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Abstract

In this paper, we study the neighbourlicity of the polytope P2, constituted
by the k-cliques of the complete graph K, on n vertices. We prove that
this polytope is 3-, but not 4-neighbourly. Following a remark of Pierre
Duchet, we partially generalize this result to the k-clique polytopes of
r-uniform complete hypergraphs, Pf,,. We show that the neighbourlicity
of P, is between r and 2" — 1 whenever k > r+1and n > k+r + 1.
Computational results indicate that the upper bound is tight.

1 Introduction

Given a graph G, we denote its node set by V(G) and its edge set by E(G).
In this paper, a clique of G is a complete subgraph of G. The collection of
all k-cliques, that is, the cliques on k nodes, is denoted by K. For any node
set W C V(G), we denote by E(W) the set of edges e € FE(G) whose both
endnodes are in W. For any F' C E(G), its characteristic vector is a vector
xF e {o, 1}E(G) defined by ' =1 if and only if e € F. The k-clique polytope
is the convex hull of the characteristic vectors of the edge sets of all k-cliques of
G.

A polyhedron is said to be h-neighbourly if each subset of h vertices form
a proper (h — 1)-face of the polyhedron. This especially implies that every
h vertices of an h-neighbourly polyhedron are affinely independent. Moreover,
for each j < h, such a polyhedron is also j-neighbourly.

In this paper, we study the neighbourlicity of the k-clique polytope P,?n
defined on the complete graph K, on n nodes. In Section 3, we will show that
P?2 is 3- but usually not 4-neighbourly.

In Section 4, we partially extend this result to the k-clique polytope Py,
defined on a complete r-uniform-hypergraph K, on n nodes. Here, r-uniform
means that the hyperedges of K consist of exactly r distinct nodes. Thus,
as K" is complete, it follows that E(K]) = {e C V(K})||e| = r}. Moreover,
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a k-clique of K, is a hypersubgraph Kj of K, and Pj, is the convex hull of
the characteristic vectors of the edge sets of all k-cliques of K. We show that
the neighbourlicity of P}, is between r and 2" — 1 whenever £ > r + 1 and
n > k+r+ 1. Using an integer program, we compute the neighbourlicity of
Py, for small numbers k,n,r, which is 2" — 1 in each studied case. Hence, we
assume that the upper bound is tight.

In the following section, we give some preliminary results that are indepen-
dent of the special structure of the polytopes Pf,,.

2 Preliminaries

The initial idea to prove the above-mentioned results is mainly based on the
Farkas Lemma specialized to /~-COPs. An /-COP is a combinatorial optimization
problem whose feasible solutions have the same size (=cardinality) £.

Let Z C 2F be the set of all feasible solutions of an ¢-COP defined on a
finite set E, and let Pz(F) be the polytope defined as the convex hull of the
characteristic vectors of the solutions I € Z. Pz(E) is h-neighbourly if and only
if for the characteristic vectors of every subset J C Z of size h the following two
conditions hold:

(i) they are affinely independent;
(ii) the system

> xlae—B=0 for all I € 7,

eeFE (1)
> xlae =<0 forall T € T\ J

eckE

is consistent, that is, there exists a valid inequality ax < 8 for Pz(F) such that
the vectors x!, I € J, are the only vertices of Pr(E) contained in the induced
face.

The conditions directly follow from the definition of neighbourlicity. How-
ever, condition (i) is redundant. For this, assume that condition (ii) holds but
not (i). Then, there exist a set J' C Z of size h and an element J' € J’
such that its characteristic vector is an affine combination of the characteristic
vectors of the other elements of J'. Since (ii) holds for all sets J C 7 of size
h, and since h < dim Pz(F), there exist J” € Z\ J' and a valid inequality
ax < B for Pz(E) such that the characteristic vectors of J” and I € J \ {J'},
are the only vertices of Pz(F) contained in the face induced by this inequality,
contradicting the fact that the characteristic vector J' is an affine combination
of the characteristic vectors of the other elements of 7.

All z € Pr(FE) satisfy the equation ) _pz. = £. Hence, we may assume
that 8 = 0. Moreover, since the system (1) determines a (polyhedral) cone, we
may assume, by a scaling argument, that (1) has a solution if and only if

> xla. =0 forall T € 7,

ecE

3 xlae, < —1 forall TeZ\ J. (2)
eclE

has one. By the Farkas Lemma [4], (2) does not have a solution if and only if



there exist A7, I € J and ur, [ € J := 7\ J with

Z Arxl — Z pixt=0 foralle € E, (3)
Ieg Ieg
>0 for all I € 7, (4)
Z nr > 0. (5)
1eg

It immediately follows from inequalities (3) and (4) that u;y = 0 for all
I € T\ J containing an element not covered by the union of the sets J € J.
Moreover, since all feasible solutions have the same size ¢, we conclude that the

sum of all equations (3) is
Z)\]*Z/LIZO. (6)
Ieg Ieg

For easier reference, we summarize our observations:

Lemma 2.1. Given any ¢-COP with feasible solutions T C 2¥ and a natural
number h < dim Pz(E), the polytope Pr(E) is h-neighbourly if and only if for
every set J C T of size h the system of constraints

> Axt— X pxt =0 foralle € E,
Ieg Ieg B (7)
J #92
is inconsistent, where J :={I €¢ T\ J|I C Uses J, ur > 0}.

3 Neighbourlicity of the k-clique polytope P?,

Let us open this section by showing that P? is 2-neighbourly. Let o be the
characteristic vector of the union of the edge sets of two different cliques Cy
and C5. The inequality az < @ is valid for P,?n, and the characteristic
vectors of C7 and Cy are the only characteristic vectors of k-cliques satisfying
the inequality at equality.

After determining the dimension of P,fn, we will show that P,fn is 3-, but
usually not 4-neighbourly.

Theorem 3.1. For 2 < k < n — 2, the dimension of the k-clique polytope P,fn
defined on a complete graph K, is n(n—1) — 1= |E(K,)| — 1.

Proof. All z € P2, satisfy the equation

S o= %k(k‘ Y (8)

e€E(K,)

proving dim P, < |E(K,)| — 1. To show equality, suppose that there is any
equation ZeeE(Kn) .z, = [ satisfied by all x € P? . Considering any two
distinct nodes u,v € V(K,,) and any node set W C V(K,) \ {u,v} of size k—1,
we derive from a(E(W U {u})) = a(E(W U{v})) = B the equation

D Cuwy = Y, gy =0, (eq(u,v, W))

weWw weWw



Furthermore, consider any four distinct nodes ¢, u,v,w € V(K,). Then, for
any node set Z C V(K,)\{t,u,v, w} of size k—2, we derive the equation system

E(Z U {t,u}) — BE(ZU {u,w}) =0

E(Zu{t,v})—-EZU{v,w})=0

Q) T D Otz — Quw) T D Qfuzy =0
z€Z z€Z

Oy + 2 ezt — Y} T D Owzy = 0.
ze€Z z€Z

Subtracting the second equation from the first equation, we see that

gt u} T Uuw) — Ot} — Wuwy =0 (eq(t, u, v, w))

for all distinct nodes t,u, v,w € V(K,,).

Next, consider any three distinct nodes ¢,u,v € V(K,,) and any node set
W C V(K,) \ {t,u,v} of size k — 2. Adding the equations eq((t,u, W'))
and eq((t,u,v,w)) for all w € W', where W’ := W U {v}, we conclude that
Qftu) = Ofup}- Thus, for any two edges e = {t,u}, f = {v,w} € E(K,),

Qftu) = Quwy a0d Gy} = Q) implies @ = ay. Thus, the equation
2ocen(K,) Qe = B is a multiple of (8). O
Theorem 3.2.

(i) The polytope P%, is m-neighbourly, where m := |E(K,)| — 1}.
Moreover, for 3 <k <n-—3, P? is

(i) 3-neighbourly,
(iii) but not 4-neighbourly.

Proof. (i) This follows from the fact that, for any subset F' C E(K,,) of m edges,
the inequality » . p 2. < 1 is valid for P2, and is satisfied at equality if and
only if x is the characteristic vector of an edge (= 2-clique) belonging to F.

(ii) We have to prove that any three distinct k-cliques C1, Cs, C5 determine
a 2-face of P2 . Since every k-clique has an edge not contained in the union
of two other k-cliques, it follows that the characteristic vectors of the cliques
C; are affinely independent. Thus, by Lemma 2.1, it remains to show that the
system

3
Z pexE© — Z/\Z-XeE(Ci) =0 Ve e E(K,), (9)
ceKk’ =1

K #+ o (10)
is inconsistent. Here,
K= {CE’C|MC >O, O#OL fori:1,2,3, OgclLJCQUCg}.

For any edge e € E(K,,), denote the equation among (9) associated with e
by (9¢). Of course, summing up all equations (9e) for e € K', we derive that

Z e = A1+ Ao+ As. (11)
ceKx’



For any i € {1,2,3}, each C € K’ contains an edge f not contained in the
union of the both k-cliques C; with j # i. Because of e > 0 and equation (9f),
we conclude that A\; > 0 for i = 1,2, 3.

Next, suppose that, for some j € {1,2,3}, there exists a node v € V(C;)
not contained in the node set of the union of the two other cliques C;, i # j.
This implies 2?21 Ax2E) = Aj for all e € 6(v) N E(Cy). Since A; > 0, for
every such edge e, there exists some C' € K’ with po > 0 and e € E(C). Since
E(C) C E(C1)UE(C3)UE(C3), we conclude that §(v) N E(C) C é(v) N E(C)).
Since C and C; are k-cliques, we derive that |0(v) N E(C)| = |6(v) N E(C))| =
k — 1, and hence é(v) N E(C) = é(v) N E(C;) which, in turn, implies C' = Cj,
a contradiction. Consequently, for any j € {1,2,3}, V(C}) is contained in the
union of the node sets of the two other cliques Cj, i # j.

For the remainder of this proof, let V123 := V(C;) N V(Cy) N V(C3), and
for distinct 4,7 € {1,2,3}, let V% = (V(C;) N V(Cj)) \ VI*3 and E™ =
{{u,v} € E(K,)|u € V¥ v € V¥23}. Moreover, for any i € {1,2,3}, let
Vi=V(C)\ Uj;éi V(Cj) and E* := E(C;) \ Uj;éi E(C5).

By the last observation, V¢ = & for i = 1,2,3. Moreover, letting {1,2,3} =
{i, 4,0}, we see that

V(Ci) = V(C) N (V(Cy) UV (C))
= (V(G) nV(Cy)) U (V(Ci) NV(Cr))
=Viuvityyh2s,

This implies k = [V(C;)| = |V#| + [V#¢] 4+ |[V123| for i = 1,2,3, and hence,
r = V12| = |[V13| = |V23|. This, in turn, means that k and s := |V1:23|
have the same parity, since |V | + [V#¢| = 2r is even. Clearly, 7 > 0, because
otherwise, it follows that Cy = Cy = (', a contradiction.

Let now K € K. Define pp>® := [V123 0 V(K)|, and, for any distinct
i,j € {1,2,3}, define p}/ = |V NV (K)|. Since V(K) is contained in the union
of the node sets of the cliques C;, and since the node sets V12 V13 V23
and V123 are disjoint, we conclude that p}f’s + p}f +p};3 + pigg = k. Letting
{i, 5,4} = {1,2,3}, we see, in addition, that the number of edges of K in E* is
pi’(jp%, as B = {{u,v} € BE(C;) |u € V¥ v € V*}. Next, the number of edges
of K in E(V%9) is %szJ (p%! —1), that in B is pi’(jp}f’g, and that in E(V1:23)
11,23, 1,2,3
is opg (P —

1). Thus, we derive from the equations (9e¢) the following four



equations:

3

izzme zz )

i=1 ecEi KeK’

i=1 KeK’ e€E?
3
&Y ux Y IEE) 1B =Z|Eim-
Kek' =1 i1
3 3
e > uk Y pEpi = Z VNIV
Kek!  i=1

& Y uxppg + p}fp?f’ +ppED) =2 (M + Ao+ Ag),

KeK’

22: ES: S urxPE 22: 23: ikexf(c”

i=1j= z+leeE(V77 KeK’

2 3
<:>ZZ ZMK pK pK—l) ZZ%T(T—l)()\i-f—)\j)

= 1] i+1 Kek'! i=1 j=i+1

(:)Z Z Z /‘KPK pK — 1) =2r(r —1)(A1 + A2 + A3),

=1 j=i4+1 KeK’

2 3 2 3 3
SN D mx PO =3 > A Feo

i=1 j=i+1 ce B KEK! i=1 j=it1ecEid =1
2 3 2 3
1,2,3
S IP P IITICES 3 SRR
im1 j=—it1 Kek’ i=1 j—it1
& 3 urpP 0 A0 A 0% = 2rs( + Ao + Ag),
KeK’

and

3
)OID SPTSCL TS S SR

e€E(V1:2:3) KK c€ B(V1.23) f=1
= Z ,qul’2’3 1,2,3 1) = S(S — 1)()\1 + Ao + )\3)
KeK’

Let us show that p1’2’ = s for all K € K'. By definition, 0 < pj

1,2,3

(12)

(15)

< s.

Thus, if s = 0, then p1’2’3 = 5. Next, let s = 1. This means, py 123 ¢ {0,1} for

allKEIC’and( 4) is

prp (0 + il %) = 2r(A + X+ Ag).

KeK’



Since 2r+s =k = p}f +p};3 +p§;3 +p};2’3, we conclude that p}f +p}g3 +p§g3 =2r
whenever pp®® = 1. Thus, setting K} := {K € K'|pp>® = 1}, we derive from

equation (14) that 3 x e ix = A1+ A2 + Ag, contradicting (11) if £y ¢ K.

Thus, K = K’, that is, p}f"g =1=sfor all K € K'. Finally, let s > 2.
Adding to both sides of equation (15) the sum — 3, pxs(s — 1), we obtain
the equation

Z i (P> (02 — 1) = s(s = 1)) = s(s — D)(A1 + Ao + Ag — Z P )-

KeKk! KeK!
Using (11), we see that the right hand side of this equation vanishes, while
pwr > 0 and py’?’ < s imply that each summand of the left hand side is less
than or equal to zero. Thus, p;gz’?’ =sforall K € K.

To finish the proof, we derive a contradiction from equations (12) and (13).
First, we see that p}(’Z’S = s implies p}f +p}(’3 +p:;;3 = 2r for all K € K’. Next,
we observe that, for any K € K’,

>

2
12, 1,3, 23 12, 1,3, 23
:(pK + DE -‘er) _(pK + K +pK)

1,2 1,3 1,2 2.3 1,3 2,3
72(171(171{ + DK P +prK)

=4r? — 2r — 2y,

PR MY - 1)
+1

where tg 1= p}fp}f’ —i—p}fp?f’ —|—p}%3p§%3. Thus, multiplying (12) with —2r(r—1),

multiplying (13) with 72, and summing up the resulting equations, we obtain:

Z pxc (r2(4r® — 2r — 2tg) — 2r(r — 1)tg) =0

KeK'!
<2r(2r —1) Z pr(r? —tg) =0
KeKk’
=S Z ,LLK(T2 —tg)=0 (16)
KeK’

Finally, consider the real valued function

[l 1,9) := pp + @i + Y0

under the condition that 0 < @, 9,9 < r and ¢ + ¢ + ¥ = 2r. Since f is
equal to r% at (r,7,0), (r,0,7), and (0,7,7), and f is concave, we conclude that
r? —tg < 0for all K € K' and 2 — tx = 0 if and only if (p}f,p}f,p?f) €
{(r,r,0),(r,0,7),(0,r,7)}. Consequently, (16) implies that K € {C;,C>,Cs}
for each K € K’ contradicting {C1,C2,C3} NK' = @.

(iii) In what follows, we construct four k-cliques such that, if their char-
acteristic vectors are contained in the same face, then this face contains the
characteristic vectors of further k-cliques. W.lo.g. let V(K,) = {1,2,...,n},
and let W C V(K,) \ {1,2,...,6} be a node set of size k — 3. Consider the
k-cliques C;, i = 1,2, 3,4, determined by the node sets

Vii=WU{1,56}, Vo:=WU{2,6,4},
V3 =W U{3,4,5}, Vi:=WuU{1,2,3},



(@3
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Figure 1: The union of the four k-cliques Ci, ..., Cy restricted to {1,2,...,6}.

respectively. The graph depicted in Figure 1 is the subgraph of the union of
these four k-cliques induced by the node set {1,2,...,6}. Now, every face of
P,fn that contains the characteristic vectors of the cliques determined by V; for
i1 =1,2,3,4, also contains that of the k-cliques determined by

Vs =W U{1,2,6}, Vig:=WU{23,4}
Vei=WU{3,1,5}, Vis:=WU{4,5,6}.

Suppose not. This means, there exists a valid inequality ) . B(K,) Qele < 15}
such that a(E(V;)) = B for i = 1,2,3,4 and «(E(V;)) < B for i = 5,6,7,8,
which, in turn, implies that

ar 5y +opey + o056 + o' +a° +ab =7,
g6} + 024y + 06 41 T o +at+ab =7,
og34y + o35y + oy sy + o +at+ad =7,
012y t 23} + o1 3y + ol + 02 +ad =7,

and

aqy 2y t o6y + o026 ol +a’+ab <,
g4y + 023y +oy3 4y + o? + ol +at <y,
oqssy gy Haps ol ol +ad <,
sy + s +oqaer + ot + o +ab <7,

where v := 3 —a(E(W)) and o’ := Y\ arpw} for v e {1,2,...,6}. Adding
the four inequalities and subtracting the four equations, we conclude that 0 < 0,
a contradiction. O

4 Neighbourlicity of the k-clique polytope P

In this section, we will partially transfer the previous result on the k-cliques
of complete graphs, to r-uniform-hypergraphs. This study was initialized by a
remark of Pierre Duchet [3] who proposed to us this generalization.

For any natural numbers p, ¢ we denote by B(p, q) ::(7;) the binomial coef-
ficient of p over gq. Recall that the set of hyperedges of a complete r-uniform
hypergraph K] on n nodes is given by E(K]) = {e C V(K})||e| = r}. K
has B(n,r) hyperedges, and a k-clique of K], has B(k,r) hyperedges. In the
following, we assume that k > r+1. Moreover, for any node v of K, we denote
by 0(v) := {e € E(K})|v € e} the set of edges of K] containing v.



Theorem 4.1. Let K, be the complete r-uniform hypergraph on n nodes, where
2 <r <n, and let k be an integer with r < k < n.

(i) For k =r, P, is m-neighbourly, where m = |E(K},)| — 1.
(i) Forr+1 <k <n—1, alower bound for the neighbourlicity of Py, isr.

(iii) Fork >r+1 andn > k+r+1, an upper bound for the neighbourlicity
of P, is2" —1.

Proof. (i) For k = r, each k-clique only consists of one hyperedge, since, in this
case, B(k,r) = B(k,k) = 1. Thus, m k-cliques always form an (m — 1)-face of
Ph

(ii) Let C1,Cy,...,C, be distinct k-cliques of K. Consider the inequality
>eerte < B(k,r) for F := (J;_; E(C;). This inequality is obviously valid
for Py, since each k-clique of K] consists of B(k,r) edges. Moreover, the
characteristic vectors of the cliques C; are contained in the face induced by this
inequality. Consider now any k-clique C different from the cliques C;. Then, for
each 7 € {1,2,...,r}, C has a node v; not contained in V(C;). The nodes are
not necessarily distinct, but this argument tells us that there exists a nonempty
set U C V(C) of size r such that for every clique C;, there exists a node v € U
such that v ¢ V(C;). This means that U is an edge of C that is contained in
none of the cliques C;. Thus, for = xZ(©) the left hand side of the above
inequality is strictly less than B(k, ).

(iii) We have to show that P[, is not 2"-neighbourly. We prove this by
induction on r by showing that there always exists a counterexample given by
25, k-cliques C;,Ci, i = 1,2,...,s, with Y57 F(C) = S50 B where
s, := 2", disproving that Pj, is s-neighbourly. For r = 2, the claim directly
follows from Theorem 3.2 (iii) and its proof.

Solet r >3, and let C;,C;, i =1,2,...,s,_1 be k — 1-cliques of K,’;:é that

generate a counterexample for P,::ll n_o being s,._j-neighbourly. Define 2s, =

4s,_1 k-cliques C’;,C’;,Cg’,é’{’, i=1,2,...,8.1, of K] as subgraphs induced
by the node sets V; := V(C;) U{u}, V/ .=V (C;) U{v}, V' := V(C;) U{v}, and
V! := V(C;)U{u}, respectively, where {u,v} = V(K?)\V(K"~1). By definition
of the node sets, E(C!)\ d(u) = E(CY)\ 6(v) and E(C})\ 6(v) = E(C)\ 6(u).
Moreover, by hypothesis, E(C!) N d(u) = E(CY) N d(u) and E(C!) N d(v) =
E(C!) N é(v), since e € E(C}) Nd(u) if and only if e\ {u} € E(C;), and an
analogous statement holds for the other edge sets E(CY) N é(u), E(C!) Nd(v),
and E(C!) N §(v). Hence, we conclude that

Spr—1 Sr—1
=1 =1

which means that every face of P, that contains the incidence vectors of the
cliques C}, C! also contains that of the cliques CV,C/ . O

Our computational experiments indicate that the upper bound 2" — 1 is
probably tight whenever n > k 4+ r + 1 and k& > r + 1, see Table 1. For
the computation of these bounds, we used the following integer programming



formulation:

min ) he, (17)
ceK
> 2exl O =3 pex@ =0 Vee B(K]),  (18)
ceK ceKk
Ac < he, pe < Lo VC ek, (19)
he +4c <1 vVC ek, (20)
Y hezr YueU, — (21)
cex
C>ov
Ao, e >0, he,beo € {0,1} vC e K. (22)

Here, U is some particular subset of V(K") of size k + 1. This integer program
computes the smallest number h such that the system (7) applied to Pf,, is
consistent. In other words, if (A*, u*, h*, £*) is an optimal solution of (17)-(22),
then ) hf —1 is the neighbourlicity of P,,. Equations (18) are the equations
of system (7) for PJ, . Next, the constaints (19), (20), and (22) express that both
clique collections to be generated have to be disjoint. Finally, inequalities (21)
exclude the trivial solution. To be more specific, we always can assume that the
k-cliques of the set KCj, := {C € K| he = 1} cover at least k+ 1 nodes. Since the
above integer programming formulation without inequalities (21) is symmetric,
we can fix a particular subset of V(K7) of size k + 1. In the remainder of this
section, we prove the validity of inequalities (21).
For any L C ICp, let

V)=V U v©)

Cel CCKr\L

be the set of nodes contained in each clique in L but not contained in any other
clique. For each clique C' € Ky, the collection T := {V (L) |V(L)NV(C) # @}
obviously is a partition of V(C).

Using a similar argumentation as in the proof to statement (ii) of Theo-
rem 4.1, we see that V(L) = @ whenever |L| < r. Suppose not. Then, there
is some C' € Ky := {C € K|lc = 1} such that V(L) N V(C’') # @. Thus,
V(C') €V :=Uger V(C). Since C” has to be different to each clique in L,

n>2(r+1)| k |r | Neighbourlicity
Skt3 | >3]2 3
8 4 13 7
9 4 13 7
9 5 |3 7
10 5 |3 7
10 6 |3 7
10 5 |4 15
11 6 |4 15
12 6 |5 31

Table 1: Neighbourlicities of some k-clique polytopes

10



there exists a node set U C V(C")\ V(L) of size at most 7 — 1 such that for every
clique C' € L, there is some node u € U not contained in C'. Of course, U can be
completed to a node set W C V(C”) of size r containing a node v € V(L). By
construction, W is an edge of C’, W is contained in none of the cliques C € L,
since W contains U, and W is contained in none of the other cliques of ICj,, since
W contains a node of V(L). Hence, the integer program (17)-(22) is unfeasible.
We conclude, in order to be feasible, V(L) = @ for all L C K, with |[L| <r. In
other words, each node covered by the cliques in K, is contained in at least r
cliques. This verifies the validity of inequalities (21).

5 Conclusion

In this paper, we studied the connectivity of the k-clique polytopes P;,,. We have
shown that, for » = 2, P/ is 3- but not 4-neighbourly, in general. Moreover,
by adapting the proof for P?, not being 4-neighbourly to the case that r > 3,
we have shown that P, is not 2"-neighbourly in many cases (depending on
the relations between k, n, and r), which implies that the neighbourlicity is at
most 2" — 1. On the other hand, we have presented, in Theorem 4.1, a lower
bound for the neighbourlicity, namely . However, in view of our computational
results indicating that the upper bound is tight, the lower bound seems to be
quite weak.

It seems to be obvious to try to adapt the proof that P/ is 2" —1-neighbourly
for r = 2 to the case that r > 3. For r = 2, the proof is essentially based
on the simple but important observation that the node sets V12, V1.3 1723
constructed there, have all the same size. These node sets correspond to the node
sets V(L) defined in the previous section. If the proof for » = 2 can be extended
to the general case, then one probably has to show that |V (L)| = |V(L)] if and
only if |L| = |L'|. Unfortunately, we are not able to determine the relations
between the node sets V(L). Currently, we only see that, in general, almost all
sets V(L) have to be empty, even more if |Kp| & 2". This follows from the fact
that, for each k-clique C' € Ky, the partition T = {V(L) | V(L) NV (C) # @}
of V(C) consists of at most k node sets. So at most k|Kp| of the node sets
V(L) are nonempty, which means that at least 2/%»| — k|ICy,| of the sets V(L)
are empty.
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