

Smaller compact formulation for lot-sizing with constant batches

Smaller compact formulation for lot-sizing with constant batches

Rüdiger Stephan* \dagger

Abstract

We consider a variant of the classical lot-sizing problem in which the capacity in each period is an integer multiple of some basic batch size. Pochet and Wolsey [3] presented an $\mathcal{O}\left(n^{2} \min \{n, C\}\right)$ algorithm to solve this problem and a linear program with $\mathcal{O}\left(n^{3}\right)$ variables and inequalities, where n is the number of periods and C the batch size. We provide a linear program of size $\mathcal{O}\left(n^{2} \min \{n, C\}\right)$, that is, in case that $C<n$, our formulation is smaller.

Keywords: compact formulation, lot-sizing, constant batch size

We study a variant of the classical lot-sizing problem which is called lot-sizing problem with constant batches. It can be defined by the following variables and constraints. We are given n time periods, $t=1, \ldots, n$, and a capacity $C \in \mathbb{N}$. In each period t there is a positive demand $d_{t} \in \mathbb{N}$, a stock cost h_{t}, a unit production cost p_{t}, and a fixed cost f_{t} per batch of capacity C. Introducing a period $t=0$, the problem can be formulated as:
$(\mathrm{LCB}) \quad \min \sum_{t=1}^{n}\left(h_{t} s_{t}+p_{t} x_{t}+f_{t} y_{t}\right)$

$$
\begin{array}{ll}
\text { s.t. } s_{0}=s_{n}=0, & \\
& s_{t-1}+x_{t}=d_{t}+s_{t}, \\
x_{t} \leq C y_{t}, & t=1, \ldots, n, \\
& t=1, \ldots, n,
\end{array}
$$

where s_{t} is the stock at the end of period t, x_{t} is the production in period t, and y_{t} is the number of batches provided in period t.

Pochet and Wolsey [3] presented an $\mathcal{O}\left(n^{2} \min \{n, C\}\right)$ dynamic program as well as a linear program of size $\mathcal{O}\left(n^{3}\right)$ to solve the mixed integer program (LCB). Both approaches are based on the fact that (LCB) can be reduced to a shortest path problem over so-called regeneration intervals. Given a feasible solution (s, x, y) of (LCB), this is an interval $[\alpha, \beta]$ of periods with $\alpha \leq \beta$ such that $s_{\alpha-1}=s_{\beta}=0$ and $s_{t}>0$ for $t=\alpha, \alpha+1, \ldots, \beta-1$. Let $D_{n}=(V, A)$ be the acyclic digraph defined by $V:=\{0,1, \ldots, n\}$ and $A:=\{(i, j) \in V \times V \mid 0 \leq i<$

[^0]$j \leq n\}$. Then, a feasible solution (s, x, y) obviously corresponds to a $(0, n)$-path P in D_{n} such that $(i, j) \in P$ if and only if $[i+1, j]$ forms a regeneration interval for (s, x, y). If (s, x, y) is an optimal extreme solution and $[\alpha, \beta]$ a regeneration interval for (s, x, y), then in all periods $t \in\{\alpha, \ldots, \beta\}$ except for some period $j, x_{t}=C y_{t}$, and in period $j, x_{j}=C\left(y_{j}-1\right)+r_{\alpha \beta}$ if $r_{\alpha \beta}>0$ and $x_{j}=C y_{j}$ if $r_{\alpha \beta}=0$, where $r_{\alpha \beta}$ is the remainder of the integral division of $d_{\alpha \beta}:=\sum_{t=\alpha}^{\beta} d_{t}$ by C. Moreover, denoting by $\left(\mathrm{LCB}_{\alpha \beta}\right)$ problem (LCB) restricted to the interval $[\alpha, \beta]$ (this means, $\left(\mathrm{LCB}_{\alpha \beta}\right)$ is obtained by replacing 1 by α and n by β and by $\phi_{\alpha \beta}$ the optimal cost of $\left(\mathrm{LCB}_{\alpha \beta}\right)$, then an optimal extreme solution of (LCB) corresponds to a ($0, n$)-path P in D_{n} minimizing $\sum_{(i, j) \in P} \phi_{i+1, j}$.

Pochet and Wolsey [3] presented a dynamic program that calculates $\phi_{\alpha \beta}$ in time $\mathcal{O}(n)$. Since there are $\frac{1}{2} n(n-1)$ different intervals $[\alpha, \beta]$, the calculation of all $\phi_{\alpha \beta}$ requires at most $\mathcal{O}\left(n^{3}\right)$ calculations. A shortest path can be found in time $\mathcal{O}\left(n^{2}\right)$, and hence, (LCB) can be solved in time $\mathcal{O}\left(n^{3}\right)$.

This solution scheme can be expressed by linear programming. For any interval $[\alpha, \beta]$, the cost $\phi_{\alpha \beta}$ is the optimal objective value of the linear program

$$
\begin{array}{r}
\left(\mathrm{LP}_{\alpha \beta}\right) \quad \min \sum_{i=\alpha}^{\beta}\left[\left(C e_{i}+f_{i}\right) y_{i}^{\alpha \beta}+\left(r_{\alpha \beta} e_{i}+f_{i}\right) \epsilon_{i}^{\alpha \beta}\right] \\
\text { s.t. } \sum_{j=\alpha}^{t} y_{j}^{\alpha \beta} \geq\left\lceil\frac{d_{\alpha t}-r_{\alpha \beta}}{C}\right\rceil, \quad t=\alpha, \ldots, \beta \\
\sum_{j=\alpha}^{t}\left(y_{j}^{\alpha \beta}+\epsilon_{j}^{\alpha \beta}\right) \geq\left\lceil\frac{d_{\alpha t}}{C}\right\rceil, \quad t=\alpha, \ldots, \beta \\
y_{j}^{\alpha \beta}, \epsilon_{j}^{\alpha \beta} \geq 0, \quad j=\alpha, \ldots, \beta
\end{array}
$$

where $e_{t}:=p_{t}+\sum_{j=t}^{n} h_{j}$ for $t=1, \ldots, n$. The inequality system of $\left(\mathrm{LP}_{\alpha \beta}\right)$ is totally unimodular, and hence, its vertex solutions are integral. In any vertex solution, $y_{i}^{\alpha \beta}$ is the number of batches provided in period i and $\epsilon_{i}^{\alpha \beta}$ is a binary variable which is equal to one if and only if the remainder $r_{\alpha \beta}$ is produced in period i.

Coupling the linear programs $\left(\operatorname{LP}_{\alpha \beta}\right), 1 \leq \alpha \leq \beta \leq n$, by a shortest path formulation, we obtain a linear program of size $\mathcal{O}\left(n^{3}\right)$ to solve (LCB):

$$
\begin{array}{r}
\min \sum_{\alpha=1}^{n} \sum_{\beta=\alpha}^{n} \sum_{i=\alpha}^{\beta}\left[\left(C e_{i}+f_{i}\right) y_{i}^{\alpha \beta}+\left(r_{\alpha \beta} e_{i}+f_{i}\right) \epsilon_{i}^{\alpha \beta}\right] \\
\text { s.t. } \sum_{j=\alpha}^{t} y_{j}^{\alpha \beta} \geq\left\lceil\frac{d_{\alpha t}-r_{\alpha \beta}}{C}\right\rceil z_{\alpha-1, \beta}, \quad t=\alpha, \ldots, \beta, 1 \leq \alpha \leq \beta \leq n, \\
\sum_{j=\alpha}^{t}\left(y_{j}^{\alpha \beta}+\epsilon_{j}^{\alpha \beta}\right) \geq\left\lceil\frac{d_{\alpha t}}{C}\right\rceil z_{\alpha-1, \beta}, \quad t=\alpha, \ldots, \beta, 1 \leq \alpha \leq \beta \leq n, \\
y_{j}^{\alpha \beta}, \epsilon_{j}^{\alpha \beta} \geq 0, \quad j=\alpha, \ldots, \beta, 1 \leq \alpha \leq \beta \leq n, \tag{3}
\end{array}
$$

$$
\begin{align*}
\sum_{\beta=1}^{n} z_{0 \beta} & =1, \tag{4}\\
\sum_{\alpha=0}^{t-1} z_{\alpha t}-\sum_{\beta=t+1}^{n} z_{t \beta} & =0, \quad t=1, \ldots, n-1, \tag{5}\\
z_{\alpha-1, \beta} \geq 0, & 1 \leq \alpha \leq \beta \leq n . \tag{6}
\end{align*}
$$

Next, we give the smaller formulation. Pochet and Wolsey [3] showed that for any two regeneration intervals $[\alpha, \beta],[\alpha, \gamma]$ with $\beta<\gamma$ and $r_{\alpha \beta}=r_{\alpha \gamma}$ one needs to run only the dynamic program to calculate $\phi_{\alpha \gamma}$, as one the intermediate solutions of their algorithm provides $\phi_{\alpha \beta}$. There are at most C different remainders, $0,1, \ldots, C-1$. Thus, for each α and each remainder r, we have to run the dynamic program at most once to calculate all $\phi_{\alpha \beta}$ with $r_{\alpha \beta}=r$. Hence, (LCB) can be solved in time $\mathcal{O}\left(n^{2} \min \{n, C\}\right)$.

The above algorithmic shortcut can be reflected by linear programming as follows. For each α and each remainder r, let $T^{\alpha r}$ be the collection of all time periods $\beta \geq \alpha$ such that $\phi_{\alpha \beta}=r$, let M be the set of all pairs (α, r) for which $T^{\alpha r}$ is nonempty, and for each $(\alpha, r) \in M$, let $\gamma(\alpha, r):=\max _{\beta \in T^{\alpha r}} \beta$. Consider the linear program (LP') which can be obtained by aggregating inequalities and identifying variables of (LP).

$$
\begin{array}{r}
\text { s.t. }\left\{\sum_{j=\alpha}^{t} y_{j}^{\alpha r} \geq \sum_{\substack{\beta \in T^{\alpha r} ; \\
\beta<t}}\left\lceil\frac{d_{\alpha \beta}-r}{C}\right\rceil z_{\alpha-1, \beta}+\left\lceil\frac{d_{\alpha t}-r}{C}\right\rceil \sum_{\substack{\beta \in T \alpha r^{\alpha} ; \\
\beta \geq t}} z_{\alpha-1, \beta}\right. \\
\left.\sum_{j=\alpha}^{t}\left(y_{j}^{\alpha r}+\epsilon_{j}^{\alpha r}\right) \geq \sum_{\substack{\beta \in T^{\alpha r} ; \\
\beta<t}}\left\lceil\frac{d_{\alpha \beta}}{C}\right\rceil z_{\alpha-1, \beta}+\left\lceil\frac{d_{\alpha t}}{C}\right\rceil \sum_{\substack{\beta \in T \alpha r_{i} \\
\beta \geq t}} z_{\alpha-1, \beta},\right\} \\
\text { for } t=\alpha, \alpha+1 \ldots, \gamma(\alpha, r),(\alpha, r) \in M, \\
y_{j}^{\alpha r}, \epsilon_{j}^{\alpha r} \geq 0 \text { for } j=\alpha, \alpha+1 \ldots, \gamma(\alpha, r),(\alpha, r) \in M, \tag{9}\\
z \text { satisfies (4)-(6). }
\end{array}
$$

Theorem 1. (LP') solves ($L B C$).
Proof. We denote the inequality (1) associated with $[\alpha, \beta]$ and $t \in[\alpha, \beta]$ by (1: $\alpha, \beta, t)$. Similarly, we access to the inequalities $(2: \alpha, \beta, t),(7: \alpha, r, t)$ and (8: $\alpha, r, t)$.

Let (y, ϵ, z) be a feasible solution of (LP). Define $(\bar{y}, \bar{\epsilon}, \bar{z})$ in the space of (LP') by

$$
\begin{align*}
\bar{y}_{j}^{\alpha r} & :=\sum_{\substack{\beta \in T \alpha r: \\
\beta \geq j}} y_{j}^{\alpha \beta}, \\
\bar{\epsilon}_{j}^{\alpha r} & :=\sum_{\substack{\beta \in T \alpha r: \\
\beta \geq j}} \epsilon_{j}^{\alpha \beta} \quad \text { for } j=\alpha, \alpha+1, \ldots, \gamma(\alpha, r),(\alpha, r) \in M, \tag{10}\\
\bar{z} & :=z .
\end{align*}
$$

Clearly, $(\bar{y}, \bar{\epsilon}, \bar{z})$ satisfies (4)-(6) and (9). To show that ($\bar{y}, \bar{\epsilon}, \bar{z}$) also satisfies (7)(8), consider any $(\alpha, r) \in M$ and any $t \in\{\alpha, \alpha+1, \ldots, \gamma(\alpha, r)\}$. Summing up the inequalities $(1: \alpha, \beta, \beta)$ for $\beta \in T^{\alpha r}$ with $\beta<t$ and the inequalities $(1: \alpha, \beta, t)$ for $\beta \in T^{\alpha r}$ with $\beta \geq t$, and replacing in the resulting inequality (y, ϵ, z) by $(\bar{y}, \bar{\epsilon}, \bar{z})$ according to (10), we obtain the inequality ($7: \alpha, r, t$). Inequality ($8: \alpha, r, t$) can be obtained similarly. Thus, $(\bar{y}, \bar{\epsilon}, \bar{z})$ satisfies (7)-(8), and hence, $(\bar{y}, \bar{\epsilon}, \bar{z})$ is a feasible solution of (LP'). Since

$$
\begin{aligned}
& \sum_{\alpha=1}^{n} \sum_{\beta=\alpha}^{n} \sum_{i=\alpha}^{\beta}\left[\left(C e_{i}+f_{i}\right) y_{i}^{\alpha \beta}+\left(r_{\alpha \beta} e_{i}+f_{i}\right) \epsilon_{i}^{\alpha \beta}\right] \\
= & \sum_{(\alpha, r) \in M} \sum_{\beta \in T^{\alpha r}} \sum_{i=\alpha}^{\beta}\left[\left(C e_{i}+f_{i}\right) y_{i}^{\alpha \beta}+\left(r e_{i}+f_{i}\right) \epsilon_{i}^{\alpha \beta}\right] \\
= & \sum_{(\alpha, r) \in M} \sum_{i=\alpha}^{\gamma(\alpha, r)}\left[\left(C e_{i}+f_{i}\right) \bar{y}_{i}^{\alpha r}+\left(r e_{i}+f_{i}\right) \bar{\epsilon}_{i}^{\alpha r}\right],
\end{aligned}
$$

both (y, ϵ, z) and $(\bar{y}, \bar{\epsilon}, \bar{z})$ have the same objective value. This implies that the optimal objective value of ($L P P^{\prime}$) is at most the optimal objective value of (LP).

To show the converse, let (y, ϵ, z) be an optimal solution of (LP'). W.l.o.g. we assume that $y_{j}^{\alpha r}=\epsilon_{j}^{\alpha r}=0$ for $j=\alpha, \alpha+1, \ldots, \gamma(\alpha, r)$ if $z_{\alpha-1, \beta}=0$ for all $\beta \in T^{\alpha r}$. This implies that for all $(\alpha, r) \in M$ and all $t \in\{\alpha, \ldots, \gamma(\alpha, r)\}$, there exist $\lambda(\alpha, r, t), \mu(\alpha, r, t) \geq 0$ such that

$$
\begin{align*}
\sum_{j=\alpha}^{t} y_{j}^{\alpha r}= & \sum_{\substack{\beta \in T \alpha r:}}\left(\left\lceil\frac{d_{\alpha \beta}-r}{C}\right\rceil+\lambda(\alpha, r, \beta)\right) z_{\alpha-1, \beta} \\
+ & \left(\left\lceil\frac{d_{\alpha t}-r}{C}\right\rceil+\lambda(\alpha, r, t)\right) \sum_{\substack{\beta \in T \alpha r \\
\beta \geq t}} z_{\alpha-1, \beta}, \\
\sum_{j=\alpha}^{t}\left(y_{j}^{\alpha r}+\epsilon_{j}^{\alpha r}\right)= & \sum_{\substack{\beta \in T^{\alpha r}:}}\left(\left\lceil\frac{d_{\alpha \beta}}{C}\right\rceil+\mu(\alpha, r, \beta)\right) z_{\alpha-1, \beta} \tag{11}\\
& +\left(\left\lceil\frac{d_{\alpha t}}{C}\right\rceil+\mu(\alpha, r, t)\right) \sum_{\substack{\beta \in T \alpha r^{\alpha}: \\
\beta \geq t}} z_{\alpha-1, \beta} .
\end{align*}
$$

For each $1 \leq \alpha \leq \beta \leq n$, define $\left(\tilde{y}_{t}^{\alpha \beta}, \tilde{\epsilon}_{t}^{\alpha \beta}\right), t=\alpha, \ldots, \beta$ as solution of the (nonsingular) system

$$
\begin{align*}
\sum_{j=\alpha}^{t} \bar{y}_{j}^{\alpha \beta}=\left(\left\lceil\frac{d_{\alpha t}-r}{C}\right\rceil+\lambda(\alpha, r, t)\right) z_{\alpha-1, \beta}, \quad t=\alpha, \ldots, \beta, \\
\sum_{j=\alpha}^{t}\left(\bar{y}_{j}^{\alpha \beta}+\bar{\epsilon}_{j}^{\alpha \beta}\right)=\left(\left\lceil\frac{d_{\alpha t}}{C}\right\rceil+\mu(\alpha, r, t)\right) z_{\alpha-1, \beta}, \quad t=\alpha, \ldots, \beta, \tag{12}
\end{align*}
$$

where $r=r_{\alpha \beta}$. Then, $(\tilde{y}, \tilde{\epsilon}, \tilde{z})$, with $\tilde{z}:=z$, is a feasible solution of (LP) whose objective value is at most the (optimal) objective value of (y, ϵ, z).

The original variables x_{i}, y_{i} can be obtained by

$$
\begin{align*}
& x_{i}=\sum_{\substack{(\alpha, r) \in M: \\
\alpha \leq i}}\left(C y_{i}^{\alpha r}+r \epsilon_{i}^{\alpha r}\right), \tag{13}\\
& y_{i}=\sum_{\substack{(\alpha, r) \in M: \\
\alpha \leq i}}\left(y_{i}^{\alpha r}+\epsilon_{i}^{\alpha r}\right), \tag{14}
\end{align*}
$$

and hence (LCB) can be rewritten as the size $\mathcal{O}\left(n^{2} \min \{n, C\}\right)$ linear program

$$
\begin{gathered}
\min \sum_{t=1}^{n}\left(e_{t} x_{t}+f_{t} y_{t}\right) \text { s.t. } \\
\left(\left(x_{t}, y_{t}\right)_{t=1, \ldots, n},\left(y_{t}^{\alpha r}, \epsilon_{t}^{\alpha r}\right)_{(\alpha, r) \in M, t=\alpha, \ldots, \gamma(\alpha, r)}, z\right) \text { satisfies }(4)-(9),(13)-(14)
\end{gathered}
$$

1 Extensions

In this paper, we presented an $\mathcal{O}\left(n^{2} \min \{n, C\}\right)$ compact formulation for the lot-sizing problem with constant batches. We would like to close the paper with three remarks on related topics and future research.

Let the polyhedron P be the convex hull of the feasible solutions (s, x, y) of (LCB). Pochet and Wolsey [3] introduced a rich class of facet defining inequalities for P and showed that they are the only inequalities of a certain type. It is, however, unknown whether there are further facet defining inequalities for P or not. Since our compact formulation (LP') is tighter than (LP), it maybe contributes to a better understanding of the facial structure of P via projection. For a description of the technique to derive facets by projection, see Balas [1].

The linear program (LP) is an example of branched polyhedral systems introduced by Kaibel and Loos [2], a framework for combining extended formulations. In our application, the extended formulations $\left(\mathrm{LP}_{\alpha \beta}\right)$ for the calculation of the costs $\phi_{\alpha \beta}$ of the regeneration intervals $[\alpha, \beta]$ are combined with a shortest path formulation. Further examples for combining extended formulations are given in [4].

In the literature, many variations and extensions of (LCB) are discussed, for instance, lot sizing with constant batch size and upper bounds on the y-variables and/or backlogging and/or Wagner-Within costs. The results of Pochet and Wolsey [3] indicate that in case of upper bounds $y_{t} \leq b_{t}(t=1, \ldots, n)$, (LP') becomes useless. Backlogging, however, can be incorporated in the linear program (LP') if no upper bounds on the y-variables are installed. For details about these variations, see Van Vyve [5].

References

[1] Balas, E., Projection, lifting and extended formulation integer and combinatorial optimization, Ann. Oper. Res. 140 (2005), pp. 125-161.
[2] Kaibel, V. and A. Loos, Branched polyhedral systems, In Eisenbrand, F. and Shepherd, B. (eds.): Integer programming and combinatorial optimization. Proceedings of IPCO XIV, Ithaca NY. Lecture Notes in Computer Science 6080, Springer, 283-340 (2010).
[3] Pochet, Y. and L. A. Wolsey, Lot-sizing with constant batches: Formulation and valid inequalities, Math. Oper. Res. 18 (1993), pp. 767-785.
[4] Stephan, R., An extension of disjunctive programming and its impact for compact tree formulations, Discussion papers 2010/45, Center for Operations Research and Econometrics, Université catholique de Louvain (2010).
[5] Van Vyve, M., Linear-programming extended formulations for the singleitem lot-sizing problem with backlogging and constant capacity, Math. Program. 108 (2006), pp. 53-77.

[^0]: *Zuse Institute Berlin, Takustr. 7, D-14195 Berlin, Germany
 ${ }^{\dagger}$ Technical University Berlin, Str. d. 17. Juni 136, 10623 Berlin, Germany, email: stephan@math.tu-berlin.de

