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Chapter 1. Introduction

Chapter 1.

Introduction

Internal gravity waves in atmospheric flows are found on scales ranging from the
order of 10 km as in figure 1.1 to the order of 100 km, cf. figure 1.21. Their
restoring mechanism is based on the stratification of density with height in the
atmosphere, which is usually stable to vertical displacements of air parcels. One
important source of atmospheric gravity waves is flow over hills and mountains,
exciting so-called orographic or lee waves, see e.g. [Sco49] for an early work and
[WSD96] for a comprehensive review. Another important source of waves is deep
convection. There has been some debate about the essential mechanism that
causes deep convection to generate gravity waves, see e.g. [FDH91, LRC01] for
discussions.

Understanding the dynamics of gravity waves is important for atmospheric sciences
for several reasons. The pioneering works of [Saw59, Lin81] show that the dissipa-
tion of breaking internal waves in the stratosphere exerts a force called “gravity
wave drag” (GWD) on mid-atmospheric flows. Contemporary weather forecasting
as well as climate modelling extensively employ models for planetary-scale flows,
so-called “global circulations models” (GCMs). As for example [McL98] shows,
including the effect of GWD in those models is essential to obtain realistic mid-
atmospheric flows. Because internal waves are too small in scale to be resolved
in GCMs, parameterizations of GWD are required. See [KEC03] for a detailed
overview, including a comprehensive discussion of several wave-exciting processes.
Recently, [JSL+08] found that gravity waves are also important for the parame-
terization of cirrus clouds.

Internal waves also play an important role in several other meteorological phenom-
ena. [BS89, LR01] present simulations of how a single deep convective cloud affects
its environment by emitting gravity waves. By reducing “convective inhibition”
(CIN) around the cloud, waves are found to render the “cloud free environment”
(CFE) favorable for further convection. In a similar direction points the investi-
gation of a possible feedback mechanism between gravity waves and condensation
regions triggering convection in [CEL80]. The possibility of moist convection be-
ing triggered by waves is also investigated in [EL75]. Through interactions of

1From http://en.wikipedia.org/wiki/Gravity_wave, both figures are public domain.
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Figure 1.1.: Clouds caused by gravity waves. Theresa, Wisconsin, USA.

this type, gravity waves supposedly are involved in clustering of convection. See
[Map93, LM04] for investigations of this hypothesis.

However, atmospheric internal waves not only prepare or trigger moist convection
but their propagation characteristics are also modulated by moisture in return.
Most importantly, if a parcel is lifted sufficiently to start condensation, the released
latent heat offsets some of the cooling by adiabatic expansion and reduces the
exerted restoring force. In a conditionally unstable atmosphere, the parcel becomes
positively buoyant and moist convection is initiated.

This thesis presents the derivation, analysis and extension of a reduced model for
propagation of internal gravity waves in an atmosphere containing deep convective
clouds, so-called “hot towers”. The derivation is based on techniques from mul-
tiple scale perturbation theory, commonly used in applied mathematics, see e.g.
[KC96]. Perturbation methods rely on the identification of small, non-dimensional
parameters in a set of intricate equations governing the “full” physics of an in-
vestigated problem and try to identify a set of simplified equations valid in the
limit of vanishing small parameters. In most cases, the full system is very difficult
to analyze, let alone to solve, and usually the only way to obtain approximate
solutions is by solving the full equations numerically. Reduced models are often
much more accessible to mathematical analysis and can thus allow for a concise
study of the essential effects, yielding valuable physical insight into the dynamics
of the studied problem. Analytical approaches to the problem of interactions be-
tween gravity waves and moisture are scarce and most studies rely on numerical
modeling, cf. the comments in the introduction in [MR05].

The general framework employed for the derivation of the presented model is de-
veloped in [Kle04, Kle08, Kle10]. It provides tools for a systematic derivation of

7



Chapter 1. Introduction

reduced models in atmospheric sciences and also allows for methodical develop-
ment of models for interactions of processes on different time- and lengthscales,
see [Maj07] for an example. The basics of the derivation are adopted with mi-
nor modifications from [KM06]. A closure relying on conditional averaging over
the lengthscale of the convective towers is applied to the obtained leading order
equations. It allows to derive a set of closed equations by purely analytical means
without requiring approximations besides adopting a certain asymptotic regime.
The final model is an extension of the well-known linearized anelastic equations,
which are widely used to describe propagation of internal gravity waves.

The goal of the present thesis is a thorough analysis and discussion of the resulting
model with a focus on the effects arising from the presence of moisture. The analy-
sis confirms some findings of existing works, for example a reduction of momentum
flux and inhibition of wave propagation by moisture. Further, new hypotheses on
the influence of moisture on gravity wave propagation are formulated: (i) intro-
duction of a lower cut-off horizontal wavenumber and (ii) the ability of moisture
to cause critical layers in otherwise non-critical flows. Both are, to the author’s
knowledge, new hypotheses.

An early series of works investigating the effect of latent heat release on internal
waves is [Lal72, EL73a, EL73b]. One essential result of these works is that mois-
ture reduces the effective stability frequency governing internal wave propagation.
Further, moisture is found to inhibit the propagation of waves and to increase ver-
tical wavelengths. While the model in the present thesis also features a reduced
effective stability, it exhibits a decrease of vertical wavelength by moisture instead.
A reduction of the effective stability by moisture is also indicated in [DK82].

[BJD79, BJB80, BF85] present a model switching between a dry and a moist sta-
bility frequency depending on the displacement of a parcel. A similar mechanism
is found in the presented model, although the multi-scale approach results in a
continuous transition between a nearly moist adiabat background and a moist-
neutral stratification. Their analysis demonstrates that moisture can exert sig-
nificant influence on wave induced momentum flux which is closely related to
GWD. Strong reduction of momentum flux by moisture is verified in [JB85] by
employing a two-dimensional, anelastic, non-hydrostatic model containing a bulk
micro-physics scheme for the evolution of the density of vapor and liquid water.
Reduced momentum flux and wave amplitudes by moisture are also indicated in
the results presented in [DK83], who employ a two-dimensional, compressible, non-
hydrostatic model containing a bulk scheme for vapor, cloud water and rain water
for the simulation of mountain waves. The model presented in this thesis also
features a reduced effective stability and inhibition of wave propagation by mois-
ture. More recent simulations results on interactions of moisture with orographic
waves are found for example in [MB03, MR05] who use the weather research &
forecasting model (WRF) 2 to investigate flow over topography in an atmosphere
close to moist-neutral stratification in order to identify different flow regimes.

2See http://wrf-model.org.
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Figure 1.2.: Wave clouds near Amsterdam Island, picture taken by MODIS on the
NASA satellite Terra. Shown is an area with a size of roughly
600km × 450km. For more information on this image, check out
http: // earthobservatory. nasa. gov/ IOTD/ view. php? id= 6151 .

Despite the numerous works indicating that moisture can significantly modify the
characteristics of gravity waves and especially the generated GWD, there seem to
be only very few works aimed at including moisture effects into parameterizations
of orographic wave drag. The review [KEC03] mentions only [Sur89], who inves-
tigates the effect of replacing the dry stability frequency by a moist counterpart
in a GWD parameterization. More recently, this approach has been employed in
[Joo09]. In both cases, despite the simplistic representation, better results are
obtained by including the moist stability frequency. The insights gained by the
analysis of the reduced model performed in the present thesis might help in further
advancement at this point. Because of the similarity of the essential moisture-
related parameter in the presented model to a routinely computed parameter in
GCMs as well as the simple linear structure of the equations, the reduced model
itself might constitute a good starting point for developing parameterizations of
orographic wave drag that take effects of moisture on GWD into account.

The present thesis consists of six chapters besides this introduction. A reader
interested primarily in the essential results may want to skip the details of the
derivation and go directly to the summary of the model in 2.2.6 and then continue
with the results of the mathematical and numerical analysis presented in chapters
3 and 5. Section 2.1 briefly presents the employed general framework while 2.2
discusses in detail the derivation. Chapter 4 introduces the numerical scheme
used to compute approximate time-dependent solutions of the model. Chapter
6 presents an extension of the model to the regime of small saturation deficits,
featuring nonlinear interaction of saturated area fraction and vertical velocity.
Finally, 7 provides a brief summary of the thesis.

9
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Chapter 2. Model Derivation

Chapter 2.

Model Derivation

This chapter presents the derivation of the final closed model (2.70), subsequently
analyzed in the following chapters. Section 2.1 outlines the necessary tools for
the derivation: The governing equations in non-dimensional form, the arising non-
dimensional parameters and the used micro-physics model are discussed in the
subsections 2.1.1 and 2.1.3 while subsection 2.1.2 presents the distinguished limit
connecting the small parameters. Section 2.1.4 classifies the ansatz in the context
of the unified modelling approach discussed in the introduction. In section 2.2,
after a brief explanation of the mechanics of internal waves, the actual derivation is
given. The scales and coordinates as well as the asymptotic expansions involved in
the ansatz are introduced in subsection 2.2.2. The resulting leading order equations
are collected in subsection 2.2.4. From these, the final model (2.70) is obtained
by applying a suitable closure strategy as demonstrated in subsection 2.2.5. The
chapter ends with subsection 2.2.7 briefly discussing the essential moisture-related
parameter arising in the model.

2.1. Tools for the Derivation

2.1.1. Governing Equations

The equations describing the flow of a compressible fluid are derived from the
principles of conservation of mass, momentum and energy, see for example ch. 4
in [Gil82]. Assuming smooth solutions or interpreting derivatives in an appropriate
sense, these integral conservation principles can be transformed into a set of partial
differential equations for velocity, density ρ and energy, here given as potential
temperature θ, which is explained below. The velocity field v = (u, w) is split into
its horizontal part u = (u, v) and its vertical part w. The non-dimensionalized
version of these equations, given in [KM06], reads

10



2.1. Tools for the Derivation

ρt +∇‖ · (ρu) + (ρw)z = 0

ut + u · ∇‖u+ wuz +
1

RoB
(Ω× v)‖ +

1

M2

1

ρ
∇‖p = Du

wt + u · ∇‖w + wwz +
1

RoB
(Ω× v)⊥ +

1

M2

1

ρ
pz = Dw − 1

Fr
2

θt + u · ∇‖θ + wθz = Dθ + Sθ.

(2.1)

The pressure p is related to the other variables by the ideal gas law

p = (ρθ)
γ
. (2.2)

Just as the velocity field, the gradient in (2.1) is split into the horizontal part
∇‖ = (∂x, ∂y) and the vertical part ∂z. The terms Du and Dw represent the
effects of turbulent and molecular transport processes. They are assumed to be
negligible and set to zero in the course of this thesis. Ω is the vector of earth
rotation. The subscript ⊥ denotes projection onto the vertical, while ‖ denotes
projection onto the horizontal tangential plane. Sθ models sources of energy, e.g.
latent heat, radiation, heat fluxes from the surface, etc. Finally, (2.1) contains
three non-dimensional parameters:

M =
uref

√

pref/ρref
=

uref

csound
(2.3)

is the Mach-number and denotes the ratio of the typical velocity of the fluid to
the speed of sound-waves.

Fr =
uref√
ghscale

=
uref

cbarotropic
(2.4)

is the barotropic Froude-number and denotes the ratio of the flow velocity to the
speed of barotropic gravity waves.

RoB =
uref

lbulkf
(2.5)

is the bulk Rossby-number. lbulk is a reference lengthscale for the bulk micro-
physics and f is the Coriolis parameter. In the derivation, M, Fr and 1/RoB are
considered small parameters, indicating that for the studied regime, sound-waves
and barotropic gravity waves have negligible influence, while 1/RoB ≪ 1 indicates
that Coriolis forces are of little importance.

Potential Temperature

Potential temperature is introduced to allow for reasonably comparing the tem-
peratures of air parcels at different heights in the atmosphere. It is closely related

11



Chapter 2. Model Derivation

to the stability of the atmosphere with respect to vertical displacements, see the
discussion in subsection 2.2.1. Potential temperature is defined as the temperature
a parcel would acquire, if moved adiabatically, i.e. without heat exchange with
its environment, to a reference pressure pref usually set to pref = 1000 hPa. It is
related to sensible temperature T by

θ = T

(
pref
p

)κ

, (2.6)

whereas p is the pressure of the parcel at its original height.

κ =
R

cp
=

cp − cv
cp

(2.7)

is called the isentropic exponent. R is the gas constant while cp and cv are the
specific heats of air for constant pressure and volume, respectively. In a moist
atmosphere, the situation is complicated by the fact that cp, cv depend on the
amount of water contained in the parcel. In [Etl96], (2.6) is derived for the dry
case while [Ema94] provides a detailed discussion of the moist case.

2.1.2. Distinguished Limit

Following [MK03, KM06], the three arising non-dimensional parameters are con-
nected by a universal expansion parameter ε in the distinguished limit

M ∼ Fr ∼ ε2 ,
1

RoB
∼ ε as ε → 0. (2.8)

By this limit, (2.1) becomes

ρt +∇‖ · (ρu) + (ρw)z = 0

ut + u · ∇‖u+ wuz + εf (Ω× ~v)‖ + ε−4 1

ρ
∇‖p = 0

wt + u · ∇‖w + wwz + ε (Ω× ~v)⊥ + ε−4 1

ρ
pz = −ε−4

θt + u · ∇‖θ + wθz = ε2
(

S̃ε
θ + Sq,ε

θ

)

.

(2.9)

The source term Sθ in (2.1) is split into S̃ε
θ , related to external sources of energy like

radiation or fluxes of sensible heat from the ground into the air, and Sq,ε
θ , modelling

heat release and consumption by micro-physical processes. This thesis focusses on
interaction with moisture, so S̃ε

θ is assumed to be zero. To close the equations,
Sq,ε
θ has to be connected to the prognostic quantities. Usually this is done by

introducing additional assumptions based on physical arguments. In contrast, the
model in the present thesis features an analytically computed closure outlined

12



2.1. Tools for the Derivation

in section 2.2, based on the combination of the dynamical equations (2.1) with
the bulk micro-scale model discussed in subsection 2.1.3. The closure procedure
essentially consists of deriving an expression for the leading order contribution
from Sq,ε

θ out of the leading order equations obtained from (2.13).

2.1.3. Bulk Micro-Physics Model

The dynamic equations (2.9) are coupled with a bulk warm micro-physics model,
see [Gra98] for a detailed discussion. “Warm” indicates that no ice phase is in-
cluded in the model. The model features three moist quantities qv, qc, qr measured
in mixing ratios, i.e.

qi =
mi

md
, i = v, c, r (2.10)

whereas mi is the mass of the corresponding species while md is the mass of dry
air. qv is water vapor, i.e. water in gas phase. qc is cloud water, representing
small, hovering droplets while qr is rain water, i.e. droplets that are large enough
to fall down. By dividing through the volume of a considered parcel, mixing ratios
can also be expressed as density ratios

qi =
ρi
ρd

, i = v, c, r. (2.11)

Note the difference between the water vapor mixing ratio and the specific humidity,
defined as the ratio of the mass of water vapor to the mass of moist air, i.e.

s =
mv

mm
=

mv

md +mt
(2.12)

where mt is the total mass of water. Because in most situations mt ≪ md, the
specific humidity is often a good approximation of the vapor mixing ratio.

The employed model includes four conversion mechanisms between the species,
emerging as source terms in the equations:

1. Evaporation: Cev is the evaporation of rain water into water vapor.

2. Condensation: Cd is the condensation of water vapor into cloud water or, if
Cd < 0, the evaporation of cloud water into water vapor.

3. Auto-conversion: Cac denotes the accumulation of cloud water droplets into
rain water.

4. Collection: Ccr denotes the collection of cloud water droplets by falling rain
water.

Again neglecting the effects of turbulent and molecular transport, the bulk micro-
physics model adopted from [KM06] reads

13



Chapter 2. Model Derivation

qv,t + u · ∇‖qv + wqv,z = Cev − Cd

qc,t + u · ∇‖qc + wqc,z = Cd − Cac − Ccr

qr,t + u · ∇‖qr + wqr,z +
1

ρ
(ρqrVT)z = Cac + Ccr − Cev.

(2.13)

VT denotes the terminal velocity of rain droplets and is assumed to be constant.
By careful scaling of the source terms, the right hand side terms in (2.13) can be
rescaled by powers of ε, see again [KM06] for the details. The resulting rescaled
model reads

qv,t + u · ∇‖qv + wqv,z = −ε−nĈd + Ĉev

qc,t + u · ∇‖qc + wqc,z = ε−nĈd − ε−1Ĉcr − Ĉac

qr,t + u · ∇‖qr + wqr,z +
1

ρ
(V ∗∗

T ρqr)z = ε−1Ĉcr − Ĉev + Ĉac.

(2.14)

The exponent n ≫ 1 in the coefficient of the source term Cd is a measure of
how fast condensation and evaporation take place. In the model derived here,
n is sufficiently large, so that on the considered timescales these processes are
instantaneous and transient changes would be seen only on faster timescales.

The moisture related energy source term Sq,ε
θ in (2.9)4 in rescaled form reads

Sq,ε
θ = Γ∗∗L∗∗q∗∗vs

θ

p

(

ε−nĈd − Ĉev

)

. (2.15)

To close the model, the source terms have to be expressed as functions of the three
moist species

Ĉd = C∗∗
d (qv − qvs)H◦ (qc, qv, qvs) (qc + εq∗∗cn)

Ĉev = −C∗∗
ev (qv − qvs)H>(qr)

√
qr

Ĉcr = C∗∗
cr qcqr

Ĉac = C∗∗
acmax (0, qc − εq∗∗c ) .

(2.16)

See [KM06] for the definition of the weighting functions H> and H◦. The double-
star quantities areO(1) scaling factors emerging from the non-dimensionalization.

2.1.4. Unified Modelling Framework

In [Kle04] a framework for the systematic derivation of reduced meteorological
models based on multi-scale asymptotic techniques is developed. It consists of the
identification of a set of scale-independent reference quantities, valid for the full
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2.1. Tools for the Derivation

range of atmospheric flows. These quantities are combined into three character-
istic non-dimensional parameters π1, π2, π3. These are connected by a universal
expansion parameter ε in a distinguished limit

π1 = O(1) , π2 = O(ε2) , π3 = O(ε3) , as ε → 0. (2.17)

Note that in the later advancements of the framework in [Kle08, Kle10], a different
set of parameters is used and the distinguished limit is slightly modified. The dis-
tinguished limit (2.8) used in this thesis can be obtained from (2.17) by expressing
the dimensionless parameters in (2.8) in terms of π1, π2, π3, see [Kle04].

Addressing Regimes by Choosing Specific Coordinates

The universal scales identified in the framework are a lengthscale of 10 km and a
timescale of 1000 s with corresponding coordinates labeled x, z and t. To address
a particular regime characterized by specific scales, a set of coordinates resolving
these scales is introduced by rescaling x, z and t by powers of ε. All quantities are
then expanded in asymptotic series, whose general form reads

U(x, z, t; ε) =
∑

i∈N

φ(i)(ǫ)U (i)
(
. . . , ε−1t, t, εt, . . . , ε−1x,x, εx, . . . , ε−1z, z, εz, . . .

)
.

(2.18)
The φ(i) in (2.18) are asymptotic scaling functions and have to satisfy

φ(i+1)(ε) = o(φ(i)(ε)) as ε → 0 (2.19)

for the expansions to remain valid. In a concrete case, the coefficients U (i) are
allowed to depend exactly on the coordinates resolving the scales characterizing
the investigated regime.

For example, the coordinates

ε2t , ε2x , z (2.20)

resolve a horizontal scale of ∼ 1000 km, a vertical scale of ∼ 10 km and a
timescale of approximately one day. These scales correspond to the regime of
quasi-geostrophic flow and the ansatz

U (i)(ε2x, z, ε2t) (2.21)

does indeed yield the well-known quasi-geostrophic model. The detailed derivation
can be found in [Kle08].

This unified approach allows for the re-derivation of a large number of well-known
meteorological models, see table 1 in [Kle04]. It also provides a systematic ap-
proach for the derivation of new models, including models for the study of in-
teractions between phenomena acting on different scales, see the examples cited
in [Kle08]. In the present thesis, this framework is employed to derive a model
describing interactions of non-hydrostatic gravity waves with deep convective hot
towers.
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Chapter 2. Model Derivation

2.2. Derivation

2.2.1. Internal Gravity Waves

Borrowing the definition from p. 205 in [Lig78], gravity waves are waves “driven
by a balance between fluid’s inertia and its tendency, under gravity, to return to
a state of stable equilibrium with heavier fluid underlying lighter”. Surface gravity
waves arise at the interface between two fluids with different density, for example
at the sea surface between water and air. These waves can travel only along
the interface, i.e. in case of the ocean surface, solely in the horizontal. Internal
gravity waves occur inside a stratified fluid, stable to vertical displacements, i.e.
fluids inside which density decreases continuously with height.

The central mechanism in the generation of internal gravity waves under dry con-
ditions is sketched briefly here following section 6.4 in [Etl96]. Consider a parcel
of air with mass mp, displacing air of mass m. By Archimedes’ law, the buoyancy
force acting on this parcel is

B = (m−mp) g (2.22)

with g being the gravitational acceleration, i.e. g ≈ 9.81 m s−2. Denote by z(t)
the parcel’s height at time t. By Newton’s law, the acceleration due to buoyancy
equals

B = mpz̈(t) = (m−mp) g (2.23)

or, dividing by the volume of the parcel equal to the volume of the displaced air,

z̈(t) =
ρ− ρp
ρp

g (2.24)

whereas ρp is the parcel’s density while ρ is the density of the environment. The
following assumptions are made:

1. The thermodynamic state of the parcel changes adiabatically, i.e. its poten-
tial temperature is constant.

2. The pressure of the air parcel is identical to the pressure in the environment,
i.e. pp = p.

3. The mass of the parcel is constant, i.e. mixing can be neglected.

Note that assumption 1 is violated, if the parcel produces precipitating conden-
sate. However, this brief outline does not yet consider moist effects. Further,
the asymptotic derivation leading to the final model reveals that the considered
timescale is too short to allow for the generation of significant amounts of rain.

By assumption 2, the ideal gas law yields

p = ρRT = pp = ρpRTp ⇒ ρ =
p

RT
, ρp =

p

RTp
(2.25)
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2.2. Derivation

so that (2.24) can be rewritten as

z̈(t) =
Tp − T

T
g. (2.26)

By definition (2.6) and assumption 2,

θp = Tp

(
p0
p

)κ

, θ = T

(
p0
p

)κ

(2.27)

and (2.26) becomes

z̈(t) =
θp − θ

θ
g. (2.28)

Now denote by z0 the initial height of the parcel and perform a Taylor expansion
of the potential temperature distribution of the background around this height

θ (z0 + δz) = θ(z0) +
∂θ

∂z
δz +O(δz2). (2.29)

Assuming that initially the parcel has no buoyancy or equivalently that it has the
same potential temperature as the environment in conjunction with assumption 1
yields θ(z0) = θp =: θ0 = const. Inserting (2.29) into (2.28) and using that z0 is

constant, thus z̈ = δ̈z, yields an equation for the displacement of the parcel

δ̈z(t) = −θ−1
0

∂θ

∂z
gδz(t) +O(δz2). (2.30)

If the parcel is subject to some externally forced displacement Z at time t = 0, to
leading order the performed oscillation reads

z(t) = z0 + δz(t) = z0 + Z exp

(

i

√

g

θ0

∂θ

∂z
t

)

. (2.31)

Thus in a stably stratified atmosphere with ∂θ/∂z > 0 the parcel performs an os-
cillation around its initial height z0 with amplitude Z and an angular frequency

N :=

√

g

θ0

∂θ

∂z
. (2.32)

This frequency is called “stability frequency” or “Brunt-Väisälä frequency”, see
e.g. p. 51f. in [Gil82]. For the non-dimensional equations used in the model
derivation in this thesis it turns out to be simply

N =

√

Θ
(2)
z (2.33)

whereas Θ(2) is the background potential temperature introduced in the expansion
of θ in (2.41).
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Chapter 2. Model Derivation

Moisture can significantly affect this mechanism. Depending on the amplitude
of the oscillation and the initial vapor content, the parcel might reach its lifting
condensation level (LCL) during its ascend. Onsetting condensation releases latent
heat, compensating for some of the adiabatic cooling the rising parcel undergoes.
The cooling rate without condensation, referred to as “dry adiabatic lapse rate”, is
about 1 K/100 m while the cooling rate with condensation, the “moist adiabatic
lapse rate”, can be as small as 0.4 K/100 m, see [Ste05]. Depending on the
stratification of the atmosphere, the reduced lapse rate decreases the restoring
force acting on a parcel by reducing the temperature difference to the environment.
This influences the oscillation of the parcel and significantly affects the dynamics
of gravity waves. In a conditionally unstable atmosphere, latent heat renders the
parcel’s buoyancy positive, triggering moist convection.

Momentum Flux

Vertical propagation of internal gravity waves leads to a vertical flux of mean
horizontal momentum. Denote by (u,w) the wave-related perturbations from a
background in the velocity field. The net flux across a level z = const. induced by
waves reads

τnet =
〈

ρ(0)uw
〉

(2.34)

cf. section 6.7 in [Büh09]. The parentheses 〈·〉 denote the average over the hor-
izontal wave-scale coordinate x. τnet has the dimension of force per unit area,
N m−2, or stress. As discussed for example in [KEC03], τnet is closely related to
gravity wave drag (GWD) and hence important for the parameterization of GWD
in global circulation models.

2.2.2. Scales and Corresponding Coordinates

The scales characterizing the regime to be modelled are summarized in (2.35) and
sketched in figure 2.1. The horizontal and vertical wave-scale of 10 km corre-
spond to the regime of non-hydrostatic, non-rotating gravity waves specified in
ch. 8 in [Gil82], see especially table 8.1. Based on measurements during GATE1

[LZ80, Ste05] indicate a median diameter of “convective events” in tropical deep
convection of 900 m, justifying the horizontal tower-scale in (2.35) of 1 km.

1GARP (Global Atmospheric Research Program) Atlantic Tropical Experiment
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Figure 2.1.: Scales involved in the model: Deep convective moist towers (vertical bars)
extending through the depth of the hsc deep troposphere with horizontal vari-
ation on a 1 km micro-scale and embedded into an order of 10 km wide
environment. The dashed lines sketch the phase lines of an internal gravity
wave travelling through this background. A horizontal slice through a collec-
tion of convective towers is marked, cf. figure 2.2.

Typical flow velocity: uref ≈ 10 m s−1

Vertical wave-scale: hsc ≈ 10 km

Horizontal wave-scale: xref ≈ 10 km

Horizontal scale of deep convective towers: ηref ≈ 1 km

Timescale of internal waves: τref ≈ 100 s

(2.35)

The timescale (2.35)5 stems from the typical value of N = 0.01s−1 for the sta-
bility frequency in the troposphere, see p. 52 in [Gil82]. The scales in (2.35),
following [KM06], are resolved by introducing suitable coordinates. x resolves the
large 10 km horizontal scale while z resolves the vertical hsc scale. To resolve the
horizontal micro-physics scale (2.35)4 an additional horizontal coordinate

η := ε−1x (2.36)

is introduced. The coordinate t resolves a 1000 s timescale. In order to resolve
τref , the temporal coordinate is changed from t to

τ := ε−1t. (2.37)

To include wave propagation as well as horizontal advection over hsc distances
in in the model, the ansatz for the horizontal velocity used in [KM06] is slightly
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Chapter 2. Model Derivation

modified by introducing a constant, horizontal background velocity u∞ of order
O(ε−1), cf. (2.40). In order to avoid inconsistencies in the derivation, a second
time-coordinate

τ ′ := ε−2t (2.38)

resolving the timescale set by advection of flows with u∞-velocity over ηref -distances
has to be introduced. All terms related to τ ′ drop out by sublinear growth condi-
tions later in the derivation. Summarized, the following coordinates are employed

Horizontal: x , η = ε−1x

Vertical: z

Time: τ = ε−1t , τ ′ = ε−2t.

(2.39)

In principle, every coefficient in the expansions of the variables could depend on all
of these coordinates. Some physically motivated restrictions are however included
in the expansions presented in subsection 2.2.3, see [KM06] for details.

2.2.3. Expansions

Horizontal Velocity

The ansatz for horizontal velocity including the constant background wind u∞

reads
u(x, z, t; ε) = ε−1u∞ + u(0)(x, z, τ) +O(ε). (2.40)

Although this scaling would suggest background flows of the order of 100 m s−1,
a value of u∞ = 0.1, corresponding to a velocity of 10 m s−1, is generally used
in this thesis. The justification of this apparent inconsistency between asymptotic
scaling of u∞ and the actual values employed for it is given in [RKM10].

Other Expansions

Expansions of vertical velocity, potential temperature, pressure and density are
adopted from [KM06], but are now also allowed to depend on τ ′, i.e.

w(x, z, t; ε) = w(0)(η,x, z, τ, τ ′) +O(ε)

θ(x, z, t; ε) = 1 + ε2Θ(2)(z) + ε3θ(3)(η,x, z, τ, τ ′) +O(ε4)

(p, ρ)(x, z, t; ε) = (p(0), ρ(0))(z) + ε(p(1), ρ(1))(z) + ε2(p(2), ρ(2))(z)

+ ε3(p(3), ρ(3))(η,x, z, τ, τ ′) +O(ε4).

(2.41)

The mixing ratios for water vapor, cloud water and rain water are expanded as

qi = q
(0)
i (η,x, z, τ, τ ′) + εq

(1)
i (η,x, z, τ, τ ′) +O(ε2) , i = v, c, r. (2.42)
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2.2. Derivation

The expansions (2.40), (2.41) and (2.42) are inserted into the non-dimensional
dynamic equations (2.9) and the bulk micro-scale equations (2.14) and the leading
order equations are collected. All quantities are split up into

φ = φ̄+ φ̃ (2.43)

with

φ̄(x, z, τ) = lim
η0→∞

1

|[−η0, η0]d|

∫

[−η0,η0]d
φ(η,x, z, τ) dη (2.44)

denoting the average over η and the tilde denoting perturbations. In the two-
dimensional case analyzing a x-z-plane set d = 1 while d = 2 corresponds to the
full three-dimensional case. The splitting (2.43) yields a set of equations for the
averages φ̄ and an additional set of equations for the perturbations φ̃.

2.2.4. Leading Order Equations

Key steps of the derivation can be found in appendix A.1. The leading order
equations for the averages read

u(0)
τ + u∞ · ∇xu

(0) +∇xπ
(3) = 0

w̄(0)
τ + u∞ · ∇xw̄

(0) + π(3)
z = θ̄(3)

θ̄(3)τ + u∞ · ∇xθ̄
(3) + w̄(0)Θ(2)

z =
Γ∗∗L∗∗q∗∗vs

p0

(

HqvC
(0)
d + (Hqv − 1)C

(0)
ev

)

∇x ·
(

ρ(0)u(0)
)

+
(

ρ(0)w̄(0)
)

z
= 0

(2.45)

with π(3) = p(3)/ρ(0) and Θ
(2)
z (z) being the potential temperature gradient of the

background. Hqv
is a switching function, distinguishing between leading-order

saturated and non-saturated regions

Hqv (qv) =

{

1 : q
(0)
v ≥ q

(0)
vs (saturation)

0 : q
(0)
v < q

(0)
vs (non-saturation)

. (2.46)

The equations for the perturbations w̃(0) and θ̃(3) read

w̃(0)
τ + u∞ · ∇xw̃

(0) + u(0) · ∇ηw̃ = θ̃(3)

θ̃(3)τ + u∞ · ∇xθ̃
(3) + u(0) · ∇η θ̃

(3) + w̃(0)Θ(2)
z =

Γ∗∗L∗∗q∗∗vs
p0

(

HqvC
(0)
d −HqvC

(0)
d + (Hqv − 1)C(0)

ev − (Hqv − 1)C
(0)
ev

)

.

(2.47)

To obtain a closed system for the wave-scale coordinates, expressions for the aver-

aged source terms HqvC
(0)
d and (Hqv − 1)C

(0)
ev in (2.45)3 are derived in subsection
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Chapter 2. Model Derivation

2.2.5 from (2.47) and the leading order equations arising from the bulk micro-
physics model (2.14).

As explained in A.1 two different regimes can be distinguished with respect to the
leading order equations emerging from the micro-physical model:

Saturation In the regime of leading order saturation, i.e. Hqv
= 1, the leading

order equations emerging from (2.14) are

−
(

w̄(0) + w̃(0)
)

q(0)vs,z = C
(0)
d

q(0)r,τ + u∞ · ∇xq
(0)
r + u(0) · ∇ηq

(0)
r = 0.

(2.48)

Non-saturation In regions that are not saturated at leading order, i.e. Hqv
= 0,

the leading order equations obtained from (2.14) read

C∗∗
ev

(

q(0)vs − q(0)v

)√

q
(0)
r = C(0)

ev

q(0)v,τ + u∞ · ∇xq
(0)
v + u(0) · ∇ηq

(0)
v = 0

q(0)r,τ + u∞ · ∇xq
(0)
r + u(0) · ∇ηq

(0)
r = 0.

(2.49)

As in [KM06] the cloud water mixing ratio is systematically small and q
(0)
c ≡ 0

obtains in both regimes.

2.2.5. Closing the Model

Below, using (2.45), (2.47) (2.48) and (2.49), a closed set of equations depending
only on the wave-scale related coordinates x, z τ but still including the net effects
from the micro-scale moist processes is derived analytically.

As discussed in [KM06], typical atmospheric values of convective available poten-
tial energy (CAPE) constrain the possible deviation of θ from a moist adiabat. In
an atmosphere where deep convection can extend over heights comparable to hsc,
the order of magnitude of CAPE can be estimated by

CAPE∗ ∼ ghsc
∆Tv

Tv,env
(2.50)

whereas ∆Tv denotes deviations of virtual temperature from a moist adiabatic
environment. According to [Ema94] typical dimensional values for CAPE are of
the order 400 m2 s−2. For Tv,env ∼ 300 K, (2.50) yields an estimate

∆T ∗
v ∼ 400 m2 s−2 · 300 K

104 m · 10 m s−2
∼ 1.2 K. (2.51)
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2.2. Derivation

This is in line with values ∆Tv ∼ 0.5 K indicated by [Ste05].

In non-dimensional terms (2.51) becomes

∆Tv ∼ ∆T ∗
v

300 K
∼ 4 · 10−3 ∼ O(ε3). (2.52)

Thus deviations from a moist-neutral stratification can arise only at θ(3) or higher
orders and Θ(2) satisfies the moist adiabatic equation

Θ(2)
z = −Γ∗∗L∗∗q∗∗vs

p(0)
q(0)vs,z (2.53)

cf. [KM06]. Hence the model describes small, asymptotic variations of potential
temperature around a moist adiabatic background. See appendix A.2 for a brief
comment on relaxing this assumption. Note that the leading order in the expan-
sion of θ is equal to unity, corresponding to constant potential temperature with
height, i.e. a dry adiabatic stratification. The O(ε2) term provides an additional
contribution, resulting in an overall moist adiabatic stratification and θ(3) denotes
perturbations from this background, determining buoyancy.

Abbreviate

L̂ :=
Γ∗∗L∗∗q∗∗vs

p(0)
(2.54)

and multiply (2.48)1 by Hqv and use (2.53) to obtain

Hqv

(

w̄(0) + w̃(0)
) 1

L̂
Θ(2)

z = Hqv
C

(0)
d . (2.55)

Averaging over η yields

Hqv w̄
(0)Θ(2)

z +
(
Hqv w̃

(0)
)
Θ(2)

z = L̂HqvC
(0)
d . (2.56)

According to (2.49)2, q
(0)
v is simply advected by the large- and small-scale flow in

non-saturated regions. In the saturated regime q
(0)
v = q

(0)
vs (z) trivially satisfies the

same advection equation. Thus the solution for q
(0)
v is completely determined by

its initial distribution and reads

q(0)v (x, z, η, τ) = q(0)v (x− u∞τ, z, η −
∫ τ

0

u(0)(x, z, t′) dt′, 0). (2.57)

Define

σ(x, z, τ) := Hqv
(x, z, η, τ). (2.58)

It turns out that σ is the essential moisture-related parameter in the model, see
subsection 2.2.7 for a discussion. As

∫ τ

0
u(0)(x, z, t′) dt′ is independent of η, (2.57)

and (2.58) yield
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σ(x, z, τ) = Hqv
(x, z, η, τ)

= Hqv
(x− u∞τ, z, η −

∫ τ

0

u(0)(x, z, t′) dt′, 0)

= σ(x− u∞τ, z, 0).

(2.59)

By using (2.58), equation (2.56) can be rewritten as

σw̄(0)Θ(2)
z +

(
Hqv w̃

(0)
)
Θ(2)

z = L̂HqvC
(0)
d . (2.60)

To evaluate (2.60), an equation for the conditionally averaged perturbation

w′ := Hqv
w̃(0) (2.61)

is required. Multiply (2.47) by Hqv
and average again over η. Note that as qv

satisfies (∂τ + u∞ · ∇x) qv = 0, the order of averaging and differentiating can be
reversed, i.e.

(
Hqv

w̃τ

)
+ u∞ ·

(
Hqv

∇xw̃
)
=
(
Hqv

w̃
)

τ
+ u∞ · ∇x

(
Hqv

w̃
)
. (2.62)

Using H2
qv = Hqv , Hqv (Hqv − 1) = 0 and setting

θ′ := Hqv
θ̃ (2.63)

yields

w′
τ + u∞ · ∇xw

′ = θ′

θ′τ + u∞ · ∇xθ
′ + w′Θ(2)

z = L̂
[

HqvC
(0)
d − HqvHqv

C̃(0)
]

− L̂
[

Hqv(Hqv − 1)C
(0)
ev

]

.

(2.64)

Further computation of the source term, using (2.60) and definition (2.58), yields

L̂
[

HqvC
(0)
d − HqvHqv

C̃(0) −Hqv

[

(Hqv − 1)C
(0)
ev

]]

= L̂HqvC
(0)
d − σL̂HqvC

(0)
d − σL̂

[

(Hqv − 1)C
(0)
ev

]

= (1− σ)
(

σw̄(0)Θ(2)
z + w′Θ(2)

z

)

− σC̄−

= (1− σ)σw̄(0)Θ(2)
z + (1− σ)w′Θ(2)

z − σC̄−

(2.65)

with

C̄− := L̂
[

(Hqv − 1)C
(0)
ev

]

= L̂C∗∗
ev (Hqv

− 1)
(

q
(0)
vs − q

(0)
v

)√

q
(0)
r

(2.66)
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using (2.49). Inserting this into (2.64)2 results in

w′
τ + u∞ · ∇xw

′ = θ′

θ′τ + u∞ · ∇xθ
′ + σΘ(2)

z w′ = σ (1− σ) w̄(0)Θ(2)
z − σC̄−.

(2.67)

Finally, using (2.60) and (2.66), (2.45)3 can be written as

θ̄(3)τ + u∞ · ∇xθ̄
(3) + (1− σ)Θ(2)

z w̄(0) = Θ(2)
z w′ + C̄−. (2.68)

Note that in non-saturated regions with Hqv
= 0, the saturation deficit q

(0)
vs − q

(0)
v

in (2.66) is greater than zero . Further, L̂, C∗∗
ev and q

(0)
r are also positive, so that

C̄− ≤ 0 (2.69)

constitutes a negative source term in (2.68) representing the net effect of evap-
orative cooling in non-saturated areas. The equations (2.48) and (2.49) indicate

that q
(0)
r , just as q

(0)
v , is only advected by the flow so that C̄− can be obtained by

suitable horizontal translations of its initial distribution C̄−(τ = 0), analogously
to (2.59).

2.2.6. Summary of the Model

The complete, closed model consists of the equations (2.45)1,2 for u(0) and w̄(0)

plus the anelastic constraint (2.45)4, equation (2.68) for the large-scale potential
temperature, and the averaged bulk micro-scale equations (2.67) providing the
closure for the moisture-related source term in (2.68).

Linearized, anelastic moist dynamics:

uτ + u∞ · ∇xu+∇xπ = 0

w̄τ + u∞ · ∇xw̄ + πz = θ̄

θ̄τ + u∞ · ∇xθ̄ + (1− σ)Θ(2)
z w̄ = Θ(2)

z w′ + C̄−

∇x ·
(

ρ(0)u
)

+
(

ρ(0)w̄
)

z
= 0

Averaged tower-scale dynamics:

w′
τ + u∞ · ∇xw

′ = θ′

θ′τ + u∞ · ∇xθ
′ + σΘ(2)

z w′ = σ (1− σ)Θ(2)
z w̄ − σC̄−.

(2.70)

The superscripts 0 and 3 are dropped for the purpose of simplified notation.

If all micro-scale related terms vanish, i.e.

σ = 0 , C̄− = 0 and w′(τ = 0) = θ′(τ = 0) = 0, (2.71)
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(2.70) reduces to

uτ + u∞ · ∇xu+∇xπ = 0

w̄τ + u∞ · ∇xw̄ + πz = θ̄

θ̄τ + u∞ · ∇xθ̄ +Θ(2)
z w̄ = 0

∇x ·
(

ρ(0)ū
)

+
(

ρ(0)w̄
)

z
= 0

(2.72)

which are the well-known anelastic equations linearized around a background ve-

locity (u∞, 0) and a background stratification Θ
(2)
z and analyzed, for example, in

[DSWT03]. Comparing (2.72) and (2.70) reveals that moisture modifies (2.72) in
several ways:

1. The effective stability is reduced from Θ
(2)
z to N2

eff = (1− σ)Θ
(2)
z . A reduc-

tion of stability by moisture is also indicated e.g. in [EL73a, DK82]. An ex-
plicit switching mechanism between a background stability in non-saturated
regions and a reduced moist stability inside clouds to capture the effect of
moisture on wave-scale dynamics is employed in [BJD79, BJB80, JB85]. In
(2.70), the reduced effective stability arises naturally from the asymptotic
approach.

2. A source term Θ
(2)
z w′ for the large-scale potential temperature arises, de-

scribing the net latent heat release or consumption due to micro-scale pro-
cesses. This source term is determined by two additional prognostic equa-
tions for the weighted averages w′ and θ′. As the large-scale vertical velocity
w̄ occurs in the right hand side of (2.70)6, there is actually a bi-directional
coupling between large-scale and averaged tower-scale dynamics.

3. The evaporation of rain in non-saturated regions results in a constant cooling,
described by the source term C̄−. On the considered scales, this cooling term
is constant in time.

2.2.7. Saturated Area Fraction

By definition (2.46), the switching function Hqv
is the characteristic function of

leading-order saturated areas. Definition (2.44) yields

σ(x, z, τ) = lim
η0→∞

1
∣
∣
∣[−η0, η0]

d
∣
∣
∣

∫

[−η0,η0]
d

Hqv
(x, z, η′, τ) dη′

= lim
η0→∞

|{η ∈ (−η0, η0)
d : q

(0)
v (x, z, η, τ) ≥ q

(0)
vs (z)}|

∣
∣
∣[−η0, η0]

d
∣
∣
∣

.

(2.73)

Hence for a fixed point (x, z, τ), σ indicates the area fraction of saturated regions
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2.2. Derivation

1km (Microscale)

Figure 2.2.: Sketched downward view on a horizontal slice through a group of deep con-
vective towers, cf. figure 2.1. Colored regions indicate cuts through clouds.

on the η-scale. In figure 2.1 a horizontal slice through a group of deep convective
towers is marked. Figure 2.2 shows an example of a downward view onto such a
slice. Colored areas denote cuts through clouds. According to e.g. [Tom02], in
warm clouds without ice phase no significant over-saturations occur and cloudy
and saturated regions essentially coincide. Hence σ is also the area fraction of
cloudy (=colored) regions. Thus for σ = 1 the whole square is filled while σ = 0
corresponds to no colored regions at all, i.e. all-over non-saturated air.

The scales in (2.35) result in dimensional vertical displacements in the model of
order

ξdim ∼ wref · τref ≈ 1000m ≈ εhsc. (2.74)

As hsc is the vertical lengthscale, the non-dimensionalized displacement is of or-
der

ξ ∼ O(ε). (2.75)

Because z ∼ O(1) and qvs ∼ O(1), the amount of cloud water evaporating into
vapor or vapor condensating into cloud water is of order

q ∼ dqvs
dz

ξ ∼ O(ε). (2.76)

If a saturation deficit at leading order is present initially, i.e.

δqvs ∼ O(1), (2.77)

no leading order effect on δqvs can be induced by (2.76). For this reason, on the
employed 100 s timescale, vertical displacements of a parcel can neither evapo-
rate enough cloud water in saturated areas nor condensate enough vapor in non-

saturated areas to affect δq
(0)
vs and influence the size of saturated areas at leading

order. Thus σ is constant over time in the derived model, satisfying (2.59). This
regime is sketched in the left graphic in figure 2.3. Shown is an example distribu-
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η η

qvs qvs

qc = O(ε)

qT = qv + qc

qc = O(ε)

qT = qv + qc

δqvs = O(ε)

δqvs = O(1)

q = O(ε)

Figure 2.3.: Left: Leading order saturation deficit. Right: Small saturation deficit.
Shown is an example distribution of the amount of total water qT = qv + qc.
The horizontal line indicates the saturation mixing ratio qvs. As the lead-
ing order cloud water mixing ratio q

(0)
c is zero in both regimes, the surplus

qT − qvs is of order O(ε) in saturated regions. The colored area indicates
the q ∼ O(ε) amount of condensate released on the employed timescale by
vertical displacement.

tion of the sum qT = qv + qc of water vapor and cloud water mixing ratio. The
horizontal line is the saturation mixing ratio qvs. As cloud water is systematically

small, i.e. q
(0)
c = 0, the surplus qT − qvs is of order O(ε) in saturated regions. The

colored area indicates the small amount q = O(ε) released by vertical displace-
ments on the considered scales for time and vertical velocity. In the left figure, the
saturation deficit is of order unity, so the released condensate can not change the
area of saturated regions at leading order.

The situation is different if the saturation deficit is assumed to be of higher order,
i.e.

δqvs ∼ O(ε) (2.78)

equivalent to assuming leading order saturation q
(0)
v = q

(0)
vs beforehand. The right

graphic in figure 2.3 sketches this. Although the amount of released condensate
is still small, because of the likewise small saturation deficit changes in the area
of saturated regions are now of order O(1) and the scaling (2.76) suffices to affect
the size of non-saturated/saturated regions at leading order and σ is no longer a
constant but becomes a prognostic quantity, too. The extension of the model to
this regime is discussed in detail in chapter 6.

Cloud Cover Fraction

A problem encountered commonly in the development of GCMs is that the average
relative humidity in a grid-cell with boundaries featuring a length of the order of
100 km is not sufficient to reasonably represent cloud patterns inside the cell.
Because clouds extending over the full size of a cell are uncommon, the average
relative humidity for the entire cell is usually less then 100% and the whole cell
would have to be considered cloud-free, leading to massive underestimation of
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2.2. Derivation

cloudiness and thus a severe ill-treatment of cloud related quantities like cloud
albedo. For this reason, all GCMs compute some form of cloud cover fraction
parameter inside each cell, indicating in some sense the area fraction of clouds, see
[Tom02, JK99, Jak99] and citations therein. The cloud cover fraction parameter
is reminiscent of σ, but with the average computed over a finite GCM grid-cell
and without an explicit separation of the micro-scale from the grid-cell scale.

One “future issue” in the field of gravity wave parameterizations pointed out in
the review of [KEC03] is to investigate how moisture affects the wave drag pro-
duced by orographic waves. Developing ways to connect σ to the cloud fraction in
a GCM and subsequently devising a modified wave drag parameterization based
on (2.70) that includes the influence of moisture on momentum transport could
be an interesting approach to tackle this problem. In principal, a suitably sim-
plified version of (2.70) could also be used in a super-parameterization approach,
analogously to [KR01], who embed a full two-dimensional cloud resolving model
(CRM) in every grid-cell to parameterize cloud fraction and other moisture-related
quantities. Although the massive computational cost most likely prohibits using
such an approach in an operational GCM, it might still be useful for analytic pur-
poses. However, this issue is not pursued further in this thesis, but mentioned as
a possible direction for future research, utilizing its results.
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Chapter 3. Analytical Properties

Chapter 3.

Analytical Properties

This chapter presents an investigation of some analytical properties of the model
(2.70). The influence of the micro-scale equations on different quantities is ana-
lyzed in section 3.1. A description of the model’s dynamics in terms of energy is
presented in section 3.2. Section 3.3 investigates how σ influences the character-
istics of plane wave solutions. Among other things, the dispersion relation, the
group velocity and a Taylor-Goldstein equation are derived. Section 3.4 discusses
a particular simplified type of analytically obtained solutions for the case of con-
stant coefficients. Finally, section 3.5 demonstrates that σ can cause critical layers
and presents qualitative approximate solutions in their vicinity.

Because all numerical examples shown and analyzed below employ two-dimensional
domains in a x-z-slice, this chapter also focusses on the two-dimensional case with
one horizontal and one vertical coordinate. Thus the vector quantities u, u∞, η
and x become scalars and are denoted as u∞, u, η and x, while the horizontal
gradient ∇x becomes ∂x. However, the analytical results presented in this chap-
ter do not rely explicitly on 2-D specific properties, although calculations become
simplified, hence the findings can potentially also be confirmed in an analysis of
the three-dimensional system.

To streamline notation, the partial derivative with respect to time and the advec-
tive term are combined into the linearized material derivative and denoted

D

Dτ
= ∂τ + u∞∂x. (3.1)

3.1. Micro-Scale Dynamics

3.1.1. Constrains on Initial Data

By definition, σ = 0 equals

lim
η0→∞

1

2η0

∫ η0

−η0

Hqv
dη = 0. (3.2)
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3.1. Micro-Scale Dynamics

Assuming that w̃ is bounded in η and using the mean value theorem for integration
yields

w′ = lim
η0→∞

1

2η0

∫ η0

−η0

Hqv
w̃ dη

= lim
η0→∞

1

2η0
w̃(ζ(η0))

∫ η0

−η0

Hqv
dη

= 0.

(3.3)

Thus if the area fraction of saturated regions is zero, the tower-scale vertical ve-
locity must also vanish. An identical argument yields θ′ = 0.

On the other hand, σ = 1 equals

Hqv
= 1 almost everywhere. (3.4)

Thus

w′ = lim
η0→∞

1

2η0

∫ η0

−η0

Hqv
w̃ dη

= lim
η0→∞

1

2η0

∫ η0

−η0

w̃ dη

= w̃ = 0,

(3.5)

hence for the case of all-over saturated air, there is also no non-zero tower-scale
vertical velocity possible. Again, θ′ = 0 can be concluded accordingly.

Although the initial value problem (2.70) mathematically allows for non-zero ini-
tial values w′ and θ′ together with σ = 0 or σ = 1, this is not consistent with
the definition of the tower-scale quantities in the derivation of the model and no
physically meaningful solutions can be expected.

3.1.2. Conserved Quantity

Multiplying (2.70)3 with σ and adding (2.70)6 yields

σ
Dθ̄

Dτ
+

Dθ′

Dτ
=

D

Dτ

(
σθ̄ + θ′

)
= 0. (3.6)

Thus σθ̄ + θ′ is constant and one can define

θ0 := σθ̄ + θ′
∣
∣
τ=0

= σθ̄ + θ′. (3.7)

Using (2.58) and (2.63), θ0 can be expressed as

θ0 = σθ̄ + θ′ = Hqv
θ̄ +Hqv

θ̃ = Hqv

(

θ̄ + θ̃
)

= Hqv
θ (3.8)
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Chapter 3. Analytical Properties

showing that the average over the total potential temperature inside convective
towers is constant in time.

3.1.3. Displacement in Non-Saturated Areas

In non-saturated regions with Hqv
= 0, the leading order equations for the micro-

scale perturbations (2.47) simplify to

Dw̃(0)

Dτ
+ u(0)w̃η = θ̃(3)

Dθ̃(3)

Dτ
+ u(0)θ̃(3)η + w̃(0)Θ(2)

z = −L̂Hqv
C

(0)
d

(3.9)

if rain is absent, i.e. q
(0)
r = 0, thus C

(0)
ev = 0 and employing (2.54). If the initial

data for w̃(0) and θ̃(3) are constant on the η scale in non-saturated regions, i.e.

∇ηw̃
(0)(τ = 0, η) = ∇η θ̃

(3)(τ = 0, η) = 0 if Hqv
(η) = 0, (3.10)

equation (3.9) further simplifies to

Dw̃(0)

Dτ
+ u∞w̃(0)

x = θ̃(3)

Dθ̃(3)

Dτ
+ u∞θ̃(3)x + w̃(0)Θ(2)

z = −L̂Hqv
C

(0)
d .

(3.11)

Because the averaged source term on the right hand side of (3.11)2 is constant in
η, if (3.10) holds at τ = 0 it holds for all τ > 0. Thus the perturbations w̃(0) and
θ̃(3) only vary inside the saturated, convective towers but are constant between
them, see figure 3.1.

Assuming that the limits in the indefinite integrals can be arbitrarily exchanged,
the constant value w̃us in the non-saturated regions can be computed from the
large-scale averages defined in (2.44) by

w̃us =

∫∞

−∞
(1−Hqv

) w̃(0)dη
∫∞

−∞
(1−Hqv

) dη
=

∫∞

−∞
(1−Hqv

) w̃(0)dη
∫∞

−∞
dη

∫∞

−∞
dη

∫∞

−∞
(1−Hqv

) dη

=
(

¯̃w(0) − w′
) 1

1− σ

= −w′ 1

1− σ
.

(3.12)

Net updrafts inside the convective towers, i.e. w′ > 0, produce a homogeneous
downdraft w̃us < 0 in the non-saturated regions between them. The vertical
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3.1. Micro-Scale Dynamics

η

w̃(0)

Hqv = 1 Hqv = 1

Figure 3.1.: General shape of w̃(0): Variations occur only inside saturated, convective

towers where Hqv = 1 while w̃(0) is constant outside of towers.

displacement ξus in non-saturated regions and, by continuity, also at the interface
between saturation and non-saturation satisfies

Dξus
Dτ

= w̄ + w̃us = w̄ − w′

1− σ
. (3.13)

From (2.70)3 with C̄− = 0 it follows that

1

(1− σ)Θ
(2)
z

Dθ̄

Dτ
= −

(

w̄ − w′

1− σ

)

= −Dξus
Dτ

. (3.14)

Hence, in the absence of evaporating rain, the displacement ξus depends solely on
the large-scale potential temperature

ξus = − θ̄

(1− σ)Θ
(2)
z

. (3.15)

This is consistent with the formula for the dry case derived in [Büh09], section

6.2, with N2 replaced by the effective stability N2
eff = (1− σ)Θ

(2)
z . For fixed θ̄,

the displacement ξus becomes larger if σ increases. Thus (3.15) indicates that
moisture, by reducing stability, amplifies displacements generated by buoyancy.

Then again, (3.7) indicates that θ0 = σθ̄ + θ′ is conserved, so depending on the
evolution of θ′, increasing σ can also reduce θ̄, thus inducing a decreasing tendency
for ξus. The example presented in subsection 3.3.2 however shows an increase of
ξus for increasing σ.

3.1.4. Pseudo-Momentum

As explained in [Büh09], zonal pseudo-momentum is a central quantity in the
study of interaction between wave- and mean-flows, see especially p. 129f. In the
following, it is shown how σ affects pseudo-momentum in the presented model.
The problem of parameterizing wave drag basically comprises capturing the effect
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Chapter 3. Analytical Properties

of waves on the mid-atmospheric mean flow, cf. subsection 7.2.7 in [Büh09]. Hence
the following derivations might also be useful in further work on this subject.

The vorticity of the large-scale flow reads

q := uz − w̄x. (3.16)

Applying ∂z to (2.70)1, ∂x to (2.70)2 and subtracting yields

Dq

Dτ
= −θ̄x. (3.17)

By using (3.15) this can be transformed into

Dq

Dτ
= −θ̄x = (1− σ)Θ(2)

z ξus,x − σxΘ
(2)
z ξus. (3.18)

The first term describes generation of vorticity by horizontal variations in the ver-
tical displacement as discussed in section 6.2 in [Büh09] for the incompressible,

dry case with the stability N2 replaced by the effective stability (1− σ)Θ
(2)
z . The

second term describes a new mechanism where vorticity is generated by an inho-
mogeneous zonal distribution of moisture, even in situations with homogeneous
vertical displacement.

Analogously to the derivations in section 6.3 for unsheared and in section 7.1 for
sheared background flow in [Büh09], the Eulerian pseudo-momentum is derived

by multiplying (3.17) by θ̄/ (1− σ)Θ
(2)
z , i.e. the stability is again replaced by the

effective stability, and averaging over x. This leads to

D

Dτ

〈

θ̄q

(1− σ)Θ
(2)
z

〉

+ 〈qw̄〉 =
〈

qw′

1− σ

〉

(3.19)

whereas the parentheses 〈·〉 just as in (2.34) denote the average in x. For this
zonal average, periodic fields in x or an unbounded domain plus boundedness of
all fields is assumed, so that the identity 〈φx〉 = 0 obtains.

The term on the right hand side can be interpreted in two different ways. It can
either be included in the definition of the pseudo-momentum by setting

p̃alt :=

〈

θ̄q

(1− σ)Θ
(2)
z

〉

−
〈

qw′

1− σ

〉

(3.20)

similar to the treatment of a sheared background flow in subsection 7.1.1 in [Büh09]
or it can be interpreted as a forcing of the wave-flow, resulting in a forcing of
pseudo-momentum. The latter interpretation is adopted here and p̃ is defined
as

p̃ :=

〈

θ̄q

(1− σ)Θ
(2)
z

〉

(3.21)
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so (3.19) becomes
Dp̃

Dτ
+ 〈qw̄〉 =

〈
qw′

1− σ

〉

. (3.22)

If σ = 0 and subsequently w′ = 0, (3.21) reduces to the definition of Eulerian
pseudo-momentum in [Büh09], p. 113 for non-sheared background flow. Otherwise
the net micro-scale effects cause a forcing of pseudo-momentum, cf. subsection
6.3.2 in [Büh09]. However, the forcing has not to be modelled but is readily
provided by the micro-scale dynamic equations (2.70)5,6.

By multiplying with ρ(0) and using the anelastic constraint (2.70)4, the second
term in (3.22) can be transformed as follows

〈

ρ(0)qw̄
〉

=
〈

ρ(0) (uz − w̄x) w̄
〉

=
〈

ρ(0)uzw̄
〉

− ρ(0) 〈w̄xw̄〉

=
〈

ρ(0)uw̄
〉

z
−
〈

u
(

ρ(0)w̄
)

z

〉

=
〈

ρ(0)uw̄
〉

z
+ ρ(0) 〈uux〉

=
〈

ρ(0)uw̄
〉

z
.

(3.23)

Using (3.23), (3.22) becomes

ρ(0)p̃τ +
〈

ρ(0)uw̄
〉

z
︸ ︷︷ ︸

=∂zτnet

= ρ(0)
〈

qw′

1− σ

〉

︸ ︷︷ ︸

:=F̃

(3.24)

corresponding to the equation for pseudo-momentum in [Büh09], p. 141. Equation
(3.24) demonstrates how changes of pseudo-momentum in the presented model,
similar to the sheared and non-sheared dry case analyzed in [Büh09], are directly
related to vertical changes in the momentum flux τnet defined in (2.34) as well as
forcing by micro-scale dynamics.

Chapter 6 in [Büh09] analyzes the response of a mean-flow to waves of asymptot-
ically small amplitude a. It is found that the average O(a2) zonal flow response
to waves 〈u2〉 evolves according to

∂t 〈u2〉 = ∂tp̃− F̃ . (3.25)

As mentioned in [RKM10], the derivation of the model in the present thesis can
be equivalently formulated as an asymptotic analysis for small wave amplitudes
if the dimensional governing equations are non-dimensionalized with a reference
velocity

uref = Nhsc = 100 m s−1 (3.26)
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set by the timescale of internal waves instead of advection. The distinguished limit
(2.8) then becomes

M ∼ Fr ∼ ε, RoB ∼ ε−2 as ε → 0 (3.27)

and the expansions of the velocity read

u = u∞ + εu(0)(x, z, t) +O(ε2) and w = εw(0)(η, x, z, t) +O(ε2). (3.28)

Thus the amplitude of the wave-related velocity field
(
u(0), w(0)

)
is now a small

parameter, just as in [Büh09]. The derivation employing this ansatz is equivalent
to the one presented in chapter 2 and the obtained model is again (2.70).

Supposedly, the analysis from [Büh09] can be adopted to demonstrate that the
mean-flow response to waves governed by (2.70) also evolves according to (3.25).
Employing the pseudo-momentum equation (3.24) forced by the tower-scale dy-
namics would then allow to analytically address the effect of moisture on the
wave-forcing of a mean-flow.

3.1.5. Oscillator as Source of Gravity Waves

In [LRC01], possible mechanisms how tropical deep convection generates gravity
waves are investigated, employing high-resolution, three-dimensional simulations.
They analyze the obtained results by combining the governing equations into a
single, forced linear wave equation for vertical velocity, see equation (6) in [LRC01],
which for an unsheared background flow reads

Dtt

[

∇2w −
(

w

Hs

)

z

]

+N2∇2
||w = F . (3.29)

The source term F is split into three components

F = Fa
︸︷︷︸

advection

+ Fh
︸︷︷︸

heating

+ Fs
︸︷︷︸

shear

(3.30)

corresponding to different mechanisms of gravity wave generation, and the mag-
nitude of the different components is assessed from the gained simulation data.
[LRC01] conclude that the dominant forcing of (3.29) are oscillations around
the “level of neutral buoyancy” (LNB) related to the advection component Fa

of (3.30). In the absence of source terms for velocity, denoted Fu, Fv, Fw in
[LRC01], their expression for Fa simplifies to

Fa = ∇2
||Fb (3.31)

whereas Fb is the right hand side source term of the buoyancy equation. A similar
expression can be derived from (2.70), in which Fb is provided by the tower-scale
dynamics.
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3.2. Energy

Combining (2.70)1 − (2.70)4 into a single equation for w̄, using ρ(0) = exp(−z),
assuming ∇xσ = 0 and denoting ∇x = ∇|| and ∇2

x + ∂zz = ∇2 for a notation
consistent with (3.29), yields

D2

Dτ2
(
∇2w − wz

)
+ (1− σ)Θ(2)

z ∇2
||w = ∇2

||

(

Θ(2)
z w′

)

︸ ︷︷ ︸

=Fb

(3.32)

whereas Fb = Θ
(2)
z w′ is the source term in the large-scale buoyancy equation

(2.70)3. Equation (3.32) is precisely the forced, linear wave equation (3.29) with
Hs = 1, compatible with the fact that (3.32) is non-dimensional while (3.29) is

not, and the stability N2 replaced by the effective stability (1− σ)Θ
(2)
z . Denote

by

F = ∇2
||Fb = ∇2

||

(

Θ(2)
z w′

)

(3.33)

the source term on the right hand side. Combining (2.70)5 and (2.70)6 after

multiplication with Θ
(2)
z results in the equation

D2

Dτ2
F + σΘ(2)

z F = σ (1− σ)Θ(2)
z ∇2

||w̄ (3.34)

for F . Obviously, F is oscillatory, forced by the large-scale flow w̄ and advected by
the background flow u∞. Thus the result in [LRC01], stemming from numerical
simulations, that the main component of F is oscillatory and related to Fa features,
at least on the formal level of equations, an interesting similarity to the asymptotic
model derived in the present thesis, exhibiting an oscillatory F in the closure of
the leading order equations.

3.2. Energy

Employing the definitions from section 6.1 in [Büh09] and replacing the stability
with the effective stability modified by σ, the kinetic and potential energy of the
large-scale flow can be defined as

Ekin :=
ρ(0)

2

(
u2 + w̄2

)
, Epot :=

ρ(0)

2

θ̄2

(1− σ)Θ
(2)
z

. (3.35)

Multiplying (2.70)1−3 with ρ(0)u, ρ(0)w̄ and ρ(0)θ̄ respectively and using (2.70)4
yields

DEkin

Dτ
+
(

ρ(0)uπ
)

x
+
(

ρ(0)w̄π
)

z
= ρ(0)w̄θ̄ (3.36)

and
DEpot

Dτ
= −ρ(0)w̄θ̄ + ρ(0)

w′θ̄

1− σ
+ ρ(0)

C̄−θ̄

(1− σ)Θ
(2)
z

. (3.37)

37



Chapter 3. Analytical Properties

x

z

Positive θ perturbation

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

z

Negative θ perturbation

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Figure 3.2.: Stratification in the presence of a large-scale perturbation θ̄. Left: Positive
perturbation θ̄ > 0. Right: Negative perturbation θ̄ < 0.

Note that in the absence of the source terms related to tower-scale dynamics in
(3.37), the total energy

Etot := Ekin + Epot (3.38)

satisfies the conservation law

DEtot

Dτ
+
(

ρ(0)uπ
)

x
+
(

ρ(0)w̄π
)

z
= 0. (3.39)

Integration over the volume of a parcel and assuming no flux of energy across the
boundaries yields

D

Dτ

∫

Vparcel

Etot dV = 0 (3.40)

hence the total energy of a parcel is conserved in the absence of tower-scale effects.
This is compatible with the following considerations: Figure 3.2 sketches isolines
of the stratification for positive and negative large-scale deviations θ̄ from the
background Θ(2). The potential energy corresponds to the deformation of the
isoline.

If a parcel with positive θ̄ (left figure) rises, i.e. w̄ > 0, isolines move upwards,
reducing the deformation, corresponding to the reduction of Epot by the negative
source term −ρ(0)w̄θ̄ in (3.37). The potential energy is completely converted into
kinetic energy according to (3.36) so the total energy of the parcel remains un-
changed. This also holds true for a parcel with θ̄ < 0 (right figure) and w̄ < 0.
Vice versa, a parcel with θ̄ > 0 (left figure) moving downward, i.e. w̄ < 0, in-
creasing the deformation of isolines converts kinetic into potential energy exactly
as a parcel with θ̄ < 0 (right figure) and w̄ > 0, compatible with ρ(0)w̄θ̄ < 0
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Figure 3.3.: Stratification in the presence of a tower-scale perturbations θ′. The dashed

lines are isolines of the large-scale stratification given by Θ(2) plus θ̄.
Left: θ′ > 0. Right: θ′ < 0.

reducing Ekin in (3.36) and increasing Epot in (3.37). This is the basic oscillation
mechanism for gravity waves in absence of latent heat release.

The tower-scale dynamics introduce an additional effect: The micro-scale velocity
w′ does not affect the parcel’s kinetic energy. It provides however, according to
(2.70)3, a source term for θ̄ describing the net release or consumption of latent
heat in saturated regions by small-scale up- or downdrafts. If θ̄ > 0 the parcel
is already warmer than the environment so released latent heat corresponding to
w′ > 0 increases the deformation of isolines, compatible with an increase of Epot

by θ̄w′ > 0 in (3.37). Analogously, cooling by latent heat consumption of a parcel
already cooler than the environment, i.e. w′ < 0 and θ̄ < 0 also increases the
potential energy by w′θ̄ > 0 in (3.37).

The other way round, if a parcel with θ̄ > 0 is cooled by w′ < 0 or a parcel with
θ̄ < 0 is warmed by w′ > 0, the source term θ̄w′ is negative, resulting in a decrease
of the parcel’s potential energy Epot, as the micro-scale influence does counteract
the large-scale deviation θ̄(3) from the background stratification Θ(2).

Cooling by evaporating rain described by the source term C̄− < 0 has a similar
effect, reducing Epot for θ̄ > 0 and increasing it for θ̄ < 0.

Analogously to (3.35) define the tower-scale energies as

E′
kin :=

ρ(0)

2
(w′)2 , E′

pot :=
ρ(0)

2

(θ′)2

σΘ
(2)
z

. (3.41)

They satisfy
DE′

kin

Dτ
= ρ(0)w′θ′ (3.42)
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and
DE′

pot

Dτ
= −ρ(0)w′θ′ + ρ(0) (1− σ) w̄θ′ − ρ(0)

C̄−θ
′

Θ
(2)
z

. (3.43)

The source term ±ρ(0)w′θ′ corresponds to an analogous conversion mechanism
between tower-scale kinetic and potential energy as described for the large-scale
energies above.

Figure 3.3 sketches a “zoomed in” example of small-scale perturbations θ′ from a
large-scale stratification described by θ̄. The figure is somewhat simplified, because
positive or negative θ′ only indicates positive or negative perturbation from the
solid θ̄ isoline on average, but not at every single point. Thus the isoline of the
perturbation could, in principle, oscillate around the dashed θ̄-isoline as well. The
following consideration thus refers to average effects and does not hold point wise
for every η.

The tower-scale potential energy E′
pot corresponds to the difference between the

dashed line, indicating the large-scale stratification given by Θ2 and θ̄(3) and the
solid isoline, containing also the contribution of θ′. If in the situation sketched
in the left figure with θ′ > 0 the dashed lines are moved upward by a large-scale
updraft w̄ > 0, the tower-scale potential energy E′

pot increases according to the
positive source term w̄θ′ in (3.43). For a large-scale downdraft, the dashed lines
are displaced downward and E′

pot decreases according to w̄θ′ < 0. Analogously,
in the situation sketched in the right figure with θ′ < 0, a large-scale downdraft
w̄ < 0 increases E′

pot while an updraft decreases it, compatible with a positive and
negative w̄θ′ in (3.43) respectively.

Evaporative cooling of rain reduces the large-scale temperature θ̄ and increases
the deformation of the dashed isolines, which indicate a positive θ̄ > 0 in both
figures. In the left figure this increases E′

pot compatible with −θ′C̄− > 0 while for

the right figure −θ′C̄− < 0 obtains and E′
pot decreases.

3.3. Structure of Plane Wave Solutions

3.3.1. Dispersion relation

The leading order density for a near-homentropic atmosphere in the Newtonian
limit (γ → 1) = O(ε), see [KM06], reads

ρ(0)(z) = exp(−z) (3.44)

in non-dimensional terms. Thus the anelastic constraint (2.70)4 can be rewritten
as

ux + w̄z − w̄ = 0. (3.45)
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Applying a standard plane wave ansatz results in a complex valued dispersion
relation as the decreasing density (3.44) leads to growing amplitudes of gravity
waves with height. A real valued expression is obtained by allowing for a vertically
growing amplitude in the ansatz. Insert

φ(x, z, τ) = φ̂ exp(µz) exp(i(kx+mz − ωτ)) (3.46)

with φ ∈ {ū, w̄, θ̄, π, w′, θ′} into (2.70) and assume, for the purpose of this section,
C̄− = 0 i.e. no source terms from evaporation of rain and that σ is uniform in x.
The resulting equations read
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−iω ˆ̄u+ u∞ik ˆ̄u+ ikπ̂ = 0

−iω ˆ̄w + u∞ik ˆ̄w + (im+ µ)π̂ = ˆ̄θ

−iω ˆ̄θ + u∞ik ˆ̄θ + (1− σ)Θ(2)
z

ˆ̄w = Θ(2)
z ŵ′

ik ˆ̄u+ (im+ µ) ˆ̄w − ˆ̄w = 0

−iωŵ′ + u∞ikŵ′ = θ̂′

−iωθ̂′ + u∞ikθ̂′ + σΘ(2)
z ŵ′ = σ(1− σ)Θ(2)

z
ˆ̄w.

(3.47)

Successive elimination of the φ̂ results in

(ω − u∞k)2 =
k2 − σ(µ2 − µ−m2)− σi(2µm−m)

k2 − (µ2 − µ−m2)− i(2µm−m)
Θ(2)

z . (3.48)

Setting

µ =
1

2
(3.49)

yields

(ω − u∞k)2 =
k2 + σ(m2 + 1

4 )

k2 +m2 + 1
4

Θ(2)
z (3.50)

and rearranging terms provides the final, real-valued dispersion relation

ω = u∞k + ωintr = u∞k ±
√

k2 + σ(m2 + 1
4 )

k2 +m2 + 1
4

Θ
(2)
z . (3.51)

For σ = 0, (3.51) is identical to the dispersion relation for the pseudo-incompressible
equations derived in [Dur89]. ωintr is the so-called intrinsic frequency, seen by an
observer moving with the background flow. Figure 3.4 shows the dependence of
ωintr on the wave vector (k,m) for σ = 0, 0.25, 0.5. Just as in the dry case, the fre-
quency depends only on the direction of the wave vector but not on its magnitude.
As σ increases, the accessible range of frequencies narrows down, the minimum
propagating frequency

ωintr,min =

√

σΘ
(2)
z (3.52)

being obtained for purely vertically oriented wave vectors (0,m).

Interestingly, for the incompressible case without the 1/4 term, (3.51) equals the
dispersion relation for internal gravity waves in a rotating fluid, see e.g. section 8.4

in [Gil82], with the Coriolis parameter f2 replaced by σΘ
(2)
z . In the incompressible

case, ωintr can also be expressed as a function of the angle α between the wave
vector (k,m) and the horizontal

ωintr,incomp =

√
(
cos2(α) + σ sin2(α)

)
θ
(2)
z . (3.53)
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3.3.2. Temporal Evolution of a Plane Wave

In order to investigate how a plane wave solution of (2.70) evolves with time, insert
an ansatz

φ (x, z, τ) = φ̂(τ) exp (µz) exp (i(kx+mz)) (3.54)

with φ ∈
{
u, w̄, θ̄, π, w′, θ′

}
. As before, exp(µz) captures the amplitude growth

with height caused by decreasing density. Assuming u∞ = 0 here, setting µ = 0.5
as before and combining (2.70)1 - (2.70)4 into a single equation for w̄ as well as
(2.70)5 and (2.70)6 into an equation for w′ yields, after dropping the hats, the
second order linear system of ordinary differential equations

(

k2 +m2 +
1

4

)

w̄ττ + (1− σ)Θ(2)
z k2w̄ = Θ(2)

z k2w′

w′
ττ + σΘ(2)

z w′ = σ (1− σ)Θ(2)
z w̄

(3.55)

or in vector-matrix form

(
w̄
w′

)

ττ

+

(
(1−σ)Θ(2)

z k2

k2+m2+0.25 − Θ(2)
z k2

k2+m2+0.25

−σ(1− σ)Θ
(2)
z σΘ

(2)
z

)(
w̄
w′

)

= 0. (3.56)

The non-zero eigenvalues of the system equal the solutions of the dispersion
relation (3.51)

ωintr = ±
√

k2 + σ
(
m2 + 1

4

)

k2 +m2 + 1
4

Θ
(2)
z . (3.57)

Although in (2.70) the parameter σ is only advected with u∞ and thus constant
in τ in the absence of background flow, for illustration purposes (3.56) is solved
numerically with a prescribed σ slowly varying in time

σ(τ) = 0.8 exp

(

−1

2

(
τ − 100

20

)2
)

. (3.58)

The employed ODE solver is ode45 in MATLAB. The used initial values are w̄ =
0.5 and w′ = 0, the wave numbers are k = m = 1 and the stratification is set to
√

Θ
(2)
z = 1.

Figure 3.5 shows the obtained solutions. The upper figure shows the evolution of
the amplitudes of w̄ and w′ as well as the prescribed σ. w′ is zero initially, but
increases as σ increases at the expense of w̄. The amplitude of w̄ increases back
to its original value and w′ vanishes as σ vanishes. The lower figure shows the
evolution of the non-saturated displacement ξus, cf. (3.12), (3.13). As indicated in
(3.15), by reducing the effective stability a non-zero σ increases the amplitude of
ξus. Figure in 3.6 shows the frequency of maxima of w̄ (diamonds) as well as the
frequency ωintr as a solid line, computed analytically from the dispersion relation
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Figure 3.5.: Numerical solution of (3.55) with prescribed σ. Upper: Amplitudes of w̄, w′

over time. Lower: Amplitudes of the resulting displacement ξus over time.

(3.51). Despite naturally exhibiting some lag, the maxima-computed frequencies
evolve in good agreement with the values computed from the dispersion relation
(3.51). The increase of frequency by σ matches the results from the analysis of the
dispersion relation in subsection 3.3.1, where it is found that σ reduces the range of
attainable values for ωintr by raising the minimum possible frequency while leaving
the maximum value constant.

3.3.3. Group velocity

Concept

To illustrate the concept of group velocity, an example discussed in [Gri02] is briefly
presented here. Consider a wave-packet solution of some initial value problem,
given as a superposition of Fourier-modes

u(x, t) =

∫ ∞

−∞

F (k) exp (i(kx− ωt)) dk. (3.59)

Assume that F (k) is supported in the vicinity of a dominant wave number k0 and
rapidly decays with increasing distance from it. The dispersion relation of the
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Figure 3.7.: A wave-packet: The individual modes travel according to the phase velocity
ω/k while the wave-packet itself, visualized by its envelope, travels with the
group velocity cg.

system, expressing the frequency ω as a function of the wave number k, can be
approximated as

ω(k) ≈ ω(k0) + b1 (k − k0) + b2 (k − k0)
2

(3.60)

where

b1 =
dω

dk

∣
∣
∣
∣
k=k0

=: cg and b2 =
1

2

d2ω

dk2

∣
∣
∣
∣
k=k0

. (3.61)

Using this in (3.59) and introducing κ := k − k0 yields

u(x, t) ≈ exp (i(k0x− ω0t))

∫ ∞

−∞

F (k0 + κ) exp (i(κx− cgt) exp
(
−ib2κ

2t
)
dκ.

(3.62)
The term proportional to κ2 is a small correction, so defining

A(x, t) =

∫ ∞

−∞

F (k0 + κ) exp (i(κx− cgt) dκ (3.63)

leads to
u(x, t) ≈ A(x, t) exp (i(k0x− ω0t)) . (3.64)
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Thus to leading order, the wave-packet described by u is a single plane wave with
wave number k0, frequency ω0 and moving at velocity ω0/k0 with a time-space
dependent amplitude A(x, t), travelling at speed cg. Hence the phase velocity is the
velocity at which individual modes of a wave-packet travel while the group velocity
is the speed at which the packet as a whole propagates, see figure 3.7. Phase- and
group velocity are, in general, different and may even point in opposite directions.
In figure 3.7 for example, the individual modes might travel from right to left while
the wave-packet itself travels from left to right. As shown in section 4.4 in [Lig78],
group velocity is also associated with the flux of wave energy.

Group Velocity in the Model

Computing the derivative of (3.51) with respect to k and m yields the group
velocity

cg = (ug, wg) = (u∞, 0)±
(1− σ)

√

θ
(2)
z

(k2 +m2 + 1
4 )

3
2 (k2 + σ(m2 + 1

4 ))
1
2

(

k(m2 +
1

4
),−mk2

)

.

(3.65)
In a dry (σ = 0), incompressible (µ = 0, so no 1

4 term) atmosphere, cg simplifies
to the well-known expression for the group velocity of internal waves in a stratified
fluid, see e.g. section 4.4 in [Lig78],

cg,dry,inc = (u∞, 0)±
m

√

θ
(2)
z

(k2 +m2)
3
2

(m,−k) . (3.66)

One essential feature of these waves is that cg,dry,inc ⊥ (k,m), i.e. the direction
of energy transport by waves is perpendicular to the direction of intrinsic phase
propagation. Because of the 1/4 term, this does not hold for (3.65), but still
waves with upward directed phase propagation, i. e. either positive m and positive
branch in (3.51) and (3.65) or negative m and negative branch in (3.51) and (3.65),
feature downward directed group velocity and vice versa.

As σ increases, the coefficient in (3.65) decreases and eventually, for σ = 1, van-
ishes. Thus increasing moisture reduces the transport of energy by waves and
eliminates it completely in all-over saturated regions, sparing only advection of
energy by u∞.

The ratio of vertical to horizontal component of cg determines the slope at which
a wave-packet propagates

∆g =
wg

ug
. (3.67)

Figure 3.8 shows the angle between a line with slope wg/ug and the horizontal

depending on σ for a flow with

√

Θ
(2)
z = 1 and u∞ = 0.1. For all modes, moisture
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numbers k = 1, . . . , 4 depending on σ in a steady-state flow with

√

Θ
(2)
z = 1

and u∞ = 0.1.

decreases the angle of the group velocity, so σ also reduces the propagation angle
of wave-packets. See subsection 3.4.2 for illustration.

3.3.4. Taylor-Goldstein Equation

A special class of simplified solutions are those with non-constrained vertical pro-
files but plane wave structure in the horizontal and in time, i.e.

φ(x, z, τ) = φ̂(z) exp(µz) exp(ik(x− cτ)). (3.68)

Here, c = ω/k denotes the horizontal phase speed observed at a fixed height, while
φ ∈ {ū, w̄, θ̄, π, w′, θ′}. The term involving µ describes, just as in the derivation of
the dispersion relation, the growing amplitudes with height caused by the decreas-
ing density in the anelastic model. Inserting (3.68) into (2.70) and eliminating all

φ̂ except for ˆ̄w yields

[

Θ
(2)
z − k2(u∞ − c)2

k2(u∞ − c)2 − σΘ
(2)
z

k2

]

ˆ̄w + µ(µ− 1) ˆ̄w + (2µ− 1) ˆ̄wz + ˆ̄wzz = 0. (3.69)

Setting µ = 1/2 as in 3.3.1 results in the final equation

[

Θ
(2)
z − k2(u∞ − c)2

k2(u∞ − c)2 − σΘ
(2)
z

k2 − 1

4

]

ˆ̄w + ˆ̄wzz = 0. (3.70)

This equation for the vertical profile ˆ̄w(z) is called Taylor-Goldstein equation. In
the incompressible, dry case, i. e. with σ = 0 and without the 1/4 term, (3.70)
reduces to its well-known incompressible dry counterpart derived e.g. in ch. 13 in
[Etl96]. As the coefficient of ˆ̄w depends on z, (3.70) is a second order ODE with
varying coefficients.
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3.3.5. Vertical Wave Numbers

The coefficient in (3.70) is the square of the local vertical wave number, so

m(z, k) = ±

√
√
√
√

[

Θ
(2)
z − k2(u∞ − c)2

k2(u∞ − c)2 − σΘ
(2)
z

k2 − 1

4

]

. (3.71)

Figure 3.9 shows how, for steady-state solutions with c = 0, m depends on σ for
different k. Increasing σ also increases m. Thus, as the vertical wavelength is
inversely proportional to the wave number, moisture in the presented model re-
duces the vertical wavelength. This is contrary to the findings of [EL73b, JB85],
who indicate an increase of vertical wavelength by moisture. Increasing m results
in a steeper propagation angle of individual modes. However, as pointed out in
subsection 3.3.3, moisture also reduces the angle of group-velocity, so that simul-
taneously the propagation angle of a wave pattern composed of a superposition of
numerous modes is bent towards the horizontal. Note that for some value σc(k),
the vertical wave numbers diverge to infinity. See section 3.5 for further discussion.

Cut-Off Wave Numbers in Steady-State Solutions

Modes with imaginary vertical wave number m are evanescent and do not propa-
gate vertically but only decay exponentially with height, see section 6.8 in [Gil82].
Wave numbers k at which m(k) turns from real (propagating) into imaginary
(evanescent) are called cut-off wave numbers. For steady-state solutions (3.71)
simplifies to

m(k) = ±

√
√
√
√

[

Θ
(2)
z − k2(u∞)2

k2(u∞)2 − σΘ
(2)
z

k2

]

. (3.72)
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Neglect the 1/4 term for the course of this paragraph, as this clarifies the calcula-
tion without qualitatively affecting the result. If

|k| > kup :=

√

Θ
(2)
z

u∞
(3.73)

the radicand in (3.72) yields an imaginarym and the corresponding mode is evanes-
cent. This upper cut-off is independent of σ and likewise found in the dry case,
see e.g. subsection 6.4.1 in [Büh09]. In contrast to the dry case, the radicand in
(3.72) also turns negative for

√

Θ
(2)
z

u∞
≥

√
σ

√

Θ
(2)
z

u∞
=: klow > |k|. (3.74)

Thus moisture introduces a lower cut-off wave number absent in the dry non-
rotating case. A similar mechanism is present in the regime of rotating gravity
waves. There, the lower cut-off is f/u∞, f being the Coriolis parameter, see
subsection 8.2.3 in [Büh09]. However, because fdim ∼ 10−4 s−1, see section 7.5 in
[Gil82], corresponding to a non-dimensional value of f ∼ 10−2 using (2.35)5, the

lower cut-off wave number in the rotating case is small. In contrast,

√

σΘ
(2)
z is of

order unity so that (3.74) can render a significant number of modes evanescent.

A typical value for the stability frequency in dimensional terms is N = 0.01 s−1

corresponding to

√

Θ
(2)
z = 1. A typical background flow velocity is 10 m s−1 or

u∞ = 0.1. Consider small cloudy areas and set σ = 0.1. This results in an upper
cut-off wave number kup = 10 and a lower cut-off klow ≈ 3.16. The resulting
non-dimensional minimum and maximum wavelengths are

λ− =
2π

kup
and λ+ =

2π

klow
. (3.75)

The lengthscale hsc ≈ 104 m leads to a reference value for k of

kref =
2π

hsc
≈ 2π10−4 m−1. (3.76)

Computing the dimensional values λ∗
+, λ

∗
− corresponding to (3.75) by employing

the reference value λref = 2π/kref set by (3.76) yields

λ∗
− =

2π

kup

2π

kref
=

2π

10
· 104 m ≈ 6 km , λ∗

+ =
2π

klow

2π

kref
≈ 20 km. (3.77)

Thus in dimensional terms, propagation is restricted to horizontal wavelengths
between 6 km and 20 km. For σ = 0.2, the maximum wavelength is further reduced
to 14 km, so even small values of σ prevent a significant range of wavelengths from
propagating. The cut-off is illustrated by the examples in subsection 3.4.1.
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3.4. Steady-State Orographic Waves

A widely investigated problem is the wave response excited by flow over a mountain
in a stable stratified atmosphere. In this section, steady-state solutions of this type
for (2.70) are derived for the simplified case of constant coefficients and compared
to their dry counterparts. The description of the problem consists of the steady-
state version of (2.70) on a domain Ω = [0, L] × [0, H] plus a lower boundary
condition set by topography. Letting h denote a function describing the shape of
the hill the thereby imposed linearized boundary condition reads

w(x, 0, τ) = u∞hx(x), (3.78)

see e.g. ch. 6 in [Büh09]. Periodic boundary conditions in x are assumed. At the
upper boundary, a radiation boundary condition is required to prevent unphysical
energy transport into the domain. Seek solutions of the form

φ(x, z, τ) = exp(µz)

n=Nx∑

n=−Nx

φ̂(n)(z) exp(iknx) (3.79)

with µ = 0.5 and kn = 2πn/L. As demonstrated in subsection 3.3.4, for every
−Nx ≤ n ≤ Nx this leads to (3.70) with c = 0 i.e.

[

Θ
(2)
z − k2n(u

∞)2

k2n(u
∞)2 − σΘ

(2)
z

k2n − 1

4

]

ˆ̄w(n) + ˆ̄w(n)
zz = 0. (3.80)

Equation (3.80) has to be solved for the different n, and the superposition (3.79)
yields the final solution. All figures in this section show quantities converted back
into dimensional units for more descriptive results.

If the stratification Θ
(2)
z , the background flow u∞ and σ are all constant with

height, (3.80) can be solved analytically

ˆ̄w(n)(z) = A(n) exp(im(kn)z) +B(n) exp(−im(kn)z) (3.81)

whereas A(n) and B(n) have to be determined according to the upper and lower
boundary condition. For the propagating case, i.e. realm(kn), the upper boundary
condition has to rule out downward directed energy propagation into the domain,
see [KD82, Bou83]. The background flow is always assumed to be positive, i.e.
u∞ > 0. Thus if setting ω = 0 in (3.51), the sign of the root has to be the opposite
of the sign of k and hence the sign of the root in (3.65) must also be −sgn(k) so
that

sgn(wg) = sgn(k)sgn(m). (3.82)

In order to have wg ≥ 0 in (3.65), m has to be positive if sgn(k) > 0 and negative
if sgn(k) < 0. Thus set

m(kn) = sgn(kn)

√
√
√
√ Θ

(2)
z − k2n(u

∞)2

k2n(u
∞)2 − σΘ

(2)
z

k2n − 1

4
(3.83)
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3.4. Steady-State Orographic Waves

and B = 0 in (3.81). For imaginary m(k), choose the sign so that exp(im(kn)z) →
0 for z → ∞ and again set B = 0.

For solutions of type (3.79), the lower boundary condition (3.78) reads

ˆ̄w(n)(z = 0) = u∞iknH
(n) (3.84)

whereasH(n) is the n-th coefficient in the Fourier representation of the topography,
i.e.

h(x) =

n=∞∑

n=−∞

H(n) exp(iknx). (3.85)

Hence the remaining coefficient reads

A(n) = u∞iknH
(n). (3.86)

To allow for numerical evaluation of (3.79), truncate the series and set

A(n) = 0 for |n| > Nx. (3.87)

The topographies studied in subsection 3.4.1 excite only two modes kn1
, kn2

, so
for

Nx ≥ max {kn1
, kn2

} (3.88)

the approximation (3.87) is exactly satisfied. While the topography in subsection
3.4.2 does in principal excite modes of all wave numbers, the amplitudes decay
as kn increases so if Nx is chosen sufficiently large the effect of truncating higher
wave number modes is negligible.

The final analytical solution for the vertical profile of an individual mode reads

ˆ̄w(n)(z) = u∞iknH
(n) exp(im(kn)z) (3.89)

while the superposition of all computed modes reads

ˆ̄w(x, z) = exp(µz)

n=Nx∑

n=−Nx

u∞iknH
(n) exp (i(m(kn)z + knx)) . (3.90)

By employing the anelastic constraint (3.45), the profiles of the modes of horizontal
velocity can be computed according to

û(z) = [1−m(kn)]u
∞H(n) exp(im(kn)z), (3.91)

yielding the final u(x, z) by superposition (3.79) with φ = u.
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Chapter 3. Analytical Properties

3.4.1. Sinusoidal Topography

For a topography h composed of the superposition of sine waves of different wave
numbers, i.e.

h(x) =

Nx∑

n=1

hn sin(knx) (3.92)

with again kn = 2πn/L, the coefficient A(n) in (3.86) for a given n is non-zero only
if hn is non-zero. The transformation of modes from propagating to evanescent
with increasing σ is illustrated here for the simple cases of h2 6= 0 and h1, h2 6= 0.

Set the stability frequency to

√

Θ
(2)
z = 1 or 0.01 s−1 in dimensional terms, the

background flow to u∞ = 0.1 or 10 m s−1. The domain is [0, 2π] × [0, 1] in non-
dimensional units, multiply the numbers by 10 km for dimensional values.

Single Mode Consider a topography

h(x) = h2 sin(2x) (3.93)

with h2 = 0.04 corresponding to a sinusoidal hill with a maximum height of 400 m.
Figure 3.10 shows the real part of the resulting vertical velocity w̄ for σ = 0,
σ = 0.02 and σ = 0.05. Plotted are isolines of w̄ in steps of 0.25 m s−1 in
dimensional terms, whereas dotted lines represent negative values. In the dry
case, no lower cut-off wave number exists and the single excited mode propagates
upwards into the direction set by the wave vector (2,m(2)). For σ = 0.02, the
lower cut-off is klow =

√
0.02 · 1/0.1 ≈ 1.4, so the mode still propagates. However,

according to the increase of m pointed out in figure 3.9, the angle between the
direction of phase propagation and the horizontal has become slightly steeper. For
σ = 0.05, thus klow =

√
0.05 · 10 ≈ 2.2, the mode has become evanescent. Only a

very weak wave-response is visible close to the surface.

Two Modes Extending the topography by a k = 1 mode, i.e.

h(x) = h1 sin(x) + h2 sin(2x) (3.94)

again with h1 = h2 = 0.04, results in non-zero amplitudes for the modes k1 = 1
and k2 = 2. All other quantities remain unchanged. Figure 3.11 again shows
isolines of w̄. The first figure corresponds to the dry solution with σ = 0. The
second figure corresponds to σ = 0.02, where the k = 1 mode is evanescent. With
only the k = 2 mode propagating, the pattern of the solution is very similar to the
second figure in 3.10, except for a small contribution from the evanescent mode
in the lower regions near the surface. The third figure shows the solution for
σ = 0.05, where now also the second mode is evanescent. Again, there is only a
weak wave-response close to the ground.
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Figure 3.10.: Steady-state orographic waves excited by a simple sinusoidal topography with
single horizontal wave number k = 2 for σ = 0, σ = 0.02 and σ = 0.05.
The interval between isolines is 0.25 m s−1. Dotted lines represent negative
values.

3.4.2. Witch of Agnesi Topography

The Witch of Agnesi topography reads

h(x) =
h

1 +
(
x−x0

l

)2 (3.95)

whereas h is the height of the hill, l is a measure of its width and x0 is the middle of
the domain, so that the top of the hill is in the center. The domain employed here
is [0, 8] × [0, 1] but the solution is plotted only on [2, 6] × [0, 1]. The topography
(3.95) excites waves of all wave numbers, however the amplitude of the modes
decreases as k increases. For n = 100, the resulting H(n) is of the order of 10−7,
so using Nx = 100, i.e. 201 modes here and employing (3.87) for modes outside
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Figure 3.11.: Steady-state orographic wave excited by a mountain consisting of two sinu-
soidal modes. Shown are isolines of vertical velocity in steps of 0.25 m s−1,
dotted lines represent negative values.

this range, is sufficient to produce meaningful solutions. No noticeable change in
the solution is detectable if Nx is increased. Figure 3.12 shows the contour lines of
the dimensionalized vertical velocity w̄ in steps of 0.25 m s−1 for σ = 0, σ = 0.1,
σ = 0.5 and σ = 0.75. The dashed line visualizes the average slope (3.67) of group
velocity computed over all propagating modes, whereas every mode is assigned a
weight equal to its amplitude, i.e.

∆g,av =
1

∑n=Nx

n=−Nx
|A(n)

∗ |

n=Nx∑

n=−Nx

|A(n)
∗ |∆g (kn,m(kn)) (3.96)

with

A
(n)
∗ :=

{
A(n) : mode is propagating
0 : mode is evanescent

. (3.97)
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The slope of the excited wave pattern is reduced with increasing σ, according
to the reduction of (3.96). Additionally, an increasing number of modes become
evanescent, resulting in a significant reduction of amplitudes.

The reduced angle of propagation is compatible with the following heuristic: The
parameter

Frbaroclinic =
u∞

Nl
, (3.98)

denoting the ratio of advection speed to velocity of internal waves, is a measure
of how close to hydrostatic balance the flow is, see e.g. [GK00]. It is small if
the flow is almost hydrostatic and increases as non-hydrostatic effects become

more dominant. As moisture reduces the effective stability N2
eff = (1− σ)Θ

(2)
z ,

it increases Frbaroclinic. Hydrostatic waves travel purely in vertical direction and
the horizontal component increases the more non-hydrostatic the flow becomes.
Hence it appears reasonable that moisture leads to a more horizontal propagation
direction of orographic waves.

As discussed in subsection 2.2.1, an important quantity related to gravity waves
is the vertical flux of horizontal momentum (2.34) reading ρ(0) 〈uw̄〉 here. For
the steady-state waves presented here the momentum flux is constant. Tabular
3.1 demonstrates that in the presented steady-state mountain wave solution mois-
ture significantly reduces momentum flux, for σ = 0.75 even about one order of
magnitude.

Table 3.1.: Vertical flux of horizontal momentum for different values of σ in the constant
coefficient, steady-state solution with Witch of Agnesi topography.

σ Momentum flux in Nm−2

0 −0.089
0.1 −0.075
0.5 −0.027
0.75 −0.007

3.5. Critical Layers

The equation for the vertical wave number (3.71) reveals that if there exists a
height zc where

(u∞ − c)
2
k2 − σ(zc)Θ

(2)
z = 0 ⇔ σc := σ(zc) =

(u∞ − c)
2
k2

Θ
(2)
z

, (3.99)
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Figure 3.12.: Steady-state orographic wave excited by a Witch of Agnesi topography.
Shown are isolines of vertical velocity in steps of 0.25 m s−1. Dotted lines
represent negative values. The dashed line represents the averaged slope of
the group velocity.
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then

lim
z→zc

m(zc) → ∞ (3.100)

i.e. the vertical wave number diverges to infinity, indicating a critical layer. In
the dry case without shear, critical layers arise if at some height the horizontal
phase speed c approaches the velocity of the background flow u∞, see section 7.2
in [Büh09] or section 4.6 in [Lig78] for an analysis of this type of critical layer. In
the moist model (2.70) however a critical layer can also arise in case of constant
phase velocity c 6= u∞ if σ → σc.

Assuming constant stratification Θ
(2)
z allows to derive an approximate solution in

the vicinity of zc, using techniques described for the dry case in section 7.2 in
[Büh09]. Introduce a new coordinate

s :=
z − zc

ν
(3.101)

whereas ν is a measure of the width of the critical layer around zc. Assuming that
σ is linear around the critical layer yields

σ(z) = σ(zc) + (z − zc)
∂σ

∂z

∣
∣
∣
∣
z=zc

=
(u∞ − c)

2
k2

Θ
(2)
z

+ νs
∂σ

∂z

∣
∣
∣
∣
z=zc

. (3.102)

In order for the limit

∂σ

∂z

∣
∣
∣
∣
z=zc

= lim
z→zc

∂σ

∂z
= lim

z→zc
ν−1 ∂σ

∂s
(3.103)

to exist, require

∂σ

∂s
= O(να) and

∂σ

∂z
= O(να−1) for ν → 0 (3.104)

for some α > 1. For simplicity, set α = 2 so

∂σ

∂z
= νλ with λ = O(1) for ν → 0. (3.105)

Note that if λ < 0, i.e. σ > σ(zc) below the critical layer, the horizontal wave
number k is below the cut-off klow in (3.74). Thus the solution is evanescent below
the critical layer and propagates above it. For λ > 0, the solution propagates
below the layer and is evanescent above.

By inserting (3.105), (3.102) becomes

σ(z) =
(u∞ − c)

2
k2

Θ
(2)
z

+ ν2λs (3.106)
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Figure 3.13.: Qualitative behavior of the two components of W (s) for positive (upper)
and negative (lower) λ.

and inserting this in the Taylor-Goldstein equation (3.70), employing ∂zz = ν−2∂ss,
yields

−
[

Θ
(2)
z − (u∞ − c)

2
k2

ν2λsΘ
(2)
z

k2 +
1

4

]

ŵ(s) + ν−2ŵss(s) = 0. (3.107)

The leading order equation in the limit ν → 0 reads

Θ
(2)
z − (u∞ − c)

2
k2

λΘ
(2)
z

k2W (s)− sλWss(s) = 0. (3.108)

Abbreviating

a :=
Θ

(2)
z − (u∞ − c)

2
k2

λΘ
(2)
z

k2 (3.109)

solutions of (3.108), obtained using dsolve in MAPLE, read

W (s) = C1

√
sH

(1)
1

(
2
√
−as

)
+ C2

√
sH

(2)
1

(
2
√
−as

)
(3.110)
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Figure 3.14.: Vertical velocity in arbitrary units for a k = 2 sine topography, u∞ = 0.1,
√

Θ
(2)
z = 1 and a critical layer at zc = 0.75 with λ = 0.05.

whereas H
(1)
1 , H

(2)
1 are Hankel functions of first and second kind of order one, see

[AS65]. Figure 3.13 illustrates the qualitative behavior of the two components of
W (s) for positive and negative λ. The coefficients C1, C2 are set arbitrarily to
obtain identifiable solutions for the employed axes. As discussed above, for λ > 0
(upper figure) both solution components are oscillatory below the critical height
and decay above it, providing a small evanescent contribution. Thus the solution
does not “stop” exactly at the layer but decays exponentially in a small region
on top of it. For λ < 0 (lower figure), both components oscillate above the layer.
However, for the chosen coefficients the amplitude of the H(2) component is small
and not noticeable in the figure. The H(1) (dashed line) has non-zero amplitude at
the layer and decays approaching z = 0. In contrast, the H(2) component (dotted
line) has a non-zero amplitude at z = 0 and decays towards the critical layer.

Figure 3.14 shows the x-z-slice solution, obtained by inserting the vertical profile
W (s) given by (3.110) into the ansatz (3.79) featuring only a single mode with

wave number k = 2 for c = 0, u∞ = 0.1,

√

Θ
(2)
z = 1 and λ = 0.05. As the verti-

cal wave number increases towards the critical height set to zc = 0.75, the phase
lines are bent towards the horizontal. The critical layer effectively inhibits wave
propagation and only a weak and quickly decaying contribution is noticeable in a
small region above zc. The upper figure in 3.16 shows the resulting vertical profile
of mean momentum flux, revealing that momentum flux is completely blocked by
the critical layer. Both figures use arbitrary units. To obtain a solution with phys-
ically meaningful amplitudes, W would have to be matched to far-field solutions
above and below the critical layer.

An analogous solution with σ > σ(zc) below the critical layer and σ < σ(zc) above
it, i.e. λ < 0, is shown in figure 3.15 with zc = 0.1 (upper) and zc = 0.75 (lower).
All other values remain unchanged. In the upper figure, an evanescent mode is
present below the critical layer. As values of W at zc are small but non-zero, a
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Figure 3.15.: Vertical velocity in arbitrary units for a solution with a single horizontal

mode with wavenumber k = 2, u∞ = 0.1,

√

Θ
(2)
z = 1 and a critical layer at

zc = 0.1 (upper) and zc = 0.75 (lower) with λ = −0.05.

noticeable propagating wave response is excited in the region above zc, with phase
lines bending towards the vertical as m decreases away from zc. The lower figure
in 3.16 shows the resulting momentum flux. It is very small in the evanescent
region, but not zero. Its magnitude greatly increases above the critical layer in
the propagating region.

In the lower figure in 3.15, the critical height is increased to zc = 0.75, enlarging the
region where the solution is evanescent. Thus the amplitude of W at zc decreases,
thus reducing the amplitude of the oscillation excited above the layer. In the
presented example, the amplitude is too small to occur in the employed isolines.

As stated above, to obtain solutions with physically meaningful amplitudes, the
critical layer solution would have to be matched to correct far-field solutions above
and below the layer. This is not done here, but the qualitative behavior of solutions
in the presence of critical layers described in this paragraph is partly confirmed
by non-stationary simulations in chapter 5, using a sinusoidal topography as in
subsection 3.4.1 to excite the k = 2 mode.
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Figure 3.16.: Mean momentum flux for solution shown in figure 3.14 (upper) and 3.15
with zc = 0.1 (lower) in arbitrary units.
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Chapter 4.

Numerical Scheme

This chapter presents the numerical scheme employed to obtain discrete, approxi-
mate solutions of (2.70). Section 4.1 discusses the timestepping scheme, section 4.2
describes the spatial mesh while section 4.3 presents the discrete approximations
of the spatial derivatives. To realize a radiation condition at the upper boundary,
a damping layer described in section 4.4 is employed. Finally, section 4.5 presents
a few test cases.

4.1. Timestepping

Because of the anelastic constraint (2.70)4, (2.70) is not purely hyperbolic, but
of mixed hyperbolic-elliptic type. A projection method is employed to compute
numerical solutions. Schemes of this type are widely used, see the citations in
[VK09], and are based on the fundamental work of [Cho67]. They consist of a pre-
dictor step, advancing the velocity field in time neglecting the elliptic constraint,
and a projection step, projecting the predicted velocity field onto the space of
vector fields satisfying the constraint.

For (2.70), the predictor step advances the non pressure-related terms in time while
the projection step yields the pressure gradients. [Dur91] analyzes the applicability
of a multi-step Adams-Bashforth scheme in time in combination with a fourth order
central difference scheme for spatial derivatives to advection problems and finds it
a viable alternative to commonly used leapfrog schemes. Applied to an equation

φτ = F (φ) (4.1)

the Adam-Bashforth-3 scheme reads

φn+1 = φn +
∆τ

12

(
23F (φn)− 16F (φn−1) + 5F (φn−2)

)
. (4.2)

The scheme exhibits slight numerical damping. Applying (4.2) to the oscillation
test equation

φτ = iκφ (4.3)
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4.1. Timestepping

results in an amplification factor of

A = 1− (κ∆τ)
4
. (4.4)

See [Dur99] for the details. Introducing weak numerical dissipation is considered
acceptable here for gaining a higher order in time.

A drawback of a multi-level scheme like (4.2) is the requirement to store data from
three time-levels. For the two-dimensional problems investigated in the present
thesis however, memory requirements are not an issue.

To streamline notation define

Fn
u := −u∞un

x

Fn
w̄ := −u∞w̄n

x + θ̄n

Fn
θ̄ := −u∞θ̄nx − w̄n (1− σ)Θ(2)

z + (w′)nΘ(2)
z + C̄n

−

Fn
w′ := −u∞(w′)nx + (θ′)n

Fn
θ′ := −u∞(θ′)nx − σΘ(2)

z + σ(1− σ)Θ(2)
z w̄n − σC̄n

−

(4.5)

whereas the superscript n denotes the approximation of a quantity on some tem-
poral mesh {τ0, τ1, . . . , τNτ

} at time τn. Applying (4.2) to (2.70) yields the semi-
discrete system

un+1 = un +
∆τ

12

(
23Fn

u − 16Fn−1
u + 5Fn−2

u

)
− ∆τ

12

(
23πn

x − 16πn−1
x + 5πn−2

x

)

w̄n+1 = w̄n +
∆τ

12

(
23Fn

w̄ − 16Fn−1
w̄ + 5Fn−2

w̄

)
− ∆τ

12

(
23πn

z − 16πn−1
z + 5πn−2

z

)

θ̄n+1 = θ̄n +
∆τ

12

(
23Fn

θ̄ − 16Fn−1
θ̄

+ 5Fn−2
θ̄

)

(w′)n+1 = (w′)n +
∆τ

12

(
23Fn

w′ − 16Fn−1
w′ + 5Fn−2

w′

)

(θ′)n+1 = (θ′)n +
∆τ

12

(
23Fn

θ′ − 16Fn−1
θ′ + 5Fn−2

θ′

)
.

(4.6)

whereas ∆τ is the length of one timestep and assumed to be constant, i.e

∆τ = τn − τn−1 for n = 1, . . . , Nτ . (4.7)

Further, an equation for the pressure πn is required. Define the predictor velocity
field as

u∗,n := un +
∆τ

12

(
23Fn

u − 16Fn−1
u + 5Fn−2

u

)
− ∆τ

12

(
−16πn−1

x + 5πn−2
x

)

w∗,n := w̄n +
∆τ

12

(
23Fn

w̄ − 16Fn−1
w̄ + 5Fn−2

w̄

)
− ∆τ

12

(
−16πn−1

z + 5πn−2
z

) (4.8)

so that by construction
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un+1 = u∗,n − 23∆τ

12
πn
x

w̄n+1 = w̄∗,n − 23∆τ

12
πn
z .

(4.9)

Denoting ∇ := (∂x, ∂z) and applying ∂xρ
(0) to (4.9)1, ∂zρ

(0) to (4.9)2, summing
both equations and using that by (2.70)4

∇ ·
(

ρ(0)(un+1, w̄n+1)T
)

= 0 (4.10)

results in the elliptic equation

∇ ·
[

ρ(0)∇
(
23∆τ

12
πn

)]

= ∇ ·
(

ρ(0)(u∗,n, w̄∗,n)T
)

. (4.11)

This equation has to be solved in every timestep for πn to compute the projection
step (4.9).

4.2. Description of the Mesh

(i,j)

V(i,j)

(i+1,j)(i−1,j)

(i,j−1)

(i,j+1)

Figure 4.1.: Indexing of primary cells.

The two-dimensional Cartesian mesh used in all numerical simulations in this
thesis consists of a set of primary and a set of dual cells. The mesh and the
discrete spatial operators used in the projection step are described and analyzed
in [Vat05, VK09]. Let the full domain be a rectangle in the two-dimensional plane,
i.e.

Ω = [xl, xr]× [0, zup] ⊂ R
2. (4.12)

The primary discretization consists of rectangular cells with constant width ∆x
and constant height ∆z. The cells are indexed from (1, 1), the lower left cell, to
(Nx, Nz), the upper right. Nx is the number of cells in a row, Nz the number of
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(i+1/2,j+1/2)(i−1/2,j+1/2) (i+3/2,j+1/2)

(i+1/2,j−1/2)

(i+1/2,j+3/2)

(i+
1,

j+
1)

(i+
1,

j)

(i,
j)

(i,
j+

1)

V̄i+1/2,j+1/2

Figure 4.2.: Indexing of dual cells.

cells in a column. The coordinates of the center of a cell V with index (i, j) are
labeled (xi, zj). Thus

Vi,j =

[

xi −
∆x

2
, xi +

∆x

2

]

×
[

zj −
∆z

2
, zj +

∆z

2

]

. (4.13)

Figure 4.1 sketches a primary cell.

Velocities u, w̄, w′ and potential temperatures θ̄, θ′ “live” on this primary grid.
The pressure π, however, “lives” on the dual cells. The discrete gradient operator
introduced below maps the pressure π to the discrete gradient ∇π, which “lives”
again on the primary cells.

Label the coordinates of the four corners of a primary cell Vi,j by (xi−1/2, zj−1/2),
(xi+1/2, zj−1/2), (xi−1/2, zj+1/2) and (xi+1/2, zj+1/2), denoting lower left, lower
right, upper left and upper right corner. The dual cell V̄i+1/2,j+1/2 is the rectan-
gle

V̄i+1/2,j+1/2 = [xi, xi+1]× [zj , zj+1] (4.14)

with center (xi+1/2, zj+1/2), cf. figure 4.2. The discretization consists of the set of
all primary cells

V = {Vi,j : 1 ≤ i ≤ Nx, 1 ≤ j ≤ Nz} (4.15)

and the set of all dual cells

V̄ =
{
V̄i+1/2,j+1/2 : 0 ≤ i ≤ Nx, 0 ≤ j ≤ Nz

}
. (4.16)

An example of a complete mesh is sketched in figure 4.3.

In subsection 4.3.2 discrete operators on these grids are defined that allow to
formulate and solve a discrete version of the advection or predictor step consisting
of (4.6)3−5 to advance θ̄, w′ and θ′ in time as well as (4.8) to compute the predicted
velocity, the elliptic problem (4.11) and finally the correction step (4.9).
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1

2 N_z = 3

N_x = 4

Figure 4.3.: Example of a full mesh with Nx = 4 and Nz = 3. Dashed cells form the
dual mesh. Numbers at the sides denote the indices of corresponding x and
z coordinates.

4.3. Discrete Spatial Derivatives

4.3.1. Advection

The gradient in the advection part is discretized by a fourth order central difference
scheme

∂φ(xi)

∂x
≈ 4

3

(
φi+1 − φi−1

2∆x

)

− 1

3

(
φi+2 − φi−2

4∆x

)

(4.17)

whereas φi denotes the value of a quantity φ at the center of some primary cell
Vi,j while ∆x is the distance xi+1 −xi = xi −xi−i. The presented simulations use
equidistant meshes in x and z, respectively, so ∆x does not depend on the index
i. See [Dur91, Dur99] for a detailed analysis of the properties of this scheme. As
the advective step does not involve π, only values “living” on the primary cells
occur.

4.3.2. Projection

Ansatz Spaces

As described in section 4.1 to compute the projection (4.9) of the velocity field, the
Poisson problem (4.11) has to be solved for π. The Finite-Element discretization
analyzed in [Vat05, VK09] is adopted here, with a slight modification to include the
density ρ(0). The constant factor arising from the time discretization is included
in π to streamline the notation. Multiplying (4.11) by a test function q and
integrating over Ω yields the variational equation

∫

Ω

∇ ·
(

ρ(0)∇π
)

q dxdz =

∫

Ω

∇ ·
(

ρ(0)v∗
)

q dxdz (4.18)
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whereas v∗ = (u∗, w∗) is the velocity field computed in the predictor step (4.8).
Following [VK09], the space of test functions is chosen as the space of all functions
that are constant on the dual cells V̄i+1/2,j+1/2, i.e.

q ∈ T h :=
{
q ∈ L2(Ω) : q|V̄ = const. ∀ V̄ ∈ V̄

}
. (4.19)

The characteristic functions of the dual cells 1V̄ constitute a basis of this space.
The pressure π is assumed to be bilinear on each primary cell V and globally
continuous. For U ⊂ R

2, denote by Qk(U) the space of all polynomials on U of
degree ≤ k with respect to x and z respectively. Then

π ∈ Hh =
{
p ∈ H1(Ω)\R : p|V ∈ Q1(V ) ∀ V ∈ V

}
. (4.20)

Functions differing only by a constant are treated as identical here, to ensure the
existence of a unique solution of (4.11) with Neumann boundary conditions. As
the essential quantity in the projection (4.9) is the gradient ∇π, additive constants
are irrelevant. The gradient of functions in Hh is piecewise linear on each primary
cell but discontinuous across the interfaces. The space of functions of this type is
used as ansatz space for the velocity fields

v ∈ Uh =
{

v = (u,w) ∈
[
L2(Ω)

]2
: u|V , w|V ∈ P1(V ) ∀ V ∈ V

}

(4.21)

whereas P1(V ) denotes the space of polynomials of order one (=linear functions)
on V .

The density ρ(0) given by (3.44) is a prescribed function in (4.11), depending on

z only. It is approximated by a function ρ
(0)
p , piecewise constant on primary cells,

whereas the constant value ρj for a cell Vi,j is obtained by evaluating ρ(0) at the cell

center. Thus the products ρ
(0)
p ∇π and ρ

(0)
p u are still in the space Uh. For higher

order approximations of the density, for example piecewise linear, this would not
be the case.

Discrete Operators

Having introduced the ansatz spaces for the different quantities, the discrete Lapla-
cian can be defined

L : Hh → T h , L(π) :=
∑

V̄ ∈V̄

1V̄

1

|V̄ |

∫

∂V̄

(

ρ(0)p ∇π
)

· n dσ (4.22)

as well as the discrete divergence

D : Uh → T h , D(v) :=
∑

V̄ ∈V̄

1V̄

1

|V̄ |

∫

∂V̄

(

ρ(0)p v
)

· n dσ. (4.23)
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Functions in Hh can be represented on a primary cell as

π(x, z)|Vi,j
= πi,j +(x− xi)πx,i,j +(z − zj)πz,i,j +(x− xi) (z − zj)πxz,i,j (4.24)

and thus, their gradient can be computed analytically

∇π(x, z)|Vi,j
=

(
πx,i,j + (z − zj)πxz,i,j

πz,i,j + (x− xi)πxz,i,j

)

. (4.25)

As the pressure π is determined by values living at the centers of dual cells, the
slopes have to be constructed from these values. Defining

πx,i,j :=
1

2∆x

(
πi+1/2,j+1/2 − πi−1/2,j+1/2 + πi+1/2,j−1/2 − πi−1/2,j−1/2

)

πz,i,j :=
1

2∆z

(
πi+1/2,j+1/2 − πi+1/2,j−1/2 + πi−1/2,j+1/2 − πi−1/2,j−1/2

)

πxz,i,j :=
1

∆x∆z

(
πi+1/2,j+1/2 − πi−1/2,j+1/2 − πi+1/2,j−1/2 + πi−1/2,j−1/2

)

(4.26)

allows to introduce a discrete gradient

G : Hh → Uh , G(π) := ∇π. (4.27)

As their continuous counterparts, the operators (4.22), (4.23) and (4.27) satisfy

L = D ◦G (4.28)

so the obtained projection is exactly satisfying the constraint (2.70)4, not only up
to the accuracy of the discretization, cf. [VK09].

Stencils

For the Cartesian, two-dimensional mesh described in section 4.2 the integrals in
(4.22), (4.23) and (4.27) can be computed analytically. For a function v = (u,w) ∈
Uh, represented on a a primary cell Vi,j as

(u,w) |Vi,j
= (ui,j , wi,j) + (x− xj) (ux,i,j , wx,i,j) + (z − zj) (uz,i,j , wz,i,j) (4.29)

the boundary integrals arising in (4.23) can be evaluated by

1

|V̄i+1/2,j+1/2|

∫

∂V̄i+1/2,j+1/2

(

ρ(0)p v
)

· n dσ =

1

2∆z
(ρj+1wi,j+1 − ρjwi,j + ρj+1wi+1,j+1 − ρjwi+1,j)

+
∆x

8∆z
(ρj+1wx,i,j+1 − ρjwx,i,j − ρj+1wx,i+1,j+1 + ρjwx,i+1,j)

+
1

2∆x
(ρj+1 (ui+1,j+1 − ui,j+1) + ρj (ui+1,j − ui,j))

+
∆z

8∆x
(−ρj+1 (uz,i+1,j+1 − uz,i,j+1) + ρj (uz,i+1,j − uz,i,j)) .

(4.30)
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Figure 4.4.: Periodic boundary conditions: The dotted line is the boundary of the domain
Ω. The dashed lines mark two primary cells at the boundary. Solutions
coincide on the shaded regions. Approximately redrawn from [Vat05].

Inserting (4.26) and (4.25) in (4.23) yields a compact, nine point stencil for the
discrete Laplacian

1

|V̄i+1/2,j+1/2|

∫

∂V̄i+1/2,j+1/2

(

ρ(0)p ∇π
)

· n dσ =

1

8
ρj+1∆xx,i+1/2,j+3/2 +

6

8

(
ρj+1 + ρj

2

)

∆xx,i+1/2,j+1/2

+
1

8
ρj∆xx,i+1/2,j−1/2

+
1

8
∆ρ

zz,i+3/2,j+1/2 +
6

8
∆ρ

zz,i+1/2,j+1/2 +
1

8
∆ρ

zz,i−1/2,j+1/2

(4.31)

whereas

∆xx,i+1/2,j+1/2 :=
1

∆x2

(
πi+3/2,j+1/2 − 2πi+1/2,j+1/2 + πi−1/2,j+1/2

)
(4.32)

and

∆ρ
zz,i+1/2,j+1/2 :=

1

∆z2
(
ρj+1πi+1/2,j+3/2 − (ρj+1 + ρj)πi+1/2,j+1/2

+ ρjπi+1/2,j−1/2

) (4.33)

can be interpreted as approximations to the second order horizontal and vertical
derivative. Setting ρj = 1 for all j reproduces the expressions derived in [Vat05,
VK09].

Boundary Conditions

Boundary conditions are required to complete the stencil, as the dual cells at the
boundary are partly located outside the domain Ω. In the following, periodic
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Figure 4.5.: Addition of a damping layer (striped region) at the top of the domain.

boundary conditions and homogeneous Neumann boundary conditions are used.
Figure 4.4 sketches how periodic boundaries are employed. For Neumann bound-
ary conditions, dual cells at the boundary have only half the size of cells inside
the domain. The normal derivative along the boundary is set to zero, possible
contributions from inhomogeneous Neumann boundary conditions like (3.78) are
included in (4.11) as additional terms on the right hand side.

The damping layer described in section 4.4 emulates a transparent boundary con-
dition, but at the top of the damping layer, a homogeneous Neumann condition is
applied.

4.4. Damping Layer

At the upper boundary of the domain a transparent boundary condition allowing
energy to leave the domain is required, see [KD82, Bou83]. For the non-hydrostatic
case, no exact local formulation of this boundary condition exists, so a Rayleigh
damping layer as described and analyzed in [KL78] for the nonlinear, hydrostatic
case is employed. The computational domain Ω, given by (4.12), is extended by
an additional layer

Ωdamp := [xl, xr]× [zup, zdamp] (4.34)

placed on top of it, i.e. the domain actually used in a computation is

ΩTotal = Ω ∪ Ωdamp (4.35)

see figure 4.5. Inside Ωdamp, relaxation terms are incorporated into the five prog-
nostic equations in (2.70), causing a relaxation of the computed solutions to some
prescribed background state. The modifications read

φτ = F (φ)− ν (φ− φ0) (4.36)
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0 0.25 0.5
0

0.5

1

1.5
Damping profile

ν(z)

z

Figure 4.6.: Vertical profile of the artificial viscosity ν(z). It is zero inside the original
domain Ω and increases smoothly inside Ωdamp up to its maximum value
νmax at zdamp.

with φ ∈
{
u, w̄, θ̄, w′.θ′

}
and F (φ) abbreviating remaining terms in the different

equations in (2.70). The Rayleigh viscosity ν is a height dependent function, ensur-
ing a smoothly increasing damping inside Ωdamp to avoid reflections by a sudden
introduction of viscosity at the interface. φ0 are the background states against
which the solution is relaxed. As the unknowns in (2.70) denote perturbations, all
φ0 are set to zero in the following. For the damping profile, choose the function
also used in [KL78]

ν(z) =

{
0 : z < zup

νmax sin
2
(

π
2

z−zup
zdamp−zup

)

: z ≥ zup
. (4.37)

This yields a smooth increase of viscosity from zero at zup up to a maximum value
of νmax at zdamp, cf. figure 4.6.

The parameter νmax has to be chosen according to the dominant horizontal wavenum-
ber in the solution, cf. [KL78]. In simulations of orographic waves, the spectrum
of the solution is determined by the topography, the stratification and the back-
ground flow. To find a suitable value νmax for waves excited by a Witch of Agnesi
topography in (2.70), run the setup described in subsection 4.5.3 for range of dif-
ferent values of νmax. Comparing the obtained solutions to a reference solution
computed on a very high domain with zup = 4.5 in which no waves reach the
upper boundary, allows to estimate an optimal value for νmax. Figure 4.7 shows
the maximum error computed over the domain Ω without the damping layer de-
pending on νmax, suggesting that νmax = 0.5 is a reasonable value for the given
parameters.
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Figure 4.7.: Maximum error over the computational domain measured against a reference
solution depending on νmax.

4.5. Test Cases

4.5.1. Advection

In order to validate the implementation of the advection scheme, the projection
step is turned off by arbitrarily setting πn = 0 in every timestep. All initial
data except w̄ are set to zero. Choosing a profile for w̄ that is constant with

height and setting Θ
(2)
z = 0 eliminates all vertical coupling, so the code just solves

Nz independent horizontal advection problems. The results of the test problem
described in [Dur91] are reproduced and the correct convergence order of the time-
discretization (4.2) and the spatial discretization (4.17) are verified. The employed
domain is [0, 1] and the initial w̄, adopted from [Dur91], reads

w̄0(x) =

{ [

(8x− 4)
2 − 1

]2

: 3/8 ≤ x ≤ 5/8

0 : otherwise
. (4.38)

Initial values for w̄−1 and w̄−2 are obtained analytically by evaluating (4.38) for
x+ u∞∆τ and x+ 2u∞∆τ . The simulation is run, employing periodic boundary
conditions, until τ = 12 with u∞ = 0.25 , corresponding to three complete cycles.
The exact solution at τ = 12 is again w̄0. Nz = 5 independent horizontal advection
problems are solved and all produce, as expected, identical results.

Figure 4.8 shows the solution for Nx = 32 with Courant numbers of 0.5 and 0.2,
while figure 4.9 shows the solution on a refined grid with Nx = 64 and identical
Courant numbers, i.e. the timesteps are half as long. The generated solutions are
identical to the ones shown in figures 5 & 6 in [Dur91].
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Figure 4.8.: Advection test case for Nx = 32 with Courant numbers 0.5 (left) and 0.2
(right).
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Figure 4.9.: Advection test case for Nx = 64 with Courant numbers 0.5 (left) and 0.2
(right).
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Figure 4.10.: Convergence of the advection scheme in time (left) and space (right). The
time error is measured against a reference solution on the same spatial grid
with ∆τ = 0.001 while the spatial error is measured against the analytical
solution.

Convergence Orders

To verify that the implemented advection scheme features the expected conver-
gence orders in time and space, a smooth initial gauss peak

w̄0(x) = exp

(

−1

2

(x− 0.5)
2

0.12

)

(4.39)

is advected with u∞ = 0.25 until τ = 4 with periodic boundaries in x. The exact
analytical solution at τ = 4 is again (4.39). The initial values w−1, w−2 required
for the multi-step scheme are obtained by evaluating (4.39) for x + u∞∆τ and
x+ 2u∞∆τ .

In order to asses the rate of convergence in ∆τ , the simulation is run for timesteps
of length ∆τ = 0.02, 0.01, 0.008, 0.005, 0.002 and compared to a reference solu-
tion computed with ∆τ = 0.001. The Courant-Friedrichs-Lewy (CFL) stability
criterion, see e.g. p. 45f in [Dur99], prevents a reasonable comparison against the
analytic solution, because either ∆x is too large and the spatial error dominates
or, if ∆x is reduced, the CFL condition is violated and the scheme is unstable.
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Figure 4.11.: Convergence order of the projection step in the computed velocity field (left)
and the computed pressure (right).

In order to verify the convergence order of the spatial discretization, the advection
problem is run for Nx = 50, 100, 200, 250 and the final discrete solution is com-
pared to the analytical solution, evaluated on the respective grid points. Figure
4.10 shows l2- and max-error for both cases. As expected, the advection scheme
is third order accurate in time (left) and fourth order accurate in space (right).

4.5.2. Projection

An analytical test case1 for constant density, i.e. ρ(0) = 1, using periodic boundary
conditions in all directions is employed to assess the convergence order of a full
projection step. It employs a domain [0, 2π] × [0, 2π] and a “predicted” velocity
field

u∗ = sin(x) sin(z)

w∗ = sin(x) cos(z). (4.40)

The corresponding Laplace problem reads

∇ · ∇π = cos(x) sin(z)− sin(x) sin(z) (4.41)

1Provided by Stefan Vater, private communication.
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Figure 4.12.: Vertical velocity w̄. Interval between isolines is 0.25 m s−1, dashed lines
indicate negative values. Left: Solution at τ = 21.6 computed with the
linear code and ∆z = 200 m. Right: Linear steady-state solution. Fig. 1b
in [GK00].

with solution

π(x, z) =
1

2
(sin(x) sin(z)− cos(x) sin(z)) . (4.42)

The resulting divergence free velocity reads

u =
1

2
(sin(x) sin(z)− cos(x) sin(z))

w =
1

2
(sin(x) cos(z)− cos(x) cos(z)) .

(4.43)

Figure 4.11 shows the error in the computed velocity field (left) and the computed
pressure (right) in the l2- as well as in the max-norm. As expected, the scheme is
second order accurate for velocity as well as pressure.

4.5.3. Mountain Wave Example

Finally, to demonstrate the ability of the code to produce reasonable solutions
of the mountain wave problem, a setup described and investigated in [GK00] is
solved. The domain in dimensional terms is [−20 km, 20 km] × [0, 9 km] plus a
6.6 km thick damping layer. The background flow is U = 10 m s−1, the stability
frequency is N = 0.01s−1 and the topography reads

h(x) =
H

1 + x2

a2

(4.44)

76



4.5. Test Cases

with H = 400 m and a = 1 km. In non-dimensional terms, this equals u∞ = 0.1,
√

Θ
(2)
z = 1 and a domain [−2, 2] × [0, 0.9] plus a 0.56 high damping layer, while

the hill has a non-dimensional height of 0.04 and a width of 0.1. The horizontal
and vertical resolution is ∆x = ∆z = 0.02 or 200 m. No timestep size is indicated
in [GK00], for the linear code a timestep of ∆τ = 0.05 or 5 s is employed.

Figure 4.12 shows for comparison the time-dependent solution obtained with the
linear code at time τ = 21.6 and the linear steady-state solution presented in
[GK00]2. The time-dependent model exhibits considerably smaller amplitudes in
higher regions. This is also observed for the nonlinear time-dependent solutions
shown in 4.13 (right figures), thus partly the underestimation may be attributed
to the fact that the solution is unsteady. Also the propagation angle of the wave
pattern is slightly shallower. Nevertheless, the transient solution reproduces the
qualitative features of the stationary wave pattern comparatively well.

Contrary to (2.70), the model solved in [GK00] is nonlinear and employs a step-
terrain approximation of the topography instead of a linearized inflow boundary
condition. For the values of N , H and U employed here, the parameter indicating
the nonlinearity of the flow equals

NH

U
= 0.4. (4.45)

It is questionable whether 0.4 can be considered an order of magnitude smaller
than unity. However, it turns out the effect of the nonlinearity is noticeable,
but the linear solution still is in moderately good agreement with the nonlinear
result. Figure 4.13 shows the results obtained with the linear code presented in this
chapter (left) together with the corresponding results from [GK00] (right)3. The
linear solutions exhibit noticeably reduced amplitudes, especially in the upper part
of the domain. Also the propagation angle appears to be steeper in the nonlinear
case. Nevertheless, the general wave pattern and the location of the extrema
match reasonably well, confirming the result of the asymptotic derivation that
linear leading order dynamics constitute a useful approximation.

2(c) American Meteorological Society. Reprinted with permission.
3(c) American Meteorological Society. Reprinted with permission.
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Figure 4.13.: Isolines of dimensional vertical velocity in steps of 0.25 m s−1. Dashed
lines represent negative values. Left: Solutions from the linear code with
∆z = 200 m (upper) and ∆z = 10 m (lower). Right: Solutions from the
nonlinear code analyzed in [GK00] with ∆z = 200 m (upper) and ∆z =
10 m (lower). Fig. 7 in [GK00].
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Chapter 5.

Numerical Results

This chapter presents several approximate solutions of the non-stationary model
(2.70), computed with the scheme introduced and validated in chapter 4. Sec-
tion 5.1 demonstrates for a simple example the ability of the non-stationary code
to reproduce essential patterns of the stationary solutions analyzed in 3.4. The
existence of a lower cut-off wave-number introduced by moisture, pointed out an-
alytically for stationary solutions in subsection 3.3.5 and section 3.4, is confirmed
for non-stationary solutions in section 5.2. Section 5.3 presents the simulation of a
cloud-pattern advected through a mountain wave pattern. The inhibition of wave-
propagation by moisture and the reduction of momentum flux are confirmed, as
well as an amplification of up- and downdrafts inside the cloud-pattern. Section
5.4 confirms the qualitative behavior of solutions in the presence of critical lay-
ers, derived analytically in section 3.5. Section 5.6 demonstrates how large-scale
gravity waves are excited by net tower-scale dynamics, including the generation
of momentum flux. Evaporating rain also emits waves as shown in section 5.5.
The modulation of waves excited by an initial wave-scale potential temperature
perturbation inside clouds is investigated in section 5.7. Section 5.8 gives a brief
introduction into a code featuring a full bulk micro-physics model and presents
simulations to validate some results of the analysis of the reduced model.

5.1. Witch of Agnesi Topography

In order to further validate the employed scheme, the ability of the time-dependent
code to produce essential patterns of the steady-state solutions discussed in 3.4 is
demonstrated. The domain is [0, 8] × [0, 1.5], whereas the region from z = 1 to
z = 1.5 constitutes the damping layer. The background flow is increased linearly

from τ = 0 to τ = 0.25 to a maximum of u∞ = 0.1. The stratification is

√

Θ
(2)
z = 1

and the topography a Witch of Agnesi hill, see (3.95), with h = 0.04 and l = 0.1.
The employed spatial resolutions are ∆x = 0.04 and ∆z = 0.02.

Figure 5.1 shows isolines of the dimensional vertical velocity at τ = 50. Com-
parison to the analytical steady-state solution for σ ≡ 0.5 in figure 3.12 reveals
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Figure 5.1.: Isolines of dimensional w̄ for a Witch of Agnesi topography and constant
σ ≡ 0.5. The interval between isolines is 0.25 m s−1, dotted lines show
negative values.

that the weak extrema at the top of the domain are not reproduced by the time-
dependent code, presumably because of numerical dissipation. The main wave
pattern excited from the hill, however, matches very well.

5.2. Cut-off in a Non-Stationary Solution

To demonstrate the existence of a lower cut-off wave-number in non-stationary
solutions, adopt the setup from subsection 3.3.5 and solve the corresponding time-
dependent problem numerically. The employed domain is [0, 2π]× [0, 1.5], whereas
the damping layer is located between z = 1 and z = 1.5. A sinusoidal topography
with k = 2 and height h = 0.04 is used, the background flow is increased linearly
from zero at τ = 0 to u∞ = 0.1 at τ = 0.25 and remains constant thereafter. The
horizontal resolution is ∆x = 2π/200, the vertical ∆z = 0.02. Two solutions are
computed, one with σ = 0.05 everywhere and a reference solution with σ ≡ 0.

Figure 5.2 shows the resulting vertical velocities at τ = 50. Comparing 5.21 and
5.22 clearly demonstrates the cut-off.

5.3. Orographic Waves Disturbed by an Advected

Cloud Envelope

This section presents an investigation of how a cloud-packet advected through
the domain disturbs a wave pattern excited from a Witch of Agnesi hill. The
cloud packet is described by a Gaussian distributed σ, the employed domain is
[−3, 3]× [0, 1.5], whereas the region from z = 1 to z = 1.5 constitutes the damping
layer. In the following, solutions are shown on a [−2, 2] × [0, 1] subset. The
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Figure 5.2.: Isolines of w̄, the difference between two lines is 0.25 m s−1. Shown are the
dry reference solution with σ ≡ 0 (upper) and the solution with σ = 0.05
(lower).

topography is (3.95) with h = 0.04 and l = 0.1. Spatial and vertical resolution
equal ∆x = ∆z = 0.02 or 200 m in dimensional units. The background flow is
increased linearly from zero at τ = 0 to a maximum of u∞ = 0.1 at τ = 0.25. In
order to avoid a sudden introduction of clouds into the simulation, σ is set to zero
until τσ = 3. For τ ≥ τσ, σ is set to

σ(x, z, τ) = σmax exp

(

−1

2

[
(x− xc − u∞[τ − τσ])

2

s2x
+

(z − zc)
2

s2z

])

(5.1)

with sx = 0.1, sz = 0.25 and zc = 0.4. Further set

xc = xshift − 2 · sx with xshift = −4 (5.2)

so at τσ the maximum of σ is outside the actual domain of computation at x = −4
and subsequently advected into and through the domain. For comparison, a dry
reference solution with σ ≡ 0 is computed, too.

Figure 5.3 shows contours of w̄ for the dry reference simulation at τ = 42.5. The
mountain in the center of the domain excites waves. At τ = 42.5 an almost steady
pattern has formed, resembling the steady-state solution shown in the upper figure
in 3.12.
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Figure 5.3.: Contour lines of the dimensional vertical velocity w̄ at τ = 42.5 for the
dry reference simulation. The interval between contour lines is 0.25 m s−1.
Dotted contours represent negative values.

Figure 5.4 visualizes the actual solution with the advected cloud-packet at times
τ = 27.5, τ = 35, τ = 42.5 and τ = 50 (top to bottom). Shown are isolines
of dimensionalized w̄ in steps of 0.25 m s−1. The position of the cloud-packet is
indicated by thin σ = 0.05 and σ = 0.25 contour lines.

At τ = 27.5, the cloud packet has entered the depicted domain from the left. It
has not yet noticeably affected the wave pattern, but a weak updraft has formed
inside it. The packet starts passing through the wave pattern at about τ = 35
and slightly damps the downdraft right above the hill. Comparing the solution
at τ = 42.5 with the reference solution in figure 5.3 reveals strong damping of w̄
in the upper regions behind the packet. A strong downdraft exists in the lower
part of the cloud-packet. Updrafts in front of the packet are amplified and a new
maximum of w̄ has formed in the lower region. In the last figure, showing the
solution at τ = 50, the downdraft inside the packet has almost vanished while
the wave pattern over the hill starts to regenerate, but its angle of propagation
appears to be slightly reduced.

In order to point out damping and amplification of up- and downdrafts by the
cloud-packet more concisely, figure 5.5 visualizes the difference between the abso-
lute values of w̄ in the moist and dry simulation, i.e. |w̄moist|−|w̄dry|. The interval
between contour lines is 0.2 m s−1. Solid lines correspond to positive values, i.e.
areas where moisture amplified either an up- or a downdraft while dotted lines
correspond to negative values, i.e. regions where wave amplitudes in the moist
simulation are smaller than in the dry reference solution.

At τ = 35, strong amplification at the center of the packet is accompanied by
significant damping in its upper and lower regions. The second figure, comparing
the solutions at τ = 42.5, demonstrates damping behind and in the center of
the cloud-packet, accompanied by amplification in front of the cloud and inside
its lower part. Finally at τ = 50, the wave pattern appears to have been bent
towards the horizontal by the passing cloud-packet, as amplitudes in higher regions
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Figure 5.4.: Contour lines of dimensionalized w̄ at different times for the moving cloud
packet with σmax = 0.5. The interval between contours is 0.25 m s−1. Dotted
contours represent negative values. The two thin circles indicate the σ = 0.05
and σ = 0.25 isoline.
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Figure 5.5.: Contour lines of the difference of |w̄moist|−|w̄dry|, where w̄moist is the vertical
velocity from the σmax = 0.5 cloud-packet simulation and w̄dry from the dry
reference simulation. The interval between isolines is 0.2 m s−1, dotted lines
indicate negative values. The two thin circles show the σ = 0.05 and σ = 0.25
isoline from the cloudy simulation.

above the hill are damped, while amplitudes further in the mountains lee side are
amplified, consistent with the reduced height of the extrema behind the cloud-
packet in 5.44.

Figure 5.6 shows the net vertical flux of horizontal momentum (2.34) along the
height z = 1 over time. Values derived from an additional simulation are added,
whereas the only modification is setting σmax = 0.2. The passing cloud-envelope
leads to a strong decrease of momentum flux, with a larger reduction obtained for
σmax = 0.5 than for σmax = 0.2. This is in line with the findings for stationary
solutions in 3.4.2, also indicating that moisture inhibits flux of momentum.

84



5.4. Critical Layers

10 20 30 40 50 60
−0.2

−0.15

−0.1

−0.05

0

Time τ

N
 m

−
2

Net vert. flux of hor. momentum at z = 10km

 

 

Dry
max(σ)=0.2
max(σ)=0.5

Figure 5.6.: Net momentum flux over time at z = 10 km for the advected cloud-envelope
simulation.

5.4. Critical Layers

Section 3.5 demonstrates how σ can cause critical layers in steady-state flows. Two
types of critical layers are distinguished. If σ increases with height up to its critical
value, the solution propagates below the layer and turns into evanescent. In the
approximate solutions derived in section 3.5, this causes a complete inhibition of
wave-propagation and momentum flux. Non-stationary solutions for this type of
critical layer are presented in subsection 5.4.1. In contrast, if σ is decreasing down
to its critical value with height, solutions in section 3.5 are evanescent below the
layer but propagate above it. It is found that, in principle, the contribution at the
critical height from the decaying mode can excite noticeable oscillations above the
layer. An increase of the critical height results in strongly reduced amplitudes in
the excited oscillation. Subsection 5.4.2 presents non-stationary solutions obtained
for this type of critical layer.

The domain for the simulation is [0, 2π] × [0, 1.5] and, as before, the region from
z = 1 to z = 1.5 constitutes the damping layer. The topography is set to

h(x) = sin (2x) (5.3)

so only a single mode with k = 2 is excited, in agreement with the structure of the
solutions shown in section 3.5. The background flow is u∞ = 0.1, again linearly

increasing from τ = 0 to τ = 0.25 and the stratification is set to

√

Θ
(2)
z = 1. These

parameters are identical to those in section 5.2, so the dry solution presented there
can serve as reference solution for this section, too.

According to (3.99), the critical value for σ in stationary solutions equals

σcrit =
0.1222

1
= 0.04. (5.4)

Three different profiles for σ are introduced here. One features an increasing σ
and critical height zc = 0.75, and two feature decreasing σ with either zc = 0.25
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Figure 5.7.: Three different profiles of σ leading to a critical layer: Increasing σ with
zc = 0.75 (left), decreasing σ with zc = 0.25 (center) and zc = 0.75 (right).
The dashed line marks the critical height and the critical value σcrit.

or zc = 0.75. All three profiles are sketched in figure 5.7. Note that in the figures
below, the solution as well as the axis are converted into dimensional units and
zc = 0.25 and zc = 0.75 correspond to heights of z∗c = 2.5 km and z∗c = 7.5 km.

5.4.1. Increasing σ

Figure 5.8 shows the solution for the increasing σ profile at τ = 60. The horizontal
line indicates σcrit = 0.04. As expected, the solution propagates below the layer,
but is quickly decaying above it. Some wave activity can be noticed beyond the
critical height z∗c = 7.5 km, compatible with the analysis in section 3.5 revealing
exponential decay of the solution in a thin layer above zc. Further, (5.4) obtains
for the steady-state solution, hence in the presented non-stationary solution some
transient contributions above the critical layer are also possible.

5.4.2. Decreasing σ

Figure 5.9 shows the solution at τ = 60 for decreasing σ with z∗c = 2.5 km
(upper) and z∗c = 7.5 km (lower). Because the amplitude of the excited wave
in the upper figure is small, the scaling is changed to an interval between the
isolines of 0.05 m s−1, in order to ensure the propagating part of the solution
is recognizable. Both simulations confirm the qualitative behavior predicted in
section 3.5. The evanescent mode below the critical layer excites a propagating
wave above it. According to the densely packed isolines near the ground, the

86



5.4. Critical Layers

x (km)

z 
(k

m
)

Vert. vel. at τ = 60, max(σ) = 0.1, N = 0.01 s−1, U=10 m s−1 

5 10 15 20 25 30 35 40 45 50 55 60
0

5

10

Figure 5.8.: Wave excited by a sinusoidal topography in presence of a critical layer at
z∗c = 7.5 km. σ increases linearly, cf. figure 5.7. The difference between
isolines is 0.25 m s−1, dotted contours indicate negative values.

amplitude of the propagating wave is noticeable smaller than the amplitude excited
by the topography at the bottom.

The lower figure exhibits four extrema located in the lower region, that are incom-
patible with an exponentially decaying evanescent mode. Reckoning a full series of
figures of the evolution of the transient simulation suggests this to be a transient
effect of the time-dependent solution.

5.4.3. Momentum Flux

Figure 5.10 shows vertical profiles of momentum flux (2.34) at τ = 60, expressed as
a fraction of the value obtained from the dry reference simulation. For increasing σ
(left figure), the momentum flux is approximately equal to the dry reference value
up to a height of z∗ = 5 km. It then decreases down to zero over a broad region
around the critical height z∗c = 7.5 km. Hence as in the qualitative analytical
solution derived in section 3.5, the presence of the critical layer shuts down the
flux of momentum but in the transient, discrete simulation the momentum flux
does not sharply drop to zero but decays over a larger region.

The results in section 3.5 suggest that for the case of decreasing σ the evanescent
mode below the layer can excite a noticeable propagating response above it and
thus induce a significant flux of momentum. However, the solutions there only
employ arbitrary coefficients and the middle and right figure in 5.10 suggest that
this is not the case for realistic amplitudes. The overall momentum flux is strongly
inhibited in both cases. A small and supposedly transient contribution is visible at
about z∗ = 1 km. Also a very weak non-zero momentum flux is noticeable above
the critical layer, but only on the order of a few percent of the flux obtained in
the dry case.

87



Chapter 5. Numerical Results

x (km)

z 
(k

m
)

Vert. vel. at τ = 60, max(σ) = 0.1, N = 0.01 s−1, U=10 m s−1 

5 10 15 20 25 30 35 40 45 50 55 60
0

5

10

x (km)

z 
(k

m
)

Vert. vel. at τ = 60, max(σ) = 0.1, N = 0.01 s−1, U=10 m s−1 

5 10 15 20 25 30 35 40 45 50 55 60
0

5

10

Figure 5.9.: Wave excited by a sinusoidal topography in presence of a critical layer at
z∗c = 2.5 km (upper) and z∗c = 7.5 km (lower) with decreasing σ, cf. figure
5.7. The difference between isolines is 0.05 m s−1, dotted contours indicate
negative values.

5.5. Evaporating Rain

Evaporation of rain water in non-saturated regions results in the constant source
term C̄− in (2.70). To demonstrate how such cooling generates waves, employ
a domain [−5, 5] × [0, 1.25], no background flow, i.e. u∞ = 0 and a background

stratification of

√

Θ
(2)
z = 1. The resolution is set to ∆x = ∆z = 0.025, the

timestep to ∆τ = 0.05 and the simulation is run until τ = 60. A cloud-packet is
placed into the middle of the domain, represented by

σ = 0.2 exp

(

−1

2

(
( x

0.2

)2

+

(
z − 0.5

0.05

)2
))

. (5.5)

A concentrated spot of “rain” described as

C̄− = − exp

(

−1

2

(
( x

0.1

)2

+

(
z − 0.35

0.025

)2
))

(5.6)

is placed below the cloud. Figure 5.11 sketches this setup. Figure 5.12 shows
the generated dimensionalized vertical velocity w̄ at τ = 60. The interval between
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Figure 5.10.: Vertical profile of momentum flux at τ = 60 as a fraction of the value
from the dry reference simulation. The dashed line indicates the critical
height. Left: Increasing σ with z∗c = 7.5 km. Center: Decreasing σ with
z∗c = 2.5 km. Right: Decreasing σ with z∗c = 7.5 km.

isolines is 0.2 m s−1. Numerous small waves have emerged, propagating away from
the rain spot. The depletion by evaporation as well as the downfall of rain is not
included in the model, hence the source term C̄− is constant in time and excites
not a single set of waves, but launches waves continuously. For the times used in
the simulation this is not realistic, but it suffices to demonstrate how waves are
excited by cooling through evaporating rain in the model.

5.6. Waves Excited by Tower-Scale Dynamics

As pointed out in subsection 3.1.5, tower-scale processes in (2.70) excite waves
on the large-scale. To demonstrate this, place a concentrated perturbation of
tower-scale potential temperature θ′ inside a cloud-packet. Set

θ′(x, z, τ = 0) = exp

(

−1

2

(
( x

0.1

)2

+

(
z − 0.5

0.05

)2
))

(5.7)

and w′ as well as the large-scale quantities to zero. Place a “cloud” around the
θ′-perturbation

σ(x, z) = 0.2 exp

(

−1

2

(
( x

0.25

)2

+

(
z − 0.5

0.25

)2
))

(5.8)
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Figure 5.11.: “Cloud” described by σ, visualized by the σ = 0.05, 0.1, 0.15 isolines (upper
structure) and the negative, evaporating rain source term C̄−, visualized by
isolines C̄− = −0.3,−0.6,−0.9 (lower structure) below it.

x (km)

z 
(k

m
)

Vert. vel. at τ = 60, max(σ) = 0.2, N = 0.01 s−1, U=0 m s−1 

−40 −30 −20 −10 0 10 20 30 40
0

5

10

Figure 5.12.: Waves excited by evaporating rain. Shown are isolines of w̄, the difference
between two lines is 0.2 m s−1. Dotted lines correspond to negative values.

and set

√

Θ
(2)
z = 1, u∞ = 0.05 or 0.01 s−1, 5 m s−1 respectively. The domain is

[−5, 5]× [0, 1.25] with the damping layer located between z = 1 and z = 1.25. The
resolution is ∆x = ∆z = 0.025, the timestep ∆τ = 0.05 and the simulation is run
until τ = 60.

Figure 5.13 shows the large-scale vertical velocity w̄ at τ = 60. It reveals a
pronounced pattern of waves travelling away from the cloud-packet in up- and
downstream direction. The wave pattern as well as the cloud have been advected
downstream by u∞. The phase lines are slanted from the vertical, indicating
vertical propagation. From a qualitative point of view, the pattern resembles the
stratospheric waves generated by a mechanical oscillator model in [FDH91].

Figure 5.14 demonstrates that the generated waves induce a net momentum flux
across the top of the domain. Although the momentum flux is about two orders
of magnitude smaller than in the orographic wave example presented in section
5.3, this demonstrates that in principle the model also includes a mechanism for
the generation of momentum flux by tower-scale dynamics. Besides momentum
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Figure 5.13.: Waves excited by tower-scale dynamics. Shown are isolines of w̄, the inter-
val between two lines is 0.25 m s−1. Dotted lines represent negative values.
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Figure 5.14.: Net momentum flux at z = 10 km over time, caused by waves excited by
tower-scale dynamics.

flux caused by orographically generated waves, convectively generated momentum
flux is also an important source of overall gravity wave drag, see e.g. [KEC03] and
numerous citations therein.

5.7. Modulation of Waves Inside Cloud-Packets

To analyze the modulation of waves entering cloudy regions, a localized distribu-
tion of negative large-scale potential temperature θ̄ is placed between two cloud-
packets. The initial buoyancy induces downdrafts and excites wave, which subse-
quently propagate through the cloud-packets. Employ a domain [−5, 5]× [0, 1.25],

again with a damping layer between z = 1 and z = 1.25. Set

√

Θ
(2)
z = 1 and

u∞ = 0. The spatial resolution is ∆x = ∆z = 0.025 and the timestep ∆τ = 0.1.
The initial θ̄ is a concentrated Gaussian peak, the two cloud packets are located
between x = −30 and x = −1 as well as x = 1 and x = 3, figure 5.15 sketches the
initial setup.
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Figure 5.15.: Initial distribution of θ̄ (dotted) in steps of −0.025. The solid lines indicate
σ, the interval between isolines being 0.1. The dashed line marks the cross
section along which figure 5.16 shows the vertical velocity.

Figure 5.16 shows three horizontal cross sections through w̄ at z∗ = 5 km, cf.
the dashed lines in figure 5.15, at τ = 7, τ = 9 and τ = 14. The cross section
through σ is indicated by the dotted lines, but values are scaled, so that the line
is recognizable. For comparison, a reference solution with σ ≡ 0 is computed, the
resulting w̄ is depicted by the dashed line in figure 5.15.

At x = 0, the initial θ̄ causes oscillations of w̄. Waves radiate outwards in both
directions and have propagated into the cloud-packet at τ = 7. The updrafts
inside the clouds are amplified. The propagation speed of the waves is reduced
inside the clouds, causing a steepening of gradients in front of them and leading
to an amplification of the downdrafts located at ±10 km. Note how at τ = 9
the distance between the extrema in the cloudy case is reduced inside the cloud-
packet compared to the reference simulation. The solution at τ = 14 reveals
noticeable damping of the wave amplitudes behind the cloud-packets, confirming
the inhibition of wave-packet propagation by moisture, as well as the generation
of steeper gradients in front of them, pointing to the reduced propagation speed.

5.8. Comparison with ASAM Simulations

The “All-Scale Atmospheric Model” ASAM developed at IfT1 solves the moist
compressible Euler equations combined with a full bulk micro-physics model using
high order, linear implicit Rosenbrock-Wanner timestepping. The model includes
a concise treatment of cut-cells arising for example from topography at the bottom.
Details on the implementation of the code as well as the documentation of several
test cases can be found in [HK05, IfTiL].

1Leibniz-Institut für Troposphärenforschung, Leipzig
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Figure 5.16.: Cross section through w̄ at z∗ = 5 km at different times. The dotted line
sketches σ.
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5.8.1. Initial Thermodynamic Profiles

The model is non-hydrostatic, but requires hydrostatically balanced initial profiles.
These are generated by column-wise vertical integration of a system of differential-
algebraic equations

pz = − (ρd + ρvl) g

p = (ρdRd + ρvRv)T

θ = θ0 exp(10
−5z)

θ = T

(
p0
p

)Ξ

ρv = min

(

ρvl,
pvs
RvT

)

ρvl = f(x, z)
pvs
RvT

(5.9)

with

Ξ =
Rdρd +Rvρvl

Cpdρd + Cpvρv + Cpl (ρvl − ρv)
. (5.10)

Equation (5.9)1 is the hydrostatic balance with pressure p, dry density ρd, density
of vapor and liquid water ρvl and gravity g = 9.81. Equation (5.9)2 is the ideal
gas law for the air-vapor mixture, Rd and Rv are the gas constants for dry air and
vapor. ρv is the density of vapor while T denotes sensible temperature. Equation
(5.9)3 prescribes a profile for the potential temperature θ, starting from a given
value θ0 at z = 0. Note that (5.9)3 yields a stability frequency of approximately

N =

√

g

θ

∂θ

∂z
≈ 10−2. (5.11)

Equation (5.9)4 is the definition of potential temperature. Ξ is the isentropic ex-
ponent R/cp, but the gas constant R as well as the specific heat cp vary depending
on the amount of vapor and liquid water, so Ξ is not constant but computed from
(5.10). Equation (5.9)5 defines the vapor density ρv. In the used bulk micro-
physics model, no over-saturation and no liquid water in non-saturated regions
occur, i.e. condensation and evaporation are instantaneous, so either ρv = ρvl in
non-saturated regions or ρv = ρvs, where ρvs is the saturation density. According
to the ideal gas law, ρvs = pvs/(RvT ) obtains where pvs = pvs(T ) is the saturation
pressure. Finally, (5.9)6 prescribes the initial density of total water, i.e. vapor
and liquid. It is defined by the function f(x, z) as a fraction of saturation density,
given by pvs/(RvT ). Thus setting f(x, z) > 1 results in ρvl > ρvs corresponding
to saturated air. According to (5.9)5 it holds that ρv = ρvs and thus the differ-
ence ρvl − ρv indicates liquid water. For f(x, z) < 1 the air is under-saturated, so
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5.8. Comparison with ASAM Simulations

Figure 5.17.: General shape of profiles for ρvl and ρvs with f = 0.7 below 3 km and above
7 km, corresponding to a relative humidity of 70 %. In between, a cos2-
shaped perturbation with maximum amplitude 1.5 is added, resulting in the
sketched profile of ρvl. Cloud water exists where ρvl > ρvs obtains. The
amount of cloud water is indicated by the gray area.

ρvl = ρv obtains and 100 · f(x, z) denotes the relative humidity in percent. Figure
5.17 sketches the general structure of ρvl and ρvs.

5.8.2. Sub-Column Representation of σ

As ASAM is not explicitly separating scales, an implementable representation of
σ in terms of single-scale distributions of cloud water has to be derived. This is
achieved by considering a coarse mesh, consisting of relatively wide cells suitable
to resolve large-scale dynamics. Each cell is then partitioned into a number of
sub-columns as sketched in figure 5.18, generating a refined mesh, consisting of
rectangular cells with increased horizontal resolution. By defining distributions
of cloud water on this fine mesh, distributions of σ on the coarser mesh can be
emulated. The vertical resolution of the mesh is not enhanced, as the asymptotic
model contains no vertical micro-scale.

Figure 5.19 sketches how a value of σ = 0.6 on a coarse-mesh cell can be represented
using ten sub-columns. Note that using N sub-columns per cell allows to represent
σ with a resolution of 1/N , i.e. for N = 10 sub-columns, σ can vary between zero
and unity in steps of ∆σ = 0.1. Because all distributions are constant in z over
the extend of a single cell, a simple horizontal cut is shown in figure 5.19.

The continuous distribution of ρv is approximated by a cell-centered, piecewise
constant function. The saturation density ρvs does depend only on height and is
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z

x

Figure 5.18.: The large, dashed boxes are coarse grid cells. All cells are divided into a
number of sub-columns, as sketched for the middle cell. Those rectangular,
small cells form the “fine” mesh, suitable of resolving small-scale horizontal
distributions of moisture.

thus a constant line. Every sub-column, corresponding to a rectangular fine-mesh
cell, where the approximation of ρv is larger than ρvs is considered saturated.
There are six of such cells out of ten, so the saturated area fraction for the coarse-
grid cell is σ = 6/10 = 0.6. Note that this distinction of coarse cells and sub-
columns is a thought construct to establish a connection between σ and the initial
value for ρv and the code does not feature this distinction explicitly.

Naturally, there are many other possible distributions of how a value of σ =
0.6 could be represented and a detailed investigation has to check, whether the
obtained results are robust to variations at this point. Further, the hypothesis
that, at least on short timescales, the most influential quantity is the saturated
area fraction and not the actual amount of cloud water, has to be scrutinized.
This section, however, focusses only on a qualitative confirmation of two effects
of moisture found in the analysis of the asymptotic model: (i) modulation of
wave amplitudes and (ii) reduction of momentum flux, postponing a more detailed
analysis.

5.8.3. Orographic Waves Disturbed by Travelling Cloud-Packet

This section presents a simulation trying to confirm the results in section 5.3
for the cloud-packet disturbing an established pattern of orographic waves. The
domain is [−25 km, 20 km]×[0, 15 km], whereas a damping layer is located between
z = 10 km and z = 15 km. The topography is the dimensional counterpart of the
Witch of Agnesi (3.95) with h = 400 m and l = 1000 m. The initial horizontal
velocity is u = 10 m s−1. The mesh consists of 1500 cells in the horizontal and 75
in the vertical, whereas each 5 horizontally consecutive cells are considered to be
sub-columns with respect to the representation of σ.

To emulate the wave-packet employed in (5.3), set

f(x, z) = 0.9+0.1 exp

(

−1

2

(
(x− x0)

2

σ2
x

+
(z − z0)

2

σ2
z

))

−0.05 cos

(
2πx

∆xc

)

(5.12)
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Figure 5.19.: Representation of σ = 0.6 over ten sub-columns. The solid line is the con-
tinuous, horizontal distribution of ρv. The model uses a cell-centered ap-
proximation, sketched by horizontal lines in every sub-column. The dashed
line is the saturation density ρvs. Each column, where the constant value
is above ρvs is saturated. There are six saturated sub-columns, marked by
the gray bar, representing a saturated area fraction of σ = 0.6. The vertical
axis is scaled in arbitrary units.

with σx = 2000 m, σz = 5000 m, ∆xc = 150 m and x0 = −22.5 km. Figure
5.20 shows the resulting initial distribution of cloud water mixing ratio (upper)
as well as the corresponding equivalent to σ, obtained by counting the saturated
sub-columns, cf. figure 5.19.

The cloud-packet is advected across the domain by a horizontal velocity set to
10 m s−1 initially. It approaches the center of the hill at about t = 2250 s. A well
established wave pattern exists at this time.

The sub-column distributed cloud water however is rapidly diffusing and the small-
scale pattern generated by (5.12) is smeared out. It is thus questionable whether
the details of the small-scale distribution do affect the result in any way or if
similar results are obtained by a simple bulk cloud. A more systematic investiga-
tion of the representation of σ in a model without explicit scale separation is not
pursuit further here but left for future work. Nevertheless, the presented simula-
tion confirms the results obtained from the reduced model in section 5.3, namely
damping of waves behind and above the passing cloud, amplification of up- and
downdrafts inside the cloud-pattern and reduction of momentum flux at the top
of the domain.

Figure 5.21 shows the vertical velocity field at four different times, employing the
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Figure 5.20.: Upper: Initial qc in ASAM in kg kg−1. Lower: Effective σ resulting from
sub-column representation by ρvl for 5 sub-columns per cell.

same isolines as figure 5.4, i.e. an interval of 0.25 m s−1. The black dots are inserted
manually and give an estimate of the horizontal position of the cloud-pattern. For
comparison, figure 5.22 shows the solution of the reference simulation, with no
initial clouds and an initial relative humidity of 90 % throughout the domain.

At t = 1500 s the cloud-packet is located about 7.5 km before the hill and has
not yet noticeably affected the excited waves. The small updraft generated by
the cloud in 5.41 is not observable in 5.211. In the second figure at t = 2250 s,
the cloud-packet is located directly above the hill just as in 5.42. The downdraft
right above the hill is noticeably damped in the rear part of the cloud and weakly
amplified in the front. Damping behind the cloud is also seen in 5.51, but the
strong amplification in the center of the cloud is not reproduced in 5.212. The
solution at t = 3750 s is shown in figure 5.213. Comparison with (5.22)3 reveals
strong damping in the higher regions behind the cloud packet. This is in quite
good agreement with 5.53. However, 5.213 shows a strong updraft inside the cloud,
completely absent in 5.43. The strong downdraft located in the lower region of the
cloud in 5.43 is also found in 5.213, but rather at medium height in front of the
cloud. At t = 3750 s the wave pattern over the hill in 5.214 has partly reformed,
but a noticeably damping is still seen in the higher regions behind the cloud.
The updraft inside the cloud-packet has further amplified and reaches vertical
velocities of about 8 m s−1. It coincides with large amounts of condensated cloud
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Figure 5.21.: Vertical velocity in ASAM solution. Isoline interval is 0.25 m s−1. Gray
regions indicate negative values. The black circles indicate approximately
the horizontal position of the cloud-packet. From top to bottom: t = 1500 s,
t = 2250 s, t = 3000 s, t = 3750 s.

water (∼ 4 g kg−1) and thus is likely due to onsetting moist convection. The
reduced model (2.70) does not capture this regime, so its inability to model these
effects is to be expected.

Figure 5.23 shows the net vertical flux of horizontal momentum at z = 10 km.
Also shown is the momentum flux for two reference simulations with f ≡ 0.9
and f ≡ 0, cf. (5.9), i.e. no clouds and initial relative humidity of 90 % and
0 % respectively. The strongest momentum flux is observed in the completely dry
case. It is somewhat reduced in the simulation with 90 % initial relative humidity.
The presence of the advected cloud-packet further reduces the overall values of
momentum flux. Further, an additional temporary decrease of about 20 % related
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Figure 5.22.: Vertical velocity in reference simulation with no initial clouds. Isoline in-
terval is 0.25 m s−1. Gray regions indicate negative values. From top to
bottom: t = 1500 s, t = 2250 s, t = 3000 s, t = 3750 s.

to the passing of the cloud through the main part of the wave pattern is observed
at about t = 4500 s. This reduction is likewise found in figure 5.6, although being
much more pronounced there, especially in the case of max(σ) = 0.5.

Summarized, the simulations with ASAM, featuring full bulk micro-physics, pro-
vide some justification for the results obtained from the study of the reduced
model. As discussed above, there are important issues to address about the corre-
spondence between σ and the initial data for ρvl. Notwithstanding these problems,
the preliminary results presented in this section show noteworthy similarities be-
tween the results from the reduced and the full model, although naturally the
inherent limitations of the reduced model do not allow it to capture the dynamics
in areas where moist convection is triggered. It is confirmed that a passing cloud-
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Figure 5.23.: Net momentum flux over time at z = 10 km for the passing cloud-packet
and reference simulations with f ≡ 0.9 and f ≡ 0, corresponding to 90 %
and 0 % relative humidity initially.

packet significantly alters the wave pattern and, most importantly, that it reduces
the generated momentum flux.
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Chapter 6.

Weakly Under-Saturated Regime

This chapter presents a modification of the ansatz to address the regime of weak
under-saturation. By systematically assuming a small saturation deficit, the higher
order displacements indicated by the employed scales can condensate/evaporate
enough vapor to affect the saturated area fraction at leading order. Thus in the
resulting model σ is a prognostic quantity, leading to nonlinear tower-scale dy-
namics.

Section 6.1 sketches the modified ansatz. In section 6.2, the same closure strategy
as in chapter 2 is employed, but additional approximations are required. The
evolution of plane wave amplitudes is analyzed numerically in section 6.3 and
the dynamics of the model in terms of energy are discussed. By application of
an operator splitting strategy, the numerical scheme described in chapter 4 is
extended in section 6.4 and numerical results are presented.

6.1. Leading Order Equations

6.1.1. Dynamic Equations

The expansions of the dynamic quantities as well as rain water and cloud water are
identical to those in chapter 2, cf. (2.40), (2.41) and (2.42). Only the expansion
of water vapor

qv = q(0)vs + εq(1)v +O(ε2) (6.1)

differs as all-over saturation at leading order is assumed. For simplicity, set u∞ = 0
for the purpose of this chapter. Following the derivation in chapter 2, all quantities
are split into averages and perturbations, see (2.43), (2.44). The resulting leading
order equations are the same as in chapter 2, namely (2.45) and (2.47) with u∞ =
0.

As shown in (2.75) and (2.76), for the employed scales, vertical displacements and
hence the amount of condensating or evaporating water are of order O(ε). In the
presence of a leading order saturation deficit (2.77), this amount is not sufficient to
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significantly alter the size of saturated areas. In the derivation at hand, however,
according to (6.1), the saturation deficit is of order

δqvs ∼ O(ε), (6.2)

so condensation and evaporation of O(ε) amounts can exert a leading order influ-
ence on the size of saturated regions, cf. figure 2.3.

6.1.2. Micro-Scale Equations

The expansion of the bulk micro-scale equation (2.14)1 yields for O(εn) and
O(ε−n+1)

C
(−n)
d = 0

C
(−n+1)
d = 0.

(6.3)

From (6.1) conclude δq
(0)
vs = 0 so that (6.3)1 is automatically satisfied. Thus (6.3)2

yields

C
(−n+1)
d = C∗∗

d H◦δq
(1)
vs q

(0)
c = 0, (6.4)

hence two different micro-physical regimes can be distinguished:

• Regime I : δ
(1)
v = q

(1)
vs , thus δq

(1)
vs = 0

• Regime II: δq
(1)
vs > 0 and q

(0)
c = 0

While in the original derivation the two micro-physical regimes are saturation /

non-saturation at leading order, cf. appendix A.1, assuming δq
(0)
vs = 0 in advance

leads to the distinction of saturation / non-saturation at order O(ε).

Expanding the micro-scale equations (2.14)2,3 yields

O(ε−1):

q(0)v,τ + u(0) · ∇ηq
(0)
v = −C

(−1)
d

q(0)c,τ + u(0) · ∇ηq
(0)
c = C

(−1)
d − C(−1)

cr

q(0)r,τ + u(0) · ∇ηq
(0)
r = C(−1)

cr

(6.5)

O(ε0):

q(1)v,τ + u(1) · ∇ηq
(0)
v + u(0) · ∇ηq

(1)
v + u(0) · ∇xq

(0)
v + w(0)q(0)v,z = −C

(0)
d + C(0)

ev

q(1)c,τ + u(1) · ∇ηq
(0)
c + u(0) · ∇ηq

(1)
c + u(0) · ∇xq

(0)
c + w(0)q(0)c,z = C

(0)
d − C(0)

cr − C(0)
ac

q(1)r,τ + u(1) · ∇ηq
(0)
r + u(0) · ∇ηq

(1)
r + u(0) · ∇xq

(0)
r + w(0)q(0)r,z = C(0)

cr − C(0)
ev + C(0)

ac

(6.6)
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It turns out a lot of the source terms on the right hand side vanish, resulting in a
noticeably simplified set of equations.

1. Using in (6.5)1 that q
(0)
v = q

(0)
vs (z) depends only on height yields

C
(−1)
d = 0. (6.7)

2. Also, as δq
(0)
vs = 0 everywhere, the source term related to evaporation rain

vanishes

C(0)
ev = C∗∗

ev δq
(0)
vs

√

q
(0)
r = 0. (6.8)

3. Adding (6.5)2 and (6.5)3 and employing (6.7) indicates, that the leading

order amount of total liquid water q
(0)
l = q

(0)
c + q

(0)
r is conserved

q
(0)
l,τ + u(0) · ∇ηq

(0)
l = 0. (6.9)

By assuming q
(0)
l (τ = 0) = 0, it follows that q

(0)
l ≡ 0 and thus

C(−1)
cr = C∗∗

cr q
(0)
c q(0)r = 0. (6.10)

4. From (2.16) and q
(0)
l ≡ 0 conclude

C(0)
ac ∼ q(0)c = 0 ⇒ C(0)

ac = 0, (6.11)

5. as well as
C(0)

cr = C∗∗
cr

(

q(0)c q(1)r + q(1)c q(0)r

)

= 0. (6.12)

With the simplifications 1-5, (6.6) becomes

q(1)v,τ + u(0) · ∇ηq
(1)
v + w(0)q(0)vs,z = −C

(0)
d

q(1)c,τ + u(0) · ∇ηq
(1)
c = C

(0)
d

q(1)r,τ + u(0) · ∇ηq
(1)
r = 0

(6.13)

Note that rain water q
(1)
r is passively advected by the horizontal flow.

According to [KM06], q
(1)
vs = q

(1)
vs (z) depends on height only. In regime II it holds

that C
(0)
d = 0, so the final equations read

• Regime I (saturation):

w(0)q(0)vs,z = −C
(0)
d

q(1)c,τ + u(0) · ∇ηq
(1)
c = C

(0)
d ,

(6.14)
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• Regime II (weak under-saturation):

q(1)v,τ + u(0) · ∇ηq
(1)
v = −w(0)q(0)vs,z

q(1)c,τ + u(0) · ∇ηq
(1)
c = 0.

(6.15)

6.1.3. Total Water Content

Define the first-order total water content as

q
(1)
T := q(1)v + q(1)c . (6.16)

By (6.14) and (6.15), q
(1)
T satisfies

D(η)q
(1)
T

Dτ
= −w(0)q(0)vs,z (6.17)

with the micro-scale material derivative defined as

D(η)

Dτ
=

∂

∂τ
+ u(0) · ∇η. (6.18)

Integration of (6.17) in time yields

q
(1)
T (τ, η) = q

(1)
T (0, η) +

∫ τ

0

D(η)q
(1)
T

Dτ
dτ ′

= q
(1)
T (0, η)− q(0)vs,z

∫ τ

0

w(0)(τ ′, η) dτ ′

= q
(1)
T (0, η)− q(0)vs,zξ(τ, η)

(6.19)

whereas ξ denotes the vertical displacement, defined as the solution of

D(η)ξ

Dτ
= w(0) with ξ(0) = 0. (6.20)

According to (6.19), q
(0)
vs acts as an infinite reservoir from which, in rising parcels,

O(ε) amounts [cf. (2.76)] are converted either into cloud water q
(1)
c in saturated

regions [Regime I, cf. (6.14)] or into water vapor q
(1)
v in non-saturated regions

[Regime II, cf. (6.15))]. If q
(1)
v reaches the saturation threshold q

(1)
vs , the region

becomes saturated and further displacement produces q
(1)
c , i.e. clouds start to

form. In a descending parcel, q
(1)
v and q

(1)
c are deposited back into q

(0)
vs . If q

(1)
c is

depleted, the region becomes non-saturated and q
(1)
v starts to decrease.
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Figure 6.1.: General structure of micro-scale vertical velocity w̃ at three different times:

Initially, w̃(0) varies only in the small, saturated area (left). As the saturated
area enlarges, variations in w̃(0) can emerge in the now saturated areas (cen-
ter). As saturated regions become non-saturated again and the saturated spot
shrinks (right), variations in w̃(0) found in formerly saturated areas (dashed
line) are neglected and the constant value w̃us (thin, solid line) is employed.

Displacement in Non-Saturated Areas

As explained in section 3.1, the perturbation vertical velocity w̃(0) and the per-
turbation potential temperature θ̃(3) are constant in non-saturated areas. There,
this statement holds for any point η initially located in a non-saturated area, i.e.
Hqv

(η) = 0. Here, in the weakly under-saturated case however, these areas are
no longer constant but can become saturated and non-saturated again. Thus the
counterpart to (3.10) can now only state

∇ηw̃
(0)(τ, η) = ∇η θ̃

(3)(τ, η) = 0 if Hqv
(τ ′, η) = 0 ∀τ ′ ≤ τ, (6.21)

i.e. the gradients are zero in regions that have never reached saturation until time
τ .

Neglecting the effect that a non-zero gradient can emerge in regions that are ini-
tially non-saturated and become saturated at some point, assume

∇ηw̃
(0)(τ, η) = ∇η θ̃

(3)(τ, η) = 0 ∀τ ≥ 0 if Hqv
(0, η) = 0, (6.22)

cf. figure 6.1. By this approximation, just as in section 3.1, it holds that

w̃(0)(η, τ) = w̃us = const.

θ̃(3)(η, τ) = θ̃us = const. ∀τ ≥ 0 if Hqv
(0, η) = 0.

(6.23)

Let the displacement in non-saturated regions ξus again be defined by (3.13).
Employing approximation (6.23), by continuity of w̃(0),

ξ (η, τ) = ξus (τ) ∀τ ≥ 0 if Hqv
(0, η) = 0. (6.24)
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Example of the Level Set function q
*
 near a root

Regime II

Regime I(undersaturation)

(saturation)

η

q *

Figure 6.2.: General structure in the 1-D case of the level set function q∗ in the vicinity of
a root, indicating the interface between the saturated and the non-saturated
regime.

Level Set Interface Tracking

Define the function
q∗ := q

(1)
T − q(1)vs . (6.25)

By (6.14), (6.15), (6.16) it reads

q∗ =

{

q
(1)
c ≥ 0 : Regime I

q
(1)
v − q

(1)
vs ≤ 0 : Regime II

. (6.26)

So q∗ can be interpreted as a level set function, tracking the interface between
saturated and non-saturated regions. The interface corresponds to the set of roots
of q∗. See [OF02] for an introduction into level set methods. Figure 6.2 sketches
q∗ for the case of an x-z-slice, where η ∈ R.

By (6.19), q∗ satisfies

q∗(τ, η) = q∗(0, η)− q(0)vs,zξ(τ, η). (6.27)

Employing (6.24), (6.27) can be written

q∗(τ, η) = q∗(0, η)− q(0)vs,zξus(τ). (6.28)

Applying ∇η to (6.28) and using that both q
(0)
vs,z and q

(1)
vs,z do not depend on η, see

[KM06], yields
∇ηq∗(τ, η) = ∇ηq∗(0, η). (6.29)

Thus the shape of the level set function does not change in time. q∗ only moves

up- and downward by constant values q
(0)
vs,zξus(τ) according to (6.28) as sketched

in figure 6.3. In the following, saturated regions are identified with regions where
q∗ > 0. However, because in (6.28) the exact displacement ξ is replaced by ξus,
this involves some degree of approximation, as ξ and ξus do not exactly coincide
in regions that reached saturation and became non-saturated again.
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ηη

q
(0)
vs,zξ

Regime I Regime I

q∗

q∗

q∗ = 0

Figure 6.3.: Change of q∗ by upward displacement ξus. The whole function increases by

q
(0)
vs,zξus, but the gradient ∇ηq∗ does not change.

6.2. Closing the Model

In order to close the nonlinear model, analyze first the evolution of a single sat-
urated spot. In a second step, the balance over a finite number of such spots
located in one finite interval is computed. The final model is obtained by letting
the boundaries of the interval approach ±∞.

6.2.1. Evolution of an Individual Saturated Spot

Let Ai denote a single saturated spot. Further denote its boundary, i.e. the
interface between saturation and non-saturation, by ∂Ai and by vi the velocity at
which the interface is advected. The evolution equation for the level set function,
cf. [OF02], reads

∂q∗
∂τ

+ vi · ∇ηq∗ = 0. (6.30)

Employing (3.13), (6.24) and (6.28), the temporal derivative can be reformulated
as

∂q∗
∂τ

= −q(0)vs,z

∂ξus
∂τ

= −q(0)vs,z

Dξus
Dτ

= −q(0)vs,z (w̄ + w̃us) .

(6.31)

Because q∗ is positive inside saturated regions and negative outside, the gradient
∇ηq∗ on ∂Ai points in the opposite direction of the outer normal vector n on the
interface ∂Ai, thus

− ∇ηq∗
|∇ηq∗|

= n. (6.32)
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By using (6.31) and (6.32), (6.30) becomes

vi · ∇ηq∗ = q(0)vs,z (w̄ + w̃us)

⇒ (vi · n) |∇ηq∗| = −q(0)vs,z (w̄ + w̃us)

⇒ vi · n = −q(0)vs,z

w̄ + w̃us

|∇ηq∗|
.

(6.33)

According to (6.28), points at the interface are characterized by

q∗(η, τ) = 0 ⇔ q(0)vs,zξus = q∗(η, 0) (6.34)

and thus solely by the displacement ξus and the initial distribution of q∗. So for
given q∗(τ = 0), define

Ψi(ξus) := −q(0)vs,z

∮

∂Ai

1

|∇ηq∗|
dS. (6.35)

Note that q
(0)
vs,z < 0, hence

Ψi ≥ 0. (6.36)

The total change of the area of Ai can be evaluated, using (6.33) and (6.35), by

D

Dτ

∫

Ai

1 dV =

∮

∂Ai

vi · n dS

= Ψi(ξus) (w̄ + w̃us) .
(6.37)

6.2.2. Closure of the Micro-Scale Model

According to (2.40), u(0) does not depend on η and (2.47) can be written as

w̃(0)
τ +∇η ·

(

u(0)w̃(0)
)

= θ̃(3)

θ̃(3)τ +∇η ·
(

u(0)θ̃(3)
)

+ w̃(0)Θ(2)
z = L̂

(

C(0) − C(0)
) (6.38)

with u∞ = 0. Drop the superscripts of u(0), w̃(0) and θ̃(3) to streamline notation.
Integrating (6.38) over a volume Ai moving at velocity vi results in

∂

∂τ

∫

Ai

w̃ dη +

∮

∂Ai

w̃ (u− vi) · n dS =

∫

Ai

θ̃ dη

∂

∂τ

∫

Ai

θ̃ dη +

∮

∂Ai

θ̃ (u− vi) · n dS +Θ(2)
z

∫

Ai

w̃ dη

=

∫

Ai

L̂C(0) dη − |Ai| L̂C(0),

(6.39)
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see e.g. [TL79]. According to (6.23), w̃ = w̃us and θ̃ = θ̃us are constant in non-
saturated regions and thus, by continuity, also on the interface between regime I
and II. Thus the surface integrals involving u(0) vanish and by using (6.37), (6.39)
can be reformulated as

∂

∂τ

∫

Ai

w̃ dη − w̃us (w̄ + w̃us)Ψi =

∫

Ai

θ̃ dη

∂

∂τ

∫

Ai

θ̃ dη − θ̃us (w̄ + w̃us)Ψi +Θ(2)
z

∫

Ai

w̃ dη

=

∫

Ai

L̂C(0) dη − |Ai|L̂C(0).

(6.40)

Summate (6.40) for a finite number of saturated spots A1, . . . , An, all contained
in some domain D(η0) := [−η0, η0]

d. As in (2.73), it is d = 1 for the case of a
x-z-plane and d = 2 for the full three-dimensional case. Using that Hqv

|D(η0)
is

the characteristic function of
⋃n

i=1 Ai ⊂ D(η0) and thus

n∑

i=1

∫

Ai

fdη =

∫

D(η0)

Hqv
fdη (6.41)

for any integrable function f , the overall balance reads

∂

∂τ

∫

D(η0)

Hqv
w̃ dη − w̃us (w̄ + w̃us)

n∑

i=1

Ψi =

∫

D(η0)

Hqv
θ̃ dη

∂

∂τ

∫

D(η0)

Hqv
θ̃ dη − θ̃us (w̄ + w̃us)

n∑

i=1

Ψi +Θ(2)
z

∫

D(η0)

Hqv
w̃ dη =

∫

D(η0)

Hqv
L̂C(0) dη − L̂C(0)

∫

D(η0)

Hqv
dη.

(6.42)

Employing (6.8), the source term in (A.13) simplifies to

C(0) = Hqv
C

(0)
d . (6.43)

By multiplying (6.14)1 first by L̂, cf. (2.54), then by Hqv
and employing the moist

adiabat equation (2.53), (6.43) becomes

L̂C(0) = Hqv
L̂C

(0)
d = −Hqv

(w̄ + w̃) L̂q(0)vs,z = Hqv
(w̄ + w̃)Θ(2)

z . (6.44)
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Define the weighted averages

w′ := lim
η0→∞

∫

D(η0)
Hqv

w̃ dη
∫

D(η0)
1 dη

= Hqv
w̃

θ′ := lim
η0→∞

∫

D(η0)
Hqv

θ̃ dη
∫

D(η0)
1 dη

= Hqv
θ̃

σ := lim
η0→∞

∫

D(η0)
Hqv

dη
∫

D(η0)
1 dη

= Hqv

Ψ := lim
n→∞

∑n
i=1 Ψi

∫

[−n,n]d
1 dη

.

(6.45)

Dividing (6.42) by
∫

D(η0)
1 dη, employing H2

qv
= Hqv

and applying the limit

η0 → ∞ yields after rearranging terms

w′
τ − w̃us

(

w̄(0) + w̃us

)

Ψ = θ′

θ′τ − θ̃us

(

w̄(0) + w̃us

)

Ψ+ σΘ(2)
z w′ = σ(1− σ)Θ(2)

z w̄(0)
(6.46)

whereas arbitrary permutability of integrals and limits is assumed. Using (3.12)
finally yields

w′
τ = θ′ +

w′

1− σ

(
w′

1− σ
− w̄(0)

)

Ψ

θ′τ + σΘ(2)
z w′ = σ(1− σ)Θ(2)

z +
θ′

1− σ

(
w′

1− σ
− w̄(0)

)

Ψ.
(6.47)

Further compute, using (6.37) and (6.45)3,

Dσ

Dτ
= lim

η0→∞

D

Dτ

∫

D(η0)
Hqv

dη
∫

D(η0)
dη

= lim
n→∞

1
∫

[−n,n]d
1 dη

n∑

i=1

D

Dτ

∫

Ai

1 dη

= lim
n→∞

1
∫

[−n,n]d
1 dη

n∑

i=1

∮

∂Ai

vi · n dS

= lim
n→∞

1
∫

[−n,n]d
1 dη

n∑

i=1

(

w̄(0) + w̃us

)

Ψi

= −
(

w′

1− σ
− w̄

)

Ψ

(6.48)
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Thus (6.47) can be compactly written as

w′
τ +

στ

1− σ
w′ = θ′

θ′τ + σΘ(2)
z w′ +

στ

1− σ
θ′ = σ(1− σ)Θ(2)

z . (6.49)

By employing (6.45)3, averaging (6.44) yields

L̂C(0) = σΘ(2)
z w̄(0) +Θ(2)

z w′. (6.50)

6.2.3. Summary

The full nonlinear model with unknowns u, w̄, θ̄, π, w′, θ′, σ, ξus consists of the large-
scale equations (2.70)1−4 with u∞ = 0, (3.13), (6.48) and (6.49).

Linearized anelastic moist dynamics:

uτ +∇xπ = 0

w̄τ + πz = θ̄

θ̄τ + (1− σ)Θ(2)
z w̄ = Θ(2)

z w′

ρ(0)∇x · u+
(

ρ(0)w̄
)

z
= 0

Averaged nonlinear tower-scale dynamics:

w′
τ +

στ

1− σ
w′ = θ′

θ′τ + σΘ(2)
z w′ +

στ

1− σ
θ′ = σ(1− σ)Θ(2)

z w̄

στ = ξus,τΨ

ξus,τ = w̄ − w′

1− σ

(6.51)

Note that in the limit of infinitely steep gradients of the level set function q∗, by
(6.35), Ψ → 0 and the original linear model (2.70) with u∞ = 0 and C̄− = 0 is
retrieved.

According to (6.36) and (6.45) Ψ ≥ 0 obtains. Thus for an upward moving parcel,
i.e. ξus,τ > 0, the saturated area fraction σ increases. This corresponds to the
increase of q∗ indicated by (6.28), enlarging the area where q∗ > 0.

The other way round, in a descending parcel with ξus,τ < 0, σ decreases, corre-
sponding to reducing q∗ and thus diminishing size of areas where q∗ > 0.
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6.3. Properties of the Nonlinear Model

This section points out some properties of the nonlinear model (6.51). In order to
avoid double subscripts denote ξus simply as ξ in the following and refer to it as
displacement.

6.3.1. The Function Ψ(ξ)

The functions Ψi and Ψ defined in (6.35) and (6.45) would have to be computed
from some initial distribution of cloud water and water vapor. However, the pur-
pose of the analysis presented here is not to deliver precise quantitative results,
but to explore the qualitative behavior of (6.51). Thus an idealized function Ψ is
derived ensuring that σ adopts values between zero and unity for all displacements
ξ.

Denote by G the antiderivative of Ψ, then by (6.51)7,8

σ(τ) = σ(0) +

∫ τ

0

στdτ

= σ(0) +

∫ τ

0

Ψ(ξ)ξτdτ

= σ(0) +

∫ τ

0

DG(ξ)

Dτ
dτ

= σ(0) +G(ξ(τ))−G(0),

(6.52)

as ξ(0) = 0.

Set G to

G(ξ) = α

(

erf

(
ξ − ξ0
β

))

+ γ, (6.53)

whereas erf is the antiderivative of the Gaussian distribution. It holds that

erf

(
ξ − ξ0
β

)

≈ 1 for
ξ − ξ0
β

>> 0 (6.54)

and

erf

(
ξ − ξ0
β

)

≈ −1 for
ξ − ξ0
β

<< 0. (6.55)

Requiring

σ(0) + α (1 + γ)−G(0)
!
= 1

σ(0) + α (−1 + γ)−G(0)
!
= 0

(6.56)
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Figure 6.4.: The antiderivative G(ξ) = σ (upper), as well as the resulting coupling func-
tion Ψ (lower) for β = 4. The horizontal dashed line in the upper figures
indicates the initial value σ(0) = 0.3.

leads to

α = γ =
1

2
and ξ0 = −β erf−1 (2σ(0)− 1) . (6.57)

Thus

G(ξ) =
1

2

(

erf

(
ξ − ξ0
β

))

+
1

2
, (6.58)

resulting in
G(0) = σ(0) (6.59)

and by (6.52)

σ(τ) = G(ξ(τ)) =
1

2
erf

(
ξ − ξ0
β

)

+
1

2
=⇒ 0 ≤ σ ≤ 1. (6.60)

Further, (6.58) yields

Ψ(ξ) =
1√
πβ

exp

(

−
(
ξ − ξ0
β

)2
)

. (6.61)

As demonstrated by (6.60), choosing Ψ according to (6.61) yields values of σ
between zero and unity for arbitrary displacements ξ.
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Figure 6.5.: The antiderivative G(ξ) = σ (upper), as well as the resulting coupling func-
tion Ψ (lower) for β = 8. The horizontal dashed line in the upper figures
indicates the initial value σ(0) = 0.3.

The validity of approximation (6.24) is based upon the assumption that non-zero
gradients ∇ηw̃ emerging in regions initially non-saturated but becoming satu-
rated at some time and non-saturated again have negligible effect. To justify this
assumption set β ≫ 1 here, resulting in small overall variations of the size of
saturated regions.

Figure 6.4 sketches σ (upper figure) as well as the corresponding Ψ (lower figure)
for β = 4, σ(0) = 0.3. Figure 6.5 sketches the same for β = 8. As required, σ
varies between zero and unity depending on ξus. For β = 4, the dependence of σ
on the displacement is stronger and smaller values of ξus suffice to bring σ close to
zero and unity, respectively. For β = 4 and ξus ≈ −3, σ reduces to about 16% of
its initial value, so there assuming small variations becomes questionable, but for
displacements of about ξus ± 1, σ changes by about 30% compared to σ(0). This
can reasonably be considered a small variation.

Note that Ψ also depends on the large-scale coordinates x and z. Thus β is
not required to be constant over the domain, but can depend on x and z. The
derivation of the nonlinear model assumes all-over weak under-saturation, however
letting β(x, z) adopt sufficiently large values in specific regions allows to effectively
include the original linear dynamics in (6.51), because the nonlinear dependence
of σ on ξ is then negligible.
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6.3.2. Energy

The tower-scale potential and kinetic energy defined in (3.41) and discussed for
the linear model in section 3.2 can also be defined and analyzed for the nonlinear
model. As σ depends on τ , the derivative of E′

pot reads

∂E′
pot

∂τ
=

ρ(0)

2

[

2θ′θ′τσΘ
(2)
z − (θ′)2στΘ

(2)
z

(σΘ
(2)
z )2

]

=
ρ(0)θ′θ′τ

σΘ
(2)
z

− ρ(0)

2

(θ′)2

2σΘ
(2)
z

στΘ
(2)
z

σΘ
(2)
z

=
ρ(0)θ′θ′τ

σΘ
(2)
z

− E′
pot

στ

σ
.

(6.62)

Multiplying (6.51)6 with ρ(0)θ′ and using (6.62) results in

∂E′
pot

∂τ
+

στ

σ
E′

pot +
2στ

1− σ
E′

pot = −ρ(0)θ′w′ + (1− σ) ρ(0)θ′w̄. (6.63)

Multiplication of (6.51)6 with ρ(0)w′ and further simplification of (6.63) yields

∂τE
′
kin + στ

[
2

1− σ

]

E′
kin = ρ(0)w′θ′

∂τE
′
pot + στ

[
1 + σ

σ (1− σ)

]

E′
pot = −ρ(0)w′θ′ + (1− σ) ρ(0)θ′w̄.

(6.64)

The right hand side terms represent conversion between tower-scale potential and
kinetic energy plus the potential energy generated from large-scale displacements
as discussed in section 3.2.

Two new terms arise, that are not present in the energy equations (3.42), (3.43)
in the linear model. Depending on the sign of the coefficient, the new terms cause
either an exponential growth or decay of E′

kin and E′
pot. Because the terms in

squared brackets are always positive, the sign solely depends on the sign of στ ,
which itself depends solely on ξτ . If στ < 0, i.e. the parcel descends, energy is
generated, while if στ > 0, i.e. the parcel is rising, energy is consumed. As shown in
subsection 6.3.3, the nonlinearity leads to a disparity between the energy generated
and consumed over the course of one oscillation resulting in a net increase of energy
over time.

Analogously to the computation in (6.62) it can be shown that the large-scale
potential energy (3.35)2 satisfies

∂Epot

∂τ
= ρ(0)

θ̄θ̄τ

(1− σ)Θ
(2)
z

+
στ

1− σ
Epot (6.65)

116



6.3. Properties of the Nonlinear Model

and thus, multiplying (6.51)3 with ρ(0)θ̄,

∂τEpot −
στ

1− σ
Epot = −ρ(0)θ̄w̄ + ρ(0)

θ̄w′

1− σ
. (6.66)

Contrary to the mechanism for micro-scale potential energy, the additional term
in (6.66) generates potential energy if a parcel rises, i.e. στ > 0 and consumes
Epot if it descends, i.e. στ < 0. The equation for the large-scale kinetic energy
(3.35)1 is not altered by the time-dependence of σ, so Ekin satisfies (3.36).

6.3.3. Evolution of a Plane Wave

Likewise to the analysis presented in subsection 3.3.2, seek solutions of the form

φ(x, z, τ) = φ̂(τ) exp (i(kx+mz)) exp(µz) (6.67)

for the nonlinear model (6.51) whereas φ ∈
{
u, w̄, θ̄, π, w′, θ′, σ, ξ

}
. As in sub-

section 3.3.1, exp(µz) with µ = 0.5 describes the amplitude increase with height
caused by decreasing density. For the purpose of simpler notation, the hats in the
φ̂ terms are dropped in this subsection. For example, σ denotes σ̂.

Insert (6.67) into (6.51) and combine (6.51)1 to (6.51)4 into a single equation

(
k2 +m2 + 0.25

)
w̄ττ + (1− σ)Θ(2)

z k2w̄ = Θ(2)
z k2w′. (6.68)

Note that this is identical to (3.55)1 obtained for w̄ in subsection 3.3.2. By in-
troducing the auxiliary variable χ := w̄τ , (6.68) can be rewritten as a first order
system and combined with the micro-scale equations (6.51)5−8 into a closed sys-
tem of ordinary differential equations

w̄τ = χ

χτ =
(
k2 +m2 + 0.25

)−1
(

−(1− σ)Θ(2)
z k2w̄ +Θ(2)

z k2w′
)

w′
τ = θ′ − w′

1− σ
ξτΨ

θ′τ = −σΘ(2)
z w′ + σ(1− σ)Θ(2)

z w̄ − θ′

1− σ
ξτΨ

στ = ξτΨ

ξτ = −
(

w′

1− σ
− w̄

)

.

(6.69)

For Ψ = 0 (6.69) reduces to the first order system corresponding to (3.55). The
system (6.69) is solved employing the ode solver ode45 in MATLAB, but identical
solutions are obtained by other MATLAB solvers like ode23tb or ode15s.
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Figure 6.6.: Evolution of the amplitudes of the saturated area fraction σ and the displace-
ment ξ for β = 4 (left) and β = 8 (right).

Set χ(0) = w′(0) = θ′(0) = ξ(0) = 0. Set σ(0) = 0.4 and prescribe an initial
large-scale induced velocity of w̄ = 0.25. Two solutions are computed, one for
β = 4 and one for β = 8. Denote the vertical velocity inside saturated towers by

wI = w̄ + w′ (6.70)

and the vertical velocity in non-saturated areas between the towers as

wII = w̄ + wus = w̄ − w′

1− σ
, (6.71)

cf. (3.12).

Figure 6.6 shows the difference σ−σ(0) and the displacement ξ over time for β = 4
(left) and β = 8 (right). The displacement performs identical oscillations between
about ±0.3 in both simulations. σ oscillates around its initial value σ(0) in both
figures, but with larger amplitude for β = 4. In both cases, the amplitudes are
constant in τ .

A different picture arises in figure 6.7, displaying the vertical velocity wI inside the
convective towers and the velocity wII in the non-saturated regions between them.
While wII oscillates with constant amplitude for both values of β, the vertical
velocity wI amplifies over time. The amplification is stronger for β = 4 and in
general increases as β decreases.

Identical solutions computed over a very long time interval are shown in figure
6.8 and confirm constant amplitudes for ξ, σ and wII as well as a seemingly linear
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Figure 6.7.: Evolution of the vertical velocities wI (saturated regions) and wII (non-
saturated regions) for β = 4 (left) and β = 8 (right).
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Figure 6.8.: Evolution of the vertical velocities wI (saturated regions) and wII (non-
saturated regions) for β = 4 (left) and β = 8 (right) until τ = 1000.
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Figure 6.9.: Evolution large-scale kinetic energy Ekin and tower-scale kinetic energy E′

kin

for β = 4 (left) and β = 8 (right). The vertical axis is scaled logarithmically.

increase in wI over time. Thus the nonlinear model features a weak instability,
where interactions of up- and downdrafts with saturated areas lead to amplification
of updrafts inside convective towers.

Figure 6.9 reveals that the amplification of wI is accompanied by growing values
of large-scale and tower-scale kinetic energy. The corresponding potential energies
(not shown), however, remain bounded.

Generation of Tower-Scale Energy

The weak instability can be linked to the energy equations (6.64). Denote

Fkin = −στ

[
2

1− σ

]

E′
kin , Fpot = −στ

[
1 + σ

σ(1− σ)

]

E′
pot + (1− σ) ρ(0)w̄θ′.

(6.72)
Let τ0 denote the starting time of one oscillation, i.e. ξ(τ0) = 0 and increasing.
Figure 6.10 shows how Fkin contributes to E′

kin and Fpot to E′
pot over the course of

one oscillation for β = 4 (left) and β = 8 (right). The dashed and dashed-dotted
curves denote values of the cumulative integrals

∫ τ

τ0

Fkin dt and

∫ τ

τ0

Fpot dt (6.73)

respectively. After completing the oscillation, both terms provide a small but
non-zero contribution. Hence with every completed oscillation the total energy
increases a little bit, leading to a noticeable growth of the vertical velocity wI
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Figure 6.10.: Contribution of Fkin and Fpot over one oscillation for β = 4 (left) and β = 8
(right). The dotted line shows the displacement ξ, scaled by 10−2. The
dashed line shows the cumulative integral

∫

τ

τ0
Fkin(t) dt, the dash-dotted line

shows
∫

τ

τ0
Fpot(t) dt. τ0 is the minimum value on the τ -axis and corresponds

to the starting time of the oscillation.

over longer periods of time. As the potential energies Epot and E′
pot remain both

bounded while E′
kin as well as Ekin grow, the surplus potential energy is apparently

converted into kinetic energy. Note that the surplus in figure 6.10 reduces with
increasing β and appears to vanish as β → ∞. A similar plot for the linear problem
presented in subsection 3.3.2 (not shown) confirms that the contributions at the
end of the oscillation are zero there.

Parameters Governing the Instability

As figure 6.8 suggests a linear growth of wI, a rough measure of the growth rate
of wI can be obtained fitting a linear model to the calculated values using linear
regression. This is achieved employing the MATLAB function regress. Tabular
6.1 lists the slopes of the obtained linear fit for different initial values of σ and
different values of β multiplied by 103. The initial large-scale velocity is always
w̄ = 0.25 while χ = w′ = θ′ = ξ = 0 initially. Again the solution is computed over
a large time interval until τ = 1000.

In general, a more sensitive dependence of σ on ξ, i.e. reduced β, leads to larger
slopes. There is some “optimal” initial value of about σ = 0.2 for β = 2, β = 4 and
σ = 0.3 for β = 8, leading to a maximum slope with decreased slopes for initial
values of σ above or below. Further tests not documented here indicate, that the
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Initial σ est. slope, β = 2 est. slope, β = 4 est. slope, β = 8
0.1 6.672 3.415 1.779
0.2 8.223 4.248 2.247
0.3 8.062 4.197 2.256
0.4 7.190 3.775 2.068
0.5 6.040 3.208 1.798
0.7 3.626 2.011 1.209
0.9 1.464 0.926 0.659

Table 6.1.: Slope of linear functions fitted to values of wI, obtained using the linear re-
gression regress in MATLAB. Values are multiplied by 103 and rounded to
three digit numbers for easier comparison.

initial value for σ causing the strongest growth depends on the initial w̄, but more
involved dependencies may also exist. In the time-dependent numerical solution
presented in subsection 6.4.2 however, the observed effect of the nonlinearity is
weak but in line with the order of magnitude to be expected from the growth
rates in table 6.1 over the length of time of the presented simulation.

6.4. Non-Stationary Solutions of the Nonlinear

System

6.4.1. Extending the Numerical Scheme

By using an operator splitting technique, see section 7.3 in [Dur99], the scheme
presented in chapter 4 for the solution of the linear system can be extended to also
solve the nonlinear model. Because the operator splitting is not compatible with
a multi-step method, the Adams-Bashforth-3 timestepping (4.2) is replaced by a
one-step Runge-Kutta-4 scheme, while the spatial discretization remains (4.17).
This combination is investigated in [Dur91] too, and also found to be viable, but
to produce stronger artificial dissipation and to be less efficient than the multi-step
version. Denote by φ the vector

φ :=
(
u, w̄, θ̄, w′, θ′, σ, ξ

)T
(6.74)

containing the prognostic unknowns from model (6.51). Further define

L1(φ) := −













0
0
0

w′

1−σΨ
θ′

1−σΨ

Ψ
1













(
w′

1− σ
− w̄

)

(6.75)
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and

L2(φ) :=













0
θ̄

− (1− σ)Θ
(2)
z w̄ +Θ

(2)
z w′

θ′

−σΘ
(2)
z w′ + σ(1− σ)w̄Θ

(2)
z

0
0













(6.76)

so that the prognostic part of the full nonlinear model (6.51) can compactly be
written as

Dφ

Dτ
= L1(φ) + L2(φ) (6.77)

As in the linear case, an equation for the pressure π is derived employing the
anelastic constraint (6.51)4. First, the discrete nonlinear micro-scale problem ap-
proximating

Dφ

Dτ
= L1(φ) (6.78)

is integrated by an implicit midpoint rule from τ to τ +∆τ , using the initial value
φn and delivering an intermediate value φs. Using φs as initial value, the discrete
linear problem approximating

Dφ

Dτ
= L2(φ) (6.79)

is updated from τ to τ + ∆τ , employing an explicit, fourth-order Runge-Kutta
scheme. The obtained predicted solution φn,∗ is then corrected by the pressure
πn, obtained by solving an elliptic equation similar to (4.11). Summarized, the
sequence of steps reads

φn L1−→ φs L2−→ φn,∗ projection−→ φn+1. (6.80)

In detail, the steps of the numerical scheme read

Nonlinear step:

k
(1)
1 = L1(φ

n +
∆τ

2
k1)

φs = φn +∆τk
(1)
1

(6.81)
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Linear step:

k
(2)
1 = φs

k
(2)
2 = φs +

∆τ

2
L2(k

(2)
1 )

k
(2)
3 = φs +

∆τ

2
L2(k

(2)
2 )

k
(2)
4 = φs +∆τL2(k

(2)
3 )

φn,∗ = φs +∆t

(
1

6
k
(2)
1 +

1

3
k
(2)
2 +

1

3
k
(2)
3 +

1

6
k
(2)
4

)

(6.82)

Poisson problem:
(

ρ(0)πx

)

x
+
(

ρ(0)πz

)

z
=
(

ρ(0)un,∗
)

x
+
(

ρ(0)w̄n,∗
)

z

Correction:

un+1 = un,∗ − πn
x

wn+1 = wn,∗ − πn
z

(6.83)

The nonlinear equation for k
(1)
1 is solved by an exact Newton iteration, run until

the change in the solution is below a prescribed threshold or until a set number of
maximum iteration steps is reached. The Jacobian of L1 is computed analytically
and evaluated in every iteration step.

6.4.2. Wave-Cloud Interactions

Similar to section 5.7, the presented simulation places a perturbation of large-scale
potential temperature between two cloud-packets. The domain is [−4, 4]× [0, 1.25]
with the damping layer located between z = 1 and z = 1.25. The initial value for
the large-scale potential temperature is

θ̄(x, z, τ = 0) = θ̄0 exp

(

−
[(

x

σx

)2

+

(
z − 0.5

σz

)2
])

(6.84)

with θ̄0 = 2.5, σx = σz = 0.01, while the initial value for σ reads

σ(x, z, 0) = σ0 sin (π (z − 0.5))
2







sin (π (x+ 2))
2
: x ∈ [−2.5,−1.5]

sin (π (x− 2))
2
: x ∈ [1.5, 2.5]

0 : otherwise

(6.85)

with σ0 = 0.2. Both distributions are sketched in figure 6.11. The distribution of
β(x, z) is chosen such, that β reaches a set minimum value βmin inside the clouds,
i.e. where σ > 0, but adopts values of β ≈ 100 outside.

124



6.4. Non-Stationary Solutions of the Nonlinear System

x (km)

z 
(k

m
)

Initial σ and θ

−30 −20 −10 0 10 20 30
0

5

10

Figure 6.11.: Initial distribution of σ (solid lines) and θ̄ (dotted lines). The intervals
between isolines are 0.05 for σ and 0.5 for θ̄.

The timestep is ∆τ = 0.02, the horizontal resolution is ∆x = 0.04, the vertical
∆z = 0.02 corresponding to 200 × 60 nodes. Two simulations are run, one with
βmin = 8, the other with βmin = 4, i.e. a more sensitive dependence of the
saturated area fraction on displacement inside the cloud packets. Additionally,
to asses the influence of a varying σ, a reference simulation is run, where the
nonlinear part in the micro-scale dynamics is turned off, i.e. the nonlinear step
(6.81) is skipped.

Figure 6.12 shows the evolution of σ over time at the center of the right cloud,
i.e. approximately at (2, 0.7). It demonstrates how σ is perturbed from its initial
value of σ(0) = 0.2 by the incoming waves. The amplitudes are larger for the more
sensitive dependence with βmin = 4 than for βmin = 8. In the reference simulation
without nonlinear micro-physics, σ remains constant over time.

Figure 6.13 shows the difference ∆wI between the moduli of the saturation verti-
cal velocities wI in the simulation with nonlinear micro-physics and the reference
solution along a horizontal cut through z = 0.5. Positive ∆wI indicates amplifica-
tion of up- or downdrafts by the nonlinear dynamics while negative ∆wI indicates
damping. The constant horizontal dotted lines indicate positive or negative wI in
the reference simulation. At τ = 10, a downdraft extends over the full size of the
cloud-packet. The presence of the nonlinear dynamics damps the downdraft and
the damping is stronger for β = 4 than for β = 8. In the figure in the center, an
updraft is located in some part of the cloud-packets while a downdraft is found
in the in the outer parts. The nonlinear dynamics amplify the updraft and damp
the downdraft and again the effect is more pronounced for β = 4 than for β = 8.
Finally, at τ = 30 the cloud-packet is occupied by an updraft amplified by the
nonlinear micro-physics. Slightly amplified downdrafts are located right behind
and in front of the cloud-packet.

Summarized the nonlinear compared to the linear micro-physics in all figures am-
plifies updrafts while damping downdrafts inside the clouds. However, the differ-
ences are of the order of 0.05 m s−1. The absolute values of the saturated velocities
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Figure 6.12.: Evolution of σ at the center of the right cloud-packet. Ψ = 0 denotes the
reference simulation without nonlinear micro-physics.

wI are about 2 m s−1 in all three simulations, so the effect is only of the order of
a few percent.
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Figure 6.13.: Difference between the moduli of saturation vertical velocities wI in the sim-
ulation with nonlinear micro-physics and the reference simulation across a
horizontal cross section at z∗ = 5 km at τ = 10, τ = 20, τ = 30. Positive
values indicate amplification by the nonlinear tower-scale dynamics while
negative values indicate damping. The dotted line indicates the constant σ
in the reference solution. The horizontally distributed dots indicate updrafts
(dots above zero) or downdrafts (dots below zero).
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Chapter 7.

Summary

This thesis presents the derivation, analysis and extension of a model describ-
ing propagation of internal gravity waves in an atmosphere that contains deep
convective hot towers. The essential moisture-related parameter occurring in the
equations is the saturated area fraction over the lengthscale of the cloud-towers in
a horizontal slice. If the saturated area fraction is zero, the model reduces to the
well-known linearized anelastic equations.

One essential result of the analysis is that moisture can significantly reduce the
net vertical flux of horizontal momentum. This flux is closely related to gravity
wave drag (GWD), i.e. the force exerted by breaking internal waves on mid-
atmospheric flows. Global circulation models employed for weather forecasting as
well as climate modelling require parameterizations of GWD in order to be able
to produce realistic flows in the higher atmosphere. Incorporating the effect of
moisture on momentum flux and thus GWD in such parameterizations might help
to improve their level of realism.

Another important hypothesis emerging from the presented model is the introduc-
tion of a lower cut-off horizontal wave number by moisture below which modes
turn from propagating to evanescent. While propagating modes cause a constant
momentum flux with height, the momentum flux for evanescent modes is zero.
Modes with small horizontal wave numbers, i.e. near-hydrostatic modes, con-
tribute significantly to GWD, so the lower cut-off has a potentially strong effect
on wave drag.

Moisture is also found to create critical layers in flows that are non-critical under
dry conditions. As critical layers play a central role in the conversion of momentum
flux into drag, this result is likewise of possible interest for the development of
GWD parameterizations.

Further results include the derivation of the system’s dispersion relation, showing
that moisture reduces the range of accessible frequencies. Analyzing the group
velocity of the model demonstrates that moisture inhibits propagation of wave-
packets and energy transport by waves. Also, it reduces the angle of propagation
of wave-packets. A series of steady-state solutions is presented, demonstrating the

128



cut-off for single mode solutions as well as the effect of moisture on a wave pat-
tern excited from a Witch of Agnesi and consisting of a superposition of numerous
modes. A significant reduction of net vertical flux of horizontal momentum is indi-
cated in this example. Qualitative approximate solutions in the vicinity of critical
layers are derived. A reformulation of the model demonstrates, that the arising
averaged small-scale equations can be interpreted as a wave exciting oscillator and
it is shown that the net tower-scale dynamics constitute a forcing for Eulerian
pseudo-momentum.

A discretization of the model is introduced to compute approximate, time-dependent
solutions. The analytically obtained results for steady-state solutions are con-
firmed numerically for unsteady solutions, demonstrating again the lower cut-off
and providing a more detailed investigation of solutions in the presence of critical
layers. Examples are shown, demonstrating how small-scale dynamics and evapo-
rating rain in the model excite large-scale gravity waves. A simulation is presented,
investigating how a pattern of mountain waves is disturbed by an advected cloud-
packet. Damping of wave amplitudes behind the cloud as well as amplification
inside it are found. Also, the momentum flux is again strongly reduced as the
cloud-packet passes through the wave pattern. Another simulation demonstrates
how waves excited from an initial perturbation in large-scale potential tempera-
ture are modulated as they propagate through two cloud-packets, placed in some
distance from the initial perturbation. Again an amplification of amplitudes in-
side the clouds and reduced amplitudes behind them are found. The simulation
also shows the reduced propagation velocity of the excited wave-packet inside of
clouds.

In order to confirm some of the results obtained from the mathematical and numer-
ical analysis of the reduced model, a code solving the compressible Euler equations
in combination with a full bulk micro-physics model is employed. Some effort is
made to emulate the parameter describing the tower-scale saturated area fraction
arising in the reduced model, but several open questions remain at this point. A
simulation is run, employing a setup similar to the advected cloud-packet. Despite
noticeable differences, some results from the reduced model can be confirmed, most
importantly the reduction of momentum flux by the presence of the cloud-packet
although the effect is less pronounced than in the reduced model.

In the original model, the saturation deficit in non-saturated regions is of or-
der unity. As vertical displacements are higher order on the employed timescale,
the amount of released or evaporated condensate is not sufficient to affect the
tower-scale saturated area fraction at leading order, thus saturated regions act
as a wave-modulating background but are not affected by waves in return. By
assuming weak under-saturation in advance, i.e. a systematically small saturation
deficit, the model is extended so that the tower-scale saturated area fraction does
nonlinearly depend on vertical displacements. Introducing a level-set function to
approximately track the interface between saturated and non-saturated regions
allows to derive an expression for the rate of change of the size of an individual
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saturated spot. This result is then employed to compute a closed, nonlinear set of
equations, in which the tower-scale saturated area fraction is no longer constant
but now becomes a prognostic quantity, depending on the vertical displacement.
The original linear model is contained in the nonlinear model as a special case.

An analysis of the evolution of plane wave solutions of the nonlinear model reveals
a mechanism causing growing vertical velocities in saturated regions. This growth
is linked to nonlinear terms arising in the energy equations, generating a small
amount of small-scale energy over each oscillation of a parcel. Employing an
operator splitting strategy allows to extend the numerical scheme developed for
the linear model to the nonlinear case. A simulation is presented where again
a perturbation in potential temperature is placed between to cloud-packets such
that the excited waves interact with the saturated areas. It demonstrates that the
nonlinear micro-physics amplify updrafts while damping downdrafts compared to
the linear model. However, the effects observed in the presented example are only
of the order of a few percent.

The derivation of the original linear model presented at the beginning of this
thesis employs the framework for systematic development of reduced models pre-
sented in [Kle04, Kle08, Kle10] and is based on results from [MK03, KM06]. The
used ansatz features time- and lengthscales corresponding to the regime of non-
hydrostatic, non-rotating internal gravity waves plus a second horizontal micro-
scale corresponding to the typical diameter of deep convective towers. By applying
weighted averages conditioned on the small-scale towers, the resulting leading or-
der equations can be closed analytically without requiring further approximations
besides adopting a specific asymptotic regime. The final model describes flows on
the lengthscales of internal waves but includes net effects from tower-scale dynam-
ics. These are in turn described by two additional equations for the conditional
averages over the perturbations of vertical velocity and potential temperature.

Numerous starting points for possible future research emerge during the presented
analysis. A logical next step would be a thorough attempt to verify the findings
from the analysis of the reduced model by further experiments with a full bulk
micro-physic model. Further, as the arising saturated area fraction is reminiscent
of the cloud cover fraction computed in GCMs, an attempt could be made to link
these two quantities and develop a parameterization of orographic wave drag that
takes into account the effect of modulation of internal waves by moisture. Also,
the tower-scale dynamics provide a source term for pseudo-momentum absent in
the dry anelastic model. Pseudo-momentum is the central quantity in the analysis
of the effect of wave-dynamics on mean flow, cf. [Büh09], and and attempt could
be made to perform such an analysis with the pseudo-momentum equation forced
by the tower-scale dynamics. Finally, by replacing the bulk warm micro-physics
model with a bulk model that includes ice phase as presented for example by
[Gra99], it might be possible to extend the model’s applicability to cold clouds
like e.g. mid-latitude clouds.
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A.1. Key Steps of the Derivation

A.1.1. Leading Order Equations from Dynamics

Inserting the expansions (2.40), (2.41) into the non-dimensional dynamic equations
(2.9) and the expansion (2.42) into the bulk micro-physic equations (2.14) yields
the subsequently presented leading order equations. Note that because of the two
horizontal coordinates η and x in the model, the horizontal gradient is modified
in the following way

∇|| 7→ ∇x + ε−1∇η (A.1)

Further, (2.9)2,3 are multiplied by ε4.

Below, the leading order equations arising from (2.9) are summarized.

Horizontal momentum

O(ǫ2) : ∇ηp
(3) = 0

O(ǫ3) : ρ(0)u(0)
τ + ρ(0)u

(1)
τ ′ + ρ(0)u∞ · ∇xu

(0) + ρ(0)u∞ · ∇ηu
(1)

+∇xp
(3) +∇ηp

(4) = 0

(A.2)

The second equation can be rewritten as

ρ(0)u(0)
τ + ρ(0)u∞ · ∇xu

(0) +∇xp
(3) = −

[

ρ(0)u
(1)
τ ′ + ρ(0)u∞ · ∇ηu

(1) +∇ηp
(4)
]

.

(A.3)
Integrate this equation along a characteristic τ ′ + u∞η = const. and employ sub-
linear growth condition for the higher order quantities u(1) and p(4) to conclude
that the right hand side has to vanish. So (A.3) simplifies to

ρ(0)u(0)
τ + ρ(0)u∞ · ∇xu

(0) +∇xp
(3) = 0. (A.4)
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Dividing by ρ(0)(z) and using that by (A.2)1, p
(3) is independent of η, yields

u(0)
τ + u∞ · ∇xu

(0) +∇xπ = 0 (A.5)

whereas

π :=
p(3)

ρ(0)
(A.6)

is the Newtonian limit form of the Exner function.

Vertical momentum

O(1) : p(0)z = −ρ(0)

O(ǫ) : p(1)z = −ρ(1)

O(ǫ2) : ρ(0)w
(0)
τ ′ + ρ(0)u∞ · ∇ηw

(0) + p(2)z = −ρ(2)

O(ǫ3) : ρ(0)w
(1)
τ ′ + ρ(0)u∞ · ∇ηw

(1) + ρ(1)w
(0)
τ ′ + ρ(1)u∞ · ∇ηw

(0)

+ ρ(0)w(0)
τ + ρ(0)u∞ · ∇xw

(0) + ρ(0)u(0) · ∇ηw
(0) + p(3)z = −ρ(3)

(A.7)

Assume ρ(1) = 0 here and employ again sublinear growth condition. (A.7)4 then
becomes

ρ(0)w(0)
τ + ρ(0)u∞ · ∇xw

(0) + ρ(0)u(0) · ∇ηw
(0) + p(3)z = −ρ(3). (A.8)

As shown in [KM06], the leading order density and pressure read ρ(0) = p(0) =
exp(−z) in the Newtonian limit (γ − 1) = O(ε). Employing this and the equation
of state yields

πz =
p
(3)
z

ρ(0)
+

p(3)

ρ(0)
=

p
(3)
z

ρ(0)
+

ρ(3)

ρ(0)
− θ(3). (A.9)

In dividing (A.8) by ρ(0) and using (A.9) one finally obtains

w(0)
τ + u∞ · ∇xw

(0) + u(0) · ∇ηw
(0) + πz = θ(3). (A.10)

Mass

ρ(0)∇η · u(1) + ρ(0)∇x · u(0) +
(

ρ(0)w(0)
)

z
= 0 (A.11)
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Potential temperature

O(ǫ3) : θ
(3)
τ ′ + u∞ · ∇ηθ

(3) = 0

O(ǫ4) : θ(3)τ + θ
(4)
τ ′ + u∞ · ∇xθ

(3) + u∞ · ∇ηθ
(4) + u(0) · ∇ηθ

(3) + w(0)θ(2)z

=
L∗∗Γ∗∗q∗∗vs

p0

(

Hqv
C

(0)
d + (Hqv

− 1)C(0)
ev

)
(A.12)

assuming there are no external sources of heat, i.e. S̃ǫ
θ = 0. Again, the advective

derivative of θ(4) along τ ′ − η characteristics is eliminated by sublinear growth
condition, so (A.12)2 simplifies to

θ(3)τ + u∞ · ∇xθ
(3) + u(0) · ∇ηθ

(3) + w(0)θ(2)z

=
L∗∗Γ∗∗q∗∗vs

p0

(

Hqv
C

(0)
d + (Hqv

− 1)C(0)
ev

)

.
(A.13)

Note that for u∞ = 0 the leading order equations (A.5), (A.10), (A.11) and (A.13)
become the leading order equations derived in [KM06].

A.1.2. Leading Order Equations from Bulk Micro-Physics

From the equation for the transport of water vapor arise the following equations

O(ǫ−n) : C
(−n)
d ∼ C∗∗

d δq(0)vs H◦q
(0)
c = 0

O(ǫ−n+1) : C
(−n+1)
d ∼ C∗∗

d δq(1)vs H◦q
(0)
c = 0

O(ǫ−n+2) : C
(−n+2)
d ∼ C∗∗

d δq(2)vs H◦q
(0)
c = 0

(A.14)

with

δqvs = qvs − qv. (A.15)

Equation (A.14)1 allows to distinguish two regimes with respect to the micro-
physics: The regime of leading order saturation where δqvs is nonzero only at

higher orders and the non-saturated regime where q
(0)
c = 0, i.e. the cloud water

mixing ratio is zero at leading order. The equations for the two regimes are
summarized below.
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Saturated air

q
(2)
vs,τ ′ + u∞ · ∇ηq

(2)
vs + w(0)q(0)vs,z = −C

(0)
d

q
(1)
c,τ ′ + u∞ · ∇ηq

(1)
c = 0

q
(2)
c,τ ′ + u∞ · ∇ηq

(2)
c + q(1)c,τ + u∞ · ∇xq

(1)
c + u(0) · ∇ηq

(1)
c = C

(0)
d − C(0)

cr

q
(0)
r,τ ′ + u∞ · ∇ηq

(0)
r = 0

q
(1)
r,τ ′ + u∞ · ∇ηq

(1)
r + q(0)r,τ + u∞ · ∇xq

(0)
r + u(0) · ∇ηq

(0)
r = 0

(A.16)

Again by using sublinear growth condition, the equations simplify to

− w(0)q(0)vs,z = C
(0)
d

q(1)c,τ + u∞ · ∇xq
(1)
c + u(0) · ∇ηq

(1)
c = C

(0)
d − C(0)

cr

q(0)r,τ + u∞ · ∇xq
(0)
r + u(0) · ∇ηq

(0)
r = 0

(A.17)

The saturation vapor mixing ratio expands as

qvs = q(0)vs (z) + εq(1)vs (z) + ε2q(2)vs (η, x, z, τ
′, τ) +O(ε3). (A.18)

See [KM06] for the derivation.

Non-saturated air

q
(0)
v,τ ′ + u∞ · ∇ηq

(0)
v = 0

q
(1)
v,τ ′ + u∞ · ∇ηq

(1)
v + q(0)v,τ + u∞ · ∇xq

(0)
v + u(0) · ∇ηq

(0)
v = 0

q
(1)
c,τ ′ + u∞ · ∇ηq

(1)
c = 0

q(1)c,τ + u∞ · ∇ηq
(1)
c + u(0) · ∇ηq

(1)
c + q

(2)
c,τ ′ + u∞ · ∇ηq

(2)
c = −C(0)

cr

q
(0)
r,τ ′ + u∞ · ∇ηq

(0)
r = 0

q
(1)
r,τ ′ + u∞ · ∇ηq

(1)
r + q(0)r,τ + u∞ · ∇xq

(0)
r + u(0) · ∇ηq

(0)
r = 0

(A.19)

Sublinear growth condition yields
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q(0)v,τ + u∞ · ∇xq
(0)
v + u(0) · ∇ηq

(0)
v = 0

q(1)c,τ + u∞ · ∇ηq
(1)
c + u(0) · ∇ηq

(1)
c,η = −C(0)

cr

q(0)r,τ + u∞ · ∇xq
(0)
r + u(0) · ∇ηq

(0)
r = 0.

(A.20)

The equation for the evaporation source term is

C(0)
ev = C∗∗

ev

(

q(0)vs (z)− q(0)v

)√

q
(0)
r . (A.21)

A.1.3. Average Equations

As explained in section 2.2, all quantities are split into η-averages defined in (2.44)
and perturbations. Because u(0) and π do not dependent on η, they are not affected
by averaging. Averaging (A.10), (A.13) and (A.11) yields

w̄(0)
τ + u∞ · ∇xw̄

(0) + πx = 0

θ̄(3)τ + u∞ · ∇xθ̄
(3) + w̄(0)Θ(2)

z =
L∗∗Γ∗∗q∗∗vs

p0

(

Hqv
C

(0)
d + (Hqv

− 1)C
(0)
ev

)

ρ(0)∇x · u(0) +
(

ρ(0)w̄(0)
)

z
= 0

(A.22)

A.1.4. Perturbation Equations

Subtracting (A.22)1,2 from (A.10) and (A.13) yields equations for the perturba-
tions

w̃(0)
τ + u∞ · ∇xw̃

(0) + u(0) · ∇ηw̃
(0) = θ̃(3)

θ̃(3)τ + u∞ · ∇xθ̃
(3) + u(0) · ∇η θ̃

(3) + w̃(0)Θ(2)
z =

L∗∗Γ∗∗q∗∗vs
p0

[

Hqv
C

(0)
d −Hqv

C
(0)
d + (Hqv

− 1)C(0)
ev − (Hqv

− 1)C
(0)
ev

]
(A.23)
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A.2. Extension to General Stratification

The derivation of the model (2.70) relies on the assumption that perturbations
of potential temperature from a moist adiabat are of order O(ε3) and thus Θ(2)

satisfies (2.53). If this condition is relaxed, the ansatz still allows for the derivation
of a closed model. Let Θ(2) denote some arbitrary background stratification for
the purpose of this section. Define the leading order moist adiabat by

Θ(2)
z 6= θmoist

z := −L̂q(0)vs,z. (A.24)

The resulting counterpart to (2.60) then reads

σw̄(0)θmoist
z +

(
Hqv

w̃(0)
)
θmoist
z = L̂Hqv

C
(0)
d . (A.25)

Repeating the steps in subsection 2.2.5 yields the modified equations

θ̄τ + u∞ · ∇xθ̄ +
(

Θ(2)
z − σθmoist

z

)

w̄ = θmoist
z w′ (A.26)

for θ̄ and

θ′τ + u∞ · ∇xθ
′ +
[

Θ(2)
z − (1− σ) θmoist

z

]

w′ = σ (1− σ) θmoist
z w̄ (A.27)

for θ′. Replacing (2.70)3,6 by (A.26), (A.27) still yields a closed model, but with
supposedly quite different properties. The analysis of this modified model is not
pursuit here.
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Abstract

The thesis presents the analysis of a reduced model for modulation of internal
gravity waves by deep convective clouds. The starting point for the derivation
are conservation laws for mass, momentum and energy coupled with a bulk micro-
physics model describing the evolution of mixing ratios of water vapor, cloud water
and rain water. A reduced model for the identified scales of the regime is derived,
using multi-scale asymptotics. The closure of the model employs conditional av-
eraging over the horizontal scale of the convective clouds.

The resulting reduced model is an extension of the anelastic equations, linearized
around a constant background state, which are well-known from meteorology. The
closure of the model is achieved purely by analytical means and involves no addi-
tional physically motivated assumptions.

The essential new parameter arising from the coupling to a micro-physics model
is the area fraction of saturated regions on the horizontal scale of the convec-
tive clouds. It turns out that this parameter is constant on the employed short
timescale. Hence the clouds constitute a constant background, modulating the
characteristics of propagation of internal waves. The model is then investigated
by analytical as well as numerical means. Important results are, among others,
that in the model moisture (i) inhibits propagation of internal waves by reducing
the modulus of the group velocity, (ii) reduces the angle between the propagation
direction of a wave-packet and the horizontal, (iii) causes critical layers and (iv)
introduces a maximum horizontal wavelength beyond which waves are no longer
propagating but become evanescent. The investigated examples of orographically
generated gravity waves also feature a significant reduction of vertical momentum
flux by moisture.

The model is extended by assuming systematically small under-saturation, that is
saturation at leading order. The closure is similar to the original case but requires
additional assumptions. The saturated area fraction in the obtained model is no
longer constant but now depends nonlinearly on vertical displacement and thus on
vertical velocity.



Zusammenfassung

Die Arbeit präsentiert die Analyse eines reduzierten Modells für die Modulation
von internen Schwerewellen durch hochreichende Konvektionswolken. Der Aus-
gangspunkt der Herleitung sind Erhaltungsgleichungen für Masse, Impuls und En-
ergie, gekoppelt mit einem

”
bulk“ Modell für die Feuchteprozesse, welches die

Entwicklung der Mischungsverhältnisse von Wasserdampf, Wolkenwasser und Re-
genwasser beschreibt. Mittels Techniken der Mehrskalenasymptotik wird ein re-
duziertes Modell für die identifizierten Skalen des analysierten Regimes hergeleitet.
Die Schließung des Modells verwendet bedingte Mittelungen über die horizontale
Skala der Konvektionswolken.

Das resultierende reduzierte Modell ist eine Erweiterung der aus der Meteorolo-
gie bekannten, um einen konstanten Hintergrund linearisierten, anelastischen Gle-
ichungen. Hervorzuheben ist an dieser Stelle, dass die Schließung rein analytisch
funktioniert und keine zusätzlichen physikalisch motivierten Approximationen not-
wendig sind.

Der wesentliche neue Parameter, welcher durch die Koppelung mit dem mikro-
physikalischen Modell hinzukommt, ist der Flächenanteil gesättigter Bereiche auf
der Skala der konvektiven Wolkentürme. Es zeigt sich, dass dieser Parameter
auf der betrachteten kurzen Zeitskala konstant ist. Die Wolken bilden also in
dem Modell einen konstanten Hintergrund, welcher die Eigenschaften der internen
Schwerewellen moduliert. Im weiteren wird das Modell sowohl analytisch als auch
numerisch untersucht. Zentrale Ergebnisse sind unter anderem, dass Feuchtigkeit
(i) die Ausbreitung von Schwerewellen beeinträchtigt, bedingt durch eine Re-
duzierung des Betrags der Gruppengeschwindigkeit, (ii) den Winkel zwischen der
Ausbreitungsrichtung eines Wellenpaketes und der Horizontalen reduziert, (iii) kri-
tische Schichten erzeugen kann sowie (iv) eine maximale horizontale Wellenlänge
bewirkt, oberhalb welcher Moden sich nicht länger vertikal fortpflanzen, sondern
mit zunehmender Höhe abklingen. Die untersuchten Beispiele von orographisch
erzeugten Schwerewellen zeigen zudem eine deutliche Reduzierung des vertikalen
Impulsflusses durch Feuchtigkeit.

Das ursprüngliche Modell wird erweitert, indem systematisch kleine Untersätti-
gung, d.h. Sättigung in führender Ordnung, angenommen wird. Die Schließung
funktioniert ähnlich wie im ursprünglichen Fall, braucht jetzt aber zusätzliche An-
nahmen. Im resultierenden Modell ist der Flächenanteil der gesättigten Bereiche
nicht länger konstant, sondern hängt nichtlinear von der vertikalen Auslenkung
und damit von der Vertikalgeschwindigkeit ab.



Lebenslauf
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