Takustral3e 7
D-14195 Berlin-Dahlem
Germany

Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

THOMAS WoOLF?

Positions in the Game of Go as Complex Systems

1Department of Mathematics, Brock University, St.Catharji@anada and ZIB Fellow

ZI1B-Report 10-19 (July 2010)



Positions in the Game of Go as Complex Systems

Thomas Wolf
Brock University
St. Catharines, Ontario, Canada
WWW: http://www.brocku.ca/mathematics/people/wolf/
Email: twolf@brocku.ca

Abstract—The paper gathers evidence showing different di- II. CONTINUITY VERSUS DISCRETENESS

mensions of the game of Go: the continuous and discrete nature . . . .
of the game angd different types of relations between state , Although the game Of Gois St.nCtly speaking fully dls.crete
variables happening on ultra local, local, regional, and global it nevertheless has partially continuous aspects which ile w

scales. Based on these observations a new continuous local modeiefer to below simply as ‘continuous’ or ‘continuity’ altbgh
for describing a board position is introduced. This includes the they are of course only approximately so.
identification of the basic variables describing a board position
and the formulation and solution of a dynamical system for their A. Continuous Aspects of Go
computation. To be usable as a statlc_evaluat_lon function for a  \With two players alternating in making a move the game
game playing program at least group-wide (regional) aspects will _ g .
have to be incorporated. definitely has discrete aspects. But Go also shows contsuou
features, especially when the influencecbhinsmatters, and
|. INTRODUCTION when the number ofiberties is not crucial. Based on these
When someone invests much time into a project, inwbservations influence values at points and strength vaities
using a computer with exclusively one operating systeno, inchains will be represented by continuous functions in the ne
programming using only one programming language, or intoodel described in section VI.
playing one specific game then the person is naturally bjasedThe first support for the claim of the partially continuous
and it is almost impossible to convince him or her that anotheature of Go comes from the fact that the number of legal
operating system is ‘better’ or that a different game isdear board positions on &9 x 19 board which according td?], [?]
or ‘more interesting’ (whatever that is supposed to mean¥. about0.011957528698 x 3301 ~ 2.081681994 x 10'7°, and
In this contribution the author tries to do something exactby far exceeds the number of possible different scores
like that: to justify the claim that the game of Go is differen2 x 19% for integer komi as well as for half-integer komi).

from other board games, and that it shows features of complEixerefore many different positions must have the same score
even if one is 50 or 100 moves into

systems. '
We will show that Go can be described along different ang KJ‘\ the game. Although this statement
fairly independent dimensions; that Go is a rich challenge 0 theoretically still allows for the
that can neither be ‘solved’ by a mathematical formula, ndr | | X case that just one move gives the
be played nearly perfectly by a single elegant computationp | | 1 optimal result and all other remain-
algorithm. The purpose of this paper is not to establish ing legal moves give a lower final
superiority (in any sense) of one game over another, but fe score, this is extremely unlikely in
analyse why computers do not play Go as well as, for exampl; calm positions ear!ler in the game.
Chess. Statements will not be proven but justified by exasaplé (Of course if one side plays a large
In section Il it is argued that Go has inherently continu ::ég threat then there is often just one
ous and discrete characteristics which suggest an inteetivi | | g possible reply.) _ _
continuous-discrete problem solving technique like the o | An exqmple supporting the C|a_lm
introduced later in section VI. @ of partial continuity is shown in
In section |1l a different dimension of Go is discussed. It i P Diagram 1 which is taken fron®],
shown that there are (at least) four spatial types of redatio b p. 19. It shows points A-F as pos-
between points, stones and chains on the board. ‘ sible places forQ) to move next.

The richness of Go also becomes apparent from the manyya a1 () to move Althougr:r;[h_ey will I?{ahd to dt|_ffere|nt
different solution strategies which have been tried so f?fomparable options: A.. ames, their game-theoretic values
Section V describes a few. A new approach to computer Go are very close if not equal.
is outlined in section VI. The second example shows how Go is a game of trade and

More Go-specific content is given in the appendix. Speciatot simply one of finding a "killer"/magical move which inex-

ist Go terminology set intalic in the text is explained there. plicably does the job. The possibility to trade approxirhate
equal values (of possibly different qualities, like areaiagt

978-1-4244-3878-5/09/$25.00)2009 IEEE safety) demonstrates the continuous side of Go too. Nétural



the possibility for exchanges of continuously-valued te&gi reversible. More details are given in the appendix.
is higher at earlier stages of the game, when the board s stil 19

mostly empty, as in the above example. Diagram 2 shows an 18 | ! ! !

example from the early middle game: the position after move 17 (P# f}i

49 in a professional game between Yun Seong-hy@ndnd 16 —O o

An Yeong-kil (O) played on3* Jan 2001. The task fdp) is 1 ®

to strengthen his weak group mark&l 13 b ’O*
The need fo)) to act, and offer or enforce a trade, comes 12 O

from the fact that a group can survive permanently only if it 11 [ # p

surrounds at least two separated empty points on the board, 8 B i O+O

i.e. there is a threshold for the minimum size and extension 3

of a group of stones to be stable. But in Diagram 2 the stones 7 Q-

&) currently do not have that needed control on empty points. 6 )

Neighboring assets th&d) still has at his disposal for trading 5 %@C ® o 1®

are some potential on the lower edge and some minor potential g 28 #@ @ ]

on the@) dominated right edge. An idea for an exchange could > b BO)A ]

be to offer @ total control of the right edge, and increased 1 ‘ ‘ ‘ | l

influence on the bottom edge, in exchange for more influence abcdefghjklimnopgrst

and strength of th€&X) stones in the center. In the appendix Diagram 3. @ to move.

we discuss in more detail how@) attack on the stone at A, C. Unbounded Amplification

and a sacrifice on B_can_ achieve that. Although 'FW(_) MOVES continuous processes with discrete outcomes, like all real
(A and B) are shown in Diagram 2, often many variations ajs games (hockey, soccer, rolling dice, roulette,..) ealr

possible, but sometimes only one move is able to initiatejig, gecision processes, are of interest as they show on oc-
(pseudo steady) shift of potential. casion an arbitrarily large amplification of minor diffeces

19 in continuous input data to result in a discrete outcomes&he
18 | | | R are often dramatic events, for example, when a football just
17 j ‘ d} touches a goalkeeper, then hits the post, and scores or does
16 O not score. Such branchings are not restricted to games. The
15 [ outcome of these processes is a discrete results whichhudten

ig O N much impact, and can not be reversed. Therefore the decision

12 process has, if necessary, to be flexible enough to provige la

11 H@ o resources for trying to predict the outcome.

10 A In professional Go it is often the case that a game is won
9 only by a small margin, sometimes by the smallest possible
g ’ tk margin of 1/2 point (half integer outcomes resulting frontf ha
6 - integerkomi)). Thus, when a decision such as that in Diagram
5 Aéé 3 has to be made, it is crucial that it be a well-informed
4 Q) choice. In this case the value of the lower right corner can
3 é}Q ? be determined exactly, but the point-value of the weak, but
i { { ] extended,() group on the lower edge is tied to the rest of

abcdefghjklmnopgrst the board and can only be estimated. For computers correct
Diagram 2. () to move. estimation still implies large simulations.

In a game like Chess one would do a quiescence search, i.e.

B. Discrete Aspects of Go one would search locally deeper in the search tree, as long as

That board aames live in a discrete domain of trees tt}e situation is not quiet — e.g. as long as stones can still be
9 8aptured in the next move, etc ..., whereas in Go this is not

a!ternatmg MOVes 15 (_)bvu_)us. A d'ﬁerem type of a s’.tro.ngef‘(raasible. In Go, searches are either always done to the end of
discreteness / branching is shown in Diagram 3. This is tlﬂgze game (Monte Carlo search), or are done mostly too flat

position after move 48( ), in a game between two hlgh(?r]nini-max search) with many local threats being able to push

level amateur p!ayers. For comments on this position pleel[ % real issue of a fight out of the horizon of visibility foreth
see the appendix.

' . earch (even if one might be able to design counter measures
@ moving next in Diagram 3 can attack at A or B, an$
. . or clear cut cases).
either get the corner, or give the corner @ but weaken
the @® stones with strategic consequences. Although the two lll. RELATIONS ON DIFFERENTSCALES
alternative moves on A and B are spatially close, the regulti  When designing a solution process, and determining the
trade has a lasting effect on a more extended area and is ndgika structures that are to be used, one wants to minimize the



number of variables and one wants to minimize the numbafluence.

of dependencies between these variables to increaseiwdfect | g

9000 0000
speed, i.e. to compute deeper and achieve a higher playingg ! I.:ﬁzgz.::.:xtxi.
strength. %g *:*A'.‘:* *:‘x':*:

To minimize the number of dependencies one needs algcyg M *.*.4.&# *.’.‘.i
rithms to be as local as possible, for example to investigatqy | ’==“===‘
only relevant followup moves which are in some sense ‘local’'l3 + b
to the previous move. ﬁ '©.©

In the next short sub-sections we give evidence how rejg DO
lations between variables that describe the situation inoa G 9 [{@ :o:o
game can be of different nature and involve information that 8 *O‘
is available locally or only globally. We start with the most 7 *8'0
simple and preferred type of relations which we call local an g *.
extend to ultra local, regional and global as need arises. 4 .i

)
3 f
1
A. Local Relations abcdefgh]j mnopgqrst

The most obvious interactions in Go are purely local - thel9
interactions between neighbourirdpaing and their shared

Diagram 4. Several local positions

liberties. %675

The capture rule in Go state# chain of stones (of one 15 “.2.'
colour) is captured (and by that all its stones are takenloéf t 14 [ PR
board) when the opponent occupies all adjacent po{ste %g +4
appendix). Even if not captured, chains are considered dead 71 *.'.
the end of the game if the opponent can show that a capturgg (25) 1.‘
can be enforced. Thus, all that matters for this essentlal ru 9 | D)
of Go is the immediate neighbourhood of chains. 8 Q S

§

For a local model based on this observation the eIementaryg
objects (calledunits in the remainder of this paper) would
consist of all chains and gtloints (empty intersections on the
board). All that would be stored for a unit would be

Ve’ Sdch £

RPNWhO
!

« its name (for a point its coordinates and for a chain its
index),
« a list of neighbouring units (points and chain indices), )
. some data describing the state of this unit, for exampleBa Ultra local Relations
strength value for a chain (e.g. the probability of suryival If a chain is captured then on the arising empty space many
and for a point the influence value (e.g. the probabilitgoints (i.e. units) appear and start to interact — suddenly i
of becoming owned by) or @ at the end of the game), matters what the shape of the captured chain was. For example
but when the throw-in chain@ and 9 at the top of Diagram 4
« not the shape of the chain. are captured (as at the top of Diagram 5) then the shape of the
) €9 chain implies that the capturing chain will be dead whereas
Although chains can become as large as the board, we sl chain capturing® will be alive. (O can always play at R
call this modellocal because it is only the immediate neighy, 5 and live.) When chains can not be represented by a few
bourhood on which the state of each unit depends. To give gfimpers as in the local model but if their shape matters then
example semeafights (races to capture), for example betweege 4| thisultra-locality.
© and@ on the right edge of Diagram 4, could be solved by The question arises: Why should one consider locality if,
such models, as could any other local fights which end whgfl he precise in computations, eventually one would have to
one chain is captured, for example, when chains get so kignsider ultra-local data and relations anyway? The answer
that their survival is essential. is: The neighbourhood of a chain does not hold enough infor-
Another type of tactical question that is in the range of locanation and the shape/interior of a chain becomes integestin
models is how far one side can invade enemy territory withnly if the chain gets captured and if in addition the chain
the next move, so questions that can be answered basechad more than 3 stones and also not too many stones because

abcdefgh] mnopgqrst
Diagram 5. The same positions at a later stage



the capturing chains would otherwise live independentlthef the ko-rule (to avoid loops, see appendix). Before continuing
shape of the captured chain. with the example it should be noted that the semeai on the

Thus, working by default in a local model, and going ultraright side is settled. Even if) would move first, he would
local only when necessary (e.g. when evaluating eyes)cesdustill be behind one move and would get captured. But with an
complexity compared with working ultra-locally throughiou on-going ko White play€c) in Diagram 5 and challenge@
either
) o . « to answer with@Q) and to stay ahead in the semeai but

Apart from ultra-locality, could a sufficiently sophistieal allow O to capture@, or
local model be rich enough to derive all Go knowledge and
play almost perfectly, given enough computing power?

How about positions where a move has a long-distance
effect? For example, the sequence of moves startingWiih
Diagram 5 could finally catch the cha@ in Diagram 4 if the
stone@ in Diagram 4 were not present. Although it would be
difficult for a local model to realize the crucial role @ this The consequence of the above considerations is that there
is not a good counter example for locality in Go. For examplean not be Go programs that are elegant/compact and efficient
in physics waves can propagate long distances and fields e@nhe same time. To be efficient the programs have to take
be far ranging and still be described purely by local refaio advantage of relations being local when that is the casehhtit t
(differential equations instead of integral equations). requires much Go specific domain knowledge. For example,

An example for a concept in Go that caot be described pure Monte Carlo type programs are compact but not as
locally in the above sense is the conceptirddependent life efficient as programs could be because they know almost
which is defined recursivelyA chain is alive if it participates nothing about local or group-wide relations. The procedure
in at least two living eyes and an eye is alive if it is surroedd described in section VI are efficient and compact, but they
only by living chains. have to be extended by life-and-death knowledge, by more

Thus, life is not necessarily the property of a single chaknowledge about local stability dependencies, and by dloba
but of a whole set of chains which are all alive, or all deagearch. Thus to become a strong full-game playing program,
An (artificial) example is shown in the upper left corner ofuch a program would definitely no longer remain compact.
Diagram 4. The life of0 depends solely on who plays next The essence is that Go positions are complex hierarchical
at M. If this is @ as in Diagram 5 then a(D) are dead. systems without a mathematical, or compact algorithmic,

It is important to realize, that the property of life of asolution.
whole group of chains has to be verified at once, and canThe example in Diagram 2 supports this conclusion. When
not be decided in an iterative local process based on a Iogqhking on a large scale, the possibility of planning to
dynamical model, starting with some initial values for tk&#s exchange areas, allows one to cut down the number of moves
variables and then trying to recognize exact life through aRat need to be examined in detail. This simplifies the proble
iteration process. The crucial point is the recursive matfr for humans. But, in Go, what is relatively easy for humans
the definition of life. (planning, being creative to move the solution processairt

The range of this non-locality would be the range of alhto a more abstract domain) is hard for computers.
neighbouring chains whose life status is yet undecided, andrne sijtuation is different in other games. For example, the
which are dependent on each other somehow. The typical sigine of Chess is essentially purely global because queens,
of such undecided areas would typically be much less than gks and bishops can move over the whole board in one move
whole board, so one could call relations between the units giq pawns can be promoted, and turn into any piece. Thus,
such a group of chains regional or group-wide, but not globghe different parts of the Chess board are much more causally
D. Global Relations linked. Imagine how difficult a Chess game on a 19x19 board

would be, with about 30 pieces being able to move over the

Are there further causal relations between parts of thecbogfnole large board in just one move! Also, Chess is completely
which are not local, or group-wide? The answer is yes. Thgscrete in its nature. To be clear, the issue of complexity
stronger a player is, the more wide-ranging are the efféets tspoyid not be mistaken for difficulty. Both games — Chess
(s)he consider. But, even for weaker players some posiit®s gng Go — are too difficult to be solved by computers and
of a truly global nature, likéo situations. When a ko threat isz,e therefore in some sense ‘equally difficult’ but Go shows

played, areas which are settled may become unsettled if aﬂ%perties of complex systems which most other well-known
threat is not answered, and thus one side plays two times iggmes do not have.

row in that area. This is illustrated in the following examapl

For @ to live in the lower right corner of Diagram 4 at first
(® has to be captured as in Diagram 5@yand ther@ has to
put a stone onto the position of the forngex O instead wants  In the following subsections we look at the pros and cons
to re-capturef) but is not allowed to do this instantly due toof different approaches to computer Go.

C. Group (regional) Relations

to link @ to the other black stones in the corner and live
there but to loose the semeai race becduswill move
the 274 time in a row in the semeai and thus be ahead.

IV. SUMMARY ON CONTINUITY AND LOCALITY

V. DIFFERENT SOLUTION PARADIGMS



A. Offline versus Online Computations « Information coming from different knowledge bases,
solving different sub-problems, and describing different
issues, has to be merged to reach a single decision:
"what is the best next move”. The quality of merged
knowledge is typically at a much lower level than the
specialized high level knowledge itself. Thus, knowledge-
driven programs are good if the whole problem reduces

One way to characterize each method is its ratio of computer
time spent before the game to that spent during the game —
offline versus online. Computational tasks are

1) suitable for online computations, i.e. computations- dur
ing the game, if the computational tasks

« are relatively quick to perform, and to the solution of a tactical sub-problem for which a
« hardly ever occur in that form twice, i.e. the prob-  specialized module exists, but not if dual purposes have
lems are too numerous to store, and are to be pursued simultaneously at a high level.
2) suitable for offline computations if they « The more involved the software for the knowledge base

« occur relatively frequently, i.e. the problems are not ~ (Pattern), or automatically generated (opening, inter-
t0o numerous to store. mediate results of local tree-searches), pre-generated

eye-database,..), 100’s of tactical modules written over
decades by one person or a team - the harder it gets for
someone new to penetrate such a package, and to continue
developing it.

« Knowledge-based programs do not scale — i.e. they can
not easily, or even at all, convert computing power into
strength.

The essence of this statement is that any method which
concentrates on only one side of this duality is seriously
handicapped. For example, it is impossible to pre-evalatite
positions which can come up after 50 moves and it is impossi-
ble to compose all pattern of size, sa§,x 16 which may very
well be the extension in one direction of a weak group that
fights for life. It also is not possible to reduce the esserice o
position with, say, 50 stones to manageable amounts of ideas
patterns, and concepts ... that can be pre-computed aredistor”
A position can change its nature completely by displacing aBy collecting statistics on patterns occurring in professi
single stone by one point, with the consequence that a laddames, and then nesting these patterns, and organizing them
now does not work,... . As a consequence online computationa database, it is possible to achieve relatively high lfm t
can only partly be compensated by offline learning. Orig)% range) prediction rates for moves in professional games
could argue that professional human players can not do lafgee P] and other papers by Stern et al). The problem with
computations online (i.e. not do a tree-search with 1000s sich approaches is that the programs have no understanding
nodes per second), i.e. that the offline/online ratio is Varye of the situation so they occasionally make moves which, in a
for them. Although this is true, current Al is very far awaycrucial situation, are totally wrong and thus ruin a game.
from implementing a human professional Go player. With the
rise of Monte Carlo programs the trend was rather in the oth®r Monte-Carlo programs
direction of a low ratio offline/online.

Learning through statistics from professional games

Based on an early concept for Monte-Carlo (MC) simu-
lations applied to Go7], this approach started to dominate
computer Go in recent years when combined with the UCT

As remarked above in section Ill-A, relations betweeR|gorithm [?], [?], which is a tree search method based on
chains are often purely local. Naturally, it would be an i@p  ypper Confidence Bounds (UCB). This type of approach (see
priate waste of search effort to solve a local problem (sémea g. p]) produced new programs -2|[ [?], [?] — that are
local invasion) by a wide search and thus exponentially leggonger than the previous best programs, by an equivafent o
effective than through a narrow search. But pruning seargbe handicap stones. For the first time it was possible to beat
requires knowledge. high dan professional players (at least in the first game)whe

Knowledge based programs were the more successful 0Bggting with 7 handicap stone<?].
in the first three decades of computer Go. Their advantage isrhjs strength increase was made possible by abandoning
to solve specialized problems (opening moves, local lifé¢ afitial knowledge completely, avoiding the derivation qfes
death fights, creating patterns of effective shapes, ...3 akjal domain knowledge, and thus saving the effort of merging
strong amateur Dan (master) level. But they have disadva@iowledge from different sources. Instead they performed a
tages: progressively selective tree-search, based on success oht

« For knowledge to be of increasing quality not only doesioves learned during the search. The UCT formula provides

the effort of acquiring and maintaining the knowledge compromise between exploring new moves and replaying
increase, the domain of applicability also shrinks. In otheuccessful moves and exploring their consequences. Ajthou
words, situations on the board need to be specific to hasgarting out only with random move sequences, and perf@min
efficient and exact algorithms and procedures describitfipusands to millions of simulation games, just to find the
them accurately. Thus the cost-benefit balance gets worgst move, this method can convert, at least to some extent,
the higher the quality of the knowledge is. computing power into playing strength, and thus is able,

B. Knowledge based programs



for example, to utilize large parallel computer clusterBeT chains are given only once at the very beginning when the
following are the principal problems of this approach: first position is evaluated (in a game the empty board or the

. If professional games are played to the end then tf@ard just with handicap stones).
result is typically in the 5-point range. With a game To check the correctness of numerical computations the
taking on average 250 moves this means that one si@sulting polynomial system for the unknowns (black/white
was on average onlg% of a point per move better thaninfluences at points and strength va[ues of chains) was a&olve
the other side. As a Go player it is hard to imagigge analytically with all its complex solutions for small pasits.
of a point! It would be very expensive to derive suchn general, there was only one real solution with values in
tiny relative advantages of one move against anothi&e interval0 . . . 1. The only observed case where the solution
move purely from a statistical approach. Instead, usifj the dynamical system did depend on the initial numerical
knowledge and logic it is often possible to make ¥alues was the case when two chains of opposite color were
statement about the relative value of moves without doirgjtached to each other and both had only one liberty. This
any computations by just recognizing minor differencesituation is obviously very unstable, whoever moves next
between otherwise equivalent moves. One could argg@@ptures the other’s chain. For such ’hot’ situations aicstat
that one could program that knowledge and add suéhalysis is of only little value.
routines to MC tree search but then one is back to all The positive aspects of this algorithm are its simplicity,
the problems of knowledge based programs, especialbustness, speed, global nature, and the lack of any attific
losing scalability gradually, as more knowledge is addefnd thus strictly speaking wrong) parameters. The alyorg

« The larger the board is, and the earlier it is in the gam@eakness in not recognizing static life or death is shared by
the longer are the simulation games performed in the tredll local iterative algorithms, as summarized in section IV
search phase, and the less accurate are the results. and should therefore not be held against it. A more complete

« Even if MC based programs should improve considerabfiescription of results is beyond the scope of this paper, and
in coming decades, it will still be highly unsatisfactornywill be published elsewhere.
if, just to beat young kids, we require large computer We can sum the probability-of-ownership for all points,
clusters, each needing their own power station for tt@nd then, for each chain, calculate the survival probgpilit

energy to run and cool them. weighted by size. These can be added to get a simple estimated
score. By performing all legal moves, and selecting the one
VI. EXPERIMENTS WITH A LOCAL MODEL with the highest score, the module can even play games.

Following the outline of section IlI-A a computer programBecause the program in its pure form does not know about
was written that takes as state variables the Black/Whiiee and death, it has hardly any chance in normal games.
influence value at each (empty) point and the probability f@& more instructive test is to perform a ranking of all legal
survival of each chain. All values are represented by realoves in the 10.4 million positions of the 50,000 profesalon
floating point numbers in the intervdl...1. A dynamical games in the GoGoD collectior?][ and to record where in
system of relations is formulated by expressing each viarialthis ranking the next move in the games appears. The large
in terms of these variables from neighbouring units. Themumber of games allows one to calculate statistics for each
values are initialized and the system is solved numerically move number. Figure 1 shows such a statistic for move number

In using the probability value$,w for one point to be 100 (a typically difficult phase for the influence function)all
occupied by@, O and the probability value$,w that at games. A point on the graph with coordinateghorizontally)
the end of the game at least one neighbouring point amdy (vertically) means that in% of the games in the position
occupied by@ , O we computeb, w from the simple system after move 100 the next move in the game is ranked in the
b+w =1, bw=wb (after expressing,w in terms ofb,w rangez...(z 4+ 1)% of all legal moves in that position.
of neighbouring units). The second formula is of course only Practically all related diagrams in other computer Go pub-
a simple ansatz but at least it is correct for extremal valledications show only the ‘optimistic’ right end of the diagna
and 1 ofb andw. not the ‘pessimistic’ left end. However, the characteristof

For chains we define the computed value of strength plying strength is not only to have a high rising graph nkar t
1 minus the probability to be captured, i.e. all neighbogiring9% mark, but more importantly to have virtually no games
points to be occupied by the opponent using the valuagere the professional move scores low. This shows that the
associated with the neighbouring units. If one drops orextyb local module that we studied still has a long way to go to
of the chain in this computation (the liberty that is leadtecome a strong static evaluation function.
accessible by the opponent and thus to implement the fact
that a capturing move is always legal (apart from ko)) then
the resulting algorithm is able to recognize life based oa tw In this paper reasons are given why board positions in the
1-point eyes. But already if 2-point eyes are involved thgame of Go show properties of complex systems. A new
algorithm will not be able to recognize unconditional life. model, and an algorithm, for computing a static influence

An incremental version of this algorithm has been impldunction is described and its strengths and weaknesses are
mented such that initial values of 0.5 for points and 1.0 fafiscussed.

VIl. SUMMARY



% of games

8 f f f f f f f f f A player who hasentecan decide where to play next. Not

L to have sente is often to be constrained into a direct answer
to your opponent’s previous play. The converse of this state
of affairs is calledgote

Sekimeans mutual, or shared, life, and involves at least one
- - chain of each colour. In its simple form, it is a sort of staffido
where two live groups share liberties which neither of them
can fill without being captured.

Josekiare generally agreed-upon sequences of play, mainly
- B in empty corners, resulting in what is considered a fair
1 1 1 I 1 1 outcome for both players.

1
0 10 20 30 40 50 60 70 80 90 99%  gemeaidescribes a race of two neighbouring chains of
opposite color trying to capture each other.

Fig. 1. A statistic of the ranking of the next professional ma@fter move Moyo is a Iarger area, potentially owned by one side.
100 in 50,000 professional games There are many playing levels in go. They are grouped
into kyu grades (the majority of amateur players starting from
about35'" kyu to 15t kyu), dan grades (strong amateur players
from 1¢ dan to7'" dan) and professional dan grades (frbth

To make this paper readable to non go players g gth professional dan). The difference between two amateur
few go specific terms are explained in this appendixevels corresponds to the number of stones the weaker player
Some formulations are borrowed from Sensei’s Librang allowed to have already on the board at the start of the

(ht tp: //s.ensei S. Xnp. net /') where more details in- game, to have a 50% winning chance.
cluding an introduction to go can be found.

A go board consists of a square grid df x 19 lines
(exceptionally9 x 9,13 x 13), The two players have an
unlimited number of, respectively, white and black stoned a APPENDIX TOSECTION |I-A
alternate in putting one of their stones onto an unoccupied
intersection of two lines. An intersection of lines on the go ) ) ) . )
board will be calledpoint if it is empty andstoneif it is This appgnd|x refers to Diagram 2, and looks in more detail
occupied. Stones of one color attached to each other will B© the options forO 's next move, .
called achain. A point (that is empty by the above convention, If O should |Iolay han Ordl't
and) that is a neighbour to a chain, is calletberty of that g gﬁgl/vnmicr)lvgi: Z§Wth(2;$0
chain. Thecapture rule of go requires that each chain has at7 threat is an. ev;an harsher
least one liberty and if the last liberty becomes occupiedhy 6 .
opponent's stone, then the chain is captured and taken ff t? attack on the white group.
board. The captured stones are prisoners and count one po t] O gangot even platly the
each after their automatic capture at the end of the game. gggaugeat%ee : ncrz)icl dlogat

The aim of the game is to surround territory and to capturg :
stones (1 captured stone is worth as much as one point of K Imnopqr st at_Q and threaten A, which
territory). The advantage t@ of moving first is usually ~ Diagram 6. @ to move will capture 4 stones. SO)
compensated b{) getting a number okomi (compensation  after O plays elsewhere. WOLlJ(I.d have toprj\@h at A%
points) which are in the range 5-7 and can be integer or half- ?a Ing very bad shape for
integer valued (to avoid a draw — calligo in Go). IS running group.

We introduce the ternoinit to stand for either a chain or a Since (O’s center group,
point (i.e. an empty intersection of lines on the board). which is an important cut-

The word field will be used for a numerical value being8 ting group, is in danger
attached to each unit like a strength field attaching a nuwakeri / of being attacked severely,
strength to each point and each chain on the board. To avo o normally O would defend
confusion with points we will call thiswumerical fieldand 4 it immediately, and directly,
otherwise avoid the word field. 3 with a sequence such as
An eyedenotes points and stones surrounded by chains %f in Dia. 7. However, the
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one color. _ S _ kimnopgrst group would nevertheless
In go the rule which forbids infinite loops of repeating . remain heavy and under at-
. oo . Diagram 7. () to move. \
sequences is called the rule and the situation to which tack, while @ could only

it applies is calledko. profit from attacking.



@ is the game’s move. It is © in Diagram 11 is the

| a flexible counter-attack that 8 ; other possible reply tdX.
B wants to either a) help his g ] The sequence 1 to 6 is an-
1 G weak group by leaning on g Q , other middle game joseki.
10 1 - the single black stone witha 4 5 (O makes small life in the
9 sequence like 1 to 6, and in- 3 (TP 94 '{.:O lower right corner ingote In
8 stalling a foothold towards 2 { |6 NORO exchange @ gets a strong
7 which the group can later 1 cutting group in sente, and
6 s . kImnopgrst s :
5 move after starting with 7 Diagram 11. @ to move. will be able to use it to attack
4 to 11, or b) (as it happened (O ’s lower middle group, or
3 in the real game) to get aneven launch a double or multiple attack also against's
2 exchange starting from theright side or upper middle groups (see Diagram 3). During
1 Klmnopgqrst game moves®) on p5,(3) the remaining part of the gam@ cannot get back his lower
Diagram 8. O to move. on f1.1,° on r12, wheré)) right corner territory and take awag) ’s territory there
A O counter attack sacrifices his center group(unlessCO) should later decide to sacrifice it).
(at least part of it temporar- Conclusion:
ily) and gets as compen- At move 49, @ is faced with an irreversible decision
sation the reduction o ’s right sidemoyo between just two reasonable mov@.in Diagram 10 chooses
Conclusion (for a Go player): the corner territory and drops later easy attacks on the life

When answering the opponent's local threat (here: to atta@kO's lower middle group@ in Diagram 11 sacrifices the
O ’s center group more severely), if it is not favourable for OrNer territory to get an easy attack on the life(0 lower
player, then he might counter by playing a threat of his owRiddle group.
elsewhere (attack o 's single stone) if that also indirectly ACKNOWLEDGEMENTS
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at the options fo) moving next.
The last move €X) — threat-

ened to play?) in Diagram 9

next. This would take away
all the lower right corner ter-
ritory of @; take away much

Q ] of his eye-space; give) ter-
‘ NE ‘ ritory in the corner, and pro-

vide secure eye-space for the

Tﬁ
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kimnopgrst lower middle white group.
Diagram 9. (O to move.  Therefore(®) would be very
big. ® is a

so-called probing move, i.e., a move that the oppor@nt
must answer immediately but where he has more than one

possible answer to choose from.
Diagram 10 shows the game

| sequence) is one of the
‘* two possible black answers
to . The sequencd) to
© is a middle game joseki.

] @ secures his corner while
> || O reduces the black corner
territory in sente and pro-

kimnopgrst vides his lower middle group
Diagram 10. @ to move. with enough eye-space for

two eyes. During the rest of
the game, it is inconceivable th@) would get another chance

to sacrifice the lower right corner, to attack the white group
driving it into the center, or to kill the white group (unless
(O should later decide to sacrifice it).
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