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Abstract

We consider a variant of the classical lot-sizing problem in which the
capacity in each period is an integer multiple of some basic batch size.
Pochet and Wolsey [3] presented an O(n2 min{n,C}) algorithm to solve
this problem and a linear program with O(n3) variables and inequalities,
where n is the number of periods and C the batch size. We provide a
linear program of size O(n2 min{n,C}), that is, in case that C < n, our
formulation is smaller.
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We study a variant of the classical lot-sizing problem which is called lot-sizing
problem with constant batches. It can be defined by the following variables and
constraints. We are given n time periods, t = 1, . . . , n, and a capacity C ∈ N.
In each period t there is a positive demand dt ∈ N, a stock cost ht, a unit
production cost pt, and a fixed cost ft per batch of capacity C. Introducing a
period t = 0, the problem can be formulated as:

(LCB) min
∑n
t=1(htst + ptxt + ftyt)

s.t. s0 = sn = 0,

st−1 + xt = dt + st, t = 1, . . . , n,

xt ≤ Cyt, t = 1, . . . , n,

xt ≥ 0, st ≥ 0, yt ∈ Z+, t = 1, . . . , n,

where st is the stock at the end of period t, xt is the production in period t,
and yt is the number of batches provided in period t.

Pochet and Wolsey [3] presented an O(n2 min{n,C}) dynamic program as
well as a linear program of size O(n3) to solve the mixed integer program (LCB).
Both approaches are based on the fact that (LCB) can be reduced to a shortest
path problem over so-called regeneration intervals. Given a feasible solution
(s, x, y) of (LCB), this is an interval [α, β] of periods with α ≤ β such that
sα−1 = sβ = 0 and st > 0 for t = α, α + 1, . . . , β − 1. Let Dn = (V,A) be the
acyclic digraph defined by V := {0, 1, . . . , n} and A := {(i, j) ∈ V × V | 0 ≤ i <
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j ≤ n}. Then, a feasible solution (s, x, y) obviously corresponds to a (0, n)-path
P in Dn such that (i, j) ∈ P if and only if [i+ 1, j] forms a regeneration interval
for (s, x, y). If (s, x, y) is an optimal extreme solution and [α, β] a regeneration
interval for (s, x, y), then in all periods t ∈ {α, . . . , β} except for some period
j, xt = Cyt, and in period j, xj = C(yj − 1) + rαβ if rαβ > 0 and xj = Cyj if

rαβ = 0, where rαβ is the remainder of the integral division of dαβ :=
∑β
t=α dt

by C. Moreover, denoting by (LCBαβ) problem (LCB) restricted to the interval
[α, β] (this means, (LCBαβ) is obtained by replacing 1 by α and n by β and by
φαβ the optimal cost of (LCBαβ), then an optimal extreme solution of (LCB)
corresponds to a (0, n)-path P in Dn minimizing

∑
(i,j)∈P φi+1,j .

Pochet and Wolsey [3] presented a dynamic program that calculates φαβ in
time O(n). Since there are 1

2n(n − 1) different intervals [α, β], the calculation
of all φαβ requires at most O(n3) calculations. A shortest path can be found in
time O(n2), and hence, (LCB) can be solved in time O(n3).

This solution scheme can be expressed by linear programming. For any in-
terval [α, β], the cost φαβ is the optimal objective value of the linear program

(LPαβ) min
β∑
i=α

[
(Cei + fi)y

αβ
i + (rαβei + fi)ε

αβ
i

]

s.t.

t∑
j=α

yαβj ≥
⌈
dαt − rαβ

C

⌉
, t = α, . . . , β,

t∑
j=α

(yαβj + εαβj ) ≥
⌈
dαt
C

⌉
, t = α, . . . , β,

yαβj , εαβj ≥ 0, j = α, . . . , β,

where et := pt +
∑n
j=t hj for t = 1, . . . , n. The inequality system of (LPαβ) is

totally unimodular, and hence, its vertex solutions are integral. In any vertex
solution, yαβi is the number of batches provided in period i and εαβi is a binary
variable which is equal to one if and only if the remainder rαβ is produced in
period i.

Coupling the linear programs (LPαβ), 1 ≤ α ≤ β ≤ n, by a shortest path
formulation, we obtain a linear program of size O(n3) to solve (LCB):

(LP) min
n∑
α=1

n∑
β=α

β∑
i=α

[
(Cei + fi)y

αβ
i + (rαβei + fi)ε

αβ
i

]

s.t.

t∑
j=α

yαβj ≥
⌈
dαt − rαβ

C

⌉
zα−1,β , t = α, . . . , β, 1 ≤ α ≤ β ≤ n, (1)

t∑
j=α

(yαβj + εαβj ) ≥
⌈
dαt
C

⌉
zα−1,β , t = α, . . . , β, 1 ≤ α ≤ β ≤ n, (2)

yαβj , εαβj ≥ 0, j = α, . . . , β, 1 ≤ α ≤ β ≤ n, (3)
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n∑
β=1

z0β = 1, (4)

t−1∑
α=0

zαt −
n∑

β=t+1

ztβ = 0, t = 1, . . . , n− 1, (5)

zα−1,β ≥ 0, 1 ≤ α ≤ β ≤ n. (6)

Next, we give the smaller formulation. Pochet and Wolsey [3] showed that
for any two regeneration intervals [α, β], [α, γ] with β < γ and rαβ = rαγ one
needs to run only the dynamic program to calculate φαγ , as one the interme-
diate solutions of their algorithm provides φαβ . There are at most C different
remainders, 0, 1, . . . , C − 1. Thus, for each α and each remainder r, we have
to run the dynamic program at most once to calculate all φαβ with rαβ = r.
Hence, (LCB) can be solved in time O(n2 min{n,C}).

The above algorithmic shortcut can be reflected by linear programming as
follows. For each α and each remainder r, let Tαr be the collection of all time
periods β ≥ α such that φαβ = r, let M be the set of all pairs (α, r) for which
Tαr is nonempty, and for each (α, r) ∈M , let γ(α, r) := maxβ∈Tαr β. Consider
the linear program (LP’) which can be obtained by aggregating inequalities and
identifying variables of (LP).

(LP’) min
∑

(α,r)∈M

γ(α,r)∑
i=α

[(Cei + fi)y
αr
i + (rei + fi)ε

αr
i ]

s.t.


t∑

j=α

yαrj ≥
∑

β∈Tαr :
β<t

⌈
dαβ − r
C

⌉
zα−1,β +

⌈
dαt − r
C

⌉ ∑
β∈Tαr :
β≥t

zα−1,β (7)

t∑
j=α

(yαrj + εαrj ) ≥
∑

β∈Tαr :
β<t

⌈
dαβ
C

⌉
zα−1,β +

⌈
dαt
C

⌉ ∑
β∈Tαr :
β≥t

zα−1,β ,

}
(8)

for t = α, α+ 1 . . . , γ(α, r), (α, r) ∈M,

yαrj , εαrj ≥ 0 for j = α, α+ 1 . . . , γ(α, r), (α, r) ∈M, (9)

z satisfies (4)-(6).

Theorem 1. (LP’) solves (LBC).

Proof. We denote the inequality (1) associated with [α, β] and t ∈ [α, β] by
(1:α, β, t). Similarly, we access to the inequalities (2:α, β, t), (7:α, r, t) and
(8:α, r, t).

Let (y, ε, z) be a feasible solution of (LP). Define (ȳ, ε̄, z̄) in the space of
(LP’) by

ȳαrj :=
∑

β∈Tαr :
β≥j

yαβj ,

ε̄αrj :=
∑

β∈Tαr :
β≥j

εαβj for j = α, α+ 1, . . . , γ(α, r), (α, r) ∈M,

z̄ := z.

(10)
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Clearly, (ȳ, ε̄, z̄) satisfies (4)-(6) and (9). To show that (ȳ, ε̄, z̄) also satisfies (7)-
(8), consider any (α, r) ∈M and any t ∈ {α, α+1, . . . , γ(α, r)}. Summing up the
inequalities (1:α, β, β) for β ∈ Tαr with β < t and the inequalities (1:α, β, t) for
β ∈ Tαr with β ≥ t, and replacing in the resulting inequality (y, ε, z) by (ȳ, ε̄, z̄)
according to (10), we obtain the inequality (7:α, r, t). Inequality (8:α, r, t) can
be obtained similarly. Thus, (ȳ, ε̄, z̄) satisfies (7)-(8), and hence, (ȳ, ε̄, z̄) is a
feasible solution of (LP’). Since

n∑
α=1

n∑
β=α

β∑
i=α

[
(Cei + fi)y

αβ
i + (rαβei + fi)ε

αβ
i

]
=

∑
(α,r)∈M

∑
β∈Tαr

β∑
i=α

[
(Cei + fi)y

αβ
i + (rei + fi)ε

αβ
i

]
=

∑
(α,r)∈M

γ(α,r)∑
i=α

[(Cei + fi)ȳ
αr
i + (rei + fi)ε̄

αr
i ] ,

both (y, ε, z) and (ȳ, ε̄, z̄) have the same objective value. This implies that the
optimal objective value of (LP’) is at most the optimal objective value of (LP).

To show the converse, let (y, ε, z) be an optimal solution of (LP’). W.l.o.g.
we assume that yαrj = εαrj = 0 for j = α, α + 1, . . . , γ(α, r) if zα−1,β = 0 for all
β ∈ Tαr. This implies that for all (α, r) ∈M and all t ∈ {α, . . . , γ(α, r)}, there
exist λ(α, r, t), µ(α, r, t) ≥ 0 such that

t∑
j=α

yαrj =
∑

β∈Tαr :
β<t

(⌈
dαβ−r
C

⌉
+ λ(α, r, β)

)
zα−1,β

+
(⌈
dαt−r
C

⌉
+ λ(α, r, t)

) ∑
β∈Tαr :
β≥t

zα−1,β ,

t∑
j=α

(yαrj + εαrj ) =
∑

β∈Tαr :
β<t

(⌈
dαβ
C

⌉
+ µ(α, r, β)

)
zα−1,β

+
(⌈
dαt
C

⌉
+ µ(α, r, t)

) ∑
β∈Tαr :
β≥t

zα−1,β .

(11)

For each 1 ≤ α ≤ β ≤ n, define (ỹαβt , ε̃αβt ), t = α, . . . , β as solution of the
(nonsingular) system

t∑
j=α

ȳαβj =
(⌈
dαt−r
C

⌉
+ λ(α, r, t)

)
zα−1,β , t = α, . . . , β,

t∑
j=α

(ȳαβj + ε̄αβj ) =
(⌈
dαt
C

⌉
+ µ(α, r, t)

)
zα−1,β , t = α, . . . , β,

(12)

where r = rαβ . Then, (ỹ, ε̃, z̃), with z̃ := z, is a feasible solution of (LP) whose
objective value is at most the (optimal) objective value of (y, ε, z).

The original variables xi, yi can be obtained by

xi =
∑

(α,r)∈M:
α≤i

(Cyαri + rεαri ), (13)

yi =
∑

(α,r)∈M:
α≤i

(yαri + εαri ), (14)

4



and hence (LCB) can be rewritten as the size O(n2 min{n,C}) linear program

min
∑n
t=1(etxt + ftyt) s.t.

((xt, yt)t=1,...,n, (y
αr
t , εαrt )(α,r)∈M,t=α,...,γ(α,r), z) satisfies (4)-(9), (13)-(14).

1 Extensions

In this paper, we presented an O(n2 min{n,C}) compact formulation for the
lot-sizing problem with constant batches. We would like to close the paper with
three remarks on related topics and future research.

Let the polyhedron P be the convex hull of the feasible solutions (s, x, y)
of (LCB). Pochet and Wolsey [3] introduced a rich class of facet defining in-
equalities for P and showed that they are the only inequalities of a certain type.
It is, however, unknown whether there are further facet defining inequalities for
P or not. Since our compact formulation (LP’) is tighter than (LP), it maybe
contributes to a better understanding of the facial structure of P via projection.
For a description of the technique to derive facets by projection, see Balas [1].

The linear program (LP) is an example of branched polyhedral systems intro-
duced by Kaibel and Loos [2], a framework for combining extended formulations.
In our application, the extended formulations (LPαβ) for the calculation of the
costs φαβ of the regeneration intervals [α, β] are combined with a shortest path
formulation. Further examples for combining extended formulations are given
in [4].

In the literature, many variations and extensions of (LCB) are discussed, for
instance, lot sizing with constant batch size and upper bounds on the y-variables
and/or backlogging and/or Wagner-Within costs. The results of Pochet and
Wolsey [3] indicate that in case of upper bounds yt ≤ bt (t = 1, . . . , n), (LP’)
becomes useless. Backlogging, however, can be incorporated in the linear pro-
gram (LP’) if no upper bounds on the y-variables are installed. For details
about these variations, see Van Vyve [5].
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