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Abstract In contrast to the well known meshbased methods like the finite
element method, meshfree methods do not rely on a mesh. The advantage
of meshfree methods lies in the fact, that they need no mesh generation and
can thus better cope with geometric changes and high dimensional problems.
However besides their great applicability, meshfree methods are rather time con-
suming. Thus, it seems favorable to combine both methods, by using meshfree
methods only in a small part of the domain, where a mesh is disadvantageous,
and a meshbased method for the rest of the domain. We motivate, that this
coupling between the two simulation techniques can be considered as saddle
point problem and show the stability of this coupling. Thereby a novel trans-
fer operator is introduced, which interacts in the transition zone, where both
methods coexist.
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1 Introduction

The usage of computer simulations in engineering and science has increasingly
became a more important and almost indispensable tool. For solving complex
problems in solid mechanics related to partial differential equations, meshbased
methods like the finite element method are a robust and powerful tool. In a
meshbased method, the continuum domain is partitioned into subdomains by
a mesh. This mesh serves as a topological map, which gives the neighbor rela-
tion between the different nodes. This process allows to convert a differential
equation into a set of algebraic equations. They have reached great success for
solving problems in solid mechanics and other related problems in engineering.
However, the performance of each method depends on the problem under con-
sideration, thus it is not surprising that the applicability of meshbased methods
to engineering problems is limited. For instance, crack propagation problems
meshbased methods suffer from difficulties, since after each crack propagation
step a remeshing has to be done.

In contrast to meshbased methods, the comparably new class of meshfree meth-
ods only rely on a set of scattered data (particles) without any a priori knowl-
edge of the neighbor relations. Consequently meshfree methods do not suf-
fer from the problems related to mesh generation and mesh refinement. Due
to their great flexibility, meshfree methods became very popular in the engi-
neering [DLTC09, TR0O7, CWYYO01] as well as in the mathematical community
[BM97, Fas02] and succeeds in capturing the interest of a broader community
of researchers. In the literature a large number of names for individual methods
can be found. For an overview of existing meshfree methods, their theory and
application we refer to [BKOT96, SL02]. However besides its great and rich area
of applications there are some aspects in meshfree methods which could benefit
from improvements. The flexibility of mesh free methods compared to the fi-
nite elements is typically paid with a certain amount of computational burden.
Moreover the meshfree lack of the Kronecker Delta property, i.e. for particles p
and ¢ and the associated basis function ¢, (q) we have ¢, (g) # 0pq, which makes
it hard to impose essential boundary conditions. A strategy to benefit from each
method is to combine them in order to profit from either one. As an example
for such a strategy, we consider a dynamic crack problem. In contrast to the
finite element method, in a meshfree method no mesh needs to conform internal
boundaries (cracks), moreover no remeshing for the propagation of the crack in
necessary. On the other hand the computational burden of meshfree methods
is harder, thus the domain with a crack is divided into two parts. In Q" is a
quiet small area around the crack tip where a meshfree method is applied, since
no remeshing for the propagation of the crack is necessary. Moreover there is
no mesh which has to conform with the internal boundaries. For the rest of the
domain, Q'; a finite element discretization can be used efficiently, cp. Fig 1.

In the literature several approaches for coupling mesh free and mesh based
methods have been proposed. The possibly first approach can be found in
[BOK95] based on a ramp function approach. Thereby the authors introduce
interface elements between the meshfree and meshbased method, in order to
enforce the continuity condition of the displacements between both methods.
In [FMHO02] a coupling with reproducing condition is employed. Analogue to
the approach of [BOK95] an interface region with a mixed approximation of a
meshfree and meshbased method with the constraint, that the finite element
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Figure 1: A 2d solid with a crack. The domain 2 is decomposed into a small
part Q" close to the crack, where a high resolution is needed and a larger domain
where a less accurate simulation suffices (Q).

shape functions are not modified, is used. The advantage of this approach is,
that a consistency of any desired order can be achieved. For more details we
refer to [HFMO00]. In the approach of [LUC97] the total displacement field is
decomposed hierarchically into a part that can be captured by finite elements
and a part that can not be represented by finite elements but by a meshfree
method. The disadvantage is that meshfree basis function have to be evaluated
for the whole domain. This is of course oppositional to a strategy to diminish
computational effort by using a meshfree method only on small parts of the
domain.

This paper is structured as follows. In the second section we introduce a
saddle point formulation in a continuous setting. In the next section a meshfree
method on the one and a mesh based method on the other part of the domain
is introduced such that a discrete saddle point formulation can be written. In
the fourth section the transfer operator, which connect the meshfree part with
the meshbased part over the interface is given. In the last section, we show that
this choice of a transfer operator ensures a stable and well defined coupling.

2 The Continuous Setting
In the following we consider a domain Q C R which is separated into
Q=Q'uQ" =E=0'NnQY

where measy(Z) > 0, i.e. we consider an overlapping decomposition.
We denote by L%() the space of 2-Lebesgue-integrable functions on 2.
Moreover, the standard scalar product is given by (-, -) r2(0) and the norm

1/2
[ (/ |u|2dQ> .
Q

Let o be a multi index with [|a|; := Zle ||, Then, for a bounded domain 2



and for m € N we denote by H™(2) the Sobolev space, given by

H™ := H™?*(Q) = {u € LP(Q) | there exists 9®u and 9%u € L*(Q) V|a| < m}

and equipped with the norm
1/2

||’LL||Hm(Q) = Z ; |aau|2dﬂ

lleclly <m

where the weak derivative (if it exists) is defined by

/aawdgz(—n“a”l/uawdﬂ Vo € C3°(Q).
Q Q

Here, C§°(Q) is the set of infinitely differentiable functions with a compact sup-

port in €.

We assume, that we have a static problem, moreover the energies on the

respective domains are given by the bilinear forms
ay(,-) T HY Q) x HY(Q) - R
an(-,)  HYOQT) x HY(QY) - R
respectively and the external forces are given by the linear forms
A() HNQ) =R
fu()  HYOQM) — R.

(1)
(2)

3)
(4)

We furthermore define the Lagrange multiplier space by M := (H'(Z))’, where
we denote by (H(Z))’ the dual of H'(Z). Let us denote by H;; the product

space of H'(Q') and H!(QY), i.e.
H,, = H' (Q) x H'(Q"),
which is a Sobolev space with the product norm [AdaT75]
oIl = ozl qny + lorrlF am) 2.

Furthermore we define
HI,H = HI,II\{O} .

such that on this space the bilinear from
a,(.7 .) = al(., .) + aH(., .)
and
f() = fl() + fn(')v

can be given. Now, the saddle point formulation reads as follows:
Find (u,A) e Hi;x x M

a(u,v)er(/\,[ t ]) = f(u) VYveH,,

Ury

b(p, { ]) =0 YoeH,,

Urp

where

b(A, [ . ]) = (A w — w) p2(g).-



2.1 The inf-sup Condition for the Continuous Saddle Point
Problem

From the saddle point theory it is well known that the choice of the space M of
the Lagrange multipliers is essential for the well posedness of the saddle point
formulation. More precisely the space H,;; and the multiplier space have to
satisfy the inf-sup condition [Bab73, Bre74, BF91], which is given by

3B:VYAe M, sup b(A,u)

uweHr 11 |||u|||

> Bl =)y (8)

Other choices of the multiplier space can result in non optimal estimates for the
discretized problem. Here, we show that our choice M = (H'(Z))’ fulfills these
demands. To do so let us recall the following facts.

For the relation between an element and its dual, we need the Riesz Repre-
sentation Theorem: Let ) be a Hilbert space and let V' be its dual. Let [ € V.
Then there exists a unique v € V for which

l(v) = (v,u) Yv e V. (9)

In addition we have
[l = Nlully.

Furthermore, let V C U be Hilbert spaces and let us assume, that the em-
bedding V < U is continuous and dense. We identify U’ with its Riesz repre-
sentation of U. Then we have the Gelfand triple

ycucV. (10)
With these tools we are now prepared for the

Theorem 1. Let us assume that there exists a bounded extension operator onto

HY(Q") (cf. [Ste70][Thm 5, p. 181]) such that for u € HY(Z) we have

u, = E(u) € H(Q) (11)
with
CleEW) |l any < llullm =), (12)
then the inf-sup condition
b\, u
36 Ve M, sup ( ) > BH)‘H(Hl(E))’ (13)
w€Hr rr |||u|||
holds.
Proof. Since
b(A A, =
sup ( ’u) > M
weti el wenr@ingoy 1wl on

it is adequate to show

A =
6 : VA e M, sup 7( 7UI)L2(H)

> Bl 2y (14)
wer o oy Tallzr @ e



then (13) follows.
Due to the Gelfand triple (10), with ¥V = L?(Z) and U = H!(Z), we can
write formally [W1o82]

(A u)r2E) = (A u) (a1 (2)y < H ()

where (-,-) is the duality between (H'(Z))’ x H'(Z). Then, by applying the
Riesz Theorem (9) there exists uy € H'(Z) such that

<)‘au>(H1(E))/><H1(E) = (U)\,U)HI(E), Yu GHI(E),
i.e. uy is the representing element of A\. Thus we write
(A wrzE) = (un, u)m (=) (15)
Inserting (15) into (14) yields

(A ur) 2 (z) (ux, ur) g1 (=)
sup = - sup — =

wem@nfoy lullar@y  wem@ngoy Nwllm @y

By choosing u; = E(uy) we obtain

(UAvUI>H1(E) (ux,ux) g1z
Yooy Turllzr o Z & Tty (16)
ur€ H(QI)\{0} | HL(QL)
L lealiZ )
> C luall g1 =) (17)
1 H’U‘)\HHl(E)H)‘”(Hl(E))’
2T Tualaia (18)
= Bl =)y (19)
Thus we have b u)
u
sup —= > Bl a1 =)y
wekiy i ] e
with =1/C. O

Thus the wellposedness of the saddle point problem given by (6) and (7) is
ensured.

3 The discrete Counterpart

In this section we consider the discrete counterpart of the continuous saddle
point formulation. In contrast to most existing works, we do not consider the
discretization of two finite element meshes with different mesh size. Here, we act
on a suggestion given in the first section, by discretizing 2; with a meshbased
and €;; with a meshfree method. Analogue to the continuous inf-sup condition
(8) we have to proof an inf-sup condition for the discrete saddle point problem.
To do so we choose for a meshfree method the moving least squares method and
for the meshbased method the finite element method.



3.1 Meshbased Methods

In order to approximate a continuous displacement field u, we employ a finite
element discretization of lower order. Let 7" denote a mesh with mesh size
parameter h > 0, such that the family {7"}, is shape regular.

Here, we use Lagrangian conforming finite elements of first order (P;) for
the displacements u and denote the set of all nodes of 7" by Aj,. The finite
element space V;, C H'(Q) is spanned by the nodal basis

Vh = Spa‘npe,/\/h {1/}1})1}

The Lagrangian basis functions 1/)3 € V; are uniquely characterized by the
Kronecker-delta property

Y(q) =6pg, DG ENK, (20)

where 0, is the Kronecker-delta. Any function uj, € V,(2) can uniquely be

written as
=3 aul, (21)
PENRL

where (7,)pen;, € R¥MWrl @, € R? is the coefficient vector. We can identify
each element of V;, with its coefficient vector (up)pens, . In the forthcoming, we
omit the superscript h whenever possible.

3.2 Meshfree Methods

As aforementioned, meshfree methods do not use mesh which makes them more
applicable for problems with highly localized behavior. The Smoothed Parti-
cle Hydrodynamics [Luc77, Mon82] - initially developed for solving astrophysi-
cal hydrodynamical phenomena without boundaries - can be considered as the
first meshfree method. Since then much effort in the further developments has
been made: Reproducing Kernel Particle Method [LL99], Element-Free Galerkin
Method [BLG94], Moving Least Squares Method (MLS) [LS81], Partition of
Unity Method [BM97] and HP Clouds [DO96]. We remark, that this list is far
from exhaustive.

Most of the approaches for the construction of a meshfree approximation lead
back to basically three methods. These are the kernel methods, the moving least
squares methods and the Partition of Unity Methods.

However, even though that these methods differ in their form, i.e. kernel
method use an integral representation whereas MLS are based on sums, they
share commonalities. Even more: any discrete Kernel method that is consistent
is identical to a related MLS approximation and any MLS approximation can
serve as a Partition of Unity Method. Here we consider the Moving Least
Squares Method, introduced by Shepard and further developed by Lancaster
and Salkauskas.

Let us assume that we have the given values u; = u(x;), ¢ = 1,..., N of a
scattered data set x = {x1,...,zny} where u is some smooth function.

Our aim is to find a function u° : Q@ — R, such that

u’(x;) ~ u; for all i = 1,..., N. (22)



In order to construct a MLS fit, we consider the approximation space being
the space Py, of polynomials with the basis {P;}?; of degree n := (m;d) ind

variables and a set of non-negative weight functions
w; : R — RE

T—XT4

> ) We furthermore claim

and the dilatation parameter p; of w;(z) = w (
that
N
U supp w; D 2.
i=1
Now, we minimize for each fixed x the quadratic functional

J(p)(x) = Z wi()(ui — p(@:))? (23)

over all p € P,.
In order to minimize (23), we set the derivative of (23) equal to zero and
obtain the system of equations

n

N N
Z w; (z)upr (z;) = Z wj(x) Zpl(xi)pk(:ci)c(z) k=1,..,n. (24)

i=1

In order to rewrite (24) in matrix from, we define the vectors
p(x) = [p1(w) pa(2) -+ pu(@)]", w() = [wi(z) wa() -+ wy(@)]T,

bi=[uy ug - uy]? and a(z) := [a1(z) az(z) ... an(z)]7.
With these definitions (24) can be written as
A(z)a(x) = B(x)b, (25)

where the matrices B := (Byj)i=1,...n and A(z) := (Ax)1,k=1,...,n, are given by
k

=1,...,n

Bir = wi(x)pe(x) and Ay = > pi(Xi)wi(2)pi(2:)

respectively.
The above matrix A(z) is also known as Gram’s matrix. The minimizer
ud(x) of (23) is given by the linear combination

N
u®(z) = Zui%(iﬂ), (26)
i=1
where the shape functions ¢; are

oi(x) = p" (i) [A(@)] " wi(z)p(z;). (27)

Thus, with the local approximation spaces given by V; C H (€2 N supp(w;)) we
obtain the global approximation space

Vs = Z%‘Vi = {Z wivilv; € Vi} € HY(Q).

Remarks:



e Since the approximation space in the MLS is the space of polynomials the
Gram matrix A(x) is called moment matrix for the weights. Note, that
this matrix has to be inverted for the evaluation of a MLS shape function.
In order to guarantee that the matrix A(x) is invertible, we have to claim
that the sets xn () Nsupp (w;) are P, unisolvent in the sense that zero
is the only function in P, that vanishes on xn(£2) Nsupp (w;).

e The choice of the dilatation parameter p is closely related to the accuracy
and stability of the approximation.

W,(\
N
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Figure 2: The domain Q with two different discretizations. On €' a meshbased
method is employed and on Q" a meshfree method is used. In the intersection
= both methods coezist.

With
Vh,s := Vi x Vs
equipped with the norm ||| - |||, we are now in a position to give the discrete

saddle point formulation:
Find (UIL,57 )\h) S VIL,S X Mh

a(uh,éa Uh,é) + b()\}u [ :LLZ ]) = f(uh,(;) Yons € Vhs (28)
b(pn, [ ZZ ]) =0 Vi € My (29)

The multiplier space My, is equipped with the norm || - [| 1 (z)) -

4 Construction and Analysis of the transfer op-
erator

In this section we introduce the transformation operator = which allows for a
transfer from the meshfree discretization to the meshbased discretization. Going



along with this construction we show the discrete inf-sup condition, where we
employ techniques from domain decomposition methods.

In order to impose the constraints, we define the following L? Projection
Th * L2(§) — Vh by

mh(w) €Vt (mh(w), p)r2q) = (W, W) r2@) Y € My, (30)
where, the multiplier space M, is defined by
My, = span{ps |s € Np}. (31)

Here, the basis functions ps, s € Ny are assumed to have the local support
suppps C suppAslz. As is the case in the mortar setting, there are several
possible choices for the basis functions ps of Mp. We follow the standard
approach, see, e.g. [BMP94, Bel99] by setting

ps =Uslz, sE€N,. (32)

Remark: Of course, for the construction of the L? projection the domain
and in particular the boundary of the domain is crucial. Since here, the main
concern is the general construction of the transfer operator from the coarse to
the fine scale, we neglect the domain aspect.

The algebraic representation of (30) is given by

m(w) = M~'Ruw,

where we have identified 7(w) and w with their respective coefficients. For the
first matrix R, we need to evaluate integrals of the form R,o = [ pppa. The
matrix M with entries My, = [ tquq has the character of a finite element mass
matrix. For a fast evaluation of matrices, especially for R we refer to [FKKO08].

4.1 The Discrete Inf-Sup Condition

In this section we elaborate the technical details for the coupling of the two
discretizations, thereby we examine the stability of the L? projection between
the mesh free partition of unity method and the mesh based finite element
method.

Here, we want to ensure the stability of the discrete counterpart of the
saddle point problem. More precisely, we want to show, that the discrete inf-
sup condition holds, i.e.

2]

Uus

sup > BllAnlla,, (33)

up,s€Vnh,s\{0} |||uh,5|||

where 3 is independent of A and ¢.
For the proof of the inf-sup condition, we follow the approach of Fortin
[For77, BF91], by succeeding the following steps:

Step 1 Defining an operator 7 : Hy ;1 — V3, s with
b(v — v, up) =0 Yup € My,
Step 2 Showing, that 7, is H!(Z)-stable.
Step 3 Showing, that |||7]|| < ¢, with ¢ > 0 and ¢ is independent of h.

10



Step 1 We define for u = (uy, uy)?

where 7, is given in (30). Thus we have, that

u

b(pn, u — wu) = b(up, [ uIII } —ftu) = (o, Uy — Uy — T (U — Un)) 2(=) = 0.

Step 2 To show the H! stability for a wider class of multiplier spaces we
follow [KLPVO01]. This class of multiplier spaces is characterized by the following
assumptions:

M1 The discrete multiplier space M;, contains constant functions.
M2 We have that dim(Vy|z) =dim(My,).
M3 There exists a constant C' independent of h, such that

(un, An) L2 (z)

lunllr2@) < C sup Yup, € Vi

aneMn N Anllz2(E)

Lemma 1. Let the triangulation T" be globally quasi uniform, that is hy > ch
for allt € T". Moreover let the domain = be polygonal, and M1-M3 hold. Then

Imnull ey < Cllullmz), — we HY(E)
where C' does not depend on the mesh size.

Proof. By our assumption, that the mesh is quasi uniform, there exists an op-
erator Q : L?(Z) — V), (Clément interpolation), such that [Cle75]

1Qull3z) + D hi 2T = Qull} 2 < Cllull?n =), (34)
teTh

where h; denotes the diameter of ¢t. Let us for fixed u € H'(Z) show, that the
operator () full fills

[(mn — Q)ullm =) < Cllullm z)- (35)
By the inverse inequality, we have
l(mh = Q)ull ) < W2 [[(mh — Q)ull72(z)- (36)
Together with M3 and by exploiting that 7, is a L? projection, we obtain

((T"h—Q)uveh)LZ(E)
Tonl2 )
((I_Q)ua‘gh)L2(5)

AT

[(m = Q)ullL2z) < Csupy, cpm,

= CSupehth

11



We then furthermore have that
(I = Q)u, )12z

C sup

OnEM, 10l 2(=)
<C sup e hi I = Q)ull 2y b3 10n | L2
T neM, [0nllL2(=)
. ) 1/2 ) ) 1/2
(Sier h 210 = Qull3a)  (Sier B210nl13:))
< C sup
OpeMy, ||9hHL2(E)
In the last step we used (34), in particular we only need, that
Sier hi 21T = QullFzy < Cllulld -
Thus we obtain (35). By the triangle inequality and (34) we have
||7Thu||§11(5) < |(mn — Q)UH%II(E) + HQUH?LII(E)
< Cllullfn g
([l

Step 3 We can show, that
lzlll<ec  c#c(h),c>0.

To do so, we consider

R |[[7v][]
Izl = sup
veH 11 |||’U||
[7n (vr — o) |1 (=)
= sup

vetons (0B + Tonllars ) 72

THU + ||ThV
sup l7n 12||H1(QI) 17n IIHHI(?I/IQ) (37)
v€EHr 11 (HUIHHl(QI) + HUHHHI(QH))

vl 22 01y + llonll 1 (@)

<C
(o2 ey + ol ) 72

<ec.

Since a + b < 2(a® + b?), a,b > 0 by Young’s inequality. For the step from
(37) to (38) we exploited the H'(Z) stability of 7. We remark, that in [BX91]
the H' stability of the projection 7, has been shown, if the multiplier space is
chosen as My = V.

Finally, we can now prove

Theorem 2. Under the above assumptions, we have that for the discrete saddle
point problem the inf-sup condition holds.

Proof. Analogously to the Fortin operator [For77], we have

b(An,u
BlIAR I (1 =)y < sup (An, u)

(39)
w€Hr 11 |||u|||

12



b\, 7u)

= Ssup (40)
w€H, 11 |||u|||
>\ - =
<c¢ sup ( h’ﬁh(uIA UII))L2(~) (41)
w€H, 11 |||7Tu|||
b(A
—¢ s (An, usn) (42)
us,n€Vh,s\{0} |||u57h|||
O

Summing up, we have developed a new transfer operator based on a weak
coupling approach. The key idea is to construct the transfer operator on the
basis of weighted local averaging instead of using point wise taken values, for
the coupling between a meshfree and a meshbased method. Moreover, we have
shown for the static case, that our weak coupling operator for the coupling of a
meshfree and a mesh based method is H' stable.
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