
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

SEBASTIAN GÖTSCHEL, MARTIN WEISER, ANTON
SCHIELA

Solving Optimal Control Problems with
the Kaskade 7 Finite Element Toolbox

ZIB-Report 10-25 (December 2010)

Solving Optimal Control Problems with the

Kaskade 7 Finite Element Toolbox

Sebastian Götschel Martin Weiser Anton Schiela

December 14, 2010

Abstract

This paper presents concepts and implementation of the finite element
toolbox Kaskade 7, a flexible C++ code for solving elliptic and parabolic
PDE systems. Issues such as problem formulation, assembly and adaptiv-
ity are discussed at the example of optimal control problems. Trajectory
compression for parabolic optimization problems is considered as a case
study.

AMS MSC 2010: 65N30, 65M60, 65K10, 65Y99, 68U20

Keywords: partial differential equations, optimal control, finite elements,
generic programming, adaptive methods

1 Introduction

Kaskade 7 is a general-purpose finite element toolbox for solving systems of el-
liptic and parabolic PDEs. Design targets for the Kaskade 7 code have been
flexibility, efficiency, and correctness. One possibility to achieve these, to some
extent competing, goals is to use C++ with a great deal of template metapro-
gramming [13]. This generative programming technique uses the C++ template
system to let the compiler perform code generation. The resulting code is, due
to static polymorphism, at the same time type and const correct and, due to
code generation, adapted to the problem to be solved. Since all information
relevant to code optimization is directly available to the compiler, the resulting
code is highly efficient, of course depending on the capabilites of the compiler.
In contrast to explicit code generation, as used, e.g., by the FEniCS project [9],
no external toolchain besides the C++ compiler/linker is required. Drawbacks
of the template metaprogramming approach are longer compile times, somewhat
clumsy template notation, and hard to digest compiler diagnostics. Therefore,
code on higher abstraction levels, where the performance gains of inlining and
avoiding virtual function calls are negligible, uses dynamic polymorphism as
well.

The Kaskade 7 code is heavily based on the DUNE libraries [2, 1, 3], which
are used in particular for grid management, numerical quadrature, and linear
algebra.

As a guiding example at which to illustrate features of Kaskade 7 we will use
the all-at-once approach to the following simple optimal control problem. For

1

2

a desired state yd defined over a domain Ω ⊂ Rd, d ∈ {1, 2, 3}, and α > 0 we
consider the tracking type problem

min
u∈L2(Ω),y∈H1

0 (Ω)

1
2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) s.t. −∆y = u in Ω.

The solution is characterized by the Lagrange multiplier λ ∈ H1
0 (Ω) satisfying

the Karush-Kuhn-Tucker system I ∆
α I

∆ I

yu
λ

 =

yd0
0

 .
For illustration purposes, we will discretize the system using piecewise poly-
nomial finite elements for y and λ and piecewise constant functions for u,
even though this is not the best way to approach this particular type of prob-
lems [7, 15].

2 Kaskade 7 Structure and Implementation

The foundation of all finite element computation is the approximation of solu-
tions in finite dimensional function spaces. In the next section, we will discuss
the representation of functions in Kaskade 7 before addressing the problem for-
mulation.

2.1 Finite Element Spaces

On each reference element T0 there is a set of possibly vector-valued shape
functions φi : T0 → Rs, i = 1, . . . ,m defined. Finite element functions are built
from these shape functions by linear combination and transformation. More
precisely, finite element functions defined by their coefficient vectors a ∈ RN are
given as

u(x)|T = ψT (x)(Φ(ξ)KTaIT
),

where aIT
∈ Rl is the subvector of a containing the coefficients of all finite

element ansatz functions which do not vanish on the element T , K ∈ Rm×l
is a matrix describing the linear combination of shape functions φi to ansatz
functions ϕj , Φ(ξ) ∈ Rs×m is the matrix consisting of the shape functions’
values at the reference coordinate ξ corresponding to the global coordinate x as
columns, and ψT (x) ∈ Rs×s is a linear transformation from the values on the
reference element to the actual element T .

The indices IT and efficient application of the matrices KT and ψT (x) are
provided by local-to-global-mappers, in terms of which the finite element spaces
are defined. The mappers do also provide references to the suitable shape func-
tion set, which is, however, defined independently. For the computation of the
index set IT the mappers rely on the Dune index sets provided by the grid views
on which the function spaces are defined.

For Lagrange ansatz functions, the combiner K is just a permutation matrix,
and the converter ψ(x) is just 1. For hierarchical ansatz functions in 2D and
3D, nontrivial linear combinations of shape functions are necessary. The im-
plemented over-complete hierarchical FE spaces require just signed permuation

3

matrices [16]. Vectorial ansatz functions, e.g. edge elements, require nontriv-
ial converters ψ(x) depending on the transformation from reference element to
actual element. The structure in principle allows to use heterogeneous meshes
with different element topology, but the currently implemented mappers require
homogeneous meshes of either simplicial or quadrilateral type.

In Kaskade 7, finite element spaces are template classes parameterized with a
mapper, defining the type of corresponding finite element functions and support-
ing their evaluation as well as prolongation during grid refinement, see Sec. 2.4.
Assuming that View is a suitable Dune grid view type, FE spaces for the guiding
example can be defined as:

typedef FEFunctionSpace<ContinuousLagrangeMapper<double,View> > H1Space;

typedef FEFunctionSpace<DiscontinuousLagrangeMapper<double,View> >

L2Space;

H1Space h1Space(gridManager,view,order);

L2Space l2Space(gridManager,view,0);

Multi-component FE functions are supported, which gives the possibility to
have vector-valued variables defined in terms of scalar shape functions. E.g.,
displacements in elastomechanics and temperatures in the heat equation share
the same FE space. FE functions as elements of a FE space can be constructed
using the type provided by that space:

H1Space::Element<1>::type y(h1Space), lambda(h1Space);

L2Space::Element<1>::type u(l2Space);

FE functions provide a limited set of linear algebra operations. Having different
types for different numbers of components detects the mixing of incompatible
operands at compile time.

During assembly, the ansatz functions have to be evaluated repeatedly. In
order not to do this separately for each involved FE function, FE spaces define
Evaluators doing this once for each involved space. When several FE functions
need to be evaluated at a certain point, the evaluator caches the ansatz func-
tions’ values and gradients, such that the remaining work is just a small scalar
product for each FE function.

2.2 Problem Formulation

For stationary variational problems, the Kaskade 7 core addresses variational
functionals of the type

min
ui∈Vi

∫
Ω

f(x, u1, . . . , un,∇u1, . . . ,∇un) dx+
∫
∂Ω

g(x, u1, . . . , un) ds (1)

The problem definition consists of providing f , g, and their first and second
directional derivatives in a certain fashion. First, the number of variables, their
number of components, and the FE space they belong to have to be specified.
This partially static information is stored in heterogeneous, statically polymor-
phic containers from the Boost Fusion [4] library. Variable descriptions are
parameterized over their space index in the associated container of FE spaces,
their number of components, and their unique, contiguous id.

4

typedef boost::fusion::vector<H1Space*,L2Space*> Spaces;

Spaces spaces(&h1Space,&l2Space);

typedef boost::fusion::vector<VariableDescription<0,1,0>,

VariableDescription<0,1,1>,

VariableDescription<1,1,2> > VarDesc;

Besides this data, a problem class defines, apart from some static meta informa-
tion, two member classes, the DomainCache defining f and the BoundaryCache.
The domain cache provides member functions d0, d1, and d2 evaluating f(·),
f ′(·)vi, and f ′′(·)[vi, wj], respectively. For the guiding example with

f =
1
2

(y − yd)2 +
α

2
u2 +∇λT∇y − λu,

the corresponding code looks like

double d0() const {

return (y-yd)*(y-yd)/2 + u*u*alpha/2 + dlambda*dy - lambda*u;

}

template <int i, int d>

double d1(VariationalArg<double,d> const& vi) const {

if (i==0) return (y-yd)*vi.value + dlambda*vi.gradient;

if (i==1) return alpha*u*vi.value - lambda*vi.value;

if (i==2) return dy*vi.gradient - u*vi.value;

}

template <int i, int j, int d>

double d2(VariationalArg<double,d> const& vi,

VariationalArg<double,d> const& wj) const {

if (i==0 && j==0) return vi.value*wj.value;

if (i==0 && j==2) return vi.gradient*wj.gradient;

if (i==1 && j==1) return alpha*vi.value*wj.value;

if (i==1 && j==2) return -vi.value*wj.value;

if (i==2 && j==0) return vi.gradient*wj.gradient;

if (i==2 && j==1) return -vi.value*wj.gradient;

}

A static member template class D2 defines which Hessian blocks are available.
Symmetry is auto-detected, such that in d2 only j ≤ i needs to be defined.

template <int row, int col>

class D2 {

static int present = (row==2) || (row==col);

};

The boundary cache is defined analogously. The functions for y, u, and λ are
specified (for nonlinear or instationary problems in form of FE functions) on
construction of the caches, and can be evaluated for each quadrature point
using the appropriate one among the evaluators provided by the assembler:

template <class Position, class Evaluators>

void evaluateAt(Position const& x, Evaluators const& evaluators) {

y = yFunc.value(at_c<0>(evaluators));

u = uFunc.value(at_c<1>(evaluators));

lambda = lambdaFunc.value(at_c<0>(evaluators));

dy = yFunc.gradient(at_c<0>(evaluators));

dlambda = lambdaFunc.gradient(at_c<0>(evaluators));

}

5

2.3 Assembly

Assembly of matrices and right hand sides for variational functionals is provided
by the template class VariationalFunctionalAssembler, parameterized with
a (linearized) variational functional. The elements of the grid are traversed.
For each cell, the functional is evaluated at the integration points provided by a
suitable quadrature rule, assembling local matrices and right hand sides. If ap-
plicaple, boundary conditions are integrated. Finally, local data is scattered into
global data structures. Matrices are stored as sparse block matrices with com-
pressed row storage, as provided by the Dune BCRSMatrix<BlockType> class.
For evaluation of FE functions and management of degrees of freedom, the in-
volved spaces have to be provided to the assembler. User code for assembling a
given functional will look like the following:

boost::fusion::vector<H1Space*,L2Space*> spaces(&h1space,&l2space);

VariationalFunctionalAssembler<Functional> as(spaces);

as.assemble(linearization(f,x));

For the solution of the resulting linear systems, several direct and iterative
solvers can be used. An interface to Dune-ISTL is provided. E. g. the class
AssembledGalerkinOperator provides the Dune AssembledLinearOperator
interface for the Kaskade 7 class VariationalFunctionalAssembler. After
the assembly, and some more initializations (rhs, solution), a direct solver
solverType can be applied:

AssembledGalerkinOperator A(as);

directInverseOperator(A,solverType).applyscaleadd(-1.0,rhs,solution);

2.4 Adaptivity

Kaskade 7 provides several means of error estimation.

Embedded error estimator. Given a FE function u, an approximation of
the error can be obtained by projecting u onto the ansatz space with polynomials
of order one less. The method embeddedErrorEstimator() then constructs
(scaled) error indicators, marks cells for refinement and adapts the grid with
aid of the GridManager class, which will be described later.

error = u;

projectHierarchically(variableSet, u);

error -= u;

accurate = embeddedErrorEstimator(variableSet,error,u,scaling,tol,

gridManager);

Hierarchic error estimator. After discretization using a FE space Sl, the
minimizer of the variational functional satisfies a system of linear equations,
Allxl = −bl. For error estimation, the ansatz space is extended by a second,
higher order ansatz space, Sl ⊕ Vq. The solution in this enriched space satisfies[

All Alq
Aql Aqq

] [
xl
xq

]
= −

[
bl
bq

]
.

6

Of course the solution of this system is quite expensive. As xl is essentially
known, just the reduced system diag(Aqq)xq = −(bq + Aqlxl) is solved [5]. A
global error estimate can be obtained by evaluating the scalar product 〈xq, bq〉.

In Kaskade 7, the template class HierarchicErrorEstimator is available. It
is parameterized by the type of the variational functional, and the description
of the hierarchic extension space. The latter can be defined using e. g. the
ContinuousHierarchicExtensionMapper. The error estimator then can be
assembled and solved analogously to the solution of the original variational
functional.

Grid transfer. Grid transfer makes heavy use of the signal-slot concept, as
implemented in the Boost.Signals library [4]. Signals can be seen as callback
functions with multiple targets. They are connected to so-called slots, which
are functions to be executed when the signal is sent. This paradigm allows to
handle grid modifications automatically, ensuring that all grid functions stay
consistent.

All mesh modifications are done via the GridManager<Grid> class, which
takes ownership of a grid once it is constructed. Before adaptation, the grid
manager triggers the affected FE spaces to collect necessary data in a class
TransferData. For all cells, a local restriction matrix is stored, mapping global
degrees of freedom to local shape function coefficients of the respective father
cell. After grid refinement or coarsening, the grid manager takes care that
all FE functions are transfered to the new mesh. Since the construction of
transfer matrices from grid modifications is a computationally complex task,
these matrices are constructed only once for each FE space. To this extent, FE
spaces listen for the GridManager’s signals. As soon as the transfer matrices are
constructed, the FE spaces emit signals to which the associated FE functions
react by updating their coefficient vectors using the provided transfer matrix.
Since this is just an efficient linear algebra operation, transfering quite a lot of
FE functions from the same FE space is cheap.

After error estimation and marking, the whole transfer process is initiated
in the user code by:

gridManager.adaptAtOnce();

The automatic prolongation of FE functions during grid refinement makes it
particularly easy to keep coarser level solutions at hand for evaluation, compar-
ison, and convergence studies.

2.5 Nonlinear Solvers

A further aspect of Kaskade 7 is the solution of nonlinear problems, involving
partial differential equations. Usually, these problems are posed in function
spaces, which reflect the underlying analytic structure, and thus algorithms
for their solution should be designed to inherit as much as possible from this
structure.

Algorithms for the solution of nonlinear problems of the form (1) build upon
the components described above, such as discretization, iterative linear solvers,
and adaptive grid refinement. A typical example is Newton’s method for the
solution of a nonlinear operator equation. Algorithmic issues are the adaptive
choice of damping factors, and the control of the accuracy of the linear solvers.

7

The control of accuracy includes requirements for iterative solvers, but also
requirements on the accuracy of the discretization.

The interface between nonlinear solvers and supporting routines is rather
coarse grained, so that dynamic polymorphism is the method of choice here.
This makes it possible to develop and compile complex algorithms indepen-
dently of the supporting routines, and to reuse the code for a variety of different
problems. In client code the components are then plugged together, and deci-
sions are made, which type of discretization, linear solver, adaptivity, etc. is
used together with the nonlinear algorithm.

Core of the interface are abstract classes for a mathematical vector, which
supports vector space operations, but no coordinatewise access, abstract classes
for norms and scalar products, and abstract classes for a nonlinear functional
and its linearization (or, more accurately, its local quadratic model). Further,
an interface for inexact linear solvers is provided. These concepts form a frame-
work for the construction of iterative algorithms in function space, which use
discretization for the computation of inexact steps and adaptivity for error con-
trol.

The following shortened example code shows a simple implementation of the
damped Newton method:

for(step=1; step <= maxSteps; step++) {

lin = functional->getLinearization(*iterate);

linearSolver->solve(*correction,*lin);

do {

*trialIter = *iterate;

trialIter->axpy(dampingFactor,*correction);

if(regularityTest(dampingFactor)==Failed) return -1;

updateDampingFactor(dampingFactor);

} while(evaluateTrialIterate(*trialIter,*correction,*lin)==Failed);

*iterate = *trialIter;

if(convergenceTest(*correction,*iterate)==Achieved) return 1;

}

While regularityTest, updateDampingFactor, evaluateTrialIterate, and
convergenceTest are implemented within the algorithm, functional, lin, and
linearSolver, used within the subroutines are instantiations of derived classes,
provided by client code. By

linearSolver->solve(*correction,*lin);

a linear solver is called, which has access to the linearization lin as a linear op-
erator equation. One may then either use a direct or iterative solver on a fixed
discretization, or solve this operator equation adaptively, until a prescribed rel-
ative accuracy is reached. Then, the adaptive solver calls in turn a linear solver
on each refinement step. There is a broad variety of linear solvers available,
and moreover, it is not difficult to implement a specialized linear solver for the
problem at hand.

For convenient implementation via Kaskade 7 concepts, bridge classes are
provided, which are parametrized by Kaskade 7 types, and provide implementa-
tions for the abstract base classes needed by the algorithms. For example, the
class Bridge::KaskadeLinearization is parametrized by a variational func-
tional and a vector of type VariableSet::Representation. It uses the as-

8

sembler class to generate the data needed for step computation, and manages
generated data.

Several algorithms are currently implemented. Among them there is a
damped Newton method with affine covariant damping strategy, a Newton path-
following algorithm, and algorithms for nonlinear optimization, based on a cu-
bic error model. This offers the possibility to solve a large variety of nonlinear
problems involving partial differential equations. As an example, optimization
problems with partial differential equations subject to state constraints can be
solved by an interior point method combining Newton path-following and adap-
tive grid refinement [12].

3 State Trajectory Compression

As a case study we consider a 3D parabolic model optimal control problem

min
1
2
‖y − yd‖2L2(Ω×(0,T)) +

α

2
‖u‖2L2(∂Ω×(0,T)) ,

subject to

Byt −∆y = f in Ω× (0, T), ∂νy + y = u on ∂Ω× (0, T), y(·, 0) = 0 in Ω.

To avoid 4D discretization, methods working on the reduced objective functional
are often employed. For the computation of the reduced gradient, one forward
solve of the state equation as well as one backward solve of the adjoint equation
is needed, see e. g. [7] and the references therein. As the state enters into
the adjoint equation, the forward solution, a 4D data set, has to be stored. In
this section, we will focus on the implementation of a compression scheme in
Kaskade 7.

3.1 A Lossy Compression Algorithm

Assume a nested family T0 ⊂ · · · ⊂ Tl of triangulations, constructed from a
coarse grid T0. With Nj denoting the set of nodes on level j, let {ϕk|k ∈ Nj}
be the piecewise linear nodal basis functions over the triangulation Tj . Thus,
the solution of the state equation is given by y(x, ti) =

∑
k∈Nl

yk,iϕk(x).
At time ti we make use of the mesh hierarchy. Initially, the finite element

coefficients for the coarse grid are predicted as zero. Given an approximation of
yk,i, k = 0, . . . , |Nj |−1 on grid level j, a prolongation of these values to the next
grid level j + 1 is computed, e.g. by linear interpolation. As the exact nodal
values are known, the prediction error can be evaluated, quantized keeping an
error bound, and stored. The reconstruction of the nodal values then is used as
input for the next prediction step, allowing the decoder to mirror the prediction
process during the adjoint integration. As no random access to the state values
is needed, differential encoding is applied to the quantized values to reduce
temporal correlations. See [14] for details.

3.2 Time-dependent Problem Formulation

Kaskade 7 provides an extrapolated linearly implicit Euler method for integra-
tion of time-dependent problems B(y)ẏ = f(y), [6]. Given an evolution equation
Equation eq, the corresponding loop looks like

9

Limex<Equation> limex(gridManager,eq,variableSet);

for (steps=0; !done && steps<maxSteps; ++steps) {

do {

dx = limex.step(x,dt,extrapolOrder,tolX);

errors = limex.estimateError(/*...*/);

// choose optimal time step size

} while(error > tolT);

x += dx ;

}

Step computation makes use of the class SemiImplicitEulerStep. Here, the
stationary elliptic problem resulting from the linearly implicit Euler method is
defined. This requires an additional method b2 in the domain cache for the
evaluation of B. For the simple scalar model problem with B(x) independent
of y, this is just the following:

template<int i, int j, int d>

Dune::FieldMatrix<double, TestVars::Components<i>::m,

AnsatzVars::Components<j>::m>

b2(VariationalArg<double,d> const& vi,

VariationalArg<double,d> const& wj) const {

return bvalue*vi.value*vj.value;

}

Of course, bvalue has to be specified in the evaluateAt method.

3.3 Implementation

Implementation of the lossy compression algorithm makes use of the exist-
ing infrastructure for adaptivity, see Sec. 2.4. For the prolongation step, a
FE space over the current LevelGridView is constructed. With help of the
TransferData class, a transfer matrix is generated, which applied to a suit-
able coefficient vector coeff performs the transfer to the next grid level. This
differs from the usual grid transfer, where the coefficient vector is prolongated
to the leaf grid. For code reusability, this difference is taken care of by pol-
icy classes AdaptationCoarseningPolicy and MulitlevelCoarseningPolicy,
which control the acceptance of cells during the creation of transfer matrices:

MultilevelCoarseningPolicy policy(level) ;

levelView = grid.levelView(level);

Space space(gridManager, levelView, order);

TransferData<Space,MultilevelCoarseningPolicy> transferData(space,

policy);

levelView = grid.levelView(level+1);

space.mapper().update();

std::auto_ptr<TransferData<Space,

MultilevelCoarseningPolicy>::TransferMatrix>

tm = transferData.transferMatrix();

newCoeff = tm->apply(coeff) ;

Evaluation of the prediction error is straightforward, as the FE solution on
the leaf grid is at hand. For quantization, the range of prediction errors on
the current grid level is divided into N subintervals, where N = range/(2δ)

10

is determined by the required quantization error tolerance δ. The subinterval
indices are stored using a range coder [10].

For decoding the state values during the solution of the adjoint equation, the
corresponding adaptively refined grids have to be stored as well. An efficient
algorithm can be found in [8].

We apply the compression scheme to the model optimal control problem
with data α = 10−5, yd(x, t) = t|x|2, f(x, t) = |x|2 − 4t, discretized in space
with linear finite elements on a uniform mesh. For minimization, a simple
gradient-descent algorithm with an Armijo stepsize rule is used (see e. g. [11]).
Fig. 1 shows the error in the reduced gradient and control induced by the lossy
compression scheme, after 100 iterations of the optimization algorithm. For
comparison, we estimate the discretization error for the reduced gradient and
control using the quantities computed on a finer grid as reference.

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0 10 20 30 40 50 60 70 80 90

re
la

ti
ve
L
∞

-e
rr

or
re

du
ce

d
gr

ad
ie

nt

compression factor

with temporal prediction
without temporal prediction

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0 10 20 30 40 50 60 70 80 90

re
la

ti
ve
L
∞

-e
rr

or
co

nt
ro

l

compression factor

with temporal prediction
without temporal prediction

Figure 1: Relative error vs. compression rate for reduced gradient (left) and
control (right) after 100 gradient steps. The horizontal line shows the approxi-
mated discretization error.

Acknowledgement Partial funding by the DFG Research Center Matheon,
projects A1, A17, and F9, is gratefully acknowledged.

References

[1] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber,
M. Ohlberger, and O. Sander. A generic grid interface for parallel and
adaptive scientific computing. Part II: Implementation and tests in dune.
computing. Computing, 82(2–3):121–138, 2008.

[2] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger,
and O. Sander. A generic grid interface for parallel and adaptive scientific
computing. Part I: Abstract framework. Computing, 82(2–3):103–119, 2008.

[3] M. Blatt and P. Bastian. The iterative solver template library. In
B. K̊aström, E. Elmroth, J. Dongarra, and J. Wasniewski, editors, Ap-
plied Parallel Computing. State of the Art in Scientific Computing, volume
4699 of Lecture Notes in Scientific Computing, pages 666–675. Springer,
2007.

[4] Boost. C++ libraries. http://www.boost.org/.

http://www.boost.org/

11

[5] P. Deuflhard, P. Leinen, and H. Yserentant. Concepts of an adaptive hier-
archical finite element code. IMPACT Comp. Sci. Eng., 1(1):3–35, 1989.

[6] P. Deuflhard and U. Nowak. Extrapolation integrators for quasilinear im-
plicit ODEs. In P. Deuflhard and B. Engquist, editors, Large Scale Scien-
tific Computing, volume 7 of Progress in Scientific Computing, pages 37–50.
Birkhäuser, 1987.

[7] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE
constraints. Springer, Berlin, 2009.

[8] F. Kälberer, K. Polthier, and C. von Tycowicz. Lossless compression of
adaptive multiresolution meshes. In Proc. Brazilian Symposium on Com-
puter Graphics and Image Processing (SIBGRAPI), volume 22, 2009.

[9] A. Logg. Automating the finite element method. Arch Comput Methods
Eng, 14:93–138, 2007.

[10] G.N.N. Martin. Range encoding: an algorithm for removing redundancy
from a digitised message. Presented at Video & Data Recording Conference,
Southampton, 1979.

[11] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer,
New York, 2006.

[12] A. Schiela and A. Günther. Interior point methods in function space for
state constraints – Inexact Newton and adaptivity. ZIB Report 09-01, 2009.

[13] T. Veldhuizen. Using C++ template metaprograms. C++ Report, 7(4):36–
43, 1995.

[14] M. Weiser and S. Götschel. State trajectory compression for optimal control
with parabolic PDEs. ZIB Report 10-05, 2010.

[15] M. Weiser, T. Gänzler, and A. Schiela. Control reduced primal interior
point methods. Comput Optim Appl, 41(1):127–145, 2008.

[16] G. Zumbusch. Symmetric hierarchical polynomials and the adaptive h-p-
version. In A.V. Ilin and L.R. Scott, editors, Proc. of the Third Int. Conf.
on Spectral and High Order Methods, ICOSAHOM ’95, Houston Journal of
Mathematics, pages 529–540, 1996.

	Introduction
	Kaskade 7 Structure and Implementation
	Finite Element Spaces
	Problem Formulation
	Assembly
	Adaptivity
	Nonlinear Solvers

	State Trajectory Compression
	A Lossy Compression Algorithm
	Time-dependent Problem Formulation
	Implementation

