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Abstract

In solving large polynomial algebraic systems that are too big for standard Gröbner basis
techniques one way to make progress is to introduce case distinctions. This divide and conquer
technique can be beneficial if the algorithms and computer programs know how to take advan-
tage of inequalities. A further hurdle is the form of the resulting general solutions which often
have unnecessarily many branches. In this paper we discuss a procedure to merge solutions
by dropping inequalities which are associated with them and, if necessary, by re-parametrizing
solutions.

In the appendix the usefulness of the procedure is demonstrated in the classification of
quadratic Hamiltonians with a Lie-Poisson bracket e(3). This application required the solution
of algebraic systems with over 200 unknowns, 450 equations and between 5000 and 9000 terms.

Keywords: ——— computer algebra, polynomial systems, Lie-Poisson brackets, quadratic Hamil-
tonians

Codes: —— PACS numbers: 02.70.Wz Symbolic computation (computer algebra)
MSC2000 classification: 37J35: Completely integrable systems, topological structure of phase

space, integration methods

1 Introduction

If algebraic systems to be solved get very large then a way to convert memory needs into increased
execution time is to introduce artificial case distinctions. These could be tried for the only reason
that some variable occurs very often and one expects large simplifications in assuming to zero or
non-zero. On the other hand Gaussian elimination could require case distinctions. For example,
if a, b, c are unknowns and one of the equations of a polynomial system is 0 = ab + c3 then the
case distinction a = 0, a 6= 0 leeds in both cases to a useful simplification of the remaining system,
in one case using the substitutions a = c = 0 and in the other case the substitution b = −c3/a
and the inequality a 6= 0. Less artificial are case distinctions resulting from factorizable equations
where one distinguishes betwee the two cases that one factor is zero or non-zero and therefore can
be dropped. For the large polynomial systems described in section 1.2 both circumstances arise. In
these bilinear systems, unknowns occur often only with first degree and equations can be factorized.

The problem to be addressed in this contribution concerns the form of the general solution.
Introducing artificial case distinctions will usually result in a general solution consisting of many
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more special solutions than one would obtain by computing a Gröbner basis and a primary decom-
position. The aim of the paper is to describe an effective procedure that merges special solutions of
polynomial algebraic systems by dropping inequalities that are attached to solutions and, if neces-
sary, by a re-parametrization of solutions. The ability to merge solutions fixes the main drawback of
the introduction of case distinctions during the solution of very large non-linear algebraic systems as
those described in section 1.2 below which are too big for a traditional Gröbner basis computation
and primary or triangular decomposition.

In a ground laying and very detailed paper [1] William Sit described algorithms to solve para-
metric linear systems. Applications like the one in section 1.2 fall into this class. The purpose of
his work was exactly to avoid the generation of unnecessarily many solutions and avoid the need for
merging. Unfortunately for polynomial systems with several hundred unknowns and thousands of
terms, although sparse and over-determined, the computational tools used in [1], like the computa-
tion of Gröbner bases can not be performed. For problems of this size the computation of a general
solution is mainly geared by complexity issues, like the length of equations to be manipulated and
less by algorithmic issues.

For example, in applications we found that if any case distinctions are to be done later in the
computation then it is best to do them at the very beginning leading to short conditions which can
be used to shorten other conditions and so on instead of itroducing case distinctions when already
many eliminations have been made using long expressions which could have been much shorter if
the case distinction would have been introduced earlier. Unnecessary early growth of expressions
introducing higher non-linearity is not completey reversed by setting some variables to zero later in
the computation.

In short, the strategy we follow currently is to give the solution process as much freedom as
possible and to face the task of cleaning up the general solution by merging special branches after-
wards.

Outline:...

1.1 Notation

The formulation of the algorithm and the notation we use is taylored to its use which is the merging
of special solutions which together compose the general solution of an algebraic system as they are
produced by the package Crack ([2]).

For a polynomial algebraic system for a set X of unknowns X = {xj} we will call a solution Si

a list Si = {Ei, Ai, Fi, Ui} where

• Ei is a set Ei = {ei1, . . . , eini
} of unsolved polynomial equations 0 = eij, which is a Gröbner

basis according to some lexicographical ordering.1

• Ai is a list Ai = {xj = Rij(xk), . . .} of assignments of unknowns xj by rational expressions Rij.
None of the xj on left hand sides of assignment Ai is supposed to appear in any expression of
Ei (otherwise the substitution for xj is to be carried out in Ei). Assignments Ai will also be
used in form of a list of vanishing expressions Zi = {xj − Rij(xk), . . .}.

• Fi is a list of free unknowns appearing only on the right hand sides Rij of assignments Ai or
undetermined unknowns that can appear as well in the unsolved conditions in Ei, and

• Ui is a list of inequalities associated with the solution Si.

1The condition of being a Gröbner basis wrt. some lexicographical ordering is only necessary for the quick pre-
liminary merging condition (5).
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Let Xi be the set of xj that occur on left hand sides in Ai, i.e. Xi = X\Fi. We partition Xi = Xi+Xi

(and by that Ai = Âi + Ãi and Zi = Ẑi + Z̃i) through X̂1 = X̂2 = X1∩X2 and therefore X̃1∩X̃2 = ∅
and further

X̃1 ⊂ F2, X̃2 ⊂ F1. (1)

An overline will mark a re-parametrized solution S2 = {E2, A2, F2, U2}. With #() we denote the
number of elements of a set, e.g. #(Fi) is the number of unknowns that are free or undetermined in
solution Si. With num() we will denote the numerator of a rational expression. The ideal of a set
of polynomials (i.e. the set of all linear combinations of elements of Ei with polynomial coefficients)
is denoted by I, for example the ideal of Ei is I(Ei). With the notation Ai(H) we will indicate that
the list of substitutions Ai is carried out in a list H of expressions, for example, A1(E2). With :=
we will denote assignments like in the Pascal programming language, e.g. Z2 := A1(Z2) stands for
performing substitutions A1 in Z2 and calling the new list Z2.

1.2 A non-trivial Application

The package Crack has been used for a variety of classifications of integrable systems (see [2]). The
harder problems become the more the program must rely on introducing case distinctions and the
more solutions have to be merged afterwards. In a recent investigation [3] the merging algorithm
was especially useful, merging 90% of the solutions. The aim was to find quadratic Hamiltonians
of the form

H = (M,AM) + (M,Bγ) + (γ, Cγ) + (P,M) + (Q, γ) (2)

where M = (M1,M2,M3), γ = (γ1, γ2, γ3) are the dynamic variables, A,C are constant symmetric
matrices, B is a general constant matrix and P,Q are constant vectors, such that this Hamiltonian
admits polynomial first integrals of 3rd or 4th degree. The equations of motion are given by

dMi

dt
= {H,Mi},

dγi

dt
= {H, γi}

where Poisson brackets for any two functions F,G of the variables Yi = (M1,M2,M3, γ1, γ2, γ3) are
defined by

{F,G} =
∑

i,j

(

∂F

∂Yi

∂G

∂Yj

−
∂F

∂Yj

∂G

∂Yi

)

{Yi, Yj}, (3)

{Mi,Mj} =
∑

k

εijk Mk, {Mi, γj} =
∑

k

εijk γk, {γi, γj} = 0 (4)

with εijk being the totally anti-symmetric tensor. These linear Poisson brackets are related to the
Lie algebra e(3). Hamiltonians (2) with Poisson brackets (4) describe the motion of a rigid body
around a fixed point under gravity (Euler-Poinsot model) and the motion of a rigid body in ideal
fluid (Kirchhoff model).

For the first integral I an ansatz for a general 4th degree polynomial in the dynamical variables
Mi, γj is made with constant unknown coefficients. For I to be a first integral the Poisson bracket
{H, I}, as defined above, has to vanish identically in the Mi and γj. The set of resulting algebraic
conditions is linear in the components of A,B,C, P,Q in (2) and linear in the 200 coefficients of the
ansatz for I. But as each term of the conditions has two factors, one from each set, the problem is
non-linear (bi-linear). In our approach we assumed the matrix A to have two identical eigenvalues.
In a second investigation we restrict the dynamical variables to obey γ1M1 + γ2M2 + γ3M3 = 0
(a special motion in a plane of symmetry leading to less restrictive and therefore harder algebraic
systems) and finally we run a quantum version where Mi, γj are non-commuting operators and the
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Poisson bracket (3) is replaced by the commutator [F,G] = FG − GF and commutator rules for
Mi, γj like in (4).

Our complete classification revealed new (complex) Hamiltonians and a generalization of known
classes of Hamiltonians of Kowalewski and Sokolov [4].

Lie algebra: e(3) e(3), J2 = 0 e(3) quantum

# of unknowns (H,I,total) 17,200,217 17,176,193 17,200,217
# of equations 451 396 451
total # of terms 5469 5243 9681
average # of terms/equ. 12.1 13.2 21.5
time to solve 18h 53min ≈ 15h 11h 43min
solutions before merging 61 68 53
solutions after merging 6 6 6
HOW LONG DOES MERGING TAKE?

Table 1. An overview of the solved algebraic systems

Times are measured on a 1.7GHz Pentium 4 running in a 120 MByte REDUCE session under
Linux. The first and third case had been solved automatically whereas the second case needed some
human interaction. On the web page http://lie.math.brocku.ca/twolf/bl/e3/over.html the
conditions, the unknowns and assumed inequalities are shown as well as the solutions before and
after merging. The task to merge these solutions could not be done by hand as each solution
contains expressions for about 200 unknowns, different solutions may be parametrized differently
and with typically 60 solutions in each of the 3 investigations over a thousand merging attempts
had to be done to obtain finally only 6 different solutions in each case.

2 Merging Solutions

2.1 Preliminary Considerations

When is a solution S1 contained in a solution S2 after dropping inequalities or re-parametrising S2?
If assignments A1 are regular in solution S2 (i.e. A1(E2) and A1(Z2) do not produce singularities
through zero denominators), then S2 generalizes S1 if and only if all resulting conditions are conse-
quences of equations E1. To perform substitutions, to take a numerator and test membership of the
resulting polynomials num(A1(E2)) and num(A1(Z2)) in the ideal I(E1) does not pose a problem
and can be done efficiently.

This leaves us with the case that A1(Z2) creates zero denominators. In that case we have at
least the following necessary conditions for merger:

1. If
#(F1) − #(E1) > #(F2) − #(E2) (5)

then S1 can not be a special case of S2. For this condition to be correct we assumed above
that Ei is a Gröbner Bases according to some lexicographical ordering.

2. Substitutions A1(E2) are always regular as E2 is a list of polynomials and any variable on a
left hand side of an assignment in A1 does not occur on a rhs of A1. Therefore

num(A1(E2)) ⊂ I(E1) (6)

is an effective necessary condition to be tested.
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3. If A1(Z2) is singular then at least a necessary test can be performed by taking repeatedly the
numerator of Z2 before performing each of the substitutions A1 and testing

num(A1(num(Z2))) ⊂ I(E1). (7)

All three tests are only necessary and not sufficient as can be seen from the following 2 examples,
both arising from the application of section 1.2 and both giving singularities when computing
A1(Z2).

Example 1:

Solutions S1, S2 involve among other variables the unknowns x1, . . . , x5 (which we re-named to make
the example better readable). We have

S1 : x1 = x2 = x3 = 0, x4, x5 are free

S2 : x2 = −(x3x5)/x1, x4 = (x3x5)/x1, x1, x3, x5 are free.

Both solutions satisfy conditions (5), (6) but solution S2 satisfies the condition x4 + x2 = 0 which
would be a restriction on the generality of solution S1. This observation is uneffected by whatever
re-parametrization one would choose for solution S2, so S1 can not be a special case of S2.

Example 2:

Solutions S1, S2 involve among other variables the unknowns x1, . . . , x5. We have

S1 : x5 = x6 = 0, (8)

x7 = (x4x2)/(2x1), (9)

x1 6= 0, x1, x2, x3, x4 are free

S2 : x2 = (x2

6
− 4x5x7)/x6, (10)

x4 = (x5 − x1)x6/(2x5), (11)

x5 − x1 6= 0, x5 6= 0, x6 6= 0, x1, x3, x5, x6, x7 are free.

It is possible to include solution S1 into S2 by re-parametrizing S2, i.e. instead of parametrizing
x2, x4 in terms of x1, x5, x6, x7 to have x6, x7 parametrized by x1, x2, x4, x5 by inverting (11) and
(10):

x6 =
2x4x5

x5 − x1

(12)

x7 =
x2

4
x5

(x5 − x1)2
−

x2x4

2(x5 − x1)
. (13)

The assignments (8) do not cause problems anymore when done to the new form of solution S2.
Equation (12) becomes an identity and (13) reduces to (9).

From now on we are concerned only with situations where the tests (5),(6) are passed but where
A1(Z2) creates singularities.

2.2 The Strategy

In full analogy to the 2nd example, the algorithm described in the following subsection will, if
possible, find re-parametrization of the assignments A2 of solution S2 to assignments A2 such that
A1(Z2) is singularity free and A1(A2(E2)) is singularity free. Then a simple membership test can
establish whether the numerators of all these expressions are in the ideal of E1. If that is the case
then S1 can be dropped as it is included in solution S2 = {E2, A2, F2, U2} where A2 are the new
parametrized assignments, E2 = num(A2(E2)), F2 are the new parameters and U2 is the subset of
expressions of A2(U2) which are not in I(E1), i.e. do not vanish due to E1.
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2.3 The Merging Steps

In the following the steps of the algorithm are distinguished from comments using an italic font.
• The computation starts with performing preliminary necessary tests 1. and 2. as described in

section 2.1. If one of them fails then a merger is not possible.
• We recall from section 1.1 that Â1, Â2 share the same xj on left hand sides of their assignments.

The next step is to perform substitutions Z2 := Â1(Z2).
Do we loose generality in performing these substitutions before considering parametrizations?

The substituted xj occured only on left hand sides in Â1, Â2 (i.e. only in Ẑi, not Z̃i) and nowhere else
in the remaining objects of interest: E1, E2, Ã1, Ã2, Z2, Z̃2. The expressions in the new Z2 would
have to vanish whatever the re-parametrization would be. We therefore do not loose generality.
Instead, because the number of free parameters in a solution is usually considerably smaller than
the number of unknowns, we have #(Âi) ≫ #(Ãi). Therefore, eliminating most of the xj from

further consideration by doing Â1(Z2) narrows and simplifies the choice for re-parametrizations
below.

• From section 1.1 we recall that Ã1 = A1 \ Â1. On a copy of Z2 test whether the remaining

substitutions Ã1(Z2) are regular. If so, S1, S2 can be merged iff num(Ã1(Z2)) ⊂ I(E1).
• If execution reaches this point then substitutions Ã1(Z2) are singular. Preliminary necessary

test 3. of section 2.1 is done next doing each substitution of A1 only on the numerator of the result
of the previous substitution.

• If execution reaches this point then a re-parametrization of S2 is necessary to decide whether
merging is possible.

What form should the re-parametrized solution S2 take to make obvious that S1 is contained?
We will require that all xj on left hand sides of A2 (i.e. X2) are also on left hand sides of A1, i.e.
X2 ⊂ X1 and that A1(Z2) is regular and further num(A1(Z2)) ⊂ I(E1).

How can S2 be re-parametrized to reach this? Assignments Â2 can not be changed as the xj

on left hand sides of Â2 are assigned a value in A1 too. All that can be done is to re-write Ã2, i.e.
to solve the system of equations Z̃2 (i.e. the equations when setting all expressions in Z̃2 to zero)
for other variables than X̃2. Z̃2 has to be solved for a subset of X̃1 with #(Z̃2) many variables.
In a complete investigation Z̃2 would be solved for any such subset, for example by the methods
described in [1]2. As only one regular re-parametrization is needed, in the program Crack a less
complete but efficient and in all applications so far succesful search is performed. For example,
in the application of section 1.2 it found all possible mergings. In addition, at this stage of the
computation the program gives notice that the 3 preliminary tests of section 2.1 have been passed
so that if no suitable re-parametrization is found below then the user could check manually.

• The xj in the list X̃1 are sorted so that those xj come first which produce singularities when

substituted through Ã1 in Z2. The purpose is to try solving Z̃2 for such variables first to avoid
singularities in the later substitution Ã1(Z2).

A side issue:
Successful re-parametrizations are not unique. As Crack has been used to solve bi-linear systems
with the strategy to keep one of the two linearly occuring sets of variables linear during computation,
this aim is also pursued in a re-parametrizations. As a consequence, variables xj ∈ X̃1 which occur
linearly in Z2 get the highest priority in re-sorting X̃1.

• Initialize E2 := E2, A2 := Â2, F2 := X̃2 ∪ F2 and U2 := U2. Solve each individual equation

0 = z̃2i, z̃2i ∈ Z̃2 for one variable xj ∈ X̃1 to get its solution in the form xj = R2j. Do this by

2In the application of section 1.2 the 200 unknown coefficients in the ansatz for the first integral appear linear in
the beginning, during the computation and in each solution. That means, at all times the system can be seen as a
parametric linear system as considered in [1].
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checking all variables in X1 in the order specified above, to find one variable that occurs linearly

in z̃2i, that has a coefficient that is non-zero based in in-equalities U2 and that gives a regular

substitution xj = R2j when applied to Z2. If no variable xj and consequently no such solution

xj = R2j is found then the method stops without finding a merger. If for the equation 0 = z̃2i under

consideration a variable xj is found, then do

Z2 := num((xj = R2j)(Z2)) (14)

Z̃2 := num((xj = R2j)(Z̃2)) (15)

X̃1 := X̃1 \ {xj} (16)

Z̃2 := Z̃2 ∪ {Ã1(xj − R2j)} (17)

Ã1 := Ã1 \ {xj = R1j} (18)

E2 := num((xj = R2j)(E2)) (19)

A2 := A2 ∪ {xj = R2j} (20)

F2 := F2 \ {xj} (21)

U2 := num((xj = R2j)(U2)) (22)

Comments:
◦ The substitution xj = R2j in Z2 as shown in line (14) had already been computed when

searching for an xj giving a regular substitution. (14) is just assigning the computed value to Z2.
◦ By doing substitutions in Z̃2 in line (15) it may happen that expressions become factorizable.

In that case we drop all factors which do not contain the single xj which was on the left hand side
of the original assignment xj = R2j in Ã2 which became the original z̃2j = xj − R2j.

◦ In (17) xj is substituted by the value it has in solution S1. The new difference is another
expressions added to Z̃2 which must vanish modulo E1 for merger.

◦ If finally all equations 0 = z̃2j are solved then lines (19),(20),(21),(22) will provide the
complete list of remaining unsolved equations E2, assignments A2, list of free or unsolved variables
F2 and inequalities U2.

• If the execution reaches this point, solution S2 has been successfully re-parametrized to S2.
To include solution S1 it has to check that the remaining substitutions Ã1 (which make S1 more
special than S2) do not generate singularities: Test whether substitutions Z2 := Ã1(Z2) are regular.

Otherwise no merger is found.

• Final test: Merger is possible iff num(Z2) ⊂ I(E1). In that case from U2 expressions are

dropped that are zero modulo E2.
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