$

This numbers, however, refer to the construction of a site. Since we plan on cell basis in the Berlin scenario, the costs for a cell is the costs for a site divided by the number of candidate cells at the respective site. We assume that the operational expenses are constant over time. Gerpott gives annual OpEx for a site of $8700 €$ such that

$$
\begin{equation*}
c_{n i}^{(o p)}=8700 \tag{7.2}
\end{equation*}
$$

Again this amount is divide among the cells for cell based planning. Note, that all expenses do not depend on the node. Operational expenses remain constant over time and capital expenses depend only on the year in which the expenses occur. The expenses are therefore deterministic in our model. However, the notation indicates that an extension of the model to stochastic expenses is possible.

Revenues

After costs, incoming cash-flow is the other component in monetary valuation. Revenues are only generated in the service areas of active cells (cf. Section 6.1) and depend on the traffic per capita as measure for the market development and on the population in the covered area.

Similar to the argument given in Section 5.1.6, we relate revenue and traffic volume by means of reference service equivalents (RSE), i.e., to the number of reference service users in the busy hour that would cause this traffic volume. The number of RSE per pixel is given by the user intensity function $T_{n}^{s^{*}}(x)$ of the reference service s^{*} in node n. The missing part is to determine the revenue per RSE. This is calculated from data on the overall traffic generation in Germany [16] and public data from the network operator Vodafone D2. The Vodafone Group, whose affiliated company Vodafone D2 is, publishes revenues for data services in Germany its annual reports [72]. We refer to 2008 as reference year t^{*}.

The first step is to determine the total number of RSE. We therefore recall the function $\operatorname{RSE}($.$) , which transforms a monthly traffic volume (in \mathrm{KiB}$) into reference service users equivalents. Let V^{*} denote the total traffic volume in KiB in the reference year. The number of reference users that corresponds to that traffic volume is $\operatorname{RSE}\left(\frac{V^{*}}{12}\right)$, where the division by 12 converts annual to monthly traffic.

Next, we determine the revenue per RSE. We derive the corresponding formula and substitute for the official Vodafone numbers. Let $C^{(\text {tot })}$ denote the total data revenue in the reference year of the reference operator (Vodafone). Assuming that all operators in the market have the same average revenue per user (ARPU), the

Table 7.2.: Parameter values used for optimization
total data revenue in Germany is obtained by dividing $C^{(\text {tot })}$ by the market share m^{*} of the reference operator. The annual revenue $C^{(\mathrm{RSE})}$ of one RSE is thus given by

$$
\begin{equation*}
C^{(\mathrm{RSE})}=\frac{C^{(\text {tot })}}{m^{*} \operatorname{RSE}\left(\frac{V^{*}}{12}\right)} \tag{7.3}
\end{equation*}
$$

The prices for mobile traffic have decreased significantly since the service started. Clients on flat rate contracts, for example, get used to more bandwidth and use the service more intensively for the same or even a decreasing fee. This causes a decrease in the revenue per traffic volume unit. Reference service equivalent as unit for traffic volume is constant over time. The revenue per RSE, however, decreases significantly. No public data about the development of the revenue per traffic unit (KiB or RSE) is available. We therefore assume the revenue per RSE decreases each year by a multiplicative factor λ during the time horizon under consideration. The scaled revenue $C^{(\mathrm{RSE})}(t)$ in year t per RSE is thus given by

$$
\begin{equation*}
C^{(\mathrm{RSE})}(t)=\lambda^{t^{*}-t} C^{(\mathrm{RSE})} . \tag{7.4}
\end{equation*}
$$

Note the consistent valuation for $t=t^{*}$. We can now specify the traffic dependent revenue per pixel as

$$
\begin{equation*}
C_{n x}=C^{(\mathrm{RSE})}(t(n)) T_{n}^{s^{*}}(x) \tag{7.5}
\end{equation*}
$$

The model can be easily be refined if appropriate data is at hand.

Comments on parameters

Table 7.2 summerizes the parameters used for the optimization procedure. A few comments are in place.

Currency. The currency for our valuation is Euro. Being a British company, the Vodafone Group reports in British Pound. The data revenue of 583 mill. $£$ is converted to Euros using the exchange rate 1.26 of the 1st of July 2008.

Unit Prefixes. The German Bundesnetzagentur publishes their numbers in GB, but since a clear distinction between the SI and IEC prefixes (cf., Section 1) is not yet established, we assume the figure to be in GiB .

Reference Service. We choose speech telephony as reference service. Typically, a data rate of $12000 \mathrm{bit} / \mathrm{s}$ is assumed for voice transmissions. The typical speech telephony usage is that each participant speaks half of the time on average. This is reflected by an activity factor of $\alpha_{s}=0.5$. The average data rate in one direction is thus $6000 \mathrm{bit} / \mathrm{s}$.

The traffic in the Berlin scenario is rather homogeneously distributed across the planning area. Since there are no peak areas, all cells have the same (low) traffic intensity such that the service areas do not shrink with the traffic present in the scenario trees considered. We therefore decided not to consider technology updates in the Berlin scenario and increase the traffic level by decreasing the data rate for the average service to $3000 \mathrm{bit} / \mathrm{s}$.

Cell Load Limit. We assume a cell load limit of 60%. This choise ensures a stable operation of the network and is common in the literature $[43,51]$.

Average Value-at-Risk. Even though a multi-stage problem is given, we optimize for the AV@R of the final discounted value, i.e., the sum of all discounted cashflows in a scenario. A confidence level of $\alpha=0.4$ is used.

	34 Nodes			27 Nodes	
	Cons	Vars		Cons	Vars
Without presolving	127375491	127375900		101151027	101151450
Only $\rho(x)>0$	20180427	20180836		16025535	16025958
Pixel aggregation	834905	835314		692543	692966
Variable reuse	619944	620353		501426	501849
Fix coverage requirement	430737	430295		357897	357448

Table 7.3.: Effect of presolving in the Hamburg scenario for two scenario trees

7.4. The Effect of Presolving

A reduction of the problem size in terms of variables and constraints does not always result in a reduction of the solution time of mixed-integer program. Removing redundant variables and constraints, however, usually leads to speed-ups of the solution process. In Section 6.5, several presolving ideas are presented. In this section, the effect on the problem size is studied.

The number of nodes $|\mathcal{N}|$ and the number of candidate cells $|\mathcal{C}|$ is small in relation to the number of pixels $|\mathcal{A}|$. The model contains $2|\mathcal{N}||\mathcal{A}|+(|\mathcal{N}|-1)|\mathcal{C}|+$ $3|\mathcal{N}|$ constraints and $2|\mathcal{A}||\mathcal{N}|+|\mathcal{C}||\mathcal{N}|+|\mathcal{N}|$ variables. The term $(|\mathcal{N}|-1)|\mathcal{C}|$ stems from the monotonicity constraints (6.5c) that ensure the sites cannot be deactivated. They are not needed for the root node. All constraints are inequalities. Several presolve routines to reduce the number of pixels and corresponding variables are proposed in Section 6.5. The resulting numbers of variables and constraints after the different presolve steps are displayed in Table 7.3. The first rows gives the problem size for the problem without any presolving.

Fixing Service and Coverage Variables Without Impact. Pixel with a population density of 0 do neither increase the covered population or do they generate profit, if serviced. The respective coverage and service variables can therefore be fixed to 0 and not included in the model. In the original model without pixel aggregation, the effect can be substantial. In the Berlin scenario, 289 out of 22500 pixel have a population density of 0 . In the Hamburg scenario, the effect is much stronger; 1576398 out of 1872936 pixel carry no population (cf. Table 7.1). The resulting problem size is given in the second row of Table 7.3. The reductions are significant.

Pixel Aggregation. Two pixel that can be serviced by the same set of servers are either both covered or uncovered. The pixel are not distinguishable by the model and can be aggregated. Since the shapes of the service areas depend on the traffic, the discretization of the planning area might be different in each node. The sizes of the models with aggregated pixels are given in the third row of Table 7.3.

Figure 7.3.: Number of aggregated pixels and percentage of unserviceable pixels with increasing traffic intensity in the Hamburg scenario

Technology Upgrades. The traffic increases with the time and causes a reduction of the service areas. As a consequence, fewer service areas overlap. The blue and the green line in Figure 7.3 represent the number of aggregated pixel against the traffic intensity in the Hamburg scenario with and without 5 technology upgrades, respectively. The number of aggregated pixel decreases much faster without upgrades. If upgrades are present, the number of aggregated pixel decreases steeply in the beginning and from about 25000 Kib per month and capita onwards, cells obtain technology upgrades and the reduction in aggregated pixels slows down considerably. At the same time, the part of the population that can not be serviced increases, as in Figure 7.3. At peak traffic over 90% of the population can not be serviced if no upgrades are allowed. Since upgrades counteract a reduction of the service areas, at most 13% of the population is unserviceable if 5 upgrades are allowed.

Reusing Service Variables For Coverage Observation. Coverage and service variables constitute the major part of the variables in the model. Similar to the aggregation, coverage pixel with the same servers as a service pixel can be replaced by the service pixel and deleted from the model. In our experiments, about half of

7. Computational Experiments

the coverage pixel can be replaced. This allows a reduction of the model of about 25%. The figures are displayed in the fourth row of Table 7.3.

Presolving the Coverage Requirement. By means of model (MaxCov), the maximum achievable coverage in a node can be determined. If the coverage requirement cannot be fulfilled, the service and coverage variables for the respective node can be fixed to 0 and eliminated from the model. In the planning scenario with annual time discretization, the coverage requirement can be fulfilled already in the root node and hence no savings are possible. In contrast, only 38% of the population can be covered in the root node of the quarterly discretization in the Hamburg scenario with a construction limit of 100. The coverage requirement cannot be fulfilled and the problem size can be reduced from 885457 variables and 885086 constraints to 867691 variables and 867319 constraints. This presolving step also strengthens the LP-relaxation. A decrease of 3.9% is observed in quarterly Hamburg scenario with a construction limit of 100 and optimization of expected profit.

Mandatory Coverage Requirement. If the coverage requirement is obligatory in some stage, the coverage requirement variables for the respective stages are fixed to one. If the coverage requirement is fulfilled once, it is fulfilled in all following stages. A monitoring is thus only needed in the first stage the coverage requirement is demanded. The respective constraints and coverage variables can be deleted from the model. The result is a further reduction of the number of variables and constraints as displayed in the fifth row of Table 7.3.

7.5. Computational Results

We conduct our computational experiments on quad-core PCs with 16 GiB main memory. The implementation is based on an existing JAvA environment at ZIB [33] for UMTS network visualization, anaylsis, and optimization from which primarily the data handling routines are used. A part of this thesis, the author implemented all presolving routines, data exports as well as analysis methods using Java, Jython, and Python. All MIPs are generated with ZIMPL [50] and solved using Cplex Version 12.2 [46] with a time limit of 10 hours and a relative gap limit of 0.5%.

In the Berlin scenario, all deterministic equivalent models are solved to a 0.5% gap within 4.5 hours. Most models can be solved to optimality within 10 hours running time. In the Hamburg scenario, all deterministic equivalent problems corresponding to the maximization of the expected profit are solved to a 0.5% gap within 10 hours except for one with a remaining gap of 0.58%. Surprisingly, the deterministic optimization problems of the individual scenarios do not solve equally well. Even though the solution of the entire tree was used as MIP start,

Figure 7.4.: Evolution of the number of installed sites (represented by the color of the nodes) in Hamburg in the scenario tree with 34 nodes and a construction limit of 100

Cplex hit the time limit or ran out of memory. In these cases, the gap ranged from $2-5 \% ; 34 \%$ in one scenario. The absolute differences, however, are all in the same order of magnitude, such that the big gaps are mainly due to scaling effects.

Generally, the deterministic equivalents corresponding to the model where the $A V @ R$ is to be minimized are more difficult to solve to the required gap. In the Hamburg scenario two instances ended with a 13% the gap after 10 hours. However, the absolute gaps in the AV@R are rather small compared to the expected profit (15000 euros absolute compared to an expectation of almost 13 mill. euros). The relaxation of the non-anticipativity constraints provides a lower bound on the AV@R. This bound gives a gap of less than 4%. Due to the small absolute value and the moderate relative gap, no additional effort is put into closing the gap.

Generally, large differences in the network evolution across the different scenarios are observed. Consider, for example, the Hamburg annually planning scenario optimized on the scenario tree with 34 nodes and a maximum construction limit of 100. The evolution of the number of installed sites is visualized in Figure 7.5(a). At the root node, 40 sites are built to ensure the coverage requirement (57% of the population are covered in the root). In the scenarios with poor traffic evolution, very few further sites are activated after that; less than 10 with a probability of 26%. In the scenarios with a high traffic increase, considerably more sites are activated; 327 or more are activated in 2010 with a probability of 22%. The connection of the monthly traffic volume and the number of constructed sites is also revealed in Figure 7.4, where the number of installed sites is visualized by the color of
7. Computational Experiments

	Opt. over scenario tree		Relaxation of non-anticipativity		EVPI
	Expectation	AV@R	Expectation	AV@R	
Berlin annually					
27 Nodes, 10 Cap	$9870175 €$	-3205609€	9944123 € (+0.7\%)	-3 $254751 €(-1.5 \%)$	$73949 €$
34 Nodes, 10 Cap	$9868577 €$	-2356112€	$10036282 €(+1.7 \%)$	-2460744€ (-4.4\%)	$167705 €$
Berlin annually with mandatory coverage in root					
27 Nodes, 10 Cap	$9871149 €$	-3204851€	$9957594 €(+0.9 \%)$	-3257863€ (-1.7\%)	86445 €
34 Nodes, 10 Cap	$9873531 €$	-2359760€	10040086 € (+1.7\%)	-2 $460765 €(-4.3 \%)$	$166555 €$
Hamburg annually					
27 Nodes, 100 Cap	$15286450 €$	-2917462€	15291819 € (+0.0\%)	-2930883€ (-0.5 \%)	5368 €
27 Nodes, 60 Cap	$15233750 €$	-2921662€	$15245549 €(+0.1$ \%)	-2931112€ (-0.3\%)	$11798 €$
34 Nodes, 100 Cap	$16659934 €$	-1601728€	$16895924 €(+1.4 \%)$	-1658141€ (-3.5\%)	$235991 €$
34 Nodes, 60 Cap	$16198435 €$	$-1607326 €$	16510183 € (+1.9 \%)	-1657085€ (-3.1 \%)	$311749 €$
Hamburg annually with mandatory coverage in root					
27 Nodes, 100 Cap	$12972933 €$	-431 $222 €$	$13024427 €(+0.4 \%)$	-446821€ (-3.6 \%)	$51494 €$
27 Nodes, 60 Cap	$12906688 €$	-428591€	$12969340 €(+0.5 \%)$	-445 501 € (-3.9 \%)	62652 €
34 Nodes, 100 Cap	$14410188 €$	$936882 €$	14595176 € (+1.3 \%)	910019 € (-2.9\%)	$184988 €$
34 Nodes, 60 Cap	$13969286 €$	$938999 €$	14279881 € (+2.2\%)	909088 € (-3.2\%)	$310595 €$
Hamburg quarterly with mandatory coverage in the second stage					
53 Nodes, 100 Cap	$18805586 €$	-7742900€	$18955382 €(+0.8 \%)$	-7883913€ (-1.8\%)	$149796 €$
53 Nodes, 60 Cap	$16416908 €$	-6641045€	$16468341 €(+0.3 \%)$	-6701818€ (-0.9\%)	$51433 €$

Table 7.4.: Comparison of optimization over the scenario tree and and over the individual scenarios, i.e., the relaxation of the non-anticipativity constraints
the nodes in the scenario tree. The complete data for this setting is displayed in Table A.12. There, we also see that negative cash-flows occur only in 3 nodes. The aggregated cash-flow is only negative in the scenario with the poorest traffic evolution (probability 7%). In this case, the initial investment of 4 mill. is never recovered. Discounting changes this situation noticeably. Four scenarios with a total probability of 39% have a negative final aggregated discounted cash-flow. In these scenarios, the investment in an alternative project with the same return is favorable. This is also reflected by a 40%-AV@R on the final aggregated discounted cash-flow of $936882 €$. Taking all scenarios into account, however, the project is profitable with an expected discounted profit of $14410188 €$.

Optimizing for Expected Profit. The optimization results for the maximization of the expected profit are displayed in the second and the third column of Table 7.4. In all settings, we notice a considerable difference between expectation and the AV@R. High profits are thus expected in the best 60% of the scenarios.

In the Berlin scenario, a mandatory coverage of 50% of the population in the root node almost does not change the resulting figures. The expected profit, furthermore, is almost constant for the two different trees. The AV@R, however, is significantly higher in the tree with 34 nodes. In any case the AV@R is below - 2.3 mill. euros. The project seams thus not very risky, since even in the worst 40 percent a profit of 2.3 mill. euros is expected.

Figure 7.5.: Visualization of optimization results in Hamburg using the scenario tree with 34 nodes and different construction limits

In the Hamburg scenario demanding for coverage in the root node considerably decreases the performance in terms of expected profit and AV@R. Here, the figures for the different trees differ. The Expectation is about 10% higher for the tree with 34 nodes. The higher expectation is traded for a higher risk. The AV@R is negative for the tree with 27 nodes and positive for the tree with 34 nodes. In the latter case, a loss of almost 1 mill. euros is expected in the worst 40 percent of th scenarios. The reduction of the construction limit from 100 to 60 has only a minor effect in the scenario tree with 27 nodes. In the setting with the tree with 34 nodes, the expected profit suffers from the reduced construction limit, while the AV@R remains constant. The limit is exhausted only in the scenarios with high increase in the traffic, which are the most profitable. In the scenarios with poor profitability, the construction limit is not exhausted. In the quarterly planning the reduction has a significant impact on the expectation and AV@R. Furthermore, the AV@R is significantly lower in the quarterly planning than in the annual. Even with a construction limit of 60 , more than 6.6 mill. euros profit are expected in the worst 40% of the scenarios. Figure 7.5(a) shows the number of sites activated in the Hamburg scenario on the different scenarios in the tree with 34 nodes. Different construction limits are used. We observe that the numbers of sites in the scenarios with poor traffic evolution hardly differ. In the scenarios with more construction activities, the construction begins in earlier periods in the case of lower construction limits.

The serviced population in the same settings is shown in Figure 7.5(b). Focusing on the scenarios with big differences in the percentage of serviced population, we observe that much more of the population is in the service area of constructed sites in the years 2006 and 2007 if the construction limit is 60 . This is because we started construction of additional sites in these years. In the years 2009 and 2010, the service level is higher if 100 sites can be built per year. In 2010 the services population decreases in some scenarios due to shrinking service areas. Since the expected profit is about half a million higher if 100 sites can be build, the superior service levels in the early years do not have such a strong impact on the profit as service in the later years. Indeed, in the best 9% of the scenarios the discounted cash-flow in the last period is above 41 mill. euros if the construction limit is 100 and only between 37 and 39 mill. euros if 60 sites can be built per year.

Comparison to a Clairvoyant. The solution of our stochastic program is a nonanticipative network evolution plan for each root-leaf path in the scenario tree. If the non-anticipativity constraints are relaxed, the model decomposes into independent subproblems for the leaves which can be optimized individually. This corresponds to the perspective of a clairvoyant. The clairvoyant is expected to achieve better results in terms of expected profit and AV@R. The expected profit of the clairvoyant's strategy provides an upper bound for the expected profit of the stochastic program. For the AV@R, the clairvoyant provides a lower bound. The expected profit and AV@R of the clairvoyant in the different settings are displayed

	Opt. for expected profit	Opt. over AV@R	Clairvoyant
Berlin annually with mandatory coverage in root			
27 Nodes, 10 Cap	$-3204851 €$	$-3255613 €(-1.6 \%)$	$-3257863 €(-1.7 \%)$
34 Nodes, 10 Cap	$-2359760 €$	$-2459457 €(-4.2 \%)$	$-2460765 €(-4.3 \%)$
Berlin annually			
27 Nodes, 10 Cap	$-3205609 €$	$-3255613 €(-1.6 \%)$	$-3254751 €(-1.5 \%)$
34 Nodes, 10 Cap	$-2356112 €$	$-2458983 €(-4.4 \%)$	$-2460744 €(-4.4 \%)$
Hamburg annually with mandatory coverage in root			
27 Nodes, 100 Cap	$-431222 €$	$-438100 €(-1.6 \%)$	$-446821 €(-3.6 \%)$
27 Nodes, 60 Cap	$-428591 €$	$-436112 €(-1.8 \%)$	$-445501 €(-3.9 \%)$
34 Nodes, 100 Cap	$936882 €$	$915089 €(-2.3 \%)$	$910019 €(-2.9 \%)$
34 Nodes, 60 Cap	$938999 €$	$915653 €(-2.5 \%)$	$909088 €(-3.2 \%)$
Hamburg annually			
27 Nodes, 100 Cap	$-2917462 €$	$-2920267 €(-0.1 \%)$	$-2930883 €(-0.5 \%)$
27 Nodes, 60 Cap	$-2921662 €$	$-2924311 €(-0.1 \%)$	$-2931112 €(-0.3 \%)$
34 Nodes, 100 Cap	$-1601728 €$	$-1611618 €(-0.6 \%)$	$-1658141 €(-3.5 \%)$
34 Nodes, 60 Cap	$-1607326 €$	$-1607326 €(+0.0 \%)$	$-1657085 €(-3.1 \%)$
Hamburg quarterly with mandatory coverage in the second stage			
53 Nodes, 100 Cap	$-7742900 €$	$-7836117 €(-1.2 \%)$	$-7883913 €(-1.8 \%)$
53 Nodes, 60 Cap	$-6641045 €$	$-6653595 €(-0.2 \%)$	$-6701818 €(-0.9 \%)$

Table 7.5.: Comparison of the AV@Rs for the different objectives
in the third and fourth column of Table 7.4.
The difference between the solution of the stochastic program and the clairvoyant's solutions is surprisingly small. In all settings, the clairvoyant expects at most 2.2 \% more than we do. The relative reduction of the AV@R is larger; at most 4.4% in Berlin and at most 3.9% in the Hamburg scenario. In the Berlin scenario this means a reduction by $100000 €$, which is about 1% of the expected profit. In the Hamburg scenario the impact of perfect information is even smaller.

The absolute difference between the expectations of the clairvoyant's strategy and the non-anticipative strategy is called expected value of perfect information (EVPI). Since the clairvoyant's problem is a relaxation of the stochastic program, the EVPI is always non-negative. The EVPI in the different settings is stated in the last column of Table 7.4. We observe that the EVPI is considerable higher in the tree with 34 nodes than in the tree with 27 nodes. However, the EVPI always represents less than 2.2% of the expected profit.

Optimizing the Average Value-at-Risk. Table 7.5 compares the AV@R for different optimization settings: Optimizing for the expected profit, optimizing for the AV@R, and relaxing the non-anticipativity constraints and optimize the individual scenarios. The differences between the three are small. This does not surprise anymore. The clairvoyant's strategy provides a lower bound for the AV@R. In the

	Opt. over scenario tree		Opt. over exp. traffic evol.	
	Expectation	AV@R	Expectation	AV@R
Berlin annually with mandatory coverage in root				
27 Nodes, 10 Cap	$9871149 €$	-3204851€	9622943 ¢ (-2.5\%)	-2765367€ (+13.7\%)
34 Nodes, 10 Cap	$9873531 €$	-2359760€	$9505135 €(-3.7 \%)$	$-1934687 €(+18.0$ \%)
Berlin annually				
27 Nodes, 10 Cap	$9870175 €$	-3205609€	9617548 ¢ (-2.6\%)	$-2765367 €(+13.7$ \%)
34 Nodes, 10 Cap	$9868577 €$	-2356112€	$9499740 €(-3.7 \%)$	-1934687€ (+17.9\%)
Hamburg annually with mandatory coverage in root				
27 Nodes, 100 Cap	$12972933 €$	-431 222 €	$11130202 €(-14.2$ \%)	$2575456 €(+697.2$ \%)
27 Nodes, 60 Cap	$12906688 €$	-428591€	$11147457 €(-13.6$ \%)	2484495 € (+679.7 \%)
34 Nodes, 100 Cap	$14410188 €$	$936882 €$	11681093 € (-18.9\%)	4298859 € (+ 358.8 \%)
34 Nodes, 60 Cap	$13969286 €$	$938999 €$	11592296 € (-17.0\%)	4195610 € (+ 346.8 \%)
Hamburg annually				
27 Nodes, 100 Cap	$15286450 €$	-2917462€	$13295759 €(-13.0 \%)$	$131243 €(+104.5 \%)$
27 Nodes, 60 Cap	$15233750 €$	-2921662€	13286692 € (-12.8\%)	$64594 €(+102.2$ \%)
34 Nodes, 100 Cap	$16659934 €$	-1601728€	13843274 € (-16.9\%)	1834586 € (+214.5\%)
34 Nodes, 60 Cap	$16198435 €$	-1607326€	$13721703 €(-15.3 \%)$	$1756479 €(+209.3 \%)$
Hamburg quarterly with mandatory coverage in the second stage				
53 Nodes, 100 Cap	$18805586 €$	-7742900€	17889615 € (-4.9\%)	-6340598€ (+18.1 \%)
53 Nodes, 60 Cap	$16416908 €$	-6641045€	15904370 € (-3.1\%)	-5980380€ (+9.9\%)

Table 7.6.: Comparison of stochastic optimization over scenario tree and optimization with the expected traffic evolution and evaluated on scenario tree.
discussion of Table 7.4 already stated that the gap between the clairvoyant's AV@R and the AV@R obtained by the solution of maximizing the profit is at most 4.4%. By minimization of the AV@R with non-anticipativity only reductions of at most 2.5% are achieved.

Deterministic Optimization for the Expected Traffic Evolution. Without stochastic programming, uncertain data is often treated by optimizing for the expected data evolution. The resulting network evolution can then be evaluated in the different scenarios of a scenario tree, and the expected profit and AV@R of that evolution strategy can be calculated. The results of this experiment are displayed in the last two columns of Table 7.6 and compared to the solution of the stochastic optimization in the second and third column

A poorer performance is observed. For the annual planning in the Hamburg scenario the difference is significant. The expected profit decreases between 13% and 19%. This strategy is also much riskier, which is reflected by a much higher AV@R. The AV@R increases by about 3 mill. euros in these cases. In the Berlin scenario and in the quarterly planned Hamburg scenario the expected profit decreases by at most 5% and in the AV@R by less than 20%.

This comparison shows that the stochastic programming approach yields signif-
icantly better results than planning on the expected demand evolution. In practice, however, the network operator would probably not stick to the planning on the basis of the expected traffic evolution, but would re-optimize regularly to adjust the planning to the shifted expectation of the future demand evolution. The procedure in practice would be a rolling horizon approach and would probably yield better solutions.
7. Computational Experiments

8. Conclusions

In this thesis, we propose, implement, and analyze the application of multistage stochastic programming in strategic cellular network planning. Network operators in the telecommunication industry face strong, hardly predictable demand evolution. This applies to the types of the services requested as well as to the demand intensity. Strategic planning is substantial in this highly uncertain market environment, since huge financial investments have to be mastered.

The classical approaches for strategic decision taking, such as net present value and decision tree analysis, have considerable shortcomings. The popular real options approach addresses most of them, but the theoretical barrier for the correct application is high and the conditions often not fulfilled.

Recently, stochastic programming has been proposed as an alternative to real options, which avoids the assumptions from financial mathematics [86]. The steady advances in MIP technology as well as computer technology render the routine solution of large-scale mixed-integer programs possible. These two observations are at the starting point of this thesis. The goal is to analyze how stochastic programming can be used to tackle realistic strategic network planning problems.

We use a realistic system model of UMTS radio cells, which takes signal propagation and interferences into account. We devise an approach for strategic UMTS radio network planning that maps both, cell coverage as well as a cell's capability to serve demand, into the notion of a cell's service area. This also allows to model the increase of cell capacity through technology upgrades.

The demand evolution is modeled as a continuous stochastic process, which is approximated by a discrete scenario tree. We use a three-stage approach for the construction of non-uniform scenario trees that serve as input of the stochastic program. Our aggregation technique allows to substantially reduce the problem sizes of the corresponding deterministic equivalent programs; on realistic input data a reduction from about 120000000 to 600000 variables and constraints is achieved in some instances (see Table 7.3).

We conduct computational experiments on two realistic planning scenarios: a medium-scale scenario based in the city of Berlin (based on publicly available data) and a large-scale scenario covering the city of Hamburg (based on the network of a German network provider). We study 14 different planning settings in total. The corresponding deterministic equivalent problems are solved using a commercial MIP solver to small optimality gaps within 10 hours running time. The optimization result provides a tree-like network deployment plan, where construction over time is tuned to the demand evolution. The evolution paths differ considerable across the tree. In the Hamburg scenario, for example, the number if installed sites

8. Conclusions

ranges from 40 to 372 and the net present value for the paths from $-3208595 €$ to $59930638 €$. Compared to deterministic optimization for the expected demand evolution, the expected profit increases from $11681093 €$ by 18.9% to $14410188 €$ if our approach is applied. In conclusion, the acceptable solution times as well as the obtained results encourage the application of stochastic methods in this setting.

Furthermore, we compare the results of the stochastic programs for different objective functions, namely, the expected profit and the risk measure Average Value-at-Risk. The risk measure focuses on the scenarios with poor performance. This is a typical approach to trade in a decrease of the expected profit for a decrease in risk. In our application, however, no considerable effect is observed.

Relaxing the non-anticipativity of the network evolution yield results from a clairvoyant's perspective. We observe improvements of at most 2% in the expected profit and at most 4.4% in the AV@R. The value of perfect information is hence rather small in the planning scenarios under consideration.

Our approach can be applied to plan the evolution of other cellular radio network technologies as well. Planning for LTE requires merely small changes in the system model and an update of model parameters. The market model should be updated to match the present market conditions with a high degree of penetration (approaching saturation) and flat rate contracts. An application to planning optical fiber access networks (FTTx) may also be feasible, but would require an in-depth analysis not conducted here.

Appendix

A. Tables with Detailed Results

In the following, we display detailed results of the all optimization procedures. Table A. 1 provides a description of the columns. Arrows assist with the orientation in the trees.

Column	Description
node	Name of the node
father	Name of the father (The root node is its own father.)
stage	Stage of corresponding to the node
year	Year of corresponding to the node
KiB/cap	Traffic volume in monthly KiB per capita
prop	Probability of the node
totSites	Total number of installed sites (cells in the Berlin scenario)
coverPop	Percentage of the population that are serviced
inco	Undiscounted revenues in euros
capE	Undiscounted CarEx in euros
opE	Undiscounted OrEx in euros
CFDis	Total discounted cash-flow in euros in the node
aggCF	Aggregated undiscounted cash-flow in euros up to the node
aggCFDis	Aggregated discounted cash-flow in euros up to the node

Table A.1.: Description of the columns

node	father	stage	year	KiB/cap	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF	aggCFDis
1	1	1	2004	$2.38 \cdot 10^{1}$	1.00	5	0.53	62962	166667	14500	-126281	-118204	-126281
2	1	2	2005	$5.43 \cdot 10^{1}$	0.29	5	0.53	71920	0	14500	39875	-60784	-86406
- 4	2	3	2006	$1.86 \cdot 10^{2}$	0.29	8	0.67	156466	80450	23200	21253	-7968	-65153
7	4	4	2007	$9.64 \cdot 10^{2}$	0.29	18	0.93	563898	235583	52200	110435	268146	45282
11	7	5	2008	$3.79 \cdot 10^{3}$	0.29	28	0.99	1178660	203000	81200	343147	1162607	388429
(16	11	6	2009	$5.64 \cdot 10^{4}$	0.09	38	1.00	8809835	170417	110200	2845004	9691825	3233433
, 22	16	7	2010	$3.00 \cdot 10^{5}$	0.09	48	0.94	22170352	137833	139200	6102330	31585144	9335763
17	11	6	2009	$1.50 \cdot 10^{4}$	0.20	28	0.99	2330015	0	81200	753123	3411421	1141553
23	17	7	2010	$3.89 \cdot 10^{4}$	0.20	28	0.99	3024326	0	81200	821373	6354547	1962925
3	1	2	2005	$1.09 \cdot 10^{2}$	0.70	15	0.86	234971	300750	43500	-117659	-227484	-243941
, 5	3	3	2006	$5.88 \cdot 10^{2}$	0.52	21	0.96	705521	160900	60900	261308	256237	17368
/ 8	5	4	2007	$2.05 \cdot 10^{3}$	0.36	21	0.96	1229645	0	60900	563631	1424982	580998
/ 13	8	5	2008	$6.56 \cdot 10^{3}$	0.24	26	0.98	2020706	101500	75400	732826	3268788	1313824
(19	13	6	2009	$4.28 \cdot 10^{4}$	0.24	36	1.00	6702596	170417	104400	2141236	9696567	3455060
25	19	7	2010	$1.99 \cdot 10^{5}$	0.24	46	0.99	15428921	137833	133400	4222539	24854255	7677600
\checkmark	8	5	2008	$2.69 \cdot 10^{3}$	0.12	21	0.96	807885	0	60900	300197	2171967	881195
18	12	6	2009	$1.01 \cdot 10^{4}$	0.12	22	0.96	1523428	17042	63800	481978	3614553	1363173
24	18	7	2010	$3.82 \cdot 10^{4}$	0.12	22	0.96	2883314	0	63800	786875	6434068	2150047
9	5	4	2007	$4.35 \cdot 10^{3}$	0.16	31	1.00	2720106	235583	89900	1132092	2650859	1149459
14	9	5	2008	$1.93 \cdot 10^{4}$	0.16	41	1.00	6040514	203000	118900	2281867	8369473	3431326
20	14	6	2009	$7.28 \cdot 10^{4}$	0.16	51	1.00	11411531	170417	147900	3703681	19462687	7135006
26	20	7	2010	$3.63 \cdot 10^{5}$	0.16	61	0.95	27141366	137833	176900	7479128	46289320	14614134
6	3	3	2006	$1.48 \cdot 10^{3}$	0.18	25	0.97	1805150	268167	72500	816464	1236999	572523
10	6	4	2007	$6.34 \cdot 10^{3}$	0.18	35	1.00	3970292	247363	102950	1721888	4856979	2294411
15	10	5	2008	$3.24 \cdot 10^{4}$	0.18	45	1.00	10141680	203000	131950	3924789	14663709	6219200
21	15	6	2009	$1.38 \cdot 10^{5}$	0.18	55	1.00	21612480	170417	160950	7115587	35944822	13334787
27	21	7	2010	$5.23 \cdot 10^{5}$	0.18	65	0.85	34731866	137833	189950	9593855	70348905	22928642

Table A.2.: Results of Berlin planning scenario using the scenario tree with 27 nodes, a construction limit of 10, and optimization for expected profit

node	father	stage	year	KiB/cap	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF	aggCFDis
1	1	1	2004	$2.38 \cdot 10^{1}$	1.00	5	0.51	61446	166667	14500	-127545	-119720	-127545
/ 2	1	2	2005	$5.43 \cdot 10^{1}$	0.29	5	0.51	70188	0	14500	38673	-64 032	-88872
4	2	3	2006	$1.86 \cdot 10^{2}$	0.29	8	0.67	156466	80450	23200	21253	-11216	-67619
7	4	4	2007	$9.64 \cdot 10^{2}$	0.29	18	0.93	563898	235583	52200	110435	264898	42816
11	7	5	2008	$3.79 \cdot 10^{3}$	0.29	28	0.99	1178660	203000	81200	343147	1159359	385963
(16	11	6	2009	$5.64 \cdot 10^{4}$	0.09	38	1.00	8809835	170417	110200	2845004	9688577	3230967
- 22	16	7	2010	$3.00 \cdot 10^{5}$	0.09	48	0.94	22170352	137833	139200	6102330	31581896	9333297
17	11	6	2009	$1.50 \cdot 10^{4}$	0.20	28	0.99	2330015	0	81200	753123	3408173	1139087
23	17	7	2010	$3.89 \cdot 10^{4}$	0.20	28	0.99	3024326	0	81200	821373	6351300	1960459
3	1	2	2005	$1.09 \cdot 10^{2}$	0.70	15	0.85	232089	300750	43500	-119660	-231881	-247205
-5	3	3	2006	$5.88 \cdot 10^{2}$	0.52	20	0.95	698588	134083	58000	277597	274623	30392
/ 8	5	4	2007	$2.05 \cdot 10^{3}$	0.36	21	0.96	1229645	23558	60900	549997	1419809	580389
/ 13	8	5	2008	$6.56 \cdot 10^{3}$	0.24	26	0.98	2020706	101500	75400	732826	3263615	1313215
19	13	6	2009	$4.28 \cdot 10^{4}$	0.24	36	1.00	6704218	170417	104400	2141779	9693016	3454994
25	19	7	2010	$1.99 \cdot 10^{5}$	0.24	46	0.99	15440513	137833	133400	4225774	24862296	7680769
12	8	5	2008	$2.69 \cdot 10^{3}$	0.12	21	0.96	807885	0	60900	300197	2166795	880586
18	12	6	2009	$1.01 \cdot 10^{4}$	0.12	22	0.96	1523428	17042	63800	481978	3609381	1362564
24	18	7	2010	$3.82 \cdot 10^{4}$	0.12	22	0.96	2883314	0	63800	786875	6428895	2149438
9	5	4	2007	$4.35 \cdot 10^{3}$	0.16	30	0.99	2716078	235583	87000	1131548	2668117	1161940
14	9	5	2008	$1.93 \cdot 10^{4}$	0.16	40	1.00	6031248	203000	116000	2279308	8380365	3441248
20	14	6	2009	$7.28 \cdot 10^{4}$	0.16	50	1.00	11394539	170417	145000	3698961	19459487	7140209
26	20	7	2010	$3.63 \cdot 10^{5}$	0.16	60	0.95	27067171	137833	174000	7459230	46214824	14599439
6	3	3	2006	$1.48 \cdot 10^{3}$	0.18	25	0.97	1802393	268167	72500	814869	1229845	567664
10	6	4	2007	$6.34 \cdot 10^{3}$	0.18	35	1.00	3969450	235583	101500	1728998	4862211	2296661
15	10	5	2008	$3.24 \cdot 10^{4}$	0.18	45	1.00	10137202	203000	130500	3923572	14665914	6220233
21	15	6	2009	$1.38 \cdot 10^{5}$	0.18	55	1.00	21602963	170417	159500	7112886	35938960	13333119
27	21	7	2010	$5.23 \cdot 10^{5}$	0.18	65	0.85	34800750	137833	188500	9613484	70413376	22946602

Table A.3.: Results of Berlin planning scenario using the scenario tree with 27 nodes, a construction limit of 10, mandatory coverage, and optimization for expected profit

node	father	stage	year	KiB/cap	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF	aggCFDis
1	1	1	2004	$2.38 \cdot 10^{1}$	1.00	8	0.66	78468	266667	23200	-220 610	-211398	-220610
- 2	1	2	2005	$5.43 \cdot 10^{1}$	0.29	8	0.66	89632	0	23200	46133	-144966	-174476
	2	3	2006	$1.86 \cdot 10^{2}$	0.29	9	0.72	168195	26817	26100	63608	-29688	-110868
, 7	4	4	2007	$9.64 \cdot 10^{2}$	0.29	16	0.90	548035	164908	46400	146482	307038	35614
11	7	5	2008	$1.07 \cdot 10^{4}$	0.09	26	0.99	3309230	203000	75400	1201706	3337869	1237320
17	11	6	2009	$5.64 \cdot 10^{4}$	0.09	30	1.00	8818907	68167	87000	2896903	12001609	4134223
25	17	7	2010	$1.50 \cdot 10^{5}$	0.09	40	0.99	11664622	137833	116000	3176848	23412397	7311072
12	7	5	2008	$3.79 \cdot 10^{3}$	0.20	20	0.96	1138735	81200	58000	395164	1306574	430778
(19	12	6	2009	$9.58 \cdot 10^{3}$	0.13	21	0.96	1449737	17042	60900	458270	2678369	889048
, 27	19	7	2010	$7.50 \cdot 10^{4}$	0.13	27	0.98	5793888	82700	78300	1567420	8311257	2456468
$\checkmark 18$	12	6	2009	$3.76 \cdot 10^{3}$	0.07	20	0.96	565318	0	58000	169900	1813892	600678
26	18	7	2010	$1.12 \cdot 10^{4}$	0.07	20	0.96	841904	0	58000	218773	2597796	819451
3	1	2	2005	$1.09 \cdot 10^{2}$	0.70	18	0.92	251841	300750	52200	-111986	-312508	-332595
, 5	3	3	2006	$5.88 \cdot 10^{2}$	0.52	28	0.99	729824	268167	81200	189134	67949	-143461
/ 8	5	4	2007	$2.05 \cdot 10^{3}$	0.36	28	0.99	1272003	0	81200	574268	1258752	430807
/ 14	8	5	2008	$6.56 \cdot 10^{3}$	0.24	31	1.00	2053214	60900	89900	759643	3161166	1190450
/(21	14	6	2009	$1.46 \cdot 10^{4}$	0.07	31	1.00	2289835	0	89900	736754	5361102	1927204
(29	21	7	2010	$4.73 \cdot 10^{4}$	0.07	31	1.00	3702572	0	89900	1008231	8973774	2935434
$\checkmark 22$	14	6	2009	$4.28 \cdot 10^{4}$	0.17	41	1.00	6705616	170417	118900	2137391	9577465	3327841
30	22	7	2010	$2.47 \cdot 10^{5}$	0.17	51	0.99	19147990	137833	147900	5256416	28439722	8584257
13	8	5	2008	$2.69 \cdot 10^{3}$	0.12	28	0.99	835715	0	81200	303222	2013267	734029
20	13	6	2009	$1.01 \cdot 10^{4}$	0.12	28	0.99	1563968	0	81200	496576	3496035	1230606
28	20	7	2010	$3.82 \cdot 10^{4}$	0.12	28	0.99	2960043	0	81200	803432	6374878	2034038
9	5	4	2007	$4.35 \cdot 10^{3}$	0.16	38	1.00	2730637	235583	110200	1127381	2452803	983920
15	9	5	2008	$1.93 \cdot 10^{4}$	0.16	48	1.00	6047525	203000	139200	2276526	8158129	3260446
23	15	6	2009	$7.28 \cdot 10^{4}$	0.16	58	1.00	11424776	170417	168200	3701318	19244288	6961764
(31	23	7	2010	$3.63 \cdot 10^{5}$	0.12	68	0.97	27605494	137833	197200	7602992	46514748	14564755
$\checkmark 32$	23	7	2010	$1.60 \cdot 10^{6}$	0.04	68	0.37	45759879	137833	197200	12669547	64669134	19631311
${ }^{6}$	3	3	2006	$1.48 \cdot 10^{3}$	0.18	28	0.99	1832243	268167	81200	827108	1170369	494513
10	6	4	2007	$6.34 \cdot 10^{3}$	0.18	38	1.00	3973654	235583	110200	1726829	4798239	2221342
16	10	5	2008	$3.24 \cdot 10^{4}$	0.18	48	1.00	10145642	203000	139200	3923467	14601681	6144810
24	16	6	2009	$1.38 \cdot 10^{5}$	0.18	58	1.00	21620070	170417	168200	7115701	35883135	13260511
(34	24	7	2010	$1.57 \cdot 10^{6}$	0.05	68	0.37	45032884	137833	197200	12466657	80580986	25727168
$\checkmark 33$	24	7	2010	$5.23 \cdot 10^{5}$	0.13	68	0.86	35239181	137833	197200	9733414	70787283	22993925

Table A.4.: Results of Berlin planning scenario using the scenario tree with 32 nodes, a construction limit of 10, and optimization for expected profit

	node	father	stage	year	KiB/cap	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF	aggCFDis
	1	1	1	2004	$2.38 \cdot 10^{1}$	1.00	8	0.66	78468	266667	23200	-220 610	-211398	-220610
	/ 2	1	2	2005	$5.43 \cdot 10^{1}$	0.29	8	0.66	89632	0	23200	46133	-144966	-174476
		2	3	2006	$1.86 \cdot 10^{2}$	0.29	9	0.72	168195	26817	26100	63608	-29688	-110868
	-7	4	4	2007	$9.64 \cdot 10^{2}$	0.29	16	0.91	549010	164908	46400	146952	308013	36084
	/ 11	7	5	2008	$1.07 \cdot 10^{4}$	0.09	26	0.99	3299483	203000	75400	1197789	3329096	1233873
	17	11	6	2009	$5.64 \cdot 10^{4}$	0.09	30	1.00	8810121	68167	87000	2893961	11984051	4127834
	25	17	7	2010	$1.50 \cdot 10^{5}$	0.09	40	0.99	11676825	137833	116000	3180254	23407042	7308088
	12	7	5	2008	$3.79 \cdot 10^{3}$	0.20	19	0.95	1127515	60900	55100	401610	1319528	437694
	(19	12	6	2009	$9.58 \cdot 10^{3}$	0.13	21	0.96	1449632	34083	60900	451386	2674176	889080
	- 27	19	7	2010	$7.50 \cdot 10^{4}$	0.13	27	0.98	5795836	82700	78300	1567963	8309012	2457043
	$\checkmark 18$	12	6	2009	$3.76 \cdot 10^{3}$	0.07	19	0.95	559748	0	55100	169005	1824176	606699
	26	18	7	2010	$1.12 \cdot 10^{4}$	0.07	19	0.95	833609	0	55100	217267	2602684	823967
	${ }^{1}$	1	2	2005	$1.09 \cdot 10^{2}$	0.70	18	0.92	251122	300750	52200	-112485	-313227	-333095
	/, 5	3	3	2006	$5.88 \cdot 10^{2}$	0.52	28	0.99	730917	268167	81200	189767	68323	-143328
	/ 8	5	4	2007	$2.05 \cdot 10^{3}$	0.36	28	0.99	1273908	0	81200	575187	1261031	431859
	///14	8	5	2008	$6.56 \cdot 10^{3}$	0.24	30	1.00	2050595	40600	87000	769545	3184026	1201404
	///(21	14	6	2009	$1.46 \cdot 10^{4}$	0.07	30	1.00	2286914	0	87000	736747	5383941	1938151
	/	21	7	2010	$4.73 \cdot 10^{4}$	0.07	30	1.00	3697848	0	87000	1007722	8994789	2945873
	- 22	14	6	2009	$4.28 \cdot 10^{4}$	0.17	40	1.00	6705616	170417	116000	2138362	9603225	3339767
	- 30	22	7	2010	$2.47 \cdot 10^{5}$	0.17	50	0.98	19109307	137833	145000	5246430	28429698	8586196
	13	8	5	2008	$2.69 \cdot 10^{3}$	0.12	28	0.99	836966	0	81200	303725	2016797	735584
	20	13	6	2009	$1.01 \cdot 10^{4}$	0.12	28	0.99	1566311	0	81200	497361	3501908	1232945
	$\checkmark 28$	20	7	2010	$3.82 \cdot 10^{4}$	0.12	28	0.99	2964476	0	81200	804669	6385184	2037614
	9	5	4	2007	$4.35 \cdot 10^{3}$	0.16	38	1.00	2731914	235583	110200	1127997	2454454	984669
	15	9	5	2008	$1.93 \cdot 10^{4}$	0.16	48	1.00	6047578	203000	139200	2276547	8159832	3261216
	, 23	15	6	2009	$7.28 \cdot 10^{4}$	0.16	58	1.00	11424875	170417	168200	3701351	19246090	6962567
	(31	23	7	2010	$3.63 \cdot 10^{5}$	0.12	68	0.97	27583398	137833	197200	7596825	46494455	14559392
	$\boxed{ }$	23	7	2010	$1.60 \cdot 10^{6}$	0.04	68	0.36	45696028	137833	197200	12651728	64607085	19614294
	6	3	3	2006	$1.48 \cdot 10^{3}$	0.18	28	0.99	1829998	268167	81200	825809	1167405	492714
	10	6	4	2007	$6.34 \cdot 10^{3}$	0.18	38	1.00	3976467	247363	111650	1720670	4784859	2213385
	16	10	5	2008	$3.24 \cdot 10^{4}$	0.18	48	1.00	10152413	203000	140650	3925606	14593622	6138990
	24	16	6	2009	$1.38 \cdot 10^{5}$	0.18	58	1.00	21644675	170417	169650	7123456	35898230	13262446
$\stackrel{\rightharpoonup}{*}$	(34	24	7	2010	$1.57 \cdot 10^{6}$	0.05	68	0.37	45177313	137833	198650	12506559	80739059	25769005
	- 33	24	7	2010	$5.23 \cdot 10^{5}$	0.13	68	0.86	35300806	137833	198650	9750207	70862553	23012653

Table A.5.: Results of Berlin planning scenario using the scenario tree with 32 nodes, a construction limit of 10, mandatory coverage, and optimization for expected profit

node	father	stage	year	KiB/cap	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF	aggCFDis
1	1	1	2004	$2.38 \cdot 10^{1}$	1.00	5	0.53	63136	166667	14500	-126137	-118031	-126137
/ 2	1	2	2005	$5.43 \cdot 10^{1}$	0.29	5	0.53	72119	0	14500	40013	-60412	-86124
4	2	3	2006	$1.86 \cdot 10^{2}$	0.29	6	0.59	137797	26817	17400	51052	33169	-35072
7	4	4	2007	$9.64 \cdot 10^{2}$	0.29	16	0.91	548766	235583	46400	105935	299952	70863
11	7	5	2008	$3.79 \cdot 10^{3}$	0.29	20	0.96	1140172	81200	58000	395742	1300923	466604
(16	11	6	2009	$5.64 \cdot 10^{4}$	0.09	30	0.98	8666183	170417	87000	2804664	9709689	3271269
22	16	7	2010	$3.00 \cdot 10^{5}$	0.09	38	0.80	18806756	110267	110200	5180938	28295979	8452206
17	11	6	2009	$1.50 \cdot 10^{4}$	0.20	24	0.98	2314042	68167	69600	724265	3477199	1190869
23	17	7	2010	$3.89 \cdot 10^{4}$	0.20	24	0.98	3003595	0	69600	818824	6411193	2009693
3	1	2	2005	$1.09 \cdot 10^{2}$	0.70	8	0.69	188270	90225	23200	39445	-43185	-86692
, 5	3	3	2006	$5.88 \cdot 10^{2}$	0.52	16	0.90	667695	214533	46400	210564	363576	123872
/ 8	5	4	2007	$2.05 \cdot 10^{3}$	0.36	20	0.96	1232244	94233	58000	511750	1443587	635622
/ 13	8	5	2008	$6.56 \cdot 10^{3}$	0.24	26	0.99	2037396	121800	75400	729744	3283783	1365366
(19	13	6	2009	$4.28 \cdot 10^{4}$	0.24	36	1.00	6697044	170417	104400	2139377	9706011	3504742
- 25	19	7	2010	$1.99 \cdot 10^{5}$	0.24	46	0.99	15405519	137833	133400	4216008	24840297	7720750
$\checkmark 12$	8	5	2008	$2.69 \cdot 10^{3}$	0.12	20	0.96	809593	0	58000	302048	2195180	937670
18	12	6	2009	$1.01 \cdot 10^{4}$	0.12	21	0.96	1526122	17042	60900	483851	3643360	1421521
24	18	7	2010	$3.82 \cdot 10^{4}$	0.12	21	0.96	2888413	0	60900	789107	6470873	2210628
9	5	4	2007	$4.35 \cdot 10^{3}$	0.16	16	0.90	2470290	0	46400	1168928	2787466	1292800
14	9	5	2008	$1.93 \cdot 10^{4}$	0.16	16	0.90	5467867	0	46400	2178766	8208933	3471566
20	14	6	2009	$7.28 \cdot 10^{4}$	0.16	19	0.87	9933088	51125	55100	3287572	18035796	6759139
26	20	7	2010	$3.63 \cdot 10^{5}$	0.16	25	0.45	12858927	89592	73950	3538048	30731182	10297187
6	3	3	2006	$1.48 \cdot 10^{3}$	0.18	11	0.73	1350306	80450	31900	707099	1194771	620407
10	6	4	2007	$6.34 \cdot 10^{3}$	0.18	11	0.73	2898027	0	31900	1382198	4060898	2002605
15	10	5	2008	$3.24 \cdot 10^{4}$	0.18	12	0.74	7483836	20300	34800	2983811	11489634	4986416
21	15	6	2009	$1.38 \cdot 10^{5}$	0.18	13	0.48	10321821	17042	37700	3437283	21756713	8423699
27	21	7	2010	$5.23 \cdot 10^{5}$	0.18	16	0.20	8042350	48242	47850	2214962	29702971	10638661

Table A.6.: Results of Berlin planning scenario using the scenario tree with 27 nodes, a construction limit of 10, and optimization for AV@R

node	father	stage	year	KiB/cap	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF	aggCFDis
1	1	1	2004	$2.38 \cdot 10^{1}$	1.00	5	0.53	63136	166667	14500	-126137	-118031	-126137
/ 2	1	2	2005	$5.43 \cdot 10^{1}$	0.29	5	0.53	72119	0	14500	40013	-60412	-86124
- 4	2	3	2006	$1.86 \cdot 10^{2}$	0.29	6	0.59	137797	26817	17400	51052	33169	-35072
7	4	4	2007	$9.64 \cdot 10^{2}$	0.29	16	0.91	548766	235583	46400	105935	299952	70863
11	7	5	2008	$3.79 \cdot 10^{3}$	0.29	20	0.96	1140172	81200	58000	395742	1300923	466604
(16	11	6	2009	$5.64 \cdot 10^{4}$	0.09	21	0.96	8452358	17042	60900	2803434	9675339	3270038
22	16	7	2010	$3.00 \cdot 10^{5}$	0.09	31	0.71	16632604	137833	89900	4570605	26080210	7840643
17	11	6	2009	$1.50 \cdot 10^{4}$	0.20	24	0.98	2314042	68167	69600	724265	3477199	1190869
23	17	7	2010	$3.89 \cdot 10^{4}$	0.20	24	0.98	3003595	0	69600	818824	6411193	2009693
3	1	2	2005	$1.09 \cdot 10^{2}$	0.70	8	0.69	188270	90225	23200	39445	-43185	-86692
-5	3	3	2006	$5.88 \cdot 10^{2}$	0.52	16	0.90	667695	214533	46400	210564	363576	123872
/ 8	5	4	2007	$2.05 \cdot 10^{3}$	0.36	20	0.96	1232244	94233	58000	511750	1443587	635622
/ 13	8	5	2008	$6.56 \cdot 10^{3}$	0.24	26	0.99	2037396	121800	75400	729744	3283783	1365366
19	13	6	2009	$4.28 \cdot 10^{4}$	0.24	36	1.00	6697044	170417	104400	2139377	9706011	3504742
25	19	7	2010	$1.99 \cdot 10^{5}$	0.24	46	0.99	15405519	137833	133400	4216008	24840297	7720750
12	8	5	2008	$2.69 \cdot 10^{3}$	0.12	20	0.96	809593	0	58000	302048	2195180	937670
18	12	6	2009	$1.01 \cdot 10^{4}$	0.12	21	0.96	1526122	17042	60900	483851	3643360	1421521
24	18	7	2010	$3.82 \cdot 10^{4}$	0.12	21	0.96	2888413	0	60900	789107	6470873	2210628
9	5	4	2007	$4.35 \cdot 10^{3}$	0.16	16	0.90	2470290	0	46400	1168928	2787466	1292800
14	9	5	2008	$1.93 \cdot 10^{4}$	0.16	18	0.91	5496586	40600	52200	2168397	8191252	3461197
20	14	6	2009	$7.28 \cdot 10^{4}$	0.16	23	0.93	10638016	85208	66700	3506069	18677359	6967266
26	20	7	2010	$3.63 \cdot 10^{5}$	0.16	33	0.63	17861769	137833	95700	4912024	36305595	11879290
6	3	3	2006	$1.48 \cdot 10^{3}$	0.18	8	0.69	1279239	0	23200	726874	1212854	640183
10	6	4	2007	$6.34 \cdot 10^{3}$	0.18	8	0.69	2745502	0	23200	1312838	3935156	1953021
15	10	5	2008	$3.24 \cdot 10^{4}$	0.18	9	0.69	7050254	20300	26100	2813060	10939010	4766081
21	15	6	2009	$1.38 \cdot 10^{5}$	0.18	13	0.55	11935689	68167	37700	3957218	22768833	8723299
27	21	7	2010	$5.23 \cdot 10^{5}$	0.18	23	0.34	13987013	137833	66700	3838744	36551313	12562043

Table A.7.: Results of Berlin planning scenario using the scenario tree with 27 nodes, a construction limit of 10, mandatory coverage, and optimization for AV@R

node	father	stage	year	KiB/cap	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF	aggCFDis
1	1	1	2004	$2.38 \cdot 10^{1}$	1.00	5	0.53	63136	166667	14500	-126137	-118031	-126137
/ 2	1	2	2005	$5.43 \cdot 10^{1}$	0.29	5	0.53	72119	0	14500	40013	-60412	-86124
	2	3	2006	$1.86 \cdot 10^{2}$	0.29	6	0.59	137797	26817	17400	51052	33169	-35072
, 7	4	4	2007	$9.64 \cdot 10^{2}$	0.29	16	0.91	549741	235583	46400	106405	300926	71333
11	7	5	2008	$1.07 \cdot 10^{4}$	0.09	26	0.99	3302493	203000	75400	1198999	3325019	1270332
17	11	6	2009	$5.64 \cdot 10^{4}$	0.09	30	0.99	8802823	68167	87000	2891517	11972675	4161848
25	17	7	2010	$1.50 \cdot 10^{5}$	0.09	40	0.99	11663788	137833	116000	3176616	23382631	7338464
12	7	5	2008	$3.79 \cdot 10^{3}$	0.20	19	0.95	1128951	60900	55100	402187	1313877	473520
(19	12	6	2009	$9.58 \cdot 10^{3}$	0.13	21	0.97	1451425	34083	60900	451987	2670319	925507
- 27	19	7	2010	$7.50 \cdot 10^{4}$	0.13	26	0.98	5777811	68917	75400	1568358	8303813	2493865
18	12	6	2009	$3.76 \cdot 10^{3}$	0.07	19	0.95	560461	0	55100	169244	1819238	642765
26	18	7	2010	$1.12 \cdot 10^{4}$	0.07	19	0.95	834671	0	55100	217564	2598809	860328
3	1	2	2005	$1.09 \cdot 10^{2}$	0.70	8	0.69	188270	90225	23200	39445	-43185	-86692
, 5	3	3	2006	$5.88 \cdot 10^{2}$	0.52	16	0.90	667695	214533	46400	210564	363576	123872
/ 8	5	4	2007	$2.05 \cdot 10^{3}$	0.36	20	0.96	1232403	94233	58000	511826	1443746	635699
/ 14	8	5	2008	$6.56 \cdot 10^{3}$	0.24	24	0.98	2026755	81200	69600	747378	3319701	1383076
/(21	14	6	2009	$1.46 \cdot 10^{4}$	0.07	24	0.98	2260327	0	69600	733670	5510428	2116746
$\checkmark 29$	21	7	2010	$4.73 \cdot 10^{4}$	0.07	24	0.98	3654851	0	69600	1000578	9095679	3117324
$\checkmark 22$	14	6	2009	$4.28 \cdot 10^{4}$	0.17	34	0.99	6643721	178938	100050	2119551	9684434	3502627
, 30	22	7	2010	$2.47 \cdot 10^{5}$	0.17	44	0.92	17872432	137833	129050	4905692	27289983	8408320
13	8	5	2008	$2.69 \cdot 10^{3}$	0.12	20	0.96	809698	0	58000	302090	2195444	937789
20	13	6	2009	$1.01 \cdot 10^{4}$	0.12	22	0.97	1538034	34083	63800	480021	3635595	1417810
28	20	7	2010	$3.82 \cdot 10^{4}$	0.12	22	0.97	2910958	0	63800	794590	6482753	2212399
9	5	4	2007	$4.35 \cdot 10^{3}$	0.16	25	0.99	2692801	212025	72500	1140948	2771852	1264821
15	9	5	2008	$1.93 \cdot 10^{4}$	0.16	29	1.00	6024850	81200	84100	2348295	8631402	3613116
23	15	6	2009	$7.28 \cdot 10^{4}$	0.16	33	0.99	11365642	76688	97150	3742976	19823207	7356092
(31	23	7	2010	$3.63 \cdot 10^{5}$	0.12	41	0.62	17715333	110267	120350	4873509	37307923	12229601
$\square 32$	23	7	2010	$1.60 \cdot 10^{6}$	0.04	33	0.17	21207294	0	97150	5891454	40933351	13247546
\checkmark	3	3	2006	$1.48 \cdot 10^{3}$	0.18	14	0.82	1521830	160900	40600	745457	1277145	658765
10	6	4	2007	$6.34 \cdot 10^{3}$	0.18	14	0.82	3266150	0	40600	1555531	4502694	2214296
16	10	5	2008	$3.24 \cdot 10^{4}$	0.18	14	0.82	8338849	0	40600	3334880	12800943	5549177
24	16	6	2009	$1.38 \cdot 10^{5}$	0.18	16	0.63	13629181	34083	46400	4535148	26349641	10084325
(34	24	7	2010	$1.57 \cdot 10^{6}$	0.05	17	0.09	10794381	13783	49300	2994139	37080938	13078464
- 33	24	7	2010	$5.23 \cdot 10^{5}$	0.13	23	0.30	12421590	96483	66700	3415711	38608047	13500036

Table A.8.: Results of Berlin planning scenario using the scenario tree with 32 nodes, a construction limit of 10, and optimization for AV@R

	node	father	stage	year	$\mathrm{KiB} / \mathrm{cap}$	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF	aggCFDis
	1	1	1	2004	$2.38 \cdot 10^{1}$	1.00	5	0.53	63136	166667	14500	-126137	-118031	-126137
	/ 2	1	2	2005	$5.43 \cdot 10^{1}$	0.29	5	0.53	72119	0	14500	40013	-60412	-86124
		2	3	2006	$1.86 \cdot 10^{2}$	0.29	6	0.59	137797	26817	17400	51052	33169	-35072
	, 7	4	4	2007	$9.64 \cdot 10^{2}$	0.29	16	0.91	549741	235583	46400	106405	300926	71333
	- 11	7	5	2008	$1.07 \cdot 10^{4}$	0.09	26	0.99	3302493	203000	75400	1198999	3325019	1270332
	17	11	6	2009	$5.64 \cdot 10^{4}$	0.09	30	0.99	8802823	68167	87000	2891517	11972675	4161848
	25	17	7	2010	$1.50 \cdot 10^{5}$	0.09	40	0.99	11669351	137833	116000	3178168	23388193	7340017
	12	7	5	2008	$3.79 \cdot 10^{3}$	0.20	19	0.95	1128951	60900	55100	402187	1313877	473520
	(19	12	6	2009	$9.58 \cdot 10^{3}$	0.13	21	0.97	1451425	34083	60900	451987	2670319	925507
	\} 2 7	19	7	2010	$7.50 \cdot 10^{4}$	0.13	26	0.98	5777811	68917	75400	1568358	8303813	2493865
	$\checkmark 18$	12	6	2009	$3.76 \cdot 10^{3}$	0.07	19	0.95	560461	0	55100	169244	1819238	642765
	26	18	7	2010	$1.12 \cdot 10^{4}$	0.07	19	0.95	834671	0	55100	217564	2598809	860328
	- 3	1	2	2005	$1.09 \cdot 10^{2}$	0.70	8	0.69	188270	90225	23200	39445	-43185	-86692
	/ 5	3	3	2006	$5.88 \cdot 10^{2}$	0.52	16	0.90	667695	214533	46400	210564	363576	123872
	//18	5	4	2007	$2.05 \cdot 10^{3}$	0.36	20	0.96	1232403	94233	58000	511826	1443746	635699
	// 14	8	5	2008	$6.56 \cdot 10^{3}$	0.24	24	0.98	2026755	81200	69600	747378	3319701	1383076
	///(21	14	6	2009	$1.46 \cdot 10^{4}$	0.24 0.07	24	0.98	2260327	0	69600	733670	5510428	2116746
	/	21	7	2010	$4.73 \cdot 10^{4}$	0.07	24	0.98	3654851	0	69600	1000578	9095679	3117324
	- 22	14	6	2009	$4.28 \cdot 10^{4}$	0.17	34	0.99	6634822	170417	98600	2120481	9685506	3503557
	- 30	22	7	2010	$2.47 \cdot 10^{5}$	0.17	44	0.89	17385994	137833	127600	4770341	26806067	8273898
	13	8	5	2008	$2.69 \cdot 10^{3}$	0.12	20	0.96	809698	0	58000	302090	2195444	937789
	20	13	6	2009	$1.01 \cdot 10^{4}$	0.12	22	0.97	1538034	34083	63800	480021	3635595	1417810
	28	20	7	2010	$3.82 \cdot 10^{4}$	0.12	22	0.97	2910958	0	63800	794590	6482753	2212399
	9	5	4	2007	$4.35 \cdot 10^{3}$	0.16	19	0.91	2481709	82454	56550	1121824	2706280	1245696
	15	9	5	2008	$1.93 \cdot 10^{4}$	0.16	23	0.93	5648678	91350	69600	2198053	8194009	3443748
	, 23	15	6	2009	$7.28 \cdot 10^{4}$	0.16	29	0.91	10445753	102250	87000	3428033	18450512	6871782
	(31	23	7	2010	$3.63 \cdot 10^{5}$	0.12	39	0.67	19246770	137833	116000	5292887	37443449	12164669
	$\checkmark 32$	23	7	2010	$1.60 \cdot 10^{6}$	0.04	39	0.20	24919639	137833	116000	6876080	43116318	13747862
	\checkmark	3	3	2006	$1.48 \cdot 10^{3}$	0.18	18	0.82	1516976	268167	52200	661444	1153424	574752
	10	6	4	2007	$6.34 \cdot 10^{3}$	0.18	28	0.90	3574115	235583	81200	1548136	4410755	2122888
	16	10	5	2008	$3.24 \cdot 10^{4}$	0.18	38	0.95	9623932	213150	111650	3719981	13709888	5842869
	24	16	6	2009	$1.38 \cdot 10^{5}$	0.18	48	0.97	21075040	178938	142100	6938488	34463890	12781357
$\stackrel{\rightharpoonup}{\square}$	(34	24	7	2010	$1.57 \cdot 10^{6}$	0.05	58	0.28	34243390	137833	171100	9462791	68398347	22244148
ω	$\checkmark 33$	24	7	2010	$5.23 \cdot 10^{5}$	0.13	58	0.65	26837217	137833	171100	7395864	60992174	20177221

Table A.9.: Results of Berlin planning scenario using the scenario tree with 32 nodes, a construction limit of 10, mandatory coverage, and optimization for AV@R

node	father	stage	year	KiB/cap	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF	aggCFDis
1	1	1	2004	$2.45 \cdot 10^{1}$	1.00	6	0.53	65657	200000	17400	-159786	-151743	-159786
2	1	2	2005	$1.22 \cdot 10^{2}$	1.00	14	0.82	249981	240600	40600	-55096	-182961	-214882
3	2	3	2006	$6.02 \cdot 10^{2}$	1.00	24	0.96	726014	268167	69600	193643	205286	-21 239
4	3	4	2007	$2.98 \cdot 10^{3}$	1.00	34	0.99	1862121	235583	98600	714130	1733224	692891
5	4	5	2008	$1.48 \cdot 10^{4}$	1.00	44	1.00	4626532	203000	127600	1710123	6029156	2403014
6	5	6	2009	$7.31 \cdot 10^{4}$	1.00	54	1.00	11458443	170417	156600	3716478	17160582	6119491
7	6	7	2010	$3.62 \cdot 10^{5}$	1.00	64	0.97	27586205	137833	185600	7600846	44423353	13720337

Table A.10.: Results of Berlin planning scenario using the expected traffic evolution, a construction limit of 10 and mandatory coverage

node	father	stage	year	KiB/cap	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF	aggCFDis
1	1	1	2004	$2.45 \cdot 10^{1}$	1.00	6	0.53	65657	200000	17400	-159786	-151743	-159786
2	1	2	2005	$1.22 \cdot 10^{2}$	1.00	14	0.82	249981	240600	40600	-55096	-182961	-214882
3	2	3	2006	$6.02 \cdot 10^{2}$	1.00	24	0.96	726014	268167	69600	193643	205286	-21 239
4	3	4	2007	$2.98 \cdot 10^{3}$	1.00	34	0.99	1862121	235583	98600	714130	1733224	692891
5	4	5	2008	$1.48 \cdot 10^{4}$	1.00	44	1.00	4626532	203000	127600	1710123	6029156	2403014
6	5	6	2009	$7.31 \cdot 10^{4}$	1.00	54	1.00	11458443	170417	156600	3716478	17160582	6119491
7	6	7	2010	$3.62 \cdot 10^{5}$	1.00	64	0.97	27586205	137833	185600	7600846	44423353	13720337

Table A.11.: Results of Berlin planning scenario using the expected traffic evolution, a construction limit of 10

	node	father	stage	year	KiB/cap	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF	aggCFDis
	1	1	1	2004	$2.38 \cdot 10^{1}$	1.00	40	0.57	164314	4000000	348000	-4153071	-4183686	-4153 071
	/ 2	1	2	2005	$5.43 \cdot 10^{1}$	0.29	40	0.57	187692	0	348000	-111325	-4343994	-4264397
		2	3	2006	$1.86 \cdot 10^{2}$	0.29	40	0.57	322118	0	348000	-14978	-4369 876	-4279374
	, 7	4	4	2007	$9.64 \cdot 10^{2}$	0.29	40	0.57	833845	0	348000	234300	-3884031	-4045074
	/ 11	7	5	2008	$1.07 \cdot 10^{4}$	0.09	76	0.70	5665424	2192400	661200	953794	-1072 207	-3 091280
	- 17	11	6	2009	$5.64 \cdot 10^{4}$	0.09	119	0.80	16975733	2198375	1035300	4454941	12669851	1363661
	25	17	7	2010	$1.50 \cdot 10^{5}$	0.09	120	0.79	22198505	41350	1044000	5889986	33783006	7253647
	12	7	5	2008	$3.79 \cdot 10^{3}$	0.20	40	0.55	1564487	0	348000	488879	-2667543	-3556195
	(19	12	6	2009	$9.58 \cdot 10^{3}$	0.13	41	0.52	1884431	51125	356700	491088	-1190938	-3065107
	- 27	19	7	2010	$7.50 \cdot 10^{4}$	0.13	70	0.67	9479783	1199150	609000	2074080	6480695	-991028
	$\checkmark 18$	12	6	2009	$3.76 \cdot 10^{3}$	0.07	40	0.55	777265	0	348000	143760	-2238279	-3412435
	26	18	7	2010	$1.12 \cdot 10^{4}$	0.07	40	0.51	1078398	0	348000	203841	-1507880	-3208595
	3	1	2	2005	$1.09 \cdot 10^{2}$	0.70	40	0.57	375877	0	348000	19359	-4155809	-4133713
	/ 5	3	3	2006	$5.88 \cdot 10^{2}$	0.52	40	0.57	1016753	0	348000	387010	-3487057	-3746703
	$1 / 18$	5	4	2007	$2.05 \cdot 10^{3}$	0.36	40	0.57	1765495	0	348000	683592	-2069561	-3063112
	$/ / / 14$	8	5	2008	$6.56 \cdot 10^{3}$	0.24	46	0.56	2781919	365400	400200	780944	-53242	-2282168
	/// 21	14	6	2009	$1.46 \cdot 10^{4}$	0.07	49	0.57	3140631	153375	426300	847386	2507714	-1434781
	/	21	7	2010	$4.73 \cdot 10^{4}$	0.07	49	0.57	5044430	0	426300	1288835	7125844	-145946
	- ${ }^{-} 22$	14	6	2009	$4.28 \cdot 10^{4}$	0.17	115	0.80	12867855	3527625	1000500	2556680	8286488	274512
	- 30	22	7	2010	$2.47 \cdot 10^{5}$	0.17	163	0.82	38455049	1984800	1418100	9671627	43338637	9946140
	13	8	5	2008	$2.69 \cdot 10^{3}$	0.12	40	0.57	1148836	0	348000	321838	-1268725	-2741273
	20	13	6	2009	$1.01 \cdot 10^{4}$	0.12	40	0.52	1970733	0	348000	543450	354008	-2197823
	28	20	7	2010	$3.82 \cdot 10^{4}$	0.12	41	0.52	3726738	41350	356700	926668	3682696	-1271156
	${ }^{1}$	5	4	2007	$4.35 \cdot 10^{3}$	0.16	57	0.65	4261512	1201475	495900	1120680	-922919	-2626023
	15	9	5	2008	$1.93 \cdot 10^{4}$	0.16	142	0.84	12197271	5176500	1235400	1908947	4862452	-717076
	, 23	15	6	2009	$7.28 \cdot 10^{4}$	0.16	242	0.91	24840456	5112500	2105400	5559325	22485007	4842249
	(31	23	7	2010	$3.63 \cdot 10^{5}$	0.12	269	0.87	59650728	1116450	2340300	15620392	78678985	20462641
	32	23	7	2010	$1.60 \cdot 10^{6}$	0.04	342	0.52	157597838	4135000	2975400	41767482	172972446	46609731
	6	3	3	2006	$1.48 \cdot 10^{3}$	0.18	41	0.58	2591040	80450	356700	1237153	-2001920	-2896560
	10	6	4	2007	$6.34 \cdot 10^{3}$	0.18	84	0.74	7093357	3039025	730800	1309668	1321612	-1586893
	16	10	5	2008	$3.24 \cdot 10^{4}$	0.18	172	0.87	21282161	5359200	1496400	5366963	15748173	3780070
	24	16	6	2009	$1.38 \cdot 10^{5}$	0.18	272	0.92	47734497	5112500	2366400	13139085	56003770	16919155
$\stackrel{\rightharpoonup}{\square}$	(34	24	7	2010	$1.57 \cdot 10^{6}$	0.05	372	0.55	162316321	4135000	3236400	43011483	210948691	59930638
	$\checkmark 3$	24	7	2010	$5.23 \cdot 10^{5}$	0.13	327	0.85	84050574	2274250	2844900	21901371	134935194	38820527

Table A.12.: Results of Hamburg planning scenario using the scenario tree with 34 nodes, a construction limit of 100, mandatory coverage, and optimization for expected profit

Table A.13.: Results of Hamburg planning scenario using the scenario tree with 34 nodes, a construction limit of 60, mandatory coverage, and optimization for expected profit

	node	father	stage	year	KiB/cap	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF	aggCFDis
	, 1	1	1	2004	$2.38 \cdot 10^{1}$	1.00	40	0.58	165478	4000000	348000	-4152101	-4182522	-4152101
	/ 2	1	2	2005	$5.43 \cdot 10^{1}$	0.29	40	0.58	189022	0	348000	-110402	-4341500	-4262503
		2	3	2006	$1.86 \cdot 10^{2}$	0.29	40	0.58	324400	0	348000	-13657	-4365100	-4276160
	, 7	4	4	2007	$9.64 \cdot 10^{2}$	0.29	40	0.58	839752	0	348000	237149	-3873348	-4039 011
	- 11	7	5	2008	$1.07 \cdot 10^{4}$	0.09	76	0.71	5667060	2192400	661200	954451	-1059888	-3084560
	17	11	6	2009	$5.64 \cdot 10^{4}$	0.09	120	0.80	16980117	2249500	1044000	4432950	12626730	1348390
	25	17	7	2010	$1.50 \cdot 10^{5}$	0.09	121	0.79	22258213	41350	1052700	5904222	33790893	7252611
	112	7	5	2008	$3.79 \cdot 10^{3}$	0.20	40	0.55	1578496	0	348000	494509	-2642851	-3544502
	(19	12	6	2009	$9.58 \cdot 10^{3}$	0.13	40	0.52	1873628	0	348000	510930	-1117223	-3033573
	, 27	19	7	2010	$7.50 \cdot 10^{4}$	0.13	70	0.67	9499766	1240500	609000	2065809	6533043	-967764
	$\checkmark 18$	12	6	2009	$3.76 \cdot 10^{3}$	0.07	40	0.55	784219	0	348000	146089	-2206632	-3398414
	26	18	7	2010	$1.12 \cdot 10^{4}$	0.07	40	0.51	1079861	0	348000	204249	-1474771	-3194165
	3	1	2	2005	$1.09 \cdot 10^{2}$	0.70	40	0.58	378540	0	348000	21208	-4151982	-4130893
	/, 5	3	3	2006	$5.88 \cdot 10^{2}$	0.52	40	0.58	1023956	0	348000	391178	-3476026	-3739715
	$1 / 18$	5	4	2007	$2.05 \cdot 10^{3}$	0.36	40	0.58	1778050	0	348000	689646	-2045976	-3050069
	/ 14	8	5	2008	$6.56 \cdot 10^{3}$	0.24	47	0.57	2804018	426300	408900	756960	-77158	-2293109
	/// 21	14	6	2009	$1.46 \cdot 10^{4}$	0.07	49	0.57	3142341	102250	426300	868505	2536633	-1424605
	- 29	21	7	2010	$4.73 \cdot 10^{4}$	0.07	49	0.57	5052498	0	426300	1291087	7162831	-133518
	- ${ }^{-1} 22$	14	6	2009	$4.28 \cdot 10^{4}$	0.17	115	0.75	12110908	3476500	1000500	2323726	7556750	30616
	- 30	22	7	2010	$2.47 \cdot 10^{5}$	0.17	215	0.85	39580619	4135000	1870500	9139399	41131869	9170015
	$\xrightarrow{13}$	8	5	2008	$2.69 \cdot 10^{3}$	0.12	40	0.57	1153071	0	348000	323540	-1240905	-2726529
	- 20	13	6	2009	$1.01 \cdot 10^{4}$	0.12	40	0.52	1986714	0	348000	548802	397809	-2177727
	28	20	7	2010	$3.82 \cdot 10^{4}$	0.12	40	0.52	3715859	0	348000	939908	3765668	-1237820
	9	5	4	2007	$4.35 \cdot 10^{3}$	0.16	135	0.74	4828796	6714125	1174500	-2123194	-6535856	-5862909
	15	9	5	2008	$1.93 \cdot 10^{4}$	0.16	235	0.81	11696989	6090000	2044500	942197	-2973367	-4920711
	, 23	15	6	2009	$7.28 \cdot 10^{4}$	0.16	335	0.90	24798902	5112500	2914500	5274443	13798535	353731
	(31	23	7	2010	$3.63 \cdot 10^{5}$	0.12	348	0.89	60930045	537550	3027600	15979485	71163430	16333217
	$\checkmark 32$	23	7	2010	$1.60 \cdot 10^{6}$	0.04	435	0.54	161189457	4135000	3784500	42544032	167068493	42897763
	6	3	3	2006	$1.48 \cdot 10^{3}$	0.18	138	0.73	3244694	7884100	1200600	-4292145	-9991988	-8423 038
	10	6	4	2007	$6.34 \cdot 10^{3}$	0.18	238	0.80	7613762	7067500	2070600	-1416782	-11516326	-9839820
	16	10	5	2008	$3.24 \cdot 10^{4}$	0.18	337	0.85	20697054	6029100	2931900	4231865	219728	-5607955
		16	6	2009	$1.38 \cdot 10^{5}$	0.18	437	0.92	47884445	5112500	3801900	12708556	39189773	7100601
	(34	24	7	2010	$1.57 \cdot 10^{6}$	0.05	468	0.57	169483185	1281850	4071600	45734049	203319508	52834650
	$\checkmark 33$	24	7	2010	$5.23 \cdot 10^{5}$	0.13	446	0.87	85920335	372150	3880200	22771264	120857758	29871865

Table A.14.: Results of Hamburg planning scenario using the scenario tree with 34 nodes, a construction limit of 100, mandatory coverage, and optimization for AV@R

Table A.15.: Results of Hamburg planning scenario using the scenario tree with 34 nodes, a construction limit of 60, mandatory coverage, and optimization for AV@R

node	father	stage	year	$\mathrm{KiB} / \mathrm{cap}$	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF	aggCFDis
1	1	1	2004	$2.38 \cdot 10^{1}$	1.00	40	0.58	164940	4000000	348000	-4152550	-4183060	-4152550
- 2	1	2	2005	$5.43 \cdot 10^{1}$	0.29	40	0.58	188406	0	348000	-110829	-4342654	-4263379
4	2	3	2006	$1.86 \cdot 10^{2}$	0.29	40	0.58	323345	0	348000	-14268	-4367309	-4277647
7	4	4	2007	$9.64 \cdot 10^{2}$	0.29	40	0.58	837020	0	348000	235831	-3878289	-4041816
11	7	5	2008	$3.79 \cdot 10^{3}$	0.29	40	0.55	1570684	0	348000	491369	-2655605	-3550446
(16	11	6	2009	$5.64 \cdot 10^{4}$	0.09	140	0.83	17628064	5112500	1218000	3441098	8641960	-109348
, 22	16	7	2010	$3.00 \cdot 10^{5}$	0.09	200	0.84	47358034	2481000	1740000	11900274	51778994	11790926
$\checkmark 17$	11	6	2009	$1.50 \cdot 10^{4}$	0.20	44	0.54	3052347	204500	382800	811842	-190558	-2738604
23	17	7	2010	$3.89 \cdot 10^{4}$	0.20	44	0.54	3976106	0	382800	1002826	3402748	-1735779
$\xrightarrow{1}$	1	2	2005	$1.09 \cdot 10^{2}$	0.70	40	0.58	377308	0	348000	20353	-4153752	-4132197
, 5	3	3	2006	$5.88 \cdot 10^{2}$	0.52	40	0.58	1020624	0	348000	389250	-3481128	-3742947
/ 8	5	4	2007	$2.05 \cdot 10^{3}$	0.36	40	0.57	1772243	0	348000	686846	-2056885	-3056102
/ 13	8	5	2008	$6.56 \cdot 10^{3}$	0.24	48	0.57	2838834	487200	417600	738086	-122852	-2318016
(19	13	6	2009	$4.28 \cdot 10^{4}$	0.24	116	0.80	12897164	3476500	1009200	2584128	8288613	266112
25	19	7	2010	$1.99 \cdot 10^{5}$	0.24	143	0.81	30361032	1116450	1244100	7752105	36289095	8018216
\checkmark	8	5	2008	$2.69 \cdot 10^{3}$	0.12	40	0.57	1149278	0	348000	322016	-1255608	-2734086
18	12	6	2009	$1.01 \cdot 10^{4}$	0.12	40	0.52	1973709	0	348000	544447	370101	-2189640
24	18	7	2010	$3.82 \cdot 10^{4}$	0.12	41	0.52	3747180	41350	356700	932373	3719231	-1257267
9	5	4	2007	$4.35 \cdot 10^{3}$	0.16	56	0.64	4227466	1130800	487200	1149357	-871662	-2593591
14	9	5	2008	$1.93 \cdot 10^{4}$	0.16	109	0.79	11441003	3227700	948300	2660214	6393341	66623
20	14	6	2009	$7.28 \cdot 10^{4}$	0.16	160	0.86	23534570	2607375	1392000	6367656	25928536	6434279
26	20	7	2010	$3.63 \cdot 10^{5}$	0.16	241	0.85	58231412	3349350	2096700	14544477	78713898	20978757
6	3	3	2006	$1.48 \cdot 10^{3}$	0.18	40	0.58	2563692	0	348000	1282229	-1938061	-2849969
10	6	4	2007	$6.34 \cdot 10^{3}$	0.18	84	0.74	7095401	3109700	730800	1269754	1316840	-1580215
15	10	5	2008	$3.24 \cdot 10^{4}$	0.18	149	0.85	20677654	3958500	1296300	5879932	16739694	4299718
21	15	6	2009	$1.38 \cdot 10^{5}$	0.18	225	0.90	46835239	3885500	1957500	13467969	57731933	17767686
27	21	7	2010	$5.23 \cdot 10^{5}$	0.18	312	0.84	83287785	3597450	2714400	21281774	134707868	39049461

Table A.16.: Results of Hamburg planning scenario using the scenario tree with 27 nodes, a construction limit of 100, mandatory coverage, and optimization for expected profit

Z

node	father	stage	year	KiB/cap	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF	aggCFDis
1	1	1	2004	$2.38 \cdot 10^{1}$	1.00	40	0.58	165346	4000000	348000	-4152212	-4182654	-4152212
2	1	2	2005	$5.43 \cdot 10^{1}$	0.29	40	0.58	188870	0	348000	-110507	-4341784	-4262718
- 4	2	3	2006	$1.86 \cdot 10^{2}$	0.29	40	0.58	324141	0	348000	-13807	-4365 643	-4276526
7	4	4	2007	$9.64 \cdot 10^{2}$	0.29	40	0.58	839080	0	348000	236825	-3874563	-4039701
, 11	7	5	2008	$3.79 \cdot 10^{3}$	0.29	42	0.57	1617980	121800	365400	444645	-2743783	-3595055
(16	11	6	2009	$5.64 \cdot 10^{4}$	0.09	102	0.76	16165950	3067500	887400	3883996	9467268	288941
22	16	7	2010	$3.00 \cdot 10^{5}$	0.09	162	0.79	44747393	2481000	1409400	11263957	50324261	11552897
17	11	6	2009	$1.50 \cdot 10^{4}$	0.20	44	0.54	3047789	102250	382800	851407	-181044	-2743648
23	17	7	2010	$3.89 \cdot 10^{4}$	0.20	44	0.54	3973997	0	382800	1002237	3410153	-1741411
3	1	2	2005	$1.09 \cdot 10^{2}$	0.70	40	0.58	378237	0	348000	20998	-4152417	-4131214
/, 5	3	3	2006	$5.88 \cdot 10^{2}$	0.52	40	0.58	1023136	0	348000	390704	-3477281	-3740510
/ 8	5	4	2007	$2.05 \cdot 10^{3}$	0.36	40	0.58	1776622	0	348000	688957	-2048659	-3051553
/ 13	8	5	2008	$6.56 \cdot 10^{3}$	0.24	53	0.60	2990898	791700	461100	634869	-310562	-2416684
(19	13	6	2009	$4.28 \cdot 10^{4}$	0.24	113	0.79	12799660	3067500	983100	2724583	8438498	307899
- 25	19	7	2010	$1.99 \cdot 10^{5}$	0.24	143	0.81	30334125	1240500	1244100	7703051	36288023	8010950
$\checkmark 12$	8	5	2008	$2.69 \cdot 10^{3}$	0.12	40	0.57	1152155	0	348000	323172	-1244505	-2728381
18	12	6	2009	$1.01 \cdot 10^{4}$	0.12	40	0.52	1976926	0	348000	545524	384422	-2182857
24	18	7	2010	$3.82 \cdot 10^{4}$	0.12	41	0.52	3744146	41350	356700	931526	3730518	-1251331
9	5	4	2007	$4.35 \cdot 10^{3}$	0.16	57	0.65	4263439	1201475	495900	1121609	-911217	-2618901
14	9	5	2008	$1.93 \cdot 10^{4}$	0.16	112	0.79	11526897	3349500	974400	2625505	6291780	6604
20	14	6	2009	$7.28 \cdot 10^{4}$	0.16	172	0.87	23843697	3067500	1496400	6251305	25571576	6257909
26	20	7	2010	$3.63 \cdot 10^{5}$	0.16	232	0.84	57678224	2481000	2018400	14702753	78750400	20960663
6	3	3	2006	$1.48 \cdot 10^{3}$	0.18	41	0.58	2603524	80450	356700	1244377	-1986044	-2886837
10	6	4	2007	$6.34 \cdot 10^{3}$	0.18	101	0.79	7518191	4240500	878700	747922	412948	-2138915
15	10	5	2008	$3.24 \cdot 10^{4}$	0.18	161	0.86	20997853	3654000	1400700	6113503	16356100	3974589
21	15	6	2009	$1.38 \cdot 10^{5}$	0.18	221	0.90	46578055	3067500	1922700	13722229	57943955	17696817
27	21	7	2010	$5.23 \cdot 10^{5}$	0.18	281	0.82	81142413	2481000	2444700	21132206	134160668	38829023

Table A.17.: Results of Hamburg planning scenario using the scenario tree with 27 nodes, a construction limit of 60 , mandatory coverage, and optimization for expected profit

node	father	stage	year	KiB/cap	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF	aggCFDis
1	1	1	2004	$2.38 \cdot 10^{1}$	1.00	40	0.58	165850	4000000	348000	-4151792	-4182150	-4151792
- 2	1	2	2005	$5.43 \cdot 10^{1}$	0.29	40	0.58	189446	0	348000	-110107	-4340705	-4261899
- 4	2	3	2006	$1.86 \cdot 10^{2}$	0.29	40	0.58	325128	0	348000	-13236	-4363577	-4275135
7	4	4	2007	$9.64 \cdot 10^{2}$	0.29	40	0.58	841636	0	348000	238058	-3869940	-4037078
, 11	7	5	2008	$3.79 \cdot 10^{3}$	0.29	40	0.55	1581570	0	348000	495744	-2636370	-3541333
(16	11	6	2009	$5.64 \cdot 10^{4}$	0.09	139	0.74	15791381	5061375	1209300	2849456	6884336	-691877
, 22	16	7	2010	$3.00 \cdot 10^{5}$	0.09	239	0.83	46804200	4135000	2079300	11097096	47474236	10405219
$\checkmark 17$	11	6	2009	$1.50 \cdot 10^{4}$	0.20	43	0.53	3018138	153375	374100	823845	-145707	-2717488
23	17	7	2010	$3.89 \cdot 10^{4}$	0.20	43	0.54	3923432	0	374100	990553	3403625	-1726935
3	1	2	2005	$1.09 \cdot 10^{2}$	0.70	40	0.58	379389	0	348000	21798	-4150762	-4129994
, 5	3	3	2006	$5.88 \cdot 10^{2}$	0.52	40	0.58	1026253	0	348000	392508	-3472509	-3737487
/,8	5	4	2007	$2.05 \cdot 10^{3}$	0.36	40	0.58	1782054	0	348000	691577	-2038455	-3045910
/ 13	8	5	2008	$6.56 \cdot 10^{3}$	0.24	48	0.57	2830610	487200	417600	734781	-112644	-2311129
(19	13	6	2009	$4.28 \cdot 10^{4}$	0.24	117	0.80	12903413	3527625	1017900	2562761	8245244	251632
25	19	7	2010	$1.99 \cdot 10^{5}$	0.24	144	0.81	30380710	1116450	1252800	7755168	36256704	8006801
${ }^{+12}$	8	5	2008	$2.69 \cdot 10^{3}$	0.12	40	0.57	1155724	0	348000	324606	-1230731	-2721304
18	12	6	2009	$1.01 \cdot 10^{4}$	0.12	40	0.52	1978502	0	348000	546052	399771	-2175252
24	18	7	2010	$3.82 \cdot 10^{4}$	0.12	41	0.52	3755211	41350	356700	934614	3756932	-1240638
9	5	4	2007	$4.35 \cdot 10^{3}$	0.16	140	0.74	4840860	7067500	1218000	-2342853	-6917149	-6080340
14	9	5	2008	$1.93 \cdot 10^{4}$	0.16	240	0.81	11825380	6090000	2088000	976313	-3269769	-5104026
20	14	6	2009	$7.28 \cdot 10^{4}$	0.16	340	0.88	24127762	5112500	2958000	5035111	12787493	-68915
26	20	7	2010	$3.63 \cdot 10^{5}$	0.16	439	0.90	61410543	4093650	3819300	14701704	66285086	14632789
6	3	3	2006	$1.48 \cdot 10^{3}$	0.18	139	0.73	3250096	7964550	1209300	-4349921	-10074516	-8479915
10	6	4	2007	$6.34 \cdot 10^{3}$	0.18	239	0.81	7695825	7067500	2079300	-1381402	-11525491	-9861318
15	10	5	2008	$3.24 \cdot 10^{4}$	0.18	339	0.86	20953232	6090000	2949300	4298455	388441	-5562862
21	15	6	2009	$1.38 \cdot 10^{5}$	0.18	439	0.92	47721129	5112500	3819300	12648035	39177770	7085172
27	21	7	2010	$5.23 \cdot 10^{5}$	0.18	461	0.87	85335545	909700	4010700	22391615	119592915	29476787

Table A.18.: Results of Hamburg planning scenario using the scenario tree with 27 nodes, a construction limit of 100, mandatory
coverage, and optimization for AV@R coverage, and optimization for AV@R

node	father	stage	year	KiB/cap	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF	aggCFDis
1	1	1	2004	$2.38 \cdot 10^{1}$	1.00	40	0.58	165781	4000000	348000	-4151849	-4182219	-4151849
2	1	2	2005	$5.43 \cdot 10^{1}$	0.29	40	0.58	189368	0	348000	-110161	-4340851	-4262010
	2	3	2006	$1.86 \cdot 10^{2}$	0.29	40	0.58	324994	0	348000	-13313	-4363857	-4275324
7	4	4	2007	$9.64 \cdot 10^{2}$	0.29	40	0.58	841290	0	348000	237891	-3870567	-4037433
	7	5	2008	$3.79 \cdot 10^{3}$	0.29	40	0.55	1579080	0	348000	494743	-2639487	-3542690
16	11	6	2009	$5.64 \cdot 10^{4}$	0.09	99	0.68	14390151	3016375	861300	3318571	7872989	-224118
- 22	16	7	2010	$3.00 \cdot 10^{5}$	0.09	159	0.74	41685867	2481000	1383300	10416825	45694555	10192706
$\stackrel{\downarrow}{ }{ }^{17}$	11	6	2009	$1.50 \cdot 10^{4}$	0.20	43	0.53	3016076	153375	374100	823154	-150886	-2719535
23	17	7	2010	$3.89 \cdot 10^{4}$	0.20	43	0.53	3918962	0	374100	989306	3393976	-1730229
3	1	2	2005	$1.09 \cdot 10^{2}$	0.70	40	0.58	379233	0	348000	21689	-4150986	-4130160
, 5	3	3	2006	$5.88 \cdot 10^{2}$	0.52	40	0.58	1025831	0	348000	392263	-3473155	-3737896
/ $/ 1 \begin{aligned} & 8 \\ & 13\end{aligned}$	5	4	2007	$2.05 \cdot 10^{3}$	0.36	40	0.58	1781318	0	348000	691222	-2039837	-3046674
/ 13	8	5	2008	$6.56 \cdot 10^{3}$	0.24	52	0.60	2962357	730800	452400	656265	-260 680	-2390409
19	13	6	2009	$4.28 \cdot 10^{4}$	0.24	112	0.79	12769146	3067500	974400	2717277	8466565	326868
$\checkmark 25$	19	7	2010	$1.99 \cdot 10^{5}$	0.24	143	0.81	30333037	1281850	1244100	7688899	36273652	8015767
$\checkmark 12$	8	5	2008	$2.69 \cdot 10^{3}$	0.12	40	0.57	1155240	0	348000	324412	-1232597	-2722263
18	12	6	2009	$1.01 \cdot 10^{4}$	0.12	40	0.52	1972342	0	348000	543989	391744	-2178274
24	18	7	2010	$3.82 \cdot 10^{4}$	0.12	41	0.52	3738799	41350	356700	930034	3732493	-1248241
	5	4	2007	$4.35 \cdot 10^{3}$	0.16	99	0.68	4427575	4169825	861300	-693246	-4076706	-4431143
14	9	5	2008	$1.93 \cdot 10^{4}$	0.16	158	0.73	10525161	3593100	1374600	1944622	1480755	-2486521
20	14	6	2009	$7.28 \cdot 10^{4}$	0.16	218	0.79	21571271	3067500	1896600	5356248	18087926	2869727
26	20	7	2010	$3.63 \cdot 10^{5}$	0.16	278	0.79	53983256	2481000	2418600	13559867	67171582	16429594
6	3	3	2006	$1.48 \cdot 10^{3}$	0.18	100	0.70	3104299	4827000	870000	-2059 086	-6743687	-6189246
10	6	4	2007	$6.34 \cdot 10^{3}$	0.18	160	0.75	7158496	4240500	1392000	326917	-5217691	-5862329
15	10	5	2008	$3.24 \cdot 10^{4}$	0.18	220	0.78	19003864	3654000	1914000	5105880	8218173	-756448
21	15	6	2009	$1.38 \cdot 10^{5}$	0.18	280	0.81	42354680	3067500	2436000	12135926	45069352	11379477
27	21	7	2010	$5.23 \cdot 10^{5}$	0.18	340	0.76	75234213	2481000	2958000	19340083	114864565	30719560

Table A.19.: Results of Hamburg planning scenario using the scenario tree with 27 nodes, a construction limit of 60 , mandatory coverage, and optimization for AV@R

node	father	stage	year	$\mathrm{KiB} / \mathrm{cap}$	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF	aggCFDis
1	1	1	2004	$2.45 \cdot 10^{1}$	1.00	40	0.58	170146	4000000	348000	-4148212	-4177854	-4148212
2	1	2	2005	$1.22 \cdot 10^{2}$	1.00	40	0.58	421397	0	348000	50970	-4104457	-4097242
3	2	3	2006	$6.02 \cdot 10^{2}$	1.00	40	0.58	1043665	0	348000	402584	-3408792	-3694658
4	3	4	2007	$2.98 \cdot 10^{3}$	1.00	41	0.57	2550341	70675	356700	1016990	-1285826	-2677667
5	4	5	2008	$1.48 \cdot 10^{4}$	1.00	91	0.74	8282645	3045000	791700	1541982	3160119	-1135685
6	5	6	2009	$7.31 \cdot 10^{4}$	1.00	159	0.86	23581856	3476500	1383300	6037124	21882174	4901439
7	6	7	2010	$3.62 \cdot 10^{5}$	1.00	241	0.85	58067368	3390700	2096700	14484848	74462143	19386286

Table A.20.: Results of annual Hamburg planning scenario using the expected traffic evolution, a construction limit of 100, mandatory coverage

node	father	stage	year	KiB/cap	prob	totSites	coverPop	inco	capE	opE	CFDis
1	1	1	2004	$2.45 \cdot 10^{1}$	1.00	0	0.00	0	0	0	0
2	1	2	2005	$1.22 \cdot 10^{2}$	1.00	0	0.00	0	0	0	0
3	2	3	2006	$6.02 \cdot 10^{2}$	1.00	0	0.00	0	0	0	0
4	3	4	2007	$2.98 \cdot 10^{3}$	1.00	41	0.57	2550356	2897675	356700	-618998
5	4	5	2008	$1.48 \cdot 10^{4}$	1.00	89	0.74	8274983	2923200	774300	1604634
6	5	6	2009	$7.31 \cdot 10^{4}$	1.00	156	0.85	23504036	3425375	1357200	6040349
7	6	7	2010	$3.62 \cdot 10^{5}$	1.00	240	0.85	58028753	3473400	2088000	14448803

Table A.21.: Results of annual Hamburg planning scenario using the expected traffic evolution, a construction limit of 100

Table A.22.: Results of annual Hamburg planning scenario using the expected traffic evolution, a construction limit of 60, mandatory coverage

node	father	stage	year	KiB/cap	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF
1	1	1	2004	$2.45 \cdot 10^{1}$	1.00	0	0.00	0	0	0	0	0
2	1	2	2005	$1.22 \cdot 10^{2}$	1.00	0	0.00	0	0	0	0	0
3	2	3	2006	$6.02 \cdot 10^{2}$	1.00	0	0.00	0	0	0	0	0
4	3	4	2007	$2.98 \cdot 10^{3}$	1.00	42	0.57	2581719	2968350	365400	-648969	-752031
5	4	5	2008	$1.48 \cdot 10^{4}$	1.00	102	0.78	8645923	3654000	887400	1355824	3352492
6	5	6	2009	$7.31 \cdot 10^{4}$	1.00	162	0.86	23644214	3067500	1409400	6213635	22519807
7	6	7	2010	$3.62 \cdot 10^{5}$	1.00	222	0.83	56914708	2481000	1931400	14513950	7502045

Table A.23.: Results of annual Hamburg planning scenario using the expected traffic evolution, a construction limit of 60

node	father	stage	year	Kib/cap	prob	totSites	coverPop	inco	cape	opE	CFDis	aggCF	aggCFDis
1	1	1	2004	$1.06 \cdot 10^{4}$	1.00	25	0.33	0	1196667	54375	-1248619	-1251042	-1248619
2	1	2	2005	$1.06 \cdot 10^{4}$	0.29	50	0.58	966580	1115208	108750	-282430	-1508420	-1531048
4	2	3	2006	$1.42 \cdot 10^{4}$	0.29	65	0.65	1223414	620250	141375	377541	-1046631	-1153507
7	4	4	2007	$2.00 \cdot 10^{4}$	0.29	66	0.66	1473310	38092	143550	1074910	245037	-78597
11	7	5	2008	$1.33 \cdot 10^{4}$	0.09	66	0.65	810236	0	143550	530817	911724	452220
17	11	6	2009	$1.73 \cdot 10^{4}$	0.09	66	0.65	893284	0	143550	570342	1661458	1022563
24	17	7	2010	$2.31 \cdot 10^{4}$	0.09	66	0.64	990472	0	143550	615569	2508380	1638131
33	24	8	2011	$2.71 \cdot 10^{4}$	0.09	66	0.65	985265	0	143550	584525	3350096	2222656
43	33	9	2012	$5.44 \cdot 10^{4}$	0.09	66	0.65	1658910	0	143550	1005444	4865456	3228100
12	7	5	2008	$2.85 \cdot 10^{4}$	0.20	91	0.74	1984335	870833	197925	696649	1160614	618052
18	12	6	2009	$5.89 \cdot 10^{4}$	0.20	113	0.79	3685985	694650	245775	2063974	3906173	2682027
25	18	7	2010	$8.04 \cdot 10^{4}$	0.20	116	0.79	4250604	84950	252300	2841463	7819527	5523490
35	25	8	2011	$6.85 \cdot 10^{4}$	0.08	116	0.80	3052691	-	252300	1944716	10619918	7468206
45	35	9	2012	$1.05 \cdot 10^{5}$	0.08	116	0.79	3897213	0	252300	2418407	14264831	9886613
34	25	8	2011	$1.47 \cdot 10^{5}$	0.12	141	0.82	6746306	626458	306675	4016637	13632700	9540127
44	34	9	2012	$2.72 \cdot 10^{5}$	0.12	148	0.78	10054465	152600	321900	6351604	23212665	15891731
3	1	2	2005	$1.63 \cdot 10^{4}$	0.70	50	0.57	1471489	1115208	108750	178487	-1003511	-1070 132
5	3	3	2006	2.67. 10^{4}	0.49	75	0.68	2410362	1033750	163125	1016351	209976	-53781
8	5	4	2007	1.46-10 ${ }^{4}$	0.11	76	0.69	1131189	38092	165300	771684	1137774	717903
13	8	5	2008	$2.09 \cdot 10^{4}$	0.11	82	0.72	1409971	209000	178350	806453	2160395	1524356
19	13	6	2009	$2.75 \cdot 10^{4}$	0.11	88	0.73	1585893	189450	191400	909987	3365438	2434343
26	19	7	2010	$3.66 \cdot 10^{4}$	0.11	90	0.73	1786982	56633	195750	1113473	4900037	3547815
36	26	8	2011	$5.83 \cdot 10^{4}$	0.11	90	0.73	2395103	0	195750	1527328	7099389	5075143
47	36	9	2012	$3.13 \cdot 10^{5}$	0.03	115	0.68	9989663	545000	250125	6083730	16293927	11158873
46	36	9	2012	$7.44 \cdot 10^{4}$	0.08	90	0.73	2564841	0	195750	1571896	9468480	6647040
9	5	4	2007	$3.02 \cdot 10^{4}$	0.38	96	0.76	2555198	799925	208800	1257640	1756449	1203859
14	9	5	2008	$2.85 \cdot 10^{4}$	0.13	97	0.75	2018449	34833	210975	1410087	3529090	2613947
20	14	6	2009	$4.05 \cdot 10^{4}$	0.13	98	0.75	2421243	31575	213150	1654613	5705608	4268560
27	20	7	2010	$4.39 \cdot 10^{4}$	0.13	98	0.75	2204496	0	213150	1447370	7696954	5715930
37	27	8	2011	$6.67 \cdot 10^{4}$	0.13	98	0.75	2817632	0	213150	1808668	10301436	7524598
48	37	9	2012	$1.08 \cdot 10^{5}$	0.13	99	0.75	3834872	21800	215325	2386438	13899183	9911036
15	9	5	2008	$5.25 \cdot 10^{4}$	0.25	121	0.80	3951725	870833	263175	2211138	4574166	3414997
21	15	6	2009	$8.44 \cdot 10^{4}$	0.25	136	0.83	5523960	473625	295800	3600095	9328701	7015092
29	21	7	2010	$1.28 \cdot 10^{5}$	0.17	161	0.85	7243621	707917	350175	4471832	15514230	11486924
39	29	8	2011	$2.47 \cdot 10^{5}$	0.17	186	0.85	11726726	626458	404550	7407293	26209948	18894218
50	39		2012	$3.69 \cdot 10^{5}$	0.17	197	0.80	13883376	239800	428475	8760825	39425049	27655043
28	21	7	2010	$7.03 \cdot 10^{4}$	0.08	136	0.82	3860001	0	295800	2590568	12892903	9605660
38	28	8	2011	$8.34 \cdot 10^{4}$	0.08	136	0.83	3856497	0	295800	2472706	16453599	12078366
49	38	9	2012	$1.10 \cdot 10^{5}$	0.08	136	0.82	4267443	0	295800	2635193	20425243	14713559
6	3	3	2006	$4.39 \cdot 10^{4}$	0.21	75	0.68	3999155	1033750	163125	2402089	1798769	1331958
10	6	4	2007	$5.94 \cdot 10^{4}$	0.21	100	0.76	5053960	952292	217500	3199798	5682937	4531756
16	10	5	2008	$8.50 \cdot 10^{4}$	0.21	125	0.81	6466014	870833	271875	4206093	11006242	8737849
22	16	6	2009	1.12 $\cdot 10^{5}$	0.14	139	0.82	7338254	442050	302325	5000451	17600121	13738300
30	22	7	2010	$1.32 \cdot 10^{5}$	0.09	164	0.85	7446056	707917	356700	4614226	23981560	18352526
40	30	8	2011	$2.25 \cdot 10^{5}$	0.09	189	0.86	10805214	626458	411075	6762823	33749241	25115349
51	40		2012	3.69-105	0.09	201	0.80	13944570	261600	437175	8780516	46995035	33895865
31	22	7	2010	$6.05 \cdot 10^{4}$	0.06	139	0.83	3355803	0	302325	2219359	20653599	15957659
41	31	8	2011	$7.74 \cdot 10^{4}$	0.06	139	0.82	3572198	0	302325	2270745	23923472	18228405
52	41	9	2012	$1.14 \cdot 10^{5}$	0.06	139	0.82	4441586	0	302325	2746408	28062734	20974813
23	16	6	2009	$2.37 \cdot 10^{5}$	0.07	150	0.81	15152503	789375	326250	10650211	25043120	19388060
32	23	7	2010	$3.62 \cdot 10^{5}$	0.07	175	0.77	18655429	707917	380625	12744145	42610008	32132204
42	32		2011	$4.77 \cdot 10^{5}$	0.07	200	0.76	20181034	626458	435000	13257195	61729583	45389399
53	42	9	2012	$5.26 \cdot 10^{5}$	0.07	225	0.76	18950228	545000	489375	11870340	79645436	57259739

Table A.24.: Results of quarterly Hamburg planning scenario using the scenario tree with 53 nodes, a construction limit of 100, mandatory coverage, and optimization for the expected profit

node	father	stage	year	Kib/cap	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF	aggCFDis
1	1	1	2004	$1.06 \cdot 10^{4}$	1.00	15	0.19	0	718000	32625	-749171	-750625	-749171
2	1	2	2005	$1.06 \cdot 10^{4}$	0.29	30	0.37	0	669125	65250	-698875	-1485000	-1448047
4	2	3	2006	$1.42 \cdot 10^{4}$	0.29	45	0.54	1025734	620250	97875	243067	-1177391	-1204980
7	4	4	2007	$2.00 \cdot 10^{4}$	0.29	60	0.63	1417097	571375	130500	573813	-462169	-631167
11	7	5	2008	$1.33 \cdot 10^{4}$	0.09	60	0.62	774472	0	130500	512732	181803	-118435
17	11	6	2009	1.73 $\cdot 10^{4}$	0.09	60	0.63	857682	0	130500	553186	908986	434752
24	17	7	2010	$2.31 \cdot 10^{4}$	0.09	60	0.62	946663	-	130500	593212	1725149	1027964
33	24	8	2011	$2.71 \cdot 10^{4}$	0.09	60	0.62	945383	0	130500	565891	2540032	1593854
43	33	9	2012	$5.44 \cdot 10^{4}$	0.09	60	0.62	1591673	0	130500	969491	4001205	2563346
12	7	5	2008	$2.85 \cdot 10^{4}$	0.20	75	0.69	1853031	522500	163125	910091	705237	278924
18	12	6	2009	$5.89 \cdot 10^{4}$	0.20	90	0.74	3457049	473625	195750	2103853	3492911	2382776
25	18	7	2010	$8.04 \cdot 10^{4}$	0.20	105	0.78	4150608	424750	228375	2527678	6990394	4910455
35	25	8	2011	$6.85 \cdot 10^{4}$	0.08	105	0.77	2967496	0	228375	1902167	9729515	6812622
45	35	9	2012	$1.05 \cdot 10^{5}$	0.08	105	0.77	3788472	0	228375	2362131	13289612	9174753
34	25	8	2011	$1.47 \cdot 10^{5}$	0.12	120	0.79	6509375	375875	261000	4065952	12862894	8976407
44	34	9	2012	$2.72 \cdot 10^{5}$	0.12	135	0.76	9736709	327000	293625	6038421	21978978	15014828
3	1	2	2005	$1.63 \cdot 10^{4}$	0.70	30	0.40	-	669125	65250	-698875	-1485000	-1448047
5	3	3	2006	$2.67 \cdot 10^{4}$	0.49	45	0.54	1906709	620250	97875	1011449	-296416	-436598
8	5	4	2007	$1.46 \cdot 10^{4}$	0.11	60	0.63	1027800	571375	130500	249399	29509	-187199
13	8	5	2008	$2.09 \cdot 10^{4}$	0.11	75	0.70	1374954	522500	163125	529445	718838	342246
19	13	6	2009	$2.75 \cdot 10^{4}$	0.11	84	0.72	1562812	284175	182700	823626	1814775	1165872
26	19	7	2010	$3.66 \cdot 10^{4}$	0.11	87	0.73	1777703	84950	189225	1089930	3318303	2255801
36	26	8	2011	$5.83 \cdot 10^{4}$	0.11	88	0.73	2376442	25058	191400	1499177	5478286	3754979
47	36	9	2012	$3.13 \cdot 10^{5}$	0.03	103	0.64	9499409	327000	224025	5927152	14426671	9682131
46	36	9	2012	$7.44 \cdot 10^{4}$	0.08	88	0.73	2551708	0	191400	1566069	7838594	5321047
9	5	4	2007	3.02 $\cdot 10^{4}$	0.38	60	0.63	2119139	571375	130500	1158848	1120848	722251
14	9	5	2008	$2.85 \cdot 10^{4}$	0.13	75	0.69	1843285	522500	163125	902331	2278508	1624582
20	14	6	2009	$4.05 \cdot 10^{4}$	0.13	85	0.73	2333312	315750	184875	1382970	4111195	3007552
27	20		2010	$4.39 \cdot 10^{4}$	0.13	85	0.73	2121735	0	184875	1407768	6048055	4415320
37	27	8	2011	6.67 10^{4}	0.13	86	0.72	2694251	25058	187050	1722899	8530198	6138219
48	37	9	2012	$1.08 \cdot 10^{5}$	0.13	86	0.72	3669977	0	187050	2310929	12013125	8449148
15	9	5	2008	$5.25 \cdot 10^{4}$	0.25	75	0.69	3388364	522500	163125	2132526	3823587	2854777
21	15	6	2009	$8.44 \cdot 10^{4}$	0.25	90	0.74	4961671	473625	195750	3248458	8115883	6103235
29	21	7	2010	$1.28 \cdot 10^{5}$	0.17	105	0.76	6506210	424750	228375	4239800	13968968	10343035
39	29		2011	$2.47 \cdot 10^{5}$	0.17	120	0.75	10350924	375875	261000	6733694	23683017	17076730
50	39	9	2012	$3.69 \cdot 10^{5}$	0.17	135	0.69	12069229	327000	293625	7586052	35131621	24662782
28	21	7	2010	7.03 $\cdot 10^{4}$	0.08	96	0.75	3522704	169900	208800	2279397	11259887	8382632
38	28	8	2011	$8.34 \cdot 10^{4}$	0.08	96	0.76	3530784	0	208800	2306933	14581871	10689565
49	38	9	2012	$1.10 \cdot 10^{5}$	0.08	96	0.75	3879455	0	208800	2435486	18252526	13125052
6	3	3	2006	$4.39 \cdot 10^{4}$	0.21	45	0.54	3181386	620250	97875	2123218	978261	675171
10	6	4	2007	$5.94 \cdot 10^{4}$	0.21	60	0.62	4155355	571375	130500	2855695	4431742	3530866
16	10	5	2008	$8.50 \cdot 10^{4}$	0.21	75	0.69	5521094	522500	163125	3830611	9267210	7361477
22	16	6	2009	$1.12 \cdot 10^{5}$	0.14	90	0.73	6500059	473625	195750	4418749	15097894	11780225
30	22	7	2010	$1.32 \cdot 10^{5}$	0.09	105	0.76	6662164	424750	228375	4353152	21106933	16133378
40	30	8	2011	$2.25 \cdot 10^{5}$	0.09	120	0.76	9582140	375875	261000	6199817	30052199	22333195
51	40	9	2012	$3.69 \cdot 10^{5}$	0.09	135	0.69	12075424	327000	293625	7590163	41506998	29923358
31	22	7	2010	$6.05 \cdot 10^{4}$	0.06	91	0.74	2986616	28317	197925	2005363	17858268	13785589
41	31	8	2011	$7.74 \cdot 10^{4}$	0.06	91	0.74	3191063	0	197925	2078568	20851407	15864157
52	41		2012	$1.14 \cdot 10^{5}$	0.06	91	0.73	3952751	0	197925	2491334	24606233	18355491
23	16	6	2009	$2.37 \cdot 10^{5}$	0.07	90	0.67	12513748	473625	195750	8993517	21111583	16354994
32	23	7	2010	$3.62 \cdot 10^{5}$	0.07	105	0.62	14897170	424750	228375	10338601	35355628	26693595
42	32	8	2011	$4.77 \cdot 10^{5}$	0.07	120	0.58	15590458	375875	261000	10372260	50309211	37065855
53	42	9	2012	$5.26 \cdot 10^{5}$	0.07	135	0.59	14747300	327000	293625	9362958	64435886	46428813

Table A.25.: Results of quarterly Hamburg planning scenario using the scenario tree with 53 nodes, a construction limit of 60 , mandatory coverage, and optimization for the expected profit

node	father	stage	year	Kib/cap	prob	totSites	coverPop	inco	cape	opE	CFDis	aggCF	aggCFDis
1	1	1	2004	$1.06 \cdot 10^{4}$	1.00	25	0.34	0	1196667	54375	-1248619	-1251042	-1248619
2	1	2	2005	$1.06 \cdot 10^{4}$	0.29	50	0.58	974957	1115208	108750	-274783	-1500043	-1523 401
4	2	3	2006	$1.42 \cdot 10^{4}$	0.29	61	0.63	1192301	454850	132675	508982	-895267	-1014419
7	4	4	2007	$2.00 \cdot 10^{4}$	0.29	61	0.64	1431055	0	132675	1081983	403113	67564
11	7	5	2008	$1.33 \cdot 10^{4}$	0.09	61	0.63	786382	0	132675	520483	1056820	588047
17	11	6	2009	$1.73 \cdot 10^{4}$	0.09	61	0.63	864117	0	132675	556426	1788262	1144474
24	17	7	2010	$2.31 \cdot 10^{4}$	0.09	61	0.62	956900	0	132675	599071	2612486	1743545
33	24	8	2011	$2.71 \cdot 10^{4}$	0.09	61	0.63	954157	0	132675	570474	3433969	2314019
43	33	9	2012	$5.44 \cdot 10^{4}$	0.09	61	0.63	1606476	0	132675	977870	4907770	3291888
12	7	5	2008	$2.85 \cdot 10^{4}$	0.20	86	0.72	1944761	870833	187050	673799	1289991	741363
18	12	6	2009	$5.89 \cdot 10^{4}$	0.20	101	0.76	3561507	473625	219675	2165116	4158198	2906480
25	18	7	2010	$8.04 \cdot 10^{4}$	0.20	101	0.77	4099382	0	219675	2819887	8037905	5726367
35	25	8	2011	$6.85 \cdot 10^{4}$	0.08	101	0.76	2930002	0	219675	1882172	10748232	7608538
45	35	9	2012	$1.05 \cdot 10^{5}$	0.08	101	0.76	3748950	0	219675	2341681	14277507	9950219
34	25	8	2011	$1.47 \cdot 10^{5}$	0.12	126	0.77	6370939	626458	274050	3778622	13508336	9504989
44	34	9	2012	$2.72 \cdot 10^{5}$	0.12	151	0.73	9371981	545000	328425	5621945	22006892	15126934
3	1	2	2005	$1.63 \cdot 10^{4}$	0.70	50	0.58	1491869	1115208	108750	197092	-983131	-1051527
5	3	3	2006	2.67. 10^{4}	0.49	75	0.68	2428138	1033750	163125	1031855	248132	-19672
8	5	4	2007	1.46-10 ${ }^{4}$	0.11	75	0.70	1140498	0	163125	814478	1225506	794805
13	8	5	2008	$2.09 \cdot 10^{4}$	0.11	78	0.71	1390287	104500	169650	884790	2341642	1679596
19	13	6	2009	$2.75 \cdot 10^{4}$	0.11	80	0.71	1539278	63150	174000	988322	3643770	2667918
26	19	7	2010	$3.66 \cdot 10^{4}$	0.11	81	0.71	1727438	28317	176175	1105963	5166717	3773881
36	26	8	2011	$5.83 \cdot 10^{4}$	0.11	81	0.71	2324763	0	176175	1492075	7315304	5265956
47	36	9	2012	$3.13 \cdot 10^{5}$	0.03	106	0.65	9610887	545000	230550	5845400	16150642	11111356
46	36	9	2012	$7.44 \cdot 10^{4}$	0.08	81	0.71	248150	0	176175	1529355	9620279	6795311
9	5	4	2007	$3.02 \cdot 10^{4}$	0.38	89	0.74	2503121	533283	193575	1459495	2024395	1439822
14	9	5	2008	$2.85 \cdot 10^{4}$	0.13	89	0.74	1976296	0	193575	1419406	3807116	2859228
20	14	6	2009	$4.05 \cdot 10^{4}$	0.13	90	0.74	2365463	31575	195750	1625416	5945254	4484645
27	20	7	2010	$4.39 \cdot 10^{4}$	0.13	90	0.74	2154003	0	195750	1423317	7903507	5907962
37	27	8	2011	$6.67 \cdot 10^{4}$	0.13	90	0.74	2753510	0	195750	1776222	10461267	7684184
48	37	9	2012	$1.08 \cdot 10^{5}$	0.13	91	0.74	3751909	21800	197925	2342937	13993452	10027121
15	9	5	2008	$5.25 \cdot 10^{4}$	0.25	111	0.75	3724744	766333	241425	2134816	4741381	3574638
21	15	6	2009	$8.44 \cdot 10^{4}$	0.25	136	0.77	5182117	789375	295800	3088645	8838323	6663283
29	21	7	2010	$1.28 \cdot 10^{5}$	0.17	161	0.78	6667016	707917	350175	4052739	14447248	10716022
39	29	8	2011	$2.47 \cdot 10^{5}$	0.17	186	0.76	10558135	626458	404550	6595772	23974375	17311794
50	39		2012	$3.69 \cdot 10^{5}$	0.17	211	0.73	12701393	545000	458925	7744429	35671843	25056223
28	21	7	2010	$7.03 \cdot 10^{4}$	0.08	160	0.81	3778788	679600	348000	1976610	11589512	8639893
38	28	8	2011	$8.34 \cdot 10^{4}$	0.08	184	0.83	3856566	601400	400200	1963139	14444477	10603032
49	38	9	2012	$1.10 \cdot 10^{5}$	0.08	193	0.83	4324149	196200	419775	2454310	18152652	13057342
6	3	3	2006	$4.39 \cdot 10^{4}$	0.21	75	0.63	3666527	1033750	163125	2111973	1486522	1060446
10	6	4	2007	$5.94 \cdot 10^{4}$	0.21	100	0.67	4451717	952292	217500	2697929	4768447	3758375
16	10	5	2008	$8.50 \cdot 10^{4}$	0.21	125	0.71	5663742	870833	271875	3567322	9289480	7325697
22	16	6	2009	1.12 $\cdot 10^{5}$	0.14	150	0.74	6599699	789375	326250	4143872	14773555	11469570
30	22	7	2010	$1.32 \cdot 10^{5}$	0.09	175	0.76	6676729	707917	380625	4037667	20361742	15507236
40	30	8	2011	$2.25 \cdot 10^{5}$	0.09	200	0.76	9533437	626458	435000	5863031	28833721	21370267
51	40		2012	3.69-105	0.09	225	0.72	12487348	545000	489375	7582206	40286694	28952473
31	22	7	2010	$6.05 \cdot 10^{4}$	0.06	174	0.79	3196494	679600	378450	1531249	16911998	13000819
41	31	8	2011	$7.74 \cdot 10^{4}$	0.06	198	0.81	3508246	601400	430650	1700104	19388194	14700923
52	41	9	2012	$1.14 \cdot 10^{5}$	0.06	223	0.83	4451902	545000	485025	2253558	22810071	16954481
23	16	6	2009	$2.37 \cdot 10^{5}$	0.07	150	0.68	12780889	789375	326250	8846063	20954745	16171761
32	23	7	2010	$3.62 \cdot 10^{5}$	0.07	175	0.64	15495123	707917	380625	10447139	35361326	26618900
42	32	8	2011	$4.77 \cdot 10^{5}$	0.07	200	0.61	16373838	626458	435000	10613309	50673706	3723209
53	42	9	2012	$5.26 \cdot 10^{5}$	0.07	225	0.63	15726152	545000	489375	9731159	65365483	46963368

Table A.26.: Results of quarterly Hamburg planning scenario using the scenario tree with 53 nodes, a construction limit of 100, mandatory coverage, and optimization for AV@R

node	father	stage	year	Kib/cap	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF	aggCFDis
1	1	1	2004	$1.06 \cdot 10^{4}$	1.00	12	0.15	0	574400	26100	-599337	-600 500	-599337
2	1	2	2005	$1.06 \cdot 10^{4}$	0.29	26	0.34	0	624517	56550	-648313	-1281567	-1247650
4	2	3	2006	$1.42 \cdot 10^{4}$	0.29	41	0.52	978337	620250	89175	209316	-1012654	-1038334
7	4	4	2007	$2.00 \cdot 10^{4}$	0.29	56	0.61	1376481	571375	121800	547216	-329348	-491118
11	7	5	2008	$1.33 \cdot 10^{4}$	0.09	56	0.60	747321	0	121800	498041	296173	6924
17	11	6	2009	1.73 $\cdot 10^{4}$	0.09	56	0.61	830772	0	121800	539334	1005145	546257
24	17	7	2010	$2.31 \cdot 10^{4}$	0.09	56	0.60	917069	0	121800	578025	1800414	1124283
33	24	8	2011	$2.71 \cdot 10^{4}$	0.09	56	0.60	911630	0	121800	548493	2590245	1672776
43	33	9	2012	$5.44 \cdot 10^{4}$	0.09	56	0.60	1534769	0	121800	937508	4003213	2610283
12	7	5	2008	$2.85 \cdot 10^{4}$	0.20	71	0.67	1807228	522500	154425	880549	800955	389431
18	12	6	2009	$5.89 \cdot 10^{4}$	0.20	86	0.73	3387989	473625	187050	2057936	3528269	2447367
25	18	7	2010	$8.04 \cdot 10^{4}$	0.20	94	0.75	4019361	226533	204450	2600462	7116646	5047829
35	25	8	2011	$6.85 \cdot 10^{4}$	0.08	94	0.75	2859647	-	204450	1843887	9771844	6891716
45	35	9	2012	$1.05 \cdot 10^{5}$	0.08	94	0.74	3667068	0	204450	2297454	13234462	9189169
34	25	8	2011	$1.47 \cdot 10^{5}$	0.12	109	0.75	6198181	375875	237075	3866460	12701878	8914289
44	34	9	2012	$2.72 \cdot 10^{5}$	0.12	124	0.70	8923707	327000	269700	5514867	21028884	14429155
3	1	2	2005	$1.63 \cdot 10^{4}$	0.70	27	0.37	0	669125	58725	-692919	-1328350	-1292256
5	3	3	2006	$2.67 \cdot 10^{4}$	0.49	42	0.52	1831172	620250	91350	951257	-208778	-340999
8	5	4	2007	$1.46 \cdot 10^{4}$	0.11	57	0.61	1007838	571375	123975	238202	103710	-102797
13	8	5	2008	$2.09 \cdot 10^{4}$	0.11	72	0.68	1347574	522500	156600	512840	772184	410042
19	13	6	2009	$2.75 \cdot 10^{4}$	0.11	79	0.70	1529376	221025	171825	856743	1908709	1266786
26	19	7	2010	$3.66 \cdot 10^{4}$	0.11	81	0.71	1736630	56633	176175	109103	3412531	2357889
36	26	8	2011	$5.83 \cdot 10^{4}$	0.11	82	0.71	2328383	25058	178350	1474865	5537506	3832754
47	36	9	2012	$3.13 \cdot 10^{5}$	0.03	97	0.62	9177231	327000	210975	5722045	14176761	9554798
46	36	9	2012	$7.44 \cdot 10^{4}$	0.08	82	0.71	2492025	0	178350	1535128	785181	5367882
9	5	4	2007	$3.02 \cdot 10^{4}$	0.38	57	0.61	2078869	571375	123975	1130727	1174740	789728
14	9	5	2008	$2.85 \cdot 10^{4}$	0.13	72	0.68	1822829	522500	156600	891239	2318469	1680967
20	14	6	2009	$4.05 \cdot 10^{4}$	0.13	85	0.72	2323956	410475	184875	1300433	4047075	2981400
27	20	7	2010	$4.39 \cdot 10^{4}$	0.13	85	0.72	2118990	0	184875	1405773	5981190	4387172
37	27	8	2011	$6.67 \cdot 10^{4}$	0.13	86	0.72	2699910	25058	187050	1726829	8468992	6114001
48	37	9	2012	$1.08 \cdot 10^{5}$	0.13	86	0.72	3681504	0	187050	2318577	11963446	8432578
15	9	5	2008	$5.25 \cdot 10^{4}$	0.25	72	0.63	3110682	522500	156600	1916630	3606322	2706358
21	15	6	2009	$8.44 \cdot 10^{4}$	0.25	87	0.67	4454787	473625	189225	2867822	7398259	5574180
29	21	7	2010	$1.28 \cdot 10^{5}$	0.17	102	0.68	5827923	424750	221850	3751543	12579582	9325723
39	29	8	2011	$2.47 \cdot 10^{5}$	0.17	117	0.64	8903900	375875	254475	5733348	20853132	15059071
50	39	9	2012	$3.69 \cdot 10^{5}$	0.17	132	0.57	9926379	327000	287100	6168597	30165411	21227668
28	21	7	2010	7.03 $\cdot 10^{4}$	0.08	97	0.70	3256079	283167	210975	1997860	10160196	7572040
38	28	8	2011	$8.34 \cdot 10^{4}$	0.08	105	0.71	3339710	200467	228375	2014944	13071064	9586984
49	38	9	2012	$1.10 \cdot 10^{5}$	0.08	119	0.72	3755300	305200	258825	2107973	16262339	11694958
6	3	3	2006	4.39 - 10^{4}	0.21	42	0.51	2973084	620250	91350	1947229	933134	654973
10	6	4	2007	$5.94 \cdot 10^{4}$	0.21	57	0.55	3629995	571375	123975	2423332	3867779	3078305
16	10	5	2008	$8.50 \cdot 10^{4}$	0.21	72	0.57	4598511	522500	156600	3101243	7787190	6179548
22	16	6	2009	$1.12 \cdot 10^{5}$	0.14	87	0.60	5348196	473625	189225	3547461	12472535	9727009
30	22	7	2010	$1.32 \cdot 10^{5}$	0.09	102	0.63	5551789	424750	221850	3550841	17377725	13277850
40	30	8	2011	$2.25 \cdot 10^{5}$	0.09	117	0.61	7761485	375875	254475	4940004	24508859	18217854
51	40	9	2012	$3.69 \cdot 10^{5}$	0.09	132	0.53	9208662	327000	287100	5692391	33103422	23910244
31	22	7	2010	6.05 $\cdot 10^{4}$	0.06	102	0.64	2572410	424750	221850	1385339	14398345	11112348
41	31	8	2011	7.74-10 ${ }^{4}$	0.06	117	0.67	2925210	375875	254475	1581480	16693205	12693827
52	41	9	2012	$1.14 \cdot 10^{5}$	0.06	131	0.69	3726997	305200	284925	2071877	19830077	14765704
23	16	6	2009	$2.37 \cdot 10^{5}$	0.07	87	0.53	9962993	473625	189225	7058056	17087332	13237603
32	23	7	2010	$3.62 \cdot 10^{5}$	0.07	102	0.46	11057250	424750	221850	7552375	27497983	20789979
42	32	8	2011	$4.77 \cdot 10^{5}$	0.07	117	0.43	11394589	375875	254475	7462993	38262222	28252972
53	42	9	2012	$5.26 \cdot 10^{5}$	0.07	132	0.44	10828247	327000	287100	6766988	48476369	35019960

Table A.27.: Results of quarterly Hamburg planning scenario using the scenario tree with 53 nodes, a construction limit of 60 , mandatory coverage, and optimization for AV@R

	node	father	stage	year	KiB/cap	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF	aggCFDis
	1	1	1	2004	$2.38 \cdot 10^{1}$	1.00	0	0.00	0	0	0	0	0	0
	- 2	1	2	2005	$5.43 \cdot 10^{1}$	0.29	0	0.00	0	0	0	0	0	0
	- 4	2	3	2006	$1.86 \cdot 10^{2}$	0.29	0	0.00	0	0	0	0	0	0
	-7	4	4	2007	$9.64 \cdot 10^{2}$	0.29	0	0.00	0	0	0	0	0	0
	- 11	7	5	2008	$1.07 \cdot 10^{4}$	0.09	87	0.73	5841775	5298300	756900	-511625	-213425	-511625
	17	11	6	2009	$5.64 \cdot 10^{4}$	0.09	130	0.81	17107208	2198375	1131000	4466922	13564408	3955298
	, 25	17	7	2010	$1.50 \cdot 10^{5}$	0.09	132	0.80	22482131	82700	1148400	5926157	34815439	9881455
	12	7	5	2008	$3.79 \cdot 10^{3}$	0.20	0	0.00	0	0	0	0	0	0
	(19	12	6	2009	$9.58 \cdot 10^{3}$	0.13	42	0.53	1923920	2147250	365400	-340986	-588730	-340986
	27	19	7	2010	$7.50 \cdot 10^{4}$	0.13	65	0.66	9283275	951050	565500	2114466	7177995	1773480
	$\checkmark 18$	12	6	2009	$3.76 \cdot 10^{3}$	0.07	0	0.00	0	0	0	0	0	0
	26	18	7	2010	$1.12 \cdot 10^{4}$	0.07	0	0.00	0	0	0	0	0	0
	3	1	2	2005	$1.09 \cdot 10^{2}$	0.70	0	0.00	0	0	0	0	0	0
	/ 5	3	3	2006	$5.88 \cdot 10^{2}$	0.52	0	0.00	0	0	0	0	0	0
	/ 8	5	4	2007	$2.05 \cdot 10^{3}$	0.36	40	0.58	1778326	2827000	348000	-946216	-1396674	-946216
	// 14	8	5	2008	$6.56 \cdot 10^{3}$	0.24	47	0.57	2806301	426300	408900	757877	574427	-188339
	/// 21	14	6	2009	$1.46 \cdot 10^{4}$	0.07	49	0.57	3141180	102250	426300	868116	3187057	679777
	- 29	21	7	2010	$4.73 \cdot 10^{4}$	0.07	49	0.57	5056232	0	426300	1292129	7816988	1971906
	- ${ }^{-12}$	14	6	2009	$4.28 \cdot 10^{4}$	0.17	115	0.80	12867855	3476500	1000500	2577226	8965282	2388887
	- 30	22	7	2010	$2.47 \cdot 10^{5}$	0.17	163	0.82	38455049	1984800	1418100	9671627	44017431	12060514
	$\checkmark 13$	8	5	2008	$2.69 \cdot 10^{3}$	0.12	40	0.57	1153253	0	348000	323613	-591422	-622 603
	20	13	6	2009	$1.01 \cdot 10^{4}$	0.12	40	0.52	1987332	0	348000	549009	1047911	-73594
	28	20	7	2010	$3.82 \cdot 10^{4}$	0.12	40	0.52	3713333	0	348000	939203	4413244	865609
		5	4	2007	$4.35 \cdot 10^{3}$	0.16	64	0.68	4451664	4523200	556800	-739282	-628336	-739282
	15	9	5	2008	$1.93 \cdot 10^{4}$	0.16	152	0.84	12262746	5359200	1322400	1812189	4952810	1072906
	, 23	15	6	2009	$7.28 \cdot 10^{4}$	0.16	252	0.91	24885476	5112500	2192400	5545266	22533385	6618173
	(31	23	7	2010	$3.63 \cdot 10^{5}$	0.12	278	0.88	59951257	1075100	2418600	15696260	78990943	22314432
	$\square 32$	23	7	2010	$1.60 \cdot 10^{6}$	0.04	352	0.53	160187041	4135000	3062400	42465801	175523027	49083973
	${ }^{6}$	3	3	2006	$1.48 \cdot 10^{3}$	0.18	44	0.59	2644006	3539800	382800	-1149626	-1278594	-1149626
	10	6	4	2007	$6.34 \cdot 10^{3}$	0.18	89	0.74	7111384	3180375	774300	1215583	1878115	65957
	16	10	5	2008	$3.24 \cdot 10^{4}$	0.18	183	0.88	21363070	5724600	1592100	5184804	15924485	5250761
	24	16	6	2009	$1.38 \cdot 10^{5}$	0.18	283	0.92	47791766	5112500	2462100	13126214	56141651	18376975
N	(34	24	7	2010	$1.57 \cdot 10^{6}$	0.05	383	0.56	164366343	4135000	3332100	43556899	213040894	61933874
\bigcirc	$\checkmark 3$	24	7	2010	$5.23 \cdot 10^{5}$	0.13	332	0.86	84280945	2026150	2888400	22036612	135508047	40413587

Table A.28.: Results of Hamburg planning scenario using the scenario tree with 34 nodes, a construction limit of 100, and
optimization for the expected profit

node	father	stage	year	KiB/cap	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF	aggCFDis
, 1	1	1	2004	$2.38 \cdot 10^{1}$	1.00	0	0.00	0	0	0	0	0	0
- 2	1	2	2005	$5.43 \cdot 10^{1}$	0.29	0	0.00	0	0	0	0	0	0
	2	3	2006	$1.86 \cdot 10^{2}$	0.29	0	0.00	0	0	0	0	0	0
, 7	4	4	2007	$9.64 \cdot 10^{2}$	0.29	0	0.00	0	0	0	0	0	0
(11	7	5	2008	$1.07 \cdot 10^{4}$	0.09	60	0.63	5093426	3654000	522000	75001	917426	75001
17	11	6	2009	$5.64 \cdot 10^{4}$	0.09	117	0.80	16896636	2914125	1017900	4146635	13882036	4221636
25	17	7	2010	$1.50 \cdot 10^{5}$	0.09	120	0.79	22185723	124050	1044000	5858723	34899709	10080358
12	7	5	2008	$3.79 \cdot 10^{3}$	0.20	0	0.00	0	0	0	0	0	0
(19	12	6	2009	$9.58 \cdot 10^{3}$	0.13	42	0.53	1928738	2147250	365400	-339373	-583912	-339373
27	19	7	2010	$7.50 \cdot 10^{4}$	0.13	65	0.66	9283275	951050	565500	2114466	7182813	1775093
18	12	6	2009	$3.76 \cdot 10^{3}$	0.07	0	0.00	0	0	0	0	0	0
26	18	7	2010	$1.12 \cdot 10^{4}$	0.07	0	0.00	0	0	0	0	0	0
3	1	2	2005	$1.09 \cdot 10^{2}$	0.70	0	0.00	0	0	0	0	0	0
-5	3	3	2006	$5.88 \cdot 10^{2}$	0.52	0	0.00	0	0	0	0	0	0
1,8	5	4	2007	$2.05 \cdot 10^{3}$	0.36	40	0.57	1770580	2827000	348000	-949 952	-1404420	-949952
/ 14	8	5	2008	$6.56 \cdot 10^{3}$	0.24	50	0.59	2895769	609000	435000	695236	447349	-254716
/(21	14	6	2009	$1.46 \cdot 10^{4}$	0.07	51	0.58	3201969	51125	443700	903193	3154493	648477
29	21	7	2010	$4.73 \cdot 10^{4}$	0.07	51	0.58	5155169	0	443700	1314884	7865962	1963361
$\checkmark 22$	14	6	2009	$4.28 \cdot 10^{4}$	0.17	109	0.79	12675242	3016375	948300	2715116	9157916	2460400
, 30	22	7	2010	$2.47 \cdot 10^{5}$	0.17	163	0.82	38454800	2232900	1418100	9588470	43961716	12048869
13	8	5	2008	$2.69 \cdot 10^{3}$	0.12	40	0.57	1148164	0	348000	321568	-604256	-628384
20	13	6	2009	$1.01 \cdot 10^{4}$	0.12	40	0.52	1986081	0	348000	548590	1033825	-79794
28	20	7	2010	$3.82 \cdot 10^{4}$	0.12	40	0.52	3710648	0	348000	938453	4396473	858660
9	5	4	2007	$4.35 \cdot 10^{3}$	0.16	60	0.66	4352429	4240500	522000	-606757	-410071	-606757
15	9	5	2008	$1.93 \cdot 10^{4}$	0.16	120	0.80	11561629	3654000	1044000	2464646	6453558	1857889
(23	15	6	2009	$7.28 \cdot 10^{4}$	0.16	179	0.85	23394751	3016375	1557300	6101105	25274633	7958994
(31	23	7	2010	$3.63 \cdot 10^{5}$	0.12	238	0.84	57379502	2439650	2070600	14618666	78143885	22577660
$\checkmark 32$	23	7	2010	$1.60 \cdot 10^{6}$	0.04	239	0.42	125396496	2481000	2079300	33584684	146110829	41543678
\checkmark	3	3	2006	$1.48 \cdot 10^{3}$	0.18	60	0.69	3061925	4827000	522000	-1882219	-2 287075	-1882219
10	6	4	2007	$6.34 \cdot 10^{3}$	0.18	120	0.82	7853551	4240500	1044000	829934	281976	-1052285
16	10	5	2008	$3.24 \cdot 10^{4}$	0.18	180	0.88	21402457	3654000	1566000	6209675	16464433	5157389
24	16	6	2009	$1.38 \cdot 10^{5}$	0.18	240	0.90	46890223	3067500	2088000	13771415	58199157	18928804
(34	24	7	2010	$1.57 \cdot 10^{6}$	0.05	300	0.49	145225071	2481000	2610000	38970367	198333227	57899171
- 33	24	7	2010	$5.23 \cdot 10^{5}$	0.13	300	0.84	82689250	2481000	2610000	21517767	135797407	40446571

Table A.29.: Results of Hamburg planning scenario using the scenario tree with 34 nodes, a construction limit of 60, and optimization for the expected profit

	node	father	stage	year	KiB/cap	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF	aggCFDis
	1	1	1	2004	$2.38 \cdot 10^{1}$	1.00	0	0.00	0	0	0	0	0	0
	/ 2	1	2	2005	$5.43 \cdot 10^{1}$	0.29	0	0.00	0	0	0	0	0	0
	- 4	2	3	2006	$1.86 \cdot 10^{2}$	0.29	0	0.00	0	0	0	0	0	0
	-7	4	4	2007	$9.64 \cdot 10^{2}$	0.29	0	0.00	0	0	0	0	0	0
	- 11	7	5	2008	$1.07 \cdot 10^{4}$	0.09	77	0.71	5695369	4689300	669900	-241806	336169	-241806
	17	11	6	2009	$5.64 \cdot 10^{4}$	0.09	118	0.80	16919429	2096125	1026600	4480091	14132874	4238285
	25	17	7	2010	$1.50 \cdot 10^{5}$	0.09	119	0.79	22152349	41350	1035300	5879533	35208573	10117818
	12	7	5	2008	$3.79 \cdot 10^{3}$	0.20	0	0.00	0	0	0	0	0	0
	(19	12	6	2009	$9.58 \cdot 10^{3}$	0.13	42	0.53	1915144	2147250	365400	-343925	-597506	-343925
	- 27	19	7	2010	$7.50 \cdot 10^{4}$	0.13	66	0.66	9328289	992400	574200	2110753	7164184	1766828
	$\checkmark 18$	12	6	2009	$3.76 \cdot 10^{3}$	0.07	0	0.00	0	0	0	0	0	0
	26	18	7	2010	$1.12 \cdot 10^{4}$	0.07	0	0.00	0	0	0	0	0	0
	3	1	2	2005	$1.09 \cdot 10^{2}$	0.70	0	0.00	0	0	0	0	0	0
	/ 5	3	3	2006	$5.88 \cdot 10^{2}$	0.52	0	0.00	0	0	0	0	0	0
	//18	5	4	2007	$2.05 \cdot 10^{3}$	0.36	40	0.58	1778421	2827000	348000	-946170	-1396579	-946170
	/// 14	8	5	2008	$6.56 \cdot 10^{3}$	0.24	47	0.57	2801396	426300	408900	755906	569618	-190264
	/// 21	14	6	2009	$1.46 \cdot 10^{4}$	0.07	49	0.57	3130857	102250	426300	864659	3171924	674394
	- $\begin{aligned} & 21 \\ & 29\end{aligned}$	21	7	2010	$4.73 \cdot 10^{4}$	0.07	49	0.57	5079089	0	426300	1298508	7824714	1972903
	- ${ }^{1} 22$	14	6	2009	$4.28 \cdot 10^{4}$	0.17	146	0.80	12848371	5061375	1270200	1843453	7086414	1653189
	- 30	22	7	2010	$2.47 \cdot 10^{5}$	0.17	246	0.87	40600769	4135000	2140200	9348836	41411983	11002025
	13	8	5	2008	$2.69 \cdot 10^{3}$	0.12	40	0.57	1154064	0	348000	323939	-590514	-622 231
	20	13	6	2009	$1.01 \cdot 10^{4}$	0.12	40	0.53	1995286	0	348000	551673	1056772	-70558
	28	20	7	2010	$3.82 \cdot 10^{4}$	0.12	40	0.52	3724157	0	348000	942223	4432928	871665
	9	5	4	2007	$4.35 \cdot 10^{3}$	0.16	100	0.59	3852625	7067500	870000	-2651609	-4084875	-2651609
	15	9	5	2008	$1.93 \cdot 10^{4}$	0.16	200	0.83	12044179	6090000	1740000	1204097	129304	-1447511
	, 23	15	6	2009	$7.28 \cdot 10^{4}$	0.16	300	0.88	24257183	5112500	2610000	5194999	16663987	3747487
	(31	23	7	2010	$3.63 \cdot 10^{5}$	0.12	381	0.90	61404267	3349350	3314700	15090042	71404204	18837529
	$\square 32$	23	7	2010	$1.60 \cdot 10^{6}$	0.04	400	0.52	155155509	4135000	3480000	40945048	164204496	44692535
	6	3	3	2006	$1.48 \cdot 10^{3}$	0.18	93	0.75	3340352	7481850	809100	-3730884	-4950598	-3730884
	10	6	4	2007	$6.34 \cdot 10^{3}$	0.18	165	0.83	7963063	5088600	1435500	203146	-3511635	-3527739
	16	10	5	2008	$3.24 \cdot 10^{4}$	0.18	252	0.87	21290196	5298300	2192400	5119854	10287861	1592116
	24	16	6	2009	$1.38 \cdot 10^{5}$	0.18	305	0.89	46174087	2709625	2653500	13486019	51098823	15078135
$\stackrel{\sim}{\bullet}$	(34	24	7	2010	$1.57 \cdot 10^{6}$	0.05	307	0.43	127567752	82700	2670900	34828723	175912975	49906858
	$\checkmark 33$	24	7	2010	$5.23 \cdot 10^{5}$	0.13	405	0.85	83797568	4135000	3523500	21018216	127237891	36096351

Table A.30.: Results of Hamburg planning scenario using the scenario tree with 34 nodes, a construction limit of 100, and optimization for AV@R

node	father	stage	year	KiB/cap	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF	aggCFDis
1	1	1	2004	$2.38 \cdot 10^{1}$	1.00	0	0.00	0	0	0	0	0	0
/ 2	1	2	2005	$5.43 \cdot 10^{1}$	0.29	0	0.00	0	0	0	0	0	0
	2	3	2006	$1.86 \cdot 10^{2}$	0.29	0	0.00	0	0	0	0	0	0
, 7	4	4	2007	$9.64 \cdot 10^{2}$	0.29	0	0.00	0	0	0	0	0	0
- 11	7	5	2008	$1.07 \cdot 10^{4}$	0.09	60	0.63	5093426	3654000	522000	75001	917426	75001
17	11	6	2009	$5.64 \cdot 10^{4}$	0.09	117	0.80	16896636	2914125	1017900	4146635	13882036	4221636
25	17	7	2010	$1.50 \cdot 10^{5}$	0.09	120	0.79	22185723	124050	1044000	5858723	34899709	10080358
12	7	5	2008	$3.79 \cdot 10^{3}$	0.20	0	0.00	0	0	0	0	0	0
(19	12	6	2009	$9.58 \cdot 10^{3}$	0.13	42	0.53	1928738	2147250	365400	-339373	-583912	-339373
27	19	7	2010	$7.50 \cdot 10^{4}$	0.13	65	0.66	9283275	951050	565500	2114466	7182813	1775093
${ }^{\wedge} 18$	12	6	2009	$3.76 \cdot 10^{3}$	0.07	0	0.00	0	0	0	0	0	0
26	18	7	2010	$1.12 \cdot 10^{4}$	0.07	0	0.00	0	0	0	0	0	0
3	1	2	2005	$1.09 \cdot 10^{2}$	0.70	0	0.00	0	0	0	0	0	0
-5	3	3	2006	$5.88 \cdot 10^{2}$	0.52	0	0.00	0	0	0	0	0	0
/ 8	5	4	2007	$2.05 \cdot 10^{3}$	0.36	40	0.57	1770580	2827000	348000	-949952	-1404420	-949 952
/ 14	8	5	2008	$6.56 \cdot 10^{3}$	0.24	50	0.59	2895769	609000	435000	695236	447349	-254716
/(21	14	6	2009	$1.46 \cdot 10^{4}$	0.07	51	0.58	3201969	51125	443700	903193	3154493	648477
(29	21	7	2010	$4.73 \cdot 10^{4}$	0.07	51	0.58	5155169	0	443700	1314884	7865962	1963361
$\checkmark 22$	14	6	2009	$4.28 \cdot 10^{4}$	0.17	109	0.79	12675242	3016375	948300	2715116	9157916	2460400
, 30	22	7	2010	$2.47 \cdot 10^{5}$	0.17	163	0.82	38454800	2232900	1418100	9588470	43961716	12048869
13	8	5	2008	$2.69 \cdot 10^{3}$	0.12	40	0.57	1148164	0	348000	321568	-604 256	-628384
20	13	6	2009	$1.01 \cdot 10^{4}$	0.12	40	0.52	1986081	0	348000	548590	1033825	-79794
28	20	7	2010	$3.82 \cdot 10^{4}$	0.12	40	0.52	3710648	0	348000	938453	4396473	858660
9	5	4	2007	$4.35 \cdot 10^{3}$	0.16	60	0.66	4352429	4240500	522000	-606757	-410071	-606757
15	9	5	2008	$1.93 \cdot 10^{4}$	0.16	120	0.80	11561629	3654000	1044000	2464646	6453558	1857889
(23	15	6	2009	$7.28 \cdot 10^{4}$	0.16	179	0.85	23394751	3016375	1557300	6101105	25274633	7958994
(31	23	7	2010	$3.63 \cdot 10^{5}$	0.12	238	0.84	57379502	2439650	2070600	14618666	78143885	22577660
32	23	7	2010	$1.60 \cdot 10^{6}$	0.04	239	0.42	125396496	2481000	2079300	33584684	146110829	41543678
6	3	3	2006	$1.48 \cdot 10^{3}$	0.18	60	0.69	3061925	4827000	522000	-1882219	-2287075	-1882219
10	6	4	2007	$6.34 \cdot 10^{3}$	0.18	120	0.82	7853551	4240500	1044000	829934	281976	-1052285
16	10	5	2008	$3.24 \cdot 10^{4}$	0.18	180	0.88	21402457	3654000	1566000	6209675	16464433	5157389
24	16	6	2009	$1.38 \cdot 10^{5}$	0.18	240	0.90	46890223	3067500	2088000	13771415	58199157	18928804
(34	24	7	2010	$1.57 \cdot 10^{6}$	0.05	300	0.49	145225071	2481000	2610000	38970367	198333227	57899171
$\checkmark 33$	24	7	2010	$5.23 \cdot 10^{5}$	0.13	300	0.84	82689250	2481000	2610000	21517767	135797407	40446571

Table A.31.: Results of Hamburg planning scenario using the scenario tree with 34 nodes, a construction limit of 60, and optimization for AV@R

node	father	stage	year	$\mathrm{KiB} / \mathrm{cap}$	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF	aggCFDis
1	1	1	2004	$2.38 \cdot 10^{1}$	1.00	0	0.00	0	0	0	0	0	0
/ 2	1	2	2005	$5.43 \cdot 10^{1}$	0.29	0	0.00	0	0	0	0	0	0
	2	3	2006	$1.86 \cdot 10^{2}$	0.29	0	0.00	0	0	0	0	0	0
7	4	4	2007	$9.64 \cdot 10^{2}$	0.29	0	0.00	0	0	0	0	0	0
, 11	7	5	2008	$3.79 \cdot 10^{3}$	0.29	40	0.55	1569341	2436000	348000	-683939	-1214659	-683939
(16	11	6	2009	$5.64 \cdot 10^{4}$	0.09	138	0.83	17615464	5010250	1200600	3483798	10189955	2799859
(22	16	7	2010	$3.00 \cdot 10^{5}$	0.09	198	0.83	47152773	2481000	1722600	11847846	53139128	14647704
${ }^{17}$	11	6	2009	$1.50 \cdot 10^{4}$	0.20	44	0.54	3044445	204500	382800	809196	1242487	125257
23	17	7	2010	$3.89 \cdot 10^{4}$	0.20	44	0.54	3965198	0	382800	999781	4824884	1125038
3	1	2	2005	$1.09 \cdot 10^{2}$	0.70	0	0.00	0	0	0	0	0	0
-5	3	3	2006	$5.88 \cdot 10^{2}$	0.52	0	0.00	0	0	0	0	0	0
/ 8	5	4	2007	$2.05 \cdot 10^{3}$	0.36	40	0.57	1770387	2827000	348000	-950045	-1404613	-950 045
/ 13	8	5	2008	$6.56 \cdot 10^{3}$	0.24	50	0.59	2893191	609000	435000	694200	444578	-255 845
(19	13	6	2009	$4.28 \cdot 10^{4}$	0.24	116	0.80	12897164	3374250	1009200	2625220	8958293	2369375
(25	19	7	2010	$1.99 \cdot 10^{5}$	0.24	143	0.81	30361032	1116450	1244100	7752105	36958775	10121479
${ }^{-12}$	8	5	2008	$2.69 \cdot 10^{3}$	0.12	40	0.57	1148037	0	348000	321517	-604577	-628528
18	12	6	2009	$1.01 \cdot 10^{4}$	0.12	40	0.52	1978585	0	348000	546080	1026009	-82449
24	18	7	2010	$3.82 \cdot 10^{4}$	0.12	40	0.51	3696347	0	348000	934462	4374356	852014
9	5	4	2007	$4.35 \cdot 10^{3}$	0.16	57	0.65	4288660	4028475	495900	-502223	-235715	-502223
14	9	5	2008	$1.93 \cdot 10^{4}$	0.16	107	0.79	11426226	3045000	930900	2749375	7214611	2247152
20	14	6	2009	$7.28 \cdot 10^{4}$	0.16	158	0.86	23495547	2607375	1374600	6360415	26728183	8607567
26	20	7	2010	$3.63 \cdot 10^{5}$	0.16	240	0.85	58194590	3390700	2088000	14522781	79444073	23130348
6	3	3	2006	$1.48 \cdot 10^{3}$	0.18	42	0.59	2616332	3378900	365400	-1043836	-1127968	-1043836
10	6	4	2007	$6.34 \cdot 10^{3}$	0.18	84	0.74	7103119	2968350	730800	1355275	2276001	311440
15	10	5	2008	$3.24 \cdot 10^{4}$	0.18	148	0.85	20645839	3897600	1287600	5900012	17736639	6211452
21	15	6	2009	$1.38 \cdot 10^{5}$	0.18	225	0.90	46826410	3936625	1957500	13444466	58668924	19655918
27	21	7	2010	$5.23 \cdot 10^{5}$	0.18	311	0.85	83307055	3556100	2705700	21303428	135714179	40959346

Table A.32.: Results of Hamburg planning scenario using the scenario tree with 27 nodes, a construction limit of 100, and optimization for the expected profit

node	father	stage	year	KiB/cap	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF	aggCFDis
1	1	1	2004	$2.38 \cdot 10^{1}$	1.00	0	0.00	0	0	0	0	0	0
/ 2	1	2	2005	$5.43 \cdot 10^{1}$	0.29	0	0.00	0	0	0	0	0	0
	2	3	2006	$1.86 \cdot 10^{2}$	0.29	0	0.00	0	0	0	0	0	0
	4	4	2007	$9.64 \cdot 10^{2}$	0.29	0	0.00	0	0	0	0	0	0
	7	5	2008	$3.79 \cdot 10^{3}$	0.29	41	0.56	1598164	2496900	356700	-705221	-1255436	-705221
(16	11	6	2009	$5.64 \cdot 10^{4}$	0.09	101	0.76	16206075	3067500	878700	3900347	11004439	3195126
(22	16	7	2010	$3.00 \cdot 10^{5}$	0.09	161	0.79	44698885	2481000	1400700	11252847	51821624	14447973
${ }^{*} 17$	11	6	2009	$1.50 \cdot 10^{4}$	0.20	45	0.55	3100232	204500	391500	824965	1248795	119743
23	17	7	2010	$3.89 \cdot 10^{4}$	0.20	45	0.55	4010562	0	391500	1010014	4867857	1129757
${ }^{7}$	1	2	2005	$1.09 \cdot 10^{2}$	0.70	0	0.00	0	0	0	0	0	0
, 5	3	3	2006	$5.88 \cdot 10^{2}$	0.52	0	0.00	0	0	0	0	0	0
/ 8	5	4	2007	$2.05 \cdot 10^{3}$	0.36	40	0.57	1776491	2827000	348000	-947101	-1398509	-947 101
	8	5	2008	$6.56 \cdot 10^{3}$	0.24	53	0.61	2997109	791700	461100	637366	345800	-309736
(19	13	6	2009	$4.28 \cdot 10^{4}$	0.24	113	0.79	12800281	3067500	983100	2724791	9095482	2415055
- 25	19	7	2010	$1.99 \cdot 10^{5}$	0.24	143	0.81	30357623	1240500	1244100	7709609	36968504	10124664
${ }^{*} 12$	8	5	2008	$2.69 \cdot 10^{3}$	0.12	40	0.57	1151822	0	348000	323038	-594687	-624063
18	12	6	2009	$1.01 \cdot 10^{4}$	0.12	40	0.52	1975108	0	348000	544915	1032421	-79148
24	18	7	2010	$3.82 \cdot 10^{4}$	0.12	40	0.51	3698950	0	348000	935189	4383371	856041
9	5	4	2007	$4.35 \cdot 10^{3}$	0.16	57	0.65	4288660	4028475	495900	-502223	-235715	-502223
14	9	5	2008	$1.93 \cdot 10^{4}$	0.16	109	0.79	11487273	3166800	948300	2708178	7136458	2205955
20	14	6	2009	$7.28 \cdot 10^{4}$	0.16	169	0.87	23801777	3067500	1470300	6246007	26400435	8451962
26	20	7	2010	$3.63 \cdot 10^{5}$	0.16	229	0.84	57494437	2481000	1992300	14658746	79421572	23110708
6	3	3	2006	$1.48 \cdot 10^{3}$	0.18	41	0.58	2603928	3298450	356700	-990111	-1051222	-990 111
10	6	4	2007	$6.34 \cdot 10^{3}$	0.18	101	0.79	7549354	4240500	878700	762951	1378933	-227160
15	10	5	2008	$3.24 \cdot 10^{4}$	0.18	161	0.86	21009493	3654000	1400700	6118181	17333725	5891021
21	15	6	2009	$1.38 \cdot 10^{5}$	0.18	221	0.89	46526621	3067500	1922700	13705003	58870146	19596024
27	21	7	2010	$5.23 \cdot 10^{5}$	0.18	281	0.82	81298802	2481000	2444700	21175851	135243248	40771875

Table A.33.: Results of Hamburg planning scenario using the scenario tree with 27 nodes, a construction limit of 60, and optimization for the expected profit

node	father	stage	year	$\mathrm{KiB} / \mathrm{cap}$	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF	aggCFDis
1	1	1	2004	$2.38 \cdot 10^{1}$	1.00	0	0.00	0	0	0	0	0	0
/ 2	1	2	2005	$5.43 \cdot 10^{1}$	0.29	0	0.00	0	0	0	0	0	0
	2	3	2006	$1.86 \cdot 10^{2}$	0.29	0	0.00	0	0	0	0	0	0
7	4	4	2007	$9.64 \cdot 10^{2}$	0.29	0	0.00	0	0	0	0	0	0
, 11	7	5	2008	$3.79 \cdot 10^{3}$	0.29	41	0.56	1596390	2496900	356700	-705934	-1257210	-705934
(16	11	6	2009	$5.64 \cdot 10^{4}$	0.09	131	0.71	15170707	4601250	1139700	2849817	8172547	2143883
(22	16	7	2010	$3.00 \cdot 10^{5}$	0.09	229	0.79	44818797	4052300	1992300	10594982	46946744	12738865
17	11	6	2009	$1.50 \cdot 10^{4}$	0.20	44	0.54	3064569	153375	382800	836481	1271184	130547
23	17	7	2010	$3.89 \cdot 10^{4}$	0.20	44	0.55	3994800	0	382800	1008043	4883184	1138590
3	1	2	2005	$1.09 \cdot 10^{2}$	0.70	0	0.00	0	0	0	0	0	0
-5	3	3	2006	$5.88 \cdot 10^{2}$	0.52	0	0.00	0	0	0	0	0	0
/ 8	5	4	2007	$2.05 \cdot 10^{3}$	0.36	40	0.57	1762986	2827000	348000	-953614	-1412014	-953614
/ 13	8	5	2008	$6.56 \cdot 10^{3}$	0.24	50	0.58	2891039	609000	435000	693335	435025	-260 279
(19	13	6	2009	$4.28 \cdot 10^{4}$	0.24	117	0.80	12915567	3425375	1017900	2607923	8907317	2347644
- 25	19	7	2010	$1.99 \cdot 10^{5}$	0.24	143	0.81	30341277	1075100	1244100	7760439	36929394	10108083
\checkmark	8	5	2008	$2.69 \cdot 10^{3}$	0.12	40	0.56	1146904	0	348000	321061	-613111	-632553
18	12	6	2009	$1.01 \cdot 10^{4}$	0.12	40	0.52	1970924	0	348000	543514	1009813	-89 039
$\downarrow 24$	18	7	2010	$3.82 \cdot 10^{4}$	0.12	40	0.52	3704714	0	348000	936797	4366527	847758
9	5	4	2007	$4.35 \cdot 10^{3}$	0.16	100	0.77	5036283	7067500	870000	-2080786	-2901217	-2080786
14	9	5	2008	$1.93 \cdot 10^{4}$	0.16	200	0.82	11940484	6090000	1740000	1162424	1209267	-918361
20	14	6	2009	$7.28 \cdot 10^{4}$	0.16	300	0.86	23703511	5112500	2610000	5009575	17190278	4091214
26	20	7	2010	$3.63 \cdot 10^{5}$	0.16	400	0.88	60221992	4135000	3480000	14450845	69797270	18542059
6	3	3	2006	$1.48 \cdot 10^{3}$	0.18	100	0.60	2677456	8045000	870000	-4540824	-6237544	-4540824
10	6	4	2007	$6.34 \cdot 10^{3}$	0.18	200	0.84	8057638	7067500	1740000	-1043288	-6987405	-5584112
15	10	5	2008	$3.24 \cdot 10^{4}$	0.18	300	0.89	21594745	6090000	2610000	4692622	5907339	-891490
21	15	6	2009	$1.38 \cdot 10^{5}$	0.18	400	0.91	47557597	5112500	3480000	12706899	44872436	11815409
27	21	7	2010	$5.23 \cdot 10^{5}$	0.18	459	0.86	85084060	2439650	3993300	21813909	123523546	33629318

Table A.34.: Results of Hamburg planning scenario using the scenario tree with 27 nodes, a construction limit of 100, and optimization for AV@R

node	father	stage	year	KiB/cap	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF	aggCFDis
1	1	1	2004	$2.38 \cdot 10^{1}$	1.00	0	0.00	0	0	0	0	0	0
2	1	2	2005	$5.43 \cdot 10^{1}$	0.29	0	0.00	0	0	0	0	0	0
- 4	2	3	2006	$1.86 \cdot 10^{2}$	0.29	0	0.00	0	0	0	0	0	0
7	4	4	2007	$9.64 \cdot 10^{2}$	0.29	0	0.00	0	0	0	0	0	0
11	7	5	2008	$3.79 \cdot 10^{3}$	0.29	40	0.55	1580492	2436000	348000	-679458	-1203508	-679 458
(16	11	6	2009	$5.64 \cdot 10^{4}$	0.09	100	0.68	14510318	3067500	870000	3335355	9369309	2655898
22	16	7	2010	$3.00 \cdot 10^{5}$	0.09	160	0.71	40212394	2481000	1392000	10003178	45708704	12659075
17	11	6	2009	$1.50 \cdot 10^{4}$	0.20	42	0.53	2973667	102250	365400	832411	1302509	152954
23	17	7	2010	$3.89 \cdot 10^{4}$	0.20	42	0.53	3876544	0	365400	979896	4813652	1132849
3	1	2	2005	$1.09 \cdot 10^{2}$	0.70	0	0.00	0	0	0	0	0	0
-5	3	3	2006	$5.88 \cdot 10^{2}$	0.52	0	0.00	0	0	0	0	0	0
/ 8	5	4	2007	$2.05 \cdot 10^{3}$	0.36	40	0.57	1773823	2827000	348000	-948388	-1401177	-948388
/ 13	8	5	2008	$6.56 \cdot 10^{3}$	0.24	53	0.60	2989272	791700	461100	634216	335295	-314172
(19	13	6	2009	$4.28 \cdot 10^{4}$	0.24	113	0.79	12806134	3067500	983100	2726751	9090829	2412579
(25	19	7	2010	$1.99 \cdot 10^{5}$	0.24	143	0.81	30356801	1240500	1244100	7709380	36963030	10121958
$\checkmark 12$	8	5	2008	$2.69 \cdot 10^{3}$	0.12	40	0.57	1150374	0	348000	322456	-598803	-625932
18	12	6	2009	$1.01 \cdot 10^{4}$	0.12	40	0.52	1986510	0	348000	548734	1039707	-77198
24	18	7	2010	$3.82 \cdot 10^{4}$	0.12	40	0.52	3712506	0	348000	938972	4404213	861774
9	5	4	2007	$4.35 \cdot 10^{3}$	0.16	60	0.49	0	4240500	522000	-2705729	-4762500	-2705729
14	9	5	2008	$1.93 \cdot 10^{4}$	0.16	120	0.75	10924044	3654000	1044000	2208415	1463544	-497314
20	14	6	2009	$7.28 \cdot 10^{4}$	0.16	180	0.79	21767331	3067500	1566000	5532625	18597375	5035311
26	20	7	2010	$3.63 \cdot 10^{5}$	0.16	240	0.77	52737145	2481000	2088000	13304365	66765520	18339677
6	3	3	2006	$1.48 \cdot 10^{3}$	0.18	60	0.47	0	4827000	522000	-3654167	-5349 000	-3654167
10	6	4	2007	$6.34 \cdot 10^{3}$	0.18	120	0.65	6215210	4240500	1044000	39839	-4418290	-3614328
15	10	5	2008	$3.24 \cdot 10^{4}$	0.18	180	0.82	19925494	3654000	1566000	5616116	10287204	2001788
21	15	6	2009	$1.38 \cdot 10^{5}$	0.18	240	0.84	43718663	3067500	2088000	12709265	48850367	14711054
27	21	7	2010	$5.23 \cdot 10^{5}$	0.18	300	0.75	73704775	2481000	2610000	19010365	117464142	33721419

Table A.35.: Results of Hamburg planning scenario using the scenario tree with 27 nodes, a construction limit of 60, and optimization for AV@R

node	father	stage	year	KiB/cap	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF
1	1	1	2004	$1.17 \cdot 10^{4}$	1.00	25	0.31	0	1196667	54375	-1248619	-1251042
2	1	2	2005	$1.74 \cdot 10^{4}$	1.00	50	0.58	1606814	1115208	108750	302021	-868186
3	2	3	2006	$2.59 \cdot 10^{4}$	1.00	75	0.68	2358726	1033750	163125	971314	293665
4	3	4	2007	$3.87 \cdot 10^{4}$	1.00	100	0.77	3320504	952292	217500	1755251	2444377
5	4	5	2008	$5.77 \cdot 10^{4}$	1.00	125	0.81	4404768	870833	271875	2564924	5706437
6	5	6	2009	$8.61 \cdot 10^{4}$	1.00	150	0.84	5762124	789375	326250	3506707	103529355
7	6	7	2010	$1.28 \cdot 10^{5}$	1.00	163	0.85	7271498	368117	354525	4747428	16901792
8	7	8	2011	$1.92 \cdot 10^{5}$	1.00	169	0.84	9033675	150350	367575	5908846	25417542
9	8	9	2012	$2.86 \cdot 10^{5}$	1.00	172	0.81	10953945	65400	374100	6974331	35931987

Table A.36.: Results of quarterly Hamburg planning scenario using the expected traffic evolution, a construction limit of 100, mandatory coverage

node	father	stage	year	KiB/cap	prob	totSites	coverPop	inco	capE	opE	CFDis	aggCF
1	1	1	2004	$1.17 \cdot 10^{4}$	1.00	15	0.21	0	718000	32625	-749171	-750625
2	1	2	2005	$1.74 \cdot 10^{4}$	1.00	30	0.37	-749171				
3	2	3	2006	$2.59 \cdot 10^{4}$	1.00	45	0.53	1847478	620250	97875	959789	-355647
4	3	4	2007	$3.87 \cdot 10^{4}$	1.00	60	0.63	2718168	571375	130500	1658039	1660647
5	4	5	2008	$5.77 \cdot 10^{4}$	1.00	75	0.69	3759811	522500	163125	2428273	4734832
6	5	6	2009	$8.61 \cdot 10^{4}$	1.00	90	0.74	5042584	473625	195750	3310010	9108041
7	6	7	2010	$1.28 \cdot 10^{5}$	1.00	105	0.76	6534816	424750	228375	4260592	14989732
8	7	8	2011	$1.92 \cdot 10^{5}$	1.00	120	0.77	8261167	375875	261000	5282474	22614024
9	8	9	2012	$2.86 \cdot 10^{5}$	1.00	135	0.75	10157059	327000	293625	6317324	32150458

Table A.37.: Results of quarterly Hamburg planning scenario using the expected traffic evolution, a construction limit of 60, mandatory coverage
A. Tables with Detailed Results

List of Tables

1.1. Common unit prefixes 4
4.1. Notation related to scenario trees 33
5.1. Overview of symbols regarding transformation from traffic volume to load 55
6.1. Variables and coefficients in optimization models 70
7.1. Key properties of planning scenarios 84
7.2. Parameter values used for optimization 88
7.3. Effect of presolving in the Hamburg scenario for two scenario trees 90
7.4. Comparison of optimization over the scenario tree and and over the individual scenarios, i.e., the relaxation of the non-anticipativity constraints 94
7.5. Comparison of the AV@Rs for the different objectives 97
7.6. Comparison of stochastic optimization over scenario tree and opti- mization with the expected traffic evolution and evaluated on sce- nario tree. 98
A.1. Description of the columns 105
A.2. Results of Berlin planning scenario using the scenario tree with 27 nodes, a construction limit of 10 , and optimization for expected profit 106
A.3. Results of Berlin planning scenario using the scenario tree with 27 nodes, a construction limit of 10, mandatory coverage, and opti- mization for expected profit 107
A.4. Results of Berlin planning scenario using the scenario tree with 32 nodes, a construction limit of 10 , and optimization for expected profit 108
A.5. Results of Berlin planning scenario using the scenario tree with 32 nodes, a construction limit of 10 , mandatory coverage, and opti- mization for expected profit 109
A.6. Results of Berlin planning scenario using the scenario tree with 27 nodes, a construction limit of 10, and optimization for AV@R 110

List of Tables

A.7. Results of Berlin planning scenario using the scenario tree with 27 nodes, a construction limit of 10, mandatory coverage, and opti- mization for AV@R 111
A.8. Results of Berlin planning scenario using the scenario tree with 32 nodes, a construction limit of 10, and optimization for AV@R 112
A.9. Results of Berlin planning scenario using the scenario tree with 32 nodes, a construction limit of 10 , mandatory coverage, and opti- mization for AV@R 113
A.10.Results of Berlin planning scenario using the expected traffic evolu- tion, a construction limit of 10 and mandatory coverage 114
A.11.Results of Berlin planning scenario using the expected traffic evolu- tion, a construction limit of 10 114
A.12.Results of Hamburg planning scenario using the scenario tree with 34 nodes, a construction limit of 100, mandatory coverage, and op- timization for expected profit 115
A.13.Results of Hamburg planning scenario using the scenario tree with 34 nodes, a construction limit of 60 , mandatory coverage, and opti- mization for expected profit 116
A.14.Results of Hamburg planning scenario using the scenario tree with 34 nodes, a construction limit of 100, mandatory coverage, and op- timization for AV@R 117
A.15.Results of Hamburg planning scenario using the scenario tree with 34 nodes, a construction limit of 60, mandatory coverage, and opti- mization for AV@R 118
A.16.Results of Hamburg planning scenario using the scenario tree with 27 nodes, a construction limit of 100, mandatory coverage, and op- timization for expected profit 119
A.17.Results of Hamburg planning scenario using the scenario tree with 27 nodes, a construction limit of 60 , mandatory coverage, and opti- mization for expected profit 120
A.18.Results of Hamburg planning scenario using the scenario tree with 27 nodes, a construction limit of 100, mandatory coverage, and op- timization for AV@R 121
A.19.Results of Hamburg planning scenario using the scenario tree with 27 nodes, a construction limit of 60 , mandatory coverage, and opti- mization for AV@R 122
A.20.Results of annual Hamburg planning scenario using the expected traffic evolution, a construction limit of 100, mandatory coverage 123
A.21.Results of annual Hamburg planning scenario using the expected traffic evolution, a construction limit of 100 123
A.22.Results of annual Hamburg planning scenario using the expected traffic evolution, a construction limit of 60, mandatory coverage 124
A.23.Results of annual Hamburg planning scenario using the expected traffic evolution, a construction limit of 60 124
A.24.Results of quarterly Hamburg planning scenario using the scenario tree with 53 nodes, a construction limit of 100, mandatory coverage, and optimization for the expected profit 125
A.25.Results of quarterly Hamburg planning scenario using the scenario tree with 53 nodes, a construction limit of 60, mandatory coverage, and optimization for the expected profit 126
A.26.Results of quarterly Hamburg planning scenario using the scenario tree with 53 nodes, a construction limit of 100, mandatory coverage, and optimization for AV@R 127
A.27.Results of quarterly Hamburg planning scenario using the scenario tree with 53 nodes, a construction limit of 60, mandatory coverage, and optimization for AV@R 128
A.28.Results of Hamburg planning scenario using the scenario tree with 34 nodes, a construction limit of 100, and optimization for the ex- pected profit 129
A.29.Results of Hamburg planning scenario using the scenario tree with 34 nodes, a construction limit of 60, and optimization for the ex- pected profit 130
A.30.Results of Hamburg planning scenario using the scenario tree with 34 nodes, a construction limit of 100, and optimization for AV@R 131
A.31.Results of Hamburg planning scenario using the scenario tree with 34 nodes, a construction limit of 60, and optimization for AV@R 132
A.32.Results of Hamburg planning scenario using the scenario tree with 27 nodes, a construction limit of 100, and optimization for the ex- pected profit 133
A.33.Results of Hamburg planning scenario using the scenario tree with 27 nodes, a construction limit of 60 , and optimization for the ex- pected profit 134
A.34.Results of Hamburg planning scenario using the scenario tree with 27 nodes, a construction limit of 100, and optimization for AV@R 135
A.35.Results of Hamburg planning scenario using the scenario tree with 27 nodes, a construction limit of 60, and optimization for AV@R 136
A.36.Results of quarterly Hamburg planning scenario using the expected traffic evolution, a construction limit of 100, mandatory coverage 137
A.37.Results of quarterly Hamburg planning scenario using the expected traffic evolution, a construction limit of 60, mandatory coverage 137

List of Tables

Bibliography

[1] Tobias Achterberg. SCIP: Solving constraint integer programs. Math. Programming, 1:1-41, 2009.
[2] Ron Adner and Daniel A. Levinthal. What is not a real option: Considering for the application of real options to business strategy. Academy of Management Review, 29(1):74-85, 2004.
[3] Luis H.R. Alvarez and Rune Stenbacka. Adoption of uncertain multi-stage technology projects: A real options approach. Journal of Mathematical Economics, 35(1):71-97, February 2001.
[4] Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent measures of risk. Mathematical Finance, 9(3):203-228, July 1999.
[5] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi. Complexity and Approximation: Combinatorial optimization problems and their approximability properties. Springer, 1999.
[6] Avner Bar-Ilan and William C. Strange. A model of sequential investment. Journal of Economic Dynamics and Control, 22:437-463, March 1998.
[7] Fischer Black and Myron Scholes. The pricing of options and corporate liabilities. The Journal of Political Economy, 81(3):637-654, 1973.
[8] Adam Borison. Real option analysis: Where are the emperor's clothes? 7th Annual Conference on Real Options, Washington DC, USA, July 2003.
[9] Michael J. Brennan and Eduardo S. Schwartz. Evaluating natural resource investments. The Journal of Business, 58(2):135-157, April 1985.
[10] Bundesamt für Kommunikation (BAKOM). Amtliche Fernmeldestatistik 2007, March 2009.
[11] Bundesamt für Kommunikation (BAKOM). Amtliche Fernmeldestatistik 2008, September 2009.
[12] Bundesnetzagentur. Entscheidung der Präsidentenkammer vom 18.02.2000 über die Festlegungen und Regeln im Einzelnen zur Vergabe von Lizenzen für Universal Mobile Telecommunications System (UMTS)/International Mobile Telecommunications 2000 (IMT-2000) Mobilkommunikation der dritten Generation.

Bibliography

[13] Bundesnetzagentur. Jahresbericht 2006.
[14] Bundesnetzagentur. Jahresbericht 2009.
[15] Bundesnetzagentur. Tätigkeitsbericht 2006 / 2007 für den Bereich Telekommunikation.
[16] Bundesnetzagentur. Tätigkeitsbericht 2008 / 2009 Telekommunikation.
[17] Thomas E. Copeland and J. Fred Weston. Financial Theory and Corporate Policy. Addison-Wesley, third edition, 1992.
[18] Tom Copeland and Vladimir Antikarov. Real Options: A Practitioner's Guide. Texere, 2001.
[19] Tom Copeland and Peter Tudano. A real-world way to manage real options. Harvard Business Review, March 2004.
[20] John C. Cox, Stephen A. Ross, and Mark Rubinstein. Option pricing: A simplified approach. Journal of Financial Economics, 1979.
[21] Shi-Jie Deng, Blake Johnson, and Aram Sogomonian. Exotic electricity options and the valuation of electricity generation and transmission assets. Decision Support Systems, 30:383-392, 2001.
[22] Darinka Dentcheva, Andrzej Ruszczyński, and Alexander Shapiro. Lectures on Stochastic Programming. Modeling and Theory. SIAM, 2009.
[23] Avinash K. Dixit and Robert S. Pindyck. Investment under Uncertainty. Princeton University Press, 1994.
[24] Avinash K. Dixit and Robert S. Pindyck. Expandability, reversibility and optimal capacity choice. Final Draft, February 1998.
[25] Andreas Eichhorn and Werner Römisch. Polyhedral risk measures in stochastic programming. SIAM Journal of Optimization, 16(1):69-95, 2005.
[26] Andreas Eichhorn and Werner Römisch. Dynamic risk management in electricity portfolio optimization via polyhedral risk functionals. In IEEE Power and Energy Society General Meeting, 2008, pages 1-8, 2008.
[27] Eurostat. Total population. Available online: http://epp.eurostat. ec.europa.eu/tgm/table.do?tab=table\&init=1\&language=en\&pcode= tps00001\&plugin=1, retrieved 26. April 2010.
[28] FAZ.NET. Mobilfunkstandard LTE: Was kann der UMTS-Nachfolger wirklich? Available online: www.faz.net/s/Rub36B71B0E8E5C46E9AFBAF4B7B12FC9C5/ Doc~E6B4D8E09834F4A5EAC6A11EBFBBD65FE~ATpl~Ecommon~Scontent.html, retrieved 26. March 2010.
[29] Hans Föllmer and Alexander Schied. Stochastic Finance: An Introduction in Discrete Time. Number 27 in Studies in Mathematics. de Gruyer, second edition, 2004.
[30] Bundesamt für Statistik. Bevölkerungsstand. Available online: http://www.bfs.admin.ch/bfs/portal/de/index/themen/01/02/blank/ key/bevoelkerungsstand.html, retrieved 28. January 2010.
[31] GAMS. Scenred-2 Manual. Available online: www.gams.com/dd/docs/ solvers/scenred.pdf, retrieved 17. June 2010.
[32] Hans-Florian Geerdes. Dynamic aspects in W-CDMA: HSPA performance, 2007. STSM Scientific Report, COST 293.
[33] Hans-Florian Geerdes. UMTS Radio Network Planning: Mastering Cell Coupling for Capacity Optimization. PhD thesis, Technische Universität Berlin, 2008.
[34] Torsten J. Gerpott. Öffnung von GSM-Frequenzen für UMTS-Angebote: Eine Analyse der Wettbewerbs- und Regulierungsimplikationen für den deutschen Mobilfunkmarkt. Rainer Hampp Verlag, 2008.
[35] Paul Glasserman. Monte Carlo Methods in Financial Engineering, volume 53 of Stochastic Modeling and Applied Probability. Springer, 2003.
[36] Martin Grötschel, Klaus Lucas, and Volker Mehrmann, editors. Produktionsfaktor Mathematik: Wie Mathematik Technik und Wirtshaft bewegt. Acatech Deutsche Akademie der Technikwissenschaften, Springer Verlag, 2008.
[37] Gurobi Optimization. www.gurobi.com.
[38] Fotiod C. Harmantzis, William Ramirez, and Venkata Praveen Tanguturi. Valuing wireless data services solutions for corporate clients using real options. Draft. Available online: http://www.stevens-tech.edu/perfectnet/ publications/Papers/IJMC_5302_Harmantzis_et_al.pdf, retrieved 19. July 2010.
[39] Holger Heitsch. Stabilitüt und Approximation stochastischer Optimierungsprobleme. PhD thesis, Humboldt-Universität zu Berlin, May 2007.
[40] Holger Heitsch and Werner Römisch. Scenario tree modeling for multistage stochastic programs. Mathematical Programming, 118:371-406, 2009.
[41] Holger Heitsch, Werner Römisch, and Cyrille Strugarek. Stability of multistage stochastic programs. SIAM Journal on Optimization, 17(2):511-525, 2006.
[42] Patrick Herbst and Uwe Walz. Real options valuation of highly uncertain investments: Are umts-licenses worth their money? Draft. Available online: http://www.wiwi.uni-frankfurt.de/~pherbst/content/umts.pdf, retrieved 19. July 2010.

Bibliography

[43] Harri Holma and Antti Toskala, editors. HSDPA/HSUPA for UMTS: High Speed Radio Access for Mobile Communication. John Wiley \& Sons, 2006.
[44] Arnd Huchzermeier and Christoph H. Loch. Project management under risk: Using the real options approach to evaluate flexibility in R\&D. Management Science, 47(1):85-101, January 2001.
[45] John C. Hull. Options, Futures, and Other Derivatives. Prentice Hall, 7th edition, May 2008.
[46] IBM ILOG CPLEX Optimizer. www.cplex.com.
[47] Robert J. Kauffman and Xiaotong Li. Technology competition and optimal investment timing: A real options perspective. IEEE Transactions on Engineering Management, 52(1):15-29, 2005.
[48] Jussi Keppo and Hao Lu. Real options and a large producer: the case of electricity markets. Energy Economics, 25(5):459-472, September 2003.
[49] Achim Klenke. Wahrscheinlichkeitstheorie. Springer, 2005.
[50] Thorsten Koch. Rapid Mathematical Programming. PhD thesis, Technische Universität Berlin, 2004.
[51] Jaana Laiho, Achim Wacker, and Toma Novosad, editors. Radio Network Planning and Optimisation for UMTS. John Wiley \& Sons, 2006.
[52] Diane M. Lander and George E. Pinches. Challenges to the practical implementation of modeling and valuing real options. The Quarterly Review of Economics and Finance, Special Issue: Real Options: Developments and Applications, 38:537-567, 1998.
[53] Timothy A. Luehrman. Investment opportunities as real option: Getting started on the numbers. Harvard Business Review, July-August 1998.
[54] Timothy A. Luehrman. Strategy as a portfolio of real options. Harvard Business Review, September-October 1998.
[55] Saman Majd and Robert S. Pindyck. Time to build, option value, and investment decisions. Journal of Financial Economics, 18:7-27, March 1987.
[56] Robert McDonald and Daniel Siegel. Investment and the valuation of firm when there is an option to shut down. International Economic Review, 26(2):331-349, June 1985.
[57] Robert McDonald and Daniel Siegel. The value of waiting to invest. The Quarterly Journal of Economics, 101(4):707-728, November 1986.
[58] Rita Gunther McGrath. A real options logic for initiating technology positioning investments. Academy of Management Review, 22(4):974-996, 1997.
[59] Robert C. Merton. Theory of rational option pricing. The Bell Journal of Economics and Management Science, 4(1):141-183, 1973.
[60] Jianjun Miao and Neng Wang. Investment, consumption, and hedging under incomplete markets. Journal of Financial Economics, 86:608-642, 2007.
[61] Momentum Project. Momentum public UMTS planning scenarios. Available online: http://momentum.zib.de, 2003.
[62] Steward C. Myers. Determinants of corporate borrowing. Journal of Financial Economics, 5:147-175, 1977.
[63] Steward C. Myers and Saman Majd. Abandonment value and project life. Advances in Futures and Options Research, 4:1-21, 1990.
[64] Maciej Nawrocki, Hamid Aghvami, and Mischa Dohler, editors. Understanding UMTS Radio Network Modelling, Planning and Automated Optimisation: Theory and Practice. John Wiley \& Sons, 2006.
[65] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Optimization. John Wiley \& Sons, 1988.
[66] Bernd Øksendal. Stochastic Differential Equations. An Introduction with Applications. Springer, 2003.
[67] Heise Online. Mobilfunknetzbetreiber machen Tempo. Available online: http://www.heise.de/newsticker/meldung/ Mobilfunknetzbetreiber-machen-Tempo-946686.html, retrieved 12. June 2010.
[68] James L. Paddock, Daniel R. Siegel, and James L. Smith. Option valuation of claims on real assets: The case of offshore petroleum leases. The Quarterly Journal of Economics, 103(3):479-508, August 1988.
[69] Georg Ch. Pflug. Probabilistic Constrained Optimization: Methodology and Applications, chapter Some Remarks on the Value-at-Risk and the Conditional Value-at-Risk, pages 272-281. Kluwer Academic Publishers, 2000.
[70] Georg Ch. Pflug and Werner Römisch. Modeling, Measuring and Managing Risk. World Scientific, 2007.
[71] Robert S. Pindyck. Irreversible investment, capacity choice, and the value of the firm. American Economic Review, 79(5):969-985, 1988.
[72] Vodafone Group Plc. Annual report 2008. Available online: http://www. vodafone.com/static/annual_report/downloads/vodafone_ar_full.pdf, retrieved 20. June 2010.
[73] R. Tyrrell Rockafellar and Stanislav Uryasev. Conditional value-at-risk for general loss distributions. Journal of Banking E Finance, 26:1443-1471, 2002.
[74] Werner Römisch. Stochastic Programming, chapter Stability of Stochastic Programming Problems. Elsevier Science, 2003.
[75] Werner Römisch and Stefan Vigerske. Quantitative stability of fully random mixed-integer two-stage stochastic programs. Optimization Letters, 2:377-388, 2008.
[76] Geoffrey Rothwell. A real options approach to evaluating new nuclear power plants. Energy Journal, 27(1):37-54, 2006.
[77] Andrzej Ruszczyński and Alexander Shapiro, editors. Stochastic Programming, volume 10 of Handbooks in Operations Research \& Management Science. Elsevier Science, 2003.
[78] Rüdiger Schultz. Rates of convergence in stochastic programs with complete integer recourse. SIAM Journal of Optimization, 6:1138-1152, 1996.
[79] Rüdiger Schultz and Stephen Tiedemann. Conditional value-at-risk in stochastic programs with mixed-integer recourse. Mathematical Programming, 105(2-3):365-386, February 2006.
[80] SCIP, Solving Constraint Integer Programs. http://scip.zib.de.
[81] Steven E. Shreve. Stochastic Calculus for Finance II: Continuous-Time Models. Springer Finance. Springer, 2004.
[82] James E. Smith and Kevin F. McCardle. Valuing oil properties: Integrating option pricing and decision analysis approaches. Operations Research, 46(2):198217, March-April 1998.
[83] James E. Smith and Robert F. Nau. Valuing risky projects: Option pricing theory and decision analysis. Management Science, 41(5):795-816, May 1995.
[84] Lenos Trigeorgis. Real Options - Managerial Flexibility and Strategy in Resource Allocation. The MIT Press, 1996.
[85] Chung-Li Tseng and Graydon Barz. Short-term generation asset valuation: A real options approach. Operations Research, 50(2):297-310, March-April 2002.
[86] Tao Wang. Real Options "in" Projects and Systems Design - Identification of Options and Solution for Path Dependency. PhD thesis, Massachusetts Institute of Technology, May 2005.
[87] Tao Wang and Richard de Neufville. Building real options into physical systems with stochastic mixed-integer programming. Technical report, Massachusetts Institute of Technology, Engineering Systems Division, June 2005.
[88] Tao Wang and Richard de Neufville. Real options "in" projects. In 9th Annual Conference on Real Options, Paris, France, June 2005.
[89] Helen Weeds. Strategic delay in a real options model of R\&D competition. Review of Economic Studies, 69:729-747, 2002.

