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Summary: 
The Buchberger algorithm for the construction of a Gröbner base from a given 
set of polynomials is an example for the calculation with polynomials in distribu­
tive representation. It is shown, that the algorithm can be based on one single 
polynomial operation, a "linear combination". This operation can be rewritten 
as a merge operation such that the arising result can become input for a subse­
quent processing step as soon as the first monomial is "ready". This property 
is the source for parallel execution, which technically is supported by an object-
oriented programming approach and by a process model. 

Notation: 
The developments were based on LISP and REDUCE (Hearn [87]). So for the 
examples a language near to the REDUCE syntax was used, which should be 
self-explanatory. It is the opinion of the authors, that the REDUCE language 
can and should be further developed in order to support advanced structures as 
needed in this context. 
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1. Distributive polynomials and Buchberger 's algorithm 

In the context of Gröbner base calculations, the polynomials are in distributive 
representation. In contrast to the recursive representation, a distributive poly­
nomial (DP) is a linear sequence of monomials (MN), each of which consists of 
a coefficient (C € coefficent domain) and a product of variable powers (PVP): 

DP = [MNu...,MNk] 

= [c1xr--.x^,...,ckx[^---x^} 
j=l,n 

The monomials are ordered in a descending sequence by a global term ordering, 
e.g. inverse lexicographical ordering: 

MNP > MNq *—• 3k < n : (V/ < k : ipl = iql) A ipk > iqk 

The standard constructors and selectors are: 

select leading monomial Lmon([MNi,..., MTV*]) —• MNi 

select reductum Red([MNx, . . . ] ) -> [MN2,...] 

add leading monomial AddL(MN0, [MNI, . . . ] ) - • [MN0, MNt,...] 

With these operators a complete polynomial arithmetic can be constructed. 

The Buchberger algorithm (Bba) constructs critical pairs of polynomials and 
processes them. In this context, we examine its central part in a (for description 
purposes) simplified version, which omits all details (e.g. vanishing polynomials, 
criteria, full reduction). The description of the full Bba can be found in Gebauer, 
Möller [88] and Möller [88]. 

while notempty pairlist do % main loop 
< (Pi>P2) := next pair; 

q := lcrn(Lmon(pi),Lmon(p2)); 
s := (q/Lmon(pi)) *pi — (q/Lmonfa)) *j>2; 
h := s; 

% reduction loop 
while exists r € G such that Lmon(r) divides Lmon(h) do 

h := h — (Lmon(h)/Lmon{r)) * r; 
h := l/(leadingC) * h; % normalizing 
for each r € G construct pair (r, h) 

testing criteria on Lmon(r), Lmon(h); 
G:={h}uG;> 
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When we classify the polynomial operations needed by the Bba we find that: 

(1.1) for the control of the algorithm only the access to the leading monomial is 
necessary, 

(1.2) all arithmetic combinations are special cases of the pattern 

MNX * DPX + MN2 * DP2 

with appropriately constructed monomials. 

These facts will be important for our approach to parallelization. 

2. LCOMB: linear combination as a central tool for 
distributive polynomial operation 

Because of (1.2) we introduce a new operation: 

Lcomb(MNuDPuMN2,DP2) -+ MNX * DPX + MN2 * DP2 

which is a "linear combination" of two polynomials. 

The Bba can be rewritten using Lcomb as single polynomial operation, but 
Lcomb can support the complete polynomial arithmetic as well: 

DPi + DP2 = Lcomb(l, DPU1, DP2) 

DP1 - DP2 = Lcomb(l, DPU - 1 , DP2) 

DPX * DP2 = < x := 0; 

for each MN in DPi do x := Lcomb{\,x,MN,DP2); x > 

The straightforward code for Lcomb is recursive, the depth determined by the 
length of the polynomials (omitting details regarding efficiency etc.). 

proc Lcombl(MN1,DP1,MN2,DP2) : (2.1) 

( d , PVPJ := MNX * Lmon{DPx); (C2, PVP2) := MN2 * Lmon(DP2); 

if PVPX = 0 A PVP2 = 0 then 0 

else if PVP! = PVP2 then 

AddL ((Ci + C2 ,PVPi) ,Lcomb{MNuRed{DP x \MN2 ,Red{DP2))) 

ehe if PVPr > PVP2 then 

AddL((C2,PVP2), Lcomb{MN^Red{DPx), MN2, DP2)) 

else AddL((C2,PVP2),Lcomb^MN^),(DPX,MN2,RedDP2))) 
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Because of the recursion and of the constructor AddL, the leading monomial is 
added last. This technique is efficient for single processor LISP style systems. 

If we add a new constructor 
Append monomial: App ([MNU ..., MNk],MNp) -> [MNU..., MNk,MNp] we 
can reformulate Lcomb in the style of a merge procedure 

ProcLcomb(MNx, DPUMN2, DP2, r) : (2.2) 

begin 

(CuPVPi) := MN1*Lmon(DPl);(C2,PVP2) := MN2 * Lmon(DP2); 

loop : 

if 0 = PVPx = PVP2 then return r; 

if PVPX = PVP2then^r:=App(r1(C1 + C2,PVP1)); 

DP1 ~ RediDP^iCuPVPi) := MNx * Lmon(DPx); 

DP2 := Red(DP2)-(C2,PVP2) := MN2 * Lmon(DP2) > 

else if PVPr > PVP2 then 

< r := A ^ ( r , ( d , P y P 0 ) ; 

DPi := Äcd(DPi) ;(Ci ,PVPi := MNx * Lmon(DPx) > 

eZae 

< r := App(r,(C2,PVP2)); 

DP2 := Red(£>P2);(C2 ,PyP2 := MN2* Lmon(DP2) > ; 

^oio Z002?; 

end; 

In this version the fifth parameter "r" has to be initialized by the caller as an 
empty polynomial; we will need this convention later. 

3. Parallel execution based on Lcomb 

In (2.2) the leading monomial is calculated first and it is the first monomial to 
be linked to the resulting structure. Because of (1.2) we can continue the Bba 
as soon as the leading monomial is available, so we can overlap the operation of 
Lcomb and the processing of its result by the Bba (including further Lcomb's) in a 
multi-processing environment provided that we have a synchronization regarding 
production/access of subsequent monomials. Figure 3.1 demonstrates, that even 
several cycles of the main loop in Bba can operate simultaneously. Note that 
although the global structure of the algorithm looks very homogeneous, it cannot 
be configured as systolic array because the speed of the data flow through Lcomb 
is not constant: if the exponent patterns of the meeting monomials are equal, 
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Figure 3.1: Snapshot of overlapped Lcomb actions: 

S : calculation of an S-polynomial 

R : reduction step 

N : normalizing 

P19 = S(P17, P18) 

P21 = H(P17, P18) 

P23 = S(P22, P3) 
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Lcomb consumes one monomial from both inputs, otherwise from one input 
alternating irregularly and there are steps where no output monomial is produced 
(coefficient extinction). The number of R-boxes between two S-boxes is at all 
not predictable. 

4. Supporting Data Structure: Objects 

We had already given up earlier the linear list as basic data structure for the 
DPs in favour of an object oriented approach in order to support a variety of 
memory organization at the same time. The control mechanisms needed for the 
parallel organization can be added to the object structure without difficulty. 

A DP is an object with the following features: 

- when created the DP is empty, 

- each DP has an individual property list for slot/value pairs, 

- a DP can be in status "new" (MNs can be appended) or in status "old" 
(no more MNs will be appended), 

- the constructors and selectors are implemented as methods individual to 
each DP; the name of a method handler is part of the DP structure; it is 
called indirectly via LISP APPLY. 

The data structure is hidden almost completely. 

D , . Red Pi: 

Figure 4.1: Object structure of a DP "PI" and of its reductum. 
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For efficiency, the access to the leading monomial is "free" (first element in the 
structure); for an efficient appending, the method handlers maintain a bottom 
pointer in order to avoid repeated traversing of the data. 

The head of an object is implemented as list structure. The operation Red pro­
duces a similar object with another first element and identical rest; the original 
object remains unchanged. 

5. Segmentation of the Buchberger Algorithm 

For parallel execution, the Bba has to be segmented into tasks. For the support 
of segmented execution we add two slots to the DP objects: 

- the recipient slot can hold the name of a procedure; this procedure is started 
as soon as the DP is available for subsequent processing (that means exis­
tence of the first monomial in a parallel environment). 

- the process slot holds information about the processing environment of the 
recipient. 

The process slot is needed mainly for the synchronization of data flow: if the 
recipient's request for a monomial is not yet satisfied (operation Red), it is deac­
tivated automatically. An appending of an additional monomial or the marking 
of the DP as "old" reactivates the recipient. 

With this technical background we can rewrite the Bba in a segmented form 
(sBba), which enables overlapped processing. The routine Pcreate (fnc(Pi,..., P„)) 
creates a new process, which performs the function "fnc" with parameters P l 5 . . . , Pn . 
In most cases the last parameter is an object with defined recipient; as soon as 
the first monomial arrives, the object creates a process with this recipient as 
function and itself as parameter. 

proc BbalQ: % calculate S-polynomial 
if empty pairlist then Pcreate (Finale) else 
•C (-P1-F2) := next pair; 

q := lcm{Lmon{Pi), Lmon(P2)); 
Pcreate (Lcomb(q/Lmon(Pi), Px , (—q)/Lmon(P2), P2, 

new DP (recipient = Bba2)) 
> ; 
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proc Bba2(s): % reduce S-polynomial to H-polynomial 
if exists r (E G such that Lmon(r) divides Lmon(s) 

then % reduction step (loop) 
Pcreate (Lcomb(—l, s, Lmon(s)/Lmon(r), r, 

new DP(recipient = Bba2) 
else % normalization step (exit from loop) 

Pcreate (Lcomb(0, 0, l/(leading C of S), S, 
new DP(recipient = Bba3); 

proc Bba3(h): % construct new pairs, add h to G, loop 
<C for each r £ G construct pair (r, h) 

testing criteria on (Lmon(r), Lmon(h); 
G:={h}UG; 
Pcreate (BbalQ); 

> ; 

This version of the Bba is performed as a chain of coroutines: 

Lcomb Lcomb Lcomb 

/ \ / \ / " \ 

Bbal Bba2 Bba2 . . . Bba3 Bba3 

t I 

The routines Bbal - Bba3 control the algorithm and predetermine in the recipient 
slot of the resulting structure the successor of an Lcomb action. 

6. Handling of mixed da ta flow via closures 

In (5) all processes had the simple structure one/two polynomials in - one poly­
nomial out. If a data structure has to traverse several processes, this can be 
formulated by means of Common LISP type closures. As an example, the par­
allel version of the general multiplication of two DPs can be formulated with a 
closure as recipient, which simulates the loop over DPI: 

proc multx(DPi,DP2,DPr): 
ifDPi = 0 then Pcreate (Result(DPr)) 

else 
Pcreate (Lcomb(Lmon(DPi), DP2,l,DPr, 

new DP(recipient = #i(\(r)(DPi := Äed(DPi); multx(DP\,DP2,r)))); 

It is activated with an empty DP (with or without recipient) as third parameter. 

8 



In a similar manner the reduction loop of Bba can be coded, if full reduction (that 
is reduction of monomials behind the first "stable" Lmon of an H-polynomial) is 
required. 

7. Process Model 

The parallel execution requires a technical base, which can handle processes with 
the following features: 

- each process has the full LISP(REDUCE) functionality without I/O func­
tions, 

- each process has fast read access to all data structures, 

- each process can create new data, which will be available for all processes 
immediately, 

- there is a synchronizing mechanism for the safe accessing/updating of crit­
ical data, 

- a process can wait for an event (creation of data in a specific structure). 

There are several different implementations of the last feature possible; the sim­
plest will be a "busy waiting" loop, the best would be a multi-processing envi­
ronment: the processor sets a waiting process asleep and executes another active 
process instead. 

An always important question in parallel processing is the granularity of the 
decomposition. In this approach the "data grain" is the DP, assuming for a 
moment that the data flow is steady. In a complicated calculation the "typi­
cal" intermediate DP has dozens of monomials with quotients of big integers as 
coefficients. 

The overall processing is asynchronous in nature. A forced synchronization only 
takes place in case of monomial extinction. So the case of a zero H-polynomial 
is a local fence for the parallel execution. 

8. Simulation 

For the first implementation of sBba a multi processing systems was simulated 
in a conventional LISP environment. For simplification we assume that all loop 
steps of Lcomb processing one monomial need the same computing time t = 1 
and that Bbal, Bba2 and Bba3 too need the time t = 1 for execution. The 
number of processors available is a parameter which can be set to only value 
between 1 and oo. 
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fl :- 45*p 4 35*s -165«b -38; 
f2 
f3 
f4 
f5 
fB 

35*p + 48*z • 2 5 H - 27*8; 
:- 15*u> 4 25'p*s +30*1 "18H -lB5*b* 
:- -9*u 4 15*p*t 4 28*i*s; 
:- u'p 4 2»z*t - ll*b**3; 
:- 99'u - ll*s*b 43*b*'2; 

'2; 

f7 :- B**2 4 33/50*b 4 2673/10000; 

The Input polynomials for the sample calculation. 

processes 

0 20 40 60 88 

a) One processor available 

processes 

100 120 240 

0 20 40 60 8B 

b) Two processors available 

processes 

100 120 
cycles 

140 160 1B0 200 220 240 

0 20 40 60 80 

c) Three processors available 

processes 

103 120 
cycles 

148 160 180 200 220 248 

0 20 48 68 88 180 

d) Unlimited number of processors 

120 
cycles 

140 160 188 200 228 248 

Figure 8.1: One calculation simulated with different numbers of processors. From (a) 
to (b) there is a "speed-up" of almost two. (d) shows that there is a close connection 
between the length of polynomials and the parallelism. The zero reductions are to be 
seen as bottlenecks. 
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There are three queues: 

Qe executing processes 

Qw processes waiting for execution 

Qs sleeping processes 

At the beginning of each time step t Qe is filled up from Qw up to the number 
of processors available. Then each element of Qe is allowed to execute one step. 
If a process terminates, it is deleted from the Q's. If a process needs data not 
yet available, it moves from Qe to Qa. If data arrive, it moves from Qa to Qw. 
Each process executing in time step t with a record (process^, t#) to a log file. 
This log file allows the evaluation of parallelism in the execution. As an example 
we give a graphical representation of the execution of the well-known "little 
Trinks" (Böge et al [86]) with different numbers of processors. This example is a 
non-typical small one, but it demonstrates the depending length of polynomials 
(= number of time steps) and parallelism. 

9. Parallel execution of the Bba 

The Cray X-MP multiprocessor architecture supports parallel execution by: 

- a large central memory directly accessible by all processors, 

- sets of shared registers and semaphores (each application has its own set) 
with fast access, 

- operating systems which allow an arbitrary mix of sequential and parallel 
applications in a multiprogramming environment. 

With these prerequisites we designed and implemented an experimental parallel 
PSL with the following features: 

• Memory Management: Code and data area are shared completely. There 
is only one heap; all processors are allowed to allocate data in the heap; 
the critical heap pointers reside in shared registers and are protected by a 
semaphore such that their updating is sequentialized. 

• Variable Binding: PSL supports shallow binding for fluid and global vari­
ables. For efficiency we have adopted this technique in the following sense: 
Each processor has its own set of value cells; fluid values are stored in these 
local value cells and will be rebounded when processes are exchanged (so 
the scope of a fluid variable is a calling tree rooted in its binding); global 
variables have a system wide unique value cell. 
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• Process Execution: Each processor has its own scheduler, which takes wait­
ing processes from the queues and executes them. If a process is interrupted 
for missing data, it is deactivated and the scheduler selects another pro­
cess for execution. The interrupt has an S-expression as parameter, which 
describes the reason for the interrupt in form of a test. So the evaluation 
of this test determines, if a process can be resumed. 

• High Level Interface: Usually parallel execution in LISP is coded via the 
"future" feature [Swanson et al]. Futures are adequate to model the dy­
namic behaviour of DPs during construction, but those parts of the Bba 
working with sets of polynomials and critical pairs are not free of side ef­
fects, so they need additional primitives for synchronization. We decided 
to start with more elementary tools which later can be combined in higher 
levels: 

pcreate (jn, pars) creates a new process as an asynchronous apply. 

pinterrupi (test) interrupts an execution until the value of test will be T. 
In the Bba this primitive is called only in the most inner DP access 
routine. 

plock (sem) requests exclusive access to a resource described by a user 
semaphore (global variable). 

punlock (sem) releases exclusive usage. 

Note that a request for an already locked semaphore causes an interrupt. The 
user semaphores are not identical with the hardware semaphores; the latter cause 
a processor to wait and they can be used for very short code sequences, e.g. for 
the implementation of a "test-and-set" of user semaphores. 

There is no theoretical limit for the number of processors handled by this organi­
zation, although the concurrent heap management can become a bottleneck for 
larger numbers of processors. In the ideal case of no contention each processor 
operates with the full speed of the standard Cray PSL. 

First experimental calculation with the parallel Bba on a 2-processor X-MP were 
performed with the "Big Trinks" examples from [Böge et al]. At the moment 
only the total cpu time (spent on both processors) was measured in order to 
get an impression of the overhead produced by the process management and the 
interrupts. All these tests were done in the standard workload which of course 
imposes additional interrupts by scheduling both processors freely among all user 
jobs. 
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conventional program with 3.6 sec 

parallel program with 

1 processor assigned 3.7 sec 

parallel program with 

2 processors assigned 3.7 sec - 4.5 sec 

(average 4.0 sec) 

These tests will be continued with larger examples and a dedicated environment 
when the basic implementation reaches stable state. 

10. Further Parallelism in the Bba 

Until now the Buchberger algorithm itself remained untouched. All actions take 
place in the same order as described in [Gebauer, Möller]; the parallelism is 
based only on overlapping of steps in a context comparable to pipelining. If we 
denote with LCP the list of critical pairs and with t the number of h-polynomial 
calculation, the sequence of operations is: 

select one critical pair from LCP(t) 

calculate h(t+l) from this pair 

update LCP(t) with h(t+l) giving LCP(t+l) 

If LCP(t) has more than one element (which is true in most steps), more than 
one h-calculation can be started at the same time or, e.g. if a processor idles, a 
new pair can be selected from LCP(t) before LCP( t+ l ) . This technique requires 
additional bookkeeping, but a higher degree of parallelism can be expected. The 
price for that parallelism is that a calculation could be started, which would be 
recognized obsolete during the next update of LCP. These effects will be object 
of further investigation. 
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