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Abstract

This paper presents a bottom-up approach of automatic simplification
of a railway network. Starting from a detailed microscopic level as it is
used in railway simulation, the network is transformed by an algorithm to
an aggregated level, i.e., to a macroscopic network, that is sufficient for
long-term planning and optimization. Running and headway times are
rounded to a user defined discretization by a special cumulative method.
After the transformation we saturate the network with given train requests
by computing an optimal slot allocation. Then the optimized schedule is
re-transformed to the microscopic level in such a way that it can be sim-
ulated without any conflicts between the slots. We apply this algorithm
to “macrotize” a microscopic network model of the dense Simplon corri-
dor between Switzerland and Italy. With our micro-macro transformation
method it is possible for the first time to generate a profit maximal and
conflict free timetable for the entire corridor and for an entire day by a
simultaneous train slot optimization.

1 Introduction

Timetabling is one of the major planning tasks in railway traffic. It involves two
parts. On the one hand the railway operators need to compute a timetable using
a small number of vehicles and crews that satisfies passenger demands like short
transfer and travel times. On the other hand the infrastructure companies must
decide about the allocation of train slots to the train requests of the operators.
This is especially challenging when conflicts between different requests occur.
In such a situation, in particular, in highly utilized networks, manual planning
can become very complex and personnel-intensive. Then infrastructure capacity
might be left unused or good connections might not be guaranteed for all im-
portant points in the network. There is therefore a need for modeling methods
that allow for the use of optimization algorithms in timetabling like PESP [35]
or TTP [9].

Railway efficiency and the capacity of railway networks are important re-
search topics in engineering, operations research, and mathematics for several
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decades. The main challenge is to master the tradeoff between accuracy and
complexity in the planning, optimization, and simulation models. Radtke [31]
and Siefer et al. [15] proposed the use of both microscopic and macroscopic
models. They applied microscopic models for running time calculations and
the accurate simulation of railway operations, and macroscopic models for long
term traffic and strategic infrastructure planning. In a similar vein, Schultz [32]
suggested a procedure to insert train slots according to pre-defined priorities
in a first step, and to test the reliability of this timetable in a second step by
simulating stochastic disturbances. An alternative approach to determine the
capacity of a network are analytical methods. They aim at expressing the rail-
way efficiency by appropriate statistics, e.g., the occupancy rate. There exist
two different approaches: The first is the handicap theory by Potthoff [30]; it
is based on queueing models. The second uses probabilistic models to compute
follow-on delays; it is mainly based on the work of Schwanhäußer [33]. He also
introduced the important concept of section route nodes to analyze the perfor-
mance of route nodes or stations. Hansen [16] presents a probabilistic model
as an alternative to queueing models for a precise estimation of expected buffer
and running times. Finally, there is also a substantial literature on discrete
optimization approaches to timetable optimization. Due to the complexity of
railway traffic, most articles consider only simplified macroscopic models with a
simplified routing through the railway infrastructure on simple network topolo-
gies, such as corridors, e.g., [7, 5, 9, 23, 4, 14]. On the other hand, routing
through individual stations has been considered on a much more detailed level,
see [39, 24, 10]. The interaction of both approaches has only recently been
studied [8], using a top-down approach.

In this paper a bottom-up approach of automatic simplification of a complex
microscopic railway infrastructure model is presented and applied in a case study
for the Simplon corridor. The term “microscopic” points out that the input data
describes the infrastructure on a very detailed level, that makes it possible to
simulate the railway traffic with exact track, switch, and platform assignments
of the train paths like it would be in the real world. An aggregation technique
condenses this microscopic representation to those data that are relevant for
planning and optimization purposes. Transforming the data to a less detailed
level makes it possible to compute timetables and optimal slot allocations by
methods of linear and integer programming. Of course, the aggregation has to
be done in such a way that enough degrees of freedom remain, and in such a
way that a slot allocation on the macroscopic level can be transformed back to
the microscopic level without creating any conflicts. We describe in this paper
a method that does exactly this.

We test our method using real world data for the Simplon corridor from
Brig (BR) in Switzerland to Domodossola (DO) in Italy provided by the SBB
Schweizerische Bundesbahnen. The Simplon is known as one of the major cor-
ridors in the European railway network. It has a length of 45 km and features
12 stations. The microscopic model for this scenario consists of 1154 nodes and
1831 arcs including 223 signals, which is fairly large, see Figure 1. Furthermore
the routing possibilities at the terminals Brig and Domodossola and in the in-
termediate stations Iselle and Varzo, and a rather unusual slalom routing for
certain cargo trains through the tunnel lead to complex planning situations.

Before describing our micro-macro transformation in detail, we give a short
discussion on the pros and cons of microscopic and macroscopic railway model-
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Figure 1: Microscopic network representation of the Simplon corridor and
detailed representation of station Iselle as exported by the railway simulator
OpenTrack.

ing, and why they have to be combined in order to arrive at a method that is
both accurate and tractable.

Railway infrastructure and train operations are often modeled using simu-
lation programs. In the last 20 years several software programs for simulating
train movements were developed [37], [20], [36]. Almost all railway companies
use them to support their operations and planning processes. Simulation sys-
tems provide a realistic assessment of different options in infrastructure plan-
ning. They allow to study the interactions of large numbers of trains in a
network, and, in particular, to evaluate the feasibility of a timetable, i.e., if a
timetable works in simulation, it can be trusted to be operable in practice. We
used in our work the synchronous simulation system OpenTrack, that was de-
veloped at the ETH Zürich [20], see also [17] for an overview and a comparison
of synchronous and asynchronous simulation systems.

A simultaneous optimization of a large number of train slots at a microscopic
granularity is currently out of reach and would also not be appropriate in many
high-level strategic and tactical planning situations. For these purposes, it is
better to resort to a macroscopic model of the railway system. Such a macro-
scopic model contains much less information such that the network size can be
reduced significantly. In addition to that, a fixed time discretization can be used
in order to make the model amenable to discrete optimization techniques. In
[13] a standardized format for macroscopic railway models was introduced and a
number of test instances that model a part of the German long distance network
were made freely available. For line optimization [3] and for periodic timetable
optimization [23], simplified macroscopic models of the railway infrastructure
and estimates of event times, mostly in minutes, have been used with success.

Our contribution is to present a bottom-up approach to railway network
aggregation that starts at the microscopic level, goes to a macroscopic model,
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and ends again at the microscopic level. We present in Section 2 an algorithmic
approach thats implements this idea. This approach is tested in Section 3,
where we present computational results for different optimization scenarios for
the Simplon corridor.

2 Microscopy and Macroscopy, or There and
Back Again

Railways are highly complex technical systems, which can be modeled at any
level of detail. This modeling effort is no end in itself. Rather, an accurate
calculation of running times and precise and unique platform and track allo-
cations are needed to make simulation results match with the real world. The
necessary precision can be achieved using microscopic data such as gradients,
speed-dependent tractive efforts, speed limitations, and signal positions. How-
ever, this type of information is too complex to be handled in a discrete opti-
mization model. Our aim is therefore to work with a macroscopic model with
the property that the results can be interpreted in and re-transformed to the
microscopic world and finally operated in reality. The main contribution of this
work is to introduce an algorithm that constructs from a microscopic railway
model a macroscopic model with the following properties:
. macroscopic running times can be realized in microscopic simulation,
. sticking to macroscopic headway-times leads to conflict-free microscopic block

occupations,
. valid macroscopic timetables can be transformed into valid microscopic timeta-

bles.
This section defines the microscopic and macroscopic elements of our ap-

proach, and it describes a suitable transformation in detail. It is structured as
follows. Subsection 2.1 discusses microscopic railway network models. Subsec-
tion 2.2 motivates our aggregation idea and introduces some details concerning
the construction of macroscopic networks. The following Subsection 2.3 deals
with time discretization. Finally, we propose an algorithm that performs the
micro-macro transformation in Subsection 2.4. We remark that although our ex-
position is based on the simulation tool OpenTrack, the methodology is generic.

2.1 Microscopic Railway Networks

The main input for the transformation algorithm is a microscopic infrastructure
network that is given as a graph G = (V,E). OpenTrack uses a special graph
data structure in which nodes correspond to so-called double-vertices. These
consist of a left and a right part, see Figure 2 for examples and [25, 26] for a
more detailed description. OpenTrack adopts the convention that if a path in G
enters a node at the left end, it has to leave at the right end and vice versa. This
assures that the direction of the train route is always respected and no illegal
turn arounds at switches can be done. Every track section between two vertices
is modeled as an edge, and every edge has some attributes like maximum speed
or length. A double-vertex is introduced at any point where one or more of
these attributes change or if there is a switch, a station, or a signal on a track.
Figure 2 shows an example of a double-vertex graph in OpenTrack.

4



Figure 2: The topology of a part of a microscopic railway network plotted by
the simulation software OpenTrack. Signals can be seen at some nodes, as well
as platforms and station labels.

Our transformation approach is based on the consideration of a set of poten-
tial routes in G = (V,E) for trains of standardized train types. A microscopic
route is a path through the microscopic infrastructure that is valid for some
train type and that starts and ends at a node inside a station or at a node
representing a storage siding. Some nodes on the route can be labeled as stops,
namely, when the train can potentially stop there, i.e., at nodes representing
station platforms, or at stop opportunities on passing tracks. Note that the
train routes induce the directions in which the microscopic infrastructure nodes
and edges can be used. This will directly influence the definition, e.g., of the
headway parameters of the macroscopic model, as we will explain later in Sec-
tion 2.2. Let C denote the set of all train types and R the set of all given routes
in G = (V,E) (note that several routes can belong to one train type).

Train types should be chosen clearly arranged and conservatively with re-
spect to their “train class” (heavy cargo trains, slow interregional or regional
passenger trains) to avoid infeasible running times. Detailed simulation data has
to be calculated carefully such that precise running times and blocking times in
units of δ (some discretization step size, e.g., one second) can be computed, see
Figure 3. Running times and blocking times are basic elements of our approach
and will be discussed next.

In [28, 6] the basic laws of dynamics are applied to derive the dynamics of
a train movement. These methods have been implemented in state-of-the-art
railway simulation software packages, e.g., OpenTrack, in order to come up with
plausible values for exact running times, see [27]. Different tools differ in their
data structures, interfaces, and in some minor interpretations. However, the
main concepts of running and blocking times are the same. We remark that our
approach can not only be used in connection with OpenTrack, but that it can
be easily adapted to any simulation tool that provides accurate running and
blocking times, such as RailSys or RUT-K.

In Europe, blocking times are used to quantify the infrastructure capacity
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Figure 3: Blocking time diagrams for three trains on two routes using six blocks.
Below are two subsequent trains on route r2 and at the top a train on the
opposite route r1.

consumption of train movements. The approach is based on the early work of
Happel [18, 19] and the intuitive concept to associate the use of physical infras-
tructure resources over certain time intervals with trains or train movements,
see also [29, 22] for a comprehensive description of blocking time theory. We
will now give a brief discussion of blocking times that contributes to a better
understanding of our transformation algorithm.

The origin of the blocking time stairs, shown in Figure 3, is the well-known
train protection system called train separation in a fixed block distance. In this
method, the railway network is divided into block sections, which are bordered
by main signals. A block section must not be occupied by more than one train
at a time. When a signal allows a train to enter a block section, the section
is locked for all other trains. In this way, the entire route between the block
starting main signal and the overlap after the subsequent main signal is reserved
for the entering train.

Figure 3 shows that the time interval during which a route r occupies a
track segment consists of the relative reservation duration lre and the relative
release duration ure on edge e ∈ E. The relative reservation duration is the
sum of the approach time, the signal watching time, sometimes called reacting
time, and time needed to set up the route. The relative release duration is
the sum of the release time, the clearing time, sometimes called switching time,
and time needed by the train between the block signal at the beginning of
the route and the overlap. The switching time depends significantly on the
installed technology, see [34, 22]. In order to prevent trains that want to pass a
block section from undesirable stops or brakings, the block reservation should be
finished before the engine driver can see the corresponding distant signal. Then
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the section stays locked while the train passes the track between the beginning
of the visual distance to the caution signal and the main signal and thereafter
the block section until it has cleared the overlap after the next main signal.
Then the section is released. This regime can be improved in block sections
that contain con- or diverging tracks, because in such cases it is often possible
to release parts of the section before the train has passed the overlap after the
next main signal. We finally remark that blocking times are also used in moving
block systems like the future ETCS Level 3 system. Arbitrarily small blocks,
i.e., blocks with lengths converging to zero, are considered in simulations of
moving block systems in order to emulate the blocking times, see also [11] and
[38] for an investigation of the influence of ETCS Level 3 on the headway times.
Simulation tools have to respect all these technical details. From an optimization
point of view, however, it is sufficient to consider abstract blocking time stairs,
regardless of the safety system they stem from or how they were computed.

We summarize the microscopic information that we use:
. an (undirected) infrastructure graph G = (V,E),
. a set of train types C,
. a set of directed train routes R, r = (e1, e2, . . . , enr

) with ei ∈ E,
. each route r ∈ R belongs to one train type,
. a time discretization granularity δ,
. positive running times d̃re on edges e ∈ E for all routes r ∈ R measured in δ,
. positive release durations ure on edges e ∈ E for all routes r ∈ R measured in
δ,

. positive reservation durations lre on edges e ∈ E for all routes r ∈ R measured
in δ,

. the orientation of edges is induced by routes (one or both directions),

. stop opportunities for some nodes vi ∈ V , which are induced by traversing
routes.

2.2 Network Aggregation

The desired macroscopic network is a directed graph N = (S, J) for train types
C, that is derived from a microscopic network G = (V,E) and a set of routes R.
The construction involves aggregating (inseparable) block sections (paths in the
microscopic network G) to macroscopic tracks J and station areas (subgraphs
of the microscopic network G) to macroscopic stations S. The aggregation will
be done in a way that depends on the given routes R and on the defined train
types C, such that the complexity of the macroscopic network depends only on
the complexity of the interactions between the given train routes, and not on
the complexity of the network topology, which covers all interactions between
all potential train routes, which is much more. This is a major advantage over
other approaches, because the aggregation is detailed where precision is needed
and compressed where it is possible.

We will now describe the idea of the construction by means of an example.
First, all potential departure and arrival nodes at some station that are used by
the routes R are mapped to one macroscopic station node. Additional macro-
scopic nodes will be introduced in order to model interactions between routes
due to shared resources. The potential interactions between train routes in a
double-vertex graph are:
. complete coincidence, i.e., routes have identical microscopic paths,
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Figure 4: A railway network.

. convergence, i.e., routes merge at a microscopic node (and traverse it in the
same direction),

. divergence, i.e., routes separate at a microscopic node (and traverse until then
in the same direction),

. crossing, i.e., routes cross at a microscopic node (and traverse it in the oppo-
site direction).
Let us discuss some of these interactions between train routes at the example

of the infrastructure network shown in Figure 4.
Consider first a single standard train that runs from platform BRRB (we

denote any place where stopping is allowed as a platform) to platform IS. Then
it is enough to consider just one single track from station BRRB to IS in the
macroscopic infrastructure. Note that this macroscopic track could correspond
to a long path in the microscopic representation. Consider now additional stan-
dard trains from BRRB to IS. Possible interactions and conflicts between these
train routes are the self correlation on the directed track from BRRB to IS, as
well as the platform capacity for standard trains, which allows, say, exactly one
train to wait in BRRB or IS. Another standard train running from BR to IS calls
for the definition of a pseudo-station BRTU at the track junction in order to
model the train route convergences correctly. (Our model distinguishes between
regular station nodes, where a train can stop, and pseudo-station nodes, which
are not stop opportunities, i.e., in our model trains are not allowed to wait at
a pseudo-station or to change their direction there.) The pseudo-station BRTU
splits the track from BRRB and IS into two tracks: from BRRB to BRTU and
from BRTU to IS. The second of these tracks is used to model the resource
conflict between converging routes of trains from BRRB to IS and trains from
BR to IS, which is locally restricted to the track from BRTU to IS (or more
precisely from the first blocks to reserve containing the switch of BRTU). If it is
possible to run trains on the same microscopic segment in the opposite direction
from IS to BRRB, another directed track has to be defined in the macroscopic
network. Besides the standard self correlation, the conflict for opposing routes
also has to be modeled, see Figure 3. Diverging or crossing situations between
opposing train routes can be handled in an analogous way. Along the lines of
these examples, we can exploit aggregation potentials in the infrastructure by
representing several microscopic edges on a route by only one macroscopic track.
Of course, macroscopic track attributes can also be compressed. For example,
if we assume that the route from BRRB to IS and the route from BR to IS are
operated by the same train type, we can use a single value for the running time
on the track from BRTU to IS.

After constructing the regular stations, the pseudo-stations, and the tracks
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Figure 5: Aggregated macroscopic infrastructure network.

between them, the network can be further reduced by a second aggregation
step. Again consider the situation in Figure 4. Suppose platforms BRRB and
BR belong to the same station B. If BRTU is a close junction associated with
B, then it may be viable to contract nodes BRRB and BR to one major station
node B with a directed platform capacity of two as shown in figure 5. Of course,
by doing so we loose the accuracy of potentially different running times between
different platforms of B and the other stations, and we also loose control over
the routing through or inside B, which both can produce small infeasibilities on
the operational level. However, one can often achieve significant reductions in
network sizes in this way, without loosing too much accuracy.

2.3 Time Discretization

Discrete optimization models for timetabling and slot allocation are based on
the use of space-time graphs, i.e., the time is discretized. Similar as for the topo-
logical aggregation, there is also a tradeoff between model size and accuracy in
the temporal dimension. This tradeoff is controlled by the discretization step
size. The discretized times in the macroscopic model will be based on micro-
scopic simulation data, which is very precise. In fact, simulation tools provide
running and blocking times with an accuracy of seconds (or even smaller). Our
aim is to aggregate these values in the macroscopic model. We propose for this
purpose a conservative approach, which means that running and arrival times
will never be underestimated in the macroscopic model.

2.3.1 Running Times

Let ∆ ∈ N be a fixed time discretization, i.e., a unit of time, in which all
macroscopic times will be measured; e.g., using units of six seconds is denoted
as ∆ = 6. Then a first idea is to simply round up all running times to the
next unit of ∆; let us call this procedure ceiling rounding. Figure 6 shows
the difference between microscopic and ceiling rounded running times for a
microscopic running time of d̃rj = 74 at some track j in some route r with
respect to different time discretizations ∆. Fine discretizations like less than 15
seconds produce small deviations, while larger time discretizations can increase
the error significantly. The main problem with ceiling rounding is that the error
accumulates along a route. In fact, the worst case rounding error for each track
equals ∆ − 1, such that a route of n tracks can be off by an error of n∆ − n.
Such big rounding errors lead to undesirable extensions of travel times and an
inefficient use of the infrastructure capacity.

We therefore propose an alternative approach in terms of a more sophisti-
cated cumulative rounding technique. This procedure aims to control the round-
ing error by only tolerating small deviations between rounded and microscopic
running times. The idea is simple: considering running times for each route
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Figure 6: Microscopic and macroscopic running times on a railway track for
time discretizations varying between 1 and 60 seconds.

on each track with respect to the cumulative rounding error, it is sometimes
allowed to round down, because enough buffer time was collected on the way.
We must, however, make sure that running times are never rounded to zero, be-
cause in our model zero running times are not counted as infrastructure usage,
and this can lead to infeasible timetables. A formal description of the procedure
applied to a single track of the macroscopic infrastructure network is given in
Algorithm 1. There, we denote by d̃rj , drj , and εrj the microscopic running time
of route r at track j, the discretized running time, and the cumulative rounding
error, respectively. At the beginning of a route the cumulative rounding error
εr−1 equals zero.

An analysis of the cumulative rounding algorithm shows that the round-
ing error never exceeds ∆, given that the microscopic running times are never
smaller than ∆. For each track j on route r where this condition is not fulfilled,
i.e., d̃rj < ∆, the error can grow by ∆. For example, if we have one track j with

d̃rj < ∆, the upper bound for the rounding error along route r equals 2∆.
Figure 7 compares the two rounding methods by illustrating the minimum,

average, and maximum rounding errors of the macroscopic running times at the
end of example routes for all considered train types through the Simplon corridor
with respect to time discretizations varying from 0 to 60 seconds. The routes
have a length of at most ten macroscopic tracks. It is apparent that cumulative
rounding dampens the propagation of discretization errors substantially already
for short routes.

2.3.2 Headway Times

Based on the occupation and release times in Figure 3, it is possible to de-
fine a minimal time difference after which a train can succeed another train on
the same track or after which a train can pass another train from the opposite

10



Algorithm 1: Cumulative rounding method for computing discretized
macroscopic running times.

Data: Track j = (s1, s2) = (e1, . . . , em) ∈ J with s1, s2 ∈ S and ei ∈ E,
i = 1, . . . ,m, a train route r ∈ R with microscopic running time d̃rj
for track j, a cumulative rounding error εrj−1 and a time
discretization ∆ > 0

Result: running time drj and cumulative rounding error εrj
begin

choose k ∈ N with (k − 1)∆ < d̃rj ≤ k∆ ;

if 0 < (k − 1) and d̃rj − (k − 1)∆ ≤ εrj−1 then
drj := (k − 1)∆ ; // round down

εrj := εrj−1 − (d̃rj − (k − 1)∆) ; // decrease rounding error

else
drj := k∆ ; // round up

εrj := εrj−1 + (k∆− d̃rj) ; // increase rounding error

end
return pair(drj , ε

r
j) ;

end
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Figure 7: Comparing errors from ceiling rounding (left) and cumulative rounding
(right) for different time discretizations varying between 1 and 60 seconds.

direction. (We restrict ourselves w.l.o.g. to the consideration of minimal head-
way times for the combination of departure events.) Algorithm 2 describes the
calculation of the minimal headway time for the case of two routes r1 and r2

that traverse a track in the same direction. (We assume that both trains have
the same departure time at s1 when calculating the blocking times.) Here, we
denote the corresponding train types by c1, c2 ∈ C.

In case of crossing or opposite routes r1 and r2 on a single-way track j =
(s1, s2), the headway time is calculated differently. By definition each single-
way track j has exactly one counterpart j = (s2, s1) ∈ J , which is directed
in the opposite direction, and block feasibility with respect to this opposite
direction must be ensured by means of a second headway matrix. The entries of
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Algorithm 2: Rounding method for computing discretized minimal head-
way times.

Data: Track j = (s1, s2) = (e1, . . . , em) ∈ J with s1, s2 ∈ S, relative
release duration ur1ei and relative reservation duration lr2ei with
r1, r2 ∈ R, c1, c2 ∈ C, ei ∈ E, i = 1, . . . ,m, time discretization
∆ > 0.

Result: Minimal headway time h(j, j, c1, c2) for train type sequence
c1, c2 on track j

begin
h← 0;
for x = {ei|ei ∈ r1 ∩ r2} do

h = max{ur1x + lr2x , h} ; // update timing separation

end

return dh∆e;
end

this matrix are calculated as follows. Let j = (e1, . . . , em) be traversed by the
directed route r1. Then the minimum headway time for a departure of a train
of type c2 on an opposite route r2 at station s2 after a departure of a train of
type c1 on route r1 from station s1 is:

h(j, j, c1, c2) =

m−1∑
i=1

dr1ei + ur1em + lr2em . (1)

This time can be discretized by rounding. In practice additional buffer times are
added to all headway times in order to increase the robustness of the timetable.

2.4 An Algorithm for micro-macro transformation

Algorithm 3 puts the pieces together in order to transform a railway infras-
tructure network from a microscopic level to a macroscopic level. The method
has been implemented in a software tool netcast [12]. The procedure consists
of three main steps, namely, macroscopic network detection (ND), aggregation
(AG), and time discretization (TD), which will be discussed in this subsection.

Macroscopic network detection (ND) means to construct the digraphN = (S, J)
from the microscopic network G = (V,E) and a set of train routes R. Denote by
B(r) the set of stations visited by route r ∈ R, i.e., the set of microscopic nodes
where the train could stop and/or is allowed to wait. All visited stations become
macroscopic station nodes. If an interaction, i.e., a convergence, divergence, or
crossing, between two routes is detected, one or two pseudo stations are created,
respectively. This detection is done by a simple pairwise comparison of train
routes. An important aspect of network detection is that the mapping from a
microscopic node to its macroscopic representative is unique, i.e., a microscopic
node belongs to at most one junction or station in the microscopic model and
hence to at most one (pseudo) station.

The resulting set of stations Stmp is further compressed in the aggregation
(AG) step by the routine aggregateStations(), that enforces the imaginable ag-
gregations as informally described in Section 2.2. At this point, the macroscopic
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Algorithm 3: An Algorithm for micro-macro transformation.

Data: microscopic infrastructure graph G = (V,E), set of routes R,
stations B(r), train types c(r) ∈ C, r ∈ R, time discretization
∆ > 0

Result: macroscopic network N = (S, J), with stations S and tracks J

begin
ND Stmp := ∅;

foreach r ∈ R do
foreach b ∈ B(r) do

create s ; // create standard station

Stmp = Stmp ∪ {s}

foreach (r1, r2) ∈ (R×R) do
while divergence or convergence between r1 and r2 is found do

create p ; // create pseudo station

Stmp = Stmp ∪ {p};
while crossing between r1 and r2 is found do

create p, q ; // create pseudo stations

Stmp = Stmp ∪ {p, q};

AG S := aggregateStations(Stmp);
J := {(s1, s2) ∈ S × S| ∃r ∈ R with s2 = nextStation(r, s1);

TD foreach j ∈ J do
foreach r ∈ R do

d
c(r)

j := calculateRunningT ime(j, r, c,∆);

foreach (r1, r2) ∈ (R×R) do
h(j, j, c(r1), c(r2)) =
max{h(j, j, c(r1), c(r2)), calculateHeadway(j, r1, r2,∆)};
if j is single-way then

h(j, j, c(r1), c(r2)) =
max{h(j, j, c(r1), c(r2)), calculateHeadway(j, j, r1, r2,∆)};

return N = (S, J);
end

network detection is finished with respect to the set of stations. It remains to
divide the routes R into tracks with respect to the macroscopic stations S. Here,
nextStation(r, s) denotes the subsequent station of station s on train route r. It
is important to note that there can be more than one track between two stations,
especially after aggregation steps have been carried out. A typical example are
two tracks between two aggregated macroscopic stations, that correspond to
physically different microscopic track sections.

The time discretization (TD), the calculation of the rounded running and
headway times, is the last step of the algorithm. We denote the running

time of train type c over track j on route r by d
c(r)

j , the headway time for

the self correlation case, i.e., when a train on route r2 follows a train with
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Figure 8: Constructed aggregated macroscopic network by netcast.

route r1, by h(j, j, r1, r2), and the headway time for the single-way case by
h(j, j, r1, r2). The running times are calculated by the cumulative rounding
procedure calculateRunningT ime() according to Algorithm 1. The function
calculateHeadway() provides the headway times according to Algorithm 2 and
formula (1). The running times for each route, and the headway times for each
pair of routes are calculated and (conservatively) aggregated according to the
assignment of routes to train types c ∈ C. If there are several routes for the
same train type, the maximum running and/or headway time is taken. We re-
mark that we have omitted a discussion of so-called running modes of trains
(stopping in or passing through a station) in this exposition, but running and
headway times with respect to running modes are implemented in the micro-
macro transformation tool netcast.

Figure 8 shows a macroscopic network model for the Simplon corridor that
has been generated using Algorithm 3. We summarize the resulting macroscopic
data:
. (directed) network N = (S, J) with abstract stations S and tracks J ,
. mapping of sub-paths of routes to tracks,
. mapping of microscopic nodes to stations,
. running times on all tracks for all C measured in ∆,
. headway times on all tracks for all pairs of C measured in ∆,
. (opposite direction) headway times on single-way tracks for all pairs of C

measured in ∆.

3 Case Study Simplon

We tested our micro-macro transformation approach on real world data for
the Simplon corridor as already mentioned in the introduction. The first step
was to choose six standard train types, namely, two types of passenger trains,
regional (R) and intercity trains (EC), one motor-rail type GV Auto, and three
types of freight trains, viz., standard freight trains GV MTO , container trains
GV SIM , and “rolling highway” trains GV RoLa. Trains of the latter two
types must not use tracks on one side of the Iselle-Preglia tunnel because of
their width. This necessitates a so-called slalom route when such trains depart
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Figure 9: OpenTrack traffic diagram of a re-transformed conflict free timetable
computed using a micro-macro transformation.

from Brig. The passenger train slots were given as fixed, i.e., our case study
dealt with the saturation of the corridor by freight trains subject to a given
passenger timetable. For these six aggregated train types we considered up to
28 different routes through the microscopic network G = (V,E). These differ
in their stopping patterns and in their routing through the important station
Varzo, where over-width trains can pass each other.

In addition to the 12 existing stations, some pseudo-nodes were defined in
order to model all train interactions correctly. Detecting convergences, diver-
gences, and crossings as described in Section 2 produces a network N = (S, J)
with 55 station nodes and 87 tracks. Conducting some further aggregations, es-
pecially in station areas, we constructed a network simplon big with 18 stations
and 40 tracks. A second network simplon small with 12 stations and 28 tracks
was built with an even coarser station model.

The macroscopic model was verified using a dense manual reference timetable
created by the authors. This timetable runs 14 passenger and 21 freight trains
in the time window from 8 to 12am through the Simplon. We abused our slot
optimization module TS-OPT [2] to reproduce this timetable in our macroscopic
model by requesting exactly these 35 trains. And indeed, if a fine discretiza-
tion of, e.g., ∆ = 6 seconds, is used, it is possible to reproduce the timetable
accurately. Figure 9 compares the reproduced macroscopic timetable and its re-
transformed microscopic counterpart as simulated using OpenTrack. The dotted
lines represent macroscopic train movements; they are linear. The “real” (sim-
ulated) timetable is plotted using solid lines; here, acceleration and braking
phases are clearly perceivable.

With an accurate macroscopic model, we set out for optimization runs. The
goal was to saturate the residual capacity of the corridor (remember the passen-
ger trains are given as fixed) by scheduling additional freight trains (GV MTO ,
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Table 1: Solution statistics for several time discretizations for a macroscopic
railway network with 12 stations and 28 tracks; ip denotes results for the slot
allocation problem formulated as an integer program, and lp for its linear re-
laxation.

instance request1 request2
discret. in sec. 6 10 30 6 10 30

time(lp) (sec.) 135.67 48.88 17.77 190.36 64.59 2.83
time(ip) (sec.) 72774.55 12409.19 110.34 2923.76 2639.62 34.83
#trains 196 187 166 176 163 143

GV SIM , GV RoLa). To this purpose, we defined some artificial demand by
creating two sets of train requests covering a 24h time horizon. Both of these
sets feature a lot of competing train slots. The first set, request1, contains 390
slot requests including 63 fixed passenger trains; this set contains our manually
constructed test timetable. The second set, request2, contains 255 slot requests
(including the passenger train requests); in this set, the freight train requests
are uniformly distributed over the time horizon. The objective was a profit for
each train request minus a penalty for deviations from optimal arrival and de-
parture times. We remark that our study ignores certain capacity restrictions in
the station areas at Brig and Domodossola. All computations were done on ma-
chines with a 3 Ghz Intel Quad Core Processor and 8 GB RAM on Suse-Linux
11.2. CPLEX 12.1. was used as a LP and MIP solver [21].

The scenarios for request set request1 could be solved to proven optimality
for both networks using time discretizations of 30 seconds or coarser. The
solution for simplon big (with 10s discretization) exhibits a timetable with a
theoretical capacity of 203 trains, i.e., the optimized timetable manages to run
140 freight trains between the passenger trains through the Simplon. If we add
buffer times and adjust headway times according to some local characteristics,
a more realistic schedule with 170 trains can be computed, which is almost
identical to the one that is currently in operation. These results demonstrate
the accuracy as well as the potential of the method.

We finally analyzed the influence of different time discretizations on solution
time and quality. Table 1 shows the results for request sets request1 and request2
using the simplon small network. As expected, a coarser time discretization
reduces solution times, but decreases solution quality (in terms of numbers of
trains). It was, however, a surprise for us that the effect is already so large in
this range. This hints at a potential for finer, more “local” time discretization
methods. We also remark that larger buffer times reduce the effects of a coarser
discretization. For a more detailed description of the Simplon case study we
refer to [1].

4 Conclusion

In this paper we proposed an algorithmic bottom-up approach to transform
a microscopic railway network to an aggregated macroscopic network model
and back. The transformation is done in such a way that the macroscopic
model contains all the information that is necessary in order to compute a
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conflict-free slot allocation. Our micro-macro transformation algorithm detects
the macroscopic network structure by analyzing interactions between standard
train routes. In this way, the algorithm can ignore or compress parts of the
network that are not used by the considered train routes, and still account for
all route conflicts by constructing suitable pseudo stations. Time is discretized
by a cumulative rounding procedure that minimizes the differences between
aggregated and real running times. We tested our approach at the example
of the challenging Simplon railway corridor. Our micro-macro transformation
approach produced macroscopic models of the Simplon corridor that were small
enough to allow for a simultaneous optimization of more than 300 train slots.
In this way, it was possible for the first time to compute an operable (i.e.,
operable in our simulation setting) 24h timetable for the Simplon corridor by
an optimization algorithm. Another important issue is the use of our method
in larger networks than a corridor like the Simplon. We feel confident that
our method is also applicable to more complex settings, but so far no exact
microscopic infrastructure data for other networks is available to us.
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[33] Wulf Schwanhäußer. Die Bemessung der Pufferzeiten im Fahrplangefüge
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