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Zusammenfassung

Telekommunikation ist eine wesentliche Grundlage für die Informationsgesell-
schaft in der wir leben. Sowohl in der Geschäftswelt als auch im Privaten wird
die ständige Verfügbarkeit von mobiler Telekommunikation heutzutage voraus-
gesetzt. Nachdem am Anfang die Sprachnutzung überwog, erzeugen nun Daten-
dienste und mobiles Internet die Hauptlast in den Netzen und bestimmen den
Ausbau der Netzinfrastruktur. Im Jahr 2009 erzeugten 19 Millionen Nutzer über
33 Millionen Gigabyte Verkehrvolumen mit mobilen Datendiensten. UMTS-Netze
in Deutschland enthalten über 120 000 Mobilfunkzellen an über 39 000 Standorten.
Die vier deutschen Netzbetreiber investierten zwischen 1998 und 2008 über 28
Milliarden Euro in ihre Netzinfrastruktur (alle Zahlen stammen aus [14]).

Diese Zahlen verdeutlichen, dass eine sorgfältige Verwendung der verfügbaren
Ressourcen sich wesentlich auf die Profitabilität eines Netzbetreibers auswirken
kann. Das Netz sollte möglichst gut an die bestehende Nachfrage angepasst sein.
Da sich die Nachfrage mit der Zeit verändert, ergibt sich Bedarf die Infrastruktur
entsprechend mitentwickeln. Die Veränderung der Nachfrage ist schwer vorherzu-
sagen und stellt eine starke Unsicherheitsquelle dar. Die strategische Netzplanung
hat daher die Unsicherheit zu berücksichtigen, und die geplante Netzevolution
sollte sich an veränderte Marktbedingungen anpassen. Die Verwendung von Pla-
nungsmethoden unter Berücksichtigung von Unsicherheit kann daher die Profita-
bilität erhöhen und einen Wettbewerbsvorteil darstellen.

Mathematische Modellierungs- und Optimierungsmethoden sind leistungsfähi-
ge Werkzeuge für die Planung von Fest- und Funknetzen gleichermaßen, die in
den vergangen 20 Jahren in diesen Bereich vielfach erfolgreich eingesetzt wur-
den [36]. Stochastische Optimierung ist ein Ansatz um Planungsprobleme mit
ganz oder teilweise unsicheren Planungsdaten anzugehen. Der Ausbau eines Fun-
knetzes wird üblicherweise in Jahres- oder Quartalsabschnitten geplant, so dass
wir von mehrstufiger stochastischer Optimierung sprechen.

In dieser Arbeit werden mathematische Modelle und effiziente Optimierungs-
methoden für die strategische Planung von zellulären Funknetzen vorgestellt.
Wir modellieren die Nachfrageentwicklung als stetigen, stochastastischen Prozess
und approximieren ihn durch diskrete Szenariobäume. Ein dreistufiger Ansatz
wird für die Erzeugung von unregelmäßigen Szenariobäumen verwendet, die die
Grundlage der stochastischen Programme sind.

Wir beschreiben ein realistisches Systemmodell für ein UMTS-Funknetz. Unter
Berücksichtigung von realistischen Signalausbreitungseigenschaften des Umfeldes
und der Interferenz innerhalb des Netzes erfasst das Model mit Netzabdeckung
und Netzkapazität dessen wesentliche Eigenschaften. Passend zu unserem Op-
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timierungsansatz leiten wir Zellflächen von Abdeckungseigenschaften und der
kapazitiven Auslastung der Funkzellen ab.

Wir formulieren das Netzplanungsproblem als mehrstufiges stochstisches Pro-
gramm mit Ganzzahligkeitsbedingungen. Die zugehörengen deterministisch-äqui-
valenten Probleme sind gewöhnliche gemischt-ganzzahlige Programme (MIPs),
die wir mit modernen, kommerziellen MIP-Lösern lösen. Dabei verwenden wir
speziell entwickelte Presolving-Methoden, um die Problemgröße zu reduzieren,
und die Instanzen einer Lösung zugänglich zu machen.

Mit Hilfe von Untersuchungen für realistische Planungsszenarien überprüfen
wir unseren Planungsansatz. Wir nutzen sowohl Daten aus öffentlich zugängli-
chen Quellen als auch ein Planungsszenario eines deutschen Netzbetreibers, um
Ausbaupläne und finanzielle Bewertungen fr̈ UMTS-Funknetze zu berechnen. Da-
bei betrachten wir neben dem erwarteten Gewinn auch ein Risikomaß als Ziel-
funktionen.

Der Planungsansatz soll anhand von Szenarien studiert werden, in denen neben
der unsicheren Verkehrentwicklung möglichst alle weiteren Parameter bekannt
sind. Deshalb untersuchen wir die Entwicklung eines UMTS-Netzes zwischen den
Jahren 2004 und 2010. Für diesen Zeitraum sind die meisten Parameter öffentlich
zugänglich und unterliegen nicht länger der Geheimhaltung durch die Netzberei-
ber.

Die meisten der formulierten Programme werden innerhalb von 10 Stunden
optimal bis auf 0.5 % Optimalitätslücke gelöst. Im Vergleich zur traditionellen Pla-
nung auf der erwarteten Bedarfsentwicklung liefert unser Ansatz signifikant bes-
sere Ergebnisse. Die Ergebnisse verdeutlichen den Bedarf nach stochastischen Pla-
nungsmethoden, da die berechnenten Netzentwicklungen in den einzelnen Sze-
narien stark von einander abweichen. Die Optimierung mit dem Ziel der Mini-
mierung des Risikomaßes Average Value-at-Risk bringt dagegen nur noch geringe
Verbesserungen. Auch die genau Kenntnis über die zukünftige Entwickung, die
einer Relaxierung der Nicht-Antizipativitäts-Bedingungen entsprechen, liefert nur
noch wenig Mehrwert.

Der hier untersuchte Planungsansatz lässt sich auf andere Funktechnologien
übertragen. Mit der Nachfolgetechnologie von UMTS names LTE steht bereits ein
Kandidat in den Startlöchern. Das Systemmodel ist hierfür geringfügig anzupas-
sen. Auch kann es sinnvoll sein, ein erweitertes Nachfragemodell zu verwenden,
das beispielsweise auf anderen stochastischen Prozessen basiert. Weiterhin scheint
eine Übertragung für die Planung von leitungsgebundenen Zugangsnetzen wie
dem deutschlandweit geplanten Glasfaserausbau möglich. Eine detaillierte Ana-
lyse hierzu wird im Rahmen der Arbeit jedoch nicht durchgeführt.
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1. Introduction

Telecommunication is fundamental to the information society we live in. In both,
the private and the professional sector, mobile communication is nowadays taken
for granted. Having started primarily as a service for speech communication,
data service and mobile Internet access are now driving the evolution of network
infrastructure. In the year 2009, 19 million users generated over 33 million gigabyte
of traffic using mobile data services. The 3rd generation networks (3G or UMTS)
in Germany comprises over 39 000 sites with about 120 000 cells. From 1998 to
2008, the four network operators in Germany invested over 28 billion euros in
their infrastructure (all figures taken from [14]).

A careful allocation of the resources is thus crucial for the profitability of a net-
work operator: a network should be dimensioned to match customers demand. As
this demand evolves over time, the infrastructure has to evolve accordingly. The
demand evolution is hard to predict and thus constitutes a strong source of uncer-
tainty. Strategic network planning has to take this uncertainty into account, and
the planned network evolution should adapt to changing market conditions. The
application of superior planning methods under the consideration of uncertainty
can improve the profitability of the network and creates a competitive advantage.

Mathematical modeling and optimization is a powerful tool for network plan-
ning [36]. Stochastic programming provides modeling approaches for planning
problems where some or all the data is unknown. The evolution of the network
can be divided into several stages such that we face a multistage problem. Mul-
tistage stochastic programming is, thus, a suitable framework to model strategic
telecommunication network planning.

We start by investigating several methods for the monetary valuation of invest-
ment opportunities. The most traditional ones, net present value and decision tree
analyis, are not satisfying. Net present value is a static framework which leads
to poor results in the presence of uncertainty and many possibilities to react un
unforseen events. Decision tree analysis can capture flexibility but is limited to
discrete time horizons and probability distributions. Moreover, the tree has to be
formulated explicitly which is hardly possible in our case. In both framework,
future cash-flows are discounted with a risk-adjusted discount rate, which can
hardly be determined.

The real options approach proposes to used the market for the monetary val-
uation of investment opportunities. The results are expected to be more reliable
since no risk-adjusted discount rate has to be estimated. The project, however, has
to be embedded in an appropriate market to fulfil the conditions. This is hardly
possible in our application.

1



1. Introduction

In the literature, stochastic programming is suggested to value real options in
the absence of a market embedding. The results is an implicit evaluation of the
scenario tree and hence a risk-adjusted discount has to be used. We therefore
formulate our network planning problem as a multistage stochastic program.

In stategic telecommunication network design, we identified the future demand
as the main source of uncertainty. The future traffic volume is modelled in a
stochastic manner. Using a three-stage approach, comprising the modelling as an
abstract stochastic process, sampling of paths, and the construction of scenario
trees based on the sample path, we obtain a stochastic demand model.

We set up a system model for UMTS radio networks that captures the coverage
and capacity behavior of the network. Service by the network is assume to be
provided only to mobile devices with cell the cells service area. Both, coverage
and capacity, are considered to compute service areas of the cells. By this means,
cell capacity is also transferred to a spacial measure which is appropriate for our
purpose.

Based on the stochastic demand model and the cell areas for the respective traffic
volumes, we formulate deterministic equivalent problems for the network design
problem. These deterministic equivalents are ordinay mixed-integer programs
which can be solved with state-of-the-art branch-and-cut based solvers. Several
presolving routines are applied to reduce the problem size and make the instances
computationally tractable.

To demonstrate the practical applicability of the approach, we conduct compu-
tational experiments on two realistic planning scenarios. We choose a setting that
allows to perform experiments on realistic data without guessing to many param-
eters. We thus focus on a setting in which most parameters have become publicly
accessible and are no longer a trade secret of the industry. This is nowadays the
case for the introduction of UMTS, starting around the year 2003. Therefore, the
evolution of a UMTS network from the year 2004 to the year 2010 is studied. His-
torical observation of the traffic volumes are used to calibrate the model.

Strategic planning the next technology generation of cellular networks, called
LTE, is eventually ongoing at all German network providers. The technologies
developed in this thesis are applicable to this setting as well.

Outline. This thesis is structured as follows. In the remainder of this section, we
define the notation used in this thesis. We then discuss different frameworks to
determine the value of an investment opportunity: Two traditional frameworks in
Chapter 2 and the real options framework in Chapter 3. We study the applicability
of the powerful tools provided by financial mathematics to value real options, and
we explain which nesessary assumptions are not fulfilled for the application of
this tool for the problem under consideration.

Therefore, stochastic optimization is the framework of choice to optimize the
network evolution such that the expected value of the network is maximized. We
introduce the stochastic programming framework in Chapter 4.

2



The system model of a UMTS network and a stochastic demand model is given
in Chapter 5. Based on this, we present optimization models for the network
evolution in Chapter 6. Presolving routine to make the problems computationally
tractable are also provided.

Computational experiments on realistic datasets and their results are described
and analyzed in Chapter 7. Conclusions are presented in Chapter 8.

Mathematical Programming

This section provides definitions of the types of mathematical programs used in
this thesis. A more detailed introduction to linear and mixed-integer program-
ming can be found for example in [65].
Definition 1: Let m, n ∈ N, A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and I ⊆ N = {1, . . . , n}.

The optimization problem

min cTx (1.1)
s.t. Ax ≤ b (1.2)

xi ∈ Z ∀i ∈ I (1.3)
x ∈ Rn (1.4)

is called mixed-integer (linear) program (MIP). A MIP is called

an integer program (IP), if I = N,
a linear program (LP) , if I = ∅.

A minimization problem can be easily transformed into a maximization problem
and vice versa. Therefore, a MIP can be equivalently be defined as a maximization
problem. Furthermore, the inequality system Ax ≤ b can be transformed into a
system of equalities by adding auxiliary slack variables.

A vector x ∈ Rn is called feasible solution of the MIP if it fulfills the conditions
(1.2) and (1.3). We call a feasible solution x optimal if the objective function can
not be improved by another feasible solution, i. e., if no feasible y ∈ Rn exists such
that cTy > cTx.

An LP can be associated to each MIP by omitting the integrality constraints (1.3).
We say that the integrality constraints are relaxed. The resulting LP is called
LP-relaxation. The optimal solution value of the LP-relaxation is a lower bound
for the optimal solution value of the MIP and is called LP-bound. The relative gap
between a lower bound and the objective function value of a feasible solution is a
measure for the solution quality.
Definition 2: Let c be the objective function value of a feasible solution and c ≤ c

3



1. Introduction

SI prefixes IEC prefixes

Value Abbr. Name Value Abbr. Name

1 0001 k kilo 1 0121 Ki kibi
1 0002 M mega 1 0122 Mi mebi
1 0003 G giga 1 0123 Gi gibi
1 0004 T tera 1 0124 Ti tebi
1 0005 P peta 1 0125 Pi pebi

Table 1.1.: Common unit prefixes

the a lower bound on the objective function value. The relative gap is defined by

relative gap =


∞ if c = 0 and c 6= c
0 if c = c = 0∣∣∣ c−c

c

∣∣∣ else
(1.5)

Even though general MIP solving is an NP-hard optimization problem [5],
instances with a large number of variables and constraints can often be solved
by state-of-the-art MIP solvers, such as Cplex [46], Gurobi [37], or SCIP [1, 80].

Unit Prefixes

Large cuantities are commonly scaled by powers of thousands or powers of 1024.
Prefixes, like kilo, mega, giga, are used to indicate the scaling. We distinguish the
SI decimal prefixes and the IEC binary prefixes. The International System of Units
(SI from the French Système international d’unitès) specifies a set of unit prefixes that
reflect powers of 1 000. An examples is kilo with is abbreviated by the letter k and
means 1 0001 os the respective unit. The International Electrotechnical Commission
(IEC) specifies unit prefixes that reflect powers of 1 012 which are primarily used
in the electronic and computer related field. Their names are similar to the SI
prefixes but still allow a clear distinction. Table 1.1 gives an overview of the most
common prefixes in both systems.
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2. Traditional Valuation of Investment
Opportunities

The evaluation of investment opportunities is challenging talk that arises in many
business situations. An investment opportunity is interpreted as a project that
incurs a series of investment outlays and in return generates a series of revenues.
Selecting only profitable projects and among several possible projects the one with
maximal profit is a common task for management and decision makers. One
metric of profitability is the expected value of the investment opportunity at the
time the decision has to be taken. Several approaches have been studied and
became standard in the management literature.

All approaches rely on the ability to discount future cash-flows. Discounting is
used to scale cash-flows occurring at different times. Typically, investors are risk-
averse; they prefer less risk to more. For taking a risk, investors therefore ask for a
risk-premium. This also effects the time preferences for monetary values. Having
one unit today is preferred to having one unit in one year. On the other hand, one
money unit that an investor gets next year is only worth the fraction 1

r today. The
appropriate discount factor r, also called discount rate, depends on the riskiness
of the investment. The riskier the investment is supposed to be, the higher is the
discount factor for future cash-flows.

The most prominent approach of the evaluation of investment opportunities is
Net Present Value (NPV) analysis. The NPV of a project is the sum of all discounted
expected cash-flows that occur during the planned lifetime of the project. While
this is a feasible approach when no uncertainty is present, difficulties arise when
future cash-flows are uncertain and management has the flexibility to alter the
operational strategy.

Decision Tree Analysis (DTA) is one attempt to capture flexibility. The idea is
to construct a tree with event nodes and decision nodes, where discounted cash-
flows are associated to the edges. By backwards solving the tree, the expected
present value and optimal decision strategies can be computed. In highly uncer-
tain environments with many decisions and alternatives, however, the decision
tree suffers from a combinatorial explosion. Finding the appropriate discount is
also a problem.

With the advances in mathematical finance another approach emerged: Real Op-
tion Analysis. The idea is to interprete the options that form flexibility as financial
options and value them using the methods from mathematical finance. This gives
a powerful tool to model flexibility and gives methods to derive market driven
values for investment projects. To capture the abilities and limitations of this ap-

5



2. Traditional Valuation of Investment Opportunities

proach, some background from finance is necessary. We therefore dedicate the
real options approach a separate chapter, even though by now it can be called
“traditional” as well.

In the remainder of this chapter we present in Section 2.1 the net present value
approach and in Section 2.2 the decision tree approach in more detail. The real
options approach will be studied in Section 3.

2.1. Net Present Value

The most common tool for the evaluation and comparison of investment oppor-
tunities or projects is the Net Present Value (NPV) Analysis. The net present value
of a project is the sum of all discounted cash-flows that incur during its lifetime.
NPV is a metric for the current value of a project, but is inappropriate in uncertain
environments.

In the following, we assume a discrete time model where cash-flows may occur
only at a certain points in time. The set of time points is called time horizon and is
denoted by T = {0, . . . , T}. To facilitate the notation we assume that the periods
between two points are of equal duration.

First, we introduce the NPV if all cash-flows are certain and argue that it is a
correct method for valuation. Then, we define the NPV under uncertainty and
show the limitations of the approach.

Net Present Value Under Certainty

In an environment without uncertainty all cash-flows during the lifetime are known
in advance. Let Ct cash-flow in period t.

Since the cash-flows are certain, an investor is indifferent of investing in the
project or putting the money on a bank account, but he will only invest in the
project if the return is at least as high as the return of the bank account.

The value of funds on a bank account increases in every period by a factor of
the interest rate r. A value of x in period 0, will be worth x(1 + r)t in period t. In
return, to have x at t, only x

(1+r)t are needed at time 0. Under the assumption that
unlimited amounts can be deposited or borrowed from a bank account at the same
interest rate r, all future cash-flows can be discounted by the rate r. If the cash-
flow Ct is negative, an investment is required and the amount Ct

(1+r)t would have to
be deposited at time 0 to cover this expense. If Ct is positive, the project generates
revenues, which are worth Ct

(1+r)t at time 0. This amount could be extracted from
the bank account at time 0 and the revenue would exactly balance the account.

The NPV of a project is then defined as the sum of all discounted future cash-
flows:

NPV :=
T

∑
t=0

Ct

(1 + r)t (2.1)

6



2.1. Net Present Value

Interpretation. Being the sum of all discounted cash-flows, the NPV is the cur-
rent value of the investment opportunity. Thus, a positive value is the amount we
could extract at time 0 from the bank account and the project’s revenues would
still cover all its expenses. A negative value means that this amount needs to
be deposited to cover all future expenses. Consequently, the NPV rule says that
projects with positive NPV are favorable and should be executed while projects
with negative NPV are unprofitable and should be rejected.

NPV is a metric for project merit and can therefore be used to compare alterna-
tive projects.

Trigeorgis [84] puts NPV in a bigger picture and states that in the absence of un-
certainty “NPV is the only currently available valuation measure consistent with
a firm’s objective of maximizing its shareholders’ wealth”.

Net Present Value Under Uncertainty

In reality, future market prices for raw materials and final products are often not
known with certainty. Many other sources of uncertainty might be present and
have an effect on future cash-flows. Cash-flows are no longer deterministic, but
stochastic with some underlying probability distribution. Summing up discounted
cash-flows is not longer appropriate. Therefore, expectations regarding the future
cash-flows are used.

The Risk-Adjusted Discount Rate. The uncertainty about the cash-flows gen-
erated by a project introduce risk for the investor. Investors, however, tend to
be risk-averse and expect a risk-premium in form of a higher expected return
of the investing in risky projects. Therefore, discounting has to be done using
a risk-adjusted discount rate, which is higher than the risk-free interest rate. The
risk-adjusted interest rate is also called opportunity cost of capital, since it repre-
sents the rate of return an investor expects from projects with a similar riskiness.
Determining or even estimating riskiness of projects is very difficult. Finding ap-
propriate risk-adjusted discount rates is not always possible and often subject to
the risk preference of the decision maker. On the other side, the outcome of a
NPV analysis strongly depends on the discount rate and using an inappropriate
rate can lead to poor and unprofitable investment decisions. This is one of the
mayor back-draws of the NPV approach when future cash-flows are uncertainty.

Definition. For a given risk-adjusted discount rate r̂ and a series of (uncertain)
cash-flows the NPV is defined by

NPV :=
T

∑
t=0

E[Ct]
(1 + r̂)t (2.2)

By E[.] we denote the expectation operator and assume that all expectations exist.
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2. Traditional Valuation of Investment Opportunities

Flexibility. Flexibility is the option to react to observations of unforeseen events
by revising and correcting decisions. By using expectations, NPV handles un-
certainty in the forecasted cash-flows, but the ability to react to changing market
conditions is neglected by NPV analysis. This is a source of valuation errors and
might result in poor investment decisions.

2.2. Decision Tree Analysis

Another commonly used tool for project valuation and decision support is decision
tree analysis. The idea is to represent decisions and stochastic events as nodes in
a tree. The tree structure is suitable to visualize the different alternatives in the
lifetime of a project and to determine optimal decision strategies, depending on
the outcome of the stochastic events.

The path from the root to a leaf contains all the information on the events oc-
curred and the decisions taken.

The evaluation of the tree is done from the leaves to the root. At each node, the
expected remaining NPV is calculated. At event nodes, the expectation over all
events and at decision node, the most profitable decision is taken.

Example. Suppose a company has the option to build a production plant. It
comes in two sizes; a big and a small size. If the small size is built, an upgrade can
be built after one period. The sales price of the products is uncertain. Starting at
100 at time 0, the price increases with probability 0.4 by 40 percent and decreases
with probability 0.6 by 30 percent in each of the two periods. The big production
size can produce three units of the product and the small only one. No capacity
downgrade or shutdown is possible. Building the big plant involves cost of 450,
while building the small plant only costs 150, both occurring at time 0. The up-
grade costs another 150 which has to be paid in period one. Products are sold in
periods one and two. All cash-flows have to be discounted with a risk-adjusted
rate of 0.15. The decision tree for this project is depicted in Figure 2.1.

Typically decision nodes are drawn rectangular and event (or chance) nodes
round. Terminal nodes are drawn as triangles. Edges from event nodes are labeled
with the probability p of the event. Edges from decision nodes are labeled with
the decision. The number in brackets is the discounted cash-flow generated by
the edge; either revenues from product sales or expenses for construction works.
Numbers above nodes show the sum of the NPV of the subtree. The highlighted
edges show which decisions are taken.

Let us first look at the subtree corresponding to building the small plant. If
the price goes up, upgrading the facilities is optimal since the value of the “yes”
branch is 311.2− 130.4 = 180.8 > 103.7. The sum if the expected discounted cash-
flows at the decision to upgrade is thus 180.8. If the price decreases, upgrading is
no longer optimal since the value of the “yes” branch in this case is 155.6− 130.4 =
25.2, which is smaller than 51.9. At the time of the decision, the sum of the

8



2.2. Decision Tree Analysis

Build Plant?

Add Cap?

p = 0.4(+444.6)

p = 0.6(+222.3)
Yes

(−130.4)

p = 0.4(+148.2)

p = 0.6(+74.1)

No(+
121.7)

p = 0.4

Add Cap?

p = 0.4(+222.3)

p = 0.6(+111.2)
Yes

(−130.4)

p = 0.4(+74.1)

p = 0.6(+37.1)

No

(+60.9)

p =
0.6

Small

(−150.0)

p = 0.4(+444.6)

p = 0.6(+222.3)
p = 0.4(+365.2)

p = 0.4(+222.3)

p = 0.6(+111.2)

p = 0.6(+182.6)

Big(−450.0)

311.2

103.7

155.6

51.9

51.9

180.8

188.7

473.5

311.2

155.6

38.7

Figure 2.1.: Example of a decision tree, decisions taken indicated by red arcs

expected discounted cash-flows is 51.9. Adding the discounted sales incomes and
weighting with the probability of the price going up or down in the first period,
the value of building the small plant is 188.7 minus the construction cost, thus
38.7.

If the big plant is build, no more flexibility exists. The sum of the expected,
discounted cash-flows is 473.5. Subtracting the investment cost of 450 yield a
value of building the big plant of 23.5.

The maximize the value, the small plant should be build and upgraded, if the
price develops favorable. The value of the project is then 38.7.

Disadvantages. Even though decision tree analysis is superior to NPV analysis,
since it can capture flexibility to a certain degree, it still has the same major back-
draw: Choosing the appropriate discount rate. What is the appropriate discount
rate in this case anyway? In the example above we compare two projects; Building
the big or the small plant. In the worst case, the big plant generates a discounted
loss of 156.2 if the price decreases twice. In the best case a discounted win of 359.8
can be realized. Building the small plant and eventually the upgrade generates a
win of 285.9 in the best and a loss of 52.0 in the worst case. Clearly, building the
big plant is the riskier project and should have been discounted with a higher rate.
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2. Traditional Valuation of Investment Opportunities

Using the same discount rate over time is also critical, since it implies that un-
certainty is revealed continuously over time. In the worst case, at very node in the
tree a different discount rate has to be chosen.

Another problem is the combinatorial explosion of decision trees with many
decisions and many different outcomes of the random variables. Constructing
the tree can be non trivial as well if more complicated constraints on the possible
decisions are present.

The last back-draw we want to mention is the discrete time setting. Not only
does the tree get bigger and bigger if the discretization gets finer, but some pro-
cesses can be monitored continuously and decision can be taken at any point in
time. Infinite time horizons, are also not possible in this setting.
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With the success of mathematical finance with its abilities to compute prices for
financial derivatives, another approach to value projects arose: Real Options. An
investment opportunity is viewed as a collection of options on future cash flows
and methods from finance are used to compute prices for these options on “real”
assets, thus the term “real option”. The Flexibility to modify the operational strat-
egy is considered by adding appropriate options to the collection of options that
form the project. These options are valued in a suitable market model. The result-
ing values are driven by the market and thus risk-neutral. In particular, they do
not rely on risk-adjusted discount rates, which was one of the main drawbacks of
net present value and decision tree analysis.

Even though the approach is appealing, its correct application is elaborate. One
sticking point is that typically neither the real option itself nor the underlying
assets are tradable. In the standard mathematical finance models a perfect and
complete market is assumed, which can be used to hedge against all risks. This
allows to calculate risk-neutral prices with the property of being arbitrage-free in
the market model. To make the valuation approach work, the real options have to
be embedded in such a market. Several ways to do this have been proposed, but
apparently there are situation where no suitable embedding can be found.

In the remainder of this chapter we present the most common types of real op-
tions and give a literature review about application areas of the approach. Then,
standard terminology and notation from mathematical finance is introduced to-
gether with common market models. A critical summary of the assumptions from
finance, together with a discussion about usability of the real options approach
will end this chapter.

3.1. Types of Real Options

The collection of real options that form an investment opportunity typically con-
tains several types of options. The most common types will be presented in the
following.

The Option to Wait. In many situations investments can be undertaken not only
at some unique point in time, but during a time window. Thus, management has
the option to wait until conditions are favorable to decide on the execution. De-
laying has the advantage that more information regarding market developments
might be revealed.
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In terms of the real options view on investment opportunities, the option to wait
is the option to purchase the remaining options in the basket by paying the initial
investment needed to start the project. The option is only exercised if the market
conditions are favorable and the initial investment will pay off by the remaining
options and their corresponding cash-flows. Otherwise, the project is not started
and all the remaining options turn worthless.

The option to wait and defer an investment is especially valuable in the absence
of competition. Generally, competition is important to take into account when
modeling real options.

The Option to Default During Construction. Often projects are run in several
stages and an abandonment of the project is possible before starting the next
stage.The option to default during construction has a value, when the investment
does not require one outlay, but a series of expenses. The option is exercised if
the remaining expenses are expected to be higher than the expected revenues. In
staged projects, the outlay in each stage is the price for acquiring the option to
continue in the next stage.

The Option to Expand or Contract. This option reflects the scalability of many
projects. Production plants are often scalable to some degree. This might concern
buying additional machinery to extend production or to shut down parts of the
plant.

Capacity expansion typically involves costs and thus the option to expand is
only exercised if the conditions are favorable. The option to contract enables the
management to reduce the scale of the project by, for example, reducing the pro-
duction in a factory. This causes the abandonment of future revenues to save
operational expenses.

The Option to Abandon. Many projects can be abandoned before the planned
lifetime ends. Facilities and technologies are often still of value and can be sold
on the market.

Interdependent and Compound Options. Typical investment projects comprise
several options effecting each other. The option to default is an example of a
compound option, since it involves several options: one for each period when
defaulting is possible, but they are highly interdependent. Each of them has to be
exercised to acquire the next. The value of the option to default in some period,
hence, depends on the exercise strategy in the preceeding periods.

When options interact with each other they cannot be valued independently
anymore. They have to be seen as one compound option. The exercise decision
of an option in the compound depends also on the exercise strategy of the other
options; in particular, on the exercise history of the other options. When the
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decision to exercise does not only depend on the current state of the system but
on the history, we call an option path-dependent. Interactions among options and
path-dependence add significant complexity to the valuation. The determination
of optimal exercise strategies is also very important.

3.2. Real Options in the Literature

The term “real option” was coined by Myers [62] in 1977. Since then, the study
and application of real option has generated innumerable publications. Anyhow,
we try to give an overview without claiming completeness.

In the mid 1980s, people started to investigate on real options by considering
one option at a time.

Several authors contributed in the area of investment timing and stages invest-
ments. McDonald and Siegel [57] focus on the option to wait. Staged invest-
ment and the option to default during construction is discussed by Majd and
Pindyck [55]. They assume that an investment has to be made with a limited in-
vestment level per time period. Therefore, investment has to be done continuously
(but with possible breaks) over a time period and investment levels have to be de-
termined. Bar-Ilan and Strange [6] model investments with several stages that take
time to complete and where the staged investments have to be done at once, in
contrast to the continuous model from Majd and Pindyck. Paddock, Siegel and
Smith [68] investigated on staged investment in the context of offshore petroleum
leases, where the three stages are: Exploration, development and extraction.

Options concerning the scalability of projects are another big branch. Pindyck [71]
studies capacity choice where the demand is stochastic; an idea which is extended
by Dixit and Pindyck [24]. The option to shut down and restart can also be seen in
the light of scalability of projects. It has been studied by McDonald and Siegel [56].
Project abandonment is investigated by Myers and Majd [63].

Several publications target to present the real options to a broader public, espe-
cially corporate managers. Examples are publication by Luehrman [53, 54], where
the first runs under heading “Manager’s Tool Kit”, and Copeland and Tufano [19].

Various books about real options have been published. The prominent ones
are by Trigeorgis [84] and Dixit and Pindyck [23], but there are several more,
i.e., [17, 18].

The real options approach has been used in several applications, such as natural
resources [9, 68, 82], telecommunication [38, 42], technology adoption [3, 47, 58],
electricity [21, 48, 76], research and development (R&D) [44, 89].

Several publications, i.e., [2, 8, 52], deal with the problems in the practical im-
plementation of real option analysis and show the limitations.

The idea to model and value real options by means of multistage stochastic
programming can be found in [85, 87] and in the PhD-thesis of Wang [86], which
is our main reference in this context.
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3.3. Types of Financial Options

Financial instruments that are derived from traded assets, such as stocks or bond,
are called derivatives. Options are a special class of derivatives, where the buyer
has the right, but not the obligation, to take some specified action.

Let us first review the definitions of the most common options in practice: call
and put options. These products are often called plain vanilla options. In contrast to
these standard options a variety of exotic options are traded, among them options
depending on the average, minimum or maximum price of the underlying and
barrier products.

Two types of options are distinguished: European and American. European op-
tions can only be exercised at a specified point in time, called expiry. American
options, in contrast, can be exercised anytime within a time window, normally
from the emission until the expiry. American options are more sophisticated since
different exercise strategies have to be considered. Options are assumed to be of
European type if not specified otherwise.

Plain Vanilla Options

Let us examine the most common types of options.

The European Call Option. We will first give a formal definition of the call
option.
Definition 3 ( Call Option): The holder of a call option with underlying S, strike K,

and expiry T has the right but not the obligation to buy one unit of S for the price
K. European call options can be exercised only at time T, American call options
anytime before T.

Any rationally acting investor exercises the option if the price St is higher than
then the strike, otherwise he gets the asset at the same or a smaller price at the
market. In the case of exercise, the asset can be sold directly and the holder of the
option has an instant win of

St − K. (3.1)

In practice options are mostly not settled by exchanging the asset, but by paying
the difference (3.1). The resulting payoff profile for the call option is

C(call) := (St − K)+ (3.2)

where (.)+ is the positive part defined by

(x)+ := max(0, x).

Figure 3.1(a) shows a plot of the payoff profile.
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St

C(call)

K

(a) Call

St

C(put)

K

K

(b) Put

Figure 3.1.: Payoff profiles of plain vanilla options with strike K

The Put Option. The counterpart to call options are put options. They allow
participation if the value of the asset decreases.
Definition 4 (Put Option): The holder of a put option with underlying S, strike K,

and expiry T has the right but not the obligation to sell one unit of S for the price
K. European put options can be exercised only at time T, American put options
anytime before T.

The payoff profile for the put is

C(put) := (K− St)
+ (3.3)

The plot in Figure 3.1(b) shows the payoff profile. We see that the holder profits
from decreases in the value of the underlying asset.

Exotic Options

Innumerous types of non-standard options exist. To get an impression, we present
some of them. Let S be an asset. We present only the European version options.

Options whose payoff is based on the average price of an asset are called Asian
option. Often discrete monitoring dates are used of average, such that the average
price is defined by

Sav
t =

1
|T(t)| ∑

k∈T(t)
Sk,

where T(t) is the set of monitoring dates that is smaller than t. The average price
can now used to define payoff profiles for call and put option

Ccall
avP := (Sav

t − K)+

Cput
avP := (K− Sav

t )+

To make the confusion complete, Asian options can be of European or American
type, referring to the possible exercise only at expiry or anytime before that.
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The payoff of Lookback options is based on the minimum or maximum price of an
asset. Examples are the lookback put and lookback call with the respective payoff
profiles

Ccall
look := ST − min

t∈[0,T]
St

Cput
look := max

t∈[0,T]
St − ST.

Another mechanism to create exotic options are barriers. If the value of the
underlying hits or passes a thresholds, the payoff profile of the option is changed.
Classical barrier mechanisms are up-and-in, which only activates a payoff if the
value of the underlying was at some point on or higher than the barrier, up-and-
out, which only pays if the value of the underlying was never superior of the
barrier, down-and-in and down-and-out which work similarly.

American options

In contrast to European options that can be exercised only at the expiry, American
options can be exercised any time before at at the expiry. Pricing is therefore much
more complicated and will not be discussed in detail. We refer to the textbooks [29,
45, 81].

Anyhow, we want to point out the key issues. The value of an option can be
seen from two perspectives: from the investors and the sellers point of view. An
investor is not willing to pay more for an American option than the expected
payoff if the option is exercise optimally. In probability theory this is formulated
using optimal stopping times. Since exercise can be anytime between the emission
and the expiry, the subjective preference is also involved. Fortunately, in complete
markets it suffices to maximize the expected payoff under the equivalent martin-
gale measure. The seller of the option, on the other side, has to hedge the option.
The hedging strategy must be chosen such that it covers the claims for all optimal
stopping strategies.

Asymmetry of Risk

The most important point in the definitions of options is that the holder has the
right but not the obligation to perform some action. This results in an asymmetry
of risk. The holder profits from movements in one direction—up for calls, down
for puts—, but has limited downside risk if the value of the underlying goes in
the opposite direction.

3.4. Introduction to Mathematical Finance

The idea in valuing real options is to interpret them as options on traded as-
sets and apply methods from mathematical finance to calculate values and prices.
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Therefore, we want to give a brief introduction to pricing methods in mathemat-
ical finance. An understanding of the ideas and methods and especially of the
assumptions in this field is useful in the application of real options.

First, we want to make some assumptions that are common to all the market
models described here.

• No transaction costs
• No taxes
• No limitations in short-selling
• Money can be borrowed and deposited in unlimited amounts at the same

interest rate
• Arbitrarily sharable assets

Short-selling means selling an asset that the trader does not own. The trader
borrows it and sells it on the market. When he buys it back, the price difference is
his profit. This way, it is possible to participate if the value of the asset goes down.
The last point says that an investor can hold any fractional quantity of an asset.

Throughput this presentation, we assume that the assets do not pay dividends
and that the interest rate is constant over time. All options are of European type.

3.4.1. Discrete Time Models

In this section, we present the results from the chapters 1 and 5 from Föllmer
and Schied [29]. We also use the notation from this book. We do not aim for a
complete review of the topic, but for an intuitive introduction and overview on the
most interesting phenomena and principles in stochastic finance in discrete time.
Of particular importance is the “fundamental theorem of asset pricing” which
ensures the existence of probability measures under which expectations result in
fair prices. We start from a description of the market model.

The market model.

A finite time horizon T = {0, . . . , T} is assumed in this discrete setting. The mar-
ket consists of d + 1 assets. Assets can be bonds, stocks, currencies, commodities,
and others. We assume that the initial prices at time 0 are deterministic.

Prices. The prices of the assets are described by non-negative random variables
on a probability space (Ω,F , P). The random variable Sk

t (ω) denotes the value of
1 unit of asset k at time t in scenario ω ∈ Ω. If no confusion can occur, we omit
the specification of the scenario and identify Sk

t = Sk
t (ω).

The prices at time t are combined to a random vector St = (S0
t , S1

t , . . . , Sd
t ). The

stochastic process (St)t∈T describes the price system.
The 0th asset S0

t is the risk-free bond. It yields the risk-free interest rate r. Let
S0

0 = 1 be the initial value of the bond at time t = 0. Then the value in the later
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3. Real Options

periods is

S0
t = (1 + r)t (3.4)

Trading Strategies. A trading strategy has to specify the quantities of the assets
in the portfolio. In every period the portfolio can be restructured depending on
the development of the prices. The trading strategy, thus, also depends on the
realization of the price process.

To understand the mechanics, we start with an example. At time 0 the prices
are known and an initial portfolio ξ1 = (ξ0

1, . . . , ξd
1) has to be chosen. The value ξk

1
specifies the quantity of asset k in the portfolio at this point. The initial value of the
portfolio is given by the scalar product ξ1 · S0 = ∑d

i=0 ξ i
1Si

0. In period 1, after the
prices have changed, the value of the portfolio is ξ1 · S1 = ∑d

i=0 ξ i
1Si

1. At this point
the portfolio can be restructured. The new quantities are given by the random
vector ξ2. Following this pattern in each period t ∈ {0, . . . , T − 1} quantities for
the portfolio ξt+1 = (ξ0

t+1, . . . , ξd
t+1) are chosen. The trading strategy (ξt)t∈{1,...,T}

is also a stochastic process since it depends on the development of the prices.
The selection of the portfolio has to fulfill two important properties. First, the

selection is allowed to depend only on the observation of the prices up to time t.
No at time t unknown events can influence the selection. Second, the selection has
to be self-financing. This means that the restructuring has to preserve the portfolios
value. This is expressed by the condition

ξt · St = ξt+1 · St for all t = 1, . . . , T − 1 (3.5)

The left-hand side is the value before and the right-hand side the value after re-
structuring.

Discounting. The risk-free bond S0
t is used for discounting. The discounted

prices process X is defined by the component-wise division

Xt :=
St

(1 + r)t (3.6)

We define the discounted value process V for a trading strategy ξ by

V0 := ξ1 · X0 (3.7)
Vt := ξt · Xt for all t = 1, . . . , T (3.8)

Arbitrage. Let us now formally define what arbitrage is.
Definition 5 (Arbitrage opportunity): A self-financing trading strategy is called an

arbitrage opportunity if its discounted value process V satisfies

V0 ≤ 0, VT ≥ 0 almost surely, and P(VT > 0) > 0. (3.9)

A market model is said to be arbitrage-free if it permits no arbitrage opportunities.
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According to definition 5 an arbitrage opportunity is a trading strategy, that has
zero or even negative value in the beginning, but non-negative value in the end
and with positive probability the strategy yields a strictly positive profit. In the
following we assume the market model to be arbitrage-free.

European Contingent Claims. With this description of the market, we can de-
fine financial derivatives. We consider European contingent claims which are non-
negative random variables on (Ω,FT, P). At expiry T the claim is settled by
paying the payoff according to the payoff profile. Contingent claims are general
options whose payoff profile can depend on the development of the market but
also of other factors, such as the weather and outcomes of sports events. We are
interested in claims whose payoff is a function underlying asset. A European con-
tingent claim C is called a derivative of the underlying assets S0, S1, . . . , Sd, if its
payoff profile is a function of the assets prices, i.e., there exists a function f such
that

C = f ((S0
t )t∈T , . . . , (Sd

t )t∈T ) (3.10)

If there is a trading strategy ξ such that the final value of the portfolio equals
the payoff of the claim C

C = ξT · ST almost surely. (3.11)

the contingent claim is replicable. A trading strategy fulfilling (3.11) is called
replicating portfolio. The arbitrage-free price of a replicable claim is the initial value
of the replicating portfolio. For non-replicable claims more than one fair price can
exist without generating arbitrage.

Market models in which all contingent claims can be replicated are called com-
plete.

From the sellers point of view, replicating portfolios is of great importance. They
allow hedging, which means that the seller of a claim can source the risk arising
from the potential future payoff out to the market. In this context the replicating
portfolio is called hedge.

Arbitrage-Free Pricing

In the following, we present the principles of risk-neutral pricing. Since a full
presentation of all the details goes beyond the scope of this work, we present the
key ideas and refer to Föllmer and Schied [29] for the details.

The absence of arbitrage in a market model is strongly related to the existence
of special measures: martingale measures. They have the nice property that the
discounted price processes of all assets are martingales under this measure. Mar-
tingales are the mathematical representation of fair games.

The following theorem states the relationship between martingale measures and
arbitrage.
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Theorem 3.1 (Fundamental Theorem of Asset Pricing): A market model is arbitrage-free
if and only if the set P of equivalent martingale measures is non-empty.

The impact of martingale measure lies in their pricing capability. The set Π(C)
of arbitrage-free prices of a claim C is described by expectations under martingale
measures.
Theorem 3.2: The set of arbitrage-free prices of a claim C is non-empty and given by

Π(C) =
{

1
(1 + r)t E∗[C]

∣∣∣∣ P∗ ∈ P and E∗[C] < ∞
}

(3.12)

where E∗[.] denotes the expectation with respect to P∗.
Theorem 3.2 is particularly useful in complete markets. In these markets, the

martingale measure is unique which by Eq. (3.12) implies that the price is also
unique and can be calculated as the discounted expected payoff of the claim.

3.4.2. The Cox-Ross-Rubinstein-Model

In the time discrete setting, complete markets have a simple structure. Not only
can all claims can be replicated, there is exactly one martingale measure and one
unique arbitrage-free price. The probabilistic structure is also simple. A set A ∈
FT is an atom, if for every B ∈ FT with B ⊆ A, we have either P(B) = 0 or
P(B) = P(A). It can thus be interpreted as an scenario that cannot be split. The
following theorem states that a complete market only distinguishes finitely many
scenarios.
Theorem 3.3: If a market model is complete, then the number of atoms in (Ω,FT, P) is
bounded by (d + 1)T.

On the basis of this theorem, John Cox, Stephen Ross and Mark Rubinstein [20]
described a market model, which consists of only two assets: the risk-free bond
and one risky asset. The bond has an interest rate r and its value is given by

S0
t = (1 + r)t

The asset behaves in a tree-like fashion. From S1
t it moves with probability p to the

high value S1
t (1 + a) and with probability 1− p to the low value S1

t (1 + b). Like
this, it spans a binary tree with probabilities on the arcs as depicted in Figure 3.2.
The model is often called CRR-model or binomial model.

Let us describe the model by first defining the sample space

Ω = {a, b}T. (3.13)

The elementary events ω ∈ Ω are called scenarios. Let

Yt(ω) := yt for ω = (y1, y2, . . . , yT) (3.14)
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Figure 3.2.: Representation of a binary scenario tree with time horizon T = {0, 1, 2},
nodes are labeled with their probabilities for p = 0.6

be the projection on the tth coordinate. The price of the risky asset at time t is
given by

S1
t (ω) = S1

t−1(ω)(1 + Yt(ω)) = S1
0

t

∏
k=1

(1 + Yk(ω)) (3.15)

Like that the tth coordinate of ω specifies whether the price goes from S1
t−1 to the

high value or to the low value.

Arbitrage-free Pricing. The following theorem specifies under which condition
the CRR-model is arbitrage-free and also give a martingale measure.
Theorem 3.4: The CRR-model is arbitrage-free if and only if a < r < b. In this case
it is complete , and there is a unique martingale measure P∗. The martingale measure is
characterized by the fact that the random variables Y1, . . . , YT are independent under P∗

with common distribution

P∗(Yt = a) = p∗ =
r− b
a− b

for t = 1, . . . , T (3.16)

A formal proof can be found in [29]. The risk-free probability of a scenario
ω ∈ Ω is now easily calculated by

P∗(ω) = p∗|{t |Yt(ω)=a}| (1− p∗)|{t |Yt(ω)=b}| (3.17)

Pricing in the CRR-model is now an easy task. The price is just the expectation
of the discounted payoff with respect to the martingale measure. If the payoff is
C(ω) then is price π(C) is:

π(C) = ∑
ω∈Ω

P∗(ω)
C(ω)

(1 + r)T (3.18)

21



3. Real Options

The CRR-model is of great importance not only because it is an easy model
which allows to calculate arbitrage-free prices even for path dependent options,
but it also has the nice property that the prices converge against the prices given
by the continuous Black-Scholes Model if some regularity assumption are fulfilled.

3.4.3. The Black-Scholes Model

The Black-Scholes model is the most famous pricing model in continuous time. It
was published by Fischer Black and Myron Scholes [7] in 1973. Robert Merton was
also working with them on the topic but published a separate paper [59]. Merton
and Scholes were awarded with the Nobel Prize in Economics in 1995 for their
work. Black could not be awarded, since he died in 1993 and the Nobel Prize can
only be awarded to living persons.

The Market Model. The Black-Scholes model assumes a continuous time hori-
zon [0, T], where T normally is the maturity of the option which is to be priced. In
its easiest form, the market contains only a riskless bond and one risky asset. The
dynamics of the bond are characterized by continuous compounding with rate r
such that the value at time t is given by

S0
t = ert (3.19)

where S0
0 = 1 is the initial value of the bond.

The dynamic of the risky asset is given by a stochastic differential equation
(SDE):

dS1
t = µS1

t dt + σS1
t dWt (3.20)

The left side of equation (3.20) is the infinitesimal change in the stock price. The
change consists of a deterministic drift µS1

t dt with drift coefficient µ and a stochas-
tic perturbation σS1

t dWt. The parameter σ is called volatility and describes the de-
gree of fluctuation in the price. By Wt we denote a standard Brownian motion
in the probability space (Ω,F , P). For theory of stochastic processes, we refer to
text books from probability theory [49] or from finance [81]. Theory and solution
methods for stochastic differential equation can be found in [66].

One solution of the SDE (3.20) with start value S1
0 is

S1
t = S1

0 exp
(

σWt +
(

µ− 1
2

σ2
)

t
)

. (3.21)

This process is called geometric Brownian motion. Figure 3.3 shows three realizations
of the geometric Brownian motion on the interval [0, 1]. The smooth line shows the
drift component. Deviations from the drift are caused by the perturbating effect
of the Brownian motion.
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Figure 3.3.: Three realizations of geom. Brownian motion with σ = 0.4 and µ = 0.1,
the red line indicates the drift eµt

The Black-Scholes Formula. In this model several options can be priced explic-
itly and it is very useful to approximate the value of exotic options numerically. In
particular Black and Scholes derived explicit formulas to price the European call
with maturity T and strike K. They showed that the price process c(t, x) of the call,
which takes the time t as first and value of the underlying asset as second argu-
ment, is a continuous function that satisfies the Black-Scholes partial differential
equation

ct(t, x) + rxcx(t, x) +
1
2

σ2x2cxx(t, x) = rc(t, x) for all t ∈ [0, T), x ≥ 0. (3.22)

The final value of the price process has to be the payoff profile of the call, so that
the terminal condition is

c(T, x) = (x− K)+ (3.23)

This partial differential equation can be solved and c(t, x) is given by

c(t, x) = xN(d+(T − t, x))− Ke−r(T−t)N(d−(T − t, x)) , for all t ∈ [0, T), x ≥ 0
(3.24)

where

d±(T − t, x) =
1√

T − t

[
log

x
K

+
(

r± σ2

2

)
(T − t)

]
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and N is the cumulative standard normal distribution

N(y) =
1√
2π

∫ y

−∞
e−

z2
2 dz

This shows various things. The price of the option does not depend on the drift
parameter µ if the geometric Brownian motion, which in practice is very hard to
determine or even estimate. The volatility is much easier to observe. Furthermore,
a hedging rule can be found in the derivation of the PDE (3.22). The seller of
the option has to hold cx(t, S1

t ) units of the asset. The first partial derivative of
the option price in the direction of the underlying price is called delta, thus the
name Delta-Hedge. In theory this trading strategy allows a perfect replication of
the European call, but adjusting of the positions have to be done continuously,
which is obviously not applicable in practice.

Risk-Neutral Pricing. The Black-Scholes Model is complete, which implies the
existence of a unique martingale measure. We do not go into the details here, but
we want to state how this can be used to approximate the value of options. Details
can be found in [81].

The theorem of Girsanov is used to derive a description of the behavior of the
risky asset under the martingale measure P∗. The dynamic is given by

dS1
t = rS1

t dt + σS1
t dW̃t (3.25)

where W̃t is a standard Brownian motion under the martingale measure P∗. Note
that the drift coefficient from (3.20) has been replaced by the risk-free interest rate
and has no longer influence on the dynamics. This reflects that the drift does not
have influence on the price of the call option.

Prices can be computed by a similar pricing formula to the discrete time model

π(C) = e−rtE∗[C] (3.26)

is still valid. The paths of the assets can be approximated using (3.25), such that
the expected value can be approximated by Monte Carlo simulations or other
simulation techniques.

3.5. Revisiting the Assumptions from Finance

In section 3.1 we have seen that options arising from flexibility in project manage-
ment have a similar structure than financial option, but can they be priced with
the same models?

Borison [8] gives a summary over the different approaches to justify the ap-
plicability of the results from mathematical finance. We adopt his criticism and
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present multistage stochastic programming as a framework to maximize the ex-
pected profit in a net present value sense in incomplete markets. By that execution
strategies for compound real options are computed.

In the previous section, we have seen that risk-neutral prices can be computed
in markets where all risks can be hedges by trading the markets’ assets. The
CRR-model and the Black-Scholes Model are complete, meaning that every deriva-
tive can be replicated by a trading strategy in the market. In particular, the un-
derlying of the derivative is traded in a hedging strategy. In most real options,
the project value is the underlying. To make it tradable, a twin security as to be
identified. It is a traded asset whose value is perfectly or at least highly correlated
to the value of the project. Portfolios of traded assets are possible to be used as
twin securities as well. Having a twin security, a lot a real options can be priced
by financial methods, since their payoffs can be replicated with trading the twin
security. Finding reasonable twin securities is however difficult, if not impossible,
in most cases.

This shows two problems in the application of real option analysis: Finding
twin securities is difficult and sometimes not possible. Even if a twin security can
be found, its stochastic behavior has to be modeled. In the Black-Scholes Model
assumed that the underlying behaves like geometric Brownian motion. Hence, to
apply the standard Black-Scholes Model, the twin security has to follow a geomet-
ric Brownian motion.

In the absence of a suitable twin security, the parameter needed to apply the
Black-Scholes Model can be estimated. This however is contradictory to the as-
sumptions of the model and the prices will no longer have an interpretation. Some
authors (i.e. [53]) argue that even though the prices are not correct, qualitative in-
sights are still possible.

Another approach to justify the use of simple financial models to price real
options is the Marketed Asset Disclaimer (MAD). In this concept, which is described
for example in [18], the NPV of the project without flexibility is used as twin
security. The parameter required of the financial pricing model are estimated by
Monte-Carlo Simulations are other techniques and then prices are calculated on
this basis. Again, the condition that risks can be hedged in the market is violated.
Additionally, the pricing model makes assumptions about the assets probability
distribution. If the Black-Scholes Model is used, it is assumed that the value of the
project is a geometric Brownian motion. This assumption is not fulfilled in most
applications.

If the real options refers to applying standard methods from finance, in partic-
ular the Black-Scholes Model, to the problem of valuing investment opportunities
in uncertain environments, the method is of little practical use or at least has to
be applied very carefully. Anyhow, we think it is more than that. The view on
flexibility, namely as option to perform some action in the future, is very natural
and appealing. This explains the great success of methods carrying the label “real
options”.
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Big efforts have been made to use the real options idea in incomplete environ-
ments, which means in environments were risks from the project cannot be hedged
with traded assets.

Various authors distinct two types of risks. Market risks can be hedged within
the market, while idiosyncratic or private risks are company specific, such that no
hedging is possible. The idiosyncratic risks make the market incomplete. Typically
the uncertainty in future cash-flows is decomposed by risk type. The market part
is priced using no-arbitrage pricing and the private part is valued by subjective
estimates on probabilities and risk-preferences. This results in an integration of
financial pricing theory and decision analysis. Examples of this approach are [83]
and [60]

The market in the telecommunication sector usually only consists of a few com-
petitors; many of them international companies present in different markets and
regions. The competitors typically follow different business strategies that are of-
ten expressed by different network evolution strategies. The technology leader
typically adopts the latest technologies early and builds a network with large cov-
erage. The market follower typically starts the construction at a later point and
concentrates on the locations where a high usage is expected. Finding a twin asset
for the value of a telecommunication network of a specific technology and mar-
ket seems difficult under this circumstances. A market driven valuation of the
investment opportunity can thus not be expected. The real options framework,
however, is still a powerful tool to model and conceptualize options in investment
opportunities.

Richard de Neufville and Tao Wang [86–88] distinct two types of real options:
real options “in” and “on” projects. Their definition of real options “on” projects
concerns investment opportunities which are present for various participants in
the market and can thus be replicated. The project itself with all the technological
aspects is seen as a black box. This corresponds to the traditional approach to
real options in a complete market. Real options “in” project, on the other side,
describe the flexibility in the project including technological details. The types of
risk and flexibility cannot be valued by the market. This is the classical situation
where no suitable twin security can be found. In his PhD-thesis [86] Wang states
that these options are often highly interdependent and compound options, which
also makes the classical pricing approach difficult to apply.

He proposes to use stochastic mixed-integer programming to evaluate real op-
tions “in” projects. The objective is to compute execution strategies for real options
that maximize the discounted profit of the investment. In the absence of a com-
plete market, the value is not market driven, but in a net present value sense.
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The evolution of telecommunication networks takes place in a volatile, rapidly
changing environment. The strategic planning of the network evolution should
consider the uncertainty in the planning parameters. In the previous section, the
real options framework is presented as a framework to model investment oppor-
tunities in uncertain environments and evaluate its profitability. Unfortunately,
the assumption of tradability of the underlying or the existance of a twin asset is
not fulfilled in our appication. Since the construction of a telecommunication net-
work is a stagewise process that involved large time horizons, we use multistage
stochastic programming to compute network evolution strategies that are adapted
to the evolution of the uncertain parameters and that maximize the profit in a net
present value sense.

In the chapter, we introduce some concepts of multistage stochastic program-
ming and common deterministic equivalent formulations. More details on (mul-
tistage) stochastic programming can be found for example in [22] and [77]. In
the remainder of this chapter we first present the general concept of multistage
stochastic programming and introduce some notation. Next, we present two for-
mulations; the scenario and the node formulation. Last, we introduce the concept
of risk measures and present two representatives in more detail.

4.1. Introduction

Traditionally, optimization was performed in a deterministic setting. All param-
eters are assumed to be known in advance, otherwise, some expectation is used.
In many areas, however, uncertainty is an important part of the problem and ne-
glecting it leads to poor planning decisions. Stochastic programming is a framework
that allows optimization under uncertainty. In multistage stochastic programming
uncertainty is resolved gradually. The random parameters are described by a
stochastic process over time, whose distribution is known. The realization of the
process can be observed at discrete points in time and recourse actions are pos-
sible. This results in an iterated observation-decision scheme, where a decision
on recourse actions follows each observation of the stochastic process. Figure 4.1
gives a graphical representation of the observation-decision scheme.

We consider a discrete time horizon T and assume that the set is either finite or
countable infinite. Later, we will restrict ourself to finite time horizons. We identify
the time points by their index and write T = {1, 2, . . . , T} or T = {1, 2, . . .}.

The stochastic parameters are described by a stochastic process on a probability
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Decide x1 Decide x2 Decide x3 Decide x4

Observe ξ1 Observe ξ2 Observe ξ3 Observe ξ4

Figure 4.1.: Graphical representation of the iterated decision-observation scheme

space (Ω,F , P). We denote the random data process by (Xt)t∈T . The realization
in scenario ω ∈ Ω is thus (Xt(ω))t∈T . With X[t] = (X1, . . . , Xt), we denote the his-
tory of the data process up to time t. The data for the first period is assumed to be
deterministic. The information incorporated in the stochastic process is described
by a series of σ-algebras

Ft := σ(X[t]) = σ(X1, . . . , Xt), t ∈ T (4.1)

Since X1 is deterministic, corresponding σ-algebra F1 is trivial, i. e.,

F1 = {∅, Ω}.

The information that stem from observing the process is increasing. This is ex-
pressed by successive inclusions of the σ-algebras:

F1 ⊆ F2 ⊆ . . . ⊆ Ft ⊆ . . . (4.2)

A series of σ-algebras satisfying (4.2) is called filtration.
At every point t ∈ T in time, recourse actions are possible. Recourse actions

are represented by vector valued random variables, i. e., different recourse ac-
tions are possible for distinct realizations. We denote the random variables cor-
responding to period t with xt. The decision strategy up to time t is denoted by
x[t] = (x1, . . . , xt). We assume without loss of generality, that the number dt of
decisions in stage t is independent of the realization of Xt.

The decisions have to be non-anticipative, meaning that xt only depends on the
realization of the data process up to period t and not on future events. In terms of
σ-algebras, we demand that the random variable xt is measurable with respect to
Ft.

Typically, not all decisions are feasible. The set of feasible decisions in period t
may depend on the decisions taken in the previous periods and on the evolution
of the random data process. We, thus, denote the set of feasible solutions in stage
t with Xt(x[t−1], Xt). Since first stage decision are deterministic, we denote the set
of feasible first stage decisions by X1.

Costs are associated with the decisions. The objective in stochastic programming
is often a function of the costs occurring in all stages and scenarios. Costs can be
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random, too. For example, prices for raw material might not be known in advance.
The cost occurring in period t depends on the decision xt and on the stochastic
data process Xt and is denoted by ft(xt, Xt). Since X1 is determinisic, the cost for
the first stage decision are not random. The cost function is denoted by f1(x1).

Several ways for aggregating the cost into one objective function are known.
Traditionally, the expected value of the cost is optimized. Other functionals that
are more adverse to risk are also widely employed, see Section 4.4 for an intro-
duction to risk measures. For now, we assume that the objective is to minimize
the expected costs. Revenues are interpreted as cost with a negative sign, thus,
expected profit can be maximized equivalently.

A generic multistage stochastic optimization problem can be written as

Min
x1∈X1

f1(x1) + E

[
inf

x2∈X2(x[1],X2)

{
f2(x2, X2) + E

[
inf

x3∈X3(x[2],X3)

{
f3(x3, X3) + E

[
. . .
]}]}]

(4.3)

By recursively defining the cost-to-go function

Qt(x[t−1], Xt) := inf
xt∈Xt(x[t−1],Xt)

ft(xt, Xt) + E
[
Qt+1(x[t], Xt+1)

]
(4.4)

we can reformulate (4.3) to

Min
x1∈X1

f1(x1) + E
[
Q2(x[1], X2)

]
(4.5)

Equations (4.4) and (4.5) hide the complexity of the multistage problem, but the
interpretation fits nicely in the decision-observation scheme depicted in Figure 4.1;
in every stage the decision is taken such that the sum of current and expected
future cost is minimized.

The problem is said to be linear if the objective function is linear and the sets of
feasibile solutions are described by linear constraints. The random data process
can thus be interpreted as a series of random vectors and matrices of suitable
dimensions

Xt = (ct, (B(t)
τ )τ=1,...,t−1, bt),

such that cost and feasible decision sets have the form

ft(xt, Xt) = ctxt (4.6)

Xt(x[t−1], Xt) =

{
xt ∈ Rdt

∣∣∣ t

∑
τ=1

B(t)
τ xτ ≤ bt

}
. (4.7)

A problem of this form is called (Multistage) Stochastic Linear Program (SLP). Mod-
els containing equality constraints can be easily transformed to a system of in-
equalities using standard transformations.
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Integer requirements on some of the variables yield a (Multistage) Stochastic
Mixed-Integer (Linear) Program (SMIP). Let Jt denote the index set of the vari-
ables at time t that have to meet integer requirements and xjt the jth component
of the vector xt. Then, the feasible sets in SMIPs have the form

Xt(x[t−1], Xt) =

{
xt ∈ Rdt

∣∣∣ t

∑
τ=1

B(t)
τ xτ ≤ bt, xjt ∈ Z, j ∈ Jt

}
. (4.8)

Of course, stochastic linear programs are the special form of stochastic mixed-
integer programs, where the sets Jt are empty for all t.

In the following two sections, we present two common formulations of deter-
ministic equivalents of (4.3) , as they will be necessary to approach the solution of
(4.3) numerically.

4.2. The Scenario Formulation

For each scenario ω ∈ Ω, the random data process is realized and a decision
strategy has to be found. To emphasize the dependence on the scenario ω ∈ Ω, we
denote the random data by (Xt(ω))t∈T and the corresponding decision strategy
by (xtω)t∈T .

This notation obfuscates that the decision at stage t depends only on the obser-
vation and decision up to this time and not on the entire scenario. The variable
xtω as mapping from Ω to Rdt has to be measurable with respect Ft = σ(X[t]).
This implies that decisions which base on the same observation of the stochastic
process have to coincide. This is ensured by the non-anticipativity constraints:

xtω = xtω̃ for all ω 6= ω̃ with X[t](ω) = X[t](ω̃), t ∈ T (4.9)

This allows to state the scenario formulation of a stochastic program:

Min
x1,x2,...,xn

E[ f1(x1ω) + f2(x1ω, X2(ω)) + f3(x2ω, X3(ω)) + . . .] (4.10a)

s. t. x1ω ∈ X1 for all ω ∈ Ω (4.10b)
xtω ∈ Xt(x[t−1]ω, Xt(ω)) for all t ∈ T , t > 1, ω ∈ Ω (4.10c)

xtω = xtω̃ for all ω 6= ω̃ with X[t](ω) = X[t](ω̃), t ∈ T
(4.10d)

Minimizing the expected cost is the objective (4.10a). Constraints (4.10b) and
(4.10c) ensure feasibility and (4.10d) ensures non-anticipativity. The non-anticipativity
constraints couple different scenarios. In the absence of these constraints, the prob-
lem decomposes to |Ω| independent subproblems. This makes this formulation
very amenable for decomposition approaches.
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Let us in the following assume a finite time horizon (|T | < ∞) and a finite
probability space (|Ω| < ∞). The expectation can then be easily computed as

∑
ω∈Ω

P(ω)
(

f1(x1ω) + f2(x1ω, X2(ω)) + . . . + fT(xT−1ω, XT(ω))
)

In the linear case the stochastic program can then be formulated as a MIP. The
stochastic process consists of matrices and vectors of appropriate dimension

Xt(ω) = (ctω, (B(t)
τω)τ=1,...,t, btω)

The SMIP can now be stated as a regular MIP, which is called Deterministic Equiv-
alent Model (DEM):

Min ∑
ω∈Ω

P(ω)
T

∑
t=1

ctωxtω (4.11a)

s. t.
t

∑
τ=1

B(t)
τωxτω ≤ btω for all ω ∈ Ω (4.11b)

xtω = xtω̃ for all ω 6= ω̃ with X[t](ω) = X[t](ω̃), t = 1, . . . , T
(4.11c)

xjtω ∈ Z, for all ω ∈ Ω, j ∈ Jt, t ∈ T (4.11d)

xjtω ∈ R for all ω ∈ Ω, j /∈ Jt, t ∈ T (4.11e)

4.3. The Node Formulation

The scenario formulation with explicit non-anticipativity constraints is intuitive,
but treating the non-anticipativity constraints implicitly allows for a much more
compact formulation. The idea is to group variables that have to be equal due to
the non-anticipativity constraints and add just one representative to the model.

Nodes represent the different information states, i. e., the realizations of X[t].
The node belonging to the deterministic initial information is the root. Each node,
except the root, is connected with the node corresponding to its information his-
tory up to the previous period. The information history is unique such that each
node, except the root, has exactly one direct predecessor and the result is a tree.
The tree completely describes the probability distribution and is called scenario
tree. Each scenario is represented by a path from the root to a leaf. The trans-
formation from scenarios with non-anticipativity constraints to a scenario tree is
depicted in Figure 4.2.

This procedure is also feasible if the distribution of Xt is continuous or infinitely
many scenarios exist. Then the tree has infinitely many nodes and edges. In the
following, we restrict ourselves to probability spaces with finitely many scenarios
and finite time horizons.
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(a) Scenarios shown as
horizontal lines

(b) Grouping according
to NA-constraints

(c) Scenario tree

Figure 4.2.: Transformation from scenario with non-anticipativity (NA) constraints as
dashed lines to scenario tree.

Let us introduce some notation. Let (N , E) be a scenario tree with node set N
and edge set E . For a node n ∈ N we denote with t(n) the corresponding stage,
with p(n) its father, and with pk(n) the kth predecessor of n. The history of a node
n is represented by the path from n to the root. The path is denoted by P(n). The
set of nodes belonging to stage t is denoted by N (t). With P(n), we denote the
probability that node n is realized. Table 4.1 gives an overview on the notation
used.

A realization of the stochastic data process corresponds to each node of the tree.
The data process and the variables are, thus, not given per scenario ω, but per
node n. The formulation of a multistage stochastic program which is based on
a scenario tree is thus called node formulation. We omit the general version and
present directly the formulation for the linear case. In this case, the random data
process again contains vectors and matrices of suitable dimensions:

X(n) = (cn, (B(n)
n )n∈P(n), bn)

The decisions in node n might be constrained by decisions in former periods, i. e.,
decisions corresponding to the nodes on the path from the root to n. Therefore,
a constraint matrix B(n)

n for each node n on the path from n to the root is given.
The expected cost is calculated by weighting the cost in each node according to its
probability:

∑
n∈N

P(n) cnxn (4.12)

32



4.4. Risk Measures

Name Domain Interpretation

(N , E) The scenario tree
N Nodes in scenario tree
S ⊆ N Set of scenarios, i.e., the leaves of the scenario tree
P(n) ⊆ N The path from node n to the root including the node itself
t(n) ∈ T The stage of node n
r ∈ N The root of the tree
p(n) ∈ N The unique father of node n in the scenario tree
pi(n) ∈ N The ith ancestor of node n in the scenario tree
P(n) ∈ [0, 1] Probability of node n

Table 4.1.: Notation related to scenario trees

The deterministic equivalent program in the node formulation is then:

Min ∑
n∈N

P(n) cnxn (4.13a)

s. t. ∑
n∈P(n)

B(n)
n xn ≤ bn for all n ∈ N (4.13b)

xjn ∈ Z for all j ∈ Jt(n), n ∈ N (4.13c)

xjn ∈ R for all j /∈ Jt(n), n ∈ N (4.13d)

Minimizing the expected cost is the objective (4.13a). The decisions in node n are
possibly constrained by all decisions in the previous stages. Thus, in (4.13b) all
decisions corresponding to nodes in the path P(n) appear in the constraint. The
domains of the variables constitute the last two rows of the program.

We see that the non-anticipativity constraints are not stated explicitly anymore
but that decisions are non-anticipative by construction. The compactness of the
node formulation makes this formulation favorable for the solution with general
MIP solvers.

4.4. Risk Measures

The quantification of risk is an important subject in stochastic optimization. The
meaning of the word risk is not clearly defined. Generally, decisions that incor-
porate a higher probability of high losses are considered riskier. Consider, for
example, the two normal distributions from Figure 4.3. Both have the same mean,
but different variance. We use the notation X1 ∼ N (0, 1.5) to express that X1
follows a normal distribution with mean 0 and variance 1.5. X2 has variance 2.2,
such that X2 ∼ N (0, 2.2). The density of X1 with the low variance is more concen-
trated around the mean. If the corresponding random variables represent profit,
the probability of obtaining a high loss (profit < −4, say) is much higher for X2
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X1 ∼ N (0, 1.5)
X2 ∼ N (0, 2.2)

Figure 4.3.: Density functions of two Gaussian random variables with mean µ = 0
and different variance σ

than for X1. The random variable with the higher variance is therefore considered
more risky. Apparently, the expected value is not suitable to capture the different
risk profiles.

Risk measures serve to quantify risk. A risk measure ρ is a mapping from the
random variables to the real numbers:

ρ : L1(Ω,F ; R)→ R (4.14)

The space L1(Ω,F ; R) consists of all integratable functions from the measurable
space (Ω,F ) to the real numbers. Unless otherwise specified, we assume all ran-
dom variables to be in L1(Ω,F ; R). Furthermore, we assume that the random
variables describe profits, i. e., larger values are better. This point is not handled
uniformly throughout the literature. Even though both notions are equivalent
(costs are just negative profits), the formulas differ if smaller values are consid-
ered favorable.

A decent risk measure should fulfill some desirable properties. Artzner, Del-
baen, Eber and Heath [4] specify four desirable properties of a risk measure and
call such risk measures coherent.
Definition 6: A mapping ρ : L1(Ω,F ; R) → R is called coherent risk measure if it

fulfills the following four properties:

1. Monotonicity: If X ≤ Y almost surely, then ρ(Y) ≤ ρ(X).

2. Translation invariance: If m ∈ R, then ρ(X + m) = ρ(X)−m.

3. Positive homogeneity: If λ ≥ 0, then ρ(λX) = λρ(X).

4. Subadditivity: ρ(X + Y) ≤ ρ(X) + ρ(Y).
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Figure 4.4.: Cdfs and inverse Cdfs for two Gaussian random variables. Short
notation:V@R

i := V@R0.1(Xi)

For a detailed introduction to risk measures, we refer to [29] and [70]. In the
following, we present two risk measures; Value-at-Risk and Average Value-at-Risk.

4.4.1. Value-at-Risk

The Value-at-Risk (V@R) is a risk measure that is widely used in economics. It
specifies a loss that is not exceeded with a given probability.

Let X be a random variable on a probability space (Ω,F , P) representing profit.
We use the usual short notation

P(X < t) := P({ω ∈ Ω | X(ω) < t})
to denote the probability that X is smaller than t. Similar notations are used for
all other comparison operators.

We adopt the definition for the Value-at-Risk from [29].
Definition 7: The Value-at-Risk at confidence level α ∈ (0, 1) is defined as

V@Rα(X) = − sup {m | P(X < m) ≤ α} = − inf {m | P(X ≤ m) > α}
The meaning of the V@R is that losses larger than V@Rα(X) occur only with

probability not exceeding α. The size of the losses in theses cases is, however, not
quantified.

The V@R is strongly related with the cumulative distribution function (Cdf) of
X. The Cdf of X is defined by

FX(t) := P(X ≤ t)

The V@R can now be expressed by the Cdf:

V@Rα(X) = − inf { t | FX(t) > α}
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If the Cdf is continuous and strictly increasing, the V@R is the negative of the
unique solution t of FX(t) = α. In this case, the cumulative distribution function
is invertible and we have

V@Rα(X) = −F−1
X (α)

The Cdfs for the two Gaussian distributed random variables are depicted in
Figure 4.4(a). The V@R with α = 0.1 is significantly higher for X2, which has
a higher variance. If, however, the confidence level is choose 0.5, both variables
have the same V@R of 0 and thus have the same riskiness in this measure. This is
because the V@R only captures the probability of a loss, but does not quantify the
amount of capital loss in the tail of the distribution. Furthermore, the Value-at-
Risk is not subadditive and hence not coherent (cf. [69]). A coherent risk measure,
which is closely related to V@R, is the Average Value-at-Risk.

4.4.2. Average Value-at-Risk

The Average Value-at-Risk (AV@R) overcomes the shortcomings of V@R. The AV@R
is the expectation of the losses that exceed the V@R and therefore accounts for all
unfavorable realizations.
Definition 8: The Average Value-at-Risk at confidence level α ∈ (0, 1) is defined as

AV@Rα(X) =
1
α

∫ α

0
V@Rγ(X) dγ

The integration ensures that the tail of the distribution enters into the measure-
ment of risk. Other common names for the Average Value-at-Risk are “Conditional
Value-at-Risk” or “Expected Shortfall”. In [69] the AV@R is shown to be a coherent
risk measure.

If the cumulative density function is invertible, the AV@R can be obtained by
integrating the inverse Cdf:

AV@Rα(X) = −1
α

∫ α

0
F−1

X (γ) dγ

The negative inverse Cdfs for two Gaussian random variables with different vari-
ance is plotted in Figure 4.4(b). The area under the plot is larger for the variable
with higher variance, indicating a higher AV@R.

AV@R as the Solution of a Minimization Problem

Rockafella and Uryasev [73] showed that the Average Value-at-Risk is the solution
of a minimization problem. This is particularly interesting since the problem can
be formulated as a linear program. Adding a few auxiliary variables allows us
to use the non-linear risk functional AV@R as objective function for our stochastic
programs.

First, we present the minimization representation of AV@R.

36



4.4. Risk Measures

Theorem 4.1 (Fundamental minimization formula [73]): Let X be a random variable
with finite expectation representing profit and α ∈ (0, 1) a fixed confidence level. Then the
function

φα(X, y) = y +
1
α

E
[
(y + X)−

]
(4.15)

as a function of y is finite, convex, and hence continuous. The Average Value-at-Risk is
given by

AV@Rα(X) = min
y

φα(X, y) (4.16)

The V@R is a minimizer, such that,

AV@Rα(X) = φα(X, V@Rα(X))

The Average Value-at-Risk can, thus, be calculated by solving the optimization
problem (4.16). Even though φα(X, y) is non-linear, the optimization problem can
be linearized by adding additional variables and constraints. The AV@R is the
optimal value of the following stochastic program:

AV@Rα(X) = min y0 +
1
α

E
[
y−
]

(4.17a)

s.t. y0 + X(ω) = y+
ω − y−ω for all ω ∈ Ω (4.17b)

y0 ∈ R, (y+, y−) ∈ RΩ×Ω
≥0 (4.17c)

The program (4.17) is a stochastic two-stage linear program with random right
hand side. Risk measures that are expressed as the solution of certain two-stage
stochastic programs are called polyhedral. For the precise definition and structural
properties of polyhedral risk measures, we refer to [25]. Polyhedral risk mea-
sures have the nice property that, when used as objective function for stochastic
programs, the resulting programs are still stochastic programs with additional
variables and constraints. Thus, the standard MIP technology can be applied to
their deterministic equivalents.

Consider for example a multi-stage stochastic program in node formulation (cf.
program (4.13)). The profit is defined as a random variable v in the last stage of the
problem. The corresponding stochastic program with the Average Value-at-Risk
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of the profit as objective function is:

Min y0 +
1
α

E
[
y−
]

(4.18a)

s. t. Axr ≤ b (4.18b)

∑
n∈P(n)

B(n)
n xn ≤ bn for all n ∈ N \ {r} (4.18c)

vn = vp(n) − cnxn for all n ∈ S (4.18d)

y0 + vn = y+
n − y−n for all n ∈ S (4.18e)

xjn ∈ Z for all j ∈ Jn, n ∈ N (4.18f)

xjn ∈ R for all j /∈ Jn, n ∈ N (4.18g)

vn ∈ R for all n ∈ S (4.18h)

y0 ∈ R (4.18i)

(y+
n , y−n ) ∈ R2

≥0 for all n ∈ S (4.18j)

Apart from the constraints (4.18b), (4.18c) that ensure feasible decision and the
domain constraints (4.18f) and (4.18g), the model has constraints to compute the
AV@R. Constraint (4.18d) defines the value at the leaf nodes and constraint (4.18e)
corresponds to constraint (4.17b). The value vn is calculated for all scenarios n ∈ S ,
i. e., all leaves of the tree. (4.18h), (4.18i), and (4.18j) specify the domains of the
auxiliary variables. According to (4.17a), the objective is to minimize the minimum
of y0 + 1

α E[y−] over all admissable decisions. Eichhorn and Römisch [25] have
shown that both minima can be computed jointly. They also study the structure
of such problems. Studies of structural properties of Average Value-at-Risk based
stochastic programs can also be found in [79].

4.4.3. Multi-Period Risk Measures

The Average Value-at-Risk is designed to measure the risk for one random vari-
able. It is therefore a suitable measure for the risk of a value process in a single
period, i. e., at the end of the time horizon. In multistage stochastic programs,
however, a non-anticipative value process might carry risk in all periods. Sev-
eral extensions have been proposed to measure multi-period risk. One idea is to
combine several single-period risk measures to a multi-period risk measure by
scalarization. Consider, for example, a value process vt, confidence levels αt, and
weights γt. The weighted sum of the single-period AV@Rs

T

∑
t=2

γt AV@Rαt(vt) (4.19)

constitutes a multi-period risk measure. The first stage is not considered in the
sum, since the value is deterministic and, thus, does not carry risk. The weighted
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average (4.19) can be used as objective function for a multistage stochastic pro-
gram. The linearization and the deterministic equivalent program is similar to
(4.17) with auxiliary variables and the respective constraints for all periods. The
multistage stochastic program with (4.19) as objective function is given by:

Min
T

∑
t=2

γt

(
y0

t +
1
αt

∑
n∈N (t)

P(n)y−n

)
(4.20a)

s. t. Axr ≤ b (4.20b)

∑
n∈P(n)

B(n)
n xn ≤ bn for all n ∈ N \ {r} (4.20c)

vn = vp(n) − cnxn for all n ∈ N (4.20d)

y0
t(n) + vn = y+

n − y−n for all n ∈ N (4.20e)

xjn ∈ Z for all j ∈ Jn, n ∈ N (4.20f)

xjn ∈ R for all j /∈ Jn, n ∈ N (4.20g)

vn ∈ R for all n ∈ N (4.20h)

y0
t ∈ R for all t ∈ T , t > 1 (4.20i)

(y+
n , y−n ) ∈ R2

≥0 for all n ∈ N (4.20j)

The inner sum in the objective calculates the expectation of the negative part of
the y0

t + vt as required for the AV@R calculation:

E
[
(y0

t + vt)−
]

= ∑
n∈N (t)

P(n)y−n

This and several other multi-period risk measures are presented in [25] and [26].
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5. Modeling UMTS Radio Networks
and Demand Evolution Over Time

Mobile telecommunication network are complex systems. In this chapter, we
describe a widely used system model for UMTS radio networks and present a
stochastic model for the demand evolution over time. The objective is to provide
a realistic model to be used for optimization. We therefore do not focus on pre-
dictions of the future, but adopt the perspective of a network provider before the
commercial introduction of UMTS. This focus allows us to set up a realistic model
that allows to demonstrate the applicability of our approach.

In the following section, we present a system model for UMTS networks. Even
though with LTE the next generation of mobile telecommunication networks is
waiting in the wings, we present a system model for the UMTS technology. We
do not aim for the most detailed system model but choose a level of abstraction
that is suitable to describe the aspects of coverage and capacity needed in the
optimization model presented in Chapter 6.

After the system model is set up in Section 5.1, a stochastic model for the de-
mand evolution is developed in Section 5.2. The focus for the demand model is
not to predict the future demand evolution. Instead we present observations of
historical traffic volumes and choose a model that adopts to that observations.
This allows us to set up a realistic stochastic model without predictions about the
future since this would leed us to much in the direction of economics.

5.1. A Mathematical Model for UMTS Network
Coverage and Capacity

The system model is used to evaluate the optimization of the network evolution
over time. Therefore, we choose a high level network description. The focus is
on the UMTS technology and its extensions. Coverage and capacity are the main
determinantes of 3G network performance. Coverage is primarily treated as a
function of the received signal level, while (soft) capacity is a matter of resources
and interference. The interdependence between both aspects makes the problem
hard. This work is based on Geerdes [33], and we adopt the notation and defini-
tions from there. For detailed descriptions of 3G networks we refer to [43, 51, 64]

We define a mobile telecommunication network as a collection C of cells. A
particular selection of cells and their parameters is refered to as network configu-
ration. Each cell has a transmission/reception unit that provides access to the radio
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network. The unit is part of a base station installed at a site. Typically a site hosts
between 1 and 3 cells. The radio signal emitted by the transmission unit of a
cell i ∈ C provides network access to the mobile devices located within the cell
area Ai. Depending on the occasion the term cell either refers the cell area or the
transmission/reception unit.

Two communication directions exist within a cell; the direction from the base
station to the mobile devices is called downlink, while the reverse direction is called
uplink. The uplink is considered the limiting direction for coverage, the downlink
is considered the limiting direction for capacity (given higher downlink than up-
link traffic). Since capacity is the limiting factor in our model, we only consider
the downlink.

Signals are transmitted on different channels. Common channels and dedicated
channels are distinguished. The common channels are used to spread information
to all the mobile devices in the cell. Signals on a dedicated channels are specific to
that channel and can only be decoded by the addressed mobile device in the cell.
The mayor part of the data is transmitted on dedicated channels.

Services. A cell can provide different services, such as voice or video telephony,
data streaming or Internet browsing. The set of available services in a planning
scenario is denoted by R. Depending on the service properties, the supporting
dedicated channel needs to fulfill bandwidth and quality requirements.

The Carrier-to-Interference Ratio (CIR) is a measure for the quality for the dedi-
cated channel. The CIR is defined as the fraction of the received signal strength
on the dedicated channel and the total interference:

CIR :=
Received Signal

Noise + Interference
In this work, we forgo the exact definition, which can be found in [33].

Each service s requires a minimum channel quality in form of a CIR target µs.
Successful operation of the service requires

CIR ≥ µs. (5.1)

Perfect Power Control. Power control regulates the transmission power on the
dedicated channels such that CIR requirements are met (if possible). We assume
perfect power control, which regulates the transmission power such that Ineq. (5.1) is
always met with equality, i. e., the quality requirement of the dedicated channel is
exactly met but not oversatisfied. The assumption of perfect power control ensures
a proper coupling of the powers of the cells in the network and is a requirement
for the formulation of the interference coupling system present in Section 5.1.3.

5.1.1. Signal Propagation

When traveling from the transmitter to the receiver, radio signals loose intensity.
The amount of attenuation the signal suffers depends on the distance between the
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(a) Land use data and candidate cell locations (b) Path loss for some cell

Figure 5.1.: Data from the Momentum Berlin scenario

sender and the receive as well as on the propagation properties of the environ-
ment. Several components influence the attenuation.

Path loss here refers to the median signal attenuation. Usually it is modeled
as a deterministic function of the distance and the propagation properties of the
environment. The dynamic components of attenuation are called fading. Fading
components further contribute to attenuation. The effect of obstacles in the trans-
mission path is captured by shadow fading. For moving users, the shadow fading
varies in the time scale of seconds. Signal variations in the time scale of a few mil-
liseconds are referred to as fast fading. Fast fading mainly constitutes of multi-path
fading, i. e., signal taking different paths from the transmitter to the receiver [33].
Fading is difficult to capture in detail and thus usually modeled by random vari-
ables. For network planning purposes fading effects are typically neglected. We
follow this habit in this work.

The inverse of attenuation is called channel gain. Quantities, such as attenuation
and channel gain, have a high dynamic range and are commonly stated on a
logarithmic scale in decibel (dB). The decibel value of the unit-less ratio of two
positive quantities a > 0 and b > 0 is:

10 log10(a/b) dB

A path loss of 1010 thus corresponds to a channel gain of 10−10 or 100 dB. All
formulas in this thesis are given in linear scale unless stated otherwise. In the
following, the term path loss refers to the path loss component of the channel gain,
and is denoted with γi(x) ∈ [0, 1] for a signal from cell i to some point x ∈ A.
The values of the path loss function for some antenna in the Berlin scenario are
depicted in Figure 5.1(b).
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5.1.2. Coverage

Locations that receive the signal from a cell with sufficient strength and quality are
covered by the cell. While the signal strength only depends on the emitted power
and the signal attenuation, the signal quality also depends on the interference from
other transmissions in the network and noise at the receiver. The signal quality
hence depends on the network configuration.

Mobile devices determine the signal strength and quality of the surrounding
cell by sensing the cell’s pilot channels. The pilot channel is a common channel on
which each cell sends essential cell information. If p(P)

i denotes the power a cell i
emits on the pilot channel, the received signal strength in x ∈ A is γi(x)p(P)

i .
The received pilot signal strength, also referred to as Ec, is a measure for sig-

nal strength. An Ec-level greater or equal to some threshold πEc is required for
successful receptions:

γi(x)p(P)
i ≥ πEc (5.2)

A point x ∈ A has Ec-coverage if condition (5.2) is fulfilled for some cell i. The
Ec-covered area by cell i is denoted by AEc

i .
Signal quality is measured through the Ec/I0-level, which describes the ratio

of received Ec-level and interfering signals. While the Ec-level and consequently
the Ec-coverage can be calculated for each individual cell, the calculation of the
Ec/I0-level requires knowledge about the interfering signals. For this reason, the
Ec/I0-level can only be computed if the cell powers for all cells in the network
are known. A point has Ec/I0-coverage if the Ec/I0-level greater or equal to the
threshold πEc/I0 .

A pixel has coverage if it has Ec- and Ec/I0-coverage. The pixel covered by a cell
form the cell area. In the following we assign each cell i a cell area Ai where Ec-
and Ec/I0-coverage is given. Due to the complexity of Ec/I0-level computations,
Ec/I0-coverage is not considered explicitly in the site selection planning process.
The cell areas used in the planning process will be subsets of the Ec-covered area,
whose shape depends on the traffic intensity. This can be viewed as an implicit
assumption of Ec/I0-coverage. Geerdes [33] provides procedures that optimize the
cell configurations for a given site selection. This should be done in a second step
considering Ec/I0-coverage as well.

5.1.3. Cell Power

Power values are commonly specified in dBm, which is decibel over 1 mW. The
power of a W corresponds to

10 log10 a + 30 dBm

Unless explicitly stated otherwise, all formulas are in linear form throughout this
thesis.
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The total output powers of the transmission units are stored in the column vector
p = (pi)i∈C . The total transmission power pi of a cell i is split into the power used
for common channels p(C)

i and the power used for dedicated channels p(D)
i . The

vectors p(C) and p(D) hold the values for common and dedicated channel powers,
respectively. Power control mechanisms regulate the power level of each dedicated
channel of a cell. This affects also the total transmission power of the cell. The
total powers are given by:

p = p(C) + p(D) (5.3)

Of course, the total power is limited. The maximum transmit power is denoted
with pmax, and the powers have to fulfill the constraint

pi ≤ pmax

The Interference-Coupling System

In UMTS networks, interference is a key driver for network performance in general
and cell power in particular. The assumption of perfect power control is the funda-
ment of interference-coupling. In the following, we briefly introduce a model for
the interference-coupling of the cells in a network. The resulting coupling system
can be used to approximate the expected powers of the cells in the network. The
level of detail in the presentation focuses on the needs of the application in the
network planning procedure. A detailed derivation and description can be found
in [33].

The effect of the CIR-inequality (5.1) is that for a successful transmission on the
dedicated channels, the received signal strength has to achieve some ratio to the
interfering signals. We assume perfect power control such that the CIR-inequality
is always met with equality. From this equality an interference-coupling system
can be derived that models the interdependence of the cell powers of the cells
in the network. The fraction of the power of cell j that is received in cell i as
interference is stated by the interference-coupling coefficient cij. The interference-
coupling system relates the power of cell i the powers of all other cells:

pi = cii pi + ∑
j 6=i

cij pj + p(η)
i + p(C)

i (5.4)

The first summand on the right side of Eq. (5.4) is the amount of intra-cell interfer-
ence. The second summand specifies the interference from the other cells, called
inter-cell interference.

Arranging the coupling coefficients in a interference-coupling matrix C = (cij)i,j∈C
and writing Eq. (5.4) in vector notation gives the interference-coupling system:

p = Cp + p(η) + p(C) (5.5)
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The coupling matrix C and the noise power p(η) depend on the traffic situation
such that the system (5.5) might be infeasible or undefined. In this case, the traffic
load cannot served with the available transmission power and load control kicks
in to reduce the traffic intensity. We assume perfect load control. Perfect load con-
trol scales the traffic, such that the remaining traffic is served with maximum cell
power. Therefore, traffic scaling factors λi ∈ [0, 1] are introduced. The traffic scal-
ing reduces the power on the dedicated channel such that the coupling equation
(5.4) becomes

pi = λi

(
cii pi + ∑

j 6=i
cij pj + p(η)

i

)
+ p(C)

i (5.6)

In the vector notation this reads

p = diag(λ)
(

Cp + p(η)
)

+ p(C) (5.7)

where diag(λ) is the matrix that has the elements of λ as diagonal entries.
Perfect load control says that if the traffic is scaled down, the cell must transmit

at its maximum power. This implies complementarity of the two constraints

pi ≤ pmax and λi ≤ 1 (5.8)

such that one of the two inequalities has to be met with equality.
For a more detailed presentation, we refer to Geerdes [33], where also results

on the uniqueness and existence of solutions for the system comprising of the
coupling system (5.7) and the complementarity constraints (5.8) are given.

Generalized Pole Equations for Cell Power

By introducing the other-to-own interference ratio as the quotient of inter- and intra-
cell interference, the coupling equations (5.6) can be simplified and the inter-cell
interference is treated as an affine function of the cell’s own transmission power.
The other-to-own interference ratio is often called little i or just i. To avoid confu-
sion with the index, we use the symbol ι instead. The other-to-own interference
ratio ιi for cell i is defined by

ιi :=
∑j 6=i cij pj

cii pi
(5.9)

The ratio ιi is well-defined for all cells i with cii > 0. The cell power is positive
since pi ≥ p(C)

i > 0. Substituting the interference terms in Eq. (5.6) gives

pi = (1 + ιi)λicii pi + λi p
(η)
i + p(C)

i (5.10)
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Isolating pi provides a formula for the power value

pi =
λi p

(η)
i + p(C)

i
(1 + ιi)λicii

(5.11)

Using the complementarity of the two inequalities in (5.8) yield the following
lemma:
Lemma 5.1: For any cell i ∈ C with cii > 0, the following identities hold:

pi =

 p(η)
i +p(C)

i
(1+ιi)cii

if (1 + ιi)cii <
pmax−p(C)

i −p(η)
i

pmax
,

pmax otherwise.
(5.12a)

λi =


1 if (1 + ιi)cii <

pmax−p(C)
i −p(η)

i
pmax

,
pmax−p(C)

i

pmax(1+ιi)cii+p(η)
i

otherwise.
(5.12b)

The equations (5.12) are referred to as generalized pole equations. Eq. (5.12a) is
suitable to approximate the cell power when the rest of the network, in particular
the inter-cell interference, is not known. In this case, an estimate for the other-to-
own interference ratio ιi is used and just the coupling element cii and the noise
power p(η)

i have to be calculated.

Expected Interference-Coupling and Cell Power

Noise power and the coupling matrix depend on the traffic in the network and
can be computed for each traffic snapshot of the network. The coupling system or
the pole equation can then be used to compute the cell powers. Sampling traffic
snapshots in a Monte-Carlo fashion can be used to approximate the expectation
of this values. We avoid the time consuming task by computing the expected
coupling matrix and the expected noise power directly. This procedure is also
presented in Geerdes [33].

Orthogonality. Code division multiple access (CDMA) is used to separate the signal
from different transmission links. Within the same cell, separation is strengthened
via orthogonal codes in the downlink. The base station encodes the original signals
destined for the different users in the cell using distinct codes (scrambling codes).
The encoded signals are added and transmitted. Each receiver can decode the
original signal it is supposed to receive from the transmitted data stream. The
orthogonality of the codes ensures signals encoded with different codes can (ide-
ally) be perfectly separated in the decoding procedure such that the signals do not
interfere.

In practice, however, orthogonality is partly lost during transmission due to
disturbances in the transmitted data stream. The amount of orthogonality loss
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depends on the signal propagation properties of the environment. The loss is
greater in areas where the signals are reflected and refracted by obstacles and thus
might take different paths from the sender to the receiver, such as densely build
areas. The loss is smaller in less cluttered areas. We model the orthogonality
loss as a parameter ω(x) ∈ [0, 1] that depends on the location x of the receiver. A
factor of ω(x) = 0 means that orthogonality is perfectly preserved, while ω(x) = 1
means that orthogonality is completely lost. Further details can be found in [33].

User Load Intensity. For each service s ∈ R a user intensity function Ts(x) spec-
ifies the number of users that are expected to use the service in pixel x ∈ A.
The location and number of the users are modeled as an inhomogeneous spatial
Poisson point process. The number of users in any measurable subset S ⊆ A
is Poisson-distributed with parameter

∫
S Ts(x) dx. With this data, traffic snap-

shots can be sampled. We use the user intensity function to calculate user load
intensities.

The load generated by one user of service s in point x is specified by the user
loading factor ls(x). The load of a user depends on the loss of orthogonality, a
channel-activity factor αs and the CIR-target of the service. The activity factor
reflects the fraction of time, the service maintains the channel busy. For speech
telephony, control channels suggest values of αs ≥ 0.5 since on average each party
is speaking half of the time. For video telephony we have αs = 1, since video is
transmitted continuously. The downlink user loading factor is defined by

ls(x) :=
µsαs

1 + ω(x)µsαs
(5.13)

The user load intensity combines the user intensity function with the user load-
ing factor. The total normalized user load intensity Tl(x) specified the total load
intensity in each point x ∈ A and is defined by

Tl(x) := ∑
s∈R

ls(x)Ts(x) (5.14)

The expectation of the coupling elements cij can now be computed as integrals
over the cell area Ai:

E[cii] =
∫
Ai

ω(x)Tl(x) dx (5.15)

E
[
cij
]

=
∫
Ai

γi(x)
γj(x)

Tl(x) dx (5.16)

Indeed, there would be not intra-cell interference if orthogonality were perfectly
preserved (ω(x) = 0).
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Expected Noise Power. Noise from external sources is aggregated in a noise
function η(x). Noise comprises thermal noise, equipment noise and interference
from sources other than the UMTS network. The noise power is the power that
would be needed to achieve a proper reception in the case of complete absence of
interference. Without intra system interference (intra- and inter cell interference),
perfect power control would ensure that the transmission power is just the noise
power. The expected noise power is given by

E
[

p(η)
i

]
=
∫
Ai

η(x)
γi(x)

Tl(x)dx (5.17)

Approximating Expected Cell Powers. The ability to compute expected coupling
coefficients and noise power gives us the main ingredients to approximate the cell
powers by applying the pole equation (5.12a). We assume that the cell is not in
overload (λi = 1). How the cell areas Ãi are determined in order to meet this
assumption is explained in Section 5.1.4. Moreover, an estimation ι̃i of the other-
to-own interference ratio ιi is used.

Given an approximation for the cell area Ãi and an estimate other-to-own in-
terference ratio ι̃i, we can now use the pole equation to approximate the expected
cell power. Unfortunately, the right-hand side of Eq. (5.12a) is not linear in p(η)

i

and cii, so that we cannot calculate the expected power by replacing p(η)
i and cii

with its expectations. The approximation, anyhow, is reasonable well as Geerdes
demonstrates [33]. Therefore, we define the approximated expected cell power p̃i of a
not overloaded cell by

p̃i :=
p(P)

i + E
[

p(η)
i

]
1− (1 + ι̃i)E[cii]

(5.18)

Cell Load. Finally, we can define the approximated load L̃i of cell i as the fraction
of the maximum power that is used

L̃i :=
p̃i

pmax
. (5.19)

Cell load describes the amount by which the capacity of a cell is used and is an
important performance indicator for wireless networks. Cells with a load above
some threshold are considered overloaded and do likely not satisfy the traffic
demand. The service quality for the users will be reduced, no new users will be
accepted and eventually users will be dropped. For planning purposes cell load
not higher than 60 percent is aimed at.

5.1.4. Load Control and Cell Areas

A key driver for the development of the network over time is the (anticipated)
evolution of the traffic demand. A network design that is fit to service a specific
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traffic load intensity will eventually become overloaded when the traffic scales up.
For the purpose of strategic network planning, the network shall be evolved in
such a way that overload is penalized.

We therefore do not use an approach that relies on servicing traffic from a fixed
cell area fractionally (as proposed in Section 5.1.3). Instead, we reduce the effective
cell area in order to confine traffic and thus to prevent overload. To this end,
we define cell service areas as the subset of the Ec-covered area wherein all traffic
can be serviced without exceeding a cell load target. When the cell is empty,
the entire traffic in the cell can be serviced and the cell service area is equal the
area covered by the cell. When the cell gets loaded, first the users from the cell
border are excluded from service. The reduction of the service area is achieved by
strengthening the requirement on the received pilot power that is needed to access
the network. Figure 5.2(a) shows the service areas for different traffic intensities
in a sample cell in the Momentum Berlin scenario.

With the introduction of cell service area, we distinguish covered and serviced
pixels. Our notion of coverage refers to pure Ec-coverage, which is not effected by
variations of the traffic. In practive, however, coverage consists of Ec- and Ec/I0-
coverage. The cell borders suffer most from interference and are the first places to
loose Ec/I0-coverage when the network gets loaded. The service areas can thus be
seen as a way to mimic Ec/I0-coverage as well.

Let L(t) ∈ [0, 1] be the load target, i. e., a load that is desirable for operation. The
service area for cell i is denoted by A(s)

i . The power and load of a cell depends
on the traffic but also on the area where service is provided. For a given traffic
pattern, we denote by LA(s)

i
the approximated expected load for the cell area A(s)

i .

The sets A(s)
i are constructed in such a way that

A(s)
i ⊆ AEc

i (5.20)

LA(s)
i
≤ L(t) (5.21)

We construct the sets by including pixel with decreasing received power until the
load limit is reached or until the pixels are not Ec-covered anymore. If constructed
by this algorithm, the sets have the form

A(s)
i =

{
x ∈ A | γi(x)p(P)

i ≥ max(π
(s)
i , πEc)

}
(5.22)

=
{

x ∈ AEc
i

∣∣∣ γi(x)p(P)
i ≥ π

(s)
i

}
The threshold π

(s)
i is the minimal received power needed to satisfy the load target

condition (5.21). With increasing traffic, the load generated in the service area
increases. As a consequence the minimum feasible received power π

(s)
i increases

and the service area shrinks. Figure 5.2(a) illustates the service areas for different
load intensities.
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(a) Service area of a cell for different load
intensities

(b) Coverage area as in Section 5.1.7 (grey)
and a service area (red)

Figure 5.2.: Cell areas for different load intensities

5.1.5. Adding Capacity Through Carrier and Technology Upgrades

Traffic volumes observed over the last years in the mobile networks would be
impossible without techniques to improve plain UMTS cell capacity. The use of
more radio spectrum and advanced transmission techniques is standard in state-
of-the-art 3G networks. In the following, we describe the most important steps for
cell capacity improvements and how we mimic these measures in our model.

In Section 5.1, we presented a system model for a UMTS network working on
a single carrier. In practice, however, network operator have several methods
to enhance the system such that it provides more capacity. One method is to
activate additional frequency blocks, so called carriers, for transmissions. Since
different frequency bands are used, both carriers do not interfere. The formulas
from Section 5.1 remain valid for calculating cell powers, just the load that is
handled by each carrier is reduced. In a system that is upgraded from one to two
carriers, each carrier handles half the load such that the total capacity is doubled.

The UMTS standard itself also evolves. Nowadays, all providers in Germany
use High Speed Downlink Packet Access (HSDPA, sometimes also called 3.5G or
UMTS-broadband) to enhance downlink speed and capacity. HSDPA uses differ-
ent modulation and coding techniques and different power management mecha-
nisms that allow substantial speedups. At the same time, HSDPA is still an inter-
ference limited system. A complementarity system similar to the one for UMTS
can be derived [32]. With HSDPA+, the network operator already have the next
evolution step at hand. In Germany, one network provider already offers HSDPA+
and two of the other three plan on introducing HSDPA+ by the end of 2010 [67].
With High Speed Uplink Packet Access (HSUPA) a technology update for the uplink
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is also available and widely employed. Details on technical aspects and speed
measurements in HSDPA and HSUPA can be found in [43].

We refere to additional carriers and technology updates as technology upgrades.
Both types of upgrades are applied at cell level. In several cases, upgrading in-
volves only a software update at the base station. We therefore neglect expenses
upgrades might cause.

Technology upgrades reduce the impact of a single user to the cell load and,
thus, add capacity to the system. We take account for this by scaling the user
intensity. Therefore, we introduce a technology scaling parameter f (tech)

i ∈ (0, 1]
for each cell i ∈ C. Each upgrade accounts for a reduction of the traffic scaling
parameter. For standard UMTS on one carrier we have f (tech)

i = 1. If an additional
carrier is activated, each carrier takes half the traffic and the scaling parameter is
f (tech)
i = 1

2 .
We assume a finite, ordered set {u1, . . . , uk} of upgrades. The upgrades can only

be installed in order, such that ui can only be installed if ui−1 is already installed.
Each upgrade ui constitutes a factor of fui to the the technology scaling parameter.
If the first i upgrades are installed, the scaling parameter is given by

f (tech)
i =

i

∏
l=1

ful

We assume the entire set of upgrades is available from the beginning. This can be
extended such that the number of available upgrades increases as time passes.

The technology scaling parameter reduces impact of the traffic by scaling the
user intesity. For the power calculation of cell i the scaled user intensity function

Ts∗(x) := f (tech)
i Ts∗(x) (5.23)

is used. It is, however, easier to incorporate the scaling factor into Eq. (5.18), i. e.,
the formula for approximated cell power. Both, the coupling elements and the
noise power, are linear in Ts∗(x), see (5.15) and (5.17). Instead of appyling the scal-
ing to the user intensity function, we can equivalently modify the approximation
formula (5.18) to

p̃i :=
p(P)

i + f (tech)
i E

[
p(η)

i

]
1− (1 + ι̃i) f (tech)

i E[cii]
(5.24)

Of course, in this case coupling elements and noise power have to be calculated
using the unscaled user intensity function given by Eq. (5.27).

Upgrade strategy

The technology upgrade strategy is not subject to the optimization procedure, but
done by a simple rule in a preprocessing step. In Section 5.1.4, we introduced the
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cell service areas, whose size depends on the cell load. The service area is the area
where service can be provided and the cell load stays within limits. A shrinking
service area, thus, indicates that the cell is at its capacity limits. The update rule
says that a cell is upgraded every time, the service area shrinks by a certain degree.
This procedure is repeated until the maximum number of upgrades is reached.

The service area contains all pixel whose received pilot power are sufficiently
large:

A(s)
i =

{
x ∈ A | γi(x)p(P)

i ≥ max(π
(s)
i , πEc)

}
. (5.22)

In a loaded cell (LAEc
i

> L(t)), the maximum is taken in π
(s)
i , i. e., the service area

does not have its maximum range anymore. Dividing the inequality in (5.22) by
the cell power yields a condition on the pathloss

A(s)
i =

{
x ∈ A | γi(x) ≥ max(π

(s)
i , πEc)

p(P)
i

}

When π
(s)
i increases, the required γi(x) also increases. This quantity is the mea-

sure for our updating rule. Whenever the required γi(x) increases by a factor U,
an upgrade is installed (as long as the maximum number of upgrades has not
been reached).

To put this into formulas, denote with γEc
i the pathloss that is needed to meet

the Ec-coverage threshold

γEc
i =

πEc

p(P)
i

and with γs
i the pathloss that is needed to be within the service area at the current

upgrade level

γs
i =

max(π
(s)
i , πEc)

p(P)
i

An upgrade is installed, if

γs
i

γEc
i

> U

and another update is possible. Figure 5.2(a) illustrates the service areas for dif-
ferent numbers of upgrades. The service area is more extended if more updates
are applied.
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5.1.6. Transforming Traffic to Load

The traffic that is expected to be generated by mobile data services describes the
demand evolution. In Section 5.2, a stochastic model for the evolution of the
monthly traffic per capita is developed. In the following we describe a model to
transform a traffic volume generated in a fixed period of time into a load inten-
sity. This transformation allows for an evalutation of the coverage and capacity
properties of the cells given a fixed traffic volume.

Increasing traffic should increases the load in the network. The increased load is
cause by two effects: The number of users increases and the users use the service
more intensively and generate more traffic. In a growing market both effects
should be present and cannot be separated by just examing the traffic volumes.
The user intensity function Ts(x) describes the number of users that are expected
to use the service s in pixel x. Via the total normalized user load intensity Tl(x),
the user intensity function is one input of the calculation of cell powers (cf. (5.14)).
Therefore, the traffic volume per capita is expressed in terms of users of a reference
service. In combination with the population density, this allows to calculate a user
intensity function for the reference service that reflects the load caused by that
traffic volume.

Let V denote the traffic volume per capita in KiB per month. Assume a fixed ref-
erence service s∗, i. e., speech telephony. With νs∗ we denote the average data rate
of the reference service specified in bit/s. The traffic is not generated uniformly
over the day. We focus on the so called busy hour, which is the hour during the
day in which on average the most traffic is generated and assume the same busy
hour for all cells. Measuring the performance in the busy hour is desired since it
represents the average peak load. Let β ∈ [0, 1] be the fraction of the traffic that
occures in the busy hour. The traffic volume generated in the busy hour of one
day is thus given by

β V
30

assuming that a mounth has 30 days on average. The fraction

1024 · 8 β V
3600 · 30

(5.25)

represents the data rate in the busy hour per capita in bit/s. We introduce the
notion of Reference Service Equivalents (RSE). One RSE is the amount of traffic
that is equivalent to one user of the reference service in the busy hour and is
thus a measure for traffic volume. The number of reference service users that are
equivalent to a traffic volume of T KiB is denoted with RSE(T). Dividing (5.25) by
the average data rate of the reference services gives

RSE(V) =
1024 · 8 β V
3600 · 30 νs∗

(5.26)
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Symbol Unit Meaning

V KiB/Month/Capita Average traffic volume per month per capita
β Fraction of total traffic volume spent in busy hour
m Market share
s∗ Reference service
νs∗ bit/s Data rate of reference service
RSE Reference Service Equivalents
RSE(T) RSE Number of reference service users equivalent to T KiB
ρ(x) Population in pixel x
Ts∗(x) RSE Reference service users in pixel x

Table 5.1.: Overview of symbols regarding transformation from traffic volume to load

Since V specifies the traffic volume per capita, RSE(V) specifies the traffic volume
in RSE/capita. Multiplying RSE(V) with the population ρ(x) in a pixel and the
market share m of the operator yields the number of reference users that would
cause the given traffic in the network of the operator. This forms the desired user
intensity function Ts∗(x):

Ts∗(x) := m RSE(V) ρ(x) (5.27)

5.1.7. Technological and Regulatory Requirements

Limited Construction Activities

The activation of new sites is assumed to involve construction activities; anten-
nas have to be mounted, equipped with transmission units, and connected to the
network. The same holds true if a new cell is to be opened on an existing site; tech-
nicians have to mount and configure the transmission unit. We assume that the
capacity of constructing new sites and activating new cells is limited. This is a rea-
sonable assumption, since the deployment of a network involves the construction
of ten-thousands of cells.

Coverage Requirements

From participants in the mobile telecommunication mass market a minimum cov-
erage is expected and stipulated by license terms as for example in Germany [12].
In Section 5.1.4 we introduced the cell service area, which is the part of the covered
area from which all traffic can be serviced without exceeding some load treshold.
The area where the cell provides coverage might be larger. The coverage con-
straints are thus not formulated on basis of the service area but on the basis of
coverage areas. The coverage areas is defined as that part of the Ec-covered area tat
can be serviced assuming a base-line traffic intensity. We therefore choose the cov-
erage area of a cell as the service area forsome base-line traffic intensity. Figure 5.2
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shows the coverage area and a service area of a cell. Using this definition, the
service area is a superset of the coverage area if the traffic is below the base-line
traffic.

We denote the coverage area of cell i with A(c)
i . The total coverage area A(c) of

a network configuration is the union of all coverage areas of cell installed:

A(c) =
⋃

i is installed

A(c)
i

Let w : A → R≥0 be a function weighting the planning area, such as a some
population density or constant value. The coverage requirement is fulfilled, if the
weight of the total coverage area exceeds the required percentage of the weight
of the planning area. The required percentage is expressed by the parameter α ∈
[0, 1]. The coverage requirement is satisfied if∫

A(c)
w(x) dx ≥ α

∫
A

w(x) dx. (5.28)

Coverage requirements may also apply only in certain parts of the area, as for
example in Germany. There, the LTE technology is suitable to replace wired broad-
band Internet connections in poorly populated areas. Therefore, the providers are
forced to provide access to communities with up to 5 000 habitants, then to the
ones with 5 000 to 20 000, then with cities with up to 50 000 habitants, and so on.
Each new step can be made if the area of the previous has 90 percent coverage [28].
The coverage requirement holds in a region S ⊆ A if∫

A(c)∩S
w(x) dx ≥ α

∫
A∩S

w(x) dx. (5.29)

S could be the area of communities with up to 5 000 habitants. In our computa-
tional experiments, however, we only include constraints of the form (5.28).

5.2. Stochastic Model of Demand Evolution

In many situations decision have to be taken while the future evolution of influ-
encing parameters is uncertain. Traditional optimization models do not account
for uncertainty but assume deterministic data, e. g., by optimizing for only one
possible realization of the stochastic parameters at a time or for some expectation.
The stochastic optimization framework explicitly accounts for uncertainty by in-
cluding several scenario (weighted by probabilities) into the optimization model.
The dynamics in the mobile telecommunication markets are difficult to capture
and predict. A variety of factors, such as prizes, attractiveness, market acceptance
of the services, and competition, influence the market. Especially when a new
mobile telecommunication technology is introduced, it is unclear how the market
will accept the new products which then become possible.
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Figure 5.3.: Monthly traffic volume per capita in Germany (De) and Switzerland (Ch)
through fixed DSL and mobile networks

Capturing the stochastic nature of the parameters is a difficult task. Pflug and
Römisch [70] determine three sources of information for the modeling of uncer-
tainty:

• historical data
• theoretical considerations
• expert opinion

All three sources have their strengths and weeknesses. The information of his-
torical data is of arguable value for future realizations, especially in changing
environments such as developing markets. Theoretical considerations are impor-
tant, but in complex environments with lots of interrelations hardly suitable as the
only source of a model. Expert opinion can anticipate developments that cannot
be captured by the other sources. Incorporating the decision makers expectation
regarding future developments into the stochastic model also strengthens the ac-
ceptance of the solution of the optimization procedure and should, thus, not be
disregarded.

The development of proper models (stochastic or deterministic) to predict future
market developments is subject to economics and not the scope of this work. We
therefore take the perspective of a mobile network operator prior to lauching a
UMTS network. This allows to demonstrate the methodology in a setting where
less parameter need to be guessed since historical data is present. The stochastic
demand model is set up such that the observed traffic development could be a
sample path of the stochastic process.
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Figure 5.4.: Three stage approach for scenario tree construction

We assume that the traffic evolution is independent of our actions and, thus,
neglect the existance of endogenous uncertainty. The traffic model is thus more
suitable for a market follower than for the market leader.

From the network planning point of view, demand is the anticipated traffic from
(future) customers. Two key parameters thus influence the demand in a network:
The number of customers and the amount of traffic generated each user. The aver-
age traffic per capita over a time period is a quantity that aggregates the number
of users and the average traffic volume. Figure 5.3 shows the development of the
average monthly traffic volume per capita over several years in the DSL network
in Germany and the mobile networks in Germany and Switzerland. The traffic
data was extracted from official statistics provided by the German Bundesnetzagen-
tur [13–16] and the Swiss Amtliche Fernmeldestatistik [10, 11]. Statistics of the total
population in the respective countries was retrieved from the European statistic
service “Eurostat” [27] and the Swiss “Bundesamt für Statistik” [30]. The mobile
traffic levels in both countries show a similar behavior. The volume generated
through the mobile networks is still two orders of magnitude smaller than for
DSL, but still increasing steeply. Similar to the DSL plot a growth slow down can
be expected for the mobile services, where the volume was increasing at more
moderate rates from 2003 onwards. The prediction of the exact growth curve or
even the saturation level is however difficult.

In the following, a three stage approach to compute scenario trees is described.
Scenario trees are the basis of stochastic optimization. In the first stage, we model
random influences as a stochastic process. Second, the time horizon is discretized
and sample paths from the stochastic process are drawn. A large number of sam-
ples is usually necessary to capture the probabilistic nature of the process. Third, a
scenario tree is constructed. The tree approximates the information structure (i. e.,
the increase of information over time) inherent in the scenarios (and the probabili-
ties) with as few nodes and scenarios as possible. The scenario tree is the input for
a stochastic program that can be solved numerically. Figure 5.4 shows the scheme
of the scenario tree construction.
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5.2.1. Modeling Uncertainty by a Stochastic Process

The first step is to determine the random influences. In practice, almost all quan-
tities are subject to uncertainty. For stochastic optimization, however, it is reason-
able to focus on the parameters with the highest impact. In this way, the effect
of uncertainty on the optimization problem and, especially, on the solution of the
problem can be studied (and hopefully understood). The selection of random in-
fluences in the model is a modeling decision and can be discussed like any other
modeling decision.

In our application, we assume future demand to be the main source of uncer-
tainty. The large dynamic range in the traffic observations, depicted in Figure 5.3,
indicates that prediction errors can lead to poor planning decisions. The demand
can be further decomposed into two factors. The intensity is a measure for the ac-
ceptance of the technology in the market. The spatial distribution of the demand
is the other factor. The spatial distribution might vary over time. In this work,
we focus on the demand intensity, i. e., the total demanded traffic volume. The
spacial distribution is given by a non-uniform population distribution which is
scaled accounding to the demand intensity.

Next, the uncertain parameters are modeled as a stochastic process. The traffic
in the mobile networks has commonly been perceived as exponentially growing
in the timehorizon under consideration (cf. Figure 5.3). The geometric Brownian
motion is appropriate to model exponential growth with random disturbance. The
geometric Brownian motion was introduced in Section 3.4.3 and is a stochastic
process Xt, that solves the stochastic differential equation:

dXt = µXt dt + σXt dWt (5.30)

The change of the value of Xt consists of a deterministic term µXt dt and a random
term σXt dWt with a standard Brownian motion Wt.

5.2.2. Sampling Paths

The geometric Brownian motion is used to sample paths. A solution of the stochas-
tic differential equation (5.30) with boundary condition X0 = s is

Xt = s e(µ− 1
2 σ2)t+σWt (5.31)

A standard Brownian motion can thus be transformed into a geometric Brownian
motion using Eq. (5.31).

Several methods for the simulation of Brownian motions exist. Glasserman [35]
gives an overview over sampling methods for path of geometric and standard
Brownian motions. We use the straight forward approach and sample the random
increments. To describe the approach, first we state the definition of the standard
Brownian motion:
Definition 9: A stochastic process (Wt)t∈[0,T] satisfying
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Figure 5.5.: Observed traffic and 20 sample paths of geometric Brownian motion
(grey)

i) W0 = 0

ii) the mapping t 7→Wt is almost surely continuous on [0,T]

iii) the increments {Wt1 −Wt0 , Wt2 −Wt1 , . . . , Wtk −Wtk−1} are independent for any
k and any 0 ≤ t0 < t1 < . . . < tk ≤ T

iv) the increment Wt−Ws is normally distributed with mean 0 and variance t− s
for any 0 ≤ s < t ≤ T

is called (standard) Brownian motion on [0, T].
The Brownian motion is a stochastic process on a filtered probability space

(Ω,F , (Ft), P). Definition 9 instructs how the paths of the Brownian motion can
be approximated: Starting at W̃0 = 0 the increments are drawn and the resulting
points are connected to a piecewise linear, continuous function. We denote the
approximated path with W̃t. For a discretization 0 = t0 < t1 < . . . < tk = T of
[0, T], the Brownian motion at ti for 1 ≤ i ≤ k is sampled by

W̃ti = W̃ti−1 +
√

ti − ti−1 Zi (5.32)

where the (Zi)i∈{1,...,k} is a sequence of independent normally distributed random
variables with mean 0 and variance 1. The value at the intermediate points is the
linear interpolation between the two neighboring points. At the support points
ti, i ∈ {0, . . . k}, the sample is exact in the sense that the joint distribution of the
sampled points coincides with the joint distribution of the Brownian motion at this
points. Between the support points, the Brownian motion is only approximated.
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Each path represents a possible evolution of the demand. The discretization
is chosen such that the value of process is sampled at the points in time where
decision have to be made. Historical data helps to get a reasonable choice of the
parameters of the geometric Brownian motion. Figure 5.5 shows the observed
traffic data and 20 sample paths of the geometric Brownian motion. The sampled
paths all have the same probability, so a large number of samples is needed to
capture the characteristics of the distribution.

5.2.3. Scenario Tree Construction

The power of stochastic optimization lays in the consideration of different future
evolutions of key parameters in the optimization model. In multistage stochastic
optimization, tree structured processes are most suitable to describe randomness.
They have the property that scenarios share the first part of the random path until
the path splits. Until the splitting point, these parts are not distinguishable and the
future evolution cannot be predicted. Only the conditional distribution of future
events is known at that time. Repeatedly splitting of bundles of scenarios makes
the problem multistage.

The path of two Geometric Brownian motion coincide almost surely only at
time t0 = 0. For all times t > 0, two path take almost surely distinct values. The
same hold true for our discrete approximation, since two independent normally
distributed random variables almost surely take distinct values. The formulation
of multistage stochastic program as described in Section 4 with the sample paths
as stochastic process yield a two-stage program. The decisions to be taken at t0 = 0
are first stage decisions. The decisions at times t > 0 do not interact anymore and
are regarded as second stage decisions.

To regain a multistage program with more than two stages, the information
structure described by the sample paths is approximated by a tree structured
stochastic process, i. e., a scenario tree. The construction of scenario trees on the
basis of sample paths is done by Scenred, a tool for scenario reduction and sce-
nario tree construction. Scenred constructs a scenario tree from a given set of
scenarios by minimizing an appropriate metric on the space of probability distri-
butions. The choice of the metric and the construction method is based on stability
results that have been obtained for certain classes of optimization problems. Sta-
bility results relate the optimal value of the optimization problems for different
input distributions with the distance of the respective distributions. Thereby, the
difference in the optimal values and the solution sets can be bounded by a func-
tion of the distance of the respective input distributions. This is refered to as
stability. Stability results are known for some classes of multistage stochastic pro-
grams, such as linear programs with random objective function and random right
hand side [39–41, 74] For stability results for two-stage stochastic mixed-integer
programms, see [75, 78]. For multistage mixed-integer stochastic programs with
more than two stages, stability results are difficult to obtain and for the optimiza-
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Figure 5.6.: Scenario trees constructed with Scenred on original and logarithmic
transformed paths, colors represent the probabilites

tion models that are examined in this work, no suitable stability results are known
so far. Scenred was written by Holger Heitsch [39] and is distributed as part of
the GAMS package [31] or can be obtained by the authors on request.

The focus on the choice of the input parameters for the tree construction with
Scenred is on obtaining trees that cover large parts of the value range of the
sample paths. At the same time, we seek a moderate number of nodes in the tree,
since additional nodes can lead to mathematical programs that are computational
intractable. Since the dynamic range of the values of the paths increases, Scenred
judges the last periods much more important than the beginning and generates the
mayor part of the path splits and tree nodes in the last periods, see Figure 5.6(a).
To achieve a more balanced tree, Scenred is applied to the logarithm of the sample
paths. The inverse transformation is applied to the resulting scenario tree. The
result of this procedure is visualized in Figure 5.6(b).

Figure 5.7 shows a graphical represention of a scenario tree which approximates
300 sampled paths. The colors of the nodes indicate their probability.

The Expected Demand Evolution

The expected demand evolution is described by the expectation of the geometric
Brownian motion. The expected path of the geometric Brownian motion is the
solution of Eq. (5.30) with σ = 0:

dXt = µXt dt

This is an ordinary differential equation which for the start value s has the solution

Xt = s eµt
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Figure 5.7.: 300 sample paths (grey) and the scenario tree constructed by Scenred.
The node colors indicate their probability.

Notation

Let N denote the set of nodes in the scenario tree. For a node n, let p(n) denote
its father and pk(n) the kth ancestor along the path from n to the root of the tree
such that p(n) = p1(n). Each node in the tree has a probability to be realized,
which is denoted by P(n). Each path from the root to a leaf represents a scenario,
i. e., a realization of the entire stochastic process. The leaves of the scenario tree
thus characterize a scenario and the set of leaves is denoted by S . The path from
a node n to the root of the tree is denoted by P(n).
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6. Optimizing Network Evolution

The construction of a mobile telecommunication network is a process that takes
years of time and binds a lot of capital. The demand for mobile telecommunication
services is uncertain such that careful planning of the evolution of the network un-
der consideration of uncertainty is beneficial. The main decision in the evolution
of a network is where and when to build new cells.

We follow two objectives which go hand in hand. First, we seek a monetary
valuation for the opportunity to invest into a mobile telecommunication network.
Second, we seek optimal strategic decision regarding the evolution of the network.
The strategic decisions are the placement of sites and cells. Planning network
evolution involves a large planning horizon since the network cannot be build
from one day to the other but has to be build stagewise and over years. Therefore
planning decision in the later periods should depend on all information available
in that moment. The decisions in the beginning should be made to have flexibility
to react to foreseen and unforeseen events and developments in the future.

In Section 2 and Section 3 we introduced three valuation methods for investment
opportunities.

Net Present Value Analysis. We have a highly uncertain environment with lots
of flexibility such that net present value analysis on the expected cash flows is not
the appropriate valuation method. What are the expected cash flows in this case
anyway? They highly depend on the evolution of the network. Net present value
analysis has to be complemented by a procedure to compute plans for network
evolution.

Decision Tree Analysis. Decision tree analysis allows to consider uncertainty and
flexibility but suffers from a combinatorial explosion. Each path from the root to a
leaf represents a realization of the random parameters and a particular choice for
all decisions.

Consider the special case of the problem to select up to n cells out of k candi-
dates. This is a deterministic problem but there are (k

n) possible selections. For
120 candidate locations and 10 cells to select this gives more than 1014 possibilities
that would have to be considered. Generating the entire tree envolves the enumer-
ation of all possible combinations of decisions. Clearly, this is computationally not
feasible for realistic problem sizes.

65



6. Optimizing Network Evolution

Real Options Analysis. The real options framework, presented in Chapter 3,
seems promising. The option to build a telecommunication network is a com-
pound option. The compound option consists of the options to build cells from
a candidate set. These options are american options on the revenues generated
in the cells with the installation cost as strike. The revenue that is generated in
a cell depends on the neighboring cells since a cell is not assumed to generate
extra revenue if the cell area is already covered. The option is path dependent and
compound with the options to build the other cells in the network. This makes
the evaluation very difficult.

Another issue arises if we recall the argumentation of Section 3.5 where the
assumptions of the mathematical model for the valuation of real options are dis-
cussed. The mathematical model assumes that the underlyings of the options are
traded in a complete market and can be used for hedging. For a correct valua-
tion of the option, a tradable twin security has to be identified that replicates the
value of the underlying. For the option on the entire investment opportunity, the
stock of a competitor could serve as twin asset. This will be the case if the value
of the stock is perfectly correlated with value of the telecommunication network.
Since competitors follow different business strategies this correlation is difficult to
obtain.

For the real options on the contruction of an individual cell, the application of
the financial toolbox (cf. Section 3.4) is even harder to justify. The underlying is
the value of the revenues generated in a cell. This can hardly be replicated by
traded assets in the market.

Richard de Neufville and Tao Wang distinguish real options “on” and “in”
projects. The option to construct a cell is an option “in” the project of con-
structing the network. De Neufville and Wang argue that for real options “in”
project, market-driven values cannot be expected. They propose the application
of stochastic mixed-integer programming to valuate real options. Risk-adjusted
interest rates have to be used to discount the future cash flows. The result is a
procedure that maximizes the net present value of the project. This is done by
implicitly evaluating the decision tree.

6.1. The Modeling Idea

Before we start with the mathematical formulation of the model, we want to
present the key ideas. We seek a monetary valuation for the investment op-
portunity to build and operate a mobile telecommunication network. The aim
is therefore to find a construction plan that maximizes the profit. Two objective
functions are investigated and compared; the expected discounted profit and the
conditional value at risk of discounted value process at the end of the planning
horizon. The expected profit is just the the sum of the discounted cash-flows. The
discounted value is the aggregation of all discounted cash-flows.

We distinguish two types of of cash-flows. The outgoing cash-flows are the
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costs for the construction and the operation and maintenance of the network in-
stallations. The calculation of the cost is straight-forward (see Section 7.3). All
other sources of outgoing cash-flows, such as cost for the administration and the
backbone network, are neglected.

Modelling the incoming cash-flows is more challenging. We consider charges
for telecommunication services as only source of income. The income that a net-
work operator can generate depends on the quality of the network it offers. From
a costumers point of view, lacks of network coverage and lacks of capacity are
two reasons for dissatisfaction with the network quality. An operator with poor
quality in any of the two dimensions will loose clients and income. We therefore
introduced the load dependent service areas and assume that service is provided
only to costumers within the service areas of activated cells. Clients using vol-
ume based contracts will use the service and get charges for the traffic caused.
Clients with a flat rate will likely choose an operator that can provide service in
the locations the clients use to populate. We assume that income is generated in
the service areas. The hight of the incoming cash-flow in a pixel depends on the
population in the pixel and the network traffic generated per habitant. We present
the exact calculation used for the computational experiments in Section 7.3.

A coverage model is set up. A variable per cell and time point describes if the
cell is active at that time. In this case, the pixels within the service area of the cell
generate revenues. Pixels that are in the service area of more than one cell generate
the revenues only once. Binary variables indicate if a pixel is in the service area of
an actived cell.

6.2. Notation

Before we can formulate the model, some notation has to be introduced. The nota-
tion used in the optimization model is summarized in Table 6.1. In Section 5.2 we
introduced the traffic volume per capita as measure for the demand. We consider
a scenario tree describing the evolution of the uncertain traffic volume.

Cells and Cell Areas. The planning area is discretized into three-dimensional
pixel such that A in the following represents the set of pixel and x ∈ A refers to a
pixel. We assume a set C of canditate locations for cells.

The service area A(s)
ni in node n is a subset of the planning area. We assume that

a cell i ∈ C can satisfy the demand for telecommunication services only within
the service area. The shape of the service area is determined by the load control
mechanism introduced in Section 5.1.4 und thus dependent of the uncertain traffic
evolution. The set of potentially servicing cells C(s)

nx of a pixel x in a node n is given
by

C(s)
nx =

{
i ∈ C | x ∈ A(s)

ni

}
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The coverage area is the area where the signal has sufficient strength and that
permits the service to all pixel under a medium traffic assumption. The coverage
area is used to formulate the constraint on the required coverage. Under load
control, service can be offered to all users in the service area. The coverage area of
cell i in node n is denoted by A(c)

ni and the set of servers that cover a pixel is given
by

C(c)
nx =

{
i ∈ C | x ∈ A(c)

ni

}
Cost. The main sources of costs occurs at the cells. Capital expenditures (CapEx)
are spent to install the cell. This includes the cost for buying the land, construction
if the mast and other facilities, the acquisition and installation of the transmission
equipment and all other expenditures related to the initial setup of the cell. Op-
erational expenditures (OpEx) incur during the lifetime of the cell. OpEx include
maintenace, electricity and all other expenditures related to operation of the cell.
We denote CapEx and OpEx for cell i in node n by c(cap)

ni and c(op)
ni , respectively.

All costs are denoted by non-negative numbers. We assume that cells are installed
at the beginning of a period. Construction delay is not considered. This means
that the cells can provide service and OpEx have to be spent for the entire period
. While CapEx is assumed to occur at the beginning of a period, OpEx is charged
at the end. This is reflected in the discount factors of the discounted costs. Cost
have to be discounted by the risk-adjusted interest rate in this model. Throughout
the chapter quantities discounted at the risk-adjusted interest rate are denoted by
a hat. The discounted cost are defined by

ĉ(cap)
ni =

c(cap)
ni

(1 + r̂)t(n)−1

ĉ(op)
ni =

c(op)
ni

(1 + r̂)t(n)

In fact, we assume deterministic costs. This means that CapEx and OpEx do not
depend on the node in the tree, but on the stage. For ease of notation we index it
by the node as above.

Revenues. The revenue Cnx in pixel x and in node n is modeled as a function
dependent of the uncertain traffic volume Vn, the population density ρ(x), and the
time t(n):

Cnx = g(Vn, ρ(x), t(n))

We assume that the revenue in each pixel is non-negative, hence Cnx ≥ 0.
The revenues have to be discounted with a risk-adjusted interest rate r̂. The

discounted revenue Ĉnx of pixel x in node n is denoted by Ĉnx. Costumers are
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typically charged after they received the services such that we assume that the
revenues are generated at the end of each period and discounted accordingly

Ĉnx =
Cnx

(1 + r̂)t(n) .

6.3. Multistage Stochastic Program for the Expected
Profit

The aim of the optimization procedure is to determine an optimal network evo-
lution plan, i. e., a plan when to activate which cell. All technical and regulatory
requirements described in Section 5.1 have to be fulfilled by a feasible solution
and have to be included in the model. We formulate a multistage stochastic inte-
ger program that optimizes the expected net present value. The net present value
is the sum of all future discounted cash-flows, i. e., the discounted revenues and
the discounted expenditures.

6.3.1. Decision Variables

The model includes four types of decision variables.
The decision for the activation of the cells is represented by the binary activation

variable yni. The model sets yni = 1 if cell i is already built and active in node
n and yni = 0 otherwise. We only consider cell construction, removing already
constructed cells is not allowed. The difference yni − yp(n)i is thus non-negative
and is one if and only if the cell is built in node n and 0 otherwise.

According to the coverage requirement introduced in Section 5.1.7, the provider
can start the operation of the network if sufficient coverage is provided. We as-
sume that cells can be built in all periods, but the network can start operation and
provide service only if the coverage requirement is fulfilled. Binary variables cn
indicate whether enough coverage is provided in node n. The coverage requiere-
ment is formulated on the bases of the coverage areas of the cells. Binary coverage
variables x(c)

nx are set to 1 if and only if the pixel x is within the coverage area of
an active cell in node n. This definition allows a close form expression for the
coverage variable

x(c)
nx = min

(
1, ∑

i∈C(c)
nx

yni

)
(6.1)

Binary service variables x(s)
nx indicate if a pixel is serviced by the network. Service

is provided in pixels that are within the service area of an active cell and only if
sufficient coverage is provided. The value of the service variable is thus given by

x(s)
nx = min

(
cn, ∑

i∈C(s)
nx

yni

)
(6.2)
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Name Domain Interpretation

Sets
A ⊆ R3 Planning area, usually divided into three-dimensional pixel
C Canditate set of cells
A(s)

ni ⊆ A Service area of cell i in node n
A(c)

ni ⊆ A Coverage area of cell i in node n
C(s)

nx ⊆ C Cells that can provide service to pixel x in node n
C(c)

nx ⊆ C Cells that can cover pixel x in node n

Scenario Tree
N Nodes in scenario tree
S Set of scenarios, i. e., the leaves of the scenario tree
P(n) ⊆ N The path from node n to the root
p(n) ∈ N The unique father of node n in the scenario tree
pk(n) ∈ N The kth ancestor of node n in the scenario tree
P(n) ∈ (0, 1] Probability of node n

Coefficients and Parameters
r̂ ∈ R≥0 Risk adjusted interest rate
Kn ∈N construction limit per timeperiod
αn ∈ [0, 1] Coverage requirement parameter
wnx ∈ R≥0 Weights on pixel
Cnx ∈ R≥0 Revenue generated by pixel x at node n
Ĉnx ∈ R≥0 Discounted revenue generated by pixel x at node n
c(cap)

ni ∈ R≥0 Capital expenses for cell i at node n
ĉ(cap)

ni ∈ R≥0 Discounted capital expenses for cell i at node n
c(op)

ni ∈ R≥0 Operational expenses for cell i at node n
ĉ(op)

ni ∈ R≥0 Discounted operational expenses for cell i at node n

Decision Variables
yni ∈ {0, 1} Cell i is active at node n
x(s)

nx ∈ {0, 1} Pixel x has service by any active cell at node n
x(c)

nx ∈ {0, 1} Pixel x is covered by any active cell at node n
cn ∈ {0, 1} Coverage requirement is met at node n

Table 6.1.: Variables and coefficients in optimization models
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The coverage requirement is reflected by the complementarity of the following
equations:

∑
x∈A

wnx x(c)
nx ≥ αn ∑

x∈A
wnx (6.3)

x(s)
nx = 0 for all x ∈ A (6.4)

Ineq. (6.3) is the discrete version of the coverage condition (5.28). The left side
determines the weight of the covered area in node n. The covered area has to be
greater than αn times the total weight for the coverage requirement to be fulfilled.
Complementarity means that either of the two conditions has to hold true. The
complementarity has to be ensured independently in all nodes of the scenario tree.

6.3.2. The Model

We now formulate a deterministic equivalent model for the multistage stochastic
optimization problem. A summary of the decision variables and parameters in
the model can be found in Table 6.1.

max ∑
n∈N

P(n)
[

∑
x∈A

Ĉnx x(s)
nx −∑

i∈C

(
ĉ(cap)

ni (yni−yp(n)i) + ĉ(op)
ni yni

)]
(DEMExp)

s.t. ∑
i∈C(s)

nx

yni ≥ x(s)
nx for all n ∈ N , x ∈ A (6.5a)

∑
i∈C(c)

nx

yni ≥ x(c)
nx for all n ∈ N , x ∈ A (6.5b)

yni ≥ yp(n)i for all n ∈ N , i ∈ C (6.5c)

∑
i∈C

(
yni − yp(n)i

)
≤ Kn for all n ∈ N (6.5d)

∑
x∈A

wnx x(c)
nx ≥

(
αn ∑

x∈A
wnx

)
cn for all n ∈ N (6.5e)

∑
x∈A

x(s)
nx ≤ |A| cn for all n ∈ N (6.5f)

y ∈ {0, 1}N×C , x(s) ∈ {0, 1}N×A, x(c) ∈ {0, 1}N×A, c ∈ {0, 1}N (6.5g)

The objective is to maximize the expected net present value. The expectation
operator is easily evaluated for discrete probability distributions. In this case we
sum the discounted cash-flows of all nodes and weight them by there probability.
Within the brackets the total discounted cash-flow in node n is computed. The
first sum within the brackets computes the revenues while the second computes
the CapEx and the OpEx in the node.

Constraint (6.5a) ensures the correct setting of the service variables. The vari-
ables x(s)

nx can only be set to 1, if at least one of the potential services is active,
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i. e., ∑i∈C(s)
nx

yni ≥ 1. The following constraint (6.5b) does the same for the coverage

variable x(c)
nx .

Deactivation of cells is not allowed. This is reflected by monotonicity of the
activation variables yni and is ensured by constraint (6.5c). For the father of the
root node r of the scenario tree, artificial variables yp(r)i = 0 are included. Con-
straint (6.5d) ensures that the construction limit is not violated. The difference
yni − yp(n)i is 1 if the cell is build in node n. The sum, thus, counts the number of
cells built in node n which is limited by the construction limit Kn.

The constraints (6.5e) and (6.5f) ensure the complementarity of condition (6.3)
and (6.4). If enough coverage is provided, cn = 1 and (6.3) holds true. Constraint
(6.5f) is void in this case. If in return cn = 0, constraint (6.5e) is always fulfilled
and constraint (6.5f) forces all x(s)

nx to 0.
The domains of the decision variables are specified in (6.5g).

6.3.3. Assignment of Service- and Coverage Variables

With Eq. (6.1) and Eq. (6.2) we provided explicit formulas for the coverage and
service variables. However, the values of the variables set by the model might not
fulfill the equations, even in optimal solutions.

The coverage variables are driven to one by the coverage condition (6.5e). The
model, however, only ensures that Ineq. (6.5e) is met with equality. Setting the
coverage variable like in Eq. (6.1) is always feasible and optimal.
Lemma 6.1: Let (x(s), x(c), y, c) be a feasible (possibly suboptimal) solution of (DEMExp).
Let x(c) be defined by Eq. (6.1). Then (x(s), x(c), y, c) is feasible with the same objective
function value.

Proof. Consider a coverage variable x(c)
nx . The variable appears in exactly two con-

straints:

∑
i∈C(c)

nx

yni ≥ x(c)
nx (6.5b)

∑
x∈A

wnx x(c)
nx ≥

(
αn ∑

x∈A
wnx

)
cn (6.5e)

If Eq. (6.1) is not fulfilled for the variable, then ∑i∈C(c)
nx

yni ≥ 1, but x(c)
nx = 0. Re-

placing x(c)
nx by x(c)

nx is feasible without changing any other variable. Furthermore,
the coverage variables do not appear in the objective function which, thus, is not
changed by the substitution. Repeating the argument for all coverage variables
proofs the lemma.

Corollary 6.2: Let (x(s)∗, x(c)∗, y∗, c∗) be an optimal solution of (DEMExp). Let x(c) be
defined by Eq. (6.1). Then (x(s)∗, x(c), y∗, c∗) is also an optimal solution.
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Similar conclusions can be drawn regarding the service variables. The objective
function is the driver of the service variables. In a suboptimal solution and for
service variables with Ĉnx = 0, Eq. (6.2) might not hold.

Lemma 6.3: Let (x(s), x(c), y, c) be a feasible solution of (DEMExp). Let x(s) be defined
by Eq. (6.1). Then (x(s), x(c), y, c) is feasible. If x(s)

nx 6= x(s)
nx for a node n and a pixel x

with Ĉnx > 0, then the solution is not optimal and (x(s), x(c), y, c) has a larger objective
function value.

Proof. Consider a service variable x(s)
nx . The variable occurs in exactly two con-

straints:

∑
i∈C(s)

nx

yni ≥ x(s)
nx (6.5a)

∑
x∈A

x(s)
nx ≤ |A| cn (6.5f)

Suppose Eq. (6.2) does not hold for x(s)
nx . Then ∑i∈C(s)

nx
yni = cn = 1, but x(s)

nx = 0.

This implies that setting x(s)
nx = 1 is feasible. If the revenue Ĉnx is positive, this

increases the objective function value.

Corollary 6.4: Let (x(s)∗, x(c)∗, y∗, c∗) be an optimal solution of (DEMExp). Eq. (6.2)
holds for all x(s)

nx with Ĉnx > 0. Let x(s) be defined by Eq. (6.2). Then (x(s), x(c)∗, y∗, c∗)
is also an optimal solution.

These results show that given an optimal solution of (DEMExp), a simple post-
processing step suffices to obtain an optimal solution where the coverage and
service variables have the form (6.1) and (6.2), respectively.

The objective is maximization the expected profit over the lifetime of the net-
work. Setting all variables to 0 is a feasible solution with objective function value
0 which corresponds to the strategy not to build a network. The model would thus
never deliver a solution with expected loss. This does not mean the NPV has to
be non-negative in all scenarios. As long as the expectation is non-negative, losses
can occur in single scenarios.

The expectation for profits is the driver for network evolution. This is also re-
flected in the model. The service variables x(s)

nx are the only variables with positive
objective function value. Setting the service variables to one is thus the only way
to generate profit. Constraint (6.5a) says that one server has to be activated for a
pixel to be serviced. The constraint, thus, connects the profit with the availability
and construction of cells.
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6.4. Multistage Stochastic Program for Average
Value-at-Risk

In Section 6.3, the aim was to obtain a network evolution plan which maximizes
the expected profit. In this section, the model is extended to the optimization of
a more risk-adverse risk measure. Therefore, a value process is defined and the
multi-period AV@R presented in Section 4.4.3 is applied.

The discounted value process is used to apply the AV@R in each period. The
(discounted) value process vn for node n is defined by

vn = vp(n) + ∑
x∈A

Ĉnx x(s)
nx −∑

i∈C

(
ĉ(cap)

ni (yni − yp(n)i) + ĉ(op)
ni yni

)
(6.6)

The value composes of the value at the parent node and the discounted additional
value in node n. Now, we state the deterministic equivalent optimization model
with the multi-period Average Value-at-Risk as objective function. All constraints
are from the expectation based model (DEMExp) are present.

max
T

∑
t=2

γt

(
y0

t +
1
αt

∑
n∈N (t)

P(n)y−n

)
(DEMAV@R)

s.t. vn = vp(n) + ∑
x∈A

Ĉnx x(s)
nx −∑

i∈C

(
ĉ(cap)

ni (yni − yp(n)i) + ĉ(op)
ni yni

)
for all n ∈ N (6.7a)

y0
t(n) + vn = y+

n + y−n for all n ∈ N (6.7b)

∑
i∈C(s)

nx

yni ≥ x(s)
nx for all n ∈ N , x ∈ A (6.5a)

∑
i∈C(c)

nx

yni ≥ x(c)
nx for all n ∈ N , x ∈ A (6.5b)

yni ≥ yp(n)i for all n ∈ N , i ∈ C (6.5c)

∑
i∈C

(
yni − yp(n)i

)
≤ Kn for all n ∈ N (6.5d)

∑
x∈A

wnx x(c)
nx ≥

(
αn ∑

x∈A
wnx

)
cn for all n ∈ N (6.5e)

∑
x∈A

x(s)
nx ≤ |A| cn for all n ∈ N (6.5f)

y ∈ {0, 1}N×C , x(s) ∈ {0, 1}N×A, x(c) ∈ {0, 1}N×A, c ∈ {0, 1}N (6.5g)

v ∈ RN , y0 ∈ RT , y+ ∈ RN≥0, y− ∈ RN≥0 (6.7c)

The objective function is the weighted average of the single period AV@Rs. Con-
straint (6.7a) sets the value variable vn and constaint (6.7b) sets the auxilary vari-
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ables for the AV@R calculation. The domains of the auxilary variables are given
in (6.7c).

The results from Section 6.3.3 can be easily adjusted to this model, but not
presented here.

6.5. Problem Specific Presolving

In the following, we present several presolving routines to reduce the problem
size in terms of variables and constraints.

6.5.1. Fixing Service and Coverage Variables Without Impact

Variables and constraints that do not have an impact in the model can be elimi-
nated in a presolving step. Service variables for pixel that do not generate cash-
flow have no impact on the objective function. Fixing these variables to 0 in an
optimal solution is always feasible and and the resulting solution is also opti-
mal. This fixing should hence be done in a presolving step and the variables
should not be included into the model. In this case, the corresponding service
constraints (6.5a) are redundant and also deleted. The same applies to cover-
age variables with weight 0. In the following, we therefore assume Ĉnx > 0 and
wnx > 0.

6.5.2. Implicit Integer Variables

In the model (DEMExp), all variables are explicitly declared binary. The integrality
condition, however, can be relaxed for many variables since integrality is ensured
by the structure of the problem in all optimal solutions. Variables with this prop-
erty are referred to as implicit integer variables. A binary variable x ∈ {0, 1} can
thus be replaced by a continuous variable x ∈ [0, 1]. Implicit integer variables do
not need to be considered for branching. They will take integral values in the
LP-optimum, if all integer variables take integral values.

Branching on these variables can still be beneficial for the solution process.
Therefore, most solvers identify implicit integer variables during preprocessing.
To some solvers, like SCIP, the information that a variables is implicit integer can
be passed directly and possibly speed up the solution process. In the following, we
investigate the effect of relaxing the integrality condition of service and coverage
variables.
Lemma 6.5: Let (x(s)∗, x(c)∗, y∗, c∗) be an optimal solution of program (DEMExp) where
the integrality conditions for all service variables and all coverage variables are relaxed. Let
π be the objective function value. Then the following holds:

i) All service variables x(s)
nx
∗

have integral values.
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ii) Coverage variables can take values between 0 and min
(

1, ∑i∈C(c)
nx

yni
∗
)

. Rounding
up or setting according to Eq. (6.1) yields an optimal solution to (DEMExp).

Proof. Consider an optimal solution (x(s)∗, x(c)∗, y∗, c∗). A service variable x(s)
nx
∗

occurs in exactly two constraints:

∑
i∈C(s)

nx

yni ≥ x(s)
nx
∗

(6.5a)

∑
x∈A

x(s)
nx
∗
≤ |A| cn (6.5f)

The positive objective function value pushes the variable to the upper bound pro-
vided by these constraints:

x(s)
nx
∗

= min
(

cn
∗, ∑

i∈C(s)
nx

yni
∗
)

Since cn
∗ and yni

∗ are integral, x(s)
nx
∗

is integral.
Consider a node n. If the coverage indicator variable cn

∗ is 0, all coverage
variables are forced to 0 and take the value specified in Eq. (6.1).

If cn
∗ = 1, sufficiently many coverage variables take positive values as to fulfill

the coverage requirement Eq. (6.5e). The coverage variables are only restricted by
constraint

∑
i∈C(c)

nx

yni
∗ ≥ x(c)

nx
∗

(6.5b)

Since the right side is integral, rounding up is always feasible as is setting accord-
ing to Eq. (6.1). This does not change the objective function value and, hence, the
resulting solution is optimal.

The lemma states that omitting the integrality condition of the service and the
coverage variables does not change the structure of the solution. The obtained
network evolution plan is still optimal and an integer feasible solution can be
computed by rounding. Service variables corresponding to pixel which generate
no revenues (Ĉnx = 0) can be fixed to 0. The variables and the corresponding
constraints are, therefore, not included in the model.

6.5.3. Pixel Aggregation

The planning area is usually divided into rectangular pixels by a grid. A high
resolution in the pixel grid results in a large number of pixels. For every pixel the
model needs to determine if it has coverage and service. The model thus comprises
one variable and one constraint for each of this decisions. The number of pixels

76



6.5. Problem Specific Presolving

|A| clearly dominates the number of candidate cells |C| and the number of nodes
in the scenario tree |N | such that the size of the model is mainly determined by
|A|. Significant reductions in the problem size are possible if pixels with the same
covering or servicing cell are merged. The service variables corresponding to two
pixels with the same set of serving cells will have the same value in an optimal
solution. The pixel can thus be merged and the corresponding variables can be
aggregated in the model. The same holds for the coverage variables. This results
in a different discretization of the planning area depending of whether service
or coverage is considered. Since the service areas change over time, a different
discretization is computed for each node.

To formalize the idea of pixel aggregation, let us first consider coverage. In
Section 6.3.3, we show that the values of coverage variables in an optimal solution
can be set according to Eq. (6.1):

x(c)
nx = min

(
1, ∑

i∈C(c)
nx

yni

)
.

This implies that variables with the same covering cells have the same values:

C(c)
nx = C(c)

ny =⇒ x(c)
nx = x(c)

ny . (6.8)

This allows the aggregation of all pixels with the same set of covering cells. Let
G(c)

n ⊆ 2C denote the set consisting of the sets of potential covering cells in node n:

G(c)
n =

{
C(c)

nx

∣∣∣ x ∈ A
}

.

For a set of cells G ∈ G(c)
n , let A(c)

nG denote the set of pixels, which can be covered
by all cells in G and by not other cell:

A(c)
nG =

{
x ∈ A | C(c)

nx = G
}

According to (6.8), the values of the coverage variables coincide of all pixel in A(c)
nG:

x(c)
nx = x(c)

ny for all x, y ∈ A(c)
nG

Therefore, coverage variables can be indexed by the set of potential covering cell
rather then by pixel:

x(c)
nx −→ x(c)

nG

This yields the following modifications in the constraints (6.5b) and (6.5e):

∑
i∈G

yni ≥ x(c)
nG for all n ∈ N , G ∈ G(c)

n , (6.9)

∑
G∈G(c)

n

wnG x(c)
nG ≥

(
αn ∑

x∈A
wnx

)
cn for all n ∈ N , (6.10)
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where wnG is defined by

wnG = ∑
x∈A(c)

nG

wnx

Typically,
∣∣∣G(c)

n

∣∣∣ is much smaller than |A|. Hence the size of the model is decreased
significantly.

The same procedure can be applied to the service variables. Their value in an
optimal solution is given by Eq. (6.2):

x(s)
nx = min

(
cn, ∑

i∈C(s)
nx

yni

)
Corresponding to (6.8), this implies

C(s)
nx = C(s)

ny =⇒ x(s)
nx = x(s)

ny (6.11)

Constructing G(s)
n andA(s)

nG similar to G(c)
n andA(c)

nG, we can also re-index the service
variables:

x(s)
nx −→ x(s)

nG

This has effects on the objective function and the constraints (6.5a) and (6.5f). They
get changed as follows:

max ∑
n∈N

P(n)
[

∑
G∈G(s)

n

ĈnG x(s)
nG −∑

i∈C

(
ĉ(cap)

ni (yni− yp(n)i) + ĉ(op)
ni yni

)]
(6.12)

∑
i∈C(s)

nx

yni ≥ x(s)
nG for all n ∈ N , G ∈ G(s)

n (6.13)

∑
G∈G(s)

n

x(s)
nG ≤

∣∣∣G(s)
n

∣∣∣ cn for all n ∈ N (6.14)

Again, this transformation typically yields a large reduction of the number of
variables and constraints.

The aggregated coverage and service variables behave exactly like the disaggre-
gated ones such that aggregated versions of Eq. (6.1) and (6.2) are valid. Therefore,
the aggregated service variables are also implicit integer and the results from Sec-
tion 6.3.3 and Section 6.5.2 are valid for aggregated model.

6.5.4. Reusing Service Variables as Coverage Variables

The equations (6.1) and (6.2) reveal that the values of coverage and service vari-
ables are mainly determined by the cell activation variables of the cells that can
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provide coverage or service, respectively. Suppose a node n and two pixel x and
y, where the cell of possible servers of x is equal to the set of possibly covering
cell of y:

C(s)
nx = C(c)

ny

Equations (6.1) and (6.2) say that the values of the corresponding variables x(s)
nx and

x(c)
ny coincide if the coverage requirement is fulfilled, i. e., cn = 1. If the coverage

requirement is not fulfilled, the service variables are forced to 0. In this case,
setting the coverage variables to 0 is always feasible. Therefore, there is an optimal
solution that features the following implication:

C(s)
nx = C(c)

ny −→ x(s)
nx = x(c)

ny (6.15)

This becomes even clearer if we consider the aggregated form for the service and
coverage variables. For each group G of cells, for an optimal solution we can
assume:

x(s)
nG = x(c)

nG

The values of coverage variables are less restricted than those of service variables.
If the coverage requirement not is fulfilled, coverage variables can take arbitrary
values while service variables are forced to 0. An identification of coverage and
service variables is thus only beneficial for a set G of cells for which both, the cov-
erage and the service variable are included in the model. In this case, the coverage
variable is substituted by the corresponding service variable in constraint (6.10)
and the corresponding constraints (6.9) are eliminated. By this transformation

∑n∈N
∣∣∣G(s)

n ∩ G(c)
n

∣∣∣ constraints and variables can be eliminated from the model.

6.5.5. Presolving the Coverage Requirement

Before a network can start operation, an appropriate level of coverage has to be
provided. The decision variable cn determines if the coverage requirement is ful-
filled in scenario node n. If cn = 0, then the service and coverage variables corre-
sponding to that node have to be set to 0 as well.

A large number of cells might be necessary to provide enough coverage. The
aim of this presolving procedure is to determine nodes, whose coverage require-
ment cannot be fulfilled. In this case, we can fix cn = 0 and consequently the
corresponding coverage and service variables. Hence, these variables and the cor-
responding constraints can be eliminated from the model.

The effect is twofold. First, the problem size is reduced. Second, the LP-relaxation
is strengthened. In the LP-relaxation, cn may take fractional values and, hence,
allows positive values for some service variables. The fixing to 0, therefore, poten-
tially decreases the objective of the LP-relaxation and provides a stronger bound.
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Consider a node n ∈ N . The coverage provided in n depends on the cells that
are active. The decision whether sufficient coverage can be provided in a node
only depends on the construction activities on the path from the node to the root
and is deterministic. Since the order of the construction of cells is not important,
we look for a set of cells that provides maximal coverage. We have to take the total
construction limit until node n into account. Service decisions can be ignored.
Coverage variables are just needed for the considered node. The following model,
thus, computes the maximal achievable coverage in node n ∈ N :

max ∑
x∈A

wnx x(c)
nx (MaxCov)

s.t. ∑
i∈C(c)

nx

yni ≥ x(c)
nx for all x ∈ A (6.16a)

∑
i∈C

yni ≤ ∑
n∈P(n)

Kn (6.16b)

y ∈ {0, 1}C , x(c) ∈ {0, 1}A (6.16c)

The objective function is exactly the right-hand side of the coverage constraint (6.5e).
Constraint (6.16a) ensures that coverage variables corresponding uncovered pix-
els are set to 0. Constraint (6.16b) ensures that the total construction limit is not
violated.

If the objective function value of (MaxCov) is smaller than αn ∑x∈A wnx, the
coverage requirement cannot be fulfilled in node n. In a presolving routine, model
(MaxCov) should be run for every node in the scenario tree.

In model (MaxCov), pixel aggregation is also possible and further reduces the
problem size. In all optimization settings studied in Chapter 7, these models are
solved to optimality within a few seconds.

6.5.6. Mandatory Coverage Requirement

Sometimes the coverage requirement is mandatory, i. e., forced by the regulation
authorities. The choice of not fulfilling the coverage requirement and not operating
the network is not given.

The coverage requirement variables in Model (DEMExp) are fixed to 1 in those
nodes for which the coverage requirement is demanded. This fixing can make the
problem infeasible if the required coverage can not be provided. In this case
model (MaxCov) can be used to determine the the nodes where the coverage
requirement can be fulfilled.

The coverage requirement is monotone in the sense that if it is fulfilled in a node,
it will also fulfilled in all nodes in the underlying subtree. The constraints (6.5e)
and (6.5f) are thus only needed for the first node on each path from the root
to a leaf where the requirement has to be fulfilled. The respective constraints
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corresponding to nodes in the later stages are redundant and can thus be deleted
from the model. The corresponding coverage variables do not appear anymore
and can also be deleted from the model.
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7. Computational Experiments

In this chapter, we report about computational experiments. Two realistic plan-
ning scenarios, presented in Section 7.1, are used to study our approach. The
planning procedure is conducted for two time horizons with period lengths of 3
and 12 months, respectively. Two different scenario trees for the annual planning
are compared. The scenario trees are presented in Section 7.2. Before coming
to the results, the remaining parameters are specified in Section 7.3. Reducing
the problem size of the deterministic equivalent problems by presolving routines
is essential to make the problem computationally tractable. The problem size in
terms of variables and constraints can be reduced by a factor 200, yielding mixed-
integer programs with about 620 000 variables and constraints (from 127 mill. vari-
ables and constraints without presolving). The results are presented in detail in
Section 7.4.

Most instances are solved within 10 hours up to a 0.5 % optimality gap by the
Cplex MIP solver. Four variations of the models presented in Chapter 6 with
different optimization goals are used :

• Maximization of the expected profit

• Minimization of the Average Value-at-Risk

• Relaxation of the non-anticipativity constraints and maximization of the
profit for each scenario

• Maximization of the profit of the expected demand evolution and evaluation
of the resulting network evolution plan in the different scenarios

Since we use a node formulation (cf. Section 4.3), the non-anticipativity constraints
are not stated explicitly. A relaxation of the non-anticipativity constraints in the
scenairo formulation causes a decompositions into independent subproblems for
each scenario. This corresponds to solving the deterministic problem correspond-
ing to each root-leaf path individually.

The results from all four approaches are compared and presented in Section 7.5.
The construction of a UMTS network is profitable in all planning scenarios and
parameter settings. The positive 40 %-AV@R in two parameter setting, however,
indicates that the risk of losses is present.

Comparing the different optimization goals, we observe that the difference in
the objectives of the first three is rather small. The expected profit increases only
by at most 2.2 % if the non-anticipativity constraints are relaxed. In the Berlin
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Area Pixel Number Pixel with Population Candidates

[km2] Size [m] of Pixel ρ(x) > 0 Estimate Sites Cells

Berlin 56.25 50 22 500 22 211 750 000 65 193
Hamburg 4 682.34 50 1 872 936 296 538 1 800 000 477 1 476

Table 7.1.: Key properties of planning scenarios

scenario, the AV@R can be decreased by 4.4 % compared to the solution of the
maximization of the expected profit by relaxing the non-anticipativity constraints.
Optimizing for AV@R almost reaches this bound. In the Hamburg scenario, the
AV@R of the expected profit maximization solution is improved by at most 2.5 %
by maximizing for AV@R and by at most 2.5 % by relaxing the non-anticipativity
constraints. In Hambrug the absolute AV@R difference between the different ap-
proaches is, however, small compared to the expected profit.

In traditional planning, the expectation of uncertain parameters is often used
to perform deterministic optimization. The resulting configuration evaluated in
the different scenarios delivers an (often significantly) poorer expected profit and
AV@R than our stochastic programming approach. In practice, however, the net-
work evolution plan should be recalculated regularly and this approach should
yield better results.

7.1. Planning Scenarios

We study our methods in two realistic planning scenarios. The first is a pub-
licly available dataset of the inner city area of Berlin, which was developed in
the Momentum project. The second is a realistic dataset of Hamburg, which is
provided by a German network operator. Table 7.1 gives an overview over the
scenario data.

Berlin. The Berlin scenario is published as part of the Momentum project [61]
and can be downloaded from http://momentum.zib.de. The Momentum project
provides three publicly available UMTS planning scenarios from which we use
the Berlin scenario. The scenario contains realistic data, such as equipment data,
average load grids, land use as well as land cover information, and a reference
network design.

The planning area of this scenario covers the inner city of Berlin. The area
comprises 56.25 km2 and is divided into 22 500 square pixel of 50 m width and
height. It reaches from Tiergarten in the West, the former airport Tempelhof in
the South, Lichtenberg in the East to Prenzlauer Berg in the North. In total about
750 000 persons live in this area. The land use in the planning area is visualized in
Figure 5.1(a).
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(b) Tree with 34 nodes

Figure 7.1.: The scenario trees for annual planning, colors visualize probabilities

As candidate sites we use the sites in the reference network. The antennas are
mounted without mechanical but with a 6 degree electrical tilt. Since the numbers
of sites and cells are relatively small, we plan on cell basis, i. e., we face a cell
selection problem rather than a site selection problem.

Hamburg. The second scenario describes the city of Hamburg and the surround-
ing rural area with some smaller cities. The population distribution and the can-
didate site locations are provided by a German network provider. The remaining
scenario parameters, such as noise ratios, information on the services and equip-
ment are taken from the Momentum project. For reasons of confidentiality, this
thesis does not contain visualizations of the scenario data.

The planning area is considerably larger than in the Berlin scenario; it comprises
4 682.34 km2 divided into 1 872 936 pixel. The pixel also have a resolution of 50 m in
both directions. Since the planning area contains large rural areas, the population
is concentrated in the city of Hamburg and some smaller cities and villages. The
total population of 1.8 million habitants is distributed among only 16 percent of
the pixels. The number of pixel containing population is displayed in the fifth
column of Table 7.1.

The scenario contains 1 476 cells at 477 sites in a reference network. Due to the
large number of cells, we plan on site basis, i. e., we decide which sites to build.

7.2. Scenario Trees

All scenario trees are generated with the methods described in Section 5.2.3. The
logarithmic transformation proposed there is applied.

We conduct experiments for two time horizons. First, we perform an annual
planning from 2004 to 2010. There, we compare two different scenario trees, which
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Figure 7.2.: The scenario tree for quarterly planning, colors visualize probabilities

are illustrated in Figure 7.1. The trees have a similar structure until the year 2007
and then the tree with 34 nodes spreads more and covers a larger value range.
The second time horizon ranges from 2008 to 2010 and we plan on a quarterly
basis. Experiments are only conducted on one scenario tree with 53 nodes, which
is depicted in Figure 7.2.

All trees result from a tree construction on the basis of 300 sampled paths. A
drift parameter of µ = 1.6 and different volatilities σ are used; σ = 0.6 for the
annual planning and σ = 0.8 for the quarterly planning.

7.3. Parameters

Several parameters need specification. Let N be the set of nodes in the scenario
tree and Vn the monthly traffic per capita in KiB in node n ∈ N . With Ts∗

n (x) we
denote the user intensity function of the reference service that corresponds to the
traffic in node n. With t(n) we denote the year that node n represents. We start
with the specification of costs and revenues. Table 7.2 summarizes the remaining
parameters.

Costs

For the monetary valuation, knowledge of the costs for the construction and the
maintenance of network components, such as base stations and cells, is needed.
In a case-study supported by E-Plus Gerpott [34] estimated capital and opera-
tional expenses for UMTS sites. He distinguished whether the UMTS equipment
is mounted on top of an existing GSM site or built from scratch. Costs are, of
course, considerably higher in the latter case. In both scenarios, the candidates are
taken from the reference network, hence we assume that GSM sites are installed
in all candidate locations. Gerpott gives a total investment volume of 60 900 € in
this case. We assume this is the investment volume in the year 2008. Of course,
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prices for equipment decrease over the years. We assume that in the year 2004 a
CapEx investment of 100 000 € was necessary and inter- and extrapolate between
these values linearly. The CapEx c(cap)

ni for site i in year t is thus given by

c(cap)
ni = 60 900 +

t(n)− 2008
2004− 2008

(100 000− 60 900). (7.1)

This numbers, however, refer to the construction of a site. Since we plan on cell
basis in the Berlin scenario, the costs for a cell is the costs for a site divided by the
number of candidate cells at the respective site. We assume that the operational
expenses are constant over time. Gerpott gives annual OpEx for a site of 8 700 €
such that

c(op)
ni = 8 700. (7.2)

Again this amount is divide among the cells for cell based planning. Note, that all
expenses do not depend on the node. Operational expenses remain constant over
time and capital expenses depend only on the year in which the expenses occur.
The expenses are therefore deterministic in our model. However, the notation
indicates that an extension of the model to stochastic expenses is possible.

Revenues

After costs, incoming cash-flow is the other component in monetary valuation.
Revenues are only generated in the service areas of active cells (cf. Section 6.1)
and depend on the traffic per capita as measure for the market development and
on the population in the covered area.

Similar to the argument given in Section 5.1.6, we relate revenue and traffic
volume by means of reference service equivalents (RSE), i. e., to the number of
reference service users in the busy hour that would cause this traffic volume. The
number of RSE per pixel is given by the user intensity function Ts∗

n (x) of the
reference service s∗ in node n. The missing part is to determine the revenue per
RSE. This is calculated from data on the overall traffic generation in Germany [16]
and public data from the network operator Vodafone D2. The Vodafone Group,
whose affiliated company Vodafone D2 is, publishes revenues for data services in
Germany its annual reports [72]. We refer to 2008 as reference year t∗.

The first step is to determine the total number of RSE. We therefore recall the
function RSE(.), which transforms a monthly traffic volume (in KiB ) into reference
service users equivalents. Let V∗ denote the total traffic volume in KiB in the
reference year. The number of reference users that corresponds to that traffic
volume is RSE(V∗

12 ), where the division by 12 converts annual to monthly traffic.
Next, we determine the revenue per RSE. We derive the corresponding formula

and substitute for the official Vodafone numbers. Let C(tot) denote the total data
revenue in the reference year of the reference operator (Vodafone). Assuming that
all operators in the market have the same average revenue per user (ARPU), the
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Parameter Symbol Value

Busy hour fraction β 25 %
Market share m 20 %
Reference year t∗ 2008
Reference operator Vodafone D2
Market share of reference operator m∗ 35 %
Data revenue of reference operator C(tot) 736.33 mill. €
Total traffic in Germany 2008 V∗ 11.5 mill. GiB
Reference service s∗ Speech telephony
Base-line traffic for coverage 50 MiB per Cap. per Month
Risk-adjusted interest rate (annual) r̂ 20 %
Maximum transmission power pmax 20 W
Other-to-own interference ratio ι 60 %
Cell load limit L(t) 60 %

Hamburg Berlin

Candidates Sites Cells
Average data rate of reference service νs∗ 6 000 bit/s 3 000 bit/s
Construction limit 60 and 100 10
Maximum number of technology upgrades 5 0
Technology upgrade scaling factor fui 0.5 –
Pathloss difference for technology upgrade U 6 dB –

Table 7.2.: Parameter values used for optimization

total data revenue in Germany is obtained by dividing C(tot) by the market share
m∗ of the reference operator. The annual revenue C(RSE) of one RSE is thus given
by

C(RSE) =
C(tot)

m∗ RSE(V∗
12 )

. (7.3)

The prices for mobile traffic have decreased significantly since the service started.
Clients on flat rate contracts, for example, get used to more bandwidth and use
the service more intensively for the same or even a decreasing fee. This causes
a decrease in the revenue per traffic volume unit. Reference service equivalent
as unit for traffic volume is constant over time. The revenue per RSE, however,
decreases significantly. No public data about the development of the revenue per
traffic unit (KiB or RSE) is available. We therefore assume the revenue per RSE
decreases each year by a multiplicative factor λ during the time horizon under
consideration. The scaled revenue C(RSE)(t) in year t per RSE is thus given by

C(RSE)(t) = λt∗−tC(RSE). (7.4)
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Note the consistent valuation for t = t∗. We can now specify the traffic dependent
revenue per pixel as

Cnx = C(RSE)(t(n)) Ts∗
n (x). (7.5)

The model can be easily be refined if appropriate data is at hand.

Comments on parameters

Table 7.2 summerizes the parameters used for the optimization procedure. A few
comments are in place.

Currency. The currency for our valuation is Euro. Being a British company, the
Vodafone Group reports in British Pound. The data revenue of 583 mill. £ is con-
verted to Euros using the exchange rate 1.26 of the 1st of July 2008.

Unit Prefixes. The German Bundesnetzagentur publishes their numbers in GB,
but since a clear distinction between the SI and IEC prefixes (cf., Section 1) is not
yet established, we assume the figure to be in GiB.

Reference Service. We choose speech telephony as reference service. Typically,
a data rate of 12 000 bit/s is assumed for voice transmissions. The typical speech
telephony usage is that each participant speaks half of the time on average. This
is reflected by an activity factor of αs = 0.5. The average data rate in one direction
is thus 6 000 bit/s.

The traffic in the Berlin scenario is rather homogeneously distributed across
the planning area. Since there are no peak areas, all cells have the same (low)
traffic intensity such that the service areas do not shrink with the traffic present
in the scenario trees considered. We therefore decided not to consider technology
updates in the Berlin scenario and increase the traffic level by decreasing the data
rate for the average service to 3 000 bit/s.

Cell Load Limit. We assume a cell load limit of 60 %. This choise ensures a stable
operation of the network and is common in the literature [43, 51].

Average Value-at-Risk. Even though a multi-stage problem is given, we optimize
for the AV@R of the final discounted value, i. e., the sum of all discounted cash-
flows in a scenario. A confidence level of α = 0.4 is used.
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34 Nodes 27 Nodes

Cons Vars Cons Vars

Without presolving 127 375 491 127 375 900 101 151 027 101 151 450
Only ρ(x) > 0 20 180 427 20 180 836 16 025 535 16 025 958
Pixel aggregation 834 905 835 314 692 543 692 966
Variable reuse 619 944 620 353 501 426 501 849
Fix coverage requirement 430 737 430 295 357 897 357 448

Table 7.3.: Effect of presolving in the Hamburg scenario for two scenario trees

7.4. The Effect of Presolving

A reduction of the problem size in terms of variables and constraints does not
always result in a reduction of the solution time of mixed-integer program. Re-
moving redundant variables and constraints, however, usually leads to speed-ups
of the solution process. In Section 6.5, several presolving ideas are presented. In
this section, the effect on the problem size is studied.

The number of nodes |N | and the number of candidate cells |C| is small in re-
lation to the number of pixels |A|. The model contains 2 |N | |A|+ (|N | − 1) |C|+
3 |N | constraints and 2 |A| |N |+ |C| |N |+ |N | variables. The term (|N | − 1) |C|
stems from the monotonicity constraints (6.5c) that ensure the sites cannot be de-
activated. They are not needed for the root node. All constraints are inequalities.
Several presolve routines to reduce the number of pixels and corresponding vari-
ables are proposed in Section 6.5. The resulting numbers of variables and con-
straints after the different presolve steps are displayed in Table 7.3. The first rows
gives the problem size for the problem without any presolving.

Fixing Service and Coverage Variables Without Impact. Pixel with a population
density of 0 do neither increase the covered population or do they generate profit,
if serviced. The respective coverage and service variables can therefore be fixed to
0 and not included in the model. In the original model without pixel aggregation,
the effect can be substantial. In the Berlin scenario, 289 out of 22 500 pixel have
a population density of 0. In the Hamburg scenario, the effect is much stronger;
1 576 398 out of 1 872 936 pixel carry no population (cf. Table 7.1). The resulting
problem size is given in the second row of Table 7.3. The reductions are significant.

Pixel Aggregation. Two pixel that can be serviced by the same set of servers are
either both covered or uncovered. The pixel are not distinguishable by the model
and can be aggregated. Since the shapes of the service areas depend on the traffic,
the discretization of the planning area might be different in each node. The sizes
of the models with aggregated pixels are given in the third row of Table 7.3.
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Figure 7.3.: Number of aggregated pixels and percentage of unserviceable pixels with
increasing traffic intensity in the Hamburg scenario

Technology Upgrades. The traffic increases with the time and causes a reduction
of the service areas. As a consequence, fewer service areas overlap. The blue and
the green line in Figure 7.3 represent the number of aggregated pixel against the
traffic intensity in the Hamburg scenario with and without 5 technology upgrades,
respectively. The number of aggregated pixel decreases much faster without up-
grades. If upgrades are present, the number of aggregated pixel decreases steeply
in the beginning and from about 25 000 Kib per month and capita onwards, cells
obtain technology upgrades and the reduction in aggregated pixels slows down
considerably. At the same time, the part of the population that can not be serviced
increases, as in Figure 7.3. At peak traffic over 90 % of the population can not be
serviced if no upgrades are allowed. Since upgrades counteract a reduction of the
service areas, at most 13 % of the population is unserviceable if 5 upgrades are
allowed.

Reusing Service Variables For Coverage Observation. Coverage and service vari-
ables constitute the major part of the variables in the model. Similar to the aggre-
gation, coverage pixel with the same servers as a service pixel can be replaced by
the service pixel and deleted from the model. In our experiments, about half of
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the coverage pixel can be replaced. This allows a reduction of the model of about
25 %. The figures are displayed in the fourth row of Table 7.3.

Presolving the Coverage Requirement. By means of model (MaxCov), the max-
imum achievable coverage in a node can be determined. If the coverage require-
ment cannot be fulfilled, the service and coverage variables for the respective node
can be fixed to 0 and eliminated from the model. In the planning scenario with
annual time discretization, the coverage requirement can be fulfilled already in
the root node and hence no savings are possible. In contrast, only 38 % of the
population can be covered in the root node of the quarterly discretization in the
Hamburg scenario with a construction limit of 100. The coverage requirement
cannot be fulfilled and the problem size can be reduced from 885 457 variables
and 885 086 constraints to 867 691 variables and 867 319 constraints. This presolv-
ing step also strengthens the LP-relaxation. A decrease of 3.9 % is observed in
quarterly Hamburg scenario with a construction limit of 100 and optimization of
expected profit.

Mandatory Coverage Requirement. If the coverage requirement is obligatory
in some stage, the coverage requirement variables for the respective stages are
fixed to one. If the coverage requirement is fulfilled once, it is fulfilled in all
following stages. A monitoring is thus only needed in the first stage the coverage
requirement is demanded. The respective constraints and coverage variables can
be deleted from the model. The result is a further reduction of the number of
variables and constraints as displayed in the fifth row of Table 7.3.

7.5. Computational Results

We conduct our computational experiments on quad-core PCs with 16 GiB main
memory. The implementation is based on an existing Java environment at ZIB [33]
for UMTS network visualization, anaylsis, and optimization from which primar-
ily the data handling routines are used. A part of this thesis, the author imple-
mented all presolving routines, data exports as well as analysis methods using
Java, Jython, and Python. All MIPs are generated with ZIMPL [50] and solved
using Cplex Version 12.2 [46] with a time limit of 10 hours and a relative gap limit
of 0.5 %.

In the Berlin scenario, all deterministic equivalent models are solved to a 0.5 %
gap within 4.5 hours. Most models can be solved to optimality within 10 hours
running time. In the Hamburg scenario, all deterministic equivalent problems
corresponding to the maximization of the expected profit are solved to a 0.5 %
gap within 10 hours except for one with a remaining gap of 0.58 %. Surprisingly,
the deterministic optimization problems of the individual scenarios do not solve
equally well. Even though the solution of the entire tree was used as MIP start,
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Figure 7.4.: Evolution of the number of installed sites (represented by the color of the
nodes) in Hamburg in the scenario tree with 34 nodes and a construction
limit of 100

Cplex hit the time limit or ran out of memory. In these cases, the gap ranged from
2-5 %; 34 % in one scenario. The absolute differences, however, are all in the same
order of magnitude, such that the big gaps are mainly due to scaling effects.

Generally, the deterministic equivalents corresponding to the model where the
AV@R is to be minimized are more difficult to solve to the required gap. In the
Hamburg scenario two instances ended with a 13 % the gap after 10 hours. How-
ever, the absolute gaps in the AV@R are rather small compared to the expected
profit (15 000 euros absolute compared to an expectation of almost 13 mill. euros).
The relaxation of the non-anticipativity constraints provides a lower bound on the
AV@R. This bound gives a gap of less than 4 %. Due to the small absolute value
and the moderate relative gap, no additional effort is put into closing the gap.

Generally, large differences in the network evolution across the different scenar-
ios are observed. Consider, for example, the Hamburg annually planning scenario
optimized on the scenario tree with 34 nodes and a maximum construction limit
of 100. The evolution of the number of installed sites is visualized in Figure 7.5(a).
At the root node, 40 sites are built to ensure the coverage requirement (57 % of the
population are covered in the root). In the scenarios with poor traffic evolution,
very few further sites are activated after that; less than 10 with a probability of
26 %. In the scenarios with a high traffic increase, considerably more sites are acti-
vated; 327 or more are activated in 2010 with a probability of 22 %. The connection
of the monthly traffic volume and the number of constructed sites is also revealed
in Figure 7.4, where the number of installed sites is visualized by the color of
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Opt. over scenario tree Relaxation of non-anticipativity

Expectation AV@R Expectation AV@R EVPI

Berlin annually
27 Nodes, 10 Cap 9 870 175 € -3 205 609 € 9 944 123 € ( +0.7 %) -3 254 751 € ( -1.5 %) 73 949 €
34 Nodes, 10 Cap 9 868 577 € -2 356 112 € 10 036 282 € ( +1.7 %) -2 460 744 € ( -4.4 %) 167 705 €

Berlin annually with mandatory coverage in root
27 Nodes, 10 Cap 9 871 149 € -3 204 851 € 9 957 594 € ( +0.9 %) -3 257 863 € ( -1.7 %) 86 445 €
34 Nodes, 10 Cap 9 873 531 € -2 359 760 € 10 040 086 € ( +1.7 %) -2 460 765 € ( -4.3 %) 166 555 €

Hamburg annually
27 Nodes, 100 Cap 15 286 450 € -2 917 462 € 15 291 819 € ( +0.0 %) -2 930 883 € ( -0.5 %) 5 368 €
27 Nodes, 60 Cap 15 233 750 € -2 921 662 € 15 245 549 € ( +0.1 %) -2 931 112 € ( -0.3 %) 11 798 €
34 Nodes, 100 Cap 16 659 934 € -1 601 728 € 16 895 924 € ( +1.4 %) -1 658 141 € ( -3.5 %) 235 991 €
34 Nodes, 60 Cap 16 198 435 € -1 607 326 € 16 510 183 € ( +1.9 %) -1 657 085 € ( -3.1 %) 311 749 €

Hamburg annually with mandatory coverage in root
27 Nodes, 100 Cap 12 972 933 € -431 222 € 13 024 427 € ( +0.4 %) -446 821 € ( -3.6 %) 51 494 €
27 Nodes, 60 Cap 12 906 688 € -428 591 € 12 969 340 € ( +0.5 %) -445 501 € ( -3.9 %) 62 652 €
34 Nodes, 100 Cap 14 410 188 € 936 882 € 14 595 176 € ( +1.3 %) 910 019 € ( -2.9 %) 184 988 €
34 Nodes, 60 Cap 13 969 286 € 938 999 € 14 279 881 € ( +2.2 %) 909 088 € ( -3.2 %) 310 595 €

Hamburg quarterly with mandatory coverage in the second stage
53 Nodes, 100 Cap 18 805 586 € -7 742 900 € 18 955 382 € ( +0.8 %) -7 883 913 € ( -1.8 %) 149 796 €
53 Nodes, 60 Cap 16 416 908 € -6 641 045 € 16 468 341 € ( +0.3 %) -6 701 818 € ( -0.9 %) 51 433 €

Table 7.4.: Comparison of optimization over the scenario tree and and over the indi-
vidual scenarios, i. e., the relaxation of the non-anticipativity constraints

the nodes in the scenario tree. The complete data for this setting is displayed in
Table A.12. There, we also see that negative cash-flows occur only in 3 nodes.
The aggregated cash-flow is only negative in the scenario with the poorest traffic
evolution (probability 7 %). In this case, the initial investment of 4 mill. is never
recovered. Discounting changes this situation noticeably. Four scenarios with a
total probability of 39 % have a negative final aggregated discounted cash-flow. In
these scenarios, the investment in an alternative project with the same return is fa-
vorable. This is also reflected by a 40 %-AV@R on the final aggregated discounted
cash-flow of 936 882 €. Taking all scenarios into account, however, the project is
profitable with an expected discounted profit of 14 410 188 €.

Optimizing for Expected Profit. The optimization results for the maximization
of the expected profit are displayed in the second and the third column of Table 7.4.
In all settings, we notice a considerable difference between expectation and the
AV@R. High profits are thus expected in the best 60 % of the scenarios.

In the Berlin scenario, a mandatory coverage of 50 % of the population in the
root node almost does not change the resulting figures. The expected profit, fur-
thermore, is almost constant for the two different trees. The AV@R, however, is
significantly higher in the tree with 34 nodes. In any case the AV@R is below -2.3
mill. euros. The project seams thus not very risky, since even in the worst 40
percent a profit of 2.3 mill. euros is expected.
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Figure 7.5.: Visualization of optimization results in Hamburg using the scenario tree
with 34 nodes and different construction limits
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In the Hamburg scenario demanding for coverage in the root node considerably
decreases the performance in terms of expected profit and AV@R. Here, the figures
for the different trees differ. The Expectation is about 10 % higher for the tree
with 34 nodes. The higher expectation is traded for a higher risk. The AV@R is
negative for the tree with 27 nodes and positive for the tree with 34 nodes. In
the latter case, a loss of almost 1 mill. euros is expected in the worst 40 percent
of th scenarios. The reduction of the construction limit from 100 to 60 has only
a minor effect in the scenario tree with 27 nodes. In the setting with the tree
with 34 nodes, the expected profit suffers from the reduced construction limit,
while the AV@R remains constant. The limit is exhausted only in the scenarios
with high increase in the traffic, which are the most profitable. In the scenarios
with poor profitability, the construction limit is not exhausted. In the quarterly
planning the reduction has a significant impact on the expectation and AV@R.
Furthermore, the AV@R is significantly lower in the quarterly planning than in
the annual. Even with a construction limit of 60, more than 6.6 mill. euros profit
are expected in the worst 40 % of the scenarios. Figure 7.5(a) shows the number of
sites activated in the Hamburg scenario on the different scenarios in the tree with
34 nodes. Different construction limits are used. We observe that the numbers
of sites in the scenarios with poor traffic evolution hardly differ. In the scenarios
with more construction activities, the construction begins in earlier periods in the
case of lower construction limits.

The serviced population in the same settings is shown in Figure 7.5(b). Focusing
on the scenarios with big differences in the percentage of serviced population, we
observe that much more of the population is in the service area of constructed
sites in the years 2006 and 2007 if the construction limit is 60. This is because we
started construction of additional sites in these years. In the years 2009 and 2010,
the service level is higher if 100 sites can be built per year. In 2010 the services
population decreases in some scenarios due to shrinking service areas. Since the
expected profit is about half a million higher if 100 sites can be build, the superior
service levels in the early years do not have such a strong impact on the profit as
service in the later years. Indeed, in the best 9 % of the scenarios the discounted
cash-flow in the last period is above 41 mill. euros if the construction limit is 100
and only between 37 and 39 mill. euros if 60 sites can be built per year.

Comparison to a Clairvoyant. The solution of our stochastic program is a non-
anticipative network evolution plan for each root-leaf path in the scenario tree. If
the non-anticipativity constraints are relaxed, the model decomposes into inde-
pendent subproblems for the leaves which can be optimized individually. This
corresponds to the perspective of a clairvoyant. The clairvoyant is expected to
achieve better results in terms of expected profit and AV@R. The expected profit
of the clairvoyant’s strategy provides an upper bound for the expected profit of the
stochastic program. For the AV@R, the clairvoyant provides a lower bound. The
expected profit and AV@R of the clairvoyant in the different settings are displayed
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Opt. for expected profit Opt. over AV@R Clairvoyant

Berlin annually with mandatory coverage in root
27 Nodes, 10 Cap -3 204 851 € -3 255 613 € ( -1.6 %) -3 257 863 € ( -1.7 %)
34 Nodes, 10 Cap -2 359 760 € -2 459 457 € ( -4.2 %) -2 460 765 € ( -4.3 %)

Berlin annually
27 Nodes, 10 Cap -3 205 609 € -3 255 613 € ( -1.6 %) -3 254 751 € ( -1.5 %)
34 Nodes, 10 Cap -2 356 112 € -2 458 983 € ( -4.4 %) -2 460 744 € ( -4.4 %)

Hamburg annually with mandatory coverage in root
27 Nodes, 100 Cap -431 222 € -438 100 € ( -1.6 %) -446 821 € ( -3.6 %)
27 Nodes, 60 Cap -428 591 € -436 112 € ( -1.8 %) -445 501 € ( -3.9 %)
34 Nodes, 100 Cap 936 882 € 915 089 € ( -2.3 %) 910 019 € ( -2.9 %)
34 Nodes, 60 Cap 938 999 € 915 653 € ( -2.5 %) 909 088 € ( -3.2 %)

Hamburg annually
27 Nodes, 100 Cap -2 917 462 € -2 920 267 € ( -0.1 %) -2 930 883 € ( -0.5 %)
27 Nodes, 60 Cap -2 921 662 € -2 924 311 € ( -0.1 %) -2 931 112 € ( -0.3 %)
34 Nodes, 100 Cap -1 601 728 € -1 611 618 € ( -0.6 %) -1 658 141 € ( -3.5 %)
34 Nodes, 60 Cap -1 607 326 € -1 607 326 € ( +0.0 %) -1 657 085 € ( -3.1 %)

Hamburg quarterly with mandatory coverage in the second stage
53 Nodes, 100 Cap -7 742 900 € -7 836 117 € ( -1.2 %) -7 883 913 € ( -1.8 %)
53 Nodes, 60 Cap -6 641 045 € -6 653 595 € ( -0.2 %) -6 701 818 € ( -0.9 %)

Table 7.5.: Comparison of the AV@Rs for the different objectives

in the third and fourth column of Table 7.4.
The difference between the solution of the stochastic program and the clairvoy-

ant’s solutions is surprisingly small. In all settings, the clairvoyant expects at most
2.2 % more than we do. The relative reduction of the AV@R is larger; at most 4.4 %
in Berlin and at most 3.9 % in the Hamburg scenario. In the Berlin scenario this
means a reduction by 100 000 €, which is about 1 % of the expected profit. In the
Hamburg scenario the impact of perfect information is even smaller.

The absolute difference between the expectations of the clairvoyant’s strategy
and the non-anticipative strategy is called expected value of perfect information (EVPI).
Since the clairvoyant’s problem is a relaxation of the stochastic program, the EVPI
is always non-negative. The EVPI in the different settings is stated in the last col-
umn of Table 7.4. We observe that the EVPI is considerable higher in the tree with
34 nodes than in the tree with 27 nodes. However, the EVPI always represents less
than 2.2 % of the expected profit.

Optimizing the Average Value-at-Risk. Table 7.5 compares the AV@R for differ-
ent optimization settings: Optimizing for the expected profit, optimizing for the
AV@R, and relaxing the non-anticipativity constraints and optimize the individ-
ual scenarios. The differences between the three are small. This does not surprise
anymore. The clairvoyant’s strategy provides a lower bound for the AV@R. In the
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Opt. over scenario tree Opt. over exp. traffic evol.

Expectation AV@R Expectation AV@R

Berlin annually with mandatory coverage in root
27 Nodes, 10 Cap 9 871 149 € -3 204 851 € 9 622 943 € ( -2.5 %) -2 765 367 € ( +13.7 %)
34 Nodes, 10 Cap 9 873 531 € -2 359 760 € 9 505 135 € ( -3.7 %) -1 934 687 € ( +18.0 %)

Berlin annually
27 Nodes, 10 Cap 9 870 175 € -3 205 609 € 9 617 548 € ( -2.6 %) -2 765 367 € ( +13.7 %)
34 Nodes, 10 Cap 9 868 577 € -2 356 112 € 9 499 740 € ( -3.7 %) -1 934 687 € ( +17.9 %)

Hamburg annually with mandatory coverage in root
27 Nodes, 100 Cap 12 972 933 € -431 222 € 11 130 202 € ( -14.2 %) 2 575 456 € ( +697.2 %)
27 Nodes, 60 Cap 12 906 688 € -428 591 € 11 147 457 € ( -13.6 %) 2 484 495 € ( +679.7 %)
34 Nodes, 100 Cap 14 410 188 € 936 882 € 11 681 093 € ( -18.9 %) 4 298 859 € ( +358.8 %)
34 Nodes, 60 Cap 13 969 286 € 938 999 € 11 592 296 € ( -17.0 %) 4 195 610 € ( +346.8 %)

Hamburg annually
27 Nodes, 100 Cap 15 286 450 € -2 917 462 € 13 295 759 € ( -13.0 %) 131 243 € ( +104.5 %)
27 Nodes, 60 Cap 15 233 750 € -2 921 662 € 13 286 692 € ( -12.8 %) 64 594 € ( +102.2 %)
34 Nodes, 100 Cap 16 659 934 € -1 601 728 € 13 843 274 € ( -16.9 %) 1 834 586 € ( +214.5 %)
34 Nodes, 60 Cap 16 198 435 € -1 607 326 € 13 721 703 € ( -15.3 %) 1 756 479 € ( +209.3 %)

Hamburg quarterly with mandatory coverage in the second stage
53 Nodes, 100 Cap 18 805 586 € -7 742 900 € 17 889 615 € ( -4.9 %) -6 340 598 € ( +18.1 %)
53 Nodes, 60 Cap 16 416 908 € -6 641 045 € 15 904 370 € ( -3.1 %) -5 980 380 € ( +9.9 %)

Table 7.6.: Comparison of stochastic optimization over scenario tree and optimization
with the expected traffic evolution and evaluated on scenario tree.

discussion of Table 7.4 already stated that the gap between the clairvoyant’s AV@R
and the AV@R obtained by the solution of maximizing the profit is at most 4.4 %.
By minimization of the AV@R with non-anticipativity only reductions of at most
2.5 % are achieved.

Deterministic Optimization for the Expected Traffic Evolution. Without stochas-
tic programming, uncertain data is often treated by optimizing for the expected
data evolution. The resulting network evolution can then be evaluated in the
different scenarios of a scenario tree, and the expected profit and AV@R of that
evolution strategy can be calculated. The results of this experiment are displayed
in the last two columns of Table 7.6 and compared to the solution of the stochastic
optimization in the second and third column.

A poorer performance is observed. For the annual planning in the Hamburg
scenario the difference is significant. The expected profit decreases between 13 %
and 19 %. This strategy is also much riskier, which is reflected by a much higher
AV@R. The AV@R increases by about 3 mill. euros in these cases. In the Berlin
scenario and in the quarterly planned Hamburg scenario the expected profit de-
creases by at most 5 % and in the AV@R by less than 20 %.

This comparison shows that the stochastic programming approach yields signif-
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icantly better results than planning on the expected demand evolution. In practice,
however, the network operator would probably not stick to the planning on the
basis of the expected traffic evolution, but would re-optimize regularly to adjust
the planning to the shifted expectation of the future demand evolution. The pro-
cedure in practice would be a rolling horizon approach and would probably yield
better solutions.
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8. Conclusions

In this thesis, we propose, implement, and analyze the application of multistage
stochastic programming in strategic cellular network planning. Network opera-
tors in the telecommunication industry face strong, hardly predictable demand
evolution. This applies to the types of the services requested as well as to the
demand intensity. Strategic planning is substantial in this highly uncertain market
environment, since huge financial investments have to be mastered.

The classical approaches for strategic decision taking, such as net present value
and decision tree analysis, have considerable shortcomings. The popular real op-
tions approach addresses most of them, but the theoretical barrier for the correct
application is high and the conditions often not fulfilled.

Recently, stochastic programming has been proposed as an alternative to real
options, which avoids the assumptions from financial mathematics [86]. The
steady advances in MIP technology as well as computer technology render the
routine solution of large-scale mixed-integer programs possible. These two obser-
vations are at the starting point of this thesis. The goal is to analyze how stochastic
programming can be used to tackle realistic strategic network planning problems.

We use a realistic system model of UMTS radio cells, which takes signal propa-
gation and interferences into account. We devise an approach for strategic UMTS
radio network planning that maps both, cell coverage as well as a cell’s capability
to serve demand, into the notion of a cell’s service area. This also allows to model
the increase of cell capacity through technology upgrades.

The demand evolution is modeled as a continuous stochastic process, which is
approximated by a discrete scenario tree. We use a three-stage approach for the
construction of non-uniform scenario trees that serve as input of the stochastic
program. Our aggregation technique allows to substantially reduce the problem
sizes of the corresponding deterministic equivalent programs; on realistic input
data a reduction from about 120 000 000 to 600 000 variables and constraints is
achieved in some instances (see Table 7.3).

We conduct computational experiments on two realistic planning scenarios: a
medium-scale scenario based in the city of Berlin (based on publicly available data)
and a large-scale scenario covering the city of Hamburg (based on the network of
a German network provider). We study 14 different planning settings in total. The
corresponding deterministic equivalent problems are solved using a commercial
MIP solver to small optimality gaps within 10 hours running time. The optimiza-
tion result provides a tree-like network deployment plan, where construction over
time is tuned to the demand evolution. The evolution paths differ considerable
across the tree. In the Hamburg scenario, for example, the number if installed sites
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ranges from 40 to 372 and the net present value for the paths from −3 208 595 €
to 59 930 638 €. Compared to deterministic optimization for the expected demand
evolution, the expected profit increases from 11 681 093 € by 18.9 % to 14 410 188 € if
our approach is applied. In conclusion, the acceptable solution times as well as the
obtained results encourage the application of stochastic methods in this setting.

Furthermore, we compare the results of the stochastic programs for different ob-
jective functions, namely, the expected profit and the risk measure Average Value-
at-Risk. The risk measure focuses on the scenarios with poor performance. This
is a typical approach to trade in a decrease of the expected profit for a decrease in
risk. In our application, however, no considerable effect is observed.

Relaxing the non-anticipativity of the network evolution yield results from a
clairvoyant’s perspective. We observe improvements of at most 2 % in the expected
profit and at most 4.4 % in the AV@R. The value of perfect information is hence
rather small in the planning scenarios under consideration.

Our approach can be applied to plan the evolution of other cellular radio net-
work technologies as well. Planning for LTE requires merely small changes in the
system model and an update of model parameters. The market model should be
updated to match the present market conditions with a high degree of penetra-
tion (approaching saturation) and flat rate contracts. An application to planning
optical fiber access networks (FTTx) may also be feasible, but would require an
in-depth analysis not conducted here.
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A. Tables with Detailed Results

In the following, we display detailed results of the all optimization procedures.
Table A.1 provides a description of the columns. Arrows assist with the orientation
in the trees.

Column Description

node Name of the node
father Name of the father (The root node is its own father.)
stage Stage of corresponding to the node
year Year of corresponding to the node
KiB/cap Traffic volume in monthly KiB per capita
prop Probability of the node
totSites Total number of installed sites (cells in the Berlin scenario)
coverPop Percentage of the population that are serviced
inco Undiscounted revenues in euros
capE Undiscounted CapEx in euros
opE Undiscounted OpEx in euros
CFDis Total discounted cash-flow in euros in the node
aggCF Aggregated undiscounted cash-flow in euros up to the node
aggCFDis Aggregated discounted cash-flow in euros up to the node

Table A.1.: Description of the columns
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.38 · 101 1.00 5 0.53 62 962 166 667 14 500 −126 281 −118 204 −126 281
2 1 2 2005 5.43 · 101 0.29 5 0.53 71 920 0 14 500 39 875 −60 784 −86 406
4 2 3 2006 1.86 · 102 0.29 8 0.67 156 466 80 450 23 200 21 253 −7 968 −65 153
7 4 4 2007 9.64 · 102 0.29 18 0.93 563 898 235 583 52 200 110 435 268 146 45 282
11 7 5 2008 3.79 · 103 0.29 28 0.99 1 178 660 203 000 81 200 343 147 1 162 607 388 429
16 11 6 2009 5.64 · 104 0.09 38 1.00 8 809 835 170 417 110 200 2 845 004 9 691 825 3 233 433
22 16 7 2010 3.00 · 105 0.09 48 0.94 22 170 352 137 833 139 200 6 102 330 31 585 144 9 335 763
17 11 6 2009 1.50 · 104 0.20 28 0.99 2 330 015 0 81 200 753 123 3 411 421 1 141 553
23 17 7 2010 3.89 · 104 0.20 28 0.99 3 024 326 0 81 200 821 373 6 354 547 1 962 925
3 1 2 2005 1.09 · 102 0.70 15 0.86 234 971 300 750 43 500 −117 659 −227 484 −243 941
5 3 3 2006 5.88 · 102 0.52 21 0.96 705 521 160 900 60 900 261 308 256 237 17 368
8 5 4 2007 2.05 · 103 0.36 21 0.96 1 229 645 0 60 900 563 631 1 424 982 580 998
13 8 5 2008 6.56 · 103 0.24 26 0.98 2 020 706 101 500 75 400 732 826 3 268 788 1 313 824
19 13 6 2009 4.28 · 104 0.24 36 1.00 6 702 596 170 417 104 400 2 141 236 9 696 567 3 455 060
25 19 7 2010 1.99 · 105 0.24 46 0.99 15 428 921 137 833 133 400 4 222 539 24 854 255 7 677 600
12 8 5 2008 2.69 · 103 0.12 21 0.96 807 885 0 60 900 300 197 2 171 967 881 195
18 12 6 2009 1.01 · 104 0.12 22 0.96 1 523 428 17 042 63 800 481 978 3 614 553 1 363 173
24 18 7 2010 3.82 · 104 0.12 22 0.96 2 883 314 0 63 800 786 875 6 434 068 2 150 047
9 5 4 2007 4.35 · 103 0.16 31 1.00 2 720 106 235 583 89 900 1 132 092 2 650 859 1 149 459
14 9 5 2008 1.93 · 104 0.16 41 1.00 6 040 514 203 000 118 900 2 281 867 8 369 473 3 431 326
20 14 6 2009 7.28 · 104 0.16 51 1.00 11 411 531 170 417 147 900 3 703 681 19 462 687 7 135 006
26 20 7 2010 3.63 · 105 0.16 61 0.95 27 141 366 137 833 176 900 7 479 128 46 289 320 14 614 134
6 3 3 2006 1.48 · 103 0.18 25 0.97 1 805 150 268 167 72 500 816 464 1 236 999 572 523
10 6 4 2007 6.34 · 103 0.18 35 1.00 3 970 292 247 363 102 950 1 721 888 4 856 979 2 294 411
15 10 5 2008 3.24 · 104 0.18 45 1.00 10 141 680 203 000 131 950 3 924 789 14 663 709 6 219 200
21 15 6 2009 1.38 · 105 0.18 55 1.00 21 612 480 170 417 160 950 7 115 587 35 944 822 13 334 787
27 21 7 2010 5.23 · 105 0.18 65 0.85 34 731 866 137 833 189 950 9 593 855 70 348 905 22 928 642

Table A.2.: Results of Berlin planning scenario using the scenario tree with 27 nodes, a construction limit of 10, and optimization
for expected profit
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.38 · 101 1.00 5 0.51 61 446 166 667 14 500 −127 545 −119 720 −127 545
2 1 2 2005 5.43 · 101 0.29 5 0.51 70 188 0 14 500 38 673 −64 032 −88 872
4 2 3 2006 1.86 · 102 0.29 8 0.67 156 466 80 450 23 200 21 253 −11 216 −67 619
7 4 4 2007 9.64 · 102 0.29 18 0.93 563 898 235 583 52 200 110 435 264 898 42 816

11 7 5 2008 3.79 · 103 0.29 28 0.99 1 178 660 203 000 81 200 343 147 1 159 359 385 963
16 11 6 2009 5.64 · 104 0.09 38 1.00 8 809 835 170 417 110 200 2 845 004 9 688 577 3 230 967
22 16 7 2010 3.00 · 105 0.09 48 0.94 22 170 352 137 833 139 200 6 102 330 31 581 896 9 333 297
17 11 6 2009 1.50 · 104 0.20 28 0.99 2 330 015 0 81 200 753 123 3 408 173 1 139 087
23 17 7 2010 3.89 · 104 0.20 28 0.99 3 024 326 0 81 200 821 373 6 351 300 1 960 459
3 1 2 2005 1.09 · 102 0.70 15 0.85 232 089 300 750 43 500 −119 660 −231 881 −247 205
5 3 3 2006 5.88 · 102 0.52 20 0.95 698 588 134 083 58 000 277 597 274 623 30 392
8 5 4 2007 2.05 · 103 0.36 21 0.96 1 229 645 23 558 60 900 549 997 1 419 809 580 389

13 8 5 2008 6.56 · 103 0.24 26 0.98 2 020 706 101 500 75 400 732 826 3 263 615 1 313 215
19 13 6 2009 4.28 · 104 0.24 36 1.00 6 704 218 170 417 104 400 2 141 779 9 693 016 3 454 994
25 19 7 2010 1.99 · 105 0.24 46 0.99 15 440 513 137 833 133 400 4 225 774 24 862 296 7 680 769
12 8 5 2008 2.69 · 103 0.12 21 0.96 807 885 0 60 900 300 197 2 166 795 880 586
18 12 6 2009 1.01 · 104 0.12 22 0.96 1 523 428 17 042 63 800 481 978 3 609 381 1 362 564
24 18 7 2010 3.82 · 104 0.12 22 0.96 2 883 314 0 63 800 786 875 6 428 895 2 149 438
9 5 4 2007 4.35 · 103 0.16 30 0.99 2 716 078 235 583 87 000 1 131 548 2 668 117 1 161 940

14 9 5 2008 1.93 · 104 0.16 40 1.00 6 031 248 203 000 116 000 2 279 308 8 380 365 3 441 248
20 14 6 2009 7.28 · 104 0.16 50 1.00 11 394 539 170 417 145 000 3 698 961 19 459 487 7 140 209
26 20 7 2010 3.63 · 105 0.16 60 0.95 27 067 171 137 833 174 000 7 459 230 46 214 824 14 599 439
6 3 3 2006 1.48 · 103 0.18 25 0.97 1 802 393 268 167 72 500 814 869 1 229 845 567 664

10 6 4 2007 6.34 · 103 0.18 35 1.00 3 969 450 235 583 101 500 1 728 998 4 862 211 2 296 661
15 10 5 2008 3.24 · 104 0.18 45 1.00 10 137 202 203 000 130 500 3 923 572 14 665 914 6 220 233
21 15 6 2009 1.38 · 105 0.18 55 1.00 21 602 963 170 417 159 500 7 112 886 35 938 960 13 333 119
27 21 7 2010 5.23 · 105 0.18 65 0.85 34 800 750 137 833 188 500 9 613 484 70 413 376 22 946 602

Table A.3.: Results of Berlin planning scenario using the scenario tree with 27 nodes, a construction limit of 10, mandatory
coverage, and optimization for expected profit107
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.38 · 101 1.00 8 0.66 78 468 266 667 23 200 −220 610 −211 398 −220 610
2 1 2 2005 5.43 · 101 0.29 8 0.66 89 632 0 23 200 46 133 −144 966 −174 476
4 2 3 2006 1.86 · 102 0.29 9 0.72 168 195 26 817 26 100 63 608 −29 688 −110 868
7 4 4 2007 9.64 · 102 0.29 16 0.90 548 035 164 908 46 400 146 482 307 038 35 614
11 7 5 2008 1.07 · 104 0.09 26 0.99 3 309 230 203 000 75 400 1 201 706 3 337 869 1 237 320
17 11 6 2009 5.64 · 104 0.09 30 1.00 8 818 907 68 167 87 000 2 896 903 12 001 609 4 134 223
25 17 7 2010 1.50 · 105 0.09 40 0.99 11 664 622 137 833 116 000 3 176 848 23 412 397 7 311 072
12 7 5 2008 3.79 · 103 0.20 20 0.96 1 138 735 81 200 58 000 395 164 1 306 574 430 778
19 12 6 2009 9.58 · 103 0.13 21 0.96 1 449 737 17 042 60 900 458 270 2 678 369 889 048
27 19 7 2010 7.50 · 104 0.13 27 0.98 5 793 888 82 700 78 300 1 567 420 8 311 257 2 456 468
18 12 6 2009 3.76 · 103 0.07 20 0.96 565 318 0 58 000 169 900 1 813 892 600 678
26 18 7 2010 1.12 · 104 0.07 20 0.96 841 904 0 58 000 218 773 2 597 796 819 451
3 1 2 2005 1.09 · 102 0.70 18 0.92 251 841 300 750 52 200 −111 986 −312 508 −332 595
5 3 3 2006 5.88 · 102 0.52 28 0.99 729 824 268 167 81 200 189 134 67 949 −143 461
8 5 4 2007 2.05 · 103 0.36 28 0.99 1 272 003 0 81 200 574 268 1 258 752 430 807
14 8 5 2008 6.56 · 103 0.24 31 1.00 2 053 214 60 900 89 900 759 643 3 161 166 1 190 450
21 14 6 2009 1.46 · 104 0.07 31 1.00 2 289 835 0 89 900 736 754 5 361 102 1 927 204
29 21 7 2010 4.73 · 104 0.07 31 1.00 3 702 572 0 89 900 1 008 231 8 973 774 2 935 434
22 14 6 2009 4.28 · 104 0.17 41 1.00 6 705 616 170 417 118 900 2 137 391 9 577 465 3 327 841
30 22 7 2010 2.47 · 105 0.17 51 0.99 19 147 990 137 833 147 900 5 256 416 28 439 722 8 584 257
13 8 5 2008 2.69 · 103 0.12 28 0.99 835 715 0 81 200 303 222 2 013 267 734 029
20 13 6 2009 1.01 · 104 0.12 28 0.99 1 563 968 0 81 200 496 576 3 496 035 1 230 606
28 20 7 2010 3.82 · 104 0.12 28 0.99 2 960 043 0 81 200 803 432 6 374 878 2 034 038
9 5 4 2007 4.35 · 103 0.16 38 1.00 2 730 637 235 583 110 200 1 127 381 2 452 803 983 920
15 9 5 2008 1.93 · 104 0.16 48 1.00 6 047 525 203 000 139 200 2 276 526 8 158 129 3 260 446
23 15 6 2009 7.28 · 104 0.16 58 1.00 11 424 776 170 417 168 200 3 701 318 19 244 288 6 961 764
31 23 7 2010 3.63 · 105 0.12 68 0.97 27 605 494 137 833 197 200 7 602 992 46 514 748 14 564 755
32 23 7 2010 1.60 · 106 0.04 68 0.37 45 759 879 137 833 197 200 12 669 547 64 669 134 19 631 311
6 3 3 2006 1.48 · 103 0.18 28 0.99 1 832 243 268 167 81 200 827 108 1 170 369 494 513
10 6 4 2007 6.34 · 103 0.18 38 1.00 3 973 654 235 583 110 200 1 726 829 4 798 239 2 221 342
16 10 5 2008 3.24 · 104 0.18 48 1.00 10 145 642 203 000 139 200 3 923 467 14 601 681 6 144 810
24 16 6 2009 1.38 · 105 0.18 58 1.00 21 620 070 170 417 168 200 7 115 701 35 883 135 13 260 511
34 24 7 2010 1.57 · 106 0.05 68 0.37 45 032 884 137 833 197 200 12 466 657 80 580 986 25 727 168
33 24 7 2010 5.23 · 105 0.13 68 0.86 35 239 181 137 833 197 200 9 733 414 70 787 283 22 993 925

Table A.4.: Results of Berlin planning scenario using the scenario tree with 32 nodes, a construction limit of 10, and optimization
for expected profit
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.38 · 101 1.00 8 0.66 78 468 266 667 23 200 −220 610 −211 398 −220 610
2 1 2 2005 5.43 · 101 0.29 8 0.66 89 632 0 23 200 46 133 −144 966 −174 476
4 2 3 2006 1.86 · 102 0.29 9 0.72 168 195 26 817 26 100 63 608 −29 688 −110 868
7 4 4 2007 9.64 · 102 0.29 16 0.91 549 010 164 908 46 400 146 952 308 013 36 084

11 7 5 2008 1.07 · 104 0.09 26 0.99 3 299 483 203 000 75 400 1 197 789 3 329 096 1 233 873
17 11 6 2009 5.64 · 104 0.09 30 1.00 8 810 121 68 167 87 000 2 893 961 11 984 051 4 127 834
25 17 7 2010 1.50 · 105 0.09 40 0.99 11 676 825 137 833 116 000 3 180 254 23 407 042 7 308 088
12 7 5 2008 3.79 · 103 0.20 19 0.95 1 127 515 60 900 55 100 401 610 1 319 528 437 694
19 12 6 2009 9.58 · 103 0.13 21 0.96 1 449 632 34 083 60 900 451 386 2 674 176 889 080
27 19 7 2010 7.50 · 104 0.13 27 0.98 5 795 836 82 700 78 300 1 567 963 8 309 012 2 457 043
18 12 6 2009 3.76 · 103 0.07 19 0.95 559 748 0 55 100 169 005 1 824 176 606 699
26 18 7 2010 1.12 · 104 0.07 19 0.95 833 609 0 55 100 217 267 2 602 684 823 967
3 1 2 2005 1.09 · 102 0.70 18 0.92 251 122 300 750 52 200 −112 485 −313 227 −333 095
5 3 3 2006 5.88 · 102 0.52 28 0.99 730 917 268 167 81 200 189 767 68 323 −143 328
8 5 4 2007 2.05 · 103 0.36 28 0.99 1 273 908 0 81 200 575 187 1 261 031 431 859

14 8 5 2008 6.56 · 103 0.24 30 1.00 2 050 595 40 600 87 000 769 545 3 184 026 1 201 404
21 14 6 2009 1.46 · 104 0.07 30 1.00 2 286 914 0 87 000 736 747 5 383 941 1 938 151
29 21 7 2010 4.73 · 104 0.07 30 1.00 3 697 848 0 87 000 1 007 722 8 994 789 2 945 873
22 14 6 2009 4.28 · 104 0.17 40 1.00 6 705 616 170 417 116 000 2 138 362 9 603 225 3 339 767
30 22 7 2010 2.47 · 105 0.17 50 0.98 19 109 307 137 833 145 000 5 246 430 28 429 698 8 586 196
13 8 5 2008 2.69 · 103 0.12 28 0.99 836 966 0 81 200 303 725 2 016 797 735 584
20 13 6 2009 1.01 · 104 0.12 28 0.99 1 566 311 0 81 200 497 361 3 501 908 1 232 945
28 20 7 2010 3.82 · 104 0.12 28 0.99 2 964 476 0 81 200 804 669 6 385 184 2 037 614
9 5 4 2007 4.35 · 103 0.16 38 1.00 2 731 914 235 583 110 200 1 127 997 2 454 454 984 669

15 9 5 2008 1.93 · 104 0.16 48 1.00 6 047 578 203 000 139 200 2 276 547 8 159 832 3 261 216
23 15 6 2009 7.28 · 104 0.16 58 1.00 11 424 875 170 417 168 200 3 701 351 19 246 090 6 962 567
31 23 7 2010 3.63 · 105 0.12 68 0.97 27 583 398 137 833 197 200 7 596 825 46 494 455 14 559 392
32 23 7 2010 1.60 · 106 0.04 68 0.36 45 696 028 137 833 197 200 12 651 728 64 607 085 19 614 294
6 3 3 2006 1.48 · 103 0.18 28 0.99 1 829 998 268 167 81 200 825 809 1 167 405 492 714

10 6 4 2007 6.34 · 103 0.18 38 1.00 3 976 467 247 363 111 650 1 720 670 4 784 859 2 213 385
16 10 5 2008 3.24 · 104 0.18 48 1.00 10 152 413 203 000 140 650 3 925 606 14 593 622 6 138 990
24 16 6 2009 1.38 · 105 0.18 58 1.00 21 644 675 170 417 169 650 7 123 456 35 898 230 13 262 446
34 24 7 2010 1.57 · 106 0.05 68 0.37 45 177 313 137 833 198 650 12 506 559 80 739 059 25 769 005
33 24 7 2010 5.23 · 105 0.13 68 0.86 35 300 806 137 833 198 650 9 750 207 70 862 553 23 012 653

Table A.5.: Results of Berlin planning scenario using the scenario tree with 32 nodes, a construction limit of 10, mandatory
coverage, and optimization for expected profit
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.38 · 101 1.00 5 0.53 63 136 166 667 14 500 −126 137 −118 031 −126 137
2 1 2 2005 5.43 · 101 0.29 5 0.53 72 119 0 14 500 40 013 −60 412 −86 124
4 2 3 2006 1.86 · 102 0.29 6 0.59 137 797 26 817 17 400 51 052 33 169 −35 072
7 4 4 2007 9.64 · 102 0.29 16 0.91 548 766 235 583 46 400 105 935 299 952 70 863
11 7 5 2008 3.79 · 103 0.29 20 0.96 1 140 172 81 200 58 000 395 742 1 300 923 466 604
16 11 6 2009 5.64 · 104 0.09 30 0.98 8 666 183 170 417 87 000 2 804 664 9 709 689 3 271 269
22 16 7 2010 3.00 · 105 0.09 38 0.80 18 806 756 110 267 110 200 5 180 938 28 295 979 8 452 206
17 11 6 2009 1.50 · 104 0.20 24 0.98 2 314 042 68 167 69 600 724 265 3 477 199 1 190 869
23 17 7 2010 3.89 · 104 0.20 24 0.98 3 003 595 0 69 600 818 824 6 411 193 2 009 693
3 1 2 2005 1.09 · 102 0.70 8 0.69 188 270 90 225 23 200 39 445 −43 185 −86 692
5 3 3 2006 5.88 · 102 0.52 16 0.90 667 695 214 533 46 400 210 564 363 576 123 872
8 5 4 2007 2.05 · 103 0.36 20 0.96 1 232 244 94 233 58 000 511 750 1 443 587 635 622
13 8 5 2008 6.56 · 103 0.24 26 0.99 2 037 396 121 800 75 400 729 744 3 283 783 1 365 366
19 13 6 2009 4.28 · 104 0.24 36 1.00 6 697 044 170 417 104 400 2 139 377 9 706 011 3 504 742
25 19 7 2010 1.99 · 105 0.24 46 0.99 15 405 519 137 833 133 400 4 216 008 24 840 297 7 720 750
12 8 5 2008 2.69 · 103 0.12 20 0.96 809 593 0 58 000 302 048 2 195 180 937 670
18 12 6 2009 1.01 · 104 0.12 21 0.96 1 526 122 17 042 60 900 483 851 3 643 360 1 421 521
24 18 7 2010 3.82 · 104 0.12 21 0.96 2 888 413 0 60 900 789 107 6 470 873 2 210 628
9 5 4 2007 4.35 · 103 0.16 16 0.90 2 470 290 0 46 400 1 168 928 2 787 466 1 292 800
14 9 5 2008 1.93 · 104 0.16 16 0.90 5 467 867 0 46 400 2 178 766 8 208 933 3 471 566
20 14 6 2009 7.28 · 104 0.16 19 0.87 9 933 088 51 125 55 100 3 287 572 18 035 796 6 759 139
26 20 7 2010 3.63 · 105 0.16 25 0.45 12 858 927 89 592 73 950 3 538 048 30 731 182 10 297 187
6 3 3 2006 1.48 · 103 0.18 11 0.73 1 350 306 80 450 31 900 707 099 1 194 771 620 407
10 6 4 2007 6.34 · 103 0.18 11 0.73 2 898 027 0 31 900 1 382 198 4 060 898 2 002 605
15 10 5 2008 3.24 · 104 0.18 12 0.74 7 483 836 20 300 34 800 2 983 811 11 489 634 4 986 416
21 15 6 2009 1.38 · 105 0.18 13 0.48 10 321 821 17 042 37 700 3 437 283 21 756 713 8 423 699
27 21 7 2010 5.23 · 105 0.18 16 0.20 8 042 350 48 242 47 850 2 214 962 29 702 971 10 638 661

Table A.6.: Results of Berlin planning scenario using the scenario tree with 27 nodes, a construction limit of 10, and optimization
for AV@R
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.38 · 101 1.00 5 0.53 63 136 166 667 14 500 −126 137 −118 031 −126 137
2 1 2 2005 5.43 · 101 0.29 5 0.53 72 119 0 14 500 40 013 −60 412 −86 124
4 2 3 2006 1.86 · 102 0.29 6 0.59 137 797 26 817 17 400 51 052 33 169 −35 072
7 4 4 2007 9.64 · 102 0.29 16 0.91 548 766 235 583 46 400 105 935 299 952 70 863

11 7 5 2008 3.79 · 103 0.29 20 0.96 1 140 172 81 200 58 000 395 742 1 300 923 466 604
16 11 6 2009 5.64 · 104 0.09 21 0.96 8 452 358 17 042 60 900 2 803 434 9 675 339 3 270 038
22 16 7 2010 3.00 · 105 0.09 31 0.71 16 632 604 137 833 89 900 4 570 605 26 080 210 7 840 643
17 11 6 2009 1.50 · 104 0.20 24 0.98 2 314 042 68 167 69 600 724 265 3 477 199 1 190 869
23 17 7 2010 3.89 · 104 0.20 24 0.98 3 003 595 0 69 600 818 824 6 411 193 2 009 693
3 1 2 2005 1.09 · 102 0.70 8 0.69 188 270 90 225 23 200 39 445 −43 185 −86 692
5 3 3 2006 5.88 · 102 0.52 16 0.90 667 695 214 533 46 400 210 564 363 576 123 872
8 5 4 2007 2.05 · 103 0.36 20 0.96 1 232 244 94 233 58 000 511 750 1 443 587 635 622

13 8 5 2008 6.56 · 103 0.24 26 0.99 2 037 396 121 800 75 400 729 744 3 283 783 1 365 366
19 13 6 2009 4.28 · 104 0.24 36 1.00 6 697 044 170 417 104 400 2 139 377 9 706 011 3 504 742
25 19 7 2010 1.99 · 105 0.24 46 0.99 15 405 519 137 833 133 400 4 216 008 24 840 297 7 720 750
12 8 5 2008 2.69 · 103 0.12 20 0.96 809 593 0 58 000 302 048 2 195 180 937 670
18 12 6 2009 1.01 · 104 0.12 21 0.96 1 526 122 17 042 60 900 483 851 3 643 360 1 421 521
24 18 7 2010 3.82 · 104 0.12 21 0.96 2 888 413 0 60 900 789 107 6 470 873 2 210 628
9 5 4 2007 4.35 · 103 0.16 16 0.90 2 470 290 0 46 400 1 168 928 2 787 466 1 292 800

14 9 5 2008 1.93 · 104 0.16 18 0.91 5 496 586 40 600 52 200 2 168 397 8 191 252 3 461 197
20 14 6 2009 7.28 · 104 0.16 23 0.93 10 638 016 85 208 66 700 3 506 069 18 677 359 6 967 266
26 20 7 2010 3.63 · 105 0.16 33 0.63 17 861 769 137 833 95 700 4 912 024 36 305 595 11 879 290
6 3 3 2006 1.48 · 103 0.18 8 0.69 1 279 239 0 23 200 726 874 1 212 854 640 183

10 6 4 2007 6.34 · 103 0.18 8 0.69 2 745 502 0 23 200 1 312 838 3 935 156 1 953 021
15 10 5 2008 3.24 · 104 0.18 9 0.69 7 050 254 20 300 26 100 2 813 060 10 939 010 4 766 081
21 15 6 2009 1.38 · 105 0.18 13 0.55 11 935 689 68 167 37 700 3 957 218 22 768 833 8 723 299
27 21 7 2010 5.23 · 105 0.18 23 0.34 13 987 013 137 833 66 700 3 838 744 36 551 313 12 562 043

Table A.7.: Results of Berlin planning scenario using the scenario tree with 27 nodes, a construction limit of 10, mandatory
coverage, and optimization for AV@R111
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.38 · 101 1.00 5 0.53 63 136 166 667 14 500 −126 137 −118 031 −126 137
2 1 2 2005 5.43 · 101 0.29 5 0.53 72 119 0 14 500 40 013 −60 412 −86 124
4 2 3 2006 1.86 · 102 0.29 6 0.59 137 797 26 817 17 400 51 052 33 169 −35 072
7 4 4 2007 9.64 · 102 0.29 16 0.91 549 741 235 583 46 400 106 405 300 926 71 333
11 7 5 2008 1.07 · 104 0.09 26 0.99 3 302 493 203 000 75 400 1 198 999 3 325 019 1 270 332
17 11 6 2009 5.64 · 104 0.09 30 0.99 8 802 823 68 167 87 000 2 891 517 11 972 675 4 161 848
25 17 7 2010 1.50 · 105 0.09 40 0.99 11 663 788 137 833 116 000 3 176 616 23 382 631 7 338 464
12 7 5 2008 3.79 · 103 0.20 19 0.95 1 128 951 60 900 55 100 402 187 1 313 877 473 520
19 12 6 2009 9.58 · 103 0.13 21 0.97 1 451 425 34 083 60 900 451 987 2 670 319 925 507
27 19 7 2010 7.50 · 104 0.13 26 0.98 5 777 811 68 917 75 400 1 568 358 8 303 813 2 493 865
18 12 6 2009 3.76 · 103 0.07 19 0.95 560 461 0 55 100 169 244 1 819 238 642 765
26 18 7 2010 1.12 · 104 0.07 19 0.95 834 671 0 55 100 217 564 2 598 809 860 328
3 1 2 2005 1.09 · 102 0.70 8 0.69 188 270 90 225 23 200 39 445 −43 185 −86 692
5 3 3 2006 5.88 · 102 0.52 16 0.90 667 695 214 533 46 400 210 564 363 576 123 872
8 5 4 2007 2.05 · 103 0.36 20 0.96 1 232 403 94 233 58 000 511 826 1 443 746 635 699
14 8 5 2008 6.56 · 103 0.24 24 0.98 2 026 755 81 200 69 600 747 378 3 319 701 1 383 076
21 14 6 2009 1.46 · 104 0.07 24 0.98 2 260 327 0 69 600 733 670 5 510 428 2 116 746
29 21 7 2010 4.73 · 104 0.07 24 0.98 3 654 851 0 69 600 1 000 578 9 095 679 3 117 324
22 14 6 2009 4.28 · 104 0.17 34 0.99 6 643 721 178 938 100 050 2 119 551 9 684 434 3 502 627
30 22 7 2010 2.47 · 105 0.17 44 0.92 17 872 432 137 833 129 050 4 905 692 27 289 983 8 408 320
13 8 5 2008 2.69 · 103 0.12 20 0.96 809 698 0 58 000 302 090 2 195 444 937 789
20 13 6 2009 1.01 · 104 0.12 22 0.97 1 538 034 34 083 63 800 480 021 3 635 595 1 417 810
28 20 7 2010 3.82 · 104 0.12 22 0.97 2 910 958 0 63 800 794 590 6 482 753 2 212 399
9 5 4 2007 4.35 · 103 0.16 25 0.99 2 692 801 212 025 72 500 1 140 948 2 771 852 1 264 821
15 9 5 2008 1.93 · 104 0.16 29 1.00 6 024 850 81 200 84 100 2 348 295 8 631 402 3 613 116
23 15 6 2009 7.28 · 104 0.16 33 0.99 11 365 642 76 688 97 150 3 742 976 19 823 207 7 356 092
31 23 7 2010 3.63 · 105 0.12 41 0.62 17 715 333 110 267 120 350 4 873 509 37 307 923 12 229 601
32 23 7 2010 1.60 · 106 0.04 33 0.17 21 207 294 0 97 150 5 891 454 40 933 351 13 247 546
6 3 3 2006 1.48 · 103 0.18 14 0.82 1 521 830 160 900 40 600 745 457 1 277 145 658 765
10 6 4 2007 6.34 · 103 0.18 14 0.82 3 266 150 0 40 600 1 555 531 4 502 694 2 214 296
16 10 5 2008 3.24 · 104 0.18 14 0.82 8 338 849 0 40 600 3 334 880 12 800 943 5 549 177
24 16 6 2009 1.38 · 105 0.18 16 0.63 13 629 181 34 083 46 400 4 535 148 26 349 641 10 084 325
34 24 7 2010 1.57 · 106 0.05 17 0.09 10 794 381 13 783 49 300 2 994 139 37 080 938 13 078 464
33 24 7 2010 5.23 · 105 0.13 23 0.30 12 421 590 96 483 66 700 3 415 711 38 608 047 13 500 036

Table A.8.: Results of Berlin planning scenario using the scenario tree with 32 nodes, a construction limit of 10, and optimization
for AV@R

112



node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.38 · 101 1.00 5 0.53 63 136 166 667 14 500 −126 137 −118 031 −126 137
2 1 2 2005 5.43 · 101 0.29 5 0.53 72 119 0 14 500 40 013 −60 412 −86 124
4 2 3 2006 1.86 · 102 0.29 6 0.59 137 797 26 817 17 400 51 052 33 169 −35 072
7 4 4 2007 9.64 · 102 0.29 16 0.91 549 741 235 583 46 400 106 405 300 926 71 333

11 7 5 2008 1.07 · 104 0.09 26 0.99 3 302 493 203 000 75 400 1 198 999 3 325 019 1 270 332
17 11 6 2009 5.64 · 104 0.09 30 0.99 8 802 823 68 167 87 000 2 891 517 11 972 675 4 161 848
25 17 7 2010 1.50 · 105 0.09 40 0.99 11 669 351 137 833 116 000 3 178 168 23 388 193 7 340 017
12 7 5 2008 3.79 · 103 0.20 19 0.95 1 128 951 60 900 55 100 402 187 1 313 877 473 520
19 12 6 2009 9.58 · 103 0.13 21 0.97 1 451 425 34 083 60 900 451 987 2 670 319 925 507
27 19 7 2010 7.50 · 104 0.13 26 0.98 5 777 811 68 917 75 400 1 568 358 8 303 813 2 493 865
18 12 6 2009 3.76 · 103 0.07 19 0.95 560 461 0 55 100 169 244 1 819 238 642 765
26 18 7 2010 1.12 · 104 0.07 19 0.95 834 671 0 55 100 217 564 2 598 809 860 328
3 1 2 2005 1.09 · 102 0.70 8 0.69 188 270 90 225 23 200 39 445 −43 185 −86 692
5 3 3 2006 5.88 · 102 0.52 16 0.90 667 695 214 533 46 400 210 564 363 576 123 872
8 5 4 2007 2.05 · 103 0.36 20 0.96 1 232 403 94 233 58 000 511 826 1 443 746 635 699

14 8 5 2008 6.56 · 103 0.24 24 0.98 2 026 755 81 200 69 600 747 378 3 319 701 1 383 076
21 14 6 2009 1.46 · 104 0.07 24 0.98 2 260 327 0 69 600 733 670 5 510 428 2 116 746
29 21 7 2010 4.73 · 104 0.07 24 0.98 3 654 851 0 69 600 1 000 578 9 095 679 3 117 324
22 14 6 2009 4.28 · 104 0.17 34 0.99 6 634 822 170 417 98 600 2 120 481 9 685 506 3 503 557
30 22 7 2010 2.47 · 105 0.17 44 0.89 17 385 994 137 833 127 600 4 770 341 26 806 067 8 273 898
13 8 5 2008 2.69 · 103 0.12 20 0.96 809 698 0 58 000 302 090 2 195 444 937 789
20 13 6 2009 1.01 · 104 0.12 22 0.97 1 538 034 34 083 63 800 480 021 3 635 595 1 417 810
28 20 7 2010 3.82 · 104 0.12 22 0.97 2 910 958 0 63 800 794 590 6 482 753 2 212 399
9 5 4 2007 4.35 · 103 0.16 19 0.91 2 481 709 82 454 56 550 1 121 824 2 706 280 1 245 696

15 9 5 2008 1.93 · 104 0.16 23 0.93 5 648 678 91 350 69 600 2 198 053 8 194 009 3 443 748
23 15 6 2009 7.28 · 104 0.16 29 0.91 10 445 753 102 250 87 000 3 428 033 18 450 512 6 871 782
31 23 7 2010 3.63 · 105 0.12 39 0.67 19 246 770 137 833 116 000 5 292 887 37 443 449 12 164 669
32 23 7 2010 1.60 · 106 0.04 39 0.20 24 919 639 137 833 116 000 6 876 080 43 116 318 13 747 862
6 3 3 2006 1.48 · 103 0.18 18 0.82 1 516 976 268 167 52 200 661 444 1 153 424 574 752

10 6 4 2007 6.34 · 103 0.18 28 0.90 3 574 115 235 583 81 200 1 548 136 4 410 755 2 122 888
16 10 5 2008 3.24 · 104 0.18 38 0.95 9 623 932 213 150 111 650 3 719 981 13 709 888 5 842 869
24 16 6 2009 1.38 · 105 0.18 48 0.97 21 075 040 178 938 142 100 6 938 488 34 463 890 12 781 357
34 24 7 2010 1.57 · 106 0.05 58 0.28 34 243 390 137 833 171 100 9 462 791 68 398 347 22 244 148
33 24 7 2010 5.23 · 105 0.13 58 0.65 26 837 217 137 833 171 100 7 395 864 60 992 174 20 177 221

Table A.9.: Results of Berlin planning scenario using the scenario tree with 32 nodes, a construction limit of 10, mandatory
coverage, and optimization for AV@R
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.45 · 101 1.00 6 0.53 65 657 200 000 17 400 −159 786 −151 743 −159 786
2 1 2 2005 1.22 · 102 1.00 14 0.82 249 981 240 600 40 600 −55 096 −182 961 −214 882
3 2 3 2006 6.02 · 102 1.00 24 0.96 726 014 268 167 69 600 193 643 205 286 −21 239
4 3 4 2007 2.98 · 103 1.00 34 0.99 1 862 121 235 583 98 600 714 130 1 733 224 692 891
5 4 5 2008 1.48 · 104 1.00 44 1.00 4 626 532 203 000 127 600 1 710 123 6 029 156 2 403 014
6 5 6 2009 7.31 · 104 1.00 54 1.00 11 458 443 170 417 156 600 3 716 478 17 160 582 6 119 491
7 6 7 2010 3.62 · 105 1.00 64 0.97 27 586 205 137 833 185 600 7 600 846 44 423 353 13 720 337

Table A.10.: Results of Berlin planning scenario using the expected traffic evolution, a construction limit of 10 and mandatory
coverage

node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.45 · 101 1.00 6 0.53 65 657 200 000 17 400 −159 786 −151 743 −159 786
2 1 2 2005 1.22 · 102 1.00 14 0.82 249 981 240 600 40 600 −55 096 −182 961 −214 882
3 2 3 2006 6.02 · 102 1.00 24 0.96 726 014 268 167 69 600 193 643 205 286 −21 239
4 3 4 2007 2.98 · 103 1.00 34 0.99 1 862 121 235 583 98 600 714 130 1 733 224 692 891
5 4 5 2008 1.48 · 104 1.00 44 1.00 4 626 532 203 000 127 600 1 710 123 6 029 156 2 403 014
6 5 6 2009 7.31 · 104 1.00 54 1.00 11 458 443 170 417 156 600 3 716 478 17 160 582 6 119 491
7 6 7 2010 3.62 · 105 1.00 64 0.97 27 586 205 137 833 185 600 7 600 846 44 423 353 13 720 337

Table A.11.: Results of Berlin planning scenario using the expected traffic evolution, a construction limit of 10

114



node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.38 · 101 1.00 40 0.57 164 314 4 000 000 348 000 −4 153 071 −4 183 686 −4 153 071
2 1 2 2005 5.43 · 101 0.29 40 0.57 187 692 0 348 000 −111 325 −4 343 994 −4 264 397
4 2 3 2006 1.86 · 102 0.29 40 0.57 322 118 0 348 000 −14 978 −4 369 876 −4 279 374
7 4 4 2007 9.64 · 102 0.29 40 0.57 833 845 0 348 000 234 300 −3 884 031 −4 045 074
11 7 5 2008 1.07 · 104 0.09 76 0.70 5 665 424 2 192 400 661 200 953 794 −1 072 207 −3 091 280
17 11 6 2009 5.64 · 104 0.09 119 0.80 16 975 733 2 198 375 1 035 300 4 454 941 12 669 851 1 363 661
25 17 7 2010 1.50 · 105 0.09 120 0.79 22 198 505 41 350 1 044 000 5 889 986 33 783 006 7 253 647
12 7 5 2008 3.79 · 103 0.20 40 0.55 1 564 487 0 348 000 488 879 −2 667 543 −3 556 195
19 12 6 2009 9.58 · 103 0.13 41 0.52 1 884 431 51 125 356 700 491 088 −1 190 938 −3 065 107
27 19 7 2010 7.50 · 104 0.13 70 0.67 9 479 783 1 199 150 609 000 2 074 080 6 480 695 −991 028
18 12 6 2009 3.76 · 103 0.07 40 0.55 777 265 0 348 000 143 760 −2 238 279 −3 412 435
26 18 7 2010 1.12 · 104 0.07 40 0.51 1 078 398 0 348 000 203 841 −1 507 880 −3 208 595
3 1 2 2005 1.09 · 102 0.70 40 0.57 375 877 0 348 000 19 359 −4 155 809 −4 133 713
5 3 3 2006 5.88 · 102 0.52 40 0.57 1 016 753 0 348 000 387 010 −3 487 057 −3 746 703
8 5 4 2007 2.05 · 103 0.36 40 0.57 1 765 495 0 348 000 683 592 −2 069 561 −3 063 112
14 8 5 2008 6.56 · 103 0.24 46 0.56 2 781 919 365 400 400 200 780 944 −53 242 −2 282 168
21 14 6 2009 1.46 · 104 0.07 49 0.57 3 140 631 153 375 426 300 847 386 2 507 714 −1 434 781
29 21 7 2010 4.73 · 104 0.07 49 0.57 5 044 430 0 426 300 1 288 835 7 125 844 −145 946
22 14 6 2009 4.28 · 104 0.17 115 0.80 12 867 855 3 527 625 1 000 500 2 556 680 8 286 488 274 512
30 22 7 2010 2.47 · 105 0.17 163 0.82 38 455 049 1 984 800 1 418 100 9 671 627 43 338 637 9 946 140
13 8 5 2008 2.69 · 103 0.12 40 0.57 1 148 836 0 348 000 321 838 −1 268 725 −2 741 273
20 13 6 2009 1.01 · 104 0.12 40 0.52 1 970 733 0 348 000 543 450 354 008 −2 197 823
28 20 7 2010 3.82 · 104 0.12 41 0.52 3 726 738 41 350 356 700 926 668 3 682 696 −1 271 156
9 5 4 2007 4.35 · 103 0.16 57 0.65 4 261 512 1 201 475 495 900 1 120 680 −922 919 −2 626 023
15 9 5 2008 1.93 · 104 0.16 142 0.84 12 197 271 5 176 500 1 235 400 1 908 947 4 862 452 −717 076
23 15 6 2009 7.28 · 104 0.16 242 0.91 24 840 456 5 112 500 2 105 400 5 559 325 22 485 007 4 842 249
31 23 7 2010 3.63 · 105 0.12 269 0.87 59 650 728 1 116 450 2 340 300 15 620 392 78 678 985 20 462 641
32 23 7 2010 1.60 · 106 0.04 342 0.52 157 597 838 4 135 000 2 975 400 41 767 482 172 972 446 46 609 731
6 3 3 2006 1.48 · 103 0.18 41 0.58 2 591 040 80 450 356 700 1 237 153 −2 001 920 −2 896 560
10 6 4 2007 6.34 · 103 0.18 84 0.74 7 093 357 3 039 025 730 800 1 309 668 1 321 612 −1 586 893
16 10 5 2008 3.24 · 104 0.18 172 0.87 21 282 161 5 359 200 1 496 400 5 366 963 15 748 173 3 780 070
24 16 6 2009 1.38 · 105 0.18 272 0.92 47 734 497 5 112 500 2 366 400 13 139 085 56 003 770 16 919 155
34 24 7 2010 1.57 · 106 0.05 372 0.55 162 316 321 4 135 000 3 236 400 43 011 483 210 948 691 59 930 638
33 24 7 2010 5.23 · 105 0.13 327 0.85 84 050 574 2 274 250 2 844 900 21 901 371 134 935 194 38 820 527

Table A.12.: Results of Hamburg planning scenario using the scenario tree with 34 nodes, a construction limit of 100, mandatory
coverage, and optimization for expected profit
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.38 · 101 1.00 40 0.57 164 129 4 000 000 348 000 −4 153 225 −4 183 871 −4 153 225
2 1 2 2005 5.43 · 101 0.29 40 0.57 187 481 0 348 000 −111 472 −4 344 390 −4 264 697
4 2 3 2006 1.86 · 102 0.29 40 0.57 321 756 0 348 000 −15 188 −4 370 634 −4 279 885
7 4 4 2007 9.64 · 102 0.29 40 0.57 832 907 0 348 000 233 848 −3 885 727 −4 046 037
11 7 5 2008 1.07 · 104 0.09 76 0.70 5 665 424 2 192 400 661 200 953 794 −1 073 902 −3 092 243
17 11 6 2009 5.64 · 104 0.09 119 0.80 16 975 733 2 198 375 1 035 300 4 454 941 12 668 155 1 362 698
25 17 7 2010 1.50 · 105 0.09 120 0.79 22 198 505 41 350 1 044 000 5 889 986 33 781 310 7 252 684
12 7 5 2008 3.79 · 103 0.20 40 0.55 1 560 771 0 348 000 487 385 −2 672 956 −3 558 651
19 12 6 2009 9.58 · 103 0.13 41 0.52 1 880 992 51 125 356 700 489 936 −1 199 789 −3 068 715
27 19 7 2010 7.50 · 104 0.13 70 0.67 9 489 175 1 199 150 609 000 2 076 701 6 481 236 −992 014
18 12 6 2009 3.76 · 103 0.07 40 0.55 775 420 0 348 000 143 142 −2 245 536 −3 415 509
26 18 7 2010 1.12 · 104 0.07 40 0.51 1 072 733 0 348 000 202 260 −1 520 803 −3 213 250
3 1 2 2005 1.09 · 102 0.70 40 0.57 375 454 0 348 000 19 065 −4 156 417 −4 134 160
5 3 3 2006 5.88 · 102 0.52 40 0.57 1 015 609 0 348 000 386 348 −3 488 807 −3 747 812
8 5 4 2007 2.05 · 103 0.36 40 0.57 1 763 503 0 348 000 682 631 −2 073 305 −3 065 182
14 8 5 2008 6.56 · 103 0.24 49 0.58 2 867 308 548 100 426 300 716 663 −180 397 −2 348 518
21 14 6 2009 1.46 · 104 0.07 50 0.58 3 174 385 51 125 435 000 896 869 2 507 863 −1 451 650
29 21 7 2010 4.73 · 104 0.07 50 0.57 5 106 051 0 435 000 1 303 605 7 178 914 −148 045
22 14 6 2009 4.28 · 104 0.17 109 0.79 12 683 298 3 067 500 948 300 2 697 268 8 487 101 348 749
30 22 7 2010 2.47 · 105 0.17 163 0.82 38 450 249 2 232 900 1 418 100 9 587 199 43 286 350 9 935 949
13 8 5 2008 2.69 · 103 0.12 40 0.57 1 147 527 0 348 000 321 312 −1 273 778 −2 743 870
20 13 6 2009 1.01 · 104 0.12 40 0.52 1 969 464 0 348 000 543 025 347 686 −2 200 845
28 20 7 2010 3.82 · 104 0.12 41 0.52 3 729 886 41 350 356 700 927 546 3 679 523 −1 273 298
9 5 4 2007 4.35 · 103 0.16 99 0.80 5 244 309 4 169 825 861 300 −299 374 −3 275 623 −4 047 186
15 9 5 2008 1.93 · 104 0.16 159 0.86 12 477 776 3 654 000 1 383 300 2 696 468 4 164 853 −1 350 717
23 15 6 2009 7.28 · 104 0.16 219 0.89 24 380 705 3 067 500 1 905 300 6 294 208 23 572 758 4 943 491
31 23 7 2010 3.63 · 105 0.12 252 0.86 58 769 916 1 364 550 2 192 400 15 332 761 78 785 724 20 276 252
32 23 7 2010 1.60 · 106 0.04 279 0.46 139 270 151 2 481 000 2 427 300 37 359 446 157 934 609 42 302 937
6 3 3 2006 1.48 · 103 0.18 61 0.69 3 094 281 1 689 450 530 700 310 325 −3 282 286 −3 823 836
10 6 4 2007 6.34 · 103 0.18 121 0.83 7 918 072 4 240 500 1 052 700 856 854 −657 414 −2 966 982
16 10 5 2008 3.24 · 104 0.18 181 0.88 21 468 085 3 654 000 1 574 700 6 232 553 15 581 972 3 265 571
24 16 6 2009 1.38 · 105 0.18 241 0.90 46 933 306 3 067 500 2 096 700 13 782 929 57 351 078 17 048 500
34 24 7 2010 1.57 · 106 0.05 301 0.49 145 029 090 2 481 000 2 618 700 38 913 244 197 280 468 55 961 744
33 24 7 2010 5.23 · 105 0.13 301 0.84 82 633 076 2 481 000 2 618 700 21 499 662 134 884 454 38 548 162

Table A.13.: Results of Hamburg planning scenario using the scenario tree with 34 nodes, a construction limit of 60, mandatory
coverage, and optimization for expected profit
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.38 · 101 1.00 40 0.58 165 478 4 000 000 348 000 −4 152 101 −4 182 522 −4 152 101
2 1 2 2005 5.43 · 101 0.29 40 0.58 189 022 0 348 000 −110 402 −4 341 500 −4 262 503
4 2 3 2006 1.86 · 102 0.29 40 0.58 324 400 0 348 000 −13 657 −4 365 100 −4 276 160
7 4 4 2007 9.64 · 102 0.29 40 0.58 839 752 0 348 000 237 149 −3 873 348 −4 039 011
11 7 5 2008 1.07 · 104 0.09 76 0.71 5 667 060 2 192 400 661 200 954 451 −1 059 888 −3 084 560
17 11 6 2009 5.64 · 104 0.09 120 0.80 16 980 117 2 249 500 1 044 000 4 432 950 12 626 730 1 348 390
25 17 7 2010 1.50 · 105 0.09 121 0.79 22 258 213 41 350 1 052 700 5 904 222 33 790 893 7 252 611
12 7 5 2008 3.79 · 103 0.20 40 0.55 1 578 496 0 348 000 494 509 −2 642 851 −3 544 502
19 12 6 2009 9.58 · 103 0.13 40 0.52 1 873 628 0 348 000 510 930 −1 117 223 −3 033 573
27 19 7 2010 7.50 · 104 0.13 70 0.67 9 499 766 1 240 500 609 000 2 065 809 6 533 043 −967 764
18 12 6 2009 3.76 · 103 0.07 40 0.55 784 219 0 348 000 146 089 −2 206 632 −3 398 414
26 18 7 2010 1.12 · 104 0.07 40 0.51 1 079 861 0 348 000 204 249 −1 474 771 −3 194 165
3 1 2 2005 1.09 · 102 0.70 40 0.58 378 540 0 348 000 21 208 −4 151 982 −4 130 893
5 3 3 2006 5.88 · 102 0.52 40 0.58 1 023 956 0 348 000 391 178 −3 476 026 −3 739 715
8 5 4 2007 2.05 · 103 0.36 40 0.58 1 778 050 0 348 000 689 646 −2 045 976 −3 050 069
14 8 5 2008 6.56 · 103 0.24 47 0.57 2 804 018 426 300 408 900 756 960 −77 158 −2 293 109
21 14 6 2009 1.46 · 104 0.07 49 0.57 3 142 341 102 250 426 300 868 505 2 536 633 −1 424 605
29 21 7 2010 4.73 · 104 0.07 49 0.57 5 052 498 0 426 300 1 291 087 7 162 831 −133 518
22 14 6 2009 4.28 · 104 0.17 115 0.75 12 110 908 3 476 500 1 000 500 2 323 726 7 556 750 30 616
30 22 7 2010 2.47 · 105 0.17 215 0.85 39 580 619 4 135 000 1 870 500 9 139 399 41 131 869 9 170 015
13 8 5 2008 2.69 · 103 0.12 40 0.57 1 153 071 0 348 000 323 540 −1 240 905 −2 726 529
20 13 6 2009 1.01 · 104 0.12 40 0.52 1 986 714 0 348 000 548 802 397 809 −2 177 727
28 20 7 2010 3.82 · 104 0.12 40 0.52 3 715 859 0 348 000 939 908 3 765 668 −1 237 820
9 5 4 2007 4.35 · 103 0.16 135 0.74 4 828 796 6 714 125 1 174 500 −2 123 194 −6 535 856 −5 862 909
15 9 5 2008 1.93 · 104 0.16 235 0.81 11 696 989 6 090 000 2 044 500 942 197 −2 973 367 −4 920 711
23 15 6 2009 7.28 · 104 0.16 335 0.90 24 798 902 5 112 500 2 914 500 5 274 443 13 798 535 353 731
31 23 7 2010 3.63 · 105 0.12 348 0.89 60 930 045 537 550 3 027 600 15 979 485 71 163 430 16 333 217
32 23 7 2010 1.60 · 106 0.04 435 0.54 161 189 457 4 135 000 3 784 500 42 544 032 167 068 493 42 897 763
6 3 3 2006 1.48 · 103 0.18 138 0.73 3 244 694 7 884 100 1 200 600 −4 292 145 −9 991 988 −8 423 038
10 6 4 2007 6.34 · 103 0.18 238 0.80 7 613 762 7 067 500 2 070 600 −1 416 782 −11 516 326 −9 839 820
16 10 5 2008 3.24 · 104 0.18 337 0.85 20 697 054 6 029 100 2 931 900 4 231 865 219 728 −5 607 955
24 16 6 2009 1.38 · 105 0.18 437 0.92 47 884 445 5 112 500 3 801 900 12 708 556 39 189 773 7 100 601
34 24 7 2010 1.57 · 106 0.05 468 0.57 169 483 185 1 281 850 4 071 600 45 734 049 203 319 508 52 834 650
33 24 7 2010 5.23 · 105 0.13 446 0.87 85 920 335 372 150 3 880 200 22 771 264 120 857 758 29 871 865

Table A.14.: Results of Hamburg planning scenario using the scenario tree with 34 nodes, a construction limit of 100, mandatory
coverage, and optimization for AV@R
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.38 · 101 1.00 40 0.58 165 214 4 000 000 348 000 −4 152 322 −4 182 786 −4 152 322
2 1 2 2005 5.43 · 101 0.29 40 0.58 188 720 0 348 000 −110 611 −4 342 066 −4 262 933
4 2 3 2006 1.86 · 102 0.29 40 0.58 323 882 0 348 000 −13 957 −4 366 184 −4 276 890
7 4 4 2007 9.64 · 102 0.29 40 0.58 838 411 0 348 000 236 502 −3 875 773 −4 040 388
11 7 5 2008 1.07 · 104 0.09 75 0.70 5 636 540 2 131 500 652 500 975 051 −1 023 234 −3 065 337
17 11 6 2009 5.64 · 104 0.09 121 0.80 17 006 716 2 351 750 1 052 700 4 397 852 12 579 033 1 332 516
25 17 7 2010 1.50 · 105 0.09 122 0.79 22 275 377 41 350 1 061 400 5 906 584 33 751 660 7 239 099
12 7 5 2008 3.79 · 103 0.20 40 0.55 1 573 603 0 348 000 492 542 −2 650 171 −3 547 846
19 12 6 2009 9.58 · 103 0.13 40 0.52 1 876 461 0 348 000 511 878 −1 121 710 −3 035 967
27 19 7 2010 7.50 · 104 0.13 69 0.67 9 447 841 1 199 150 600 300 2 067 593 6 526 681 −968 374
18 12 6 2009 3.76 · 103 0.07 40 0.55 781 790 0 348 000 145 275 −2 216 381 −3 402 570
26 18 7 2010 1.12 · 104 0.07 40 0.51 1 086 659 0 348 000 206 146 −1 477 722 −3 196 424
3 1 2 2005 1.09 · 102 0.70 40 0.58 377 935 0 348 000 20 788 −4 152 851 −4 131 534
5 3 3 2006 5.88 · 102 0.52 40 0.58 1 022 320 0 348 000 390 232 −3 478 531 −3 741 302
8 5 4 2007 2.05 · 103 0.36 40 0.57 1 775 971 0 348 000 688 643 −2 050 560 −3 052 659
14 8 5 2008 6.56 · 103 0.24 47 0.57 2 801 396 426 300 408 900 755 906 −84 364 −2 296 752
21 14 6 2009 1.46 · 104 0.07 49 0.57 3 130 857 102 250 426 300 864 659 2 517 943 −1 432 094
29 21 7 2010 4.73 · 104 0.07 49 0.57 5 079 089 0 426 300 1 298 508 7 170 732 −133 586
22 14 6 2009 4.28 · 104 0.17 107 0.71 11 385 694 3 067 500 930 900 2 268 530 7 302 930 −28 223
30 22 7 2010 2.47 · 105 0.17 167 0.78 36 200 409 2 481 000 1 452 900 8 866 510 39 569 439 8 838 288
13 8 5 2008 2.69 · 103 0.12 40 0.57 1 152 476 0 348 000 323 301 −1 246 084 −2 729 358
20 13 6 2009 1.01 · 104 0.12 40 0.53 1 995 144 0 348 000 551 625 401 060 −2 177 732
28 20 7 2010 3.82 · 104 0.12 40 0.52 3 723 359 0 348 000 942 001 3 776 419 −1 235 732
9 5 4 2007 4.35 · 103 0.16 100 0.68 4 448 627 4 240 500 870 000 −728 189 −4 140 404 −4 469 491
15 9 5 2008 1.93 · 104 0.16 159 0.72 10 447 622 3 593 100 1 383 300 1 909 964 1 330 818 −2 559 527
23 15 6 2009 7.28 · 104 0.16 218 0.79 21 562 370 3 016 375 1 896 600 5 373 813 17 980 212 2 814 286
31 23 7 2010 3.63 · 105 0.12 278 0.84 57 247 222 2 481 000 2 418 600 14 470 780 70 327 834 17 285 066
32 23 7 2010 1.60 · 106 0.04 278 0.38 114 859 082 2 481 000 2 418 600 30 549 193 127 939 694 33 363 479
6 3 3 2006 1.48 · 103 0.18 100 0.69 3 092 113 4 827 000 870 000 −2 066 138 −6 757 738 −6 197 672
10 6 4 2007 6.34 · 103 0.18 160 0.75 7 184 966 4 240 500 1 392 000 339 683 −5 205 272 −5 857 989
16 10 5 2008 3.24 · 104 0.18 220 0.78 19 110 479 3 654 000 1 914 000 5 148 726 8 337 207 −709 263
24 16 6 2009 1.38 · 105 0.18 280 0.83 42 984 913 3 067 500 2 436 000 12 346 990 45 818 621 11 637 727
34 24 7 2010 1.57 · 106 0.05 340 0.46 135 714 871 2 481 000 2 958 000 36 219 124 176 094 492 47 856 851
33 24 7 2010 5.23 · 105 0.13 340 0.79 77 419 500 2 481 000 2 958 000 19 949 956 117 799 121 31 587 683

Table A.15.: Results of Hamburg planning scenario using the scenario tree with 34 nodes, a construction limit of 60, mandatory
coverage, and optimization for AV@R
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.38 · 101 1.00 40 0.58 164 940 4 000 000 348 000 −4 152 550 −4 183 060 −4 152 550
2 1 2 2005 5.43 · 101 0.29 40 0.58 188 406 0 348 000 −110 829 −4 342 654 −4 263 379
4 2 3 2006 1.86 · 102 0.29 40 0.58 323 345 0 348 000 −14 268 −4 367 309 −4 277 647
7 4 4 2007 9.64 · 102 0.29 40 0.58 837 020 0 348 000 235 831 −3 878 289 −4 041 816
11 7 5 2008 3.79 · 103 0.29 40 0.55 1 570 684 0 348 000 491 369 −2 655 605 −3 550 446
16 11 6 2009 5.64 · 104 0.09 140 0.83 17 628 064 5 112 500 1 218 000 3 441 098 8 641 960 −109 348
22 16 7 2010 3.00 · 105 0.09 200 0.84 47 358 034 2 481 000 1 740 000 11 900 274 51 778 994 11 790 926
17 11 6 2009 1.50 · 104 0.20 44 0.54 3 052 347 204 500 382 800 811 842 −190 558 −2 738 604
23 17 7 2010 3.89 · 104 0.20 44 0.54 3 976 106 0 382 800 1 002 826 3 402 748 −1 735 779
3 1 2 2005 1.09 · 102 0.70 40 0.58 377 308 0 348 000 20 353 −4 153 752 −4 132 197
5 3 3 2006 5.88 · 102 0.52 40 0.58 1 020 624 0 348 000 389 250 −3 481 128 −3 742 947
8 5 4 2007 2.05 · 103 0.36 40 0.57 1 772 243 0 348 000 686 846 −2 056 885 −3 056 102
13 8 5 2008 6.56 · 103 0.24 48 0.57 2 838 834 487 200 417 600 738 086 −122 852 −2 318 016
19 13 6 2009 4.28 · 104 0.24 116 0.80 12 897 164 3 476 500 1 009 200 2 584 128 8 288 613 266 112
25 19 7 2010 1.99 · 105 0.24 143 0.81 30 361 032 1 116 450 1 244 100 7 752 105 36 289 095 8 018 216
12 8 5 2008 2.69 · 103 0.12 40 0.57 1 149 278 0 348 000 322 016 −1 255 608 −2 734 086
18 12 6 2009 1.01 · 104 0.12 40 0.52 1 973 709 0 348 000 544 447 370 101 −2 189 640
24 18 7 2010 3.82 · 104 0.12 41 0.52 3 747 180 41 350 356 700 932 373 3 719 231 −1 257 267
9 5 4 2007 4.35 · 103 0.16 56 0.64 4 227 466 1 130 800 487 200 1 149 357 −871 662 −2 593 591
14 9 5 2008 1.93 · 104 0.16 109 0.79 11 441 003 3 227 700 948 300 2 660 214 6 393 341 66 623
20 14 6 2009 7.28 · 104 0.16 160 0.86 23 534 570 2 607 375 1 392 000 6 367 656 25 928 536 6 434 279
26 20 7 2010 3.63 · 105 0.16 241 0.85 58 231 412 3 349 350 2 096 700 14 544 477 78 713 898 20 978 757
6 3 3 2006 1.48 · 103 0.18 40 0.58 2 563 692 0 348 000 1 282 229 −1 938 061 −2 849 969
10 6 4 2007 6.34 · 103 0.18 84 0.74 7 095 401 3 109 700 730 800 1 269 754 1 316 840 −1 580 215
15 10 5 2008 3.24 · 104 0.18 149 0.85 20 677 654 3 958 500 1 296 300 5 879 932 16 739 694 4 299 718
21 15 6 2009 1.38 · 105 0.18 225 0.90 46 835 239 3 885 500 1 957 500 13 467 969 57 731 933 17 767 686
27 21 7 2010 5.23 · 105 0.18 312 0.84 83 287 785 3 597 450 2 714 400 21 281 774 134 707 868 39 049 461

Table A.16.: Results of Hamburg planning scenario using the scenario tree with 27 nodes, a construction limit of 100, mandatory
coverage, and optimization for expected profit119
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.38 · 101 1.00 40 0.58 165 346 4 000 000 348 000 −4 152 212 −4 182 654 −4 152 212
2 1 2 2005 5.43 · 101 0.29 40 0.58 188 870 0 348 000 −110 507 −4 341 784 −4 262 718
4 2 3 2006 1.86 · 102 0.29 40 0.58 324 141 0 348 000 −13 807 −4 365 643 −4 276 526
7 4 4 2007 9.64 · 102 0.29 40 0.58 839 080 0 348 000 236 825 −3 874 563 −4 039 701
11 7 5 2008 3.79 · 103 0.29 42 0.57 1 617 980 121 800 365 400 444 645 −2 743 783 −3 595 055
16 11 6 2009 5.64 · 104 0.09 102 0.76 16 165 950 3 067 500 887 400 3 883 996 9 467 268 288 941
22 16 7 2010 3.00 · 105 0.09 162 0.79 44 747 393 2 481 000 1 409 400 11 263 957 50 324 261 11 552 897
17 11 6 2009 1.50 · 104 0.20 44 0.54 3 047 789 102 250 382 800 851 407 −181 044 −2 743 648
23 17 7 2010 3.89 · 104 0.20 44 0.54 3 973 997 0 382 800 1 002 237 3 410 153 −1 741 411
3 1 2 2005 1.09 · 102 0.70 40 0.58 378 237 0 348 000 20 998 −4 152 417 −4 131 214
5 3 3 2006 5.88 · 102 0.52 40 0.58 1 023 136 0 348 000 390 704 −3 477 281 −3 740 510
8 5 4 2007 2.05 · 103 0.36 40 0.58 1 776 622 0 348 000 688 957 −2 048 659 −3 051 553
13 8 5 2008 6.56 · 103 0.24 53 0.60 2 990 898 791 700 461 100 634 869 −310 562 −2 416 684
19 13 6 2009 4.28 · 104 0.24 113 0.79 12 799 660 3 067 500 983 100 2 724 583 8 438 498 307 899
25 19 7 2010 1.99 · 105 0.24 143 0.81 30 334 125 1 240 500 1 244 100 7 703 051 36 288 023 8 010 950
12 8 5 2008 2.69 · 103 0.12 40 0.57 1 152 155 0 348 000 323 172 −1 244 505 −2 728 381
18 12 6 2009 1.01 · 104 0.12 40 0.52 1 976 926 0 348 000 545 524 384 422 −2 182 857
24 18 7 2010 3.82 · 104 0.12 41 0.52 3 744 146 41 350 356 700 931 526 3 730 518 −1 251 331
9 5 4 2007 4.35 · 103 0.16 57 0.65 4 263 439 1 201 475 495 900 1 121 609 −911 217 −2 618 901
14 9 5 2008 1.93 · 104 0.16 112 0.79 11 526 897 3 349 500 974 400 2 625 505 6 291 780 6 604
20 14 6 2009 7.28 · 104 0.16 172 0.87 23 843 697 3 067 500 1 496 400 6 251 305 25 571 576 6 257 909
26 20 7 2010 3.63 · 105 0.16 232 0.84 57 678 224 2 481 000 2 018 400 14 702 753 78 750 400 20 960 663
6 3 3 2006 1.48 · 103 0.18 41 0.58 2 603 524 80 450 356 700 1 244 377 −1 986 044 −2 886 837
10 6 4 2007 6.34 · 103 0.18 101 0.79 7 518 191 4 240 500 878 700 747 922 412 948 −2 138 915
15 10 5 2008 3.24 · 104 0.18 161 0.86 20 997 853 3 654 000 1 400 700 6 113 503 16 356 100 3 974 589
21 15 6 2009 1.38 · 105 0.18 221 0.90 46 578 055 3 067 500 1 922 700 13 722 229 57 943 955 17 696 817
27 21 7 2010 5.23 · 105 0.18 281 0.82 81 142 413 2 481 000 2 444 700 21 132 206 134 160 668 38 829 023

Table A.17.: Results of Hamburg planning scenario using the scenario tree with 27 nodes, a construction limit of 60, mandatory
coverage, and optimization for expected profit
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.38 · 101 1.00 40 0.58 165 850 4 000 000 348 000 −4 151 792 −4 182 150 −4 151 792
2 1 2 2005 5.43 · 101 0.29 40 0.58 189 446 0 348 000 −110 107 −4 340 705 −4 261 899
4 2 3 2006 1.86 · 102 0.29 40 0.58 325 128 0 348 000 −13 236 −4 363 577 −4 275 135
7 4 4 2007 9.64 · 102 0.29 40 0.58 841 636 0 348 000 238 058 −3 869 940 −4 037 078
11 7 5 2008 3.79 · 103 0.29 40 0.55 1 581 570 0 348 000 495 744 −2 636 370 −3 541 333
16 11 6 2009 5.64 · 104 0.09 139 0.74 15 791 381 5 061 375 1 209 300 2 849 456 6 884 336 −691 877
22 16 7 2010 3.00 · 105 0.09 239 0.83 46 804 200 4 135 000 2 079 300 11 097 096 47 474 236 10 405 219
17 11 6 2009 1.50 · 104 0.20 43 0.53 3 018 138 153 375 374 100 823 845 −145 707 −2 717 488
23 17 7 2010 3.89 · 104 0.20 43 0.54 3 923 432 0 374 100 990 553 3 403 625 −1 726 935
3 1 2 2005 1.09 · 102 0.70 40 0.58 379 389 0 348 000 21 798 −4 150 762 −4 129 994
5 3 3 2006 5.88 · 102 0.52 40 0.58 1 026 253 0 348 000 392 508 −3 472 509 −3 737 487
8 5 4 2007 2.05 · 103 0.36 40 0.58 1 782 054 0 348 000 691 577 −2 038 455 −3 045 910
13 8 5 2008 6.56 · 103 0.24 48 0.57 2 830 610 487 200 417 600 734 781 −112 644 −2 311 129
19 13 6 2009 4.28 · 104 0.24 117 0.80 12 903 413 3 527 625 1 017 900 2 562 761 8 245 244 251 632
25 19 7 2010 1.99 · 105 0.24 144 0.81 30 380 710 1 116 450 1 252 800 7 755 168 36 256 704 8 006 801
12 8 5 2008 2.69 · 103 0.12 40 0.57 1 155 724 0 348 000 324 606 −1 230 731 −2 721 304
18 12 6 2009 1.01 · 104 0.12 40 0.52 1 978 502 0 348 000 546 052 399 771 −2 175 252
24 18 7 2010 3.82 · 104 0.12 41 0.52 3 755 211 41 350 356 700 934 614 3 756 932 −1 240 638
9 5 4 2007 4.35 · 103 0.16 140 0.74 4 840 860 7 067 500 1 218 000 −2 342 853 −6 917 149 −6 080 340
14 9 5 2008 1.93 · 104 0.16 240 0.81 11 825 380 6 090 000 2 088 000 976 313 −3 269 769 −5 104 026
20 14 6 2009 7.28 · 104 0.16 340 0.88 24 127 762 5 112 500 2 958 000 5 035 111 12 787 493 −68 915
26 20 7 2010 3.63 · 105 0.16 439 0.90 61 410 543 4 093 650 3 819 300 14 701 704 66 285 086 14 632 789
6 3 3 2006 1.48 · 103 0.18 139 0.73 3 250 096 7 964 550 1 209 300 −4 349 921 −10 074 516 −8 479 915
10 6 4 2007 6.34 · 103 0.18 239 0.81 7 695 825 7 067 500 2 079 300 −1 381 402 −11 525 491 −9 861 318
15 10 5 2008 3.24 · 104 0.18 339 0.86 20 953 232 6 090 000 2 949 300 4 298 455 388 441 −5 562 862
21 15 6 2009 1.38 · 105 0.18 439 0.92 47 721 129 5 112 500 3 819 300 12 648 035 39 177 770 7 085 172
27 21 7 2010 5.23 · 105 0.18 461 0.87 85 335 545 909 700 4 010 700 22 391 615 119 592 915 29 476 787

Table A.18.: Results of Hamburg planning scenario using the scenario tree with 27 nodes, a construction limit of 100, mandatory
coverage, and optimization for AV@R121
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.38 · 101 1.00 40 0.58 165 781 4 000 000 348 000 −4 151 849 −4 182 219 −4 151 849
2 1 2 2005 5.43 · 101 0.29 40 0.58 189 368 0 348 000 −110 161 −4 340 851 −4 262 010
4 2 3 2006 1.86 · 102 0.29 40 0.58 324 994 0 348 000 −13 313 −4 363 857 −4 275 324
7 4 4 2007 9.64 · 102 0.29 40 0.58 841 290 0 348 000 237 891 −3 870 567 −4 037 433
11 7 5 2008 3.79 · 103 0.29 40 0.55 1 579 080 0 348 000 494 743 −2 639 487 −3 542 690
16 11 6 2009 5.64 · 104 0.09 99 0.68 14 390 151 3 016 375 861 300 3 318 571 7 872 989 −224 118
22 16 7 2010 3.00 · 105 0.09 159 0.74 41 685 867 2 481 000 1 383 300 10 416 825 45 694 555 10 192 706
17 11 6 2009 1.50 · 104 0.20 43 0.53 3 016 076 153 375 374 100 823 154 −150 886 −2 719 535
23 17 7 2010 3.89 · 104 0.20 43 0.53 3 918 962 0 374 100 989 306 3 393 976 −1 730 229
3 1 2 2005 1.09 · 102 0.70 40 0.58 379 233 0 348 000 21 689 −4 150 986 −4 130 160
5 3 3 2006 5.88 · 102 0.52 40 0.58 1 025 831 0 348 000 392 263 −3 473 155 −3 737 896
8 5 4 2007 2.05 · 103 0.36 40 0.58 1 781 318 0 348 000 691 222 −2 039 837 −3 046 674
13 8 5 2008 6.56 · 103 0.24 52 0.60 2 962 357 730 800 452 400 656 265 −260 680 −2 390 409
19 13 6 2009 4.28 · 104 0.24 112 0.79 12 769 146 3 067 500 974 400 2 717 277 8 466 565 326 868
25 19 7 2010 1.99 · 105 0.24 143 0.81 30 333 037 1 281 850 1 244 100 7 688 899 36 273 652 8 015 767
12 8 5 2008 2.69 · 103 0.12 40 0.57 1 155 240 0 348 000 324 412 −1 232 597 −2 722 263
18 12 6 2009 1.01 · 104 0.12 40 0.52 1 972 342 0 348 000 543 989 391 744 −2 178 274
24 18 7 2010 3.82 · 104 0.12 41 0.52 3 738 799 41 350 356 700 930 034 3 732 493 −1 248 241
9 5 4 2007 4.35 · 103 0.16 99 0.68 4 427 575 4 169 825 861 300 −693 246 −4 076 706 −4 431 143
14 9 5 2008 1.93 · 104 0.16 158 0.73 10 525 161 3 593 100 1 374 600 1 944 622 1 480 755 −2 486 521
20 14 6 2009 7.28 · 104 0.16 218 0.79 21 571 271 3 067 500 1 896 600 5 356 248 18 087 926 2 869 727
26 20 7 2010 3.63 · 105 0.16 278 0.79 53 983 256 2 481 000 2 418 600 13 559 867 67 171 582 16 429 594
6 3 3 2006 1.48 · 103 0.18 100 0.70 3 104 299 4 827 000 870 000 −2 059 086 −6 743 687 −6 189 246
10 6 4 2007 6.34 · 103 0.18 160 0.75 7 158 496 4 240 500 1 392 000 326 917 −5 217 691 −5 862 329
15 10 5 2008 3.24 · 104 0.18 220 0.78 19 003 864 3 654 000 1 914 000 5 105 880 8 218 173 −756 448
21 15 6 2009 1.38 · 105 0.18 280 0.81 42 354 680 3 067 500 2 436 000 12 135 926 45 069 352 11 379 477
27 21 7 2010 5.23 · 105 0.18 340 0.76 75 234 213 2 481 000 2 958 000 19 340 083 114 864 565 30 719 560

Table A.19.: Results of Hamburg planning scenario using the scenario tree with 27 nodes, a construction limit of 60, mandatory
coverage, and optimization for AV@R
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.45 · 101 1.00 40 0.58 170 146 4 000 000 348 000 −4 148 212 −4 177 854 −4 148 212
2 1 2 2005 1.22 · 102 1.00 40 0.58 421 397 0 348 000 50 970 −4 104 457 −4 097 242
3 2 3 2006 6.02 · 102 1.00 40 0.58 1 043 665 0 348 000 402 584 −3 408 792 −3 694 658
4 3 4 2007 2.98 · 103 1.00 41 0.57 2 550 341 70 675 356 700 1 016 990 −1 285 826 −2 677 667
5 4 5 2008 1.48 · 104 1.00 91 0.74 8 282 645 3 045 000 791 700 1 541 982 3 160 119 −1 135 685
6 5 6 2009 7.31 · 104 1.00 159 0.86 23 581 856 3 476 500 1 383 300 6 037 124 21 882 174 4 901 439
7 6 7 2010 3.62 · 105 1.00 241 0.85 58 067 368 3 390 700 2 096 700 14 484 848 74 462 143 19 386 286

Table A.20.: Results of annual Hamburg planning scenario using the expected traffic evolution, a construction limit of 100,
mandatory coverage

node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.45 · 101 1.00 0 0.00 0 0 0 0 0 0
2 1 2 2005 1.22 · 102 1.00 0 0.00 0 0 0 0 0 0
3 2 3 2006 6.02 · 102 1.00 0 0.00 0 0 0 0 0 0
4 3 4 2007 2.98 · 103 1.00 41 0.57 2 550 356 2 897 675 356 700 −618 998 −704 019 −618 998
5 4 5 2008 1.48 · 104 1.00 89 0.74 8 274 983 2 923 200 774 300 1 604 634 3 873 464 985 636
6 5 6 2009 7.31 · 104 1.00 156 0.85 23 504 036 3 425 375 1 357 200 6 040 349 22 594 925 7 025 985
7 6 7 2010 3.62 · 105 1.00 240 0.85 58 028 753 3 473 400 2 088 000 14 448 803 75 062 277 21 474 788

Table A.21.: Results of annual Hamburg planning scenario using the expected traffic evolution, a construction limit of 100
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.45 · 101 1.00 40 0.57 169 574 4 000 000 348 000 −4 148 688 −4 178 426 −4 148 688
2 1 2 2005 1.22 · 102 1.00 40 0.57 419 981 0 348 000 49 987 −4 106 445 −4 098 701
3 2 3 2006 6.02 · 102 1.00 40 0.57 1 040 159 0 348 000 400 555 −3 414 286 −3 698 147
4 3 4 2007 2.98 · 103 1.00 43 0.58 2 604 880 212 025 374 100 953 101 −1 395 532 −2 745 046
5 4 5 2008 1.48 · 104 1.00 103 0.78 8 628 552 3 654 000 896 100 1 345 346 2 682 921 −1 399 700
6 5 6 2009 7.31 · 104 1.00 163 0.86 23 684 163 3 067 500 1 418 100 6 224 100 21 881 483 4 824 400
7 6 7 2010 3.62 · 105 1.00 223 0.83 56 937 367 2 481 000 1 940 100 14 517 846 74 397 750 19 342 246

Table A.22.: Results of annual Hamburg planning scenario using the expected traffic evolution, a construction limit of 60, manda-
tory coverage

node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.45 · 101 1.00 0 0.00 0 0 0 0 0 0
2 1 2 2005 1.22 · 102 1.00 0 0.00 0 0 0 0 0 0
3 2 3 2006 6.02 · 102 1.00 0 0.00 0 0 0 0 0 0
4 3 4 2007 2.98 · 103 1.00 42 0.57 2 581 719 2 968 350 365 400 −648 969 −752 031 −648 969
5 4 5 2008 1.48 · 104 1.00 102 0.78 8 645 923 3 654 000 887 400 1 355 824 3 352 492 706 855
6 5 6 2009 7.31 · 104 1.00 162 0.86 23 644 214 3 067 500 1 409 400 6 213 635 22 519 807 6 920 490
7 6 7 2010 3.62 · 105 1.00 222 0.83 56 914 708 2 481 000 1 931 400 14 513 950 75 022 115 21 434 440

Table A.23.: Results of annual Hamburg planning scenario using the expected traffic evolution, a construction limit of 60
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 1.06 · 104 1.00 25 0.33 0 1 196 667 54 375 −1 248 619 −1 251 042 −1 248 619
2 1 2 2005 1.06 · 104 0.29 50 0.58 966 580 1 115 208 108 750 −282 430 −1 508 420 −1 531 048
4 2 3 2006 1.42 · 104 0.29 65 0.65 1 223 414 620 250 141 375 377 541 −1 046 631 −1 153 507
7 4 4 2007 2.00 · 104 0.29 66 0.66 1 473 310 38 092 143 550 1 074 910 245 037 −78 597

11 7 5 2008 1.33 · 104 0.09 66 0.65 810 236 0 143 550 530 817 911 724 452 220
17 11 6 2009 1.73 · 104 0.09 66 0.65 893 284 0 143 550 570 342 1 661 458 1 022 563
24 17 7 2010 2.31 · 104 0.09 66 0.64 990 472 0 143 550 615 569 2 508 380 1 638 131
33 24 8 2011 2.71 · 104 0.09 66 0.65 985 265 0 143 550 584 525 3 350 096 2 222 656
43 33 9 2012 5.44 · 104 0.09 66 0.65 1 658 910 0 143 550 1 005 444 4 865 456 3 228 100
12 7 5 2008 2.85 · 104 0.20 91 0.74 1 984 335 870 833 197 925 696 649 1 160 614 618 052
18 12 6 2009 5.89 · 104 0.20 113 0.79 3 685 985 694 650 245 775 2 063 974 3 906 173 2 682 027
25 18 7 2010 8.04 · 104 0.20 116 0.79 4 250 604 84 950 252 300 2 841 463 7 819 527 5 523 490
35 25 8 2011 6.85 · 104 0.08 116 0.80 3 052 691 0 252 300 1 944 716 10 619 918 7 468 206
45 35 9 2012 1.05 · 105 0.08 116 0.79 3 897 213 0 252 300 2 418 407 14 264 831 9 886 613
34 25 8 2011 1.47 · 105 0.12 141 0.82 6 746 306 626 458 306 675 4 016 637 13 632 700 9 540 127
44 34 9 2012 2.72 · 105 0.12 148 0.78 10 054 465 152 600 321 900 6 351 604 23 212 665 15 891 731
3 1 2 2005 1.63 · 104 0.70 50 0.57 1 471 489 1 115 208 108 750 178 487 −1 003 511 −1 070 132
5 3 3 2006 2.67 · 104 0.49 75 0.68 2 410 362 1 033 750 163 125 1 016 351 209 976 −53 781
8 5 4 2007 1.46 · 104 0.11 76 0.69 1 131 189 38 092 165 300 771 684 1 137 774 717 903
13 8 5 2008 2.09 · 104 0.11 82 0.72 1 409 971 209 000 178 350 806 453 2 160 395 1 524 356
19 13 6 2009 2.75 · 104 0.11 88 0.73 1 585 893 189 450 191 400 909 987 3 365 438 2 434 343
26 19 7 2010 3.66 · 104 0.11 90 0.73 1 786 982 56 633 195 750 1 113 473 4 900 037 3 547 815
36 26 8 2011 5.83 · 104 0.11 90 0.73 2 395 103 0 195 750 1 527 328 7 099 389 5 075 143
47 36 9 2012 3.13 · 105 0.03 115 0.68 9 989 663 545 000 250 125 6 083 730 16 293 927 11 158 873
46 36 9 2012 7.44 · 104 0.08 90 0.73 2 564 841 0 195 750 1 571 896 9 468 480 6 647 040
9 5 4 2007 3.02 · 104 0.38 96 0.76 2 555 198 799 925 208 800 1 257 640 1 756 449 1 203 859
14 9 5 2008 2.85 · 104 0.13 97 0.75 2 018 449 34 833 210 975 1 410 087 3 529 090 2 613 947
20 14 6 2009 4.05 · 104 0.13 98 0.75 2 421 243 31 575 213 150 1 654 613 5 705 608 4 268 560
27 20 7 2010 4.39 · 104 0.13 98 0.75 2 204 496 0 213 150 1 447 370 7 696 954 5 715 930
37 27 8 2011 6.67 · 104 0.13 98 0.75 2 817 632 0 213 150 1 808 668 10 301 436 7 524 598
48 37 9 2012 1.08 · 105 0.13 99 0.75 3 834 872 21 800 215 325 2 386 438 13 899 183 9 911 036
15 9 5 2008 5.25 · 104 0.25 121 0.80 3 951 725 870 833 263 175 2 211 138 4 574 166 3 414 997
21 15 6 2009 8.44 · 104 0.25 136 0.83 5 523 960 473 625 295 800 3 600 095 9 328 701 7 015 092
29 21 7 2010 1.28 · 105 0.17 161 0.85 7 243 621 707 917 350 175 4 471 832 15 514 230 11 486 924
39 29 8 2011 2.47 · 105 0.17 186 0.85 11 726 726 626 458 404 550 7 407 293 26 209 948 18 894 218
50 39 9 2012 3.69 · 105 0.17 197 0.80 13 883 376 239 800 428 475 8 760 825 39 425 049 27 655 043
28 21 7 2010 7.03 · 104 0.08 136 0.82 3 860 001 0 295 800 2 590 568 12 892 903 9 605 660
38 28 8 2011 8.34 · 104 0.08 136 0.83 3 856 497 0 295 800 2 472 706 16 453 599 12 078 366
49 38 9 2012 1.10 · 105 0.08 136 0.82 4 267 443 0 295 800 2 635 193 20 425 243 14 713 559
6 3 3 2006 4.39 · 104 0.21 75 0.68 3 999 155 1 033 750 163 125 2 402 089 1 798 769 1 331 958
10 6 4 2007 5.94 · 104 0.21 100 0.76 5 053 960 952 292 217 500 3 199 798 5 682 937 4 531 756
16 10 5 2008 8.50 · 104 0.21 125 0.81 6 466 014 870 833 271 875 4 206 093 11 006 242 8 737 849
22 16 6 2009 1.12 · 105 0.14 139 0.82 7 338 254 442 050 302 325 5 000 451 17 600 121 13 738 300
30 22 7 2010 1.32 · 105 0.09 164 0.85 7 446 056 707 917 356 700 4 614 226 23 981 560 18 352 526
40 30 8 2011 2.25 · 105 0.09 189 0.86 10 805 214 626 458 411 075 6 762 823 33 749 241 25 115 349
51 40 9 2012 3.69 · 105 0.09 201 0.80 13 944 570 261 600 437 175 8 780 516 46 995 035 33 895 865
31 22 7 2010 6.05 · 104 0.06 139 0.83 3 355 803 0 302 325 2 219 359 20 653 599 15 957 659
41 31 8 2011 7.74 · 104 0.06 139 0.82 3 572 198 0 302 325 2 270 745 23 923 472 18 228 405
52 41 9 2012 1.14 · 105 0.06 139 0.82 4 441 586 0 302 325 2 746 408 28 062 734 20 974 813
23 16 6 2009 2.37 · 105 0.07 150 0.81 15 152 503 789 375 326 250 10 650 211 25 043 120 19 388 060
32 23 7 2010 3.62 · 105 0.07 175 0.77 18 655 429 707 917 380 625 12 744 145 42 610 008 32 132 204
42 32 8 2011 4.77 · 105 0.07 200 0.76 20 181 034 626 458 435 000 13 257 195 61 729 583 45 389 399
53 42 9 2012 5.26 · 105 0.07 225 0.76 18 950 228 545 000 489 375 11 870 340 79 645 436 57 259 739

Table A.24.: Results of quarterly Hamburg planning scenario using the scenario tree with 53 nodes, a construction limit of 100,
mandatory coverage, and optimization for the expected profit
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 1.06 · 104 1.00 15 0.19 0 718 000 32 625 −749 171 −750 625 −749 171
2 1 2 2005 1.06 · 104 0.29 30 0.37 0 669 125 65 250 −698 875 −1 485 000 −1 448 047
4 2 3 2006 1.42 · 104 0.29 45 0.54 1 025 734 620 250 97 875 243 067 −1 177 391 −1 204 980
7 4 4 2007 2.00 · 104 0.29 60 0.63 1 417 097 571 375 130 500 573 813 −462 169 −631 167
11 7 5 2008 1.33 · 104 0.09 60 0.62 774 472 0 130 500 512 732 181 803 −118 435
17 11 6 2009 1.73 · 104 0.09 60 0.63 857 682 0 130 500 553 186 908 986 434 752
24 17 7 2010 2.31 · 104 0.09 60 0.62 946 663 0 130 500 593 212 1 725 149 1 027 964
33 24 8 2011 2.71 · 104 0.09 60 0.62 945 383 0 130 500 565 891 2 540 032 1 593 854
43 33 9 2012 5.44 · 104 0.09 60 0.62 1 591 673 0 130 500 969 491 4 001 205 2 563 346
12 7 5 2008 2.85 · 104 0.20 75 0.69 1 853 031 522 500 163 125 910 091 705 237 278 924
18 12 6 2009 5.89 · 104 0.20 90 0.74 3 457 049 473 625 195 750 2 103 853 3 492 911 2 382 776
25 18 7 2010 8.04 · 104 0.20 105 0.78 4 150 608 424 750 228 375 2 527 678 6 990 394 4 910 455
35 25 8 2011 6.85 · 104 0.08 105 0.77 2 967 496 0 228 375 1 902 167 9 729 515 6 812 622
45 35 9 2012 1.05 · 105 0.08 105 0.77 3 788 472 0 228 375 2 362 131 13 289 612 9 174 753
34 25 8 2011 1.47 · 105 0.12 120 0.79 6 509 375 375 875 261 000 4 065 952 12 862 894 8 976 407
44 34 9 2012 2.72 · 105 0.12 135 0.76 9 736 709 327 000 293 625 6 038 421 21 978 978 15 014 828
3 1 2 2005 1.63 · 104 0.70 30 0.40 0 669 125 65 250 −698 875 −1 485 000 −1 448 047
5 3 3 2006 2.67 · 104 0.49 45 0.54 1 906 709 620 250 97 875 1 011 449 −296 416 −436 598
8 5 4 2007 1.46 · 104 0.11 60 0.63 1 027 800 571 375 130 500 249 399 29 509 −187 199
13 8 5 2008 2.09 · 104 0.11 75 0.70 1 374 954 522 500 163 125 529 445 718 838 342 246
19 13 6 2009 2.75 · 104 0.11 84 0.72 1 562 812 284 175 182 700 823 626 1 814 775 1 165 872
26 19 7 2010 3.66 · 104 0.11 87 0.73 1 777 703 84 950 189 225 1 089 930 3 318 303 2 255 801
36 26 8 2011 5.83 · 104 0.11 88 0.73 2 376 442 25 058 191 400 1 499 177 5 478 286 3 754 979
47 36 9 2012 3.13 · 105 0.03 103 0.64 9 499 409 327 000 224 025 5 927 152 14 426 671 9 682 131
46 36 9 2012 7.44 · 104 0.08 88 0.73 2 551 708 0 191 400 1 566 069 7 838 594 5 321 047
9 5 4 2007 3.02 · 104 0.38 60 0.63 2 119 139 571 375 130 500 1 158 848 1 120 848 722 251
14 9 5 2008 2.85 · 104 0.13 75 0.69 1 843 285 522 500 163 125 902 331 2 278 508 1 624 582
20 14 6 2009 4.05 · 104 0.13 85 0.73 2 333 312 315 750 184 875 1 382 970 4 111 195 3 007 552
27 20 7 2010 4.39 · 104 0.13 85 0.73 2 121 735 0 184 875 1 407 768 6 048 055 4 415 320
37 27 8 2011 6.67 · 104 0.13 86 0.72 2 694 251 25 058 187 050 1 722 899 8 530 198 6 138 219
48 37 9 2012 1.08 · 105 0.13 86 0.72 3 669 977 0 187 050 2 310 929 12 013 125 8 449 148
15 9 5 2008 5.25 · 104 0.25 75 0.69 3 388 364 522 500 163 125 2 132 526 3 823 587 2 854 777
21 15 6 2009 8.44 · 104 0.25 90 0.74 4 961 671 473 625 195 750 3 248 458 8 115 883 6 103 235
29 21 7 2010 1.28 · 105 0.17 105 0.76 6 506 210 424 750 228 375 4 239 800 13 968 968 10 343 035
39 29 8 2011 2.47 · 105 0.17 120 0.75 10 350 924 375 875 261 000 6 733 694 23 683 017 17 076 730
50 39 9 2012 3.69 · 105 0.17 135 0.69 12 069 229 327 000 293 625 7 586 052 35 131 621 24 662 782
28 21 7 2010 7.03 · 104 0.08 96 0.75 3 522 704 169 900 208 800 2 279 397 11 259 887 8 382 632
38 28 8 2011 8.34 · 104 0.08 96 0.76 3 530 784 0 208 800 2 306 933 14 581 871 10 689 565
49 38 9 2012 1.10 · 105 0.08 96 0.75 3 879 455 0 208 800 2 435 486 18 252 526 13 125 052
6 3 3 2006 4.39 · 104 0.21 45 0.54 3 181 386 620 250 97 875 2 123 218 978 261 675 171
10 6 4 2007 5.94 · 104 0.21 60 0.62 4 155 355 571 375 130 500 2 855 695 4 431 742 3 530 866
16 10 5 2008 8.50 · 104 0.21 75 0.69 5 521 094 522 500 163 125 3 830 611 9 267 210 7 361 477
22 16 6 2009 1.12 · 105 0.14 90 0.73 6 500 059 473 625 195 750 4 418 749 15 097 894 11 780 225
30 22 7 2010 1.32 · 105 0.09 105 0.76 6 662 164 424 750 228 375 4 353 152 21 106 933 16 133 378
40 30 8 2011 2.25 · 105 0.09 120 0.76 9 582 140 375 875 261 000 6 199 817 30 052 199 22 333 195
51 40 9 2012 3.69 · 105 0.09 135 0.69 12 075 424 327 000 293 625 7 590 163 41 506 998 29 923 358
31 22 7 2010 6.05 · 104 0.06 91 0.74 2 986 616 28 317 197 925 2 005 363 17 858 268 13 785 589
41 31 8 2011 7.74 · 104 0.06 91 0.74 3 191 063 0 197 925 2 078 568 20 851 407 15 864 157
52 41 9 2012 1.14 · 105 0.06 91 0.73 3 952 751 0 197 925 2 491 334 24 606 233 18 355 491
23 16 6 2009 2.37 · 105 0.07 90 0.67 12 513 748 473 625 195 750 8 993 517 21 111 583 16 354 994
32 23 7 2010 3.62 · 105 0.07 105 0.62 14 897 170 424 750 228 375 10 338 601 35 355 628 26 693 595
42 32 8 2011 4.77 · 105 0.07 120 0.58 15 590 458 375 875 261 000 10 372 260 50 309 211 37 065 855
53 42 9 2012 5.26 · 105 0.07 135 0.59 14 747 300 327 000 293 625 9 362 958 64 435 886 46 428 813

Table A.25.: Results of quarterly Hamburg planning scenario using the scenario tree with 53 nodes, a construction limit of 60,
mandatory coverage, and optimization for the expected profit
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 1.06 · 104 1.00 25 0.34 0 1 196 667 54 375 −1 248 619 −1 251 042 −1 248 619
2 1 2 2005 1.06 · 104 0.29 50 0.58 974 957 1 115 208 108 750 −274 783 −1 500 043 −1 523 401
4 2 3 2006 1.42 · 104 0.29 61 0.63 1 192 301 454 850 132 675 508 982 −895 267 −1 014 419
7 4 4 2007 2.00 · 104 0.29 61 0.64 1 431 055 0 132 675 1 081 983 403 113 67 564

11 7 5 2008 1.33 · 104 0.09 61 0.63 786 382 0 132 675 520 483 1 056 820 588 047
17 11 6 2009 1.73 · 104 0.09 61 0.63 864 117 0 132 675 556 426 1 788 262 1 144 474
24 17 7 2010 2.31 · 104 0.09 61 0.62 956 900 0 132 675 599 071 2 612 486 1 743 545
33 24 8 2011 2.71 · 104 0.09 61 0.63 954 157 0 132 675 570 474 3 433 969 2 314 019
43 33 9 2012 5.44 · 104 0.09 61 0.63 1 606 476 0 132 675 977 870 4 907 770 3 291 888
12 7 5 2008 2.85 · 104 0.20 86 0.72 1 944 761 870 833 187 050 673 799 1 289 991 741 363
18 12 6 2009 5.89 · 104 0.20 101 0.76 3 561 507 473 625 219 675 2 165 116 4 158 198 2 906 480
25 18 7 2010 8.04 · 104 0.20 101 0.77 4 099 382 0 219 675 2 819 887 8 037 905 5 726 367
35 25 8 2011 6.85 · 104 0.08 101 0.76 2 930 002 0 219 675 1 882 172 10 748 232 7 608 538
45 35 9 2012 1.05 · 105 0.08 101 0.76 3 748 950 0 219 675 2 341 681 14 277 507 9 950 219
34 25 8 2011 1.47 · 105 0.12 126 0.77 6 370 939 626 458 274 050 3 778 622 13 508 336 9 504 989
44 34 9 2012 2.72 · 105 0.12 151 0.73 9 371 981 545 000 328 425 5 621 945 22 006 892 15 126 934
3 1 2 2005 1.63 · 104 0.70 50 0.58 1 491 869 1 115 208 108 750 197 092 −983 131 −1 051 527
5 3 3 2006 2.67 · 104 0.49 75 0.68 2 428 138 1 033 750 163 125 1 031 855 248 132 −19 672
8 5 4 2007 1.46 · 104 0.11 75 0.70 1 140 498 0 163 125 814 478 1 225 506 794 805
13 8 5 2008 2.09 · 104 0.11 78 0.71 1 390 287 104 500 169 650 884 790 2 341 642 1 679 596
19 13 6 2009 2.75 · 104 0.11 80 0.71 1 539 278 63 150 174 000 988 322 3 643 770 2 667 918
26 19 7 2010 3.66 · 104 0.11 81 0.71 1 727 438 28 317 176 175 1 105 963 5 166 717 3 773 881
36 26 8 2011 5.83 · 104 0.11 81 0.71 2 324 763 0 176 175 1 492 075 7 315 304 5 265 956
47 36 9 2012 3.13 · 105 0.03 106 0.65 9 610 887 545 000 230 550 5 845 400 16 150 642 11 111 356
46 36 9 2012 7.44 · 104 0.08 81 0.71 2 481 150 0 176 175 1 529 355 9 620 279 6 795 311
9 5 4 2007 3.02 · 104 0.38 89 0.74 2 503 121 533 283 193 575 1 459 495 2 024 395 1 439 822
14 9 5 2008 2.85 · 104 0.13 89 0.74 1 976 296 0 193 575 1 419 406 3 807 116 2 859 228
20 14 6 2009 4.05 · 104 0.13 90 0.74 2 365 463 31 575 195 750 1 625 416 5 945 254 4 484 645
27 20 7 2010 4.39 · 104 0.13 90 0.74 2 154 003 0 195 750 1 423 317 7 903 507 5 907 962
37 27 8 2011 6.67 · 104 0.13 90 0.74 2 753 510 0 195 750 1 776 222 10 461 267 7 684 184
48 37 9 2012 1.08 · 105 0.13 91 0.74 3 751 909 21 800 197 925 2 342 937 13 993 452 10 027 121
15 9 5 2008 5.25 · 104 0.25 111 0.75 3 724 744 766 333 241 425 2 134 816 4 741 381 3 574 638
21 15 6 2009 8.44 · 104 0.25 136 0.77 5 182 117 789 375 295 800 3 088 645 8 838 323 6 663 283
29 21 7 2010 1.28 · 105 0.17 161 0.78 6 667 016 707 917 350 175 4 052 739 14 447 248 10 716 022
39 29 8 2011 2.47 · 105 0.17 186 0.76 10 558 135 626 458 404 550 6 595 772 23 974 375 17 311 794
50 39 9 2012 3.69 · 105 0.17 211 0.73 12 701 393 545 000 458 925 7 744 429 35 671 843 25 056 223
28 21 7 2010 7.03 · 104 0.08 160 0.81 3 778 788 679 600 348 000 1 976 610 11 589 512 8 639 893
38 28 8 2011 8.34 · 104 0.08 184 0.83 3 856 566 601 400 400 200 1 963 139 14 444 477 10 603 032
49 38 9 2012 1.10 · 105 0.08 193 0.83 4 324 149 196 200 419 775 2 454 310 18 152 652 13 057 342
6 3 3 2006 4.39 · 104 0.21 75 0.63 3 666 527 1 033 750 163 125 2 111 973 1 486 522 1 060 446
10 6 4 2007 5.94 · 104 0.21 100 0.67 4 451 717 952 292 217 500 2 697 929 4 768 447 3 758 375
16 10 5 2008 8.50 · 104 0.21 125 0.71 5 663 742 870 833 271 875 3 567 322 9 289 480 7 325 697
22 16 6 2009 1.12 · 105 0.14 150 0.74 6 599 699 789 375 326 250 4 143 872 14 773 555 11 469 570
30 22 7 2010 1.32 · 105 0.09 175 0.76 6 676 729 707 917 380 625 4 037 667 20 361 742 15 507 236
40 30 8 2011 2.25 · 105 0.09 200 0.76 9 533 437 626 458 435 000 5 863 031 28 833 721 21 370 267
51 40 9 2012 3.69 · 105 0.09 225 0.72 12 487 348 545 000 489 375 7 582 206 40 286 694 28 952 473
31 22 7 2010 6.05 · 104 0.06 174 0.79 3 196 494 679 600 378 450 1 531 249 16 911 998 13 000 819
41 31 8 2011 7.74 · 104 0.06 198 0.81 3 508 246 601 400 430 650 1 700 104 19 388 194 14 700 923
52 41 9 2012 1.14 · 105 0.06 223 0.83 4 451 902 545 000 485 025 2 253 558 22 810 071 16 954 481
23 16 6 2009 2.37 · 105 0.07 150 0.68 12 780 889 789 375 326 250 8 846 063 20 954 745 16 171 761
32 23 7 2010 3.62 · 105 0.07 175 0.64 15 495 123 707 917 380 625 10 447 139 35 361 326 26 618 900
42 32 8 2011 4.77 · 105 0.07 200 0.61 16 373 838 626 458 435 000 10 613 309 50 673 706 37 232 209
53 42 9 2012 5.26 · 105 0.07 225 0.63 15 726 152 545 000 489 375 9 731 159 65 365 483 46 963 368

Table A.26.: Results of quarterly Hamburg planning scenario using the scenario tree with 53 nodes, a construction limit of 100,
mandatory coverage, and optimization for AV@R
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 1.06 · 104 1.00 12 0.15 0 574 400 26 100 −599 337 −600 500 −599 337
2 1 2 2005 1.06 · 104 0.29 26 0.34 0 624 517 56 550 −648 313 −1 281 567 −1 247 650
4 2 3 2006 1.42 · 104 0.29 41 0.52 978 337 620 250 89 175 209 316 −1 012 654 −1 038 334
7 4 4 2007 2.00 · 104 0.29 56 0.61 1 376 481 571 375 121 800 547 216 −329 348 −491 118
11 7 5 2008 1.33 · 104 0.09 56 0.60 747 321 0 121 800 498 041 296 173 6 924
17 11 6 2009 1.73 · 104 0.09 56 0.61 830 772 0 121 800 539 334 1 005 145 546 257
24 17 7 2010 2.31 · 104 0.09 56 0.60 917 069 0 121 800 578 025 1 800 414 1 124 283
33 24 8 2011 2.71 · 104 0.09 56 0.60 911 630 0 121 800 548 493 2 590 245 1 672 776
43 33 9 2012 5.44 · 104 0.09 56 0.60 1 534 769 0 121 800 937 508 4 003 213 2 610 283
12 7 5 2008 2.85 · 104 0.20 71 0.67 1 807 228 522 500 154 425 880 549 800 955 389 431
18 12 6 2009 5.89 · 104 0.20 86 0.73 3 387 989 473 625 187 050 2 057 936 3 528 269 2 447 367
25 18 7 2010 8.04 · 104 0.20 94 0.75 4 019 361 226 533 204 450 2 600 462 7 116 646 5 047 829
35 25 8 2011 6.85 · 104 0.08 94 0.75 2 859 647 0 204 450 1 843 887 9 771 844 6 891 716
45 35 9 2012 1.05 · 105 0.08 94 0.74 3 667 068 0 204 450 2 297 454 13 234 462 9 189 169
34 25 8 2011 1.47 · 105 0.12 109 0.75 6 198 181 375 875 237 075 3 866 460 12 701 878 8 914 289
44 34 9 2012 2.72 · 105 0.12 124 0.70 8 923 707 327 000 269 700 5 514 867 21 028 884 14 429 155
3 1 2 2005 1.63 · 104 0.70 27 0.37 0 669 125 58 725 −692 919 −1 328 350 −1 292 256
5 3 3 2006 2.67 · 104 0.49 42 0.52 1 831 172 620 250 91 350 951 257 −208 778 −340 999
8 5 4 2007 1.46 · 104 0.11 57 0.61 1 007 838 571 375 123 975 238 202 103 710 −102 797
13 8 5 2008 2.09 · 104 0.11 72 0.68 1 347 574 522 500 156 600 512 840 772 184 410 042
19 13 6 2009 2.75 · 104 0.11 79 0.70 1 529 376 221 025 171 825 856 743 1 908 709 1 266 786
26 19 7 2010 3.66 · 104 0.11 81 0.71 1 736 630 56 633 176 175 1 091 103 3 412 531 2 357 889
36 26 8 2011 5.83 · 104 0.11 82 0.71 2 328 383 25 058 178 350 1 474 865 5 537 506 3 832 754
47 36 9 2012 3.13 · 105 0.03 97 0.62 9 177 231 327 000 210 975 5 722 045 14 176 761 9 554 798
46 36 9 2012 7.44 · 104 0.08 82 0.71 2 492 025 0 178 350 1 535 128 7 851 181 5 367 882
9 5 4 2007 3.02 · 104 0.38 57 0.61 2 078 869 571 375 123 975 1 130 727 1 174 740 789 728
14 9 5 2008 2.85 · 104 0.13 72 0.68 1 822 829 522 500 156 600 891 239 2 318 469 1 680 967
20 14 6 2009 4.05 · 104 0.13 85 0.72 2 323 956 410 475 184 875 1 300 433 4 047 075 2 981 400
27 20 7 2010 4.39 · 104 0.13 85 0.72 2 118 990 0 184 875 1 405 773 5 981 190 4 387 172
37 27 8 2011 6.67 · 104 0.13 86 0.72 2 699 910 25 058 187 050 1 726 829 8 468 992 6 114 001
48 37 9 2012 1.08 · 105 0.13 86 0.72 3 681 504 0 187 050 2 318 577 11 963 446 8 432 578
15 9 5 2008 5.25 · 104 0.25 72 0.63 3 110 682 522 500 156 600 1 916 630 3 606 322 2 706 358
21 15 6 2009 8.44 · 104 0.25 87 0.67 4 454 787 473 625 189 225 2 867 822 7 398 259 5 574 180
29 21 7 2010 1.28 · 105 0.17 102 0.68 5 827 923 424 750 221 850 3 751 543 12 579 582 9 325 723
39 29 8 2011 2.47 · 105 0.17 117 0.64 8 903 900 375 875 254 475 5 733 348 20 853 132 15 059 071
50 39 9 2012 3.69 · 105 0.17 132 0.57 9 926 379 327 000 287 100 6 168 597 30 165 411 21 227 668
28 21 7 2010 7.03 · 104 0.08 97 0.70 3 256 079 283 167 210 975 1 997 860 10 160 196 7 572 040
38 28 8 2011 8.34 · 104 0.08 105 0.71 3 339 710 200 467 228 375 2 014 944 13 071 064 9 586 984
49 38 9 2012 1.10 · 105 0.08 119 0.72 3 755 300 305 200 258 825 2 107 973 16 262 339 11 694 958
6 3 3 2006 4.39 · 104 0.21 42 0.51 2 973 084 620 250 91 350 1 947 229 933 134 654 973
10 6 4 2007 5.94 · 104 0.21 57 0.55 3 629 995 571 375 123 975 2 423 332 3 867 779 3 078 305
16 10 5 2008 8.50 · 104 0.21 72 0.57 4 598 511 522 500 156 600 3 101 243 7 787 190 6 179 548
22 16 6 2009 1.12 · 105 0.14 87 0.60 5 348 196 473 625 189 225 3 547 461 12 472 535 9 727 009
30 22 7 2010 1.32 · 105 0.09 102 0.63 5 551 789 424 750 221 850 3 550 841 17 377 725 13 277 850
40 30 8 2011 2.25 · 105 0.09 117 0.61 7 761 485 375 875 254 475 4 940 004 24 508 859 18 217 854
51 40 9 2012 3.69 · 105 0.09 132 0.53 9 208 662 327 000 287 100 5 692 391 33 103 422 23 910 244
31 22 7 2010 6.05 · 104 0.06 102 0.64 2 572 410 424 750 221 850 1 385 339 14 398 345 11 112 348
41 31 8 2011 7.74 · 104 0.06 117 0.67 2 925 210 375 875 254 475 1 581 480 16 693 205 12 693 827
52 41 9 2012 1.14 · 105 0.06 131 0.69 3 726 997 305 200 284 925 2 071 877 19 830 077 14 765 704
23 16 6 2009 2.37 · 105 0.07 87 0.53 9 962 993 473 625 189 225 7 058 056 17 087 332 13 237 603
32 23 7 2010 3.62 · 105 0.07 102 0.46 11 057 250 424 750 221 850 7 552 375 27 497 983 20 789 979
42 32 8 2011 4.77 · 105 0.07 117 0.43 11 394 589 375 875 254 475 7 462 993 38 262 222 28 252 972
53 42 9 2012 5.26 · 105 0.07 132 0.44 10 828 247 327 000 287 100 6 766 988 48 476 369 35 019 960

Table A.27.: Results of quarterly Hamburg planning scenario using the scenario tree with 53 nodes, a construction limit of 60,
mandatory coverage, and optimization for AV@R
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.38 · 101 1.00 0 0.00 0 0 0 0 0 0
2 1 2 2005 5.43 · 101 0.29 0 0.00 0 0 0 0 0 0
4 2 3 2006 1.86 · 102 0.29 0 0.00 0 0 0 0 0 0
7 4 4 2007 9.64 · 102 0.29 0 0.00 0 0 0 0 0 0
11 7 5 2008 1.07 · 104 0.09 87 0.73 5 841 775 5 298 300 756 900 −511 625 −213 425 −511 625
17 11 6 2009 5.64 · 104 0.09 130 0.81 17 107 208 2 198 375 1 131 000 4 466 922 13 564 408 3 955 298
25 17 7 2010 1.50 · 105 0.09 132 0.80 22 482 131 82 700 1 148 400 5 926 157 34 815 439 9 881 455
12 7 5 2008 3.79 · 103 0.20 0 0.00 0 0 0 0 0 0
19 12 6 2009 9.58 · 103 0.13 42 0.53 1 923 920 2 147 250 365 400 −340 986 −588 730 −340 986
27 19 7 2010 7.50 · 104 0.13 65 0.66 9 283 275 951 050 565 500 2 114 466 7 177 995 1 773 480
18 12 6 2009 3.76 · 103 0.07 0 0.00 0 0 0 0 0 0
26 18 7 2010 1.12 · 104 0.07 0 0.00 0 0 0 0 0 0
3 1 2 2005 1.09 · 102 0.70 0 0.00 0 0 0 0 0 0
5 3 3 2006 5.88 · 102 0.52 0 0.00 0 0 0 0 0 0
8 5 4 2007 2.05 · 103 0.36 40 0.58 1 778 326 2 827 000 348 000 −946 216 −1 396 674 −946 216
14 8 5 2008 6.56 · 103 0.24 47 0.57 2 806 301 426 300 408 900 757 877 574 427 −188 339
21 14 6 2009 1.46 · 104 0.07 49 0.57 3 141 180 102 250 426 300 868 116 3 187 057 679 777
29 21 7 2010 4.73 · 104 0.07 49 0.57 5 056 232 0 426 300 1 292 129 7 816 988 1 971 906
22 14 6 2009 4.28 · 104 0.17 115 0.80 12 867 855 3 476 500 1 000 500 2 577 226 8 965 282 2 388 887
30 22 7 2010 2.47 · 105 0.17 163 0.82 38 455 049 1 984 800 1 418 100 9 671 627 44 017 431 12 060 514
13 8 5 2008 2.69 · 103 0.12 40 0.57 1 153 253 0 348 000 323 613 −591 422 −622 603
20 13 6 2009 1.01 · 104 0.12 40 0.52 1 987 332 0 348 000 549 009 1 047 911 −73 594
28 20 7 2010 3.82 · 104 0.12 40 0.52 3 713 333 0 348 000 939 203 4 413 244 865 609
9 5 4 2007 4.35 · 103 0.16 64 0.68 4 451 664 4 523 200 556 800 −739 282 −628 336 −739 282
15 9 5 2008 1.93 · 104 0.16 152 0.84 12 262 746 5 359 200 1 322 400 1 812 189 4 952 810 1 072 906
23 15 6 2009 7.28 · 104 0.16 252 0.91 24 885 476 5 112 500 2 192 400 5 545 266 22 533 385 6 618 173
31 23 7 2010 3.63 · 105 0.12 278 0.88 59 951 257 1 075 100 2 418 600 15 696 260 78 990 943 22 314 432
32 23 7 2010 1.60 · 106 0.04 352 0.53 160 187 041 4 135 000 3 062 400 42 465 801 175 523 027 49 083 973
6 3 3 2006 1.48 · 103 0.18 44 0.59 2 644 006 3 539 800 382 800 −1 149 626 −1 278 594 −1 149 626
10 6 4 2007 6.34 · 103 0.18 89 0.74 7 111 384 3 180 375 774 300 1 215 583 1 878 115 65 957
16 10 5 2008 3.24 · 104 0.18 183 0.88 21 363 070 5 724 600 1 592 100 5 184 804 15 924 485 5 250 761
24 16 6 2009 1.38 · 105 0.18 283 0.92 47 791 766 5 112 500 2 462 100 13 126 214 56 141 651 18 376 975
34 24 7 2010 1.57 · 106 0.05 383 0.56 164 366 343 4 135 000 3 332 100 43 556 899 213 040 894 61 933 874
33 24 7 2010 5.23 · 105 0.13 332 0.86 84 280 945 2 026 150 2 888 400 22 036 612 135 508 047 40 413 587

Table A.28.: Results of Hamburg planning scenario using the scenario tree with 34 nodes, a construction limit of 100, and
optimization for the expected profit
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.38 · 101 1.00 0 0.00 0 0 0 0 0 0
2 1 2 2005 5.43 · 101 0.29 0 0.00 0 0 0 0 0 0
4 2 3 2006 1.86 · 102 0.29 0 0.00 0 0 0 0 0 0
7 4 4 2007 9.64 · 102 0.29 0 0.00 0 0 0 0 0 0
11 7 5 2008 1.07 · 104 0.09 60 0.63 5 093 426 3 654 000 522 000 75 001 917 426 75 001
17 11 6 2009 5.64 · 104 0.09 117 0.80 16 896 636 2 914 125 1 017 900 4 146 635 13 882 036 4 221 636
25 17 7 2010 1.50 · 105 0.09 120 0.79 22 185 723 124 050 1 044 000 5 858 723 34 899 709 10 080 358
12 7 5 2008 3.79 · 103 0.20 0 0.00 0 0 0 0 0 0
19 12 6 2009 9.58 · 103 0.13 42 0.53 1 928 738 2 147 250 365 400 −339 373 −583 912 −339 373
27 19 7 2010 7.50 · 104 0.13 65 0.66 9 283 275 951 050 565 500 2 114 466 7 182 813 1 775 093
18 12 6 2009 3.76 · 103 0.07 0 0.00 0 0 0 0 0 0
26 18 7 2010 1.12 · 104 0.07 0 0.00 0 0 0 0 0 0
3 1 2 2005 1.09 · 102 0.70 0 0.00 0 0 0 0 0 0
5 3 3 2006 5.88 · 102 0.52 0 0.00 0 0 0 0 0 0
8 5 4 2007 2.05 · 103 0.36 40 0.57 1 770 580 2 827 000 348 000 −949 952 −1 404 420 −949 952
14 8 5 2008 6.56 · 103 0.24 50 0.59 2 895 769 609 000 435 000 695 236 447 349 −254 716
21 14 6 2009 1.46 · 104 0.07 51 0.58 3 201 969 51 125 443 700 903 193 3 154 493 648 477
29 21 7 2010 4.73 · 104 0.07 51 0.58 5 155 169 0 443 700 1 314 884 7 865 962 1 963 361
22 14 6 2009 4.28 · 104 0.17 109 0.79 12 675 242 3 016 375 948 300 2 715 116 9 157 916 2 460 400
30 22 7 2010 2.47 · 105 0.17 163 0.82 38 454 800 2 232 900 1 418 100 9 588 470 43 961 716 12 048 869
13 8 5 2008 2.69 · 103 0.12 40 0.57 1 148 164 0 348 000 321 568 −604 256 −628 384
20 13 6 2009 1.01 · 104 0.12 40 0.52 1 986 081 0 348 000 548 590 1 033 825 −79 794
28 20 7 2010 3.82 · 104 0.12 40 0.52 3 710 648 0 348 000 938 453 4 396 473 858 660
9 5 4 2007 4.35 · 103 0.16 60 0.66 4 352 429 4 240 500 522 000 −606 757 −410 071 −606 757
15 9 5 2008 1.93 · 104 0.16 120 0.80 11 561 629 3 654 000 1 044 000 2 464 646 6 453 558 1 857 889
23 15 6 2009 7.28 · 104 0.16 179 0.85 23 394 751 3 016 375 1 557 300 6 101 105 25 274 633 7 958 994
31 23 7 2010 3.63 · 105 0.12 238 0.84 57 379 502 2 439 650 2 070 600 14 618 666 78 143 885 22 577 660
32 23 7 2010 1.60 · 106 0.04 239 0.42 125 396 496 2 481 000 2 079 300 33 584 684 146 110 829 41 543 678
6 3 3 2006 1.48 · 103 0.18 60 0.69 3 061 925 4 827 000 522 000 −1 882 219 −2 287 075 −1 882 219
10 6 4 2007 6.34 · 103 0.18 120 0.82 7 853 551 4 240 500 1 044 000 829 934 281 976 −1 052 285
16 10 5 2008 3.24 · 104 0.18 180 0.88 21 402 457 3 654 000 1 566 000 6 209 675 16 464 433 5 157 389
24 16 6 2009 1.38 · 105 0.18 240 0.90 46 890 223 3 067 500 2 088 000 13 771 415 58 199 157 18 928 804
34 24 7 2010 1.57 · 106 0.05 300 0.49 145 225 071 2 481 000 2 610 000 38 970 367 198 333 227 57 899 171
33 24 7 2010 5.23 · 105 0.13 300 0.84 82 689 250 2 481 000 2 610 000 21 517 767 135 797 407 40 446 571

Table A.29.: Results of Hamburg planning scenario using the scenario tree with 34 nodes, a construction limit of 60, and opti-
mization for the expected profit
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.38 · 101 1.00 0 0.00 0 0 0 0 0 0
2 1 2 2005 5.43 · 101 0.29 0 0.00 0 0 0 0 0 0
4 2 3 2006 1.86 · 102 0.29 0 0.00 0 0 0 0 0 0
7 4 4 2007 9.64 · 102 0.29 0 0.00 0 0 0 0 0 0
11 7 5 2008 1.07 · 104 0.09 77 0.71 5 695 369 4 689 300 669 900 −241 806 336 169 −241 806
17 11 6 2009 5.64 · 104 0.09 118 0.80 16 919 429 2 096 125 1 026 600 4 480 091 14 132 874 4 238 285
25 17 7 2010 1.50 · 105 0.09 119 0.79 22 152 349 41 350 1 035 300 5 879 533 35 208 573 10 117 818
12 7 5 2008 3.79 · 103 0.20 0 0.00 0 0 0 0 0 0
19 12 6 2009 9.58 · 103 0.13 42 0.53 1 915 144 2 147 250 365 400 −343 925 −597 506 −343 925
27 19 7 2010 7.50 · 104 0.13 66 0.66 9 328 289 992 400 574 200 2 110 753 7 164 184 1 766 828
18 12 6 2009 3.76 · 103 0.07 0 0.00 0 0 0 0 0 0
26 18 7 2010 1.12 · 104 0.07 0 0.00 0 0 0 0 0 0
3 1 2 2005 1.09 · 102 0.70 0 0.00 0 0 0 0 0 0
5 3 3 2006 5.88 · 102 0.52 0 0.00 0 0 0 0 0 0
8 5 4 2007 2.05 · 103 0.36 40 0.58 1 778 421 2 827 000 348 000 −946 170 −1 396 579 −946 170
14 8 5 2008 6.56 · 103 0.24 47 0.57 2 801 396 426 300 408 900 755 906 569 618 −190 264
21 14 6 2009 1.46 · 104 0.07 49 0.57 3 130 857 102 250 426 300 864 659 3 171 924 674 394
29 21 7 2010 4.73 · 104 0.07 49 0.57 5 079 089 0 426 300 1 298 508 7 824 714 1 972 903
22 14 6 2009 4.28 · 104 0.17 146 0.80 12 848 371 5 061 375 1 270 200 1 843 453 7 086 414 1 653 189
30 22 7 2010 2.47 · 105 0.17 246 0.87 40 600 769 4 135 000 2 140 200 9 348 836 41 411 983 11 002 025
13 8 5 2008 2.69 · 103 0.12 40 0.57 1 154 064 0 348 000 323 939 −590 514 −622 231
20 13 6 2009 1.01 · 104 0.12 40 0.53 1 995 286 0 348 000 551 673 1 056 772 −70 558
28 20 7 2010 3.82 · 104 0.12 40 0.52 3 724 157 0 348 000 942 223 4 432 928 871 665
9 5 4 2007 4.35 · 103 0.16 100 0.59 3 852 625 7 067 500 870 000 −2 651 609 −4 084 875 −2 651 609
15 9 5 2008 1.93 · 104 0.16 200 0.83 12 044 179 6 090 000 1 740 000 1 204 097 129 304 −1 447 511
23 15 6 2009 7.28 · 104 0.16 300 0.88 24 257 183 5 112 500 2 610 000 5 194 999 16 663 987 3 747 487
31 23 7 2010 3.63 · 105 0.12 381 0.90 61 404 267 3 349 350 3 314 700 15 090 042 71 404 204 18 837 529
32 23 7 2010 1.60 · 106 0.04 400 0.52 155 155 509 4 135 000 3 480 000 40 945 048 164 204 496 44 692 535
6 3 3 2006 1.48 · 103 0.18 93 0.75 3 340 352 7 481 850 809 100 −3 730 884 −4 950 598 −3 730 884
10 6 4 2007 6.34 · 103 0.18 165 0.83 7 963 063 5 088 600 1 435 500 203 146 −3 511 635 −3 527 739
16 10 5 2008 3.24 · 104 0.18 252 0.87 21 290 196 5 298 300 2 192 400 5 119 854 10 287 861 1 592 116
24 16 6 2009 1.38 · 105 0.18 305 0.89 46 174 087 2 709 625 2 653 500 13 486 019 51 098 823 15 078 135
34 24 7 2010 1.57 · 106 0.05 307 0.43 127 567 752 82 700 2 670 900 34 828 723 175 912 975 49 906 858
33 24 7 2010 5.23 · 105 0.13 405 0.85 83 797 568 4 135 000 3 523 500 21 018 216 127 237 891 36 096 351

Table A.30.: Results of Hamburg planning scenario using the scenario tree with 34 nodes, a construction limit of 100, and
optimization for AV@R
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.38 · 101 1.00 0 0.00 0 0 0 0 0 0
2 1 2 2005 5.43 · 101 0.29 0 0.00 0 0 0 0 0 0
4 2 3 2006 1.86 · 102 0.29 0 0.00 0 0 0 0 0 0
7 4 4 2007 9.64 · 102 0.29 0 0.00 0 0 0 0 0 0
11 7 5 2008 1.07 · 104 0.09 60 0.63 5 093 426 3 654 000 522 000 75 001 917 426 75 001
17 11 6 2009 5.64 · 104 0.09 117 0.80 16 896 636 2 914 125 1 017 900 4 146 635 13 882 036 4 221 636
25 17 7 2010 1.50 · 105 0.09 120 0.79 22 185 723 124 050 1 044 000 5 858 723 34 899 709 10 080 358
12 7 5 2008 3.79 · 103 0.20 0 0.00 0 0 0 0 0 0
19 12 6 2009 9.58 · 103 0.13 42 0.53 1 928 738 2 147 250 365 400 −339 373 −583 912 −339 373
27 19 7 2010 7.50 · 104 0.13 65 0.66 9 283 275 951 050 565 500 2 114 466 7 182 813 1 775 093
18 12 6 2009 3.76 · 103 0.07 0 0.00 0 0 0 0 0 0
26 18 7 2010 1.12 · 104 0.07 0 0.00 0 0 0 0 0 0
3 1 2 2005 1.09 · 102 0.70 0 0.00 0 0 0 0 0 0
5 3 3 2006 5.88 · 102 0.52 0 0.00 0 0 0 0 0 0
8 5 4 2007 2.05 · 103 0.36 40 0.57 1 770 580 2 827 000 348 000 −949 952 −1 404 420 −949 952
14 8 5 2008 6.56 · 103 0.24 50 0.59 2 895 769 609 000 435 000 695 236 447 349 −254 716
21 14 6 2009 1.46 · 104 0.07 51 0.58 3 201 969 51 125 443 700 903 193 3 154 493 648 477
29 21 7 2010 4.73 · 104 0.07 51 0.58 5 155 169 0 443 700 1 314 884 7 865 962 1 963 361
22 14 6 2009 4.28 · 104 0.17 109 0.79 12 675 242 3 016 375 948 300 2 715 116 9 157 916 2 460 400
30 22 7 2010 2.47 · 105 0.17 163 0.82 38 454 800 2 232 900 1 418 100 9 588 470 43 961 716 12 048 869
13 8 5 2008 2.69 · 103 0.12 40 0.57 1 148 164 0 348 000 321 568 −604 256 −628 384
20 13 6 2009 1.01 · 104 0.12 40 0.52 1 986 081 0 348 000 548 590 1 033 825 −79 794
28 20 7 2010 3.82 · 104 0.12 40 0.52 3 710 648 0 348 000 938 453 4 396 473 858 660
9 5 4 2007 4.35 · 103 0.16 60 0.66 4 352 429 4 240 500 522 000 −606 757 −410 071 −606 757
15 9 5 2008 1.93 · 104 0.16 120 0.80 11 561 629 3 654 000 1 044 000 2 464 646 6 453 558 1 857 889
23 15 6 2009 7.28 · 104 0.16 179 0.85 23 394 751 3 016 375 1 557 300 6 101 105 25 274 633 7 958 994
31 23 7 2010 3.63 · 105 0.12 238 0.84 57 379 502 2 439 650 2 070 600 14 618 666 78 143 885 22 577 660
32 23 7 2010 1.60 · 106 0.04 239 0.42 125 396 496 2 481 000 2 079 300 33 584 684 146 110 829 41 543 678
6 3 3 2006 1.48 · 103 0.18 60 0.69 3 061 925 4 827 000 522 000 −1 882 219 −2 287 075 −1 882 219
10 6 4 2007 6.34 · 103 0.18 120 0.82 7 853 551 4 240 500 1 044 000 829 934 281 976 −1 052 285
16 10 5 2008 3.24 · 104 0.18 180 0.88 21 402 457 3 654 000 1 566 000 6 209 675 16 464 433 5 157 389
24 16 6 2009 1.38 · 105 0.18 240 0.90 46 890 223 3 067 500 2 088 000 13 771 415 58 199 157 18 928 804
34 24 7 2010 1.57 · 106 0.05 300 0.49 145 225 071 2 481 000 2 610 000 38 970 367 198 333 227 57 899 171
33 24 7 2010 5.23 · 105 0.13 300 0.84 82 689 250 2 481 000 2 610 000 21 517 767 135 797 407 40 446 571

Table A.31.: Results of Hamburg planning scenario using the scenario tree with 34 nodes, a construction limit of 60, and opti-
mization for AV@R
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.38 · 101 1.00 0 0.00 0 0 0 0 0 0
2 1 2 2005 5.43 · 101 0.29 0 0.00 0 0 0 0 0 0
4 2 3 2006 1.86 · 102 0.29 0 0.00 0 0 0 0 0 0
7 4 4 2007 9.64 · 102 0.29 0 0.00 0 0 0 0 0 0
11 7 5 2008 3.79 · 103 0.29 40 0.55 1 569 341 2 436 000 348 000 −683 939 −1 214 659 −683 939
16 11 6 2009 5.64 · 104 0.09 138 0.83 17 615 464 5 010 250 1 200 600 3 483 798 10 189 955 2 799 859
22 16 7 2010 3.00 · 105 0.09 198 0.83 47 152 773 2 481 000 1 722 600 11 847 846 53 139 128 14 647 704
17 11 6 2009 1.50 · 104 0.20 44 0.54 3 044 445 204 500 382 800 809 196 1 242 487 125 257
23 17 7 2010 3.89 · 104 0.20 44 0.54 3 965 198 0 382 800 999 781 4 824 884 1 125 038
3 1 2 2005 1.09 · 102 0.70 0 0.00 0 0 0 0 0 0
5 3 3 2006 5.88 · 102 0.52 0 0.00 0 0 0 0 0 0
8 5 4 2007 2.05 · 103 0.36 40 0.57 1 770 387 2 827 000 348 000 −950 045 −1 404 613 −950 045
13 8 5 2008 6.56 · 103 0.24 50 0.59 2 893 191 609 000 435 000 694 200 444 578 −255 845
19 13 6 2009 4.28 · 104 0.24 116 0.80 12 897 164 3 374 250 1 009 200 2 625 220 8 958 293 2 369 375
25 19 7 2010 1.99 · 105 0.24 143 0.81 30 361 032 1 116 450 1 244 100 7 752 105 36 958 775 10 121 479
12 8 5 2008 2.69 · 103 0.12 40 0.57 1 148 037 0 348 000 321 517 −604 577 −628 528
18 12 6 2009 1.01 · 104 0.12 40 0.52 1 978 585 0 348 000 546 080 1 026 009 −82 449
24 18 7 2010 3.82 · 104 0.12 40 0.51 3 696 347 0 348 000 934 462 4 374 356 852 014
9 5 4 2007 4.35 · 103 0.16 57 0.65 4 288 660 4 028 475 495 900 −502 223 −235 715 −502 223
14 9 5 2008 1.93 · 104 0.16 107 0.79 11 426 226 3 045 000 930 900 2 749 375 7 214 611 2 247 152
20 14 6 2009 7.28 · 104 0.16 158 0.86 23 495 547 2 607 375 1 374 600 6 360 415 26 728 183 8 607 567
26 20 7 2010 3.63 · 105 0.16 240 0.85 58 194 590 3 390 700 2 088 000 14 522 781 79 444 073 23 130 348
6 3 3 2006 1.48 · 103 0.18 42 0.59 2 616 332 3 378 900 365 400 −1 043 836 −1 127 968 −1 043 836
10 6 4 2007 6.34 · 103 0.18 84 0.74 7 103 119 2 968 350 730 800 1 355 275 2 276 001 311 440
15 10 5 2008 3.24 · 104 0.18 148 0.85 20 645 839 3 897 600 1 287 600 5 900 012 17 736 639 6 211 452
21 15 6 2009 1.38 · 105 0.18 225 0.90 46 826 410 3 936 625 1 957 500 13 444 466 58 668 924 19 655 918
27 21 7 2010 5.23 · 105 0.18 311 0.85 83 307 055 3 556 100 2 705 700 21 303 428 135 714 179 40 959 346

Table A.32.: Results of Hamburg planning scenario using the scenario tree with 27 nodes, a construction limit of 100, and
optimization for the expected profit133
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.38 · 101 1.00 0 0.00 0 0 0 0 0 0
2 1 2 2005 5.43 · 101 0.29 0 0.00 0 0 0 0 0 0
4 2 3 2006 1.86 · 102 0.29 0 0.00 0 0 0 0 0 0
7 4 4 2007 9.64 · 102 0.29 0 0.00 0 0 0 0 0 0
11 7 5 2008 3.79 · 103 0.29 41 0.56 1 598 164 2 496 900 356 700 −705 221 −1 255 436 −705 221
16 11 6 2009 5.64 · 104 0.09 101 0.76 16 206 075 3 067 500 878 700 3 900 347 11 004 439 3 195 126
22 16 7 2010 3.00 · 105 0.09 161 0.79 44 698 885 2 481 000 1 400 700 11 252 847 51 821 624 14 447 973
17 11 6 2009 1.50 · 104 0.20 45 0.55 3 100 232 204 500 391 500 824 965 1 248 795 119 743
23 17 7 2010 3.89 · 104 0.20 45 0.55 4 010 562 0 391 500 1 010 014 4 867 857 1 129 757
3 1 2 2005 1.09 · 102 0.70 0 0.00 0 0 0 0 0 0
5 3 3 2006 5.88 · 102 0.52 0 0.00 0 0 0 0 0 0
8 5 4 2007 2.05 · 103 0.36 40 0.57 1 776 491 2 827 000 348 000 −947 101 −1 398 509 −947 101
13 8 5 2008 6.56 · 103 0.24 53 0.61 2 997 109 791 700 461 100 637 366 345 800 −309 736
19 13 6 2009 4.28 · 104 0.24 113 0.79 12 800 281 3 067 500 983 100 2 724 791 9 095 482 2 415 055
25 19 7 2010 1.99 · 105 0.24 143 0.81 30 357 623 1 240 500 1 244 100 7 709 609 36 968 504 10 124 664
12 8 5 2008 2.69 · 103 0.12 40 0.57 1 151 822 0 348 000 323 038 −594 687 −624 063
18 12 6 2009 1.01 · 104 0.12 40 0.52 1 975 108 0 348 000 544 915 1 032 421 −79 148
24 18 7 2010 3.82 · 104 0.12 40 0.51 3 698 950 0 348 000 935 189 4 383 371 856 041
9 5 4 2007 4.35 · 103 0.16 57 0.65 4 288 660 4 028 475 495 900 −502 223 −235 715 −502 223
14 9 5 2008 1.93 · 104 0.16 109 0.79 11 487 273 3 166 800 948 300 2 708 178 7 136 458 2 205 955
20 14 6 2009 7.28 · 104 0.16 169 0.87 23 801 777 3 067 500 1 470 300 6 246 007 26 400 435 8 451 962
26 20 7 2010 3.63 · 105 0.16 229 0.84 57 494 437 2 481 000 1 992 300 14 658 746 79 421 572 23 110 708
6 3 3 2006 1.48 · 103 0.18 41 0.58 2 603 928 3 298 450 356 700 −990 111 −1 051 222 −990 111
10 6 4 2007 6.34 · 103 0.18 101 0.79 7 549 354 4 240 500 878 700 762 951 1 378 933 −227 160
15 10 5 2008 3.24 · 104 0.18 161 0.86 21 009 493 3 654 000 1 400 700 6 118 181 17 333 725 5 891 021
21 15 6 2009 1.38 · 105 0.18 221 0.89 46 526 621 3 067 500 1 922 700 13 705 003 58 870 146 19 596 024
27 21 7 2010 5.23 · 105 0.18 281 0.82 81 298 802 2 481 000 2 444 700 21 175 851 135 243 248 40 771 875

Table A.33.: Results of Hamburg planning scenario using the scenario tree with 27 nodes, a construction limit of 60, and opti-
mization for the expected profit
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.38 · 101 1.00 0 0.00 0 0 0 0 0 0
2 1 2 2005 5.43 · 101 0.29 0 0.00 0 0 0 0 0 0
4 2 3 2006 1.86 · 102 0.29 0 0.00 0 0 0 0 0 0
7 4 4 2007 9.64 · 102 0.29 0 0.00 0 0 0 0 0 0
11 7 5 2008 3.79 · 103 0.29 41 0.56 1 596 390 2 496 900 356 700 −705 934 −1 257 210 −705 934
16 11 6 2009 5.64 · 104 0.09 131 0.71 15 170 707 4 601 250 1 139 700 2 849 817 8 172 547 2 143 883
22 16 7 2010 3.00 · 105 0.09 229 0.79 44 818 797 4 052 300 1 992 300 10 594 982 46 946 744 12 738 865
17 11 6 2009 1.50 · 104 0.20 44 0.54 3 064 569 153 375 382 800 836 481 1 271 184 130 547
23 17 7 2010 3.89 · 104 0.20 44 0.55 3 994 800 0 382 800 1 008 043 4 883 184 1 138 590
3 1 2 2005 1.09 · 102 0.70 0 0.00 0 0 0 0 0 0
5 3 3 2006 5.88 · 102 0.52 0 0.00 0 0 0 0 0 0
8 5 4 2007 2.05 · 103 0.36 40 0.57 1 762 986 2 827 000 348 000 −953 614 −1 412 014 −953 614
13 8 5 2008 6.56 · 103 0.24 50 0.58 2 891 039 609 000 435 000 693 335 435 025 −260 279
19 13 6 2009 4.28 · 104 0.24 117 0.80 12 915 567 3 425 375 1 017 900 2 607 923 8 907 317 2 347 644
25 19 7 2010 1.99 · 105 0.24 143 0.81 30 341 277 1 075 100 1 244 100 7 760 439 36 929 394 10 108 083
12 8 5 2008 2.69 · 103 0.12 40 0.56 1 146 904 0 348 000 321 061 −613 111 −632 553
18 12 6 2009 1.01 · 104 0.12 40 0.52 1 970 924 0 348 000 543 514 1 009 813 −89 039
24 18 7 2010 3.82 · 104 0.12 40 0.52 3 704 714 0 348 000 936 797 4 366 527 847 758
9 5 4 2007 4.35 · 103 0.16 100 0.77 5 036 283 7 067 500 870 000 −2 080 786 −2 901 217 −2 080 786
14 9 5 2008 1.93 · 104 0.16 200 0.82 11 940 484 6 090 000 1 740 000 1 162 424 1 209 267 −918 361
20 14 6 2009 7.28 · 104 0.16 300 0.86 23 703 511 5 112 500 2 610 000 5 009 575 17 190 278 4 091 214
26 20 7 2010 3.63 · 105 0.16 400 0.88 60 221 992 4 135 000 3 480 000 14 450 845 69 797 270 18 542 059
6 3 3 2006 1.48 · 103 0.18 100 0.60 2 677 456 8 045 000 870 000 −4 540 824 −6 237 544 −4 540 824
10 6 4 2007 6.34 · 103 0.18 200 0.84 8 057 638 7 067 500 1 740 000 −1 043 288 −6 987 405 −5 584 112
15 10 5 2008 3.24 · 104 0.18 300 0.89 21 594 745 6 090 000 2 610 000 4 692 622 5 907 339 −891 490
21 15 6 2009 1.38 · 105 0.18 400 0.91 47 557 597 5 112 500 3 480 000 12 706 899 44 872 436 11 815 409
27 21 7 2010 5.23 · 105 0.18 459 0.86 85 084 060 2 439 650 3 993 300 21 813 909 123 523 546 33 629 318

Table A.34.: Results of Hamburg planning scenario using the scenario tree with 27 nodes, a construction limit of 100, and
optimization for AV@R135
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 2.38 · 101 1.00 0 0.00 0 0 0 0 0 0
2 1 2 2005 5.43 · 101 0.29 0 0.00 0 0 0 0 0 0
4 2 3 2006 1.86 · 102 0.29 0 0.00 0 0 0 0 0 0
7 4 4 2007 9.64 · 102 0.29 0 0.00 0 0 0 0 0 0
11 7 5 2008 3.79 · 103 0.29 40 0.55 1 580 492 2 436 000 348 000 −679 458 −1 203 508 −679 458
16 11 6 2009 5.64 · 104 0.09 100 0.68 14 510 318 3 067 500 870 000 3 335 355 9 369 309 2 655 898
22 16 7 2010 3.00 · 105 0.09 160 0.71 40 212 394 2 481 000 1 392 000 10 003 178 45 708 704 12 659 075
17 11 6 2009 1.50 · 104 0.20 42 0.53 2 973 667 102 250 365 400 832 411 1 302 509 152 954
23 17 7 2010 3.89 · 104 0.20 42 0.53 3 876 544 0 365 400 979 896 4 813 652 1 132 849
3 1 2 2005 1.09 · 102 0.70 0 0.00 0 0 0 0 0 0
5 3 3 2006 5.88 · 102 0.52 0 0.00 0 0 0 0 0 0
8 5 4 2007 2.05 · 103 0.36 40 0.57 1 773 823 2 827 000 348 000 −948 388 −1 401 177 −948 388
13 8 5 2008 6.56 · 103 0.24 53 0.60 2 989 272 791 700 461 100 634 216 335 295 −314 172
19 13 6 2009 4.28 · 104 0.24 113 0.79 12 806 134 3 067 500 983 100 2 726 751 9 090 829 2 412 579
25 19 7 2010 1.99 · 105 0.24 143 0.81 30 356 801 1 240 500 1 244 100 7 709 380 36 963 030 10 121 958
12 8 5 2008 2.69 · 103 0.12 40 0.57 1 150 374 0 348 000 322 456 −598 803 −625 932
18 12 6 2009 1.01 · 104 0.12 40 0.52 1 986 510 0 348 000 548 734 1 039 707 −77 198
24 18 7 2010 3.82 · 104 0.12 40 0.52 3 712 506 0 348 000 938 972 4 404 213 861 774
9 5 4 2007 4.35 · 103 0.16 60 0.49 0 4 240 500 522 000 −2 705 729 −4 762 500 −2 705 729
14 9 5 2008 1.93 · 104 0.16 120 0.75 10 924 044 3 654 000 1 044 000 2 208 415 1 463 544 −497 314
20 14 6 2009 7.28 · 104 0.16 180 0.79 21 767 331 3 067 500 1 566 000 5 532 625 18 597 375 5 035 311
26 20 7 2010 3.63 · 105 0.16 240 0.77 52 737 145 2 481 000 2 088 000 13 304 365 66 765 520 18 339 677
6 3 3 2006 1.48 · 103 0.18 60 0.47 0 4 827 000 522 000 −3 654 167 −5 349 000 −3 654 167
10 6 4 2007 6.34 · 103 0.18 120 0.65 6 215 210 4 240 500 1 044 000 39 839 −4 418 290 −3 614 328
15 10 5 2008 3.24 · 104 0.18 180 0.82 19 925 494 3 654 000 1 566 000 5 616 116 10 287 204 2 001 788
21 15 6 2009 1.38 · 105 0.18 240 0.84 43 718 663 3 067 500 2 088 000 12 709 265 48 850 367 14 711 054
27 21 7 2010 5.23 · 105 0.18 300 0.75 73 704 775 2 481 000 2 610 000 19 010 365 117 464 142 33 721 419

Table A.35.: Results of Hamburg planning scenario using the scenario tree with 27 nodes, a construction limit of 60, and opti-
mization for AV@R
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node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 1.17 · 104 1.00 25 0.31 0 1 196 667 54 375 −1 248 619 −1 251 042 −1 248 619
2 1 2 2005 1.74 · 104 1.00 50 0.58 1 606 814 1 115 208 108 750 302 021 −868 186 −946 598
3 2 3 2006 2.59 · 104 1.00 75 0.68 2 358 726 1 033 750 163 125 971 314 293 665 24 717
4 3 4 2007 3.87 · 104 1.00 100 0.77 3 320 504 952 292 217 500 1 755 251 2 444 377 1 779 968
5 4 5 2008 5.77 · 104 1.00 125 0.81 4 404 768 870 833 271 875 2 564 924 5 706 437 4 344 892
6 5 6 2009 8.61 · 104 1.00 150 0.84 5 762 124 789 375 326 250 3 506 707 10 352 935 7 851 599
7 6 7 2010 1.28 · 105 1.00 163 0.85 7 271 498 368 117 354 525 4 747 428 16 901 792 12 599 027
8 7 8 2011 1.92 · 105 1.00 169 0.84 9 033 675 150 350 367 575 5 908 846 25 417 542 18 507 873
9 8 9 2012 2.86 · 105 1.00 172 0.81 10 953 945 65 400 374 100 6 974 331 35 931 987 25 482 204

Table A.36.: Results of quarterly Hamburg planning scenario using the expected traffic evolution, a construction limit of 100,
mandatory coverage

node father stage year KiB/cap prob totSites coverPop inco capE opE CFDis aggCF aggCFDis

1 1 1 2004 1.17 · 104 1.00 15 0.21 0 718 000 32 625 −749 171 −750 625 −749 171
2 1 2 2005 1.74 · 104 1.00 30 0.37 0 669 125 65 250 −698 875 −1 485 000 −1 448 047
3 2 3 2006 2.59 · 104 1.00 45 0.53 1 847 478 620 250 97 875 959 789 −355 647 −488 258
4 3 4 2007 3.87 · 104 1.00 60 0.63 2 718 168 571 375 130 500 1 658 039 1 660 647 1 169 781
5 4 5 2008 5.77 · 104 1.00 75 0.69 3 759 811 522 500 163 125 2 428 273 4 734 832 3 598 054
6 5 6 2009 8.61 · 104 1.00 90 0.74 5 042 584 473 625 195 750 3 310 010 9 108 041 6 908 064
7 6 7 2010 1.28 · 105 1.00 105 0.76 6 534 816 424 750 228 375 4 260 592 14 989 732 11 168 656
8 7 8 2011 1.92 · 105 1.00 120 0.77 8 261 167 375 875 261 000 5 282 474 22 614 024 16 451 130
9 8 9 2012 2.86 · 105 1.00 135 0.75 10 157 059 327 000 293 625 6 317 324 32 150 458 22 768 454

Table A.37.: Results of quarterly Hamburg planning scenario using the expected traffic evolution, a construction limit of 60,
mandatory coverage137
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