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Abstract

In this paper, we study the neighbourlicity of the polytope P 2
kn constituted

by the k-cliques of the complete graph Kn on n vertices. We prove that
this polytope is 3-, but not 4-neighbourly. Following a remark of Pierre
Duchet, we partially generalize this result to the k-clique polytopes of
r-uniform complete hypergraphs, P r

kn. We show that the neighbourlicity
of P r

kn is between r and 2r − 1 whenever k ≥ r + 1 and n ≥ k + r + 1.
Computational results indicate that the upper bound is tight.

1 Introduction

Given a graph G, we denote its node set by V (G) and its edge set by E(G).
In this paper, a clique of G is a complete subgraph of G. The collection of
all k-cliques, that is, the cliques on k nodes, is denoted by K. For any node
set W ⊆ V (G), we denote by E(W ) the set of edges e ∈ E(G) whose both
endnodes are in W . For any F ⊆ E(G), its characteristic vector is a vector
χF ∈ {0, 1}E(G) defined by χF

e = 1 if and only if e ∈ F . The k-clique polytope
is the convex hull of the characteristic vectors of the edge sets of all k-cliques of
G.

A polyhedron is said to be h-neighbourly if each subset of h vertices form
a proper (h − 1)-face of the polyhedron. This especially implies that every
h vertices of an h-neighbourly polyhedron are affinely independent. Moreover,
for each j ≤ h, such a polyhedron is also j-neighbourly.

In this paper, we study the neighbourlicity of the k-clique polytope P 2
kn

defined on the complete graph Kn on n nodes. In Section 3, we will show that
P 2
kn is 3- but usually not 4-neighbourly.

In Section 4, we partially extend this result to the k-clique polytope P r
kn

defined on a complete r-uniform-hypergraph Kr
n on n nodes. Here, r-uniform

means that the hyperedges of Kr
n consist of exactly r distinct nodes. Thus,

as Kr
n is complete, it follows that E(Kr

n) = {e ⊆ V (Kr
n) | |e| = r}. Moreover,
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a k-clique of Kr
n is a hypersubgraph Kr

k of Kr
n, and P r

kn is the convex hull of
the characteristic vectors of the edge sets of all k-cliques of Kr

n. We show that
the neighbourlicity of P r

kn is between r and 2r − 1 whenever k ≥ r + 1 and
n ≥ k + r + 1. Using an integer program, we compute the neighbourlicity of
P r
kn for small numbers k, n, r, which is 2r − 1 in each studied case. Hence, we

assume that the upper bound is tight.
In the following section, we give some preliminary results that are indepen-

dent of the special structure of the polytopes P r
kn.

2 Preliminaries

The initial idea to prove the above-mentioned results is mainly based on the
Farkas Lemma specialized to `-COPs. An `-COP is a combinatorial optimization
problem whose feasible solutions have the same size (=cardinality) `.

Let I ⊆ 2E be the set of all feasible solutions of an `-COP defined on a
finite set E, and let PI(E) be the polytope defined as the convex hull of the
characteristic vectors of the solutions I ∈ I. PI(E) is h-neighbourly if and only
if for the characteristic vectors of every subset J ⊆ I of size h the following two
conditions hold:
(i) they are affinely independent;
(ii) the system∑

e∈E
χI
eαe − β = 0 for all I ∈ J ,∑

e∈E
χI
eαe − β < 0 for all I ∈ I \ J (1)

is consistent, that is, there exists a valid inequality αx ≤ β for PI(E) such that
the vectors χI , I ∈ J , are the only vertices of PI(E) contained in the induced
face.

The conditions directly follow from the definition of neighbourlicity. How-
ever, condition (i) is redundant. For this, assume that condition (ii) holds but
not (i). Then, there exist a set J ′ ⊆ I of size h and an element J ′ ∈ J ′
such that its characteristic vector is an affine combination of the characteristic
vectors of the other elements of J ′. Since (ii) holds for all sets J ⊆ I of size
h, and since h ≤ dimPI(E), there exist J ′′ ∈ I \ J ′ and a valid inequality
αx ≤ β for PI(E) such that the characteristic vectors of J ′′ and I ∈ J \ {J ′},
are the only vertices of PI(E) contained in the face induced by this inequality,
contradicting the fact that the characteristic vector J ′ is an affine combination
of the characteristic vectors of the other elements of J ′.

All x ∈ PI(E) satisfy the equation
∑

e∈E xe = `. Hence, we may assume
that β = 0. Moreover, since the system (1) determines a (polyhedral) cone, we
may assume, by a scaling argument, that (1) has a solution if and only if∑

e∈E
χI
eαe = 0 for all I ∈ J ,∑

e∈E
χI
eαe ≤ −1 for all I ∈ I \ J .

(2)

has one. By the Farkas Lemma [4], (2) does not have a solution if and only if
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there exist λI , I ∈ J and µI , I ∈ J̄ := I \ J with∑
I∈J

λIχ
I
e −

∑
I∈J̄

µIχ
I
e = 0 for all e ∈ E, (3)

µI ≥ 0 for all I ∈ J̄ , (4)∑
I∈J̄

µI > 0. (5)

It immediately follows from inequalities (3) and (4) that µI = 0 for all
I ∈ I \ J containing an element not covered by the union of the sets J ∈ J .
Moreover, since all feasible solutions have the same size `, we conclude that the
sum of all equations (3) is ∑

I∈J
λI −

∑
I∈J̄

µI = 0. (6)

For easier reference, we summarize our observations:

Lemma 2.1. Given any `-COP with feasible solutions I ⊆ 2E and a natural
number h ≤ dimPI(E), the polytope PI(E) is h-neighbourly if and only if for
every set J ⊆ I of size h the system of constraints∑

I∈J
λIχ

I
e −

∑
I∈J̄

µIχ
I
e = 0 for all e ∈ E,

J̄ 6= ∅
(7)

is inconsistent, where J̄ := {I ∈ I \ J | I ⊆
⋃

J∈J J, µI > 0}.

3 Neighbourlicity of the k-clique polytope P 2
kn

Let us open this section by showing that P 2
kn is 2-neighbourly. Let α be the

characteristic vector of the union of the edge sets of two different cliques C1

and C2. The inequality αx ≤ k(k−1)
2 is valid for P 2

kn, and the characteristic
vectors of C1 and C2 are the only characteristic vectors of k-cliques satisfying
the inequality at equality.

After determining the dimension of P 2
kn, we will show that P 2

kn is 3-, but
usually not 4-neighbourly.

Theorem 3.1. For 2 ≤ k ≤ n− 2, the dimension of the k-clique polytope P 2
kn

defined on a complete graph Kn is 1
2n(n− 1)− 1 = |E(Kn)| − 1.

Proof. All x ∈ P 2
kn satisfy the equation∑

e∈E(Kn)

xe =
1

2
k(k − 1) (8)

proving dimP 2
kn ≤ |E(Kn)| − 1. To show equality, suppose that there is any

equation
∑

e∈E(Kn) αexe = β satisfied by all x ∈ P 2
kn. Considering any two

distinct nodes u, v ∈ V (Kn) and any node set W ⊆ V (Kn) \ {u, v} of size k− 1,
we derive from α(E(W ∪ {u})) = α(E(W ∪ {v})) = β the equation∑

w∈W
α{u,w} −

∑
w∈W

α{v,w} = 0. (eq(u, v,W ))
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Furthermore, consider any four distinct nodes t, u, v, w ∈ V (Kn). Then, for
any node set Z ⊆ V (Kn)\{t, u, v, w} of size k−2, we derive the equation system

E(Z ∪ {t, u})− E(Z ∪ {u,w}) = 0
E(Z ∪ {t, v})− E(Z ∪ {v, w}) = 0

⇔
α{t,u} +

∑
z∈Z

α{t,z} − α{u,w} +
∑
z∈Z

α{w,z} = 0

α{t,v} +
∑
z∈Z

α{t,z} − α{v,w} +
∑
z∈Z

α{w,z} = 0.

Subtracting the second equation from the first equation, we see that

α{t,u} + α{v,w} − α{t,v} − α{u,w} = 0 (eq(t, u, v, w))

for all distinct nodes t, u, v, w ∈ V (Kn).
Next, consider any three distinct nodes t, u, v ∈ V (Kn) and any node set

W ⊆ V (Kn) \ {t, u, v} of size k − 2. Adding the equations eq((t, u,W ′))
and eq((t, u, v, w)) for all w ∈ W ′, where W ′ := W ∪ {v}, we conclude that
α{t,u} = α{u,v}. Thus, for any two edges e = {t, u}, f = {v, w} ∈ E(Kn),
α{t,u} = α{u,v} and α{u,v} = α{v,w} implies αe = αf . Thus, the equation∑

e∈E(Kn) αe = β is a multiple of (8).

Theorem 3.2.

(i) The polytope P 2
2n is m-neighbourly, where m := |E(Kn)| − 1}.

Moreover, for 3 ≤ k ≤ n− 3, P 2
kn is

(ii) 3-neighbourly,

(iii) but not 4-neighbourly.

Proof. (i) This follows from the fact that, for any subset F ⊆ E(Kn) of m edges,
the inequality

∑
e∈F xe ≤ 1 is valid for P 2

2n and is satisfied at equality if and
only if x is the characteristic vector of an edge (= 2-clique) belonging to F .

(ii) We have to prove that any three distinct k-cliques C1, C2, C3 determine
a 2-face of P 2

kn. Since every k-clique has an edge not contained in the union
of two other k-cliques, it follows that the characteristic vectors of the cliques
Ci are affinely independent. Thus, by Lemma 2.1, it remains to show that the
system

∑
C∈K′

µCχ
E(C)
e −

3∑
i=1

λiχ
E(Ci)
e = 0 ∀ e ∈ E(Kn), (9)

K′ 6= ∅ (10)

is inconsistent. Here,

K′ := {C ∈ K |µC > 0, C 6= Ci for i = 1, 2, 3, C ⊆ C1 ∪ C2 ∪ C3}.

For any edge e ∈ E(Kn), denote the equation among (9) associated with e
by (9e). Of course, summing up all equations (9e) for e ∈ K′, we derive that∑

C∈K′
µC = λ1 + λ2 + λ3. (11)
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For any i ∈ {1, 2, 3}, each C ∈ K′ contains an edge f not contained in the
union of the both k-cliques Cj with j 6= i. Because of µC > 0 and equation (9f),
we conclude that λi > 0 for i = 1, 2, 3.

Next, suppose that, for some j ∈ {1, 2, 3}, there exists a node v ∈ V (Cj)
not contained in the node set of the union of the two other cliques Ci, i 6= j.

This implies
∑3

i=1 λiχ
E(Ci)
e = λj for all e ∈ δ(v) ∩ E(Cj). Since λj > 0, for

every such edge e, there exists some C ∈ K′ with µC > 0 and e ∈ E(C). Since
E(C) ⊆ E(C1)∪E(C2)∪E(C3), we conclude that δ(v)∩E(C) ⊆ δ(v)∩E(Cj).
Since C and Cj are k-cliques, we derive that |δ(v) ∩ E(C)| = |δ(v) ∩ E(Cj)| =
k − 1, and hence δ(v) ∩ E(C) = δ(v) ∩ E(Cj) which, in turn, implies C = Cj ,
a contradiction. Consequently, for any j ∈ {1, 2, 3}, V (Cj) is contained in the
union of the node sets of the two other cliques Ci, i 6= j.

For the remainder of this proof, let V 1,2,3 := V (C1) ∩ V (C2) ∩ V (C3), and
for distinct i, j ∈ {1, 2, 3}, let V i,j := (V (Ci) ∩ V (Cj)) \ V 1,2,3 and Ei,j :=
{{u, v} ∈ E(Kn) |u ∈ V i,j , v ∈ V 1,2,3}. Moreover, for any i ∈ {1, 2, 3}, let
V i := V (Ci) \

⋃
j 6=i V (Cj) and Ei := E(Ci) \

⋃
j 6=iE(Cj).

By the last observation, V i = ∅ for i = 1, 2, 3. Moreover, letting {1, 2, 3} =
{i, j, `}, we see that

V (Ci) = V (Ci) ∩ (V (Cj) ∪ V (C`))

= (V (Ci) ∩ V (Cj)) ∪ (V (Ci) ∩ V (C`))

= V i,j ∪ V i,` ∪ V 1,2,3.

This implies k = |V (Ci)| = |V i,j | + |V i,`| + |V 1,2,3| for i = 1, 2, 3, and hence,
r := |V 1,2| = |V 1,3| = |V 2,3|. This, in turn, means that k and s := |V 1,2,3|
have the same parity, since |V i,j |+ |V i,`| = 2r is even. Clearly, r > 0, because
otherwise, it follows that C1 = C2 = C3, a contradiction.

Let now K ∈ K′. Define p1,2,3
K := |V 1,2,3 ∩ V (K)|, and, for any distinct

i, j ∈ {1, 2, 3}, define pi,jK = |V i,j ∩V (K)|. Since V (K) is contained in the union
of the node sets of the cliques Ci, and since the node sets V 1,2, V 1,3, V 2,3,
and V 1,2,3 are disjoint, we conclude that p1,2,3

K + p1,2
K + p1,3

K + p2,3
K = k. Letting

{i, j, `} = {1, 2, 3}, we see, in addition, that the number of edges of K in Ei is

pi,jK pi,`K , as Ei = {{u, v} ∈ E(Ci) |u ∈ V i,j , v ∈ V i,`}. Next, the number of edges

of K in E(V i,j) is 1
2p

i,j
K (pi,jK − 1), that in Ei,j is pi,jK p1,2,3

K , and that in E(V 1,2,3)

is 1
2p

1,2,3
K (p1,2,3

K − 1). Thus, we derive from the equations (9e) the following four
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equations:

3∑
i=1

∑
e∈Ei

∑
K∈K′

µKχ
E(K)
e =

3∑
i=1

∑
e∈Ei

3∑
j=1

λjχ
E(Cj)
e

⇔
3∑

i=1

∑
K∈K′

µK

(∑
e∈Ei

χE(K)
e

)
=

3∑
i=1

∑
e∈Ei

λi

⇔
∑
K∈K′

µK

3∑
i=1

|E(K) ∩ Ei| =
3∑

i=1

|Ei|λi

⇔
∑
K∈K′

µK

3∑
i=1

pi,jK pi,`K =

3∑
i=1

|V i,j ||V i,`|λi

⇔
∑
K∈K′

µK(p1,2
K p1,3

K + p1,2
K p2,3

K + p1,3
K p2,3

K ) = r2(λ1 + λ2 + λ3), (12)

2∑
i=1

3∑
j=i+1

∑
e∈E(V i,j)

∑
K∈K′

µKχ
E(K)
e =

2∑
i=1

3∑
j=i+1

∑
e∈E(V i,j)

3∑
`=1

λ`χ
E(C`)
e

⇔
2∑

i=1

3∑
j=i+1

∑
K∈K′

µK
1

2
pi,jK (pi,jK − 1) =

2∑
i=1

3∑
j=i+1

1

2
r(r − 1)(λi + λj)

⇔
2∑

i=1

3∑
j=i+1

∑
K∈K′

µKp
i,j
K (pi,jK − 1) = 2r(r − 1)(λ1 + λ2 + λ3), (13)

2∑
i=1

3∑
j=i+1

∑
e∈Ei,j

∑
K∈K′

µKχ
E(K)
e =

2∑
i=1

3∑
j=i+1

∑
e∈Ei,j

3∑
`=1

λ`χ
E(C`)
e

⇔
2∑

i=1

3∑
j=i+1

∑
K∈K′

µKp
i,j
K p1,2,3

K = rs

2∑
i=1

3∑
j=i+1

(λi + λj)

⇔
∑
K∈K′

µKp
1,2,3
K (p1,2

K + p1,3
K + p2,3

K ) = 2rs(λ1 + λ2 + λ3), (14)

and ∑
e∈E(V 1,2,3)

∑
K∈K′

µKχ
E(K)
e =

∑
e∈E(V 1,2,3)

3∑
`=1

λ`χ
E(C`)
e

⇔
∑
K∈K′

µKp
1,2,3
K (p1,2,3

K − 1) = s(s− 1)(λ1 + λ2 + λ3). (15)

Let us show that p1,2,3
K = s for all K ∈ K′. By definition, 0 ≤ p1,2,3

K ≤ s.

Thus, if s = 0, then p1,2,3
K = s. Next, let s = 1. This means, p1,2,3

K ∈ {0, 1} for
all K ∈ K′ and (14) is∑

K∈K′
µKp

1,2,3
K (p1,2

K + p1,3
K + p2,3

K ) = 2r(λ1 + λ2 + λ3).
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Since 2r+s = k = p1,2
K +p1,3

K +p2,3
K +p1,2,3

K , we conclude that p1,2
K +p1,3

K +p2,3
K = 2r

whenever p1,2,3
K = 1. Thus, setting K′1 := {K ∈ K′ | p1,2,3

K = 1}, we derive from
equation (14) that

∑
K∈K′1

µK = λ1 + λ2 + λ3, contradicting (11) if K′1 ( K′.
Thus, K′1 = K′, that is, p1,2,3

K = 1 = s for all K ∈ K′. Finally, let s ≥ 2.
Adding to both sides of equation (15) the sum −

∑
K∈K′ µKs(s− 1), we obtain

the equation∑
K∈K′

µK(p1,2,3
K (p1,2,3

K − 1)− s(s− 1)) = s(s− 1)(λ1 + λ2 + λ3 −
∑
K∈K′

µK).

Using (11), we see that the right hand side of this equation vanishes, while
µK > 0 and p1,2,3

K ≤ s imply that each summand of the left hand side is less

than or equal to zero. Thus, p1,2,3
K = s for all K ∈ K′.

To finish the proof, we derive a contradiction from equations (12) and (13).
First, we see that p1,2,3

K = s implies p1,2
K + p1,3

K + p2,3
K = 2r for all K ∈ K′. Next,

we observe that, for any K ∈ K′,
2∑

i=1

3∑
j=i+1

pi,jK (pi,jK − 1)

=
(
p1,2
K + p1,3

K + p2,3
K

)2

− (p1,2
K + p1,3

K + p2,3
K )

− 2(p1,2
K p1,3

K + p1,2
K p2,3

K + p1,3
K p2,3

K )

= 4r2 − 2r − 2tK ,

where tK := p1,2
K p1,3

K +p1,2
K p2,3

K +p1,3
K p2,3

K . Thus, multiplying (12) with −2r(r−1),
multiplying (13) with r2, and summing up the resulting equations, we obtain:∑

K∈K′
µK(r2(4r2 − 2r − 2tK)− 2r(r − 1)tK) = 0

⇔ 2r(2r − 1)
∑
K∈K′

µK(r2 − tK) = 0

r>0⇔
∑
K∈K′

µK(r2 − tK) = 0 (16)

Finally, consider the real valued function

f(ϕ,ψ, ϑ) := ϕψ + ϕϑ+ ψϑ

under the condition that 0 ≤ ϕ,ψ, ϑ ≤ r and ϕ + ψ + ϑ = 2r. Since f is
equal to r2 at (r, r, 0), (r, 0, r), and (0, r, r), and f is concave, we conclude that
r2 − tK ≤ 0 for all K ∈ K′ and r2 − tK = 0 if and only if (p1,2

K , p1,3
K , p2,3

K ) ∈
{(r, r, 0), (r, 0, r), (0, r, r)}. Consequently, (16) implies that K ∈ {C1, C2, C3}
for each K ∈ K′ contradicting {C1, C2, C3} ∩ K′ = ∅.

(iii) In what follows, we construct four k-cliques such that, if their char-
acteristic vectors are contained in the same face, then this face contains the
characteristic vectors of further k-cliques. W.l.o.g. let V (Kn) = {1, 2, . . . , n},
and let W ⊆ V (Kn) \ {1, 2, . . . , 6} be a node set of size k − 3. Consider the
k-cliques Ci, i = 1, 2, 3, 4, determined by the node sets

V1 := W ∪ {1, 5, 6}, V2 := W ∪ {2, 6, 4},
V3 := W ∪ {3, 4, 5}, V4 := W ∪ {1, 2, 3},

7



�
�
�
�
�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A
A
A
A
A

�
�
�
�
�
�
�
�
�
�
�
�
�

A
A
A
A

C
C
C
C
C
C
C

�
�
�
�

S
S
S
S
S
S

������

PPPPPP4 6

5

3 1

2

Figure 1: The union of the four k-cliques C1, . . . , C4 restricted to {1, 2, . . . , 6}.

respectively. The graph depicted in Figure 1 is the subgraph of the union of
these four k-cliques induced by the node set {1, 2, . . . , 6}. Now, every face of
P 2
kn that contains the characteristic vectors of the cliques determined by Vi for
i = 1, 2, 3, 4, also contains that of the k-cliques determined by

V5 := W ∪ {1, 2, 6}, V6 := W ∪ {2, 3, 4},
V7 := W ∪ {3, 1, 5}, V8 := W ∪ {4, 5, 6}.

Suppose not. This means, there exists a valid inequality
∑

e∈E(Kn) αexe ≤ β

such that α(E(Vi)) = β for i = 1, 2, 3, 4 and α(E(Vi)) < β for i = 5, 6, 7, 8,
which, in turn, implies that

α{1,5} + α{1,6} + α{5,6} + α1 + α5 + α6 = γ,
α{2,6} + α{2,4} + α{6,4} + α2 + α4 + α6 = γ,
α{3,4} + α{3,5} + α{4,5} + α3 + α4 + α5 = γ,
α{1,2} + α{2,3} + α{1,3} + α1 + α2 + α3 = γ,

and

α{1,2} + α{1,6} + α{2,6} + α1 + α2 + α6 < γ,
α{2,4} + α{2,3} + α{3,4} + α2 + α3 + α4 < γ,
α{3,5} + α{1,3} + α{1,5} + α1 + α3 + α5 < γ,
α{4,5} + α{5,6} + α{4,6} + α4 + α5 + α6 < γ,

where γ := β−α(E(W )) and αv :=
∑

w∈W α{v,w} for v ∈ {1, 2, . . . , 6}. Adding
the four inequalities and subtracting the four equations, we conclude that 0 < 0,
a contradiction.

4 Neighbourlicity of the k-clique polytope P r
kn

In this section, we will partially transfer the previous result on the k-cliques
of complete graphs, to r-uniform-hypergraphs. This study was initialized by a
remark of Pierre Duchet [3] who proposed to us this generalization.

For any natural numbers p, q we denote by B(p, q) :=
(
p
q

)
the binomial coef-

ficient of p over q. Recall that the set of hyperedges of a complete r-uniform
hypergraph Kr

n on n nodes is given by E(Kr
n) = {e ⊆ V (Kr

n) | |e| = r}. Kr
n

has B(n, r) hyperedges, and a k-clique of Kr
n has B(k, r) hyperedges. In the

following, we assume that k ≥ r+1. Moreover, for any node v of Kr
n, we denote

by δ(v) := {e ∈ E(Kr
n) | v ∈ e} the set of edges of Kr

n containing v.
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Theorem 4.1. Let Kr
n be the complete r-uniform hypergraph on n nodes, where

2 ≤ r ≤ n, and let k be an integer with r ≤ k ≤ n.

(i) For k = r, P r
kn is m-neighbourly, where m := |E(Kr

n)| − 1.

(ii) For r + 1 ≤ k ≤ n− 1, a lower bound for the neighbourlicity of P r
kn is r.

(iii) For k ≥ r + 1 and n ≥ k + r + 1, an upper bound for the neighbourlicity
of P r

kn is 2r − 1.

Proof. (i) For k = r, each k-clique only consists of one hyperedge, since, in this
case, B(k, r) = B(k, k) = 1. Thus, m k-cliques always form an (m − 1)-face of
P k
kn.

(ii) Let C1, C2, . . . , Cr be distinct k-cliques of Kr
n. Consider the inequality∑

e∈F xe ≤ B(k, r) for F :=
⋃r

i=1E(Ci). This inequality is obviously valid
for P r

kn, since each k-clique of Kr
n consists of B(k, r) edges. Moreover, the

characteristic vectors of the cliques Ci are contained in the face induced by this
inequality. Consider now any k-clique C different from the cliques Ci. Then, for
each i ∈ {1, 2, . . . , r}, C has a node vi not contained in V (Ci). The nodes are
not necessarily distinct, but this argument tells us that there exists a nonempty
set U ⊆ V (C) of size r such that for every clique Ci, there exists a node v ∈ U
such that v /∈ V (Ci). This means that U is an edge of C that is contained in
none of the cliques Ci. Thus, for x = χE(C), the left hand side of the above
inequality is strictly less than B(k, r).

(iii) We have to show that P r
kn is not 2r-neighbourly. We prove this by

induction on r by showing that there always exists a counterexample given by

2sr k-cliques Ci, C̃i, i = 1, 2, . . . , sr with
∑sr

i=1 χ
E(Ci) =

∑sr
i=1 χ

E(C̃i), where
sr := 2r, disproving that P r

kn is s-neighbourly. For r = 2, the claim directly
follows from Theorem 3.2 (iii) and its proof.

So let r ≥ 3, and let Ci, C̃i, i = 1, 2, . . . , sr−1 be k − 1-cliques of Kr−1
n−2 that

generate a counterexample for P r−1
k−1,n−2 being sr−1-neighbourly. Define 2sr =

4sr−1 k-cliques C ′i, C̃
′
i, C
′′
i , C̃

′′
i , i = 1, 2, . . . , sr−1, of Kr

n as subgraphs induced
by the node sets V ′i := V (Ci)∪{u}, Ṽ ′i := V (C̃i)∪{v}, V ′′i := V (Ci)∪{v}, and
Ṽ ′′i := V (C̃i)∪{u}, respectively, where {u, v} = V (Kr

n)\V (Kr−1
n−2). By definition

of the node sets, E(C ′i) \ δ(u) = E(C ′′i ) \ δ(v) and E(C̃ ′i) \ δ(v) = E(C̃ ′′i ) \ δ(u).
Moreover, by hypothesis, E(C ′i) ∩ δ(u) = E(C̃ ′′i ) ∩ δ(u) and E(C̃ ′i) ∩ δ(v) =
E(C ′′i ) ∩ δ(v), since e ∈ E(C ′i) ∩ δ(u) if and only if e \ {u} ∈ E(Ci), and an
analogous statement holds for the other edge sets E(C̃ ′′i ) ∩ δ(u), E(C̃ ′i) ∩ δ(v),
and E(C ′′i ) ∩ δ(v). Hence, we conclude that

sr−1∑
i=1

(χE(C′i) + χE(C̃′i)) =

sr−1∑
i=1

(χE(C′′i ) + χE(C̃′′i )),

which means that every face of P r
kn that contains the incidence vectors of the

cliques C ′i, C̃
′
i also contains that of the cliques C ′′i , C̃

′′
i .

Our computational experiments indicate that the upper bound 2r − 1 is
probably tight whenever n ≥ k + r + 1 and k ≥ r + 1, see Table 1. For
the computation of these bounds, we used the following integer programming
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formulation:

min
∑
C∈K

hC , (17)∑
C∈K

λCχ
E(C)
e −

∑
C∈K

µCχ
E(C)
e = 0 ∀ e ∈ E(Kr

n), (18)

λC ≤ hC , µC ≤ `C ∀C ∈ K, (19)

hC + `C ≤ 1 ∀C ∈ K, (20)∑
C∈K
C3v

hC ≥ r ∀ v ∈ U, (21)

λC , µC ≥ 0, hC , `C ∈ {0, 1} ∀C ∈ K. (22)

Here, U is some particular subset of V (Kr
n) of size k+ 1. This integer program

computes the smallest number h such that the system (7) applied to P r
kn is

consistent. In other words, if (λ?, µ?, h?, `?) is an optimal solution of (17)-(22),
then

∑
C h

?
C − 1 is the neighbourlicity of P r

kn. Equations (18) are the equations
of system (7) for P r

kn. Next, the constaints (19), (20), and (22) express that both
clique collections to be generated have to be disjoint. Finally, inequalities (21)
exclude the trivial solution. To be more specific, we always can assume that the
k-cliques of the set Kh := {C ∈ K |hC = 1} cover at least k+1 nodes. Since the
above integer programming formulation without inequalities (21) is symmetric,
we can fix a particular subset of V (Kr

n) of size k + 1. In the remainder of this
section, we prove the validity of inequalities (21).

For any L ⊆ Kh, let

V (L) :=
⋂
C∈L

V (C) \
⋃

C⊆Kh\L

V (C)

be the set of nodes contained in each clique in L but not contained in any other
clique. For each clique C ∈ Kh, the collection TC := {V (L) |V (L)∩V (C) 6= ∅}
obviously is a partition of V (C).

Using a similar argumentation as in the proof to statement (ii) of Theo-
rem 4.1, we see that V (L) = ∅ whenever |L| < r. Suppose not. Then, there
is some C ′ ∈ K` := {C ∈ K | `C = 1} such that V (L) ∩ V (C ′) 6= ∅. Thus,
V (C ′) ⊆ V :=

⋃
C∈L V (C). Since C ′ has to be different to each clique in L,

n ≥ 2(r + 1) k r Neighbourlicity
≥ k + 3 ≥ 3 2 3

8 4 3 7
9 4 3 7
9 5 3 7
10 5 3 7
10 6 3 7
10 5 4 15
11 6 4 15
12 6 5 31

Table 1: Neighbourlicities of some k-clique polytopes
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there exists a node set U ⊆ V (C ′)\V (L) of size at most r−1 such that for every
clique C ∈ L, there is some node u ∈ U not contained in C. Of course, U can be
completed to a node set W ⊆ V (C ′) of size r containing a node v ∈ V (L). By
construction, W is an edge of C ′, W is contained in none of the cliques C ∈ L,
since W contains U , and W is contained in none of the other cliques of Kh, since
W contains a node of V (L). Hence, the integer program (17)-(22) is unfeasible.
We conclude, in order to be feasible, V (L) = ∅ for all L ⊆ Kh with |L| < r. In
other words, each node covered by the cliques in Kh is contained in at least r
cliques. This verifies the validity of inequalities (21).

5 Conclusion

In this paper, we studied the connectivity of the k-clique polytopes P r
kn. We have

shown that, for r = 2, P r
kn is 3- but not 4-neighbourly, in general. Moreover,

by adapting the proof for P 2
kn not being 4-neighbourly to the case that r ≥ 3,

we have shown that P r
kn is not 2r-neighbourly in many cases (depending on

the relations between k, n, and r), which implies that the neighbourlicity is at
most 2r − 1. On the other hand, we have presented, in Theorem 4.1, a lower
bound for the neighbourlicity, namely r. However, in view of our computational
results indicating that the upper bound is tight, the lower bound seems to be
quite weak.

It seems to be obvious to try to adapt the proof that P r
kn is 2r−1-neighbourly

for r = 2 to the case that r ≥ 3. For r = 2, the proof is essentially based
on the simple but important observation that the node sets V 1,2, V 1,3, V 2,3,
constructed there, have all the same size. These node sets correspond to the node
sets V (L) defined in the previous section. If the proof for r = 2 can be extended
to the general case, then one probably has to show that |V (L)| = |V (L′)| if and
only if |L| = |L′|. Unfortunately, we are not able to determine the relations
between the node sets V (L). Currently, we only see that, in general, almost all
sets V (L) have to be empty, even more if |Kh| ≈ 2r. This follows from the fact
that, for each k-clique C ∈ Kh, the partition TC = {V (L) |V (L) ∩ V (C) 6= ∅}
of V (C) consists of at most k node sets. So at most k|Kh| of the node sets
V (L) are nonempty, which means that at least 2|Kh| − k|Kh| of the sets V (L)
are empty.
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