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Abstract

We consider a variant of the classical lot-sizing problem in which the
capacity in each period is an integer multiple of some basic batch size.
Pochet and Wolsey [3] presented an O(n? min{n, C’}) algorithm to solve
this problem and a linear program with O(n?) variables and inequalities,
where n is the number of periods and C the batch size. We provide a
linear program of size O(n? min{n,C}), that is, in case that C' < n, our
formulation is smaller.
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We study a variant of the classical lot-sizing problem which is called lot-sizing
problem with constant batches. It can be defined by the following variables and
constraints. We are given n time periods, t = 1,...,n, and a capacity C' € N.
In each period ¢ there is a positive demand d; € N, a stock cost h;, a unit
production cost p;, and a fixed cost f; per batch of capacity C. Introducing a
period ¢t = 0, the problem can be formulated as:

(LCB) min Y, (hese + pere + feye)

s.t. So=58,=0,
St_1 +xr = di + 8¢, t=1,...,n,
xr < Cuyy, t=1,...,n,
x>0, 5 >0, yy € Z4, t=1,...,n,

where s; is the stock at the end of period ¢, z; is the production in period ¢,
and y; is the number of batches provided in period ¢.

Pochet and Wolsey [3] presented an O(n? min{n,C}) dynamic program as
well as a linear program of size O(n?) to solve the mixed integer program (LCB).
Both approaches are based on the fact that (LCB) can be reduced to a shortest
path problem over so-called regeneration intervals. Given a feasible solution
(s,z,y) of (LCB), this is an interval [«, 8] of periods with o < /8 such that
Sa—1 =8g=0and s, >0fort =a,a+1,...,8—1. Let D, = (V, A) be the
acyclic digraph defined by V := {0,1,...,n} and A:={(4,j) e VxV|0<i<
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j < n}. Then, a feasible solution (s, x,y) obviously corresponds to a (0, n)-path
P in D,, such that (4, j) € P if and only if [i + 1, j] forms a regeneration interval
for (s,z,y). If (s,z,y) is an optimal extreme solution and [«, 5] a regeneration
interval for (s,z,y), then in all periods ¢ € {«,..., [} except for some period
j, x¢ = Cy, and in period j, ; = C(y; — 1) + rop if rqp > 0 and z; = Cy; if
rop = 0, where 1,z is the remainder of the integral division of dng := Zf:a dy
by C. Moreover, denoting by (LCB,g) problem (LCB) restricted to the interval
[ev, B] (this means, (LCB,p) is obtained by replacing 1 by a and n by 8 and by
¢ap the optimal cost of (LCB,g), then an optimal extreme solution of (LCB)
corresponds to a (0,n)-path P in D, minimizing }Z; - cp Git1,5-

Pochet and Wolsey [3] presented a dynamic program that calculates ¢op in
time O(n). Since there are in(n — 1) different intervals [av, 3], the calculation
of all ¢, requires at most O(n?) calculations. A shortest path can be found in
time O(n?), and hence, (LCB) can be solved in time O(n?).

This solution scheme can be expressed by linear programming. For any in-
terval [a, B], the cost @ap is the optimal objective value of the linear program
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where e; := p; + Z;L:t hj for t =1,...,n. The inequality system of (LP,g) is
totally unimodular, and hence, its vertex solutions are integral. In any vertex
solution, y;* # is the number of batches provided in period ¢ and 6?5 is a binary
variable which is equal to one if and only if the remainder r,g is produced in
period 1.

Coupling the linear programs (LP,g), 1 < a < 8 < n, by a shortest path
formulation, we obtain a linear program of size O(n?) to solve (LCB):
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n
> z0s =1, (4)
=1

t—1 n
Sz > ap=0, t=1...n-1, (5)
a=0

B=t+1
Zac13>0, 1<a<p<n. (6)

Next, we give the smaller formulation. Pochet and Wolsey [3] showed that
for any two regeneration intervals [, 3], [a,v] with 8 < v and 743 = r4, one
needs to run only the dynamic program to calculate ¢,., as one the interme-
diate solutions of their algorithm provides ¢,3. There are at most C' different
remainders, 0,1,...,C — 1. Thus, for each a and each remainder r, we have
to run the dynamic program at most once to calculate all ¢, with rop = r.
Hence, (LCB) can be solved in time O(n? min{n, C}).

The above algorithmic shortcut can be reflected by linear programming as
follows. For each a and each remainder r, let T*" be the collection of all time
periods 8 > « such that ¢op = 7, let M be the set of all pairs (o, r) for which
T°7 is nonempty, and for each (a, 1) € M, let y(«,r) := maxgerar 3. Consider
the linear program (LP’) which can be obtained by aggregating inequalities and
identifying variables of (LP).

v(a,r)
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fort=a,a+1...,v(a,7), (a,7) € M,
y;i" €f" > 0for j=a,a+1...,9(a,7),(a,7) € M, (9)
z satisfies (4)-(6).

Theorem 1. (LP’) solves (LBC).

Proof. We denote the inequality (1) associated with [a, ] and ¢t € [«, 5] by
(L:r, B8,t). Similarly, we access to the inequalities (2:a, 8,t), (7T:a,7,t) and
(8:ax, 1, 1).

Let (y,€,2) be a feasible solution of (LP). Define (g,€, Z) in the space of
(LP?) by

Yo A A ap
yj T Z yj 9
BETOT:
B=3

G > 6?5 for j=a,a+1,....,v(a,7), (a,7) € M, (10)
BeTAT:
5>

zZi=Z.



Clearly, (7, €, z) satisfies (4)-(6) and (9). To show that (g, €, Z) also satisfies (7)-
(8), consider any (o,7) € M and any ¢t € {o, a+1,...,7(e,r)}. Summing up the
inequalities (1:a, 8, 8) for 8 € T*" with 8 < t and the inequalities (1:ax, 8,t) for
B € T with 8 > ¢, and replacing in the resulting inequality (y, €, z) by (7, €, 2)
according to (10), we obtain the inequality (7:c, 7, t). Inequality (8:c,r,t) can
be obtained similarly. Thus, (7,¢€, 2) satisfies (7)-(8), and hence, (7, 2) is a
feasible solution of (LP’). Since

M=
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both (y,€,2) and (7, €, Z) have the same objective value. This implies that the
optimal objective value of (LP’) is at most the optimal objective value of (LP).

To show the converse, let (y,¢€,2) be an optimal solution of (LP’). W.lo.g.
we assume that y$" = €5 =0 for j = a,a+1,...,7(a,7) if 24—1,5 = 0 for all
B € T*". This implies that for all (o,7) € M and all ¢t € {a,...,7(,7)}, there
exist Ao, r,t), p(a,r,t) > 0 such that
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For each 1 < a < 8 < n, define (g3 ﬂﬂ) t = «,...,03 as solution of the
(nonsingular) system

Ziaﬁ (( “c 7—"")‘(0‘7“”)20471,,8, t=a,...,p0,
: (12)
§< +&7) = ([%t] + plo,r, 1) zam1,8, t=0,.... 5

where r = ro3. Then, (g, €, 2), with Z := 2, is a feasible solution of (LP) whose
objective value is at most the (optimal) objective value of (y, ¢, z). O

The original variables x;, y; can be obtained by

Z (Cys™ 4+ re™), (13)

(e,r)EM:
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o= 3 e, (14)
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and hence (LCB) can be rewritten as the size O(n? min{n, C}) linear program

min Y (exxy + frye) s.t.
((xta yt)tzl,...,na (ytar’ E?r)(a,r)eM,t:a,...,w(a,r)7 Z) satisfies (4)_(9)a (13)_(14)

1 Extensions

In this paper, we presented an O(n?min{n,C}) compact formulation for the
lot-sizing problem with constant batches. We would like to close the paper with
three remarks on related topics and future research.

Let the polyhedron P be the convex hull of the feasible solutions (s,z,y)
of (LCB). Pochet and Wolsey [3] introduced a rich class of facet defining in-
equalities for P and showed that they are the only inequalities of a certain type.
It is, however, unknown whether there are further facet defining inequalities for
P or not. Since our compact formulation (LP’) is tighter than (LP), it maybe
contributes to a better understanding of the facial structure of P via projection.
For a description of the technique to derive facets by projection, see Balas [1].

The linear program (LP) is an example of branched polyhedral systems intro-
duced by Kaibel and Loos [2], a framework for combining extended formulations.
In our application, the extended formulations (LP,g) for the calculation of the
costs ¢qp of the regeneration intervals (o, §] are combined with a shortest path
formulation. Further examples for combining extended formulations are given
in [4].

In the literature, many variations and extensions of (LCB) are discussed, for
instance, lot sizing with constant batch size and upper bounds on the y-variables
and/or backlogging and/or Wagner-Within costs. The results of Pochet and
Wolsey [3] indicate that in case of upper bounds y; < b; (¢t = 1,...,n), (LP’)
becomes useless. Backlogging, however, can be incorporated in the linear pro-
gram (LP’) if no upper bounds on the y-variables are installed. For details
about these variations, see Van Vyve [5].
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