
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

CORINNA KLAPPROTH, ANTON SCHIELA, AND
PETER DEUFLHARD

Adaptive Timestep Control for the
Contact–Stabilized Newmark Method1

1Supported by the DFG Research Center Matheon, “Mathematics for key technologies: Mod-
elling, simulation, and optimization of real-world processes”, Berlin

ZIB-Report 10-09 (June 2010)





Adaptive Timestep Control for the Contact–Stabilized

Newmark Method†

Corinna Klapproth, Anton Schiela, and Peter Deuflhard

June 25, 2010

Abstract

The aim of this paper is to devise an adaptive timestep control in the
contact–stabilized Newmark method (ContacX) for dynamical contact prob-
lems between two viscoelastic bodies in the framework of Signorini’s condition.
In order to construct a comparative scheme of higher order accuracy, we ex-
tend extrapolation techniques. This approach demands a subtle theoretical
investigation of an asymptotic error expansion of the contact–stabilized New-
mark scheme. On the basis of theoretical insight and numerical observations,
we suggest an error estimator and a timestep selection which also cover the
presence of contact. Finally, we give a numerical example.
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1 Introduction

Dynamical contact problems arise in different applications such as biomechanics. In
classical approaches, they are modelled via Signorini’s contact conditions which are
based on the non-penetration of mass. Both in analytical models and in numerical
schemes, the resulting nonsmooth and nonlinear variational inequalities give rise to
fundamental mathematical difficulties.

Concerning the time discretization of dynamical contact problems, the Newmark
method is one of the most popular numerical integrators. As it is well-known, the
classical scheme may lead to artificial numerical oscillations at dynamical contact
boundaries, and even an undesirable energy blow-up during time integration may
occur [6, 19]. In [13], Kane, Repetto, Ortiz, and Marsden introduced an improved
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variant of Newmark’s method which is energy dissipative at contact, but still unable
to avoid the oscillations at contact boundaries. For this reason, Deuflhard, Krause,
and Ertel suggested a contact–stabilized Newmark method [6, 19] which avoids the
unphysical oscillations and is still energy dissipative at contact. This is the time
integration scheme of interest in the present paper.

In view of challenging real life problems (e.g., the motion of a human knee,
see [19]), an adaptive control of timestep is of crucial importance in order to increase
the efficiency of the contact–stabilized Newmark method (called CSN further on).
A mesh of equidistant timesteps can not be expected to be adequate for reaching a
given accuracy of the approximation of a reasonable computational effort.

The construction of an adaptive timestep control requires a realistic estimation
of the consistency error (cf., e.g., the textbook [5]). As a necessary preparatory step,
we studied the stability of dynamical contact problems under perturbation of the
initial data [16]. For viscoelastic materials, we found a characterization of a class
of problems for which a perturbation result can be expected even in the presence
of contact. This gave us the idea about a specific norm in function space which
has been exploited for the estimation of the consistency error of Newmark meth-
ods. In the unconstrained situation, the symmetric Newmark scheme is equivalent
to the Störmer-Verlet scheme which is well–known to be second order consistent
(see, e.g., [12]). In the constrained situation, we have proven an estimate for the
consistency error of the classical Newmark method, the modified Newmark method
by Kane et al., and the contact–stabilized Newmark method under the assumption
of bounded total variation of the solution [17].

The paper is organized as follows. We will start with a short exposition of the
dynamical Signorini contact problem and the contact–stabilized Newmark method
in Section 2. Further, we will sum up known consistency and sensitivity results
for the scheme. In Section 3, we will analyze the existence of an asymptotic error
expansion of the discretization error theoretically as well as numerically. These
results are the basis for the application of modified extrapolation methods in order
to construct a comparative scheme of higher order. Finally, in Section 4, we will
suggest a problem-adapted error estimator and a suitable timestep selection (called
ContacX). We will conclude the paper by a numerical example in Section 5.

2 Notation and Background

In order to fix notation, we write down the classical contact problem formulation
for linearly viscoelastic materials via Signorini’s contact conditions. Afterwards,
we present the corresponding contact–stabilized Newmark method, and we review
existing sensitivity and consistency results for the scheme.

2.1 Problem formulation

Our model for dynamical contact between two bodies is based on linearized Sig-
norini’s contact conditions. In view of existing perturbation and consistency results,
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see [16] and [17], we consider linear viscoelastic bodies fulfilling the Kelvin-Voigt
constitutive law. For the convenience of the reader, here we merely collect the
notation used therein.

Notation. Let the two bodies be identified with the union of two domains which
are understood to be bounded subsets in Rd with d = 2, 3. Each of the bound-
aries are assumed to be Lipschitz and decomposed into three disjoint parts: ΓD,
the Dirichlet boundary, ΓN , the Neumann boundary, and ΓC , the possible contact
boundary. The actual contact boundary is not known in advance, but is assumed to
be contained in a compact strict subset of ΓC . The Dirichlet boundary conditions
give rise to H1

D := {v |v ∈ H1, v|ΓD
= 0}.

Tensor and vector quantities are written in bold characters, e.g., v. Time deriva-
tives are indicated by dots ( ˙ ). For the sake of clear arrangement, we use the
abbreviation v̄ = (v, v̇) for a function and its first time derivative.

For given Banach space V and time interval t0 < T < ∞, let C([t0, T ],V)
be the continuous functions v : [t0, T ] → V. The space L2(t0, T ;V) consists of all
measurable functions v : (t0, T ) → V for which ‖v‖2

L2(t0,T ;V) :=
∫ T
t0
‖v(t)‖2

V dt < ∞
holds. We identify L2 with its dual space and obtain the evolution triple H1 ⊂
L2 ⊂ (H1)∗ where we denote the dual space to H1 by (H1)∗. With reference to
this evolution triple, the Sobolev space W1,2(t0, T ;H1,L2) means the set of all
functions v ∈ L2(t0, T ;H1) that have generalized derivatives v̇ ∈ L2(t0, T ; (H1)∗),
see, e.g., [24].

We will need the (total) variation TV(v, [t0, T ],V) of a function v : [t0, T ] → V.
The set of all functions from [t0, T ] into V that have bounded variation is denoted
by BV([t0, T ],V), compare, e.g., [22].

Non-penetration condition. At the contact interface ΓC , the two bodies may
come into contact but must not penetrate each other. We assume a bijective map-
ping φ : ΓS

C −→ ΓM
C between the two possible contact surfaces to be given. Follow-

ing [8], we define linearized non-penetration with respect to φ by

[u · ν]φ(x, t) = uS(x, t) · νφ(x) − uM (φ(x), t) · νφ(x) ≤ g(x) , x ∈ ΓS
C .

This condition is given with respect to the initial gap

ΓS
C 3 x 7→ g(x) = |x − φ(x)| ∈ R

between the two bodies in the reference configuration, and we have set

νφ =


φ(x) − x

|φ(x) − x|
, if x 6= φ(x) ,

µS(x) = −µM (x) , if x = φ(x) .
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Variational problem formulation. For the weak formulation of the dynamical
contact problem, the convex set of all admissible displacements is denoted by

K = {v ∈ H1
D | [v · ν]φ ≤ g} . (1)

The materials under consideration are assumed to be linearly viscoelastic, i.e.
the stresses satisfy the Kelvin-Voigt constitutive relation. Both elasticity and vis-
coelasticity tensors should be sufficiently smooth, symmetric, and uniformly positive
definite.

The external forces are represented by a linear functional fext on H1
D which

accounts for the volume forces and the tractions on the Neumann boundary. The
internal forces can be written as a bilinear form a in H1 for the linearly elastic part,
respectively b for the viscous part. Both bilinear forms are bounded in H1 and give
rise to seminorms ‖ · ‖2

a = a(·, ·) and ‖ · ‖2
b = b(·, ·). The sum of internal elastic and

external forces can be represented by

〈F(w),v〉(H1)∗×H1 = a(w,v) − fext(v) , v,w ∈ H1 ,

and the viscoelastic forces can be written as

〈G(w),v〉(H1)∗×H1 = b(w,v) , v,w ∈ H1 .

Via integration by parts and exploiting the boundary conditions, see [7] and [14],
the contact problem in the weak formulation can be written as a variational in-
equality: For almost every t ∈ [0, T ], find u ∈ K with u(·, t) ∈ C([0, T ],H1) and
u̇ ∈ W1,2(0, T ;H1,L2) such that for all v ∈ K

〈ü,v − u〉(H1)∗×H1 + 〈F(u),v − u〉(H1)∗×H1 + 〈G(u̇),v − u〉(H1)∗×H1 ≥ 0 (2)

and
u(0) = u0 , u̇(0) = u̇0 . (3)

Incorporating the constraints v(t) ∈ K for almost every t ∈ [0, T ] by the character-
istic functional IK(v), the variational inequality (2) can equivalently be formulated
as the variational inclusion

0 ∈ ü + F(u) + G(u̇) + ∂IK(u)

utilizing the subdifferential ∂IK of IK (see, e.g., [9]). For a given solution u of this
variational inequality and for almost every t ∈ [0, T ], we define the contact forces
Fcon(u) ∈ (H1)∗ by

〈Fcon(u),v〉(H1)∗×H1 = 〈ü + F(u) + G(u̇),v〉(H1)∗×H1 , v ∈ H1 . (4)

As shown for instance in [1], the unilateral contact problem between a viscoelastic
body and a rigid foundation has at least one weak solution. In the following, we
represent the state of a solution u of (2) for tn, tn+1 ∈ [0, T ] by

u(tn+1) = Φtn+1,tn(u(tn), u̇(tn)) , u̇(tn+1) = Φ̇tn+1,tn(u(tn), u̇(tn))

with the evolution operator Φ̄tn+1,tn := (Φtn+1,tn , Φ̇tn+1,tn) : H1 × L2 −→ H1 × L2.
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2.2 Contact–stabilized Newmark scheme

Here, we turn towards the spatiotemporal discretization of the dynamical contact
problem (2). We use the method of time layers (MOT), also known as Rothe
method, in which we discretize first in time and then in space.

For integration in time, we consider the contact–stabilized Newmark method
(CSN) as suggested by Deuflhard, Krause, and Ertel for the purely elastic case [6].
This scheme is energy dissipative in the presence of contact and avoids the occur-
rence of artificial numerical oscillations at contact boundaries. The latter feature
is achieved by performing a discrete L2-projection at contact interfaces at each
timestep. In [17], the authors have given the generalization of the contact–stabilized
Newmark method to the viscoelastic case.

In order to fix notation, let the continuous time interval [t0, T ] be subdivided
by N∆τ + 1 discrete time points t0 < t1 < · · · < tN∆τ

= T which are forming an
equidistant mesh ∆τ = {t0, t1, . . . , T}. The constant timestep is denoted by τ .

Contact–stabilized Newmark method (CSN).

0 ∈ un+1
pred −

(
un + τ u̇n

)
+ ∂IK

(
un+1

pred

)
0 ∈ un+1 − un+1

pred +
1
2
τ2

(
F

(
un+un+1

2

)
+ G

(
un+1−un

τ

)
+ ∂IK

(
un+1

))
u̇n+1 = u̇n − τ

(
F

(
un+un+1

2

)
+ G

(
un+1−un

τ

)
− Fcon

(
un+1

)) (5)

where the contact forces Fcon

(
un+1

)
are defined by

1
2
τ2

〈
Fcon

(
un+1

)
,v

〉
(H1)∗×H1 (6)

=
〈
un+1 − un+1

pred +
1
2
τ2

(
F

(
un+un+1

2

)
+ G

(
un+1−un

τ

))
,v

〉
(H1)∗×H1

, v ∈ H1 .

We assume that the spatial quantities corresponding to un are obtained via finite
elements Sh with a spatial mesh size parameter h > 0. In this setting, K ⊂ Sh has to
be understood as a discrete approximation of the set of admissible displacements.
For details concerning the spatial discretization, we refer the reader to [14, 18].
The arising constrained minimization problems in space can be solved by adaptive
monotone multigrid methods (see [10, 18, 19]).

In analogy to the continuous problem, we define the discrete evolution operator
Ψ̄tn+1,tn :=

(
Ψtn+1,tn , Ψ̇tn+1,tn

)
: H1 × L2 −→ H1 × L2 for tn, tn+1 ∈ ∆τ via

un+1 = Ψtn+1,tn
(
un, u̇n

)
, u̇n+1 = Ψ̇tn+1,tn

(
un, u̇n

)
.

Moreover, we introduce the lattice function ūτ :=
(
uτ , u̇τ

)
: ∆τ −→ H1 × L2 as

uτ (tn+1) = Ψtn+1,tn
(
uτ (tn), u̇τ (tn)

)
, u̇τ (tn+1) = Ψ̇tn+1,tn

(
uτ (tn), u̇τ (tn)

)
with

uτ (t0) = u0 , u̇τ (t0) = u̇0 .
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Remark 2.1. In [17], the authors have proven that the contact–stabilized Newmark
method coincides with the modified Newmark scheme by Kane et al. ([13]) in
function space. Since we use the method of time layers, the numerical analysis in
this paper will cover both Newmark methods simultaneously. Nevertheless, we will
restrict our considerations to CSN due to its nice numerical features.

2.3 Sensitivity and consistency results

In Section 3, we will work out an asymptotic error expansion of the contact–
stabilized Newmark method. For the convenience of the reader, we recall known
results concerning the sensitivity and consistency of the scheme from [17] and [21].

Conical derivative. First of all, we need the well–posedness of CSN with respect
to perturbations of the initial data. In [21], an important result has been given which
concerns the directional differentiability of the solution u = u(f) ∈ K of an elliptic
variational inequality

a(u,v − u) ≥ 〈f ,v − u〉V∗×V , ∀ v ∈ K

on a Hilbert space V. The convex set K is of the form K = {w ∈ V | w ≤ g a.e.}
with g continuous, a(·, ·) has to fulfill usual ellipticity and continuity assumptions,
and f ∈ V∗. Then, the mapping f −→ u(f) has a conical derivative Du(f)(·) on
V∗, and Du(f)(w) ∈ K̃u is the solution of the variational inequality

a(Du(f)(w),v − Du(f)(w)) ≥ 〈w,v − Du(f)(w)〉V∗×V , ∀ v ∈ K̃u

with a modified admissible set

K̃u = {w ∈ V |w ≤ 0 if u = g, a(u,w) = 〈f ,w〉V∗×V} .

The transfer of this result to CSN yields the following sensitivity result.

Theorem 2.2 ([21]). The discrete evolution operator
(
Ψt+τ,t, Ψ̇t+τ,t

)
possesses a

conical derivative D̄Ψt+τ,t :=
(
DΨt+τ,t, ḊΨt+τ,t

)
, i.e.

Ψt+τ,t(ū + hw̄) = Ψt+τ,tū + hDΨt+τ,tū(w̄) + θ(h, w̄)

and

Ψ̇t+τ,t(ū + hw̄) = Ψ̇t+τ,tū + hḊΨt+τ,tū(w̄) +
2
τ
θ(h, w̄)

where

lim
h→0

‖θ(h, w̄)‖H1/h = 0
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for all h > 0 and ū = (u, u̇) , w̄ = (w, ẇ) ∈ H1 × L2. The conical derivative is
given as the solution of

0 ∈ wpred − (w + τẇ) + ∂IK̃Ψt+τ,tū

(
wpred

)
0 ∈ DΨt+τ,tū(w̄) − wpred +

1
2
τ2

(
F

(
w+DΨt+τ,tū(w̄)

2

)
+ G

(
DΨt+τ,tū(w̄)−w

τ

)
+ ∂IK̃Ψt+τ,tū

(
DΨt+τ,tv̄(w̄)

))
ḊΨt+τ,tū(w̄) = ẇ − τ

(
F

(
w+DΨt+τ,tū(w̄)

2

)
+ G

(
DΨt+τ,tū(w̄)−w

τ

)
−Fcon

(
DΨt+τ,tū(w̄)

))
(7)

with contact forces

1
2
τ2

〈
Fcon

(
DΨt+τ,tū(w̄)

)
,v

〉
(8)

=
〈
DΨt+τ,tū(w̄) − wpred +

1
2
τ2

(
F

(
w+DΨt+τ,tū(w̄)

2

)
+ G

(
DΨt+τ,tū(w̄)−w

τ

))
,v

〉
for v ∈ H1 and

K̃Ψt+τ,tū =
{
w ∈ H1

D

∣∣ [w ·ν]φ ≤ 0 if
[
Ψt+τ,tū ·ν

]
φ

= g,
〈
Fcon

(
Ψt+τ,tū

)
,w

〉
= 0

}
.

(9)

The conical derivative is defined via CSN on a modified admissible set K̃Ψt+τ,tū.
Strict complementarity implies that [DΨt+τ,tū(w̄) · ν]φ = 0 on those parts of the
possible contact boundaries where [Ψt+τ,tū·ν]φ = g. Then, the variational inclusion
in the second line of the scheme reduces to a minimization problem with time-
dependent Dirichlet boundaries. The theorem does not give any information about
the sensitivity of CSN in the special case of interest where h coincides with the
parameter τ .

Remark. A simple calculation shows that

ḊΨt+τ,tū(w̄) = ẇ +
2
τ

(
DΨt+τ,tū(w̄) − wpred

)
.

In [17], the authors have proven that the predictor wpred resulting from a L2-
projection converges to w + τẇ if the spatial discretization parameter h tends to
zero. Hence, we find the relation

ḊΨt+τ,tū(w̄) = −ẇ +
2
τ

(
DΨt+τ,tū(w̄) − w

)
(10)

in function space.
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Physical energy norm. In [16], the authors introduced a mix of norms in func-
tion space which allows to prove a perturbation result for a class of dynamical
contact problems of type (2). For a function v̄ = (v, v̇) : [t, t + τ ] → H1 × L2 with
v̇ ∈ L2(t, t + τ,H1), we define

‖v̄‖2
E(t,τ) := ‖v̄(t + τ)‖2

E +

t+τ∫
t

∥∥v̇(s)
∥∥2

b
ds (11)

in terms of
‖v̄(t + τ)‖2

E :=
1
2

∥∥v̇(t + τ)
∥∥2

L2 +
1
2

∥∥v(t + τ)
∥∥2

a
. (12)

The physical energy norm may be interpreted as the sum of the kinetic energy, the
potential energy, and the viscoelastic part.

Consistency error. In [17], the authors derived an estimate for the consistency
error of the classical Newmark method, the modified Newmark method by Kane et
al., and CSN within the physical energy norm∥∥Ψ̄ − Φ̄

∥∥2

E(t,τ)
:=

1
2

∥∥Ψ̇t+τ,tū(t) − Φ̇t+τ,tū(t)
∥∥2

L2 +
1
2

∥∥Ψt+τ,tū(t) − Φt+τ,tū(t)
∥∥2

a

+

t+τ∫
t

∥∥∥Ψt+s,tū(t) − u(t)
τ

− Φ̇t+s,tū(t)
∥∥∥2

b
ds .

In the presence of contact, this result requires the solution of the dynamical contact
problem together with its first and second derivative to be in the function space of
bounded variation.

Theorem 2.3 ([17]). Let u̇ ∈ BV
(
[t, t + τ ],H1

)
and ü ∈ BV

(
[t, t + τ ], (H1)∗

)
.

Then, for initial values un = u(t) and u̇n = u̇(t), the consistency error of CSN in
terms of Ψ̄ = (Ψ, Ψ̇) satisfies∥∥Ψ̄ − Φ̄

∥∥
E(t,τ)

= R(u, [t, t + τ ]) · O
(
τ1/2

)
where

R(u, [t, t + τ ]) := TV
(
u, [t, t + τ ],H1

)
+ TV

(
u̇, [t, t + τ ],H1

)
+ TV

(
ü, [t, t + τ ], (H1)∗

)
. (13)

The formulation of the consistency result in function space does not give any
information about the spatial distribution of the consistency error of CSN. Analyz-
ing the proof of the theorem as presented in [17], we find that the estimate can be
improved if the active contact boundaries do not change during the timestep. This
result will be verified in detail in a PhD thesis [15].

A central role for the construction of an adaptive timestep control is played by
the choice of norm in which the approximation error of the scheme is measured.
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The existing perturbation and consistency results for CSN suggest to use the full
physical energy norm ‖ · ‖E . In the absence of contact, the Newmark scheme has
pointwise the consistency order 2 in positions as well as velocities. Hence, due to
the integral over time, the viscoelastic part of the physical energy norm is of higher
order than the kinetic and potential parts. In view of an adaptive timestep control,
we neglect the viscoelastic part, and we are only interested in the reduced physical
energy norm ‖ · ‖E .

3 Towards an asymptotic error expansion

The main challenge for an adaptive timestep control is the construction of a suitable
error estimator. Usually, the numerical integrator of interest is compared to a sec-
ond, higher order discrete evolution. We want to construct such a scheme by means
of extrapolation techniques which are based on an asymptotic error expansion. The
scope of this section is to analyze the existence of such an error representation for
the contact–stabilized Newmark method.

3.1 Extension of extrapolation techniques

For ordinary differential equations, a proof technique for an asymptotic error expan-
sion can be found in [11]. Here, we will extend this approach to dynamical contact
problems.

We define a discrete evolution Ψ̄t+τ,t
∗ := (Ψt+τ,t

∗ , Ψ̇t+τ,t
∗ ) : H1 ×L2 −→ H1 ×L2

via the formulas

Ψt+τ,t
∗ ū(t) := Ψt+τ,t(ū(t) + ē(t)τp) − e(t + τ)τp

Ψ̇t+τ,t
∗ ū(t) := Ψ̇t+τ,t(ū(t) + ē(t)τp) − ε(t + τ)τp .

(14)

For fixed initial time t0, the functions ē := (e, ε) : [t0, T ] → H1 × L2 should have
initial values equal to zero, i.e.

e(t0) = 0 , ε(t0) = 0 . (15)

We will specify these functions in Section 3.2 below. For constant stepsize τ , the
lattice function ū∗

τ = (u∗
τ , u̇

∗
τ ) : ∆τ −→ H1 × L2 of the new evolution correlates

with the one of CSN in the following way.

Lemma 3.1. For t ∈ ∆τ , the lattice functions (u∗
τ , u̇

∗
τ ) and (uτ , u̇τ ) satisfy the

relation

uτ (t) − u(t) − e(t)τp = u∗
τ (t) − u(t)

u̇τ (t) − u̇(t) − ε(t)τp = u̇∗
τ (t) − u̇(t) .

Proof. Due to definition (14) with initial values (15), we find

ū∗
τ (t0 + τ) = Ψ̄t0+τ,t0(ū(t0) + ē(t0)τp) − ē(t0 + τ)τp = ūτ (t0 + τ) − ē(t0 + τ)τp .
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An induction leads to

ū∗
τ (t) = Ψ̄t,t−τ (ū∗

τ (t − τ) + ē(t − τ)τp) − ē(t)τp = ūτ (t) − ē(t)τp

which gives the desired relation.

The lemma yields an asymptotic error expansion of order p for CSN if the
approximation error ū∗

τ−ū of the new scheme is of order o(τp). In order to gain more
information on this quantity, we consider the error of the scheme after performing
two timesteps with stepsize τ/2, for simplicity. The global error of a numerical
integration is based on the continuous dependence of the scheme on the initial
data.

Assumption 3.2. Let CSN fulfill∥∥Ψ̄t+τ,tū(t) − Ψ̄t+τ,t ¯̃u(t)
∥∥

E
≤ Cp ·

∥∥ū(t) − ¯̃u(t)
∥∥

E

with a constant Cp > 0.

In [16], the validity of the continuous analogon of this perturbation result has
been proven for a certain class of dynamical contact problems. The discrete per-
turbation behavior will be discussed in a PhD thesis [15]. Now, we can prove an
estimate for the approximation error of the new scheme (Ψ∗, Ψ̇∗).

Theorem 3.3. Let Assumption 3.2 hold. Then,∥∥ū∗
τ
2
(t + τ) − ū(t + τ)

∥∥
E

≤ Cp ·
∥∥∥(

Ψ̄
t+ τ

2
,t

∗ − Φ̄t+ τ
2
,t
)
ū(t)

∥∥∥
E

+
∥∥∥(

Ψ̄
t+τ,t+ τ

2
∗ − Φ̄t+τ,t+ τ

2

)
ū
(
t +

τ

2

)∥∥∥
E

.

Proof. The error of a numerical scheme after performing two timesteps can be
divided into the consistency error of the second step and the propagation of the
consistency error of the first step, i.e.

ū∗
τ
2
(t + τ) − ū(t + τ)

= Ψ̄
t+τ,t+ τ

2
∗ Ψ̄

t+ τ
2
,t

∗ ū(t) − Φ̄t+τ,t+ τ
2 Φ̄t+ τ

2
,tū(t)

= Ψ̄
t+τ,t+ τ

2
∗ Ψ̄

t+ τ
2
,t

∗ ū(t) − Ψ̄
t+τ,t+ τ

2
∗ Φ̄t+ τ

2
,tū(t) +

(
Ψ̄

t+τ,t+ τ
2

∗ − Φ̄t+τ,t+ τ
2

)
ū
(
t +

τ

2

)
.

Due to definitions (14)–(15) and Assumption 3.2, we find for the propagated con-
sistency error∥∥∥Ψ̄t+τ,t+ τ

2
∗ Ψ̄

t+ τ
2
,t

∗ ū(t) − Ψ̄
t+τ,t+ τ

2
∗ Φ̄t+ τ

2
,tū(t)

∥∥∥
E

=
∥∥∥Ψ̄t+τ,t+ τ

2 Ψ̄t+ τ
2
,tū(t) − Ψ̄t+τ,t+ τ

2

(
Φ̄t+ τ

2
,tū(t) + ē

(
t +

τ

2

)(τ

2

)p)∥∥∥
E

≤ Cp ·
∥∥∥Ψ̄t+ τ

2
,tū(t) −

(
Φ̄t+ τ

2
,tū(t) + ē

(
t +

τ

2

)(τ

2

)p)∥∥∥
E

= Cp ·
∥∥∥(

Ψ̄
t+ τ

2
,t

∗ − Φ̄t+ τ
2
,t
)
ū(t)

∥∥∥
E

.

This gives the estimate of the theorem.
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In view of an asymptotic error expansion of CSN, we combine the results of
Lemma 3.1 and Theorem 3.3. This yields that we have to construct the functions
(e, ε) such that ∥∥Ψ̄t+τ,t

∗ − Φ̄t+τ,t
∥∥

E∥∥Ψ̄t+τ,t − Φ̄t+τ,t
∥∥

E

→ 0 for τ → 0 , (16)

i.e. the consistency error of (Ψ∗, Ψ̇∗) in energy norm should be of higher order than
the one of CSN for arbitrary initial times.

3.2 Construction of a higher order scheme

The task of this section is to find a definition for the functions (e, ε) such that the
initial values (15) and condition (16) on the consistency error of the new scheme are
fulfilled. For this purpose, we need information about the pointwise error behavior
of CSN. While such information is given in the absence of contact, up to now, the
only consistency result for CSN in the presence of contact is given in energy norm
(cf. Theorem 2.3). Hence, we lay the following analysis of an asymptotic error
expansion of CSN on a very general basis.

Assumption 3.4. Let the consistency error of CSN be of the form

Ψt+τ,tū − Φt+τ,tū = m(t) · τp+1 + r(t, τ) · τp

Ψ̇t+τ,tū − Φ̇t+τ,tū =
∫ t+τ

t
µ(s) ds · τp + ρ(t, τ) · τp

(17)

with m ∈ C([0, T ],H1) and ṁ, µ ∈ W1,2(0, T ;H1,L2).

In the following, we will often use the abbreviation m̄ := (m, µ). Please note
that the second line of Assumption 3.4 is not the derivative of the first one due to the
definition of the discrete evolution operator. The integral term in the consistency
error of the velocities is related to the viscoelastic part of the physical energy norm.
In the classical approach, we would expect a pointwise Taylor expansion of the
consistency error of the scheme. This is included in our ansatz if∫ t+τ

t
µ(s) ds = µ(t) · τ + o(τ)

and
|r(t, τ)| = o(τ) , |ρ(t, τ)| = o(τ) .

For a perturbation of the initial values of CSN, we write

Ψt+τ,t(ū + ēτp) − Ψt+τ,tū =
(
DΨt+τ,tū(ē) + p(t, τ)

)
· τp

Ψ̇t+τ,t(ū + ēτp) − Ψ̇t+τ,tū =
(
ḊΨt+τ,tū(ē) + π(t, τ)

)
· τp

(18)

where (DΨt+τ,tū(ē), ḊΨt+τ,tū(ē)) denotes the conical derivative of the scheme in-
troduced in Section 2.3. A short calculation shows that π(t, τ) = 2

τ p(t, τ), and
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we will often use the notation p̄ := (p, π). We expect that p(t, τ) and π(t, τ) are
of order o(τ). In the case of time-constant Dirichlet boundaries, the variational
problem is linear and |p̄(t, τ)| = 0.

On the basis of these notations, we present a formula for the consistency error
of the new evolution (Ψ∗, Ψ̇∗).

Lemma 3.5. Let Assumption 3.4 hold. Then, the consistency error in terms of the
discrete evolution Ψ̄∗ = (Ψ∗, Ψ̇∗) satisfies

Ψt+τ,t
∗ ū(t) − Φt+τ,tū(t) =

(
DΨt+τ,tū(t)(ē(t)) − e(t + τ) + τm(t)

)
· τp

+ (r(t, τ) + p(t, τ)) · τp

Ψ̇t+τ,t
∗ ū(t) − Φ̇t+τ,tū(t) =

(
ḊΨt+τ,tū(t)(ē(t)) − ε(t + τ) +

∫ t+τ

t
µ(s) ds

)
· τp

+ (ρ(t, τ) + π(t, τ)) · τp .

Proof. Inserting definition (14) into the consistency error yields

Ψ̄t+τ,t
∗ ū(t) − Φ̄t+τ,tū(t) = Ψ̄t+τ,t(ū(t) + ē(t)τp) − ē(t + τ)τp − Φ̄t+τ,tū(t) .

Due to Assumption 3.4 on the consistency error of CSN, we find

Ψ̄t+τ,t
∗ ū(t) − Φ̄t+τ,tū(t) = Ψ̄t+τ,t(ū(t) + ē(t)τp) − Ψ̄t+τ,tū(t) − ē(t + τ) · τp

+ m̄(t) · τp+1 + r̄(t, τ) · τp .

Using (18), we end up with

Ψ̄t+τ,t
∗ ū(t) − Φ̄t+τ,tū(t) =

(
D̄Ψt+τ,tū(t)(ē(t)) − ē(t + τ) + τm̄(t)

)
· τp

+ (r̄(t, τ) + p̄(t, τ)) · τp .

Our aim is to define the functions (e, ε) such that the terms of order p + 1 in
the consistency error of (Ψ∗, Ψ̇∗) vanish, and the scheme is of higher order o(τp+1).
This leads us to the following definition of the functions (e, ε).

Variational problem for (e, ε). For almost every t ∈ [t0, T ], find e(·, t) ∈ K̃u(t)

with e ∈ C
(
[t0, T ],H1

)
and ė ∈ W1,2

(
t0, T ;H1,L2

)
such that for all v(t) ∈ K̃u(t)

〈ë − µ − ṁ + F(e) + G(ė − m),v − e〉(H1)∗×H1 ≥ 0 (19)

and
e(t0) = 0 , ė(t0) = m(t0) (20)

where

K̃u(t) =
{
w ∈ H1

D

∣∣ [w · ν]φ ≤ 0 if [u(t) · ν]φ = g, 〈Fcon(u(t)),w〉(H1)∗×H1 = 0
}

.
(21)
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Further, we set
ε(t) = ė(t) − m(t) , ∀ t ∈ [t0, T ] (22)

such that the initial values (15) are fulfilled. The contact forces Fcon(e) ∈ (H1)∗

are given by

〈Fcon(e),v〉(H1)∗×H1 = 〈ë−µ−ṁ+F(e)+G(ė−m),v〉(H1)∗×H1 , v ∈ H1 . (23)

In the case of strict complementarity, we find a parabolic equality with Dirichlet
boundaries which are varying in time. These boundaries correspond to the active
contact boundaries of the solution of the original variational inequality (2). Hence,
we assume that e and its derivatives are of bounded variation in the same sense.

Assumption 3.6. Let the solution of (19) satisfy

ė ∈ BV
(
[t, t + τ ],H1

)
, ë ∈ BV

(
[t, t + τ ], (H1)∗

)
.

This leads to an estimate for the consistency error of the new evolution (Ψ∗, Ψ̇∗).

Lemma 3.7. Let Assumptions 3.4 and 3.6 hold. Then, the consistency error in
terms of the discrete evolution Ψ̄∗ = (Ψ∗, Ψ̇∗) satisfies(∥∥Ψ̄t+τ,t

∗ ū(t) − Φ̄t+τ,tū(t) − (r̄(t, τ) + p̄(t, τ)) · τp
∥∥2

E

+
τ

4

∥∥∥ḊΨt+τ,tū(t)(ē(t)) − ε(t + τ) +
∫ t+τ

t
µ(s) ds

∥∥∥2

b
· τ2p

)1/2

≤
(1

2

∣∣∣〈Fcon

(
DΨt+τ,tū(t)(ē(t))

)
− Fcon(e(t)), (24)

ḊΨt+τ,tū(t)(ē(t)) − ε(t + τ) +
∫ t+τ

t
µ(s) ds

〉
(H1)∗×H1

∣∣∣)1/2
· τp+1/2

+ R(e, [t, t + τ ]) · O
(
τp+1/2

)
+ o

(
τp+1

)
with R(e, [t, t + τ ]) defined in (13).

Remark 3.8. Due to the definition of the modified admissible sets (9) and (21),
the first term on the right-hand side of (24) can be written as a linear functional on
the part of the possible contact boundaries where Ψt+τ,tū(t) and u(t) are actually
in contact. Moreover, ḊΨt+τ,tū(t)(ē(t))−ε(t+τ) is zero on the part of the contact
boundaries where the active sets of Ψt+τ,tū(t) and u(t + τ) are unchanged and
coincide with those of u(t). This is the same part of the contact boundaries on
which we may assume that

∫ t+τ
t µ(s) ds is zero by its definition as the consistency

error of CSN. Hence, the contact term in the estimate (24) is only effective on a
small part of the possible contact boundaries, namely where the active sets vary in
time. For most initial times t, this part tends to a set of measure zero as τ → 0.
This effect will also become visible in our numerical examples of Section 3.3 and
Section 5.
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The localization of the contact stresses on the critical part of the possible contact
boundaries is rather tedious without yielding further insight. In [16], a similar
argumentation has been worked out in detail. Hence, we leave it at this heuristic
discussion. Instead, we will use a rough estimate for the contact term on the right-
hand side of (24) in our main theorem.

Proof. By means of Lemma 3.5, the physical energy norm of the consistency error
is of the form∥∥Ψ̄t+τ,t

∗ ū(t) − Φ̄t+τ,tū(t) − (r̄(t, τ) + p̄(t, τ)) · τp
∥∥2

E

=
(1

2

∥∥∥ḊΨt+τ,tū(t)(ē(t)) − ε(t + τ) +
∫ t+τ

t
µ(s) ds

∥∥∥2

L2

+
1
2

∥∥DΨt+τ,tū(t)(ē(t)) − e(t + τ) + τm(t)
∥∥2

a

)
· τ2p .

(25)

We want to insert the defining equations for e and ε into this estimate. For ease of
presentation, we introduce the abbreviation

v := ḊΨt+τ,tū(t)(ē(t)) − ε(t + τ) +
∫ t+τ

t
µ(s) ds .

Since ė, ṁ ∈ L2(t, t + τ ;H1), we can apply integration by parts. Using the rela-
tions (10) and (22), the term in a-seminorm can be written as

DΨt+τ,tū(t)(ē(t)) − e(t + τ) + τm(t)

=
τ

2
(
ḊΨt+τ,tū(t)(ē(t)) + ε(t)

)
−

∫ t+τ

t
ė(s) ds + τm(t)

=
τ

2
v +

∫ t+τ

t

ε(t + τ) + ε(t)
2

− ė(s) ds + τm(t) − τ

2

∫ t+τ

t
µ(s) ds

=
τ

2
v +

1
2

∫ t+τ

t
(ė(t + τ) − ė(s)) + (ė(t) − ė(s)) ds

− 1
2

∫ t+τ

t

(∫ t+τ

t
ṁ(η) + µ(s) dη

)
ds .

Due to the inequality of Young and the absolute continuity of the integral (see, e.g.,
App. (20) in [24]),

‖v‖L1(t,t+τ ;V) ≤ ‖v‖L2(t,t+τ ;V) · τ1/2 = o
(
τ1/2

)
(26)

for every fixed v ∈ L2(t, t + τ0;V) and for all τ ≤ τ0. We apply this result to
ṁ, µ ∈ L2(t, t + τ ;H1), and the inequality of Korn allows us to prove the estimate∥∥DΨt+τ,tū(t)(ē(t)) − e(t + τ) + τm(t)

∥∥
a

≤ τ

2

∥∥v∥∥
a

+
1
2

∫ t+τ

t

(
‖ė(t + τ) − ė(s)‖H1 + ‖ė(t) − ė(s)‖H1

)
ds

+
τ

2
(
‖ṁ‖L1(t,t+τ ;H1) + ‖µ‖L1(t,t+τ ;H1)

)
=

τ

2

∥∥v∥∥
a

+ TV
(
ė, [t, t + τ ],H1

)
· O(τ) + o

(
τ3/2

)
.

(27)
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Since ε = ė−m ∈ W1,2(t, t+ τ ;H1,L2), integration by parts (see, e.g., Prop. 23.23
in [24]) and definition (22) yield

∥∥∥ḊΨt+τ,tū(t)(ē(t)) − ε(t + τ) +
∫ t+τ

t
µ(s) ds

∥∥∥2

L2
= ‖v‖2

L2

=
〈
ḊΨt+τ,tū(t)(ē(t)) − ε(t) −

∫ t+τ

t
ε̇(s) − µ(s) ds,v

〉
(H1)∗×H1

=
〈
ḊΨt+τ,tū(t)(ē(t)) − ε(t) −

∫ t+τ

t
ë(s) − ṁ(s) − µ(s) ds,v

〉
(H1)∗×H1

=
〈
ḊΨt+τ,tū(t)(ē(t)) − ε(t) − τ(ë(t) − ṁ(t) − µ(t)),v

〉
(H1)∗×H1

−
〈∫ t+τ

t
ë(s) − ë(t) ds,v

〉
(H1)∗×H1

−
〈∫ t+τ

t

(∫ s

t
m̈(η) dη

)
ds,v

〉
(H1)∗×H1

≤
∣∣〈ḊΨt+τ,tū(t)(ē(t)) − ε(t) − τ(ë(t) − ṁ(t) − µ(t)),v

〉
(H1)∗×H1

∣∣
+

(∫ t+τ

t
‖ë(s) − ë(t)‖(H1)∗ ds

)
‖v‖H1 + τ‖m̈‖L1(t,t+τ ;(H1)∗)‖v‖H1

=
∣∣〈ḊΨt+τ,tū(t)(ē(t)) − ε(t) − τ(ë(t) − ṁ(t) − µ(t)),v

〉
(H1)∗×H1

∣∣
+ TV

(
ë, [t, t + τ ],H1

)
‖v‖H1 · O(τ) + ‖v‖H1 · o

(
τ3/2

)
for the squared L2-norm. We insert the numerical scheme (7), the variational
inequality (19), and definition (22) into the first term on the right-hand side of
this estimate. Then, relation (10) and integration by parts lead to

〈
ḊΨt+τ,tū(t)(ē(t)) − ε(t) − τ(ë(t) − ṁ(t) − µ(t)),v

〉
(H1)∗×H1

= −τ2

4
〈
F

(
ḊΨt+τ,tū(t)(ē(t)) + ε(t)

)
,v

〉
− τ

2
〈
G

(
ḊΨt+τ,tū(t)(ē(t)) − ε(t)

)
,v

〉
+ τ

〈
Fcon

(
DΨt+τ,tū(t)(ē(t))

)
− Fcon(e(t)),v

〉
(H1)∗×H1

= −τ2

4

∥∥v∥∥2

a
− τ2

4
a
(
ε(t) + ε(t + τ),v

)
+

τ2

4
a
(∫ t+τ

t
µ(s) ds,v

)
− τ

2

∥∥v∥∥2

b
− τ

2
b
(
ε(t + τ) − ε(t),v

)
+

τ

2
b
(∫ t+τ

t
µ(s) ds,v

)
+ τ〈Fcon

(
DΨt+τ,tū(t)(ē(t))

)
− Fcon(e(t)),v〉(H1)∗×H1

= −τ2

4

∥∥v∥∥2

a
− τ2

4
a
(
ė(t) + ė(t + τ),v

)
+

τ2

4
a
(
m(t) + m(t + τ) +

∫ t+τ

t
µ(s) ds,v

)
− τ

2

∥∥v∥∥2

b
+

τ

2
b
(
ė(t + τ) − ė(t),v

)
+

τ

2
b
(∫ t+τ

t
ṁ(s) + µ(s) ds,v

)
+ τ〈Fcon

(
DΨt+τ,tū(t)(ē(t))

)
− Fcon(e(t)),v〉(H1)∗×H1 .
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Due to the estimate (26) and the inequality of Korn, we find∥∥∥ḊΨt+τ,tū(t)(ē(t)) − ε(t + τ) +
∫ t+τ

t
µ(s) ds

∥∥∥2

L2
+

τ

2

∥∥v∥∥2

b

≤ −τ2

4

∥∥v∥∥2

a
+

τ2

4
(
‖ė(t)‖H1 + ‖ė(t + τ)‖H1

)
‖v‖H1

+
τ2

4
(
‖m(t)‖H1 + ‖m(t + τ)‖H1 + ‖µ‖L1(t,t+τ ;H1)

)
‖v‖H1

+
τ

2
‖ė(t + τ) − ė(t)‖H1‖v‖H1 +

τ

2
(
‖ṁ‖L1(t,t+τ ;H1) + ‖µ‖L1(t,t+τ ;H1)

)
‖v‖H1

+ τ
∣∣〈Fcon

(
DΨt+τ,tū(t)(ē(t))

)
− Fcon(e(t)),v〉(H1)∗×H1

∣∣
+

(
TV(ë, [t, t + τ ],H1) + o

(
τ1/2

))
‖v‖H1 · O(τ)

= −τ2

4

∥∥v∥∥2

a
+ τ

∣∣〈Fcon

(
DΨt+τ,tū(t)(ē(t))

)
− Fcon(e(t)),v

〉
(H1)∗×H1

∣∣
+

(
TV

(
ė, [t, t + τ ],H1

)
+ TV

(
ë, [t, t + τ ],H1

)
+ o

(
τ1/2

))
‖v‖H1 · O(τ) .

Adding the square of (27), the inequality of Young leads to

1
2

∥∥∥ḊΨt+τ,tū(t)(ē(t)) − ε(t + τ) +
∫ t+τ

t
µ(s) ds

∥∥∥2

L2

+
1
2

∥∥DΨt+τ,tū(t)(ē(t)) − e(t + τ) + τm(t)
∥∥2

a
+

τ

4

∥∥v∥∥2

b

=
τ

2

∣∣〈Fcon

(
DΨt+τ,tū(t)(ē(t))

)
− Fcon(e(t)),v

〉
(H1)∗×H1

∣∣
+

(
R(e, [t, t + τ ]) · O(τ) + o

(
τ3/2

))2 +
(
R(e, [t, t + τ ]) + o

(
τ1/2

))
‖v‖H1 · O(τ) .

This is an estimate of the type

x2 +
τ

4

∥∥v∥∥2

b
≤ a2 + b‖v‖H1 · τ

with a, b > 0, and x2 · τ2p is the right-hand side of (25). The inequality of Korn
yields

‖v‖H1 ≤ 1
cK

(
‖v‖2

L2 + ‖v‖2
b

)1/2 ≤ 2
cK

(
x2 +

τ

4

∥∥v∥∥2

b

)1/2
· τ−1/2

for τ sufficiently small. Hence,

x2 +
τ

4

∥∥v∥∥2

b
≤ a2 +

2b

cK

(
x2 +

τ

4

∥∥v∥∥2

b

)1/2
· τ1/2

and by means of the binomial formula, this is equivalent to((
x2 +

τ

4

∥∥v∥∥2

b

)1/2
− b

cK
· τ1/2

)2
≤ a2 +

b2

c2
K

· τ .

Finally, (
x2 +

τ

4

∥∥v∥∥2

b

)1/2
≤ a + b · O

(
τ1/2

)
and (25) gives the result of the lemma.
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With these rather lengthy preparations, we are now ready to prove the central
theorem of this paper.

Theorem 3.9. Let Assumptions 3.4 and 3.6 hold. Then, the consistency error in
terms of the discrete evolution Ψ̄∗ = (Ψ∗, Ψ̇∗) satisfies∥∥Ψ̄t+τ,t

∗ ū(t) − Φ̄t+τ,tū(t) − (r̄(t, τ) + p̄(t, τ)) · τp
∥∥

E

=
(∥∥Fcon

(
DΨt+τ,tū(t)(ē(t))

)
− Fcon(e(t))

∥∥
(H1)∗

+ R(e, [t, t + τ ])
)
· O

(
τp+1/2

)
+ o

(
τp+1

)
(28)

with R(e, [t, t + τ ]) defined in (13).

Proof. With v := ḊΨt+τ,tū(t)(ē(t)) − ε(t + τ) +
∫ t+τ
t µ(s) ds, Lemma 3.7 yields

(∥∥Ψ̄t+τ,t
∗ ū(t) − Φ̄t+τ,tū(t) − (r̄(t, τ) + p̄(t, τ)) · τp

∥∥2

E
+

τ

4

∥∥v∥∥2

b
· τ2p

)1/2

≤
(1

2

∥∥Fcon

(
DΨt+τ,tū(t)(ē(t))

)
− Fcon(e(t))

∥∥
(H1)∗

)1/2
‖v‖1/2

H1 · τp+1/2

+ R(e, [t, t + τ ]) · O
(
τp+1/2

)
+ o

(
τp+1

)
.

This is an estimate of the form(
x2 +

τ

4

∥∥v∥∥2

b
· τ2p

)1/2
≤ a + b1/2‖v‖1/2

H1 · τp+1/2

with a, b, x > 0. The inequality of Young leads to

(
x2 +

τ

4

∥∥v∥∥2

b
· τ2p

)1/2
≤ a + αb · τp+1/2 +

1
α
‖v‖H1 · τp+1/2

with α > 0, and due to the inequality of Korn

‖v‖H1 · τp+1/2 ≤ 1
cK

(
‖v‖2

L2 + ‖v‖2
b

)1/2 · τp+1/2 ≤ 2
cK

(
x2 +

τ

4

∥∥v∥∥2

b
· τ2p

)1/2

for τ sufficiently small. Choosing α = 4/cK , we can reformulate the estimate above
as

1
2

(
x2 +

τ

4

∥∥v∥∥2

b
· τ2p

)1/2
≤ a +

4b

cK
· τp+1/2

such that

x = O
(
a + b · τp+1/2

)
.
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3.3 Discussion of consistency order

Our purpose in the previous section was to construct the discrete evolution operator
(Ψ∗, Ψ̇∗) such that the resulting scheme is of higher consistency order in energy
norm than CSN, compare condition (16). In order to analyze the actual order of
the scheme, we want to discuss the result of Theorem 3.9 in detail.

First of all, the error estimate (28) contains the remainder term r̄(t, τ) of As-
sumption 3.4 on the consistency error of CSN which strongly depends on the choice
of the order p. The consistency result 2.3 in energy norm does not give any infor-
mation about the local behavior of the error in space. In order to gain some insight
into this problem, we present a numerical study concerning the spatial distribution
of the consistency error of CSN.

Numerical Experiment. As an illustrative test problem, we select a Hertzian
contact in 2D. At initial time t = 0, we have a half circle with radius r = 0.15 and

Figure 1: Test problem.

midpoint on the y–axis. The semicircle has an initial distance 0.05 to a plate on
the x–axis and is moving up with vertical speed u̇(0) = (0, 1). The possible contact
boundary consists of a sixth circle located at the top. The remaining part of the
boundary is traction-free and no volume forces occur. The underlying triangulation
results from 5 refinement steps of a coarse grid triangulation with 3 vertices. We
refine five times further within a circle of radius 0.08 around the top of the semicir-
cle. The computational meshes are shown in Figure 1, and the elastic and viscous
material parameters can be found in Table 1.

parameter value
Young’s modulus 10
Poisson ratio 0.4
shear viscosity 10
bulk viscosity 10

Table 1: Material specifications.

In order to get an approximation of the exact solution of the variational problem,
we perform CSN with an extremely high timestep resolution. The difference between
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this fine reference solution and one large step of CSN acts as an indicator for the
consistency error of the scheme.

Figure 2: Spatial distribution of the estimated temporal consistency error of CSN
for τ → 0 (4 snapshots).

Figure 2 shows the time evolution of the estimated consistency error of CSN as
the timestep τ tends to zero. We observe that the domain where the error has a sig-
nificant value shrinks for decreasing timesteps. For small τ , the error is concentrated
near those parts of the contact boundary where the active set changes. Moreover,
we find that the error consists of two different parts, a regular one in the interior
of the domain and a second one at the changing active contact boundary. This
effect corresponds to our theoretical analysis of the consistency error as discussed
in Remark 3.8 and will become important for our timestep control in Section 4.

The observations above lead us to the following conjecture on the local behavior
of the consistency error. Due to the viscous material behavior, the irregularity
of the problem from the changing active contact boundaries is smoothened in the
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interior of the domain. If we pick a suitable subdomain Ω̃ of Ω with positive minimal
distance to the contact boundaries, then we expect to find the maximal order of
consistency p = 2 on Ω̃, eventually for small τ . However, the range of τ for which
the asymptotic behavior becomes visible most likely depends on the choice of Ω̃.
We may now exhaust Ω by a sequence of sets Ω̃k ⊂ Ω̃k+1 ⊂ . . . to find maximal
order of consistency on each of these sets, but a lower total order of consistency on
the whole domain Ω.

The local behavior of the consistency error (and the sensitivity) of CSN is re-
flected in the assumption

‖r̄(t, τ) + p̄(t, τ)‖E(Ω̃) · τ
2 = o

(
τ3

)
where we denote the physical energy norm w.r.t. the subdomain Ω̃ by ‖ · ‖E(Ω̃).
Applying the lower triangle inequality on the result of Theorem 3.9 with p = 2, we
find the consistency error estimate∥∥Ψ̄t+τ,t

∗ ū(t) − Φ̄t+τ,tū(t)
∥∥

E(Ω̃)

≤
(∥∥Fcon

(
DΨt+τ,tū(t)(ē(t))

)
− Fcon(e(t))

∥∥
(H1(Ω))∗

+ R(e, [t, t + τ ])
)
· O

(
τ5/2

)
+ ‖(r̄(t, τ) + p̄(t, τ))‖E(Ω̃) · τ

2 + o
(
τ3

)
=

(∥∥Fcon

(
DΨt+τ,tū(t)(ē(t))

)
− Fcon(e(t))

∥∥
(H1(Ω))∗

+ R(e, [t, t + τ ])
)
· O

(
τ5/2

)
+ o

(
τ3

)
on Ω̃. In Remark 3.8, we have discussed that the difference of the contact forces
Fcon

(
DΨt+τ,tū(t)(ē(t))

)
and Fcon(e(t)) only act on a small part of the possible

contact boundaries which is expected to tend to zero for most times t as τ → 0.
However, for ease of presentation, we have neglected this behavior by applying an
(H1(Ω))∗-norm estimate. This norm depends on the behavior of the differences
DΨt+τ,tū(t)(ē(t)) − e(t) and ḊΨt+τ,tū(t)(ē(t)) − ε(t) which tend to zero in H1,
resp. in L2. For most times t, we may even expect an H1-convergence to zero of
order τ , and the assumption∥∥Fcon

(
DΨt+τ,tū(t)(ē(t))

)
− Fcon(e(t))

∥∥
(H1(Ω))∗

= O(τ)

is reasonable. The quantity R(e, [t, t + τ ]) corresponds to the right-hand side of
the consistency result 2.3 which contains R(u, [t, t + τ ]) in turn. Since ē and ū
are defined via variational inequalities with coinciding active contact boundaries,
we expect that R(e, [t, t + τ ]) originates from a quantity which has a similar local
behavior as the consistency error of CSN. However, since R(e, [t, t + τ ]) refers to
the whole domain Ω, we restrict our considerations to

R(e, [t, t + τ ]) = O(τ)

which again is a reasonable assumption, at least for most times t. Then, we find∥∥Ψ̄t+τ,t
∗ ū(t) − Φ̄t+τ,tū(t)

∥∥
E(Ω̃)

= o
(
τ3

)
, (29)
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and the scheme (Ψ∗, Ψ̇∗) is of higher consistency order on Ω̃ than CSN. In summary,
we expect an asymptotic error expansion of CSN with order p = 2 which is visible
on a subdomain in the interior.

4 Timestep Control

In this section, our aim is to develop a strategy for choosing the size of timesteps
for the contact–stabilized Newmark method adaptively. This variant of CSN will
be called ContacX further on.

Ideally, an adaptive timestep control guarantees that the global discretization
error of the approximation is below a prescribed tolerance. However, global errors
are difficult to control since they consist of the actual consistency error as well
as the propagation of all errors that arise during time integration. We follow the
standard approach, and we intend to control the actual consistency error in the
reduced physical energy norm such that∥∥Ψ̄ − Φ̄

∥∥
E
≤ TOL (30)

where TOL is a local tolerance defined by the user. The idea behind is that smaller
consistency errors lead to a decrease of the global error. Since we cannot determine
this error exactly, we need a computable estimate[∥∥Ψ̄ − Φ̄

∥∥
E

]
≈

∥∥Ψ̄ − Φ̄
∥∥

E
,

and we look for the implementable condition[∥∥Ψ̄ − Φ̄
∥∥

E

]
≤ TOL .

The construction of a problem-adapted error estimator is the main challenge in the
establishment of an adaptive timestep control. Let ¯̂Ψ :=

(
Ψ̂,

˙̂Ψ
)

be a second discrete
evolution which is of higher accuracy than CSN for sufficiently small timesteps.
Then, the difference between the two numerical solutions is an error estimator, and
we set [∥∥Ψ̄ − Φ̄

∥∥
E

]
:=

∥∥Ψ̄ − ¯̂Ψ
∥∥

E
.

If the more accurate time integration scheme is even of higher consistency order
than CSN, then the error estimator is asymptotically exact (for more details see,
e.g., [5]).

In order to develop a comparative scheme of higher order, we intend to employ
extrapolation techniques which require an asymptotic error expansion of CSN. As we
have seen in the foregoing Section 3, the classical theory can not directly be applied
to dynamical contact problems due to the missing regularity at time-dependent
contact boundaries. In order to ensure a reliable timestep control, we have to adapt
the classical error estimator and timestep selection in the presence of contact.
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4.1 Error estimator in the absence of contact

In the absence of contact, CSN has pointwise optimal consistency order p = 2 both
in displacements and velocities. Furthermore, the consistency error has a pointwise
Taylor expansion due to the linearity of the problem. Hence, the results of Section 3
yield the existence of an asymptotic error expansion of the Newmark method.

ū11ūτ =

ū21ū τ

2

= ū22

Figure 3: Extrapolation table in the absence of contact, compare Fig. 4.

In order to construct a scheme of higher order, we follow a one-step extrapola-
tion method, see Figure 3, and we compute a second numerical solution with half
timestep τ/2. Then, we consider the asymptotic error expansions

ū11(t + τ) = ū(t + τ) + ē(t + τ)τ2 + o
(
τ3

)
ū21(t + τ) = ū(t + τ) + ē(t + τ)

(τ

2

)2
+ o

(
τ3

) (31)

of CSN. The extrapolated method

ū22(t + τ) :=
1

1 − 22

(
ū11(t + τ) − 22ū21(t + τ)

)
(32)

is of higher consistency order in energy norm than CSN since

‖ū22(t + τ) − ū(t + τ)‖E

≤ 1
22 − 1

∥∥ū11(t + τ) − ū(t + τ) − ē(t + τ)τ2
∥∥

E

+
22

22 − 1

∥∥∥ū21(t + τ) − ū(t + τ) − ē(t + τ)
(τ

2

)2∥∥∥
E

= o
(
τ3

)
.

We choose the subdiagonal error estimator[
‖ū21(t + τ) − ū(t + τ)‖E

]
:= ‖ū21(t + τ) − ū22(t + τ)‖E (33)

since we want to continue the computation with the higher order solution ū21(t+τ).
The extrapolated solution ū22(t + τ) is not practical due to the missing energy
dissipativity of the scheme. The choice of a subdiagonal error estimator avoids that
condition (30) is over satisfied (see, e.g., [5]).
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4.2 Error estimator in the presence of contact

If we find active contact boundaries in a time interval, we have to take into account
the discussion on the existence of an asymptotic error expansion of CSN in Section 3.

Due to our theoretical insight in Remark 3.8 and our numerical observations in
Section 3.3, the consistency error seems to consist of two different parts. The first
one acts on points in the interior of the domain and is assumed to be of optimal
order p = 2. The second one becomes extremely large at points near changing
active contact boundaries. The extrapolated solution (32) is of higher consistency
order than CSN only at points which have already reached the asymptotic phase
p = 2. Hence, the classical error estimator (33) is only applicable on a subdomain.
If this subdomain grows as the timestep tends to zero, the estimator becomes more
and more accurate for small τ . However, the classical approach underestimates
the remainder terms in the asymptotic error expansion near the critical changing
contact boundaries.

In order to control the additional contribution to the consistency error in the
presence of contact, we add a quantity X̄ := (X, Ẋ) to our model for the approxima-
tion error. The term including X̄ may be of worst possible order p = 0.5 as shown
by our consistency result 2.3 up to sets of measure zero. The quantity should have
a significant value at points near those parts of the active contact boundaries which
vary within the timestep. In the limit τ → 0, the domain where the quantity
vanishes should increase.

Again, we compute two numerical solutions with timesteps τ and τ/2, and we
make the ansatz

ū11(t + τ) ≈ ū(t + τ) + ē(t + τ)τ2 + X̄(t + τ)τ1/2

ū21(t + τ) ≈ ū(t + τ) + ē(t + τ)
(τ

2

)2
+ X̄(t + τ)

(τ

2

)1/2 (34)

for the approximation error. Within this model, the extrapolated solution ū22(t+τ)
from (32) satisfies

ū22(t + τ) ≈ ū(t + τ) +
1 − 22−1/2

1 − 22
X̄(t + τ)τ1/2 .

In order to handle the low order term in this formula, we extend the extrapolation
table by a third solution with timestep τ/3, see Figure 4.

ū11ūτ =

ū21ū τ

2

= ū22

ū31ū τ

3

= ū32

Figure 4: Extrapolation table in the presence of contact, compare Fig. 3.
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This approximation satisfies

ū31(t + τ) ≈ ū(t + τ) + ē(t + τ)
(τ

3

)2
+ X̄(t + τ)

(τ

3

)1/2
, (35)

and the extrapolated solution

ū32(t + τ) :=
1

22 − 32

(
22ū21(t + τ) − 32ū31(t + τ)

)
(36)

yields

ū32(t + τ) ≈ ū(t + τ) +
22−1/2 − 32−1/2

22 − 32
X̄(t + τ)τ1/2 .

In a next step, we combine both extrapolation schemes via

¯̂u(t + τ) :=
1

α − β
(αū22(t + τ) − βū32(t + τ)) (37)

with

α =
22−1/2 − 32−1/2

22 − 32
, β =

1 − 22−1/2

1 − 22
(38)

such that
¯̂u(t + τ) ≈ ū(t + τ) .

As before, we proceed with the finest solution ū31(t + τ). Hence, we take the
subdiagonal error estimator[

‖ū31(t + τ) − ū(t + τ)‖E

]
:= ‖ū31(t + τ) − ¯̂u(t + τ)‖E . (39)

Due to [
‖ū31(t + τ) − ū(t + τ)‖E

]
≈

∥∥∥ū31(t + τ) − ū32(t + τ) − 22−1/2 − 32−1/2

22 − 32
X̄(t + τ)τ1/2

∥∥∥
E

,

the constructed error estimator consists of two parts. The first one corresponds to
the classical estimator (33) with timestep τ/3. The second one is relative to the
quantity X̄(t+τ) in the asymptotic error expansion and mainly acts near the chang-
ing contact boundaries. Hence, the error estimator takes into account the special
structure of the consistency error of CSN as it has been shown by our theoretical
investigations in Remark 3.8 and our numerical experiment in Section 3.3.

4.3 Combined timestep strategy

The construction of an adaptive timestep control requires a suggestion for the new
timestep from the actual information. Usually, this timestep is given by the optimal
timestep τ∗ for the actual step which is characterized by

‖ū21(t + τ∗) − ū(t + τ∗)‖E ≈ ρ · TOL , (40)

respectively
‖ū31(t + τ∗) − ū(t + τ∗)‖E ≈ ρ · TOL (41)

with a safety factor ρ < 1.
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No contact. In the absence of contact, we assume that ē(t+τ) ≈ ¯̇e(t)·τ . Inserting
this approximation into the asymptotic error expansion (31) of CSN yield

ū21(t + τ) − ū(t + τ) ≈ ¯̇e(t)τ ·
(τ

2

)2

for all τ up to terms of higher order. This leads to

ū21(t + τ∗) − ū(t + τ∗) ≈ (ū21(t + τ) − ū(t + τ)) ·
(τ∗

τ

)3
.

Taking the energy norm of this approximation and inserting condition (40), we can
predict the optimal timestep τ∗ by the classical timestep formula

τ∗ = 3

√
ρ · TOL

‖ū21(t + τ) − ū22(t + τ)‖E
· τ . (42)

Contact. In the presence of contact, our ansatz (35) for the discretization error
of CSN and the assumption ē(t + τ) ≈ ¯̇e(t) · τ yield

ū31(t + τ∗) − ū(t + τ∗) ≈ ē(t + τ)
(τ

3

)2(τ∗

τ

)3
+ X̄(t + τ∗)

(τ∗

3

)1/2
.

We have to make sure that τ∗ < τ if ‖ū31(t + τ) − ¯̂u(t + τ)‖E > ρ · TOL. For this
purpose, we use the relation

ū31(t + τ) − ¯̂u(t + τ) ≈ ē(t + τ)
(τ

3

)2
+ X̄(t + τ)

(τ

3

)1/2

and the triangle inequality to find that∥∥ū31(t + τ∗) − ū(t + τ∗)
∥∥

E

&
∥∥ū31(t + τ) − ¯̂u(t + τ)

∥∥
E
·
(τ∗

τ

)3

+
∣∣∣∥∥X̄(t + τ∗)

∥∥
E

(τ∗

3

)1/2
−

∥∥X̄(t + τ)
∥∥

E

(τ

3

)1/2(τ∗

τ

)3∣∣∣ .

Due to condition (41), we look for

ρ · TOL =
∥∥ū31(t + τ) − ¯̂u(t + τ)

∥∥
E
·
(τ∗

τ

)3

+
∣∣∣∥∥X̄(t + τ∗)

∥∥
E

(τ∗

3

)1/2
−

∥∥X̄(t + τ)
∥∥

E

(τ

3

)1/2(τ∗

τ

)3∣∣∣ .

(43)

The quantity X̄(t + τ∗) does not necessarily tend to zero as τ → 0. Thus, we make
the careful assumption ‖X̄(t + τ∗)‖E = ‖X̄(t + τ)‖E , and the optimal timestep τ∗

is determined by∥∥ū31(t + τ) − ¯̂u(t + τ)
∥∥

E

(τ∗

τ

)3
+

∥∥X̄(t + τ)
∥∥

E

(τ

3

)1/2∣∣∣(τ∗

τ

)1/2
−

(τ∗

τ

)3∣∣∣
= ρ · TOL .

(44)
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Taking suitable differences of the approximations (34) and (35), the unknown quan-
tity X̄(t + τ) may be estimated via

X̄(t + τ)
δ − γ

δ

1 − 1
21/2

1 − 1
22

τ1/2

≈ 22(ū21(t + τ) − ū22(t + τ)) − 32(ū31(t + τ) − ū32(t + τ))

with
γ =

( 1
21/2

− 1
31/2

)(
1 − 1

22

)
, δ =

( 1
22

− 1
32

)(
1 − 1

21/2

)
.

The next stepsize proposal is gained from (44) by computing τ∗ as the root of a
scalar function. In the case of vanishing X̄(t+τ), the defining equation (44) reduces
to the classical stepsize formula (42).

Switch between no contact and contact. A certain difficulty in timestep
selection arises if a switch between contact and no contact occurs in a timestep. In
this case, the quantity X̄ is very large at the timepoint when the two bodies are in
contact, but zero in the absence of contact. In order to ensure an efficient timestep
selection, we need a suitable assumption on the behavior of this quantity in time.

For this aim, we divide the current timestep into phases of no contact, contact,
and a switch between no contact and contact. The approximations with stepsize
τ/2 and τ/3 give us the information in which part of the interval the switch occurs,
cf. Figure 5.

0
τ

3

−

τ

2

−

2τ

3

+

τ

+

τ
∗

X̄(t + τ
∗)

X̄(t + τ)

Figure 5: Model assumption on X̄(t + τ) (‘+’ and ‘–’ indicate whether contact
occurs or not).

If the stepsize τ∗ touches an interval where no contact occurs, we take

X̄(t + τ∗) = 0 ,

and within an interval with contact, we make the assumption

X̄(t + τ∗) = X̄(t + τ) .
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For a subinterval [tj , tj+1] with a switch between no contact and contact, we use a
linear interpolation and set

X̄(t + τ∗) =
( t + τ

tj+1 − tj
− t + tj

tj+1 − tj

)
· X̄(t + τ) .

If we have not found contact in an accepted timestep, we access to the last rejected
step with active contact boundaries. The optimal stepsize τ∗ is given by (43) as the
root of a scalar function.

5 Numerical illustrative example

In this section, we give an example for the adaptive timestep control ContacX of
the contact–stabilized Newmark method as suggested in this paper.

The implementation of our algorithm has been done within the framework of
the Distributed and Unified Numerics Environment Dune [3, 4]. For discretiza-
tion in space, we have used the finite element toolbox UG [2]. The information
transfer at the contact interface ΓC is realized by means of non-conforming domain
decomposition or mortar methods, see [23]. Among the possible solvers for vari-
ational inequalities, we have selected monotone multigrid methods [18, 20] since
linear multigrid convergence speed can be achieved without any additional parame-
ters. The adaptive contact solver [19] has been further improved in [10]. In practical
applications, the truncated nonsmooth Newton multigrid method (TNNMG) enters
the fast linear convergence almost immediately. For the L2-scalar product, we use
a lumped mass matrix which makes the cost for computing CSN negligible.

We consider the illustrative Hertzian contact problem of Section 3.3, where we
refine sixth times within the circle around the top of the semicircle. The parameters
for the adaptive stepsize control are given in Table 2 where E0 denotes the initial
energy of the system.

parameter value
tolerance TOL 10−4 · E0

safety factor ρ 0.9
initial timestep 10−2

maximal timestep 1
maximal growth factor for timesteps 10

Table 2: Specifications for adaptive timestep control.

Figure 6 shows the size of the adaptively chosen timesteps. When the body
is entering the phase of contact, the controller reduces the timesteps significantly.
The timesteps increase up to the moment when the halfcircle removes from the
plate. Here, depending on the desired time tolerance, the controller may reduce the
timesteps again. In the absence of contact, the timesteps grow considerably.
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Figure 6: Timestep history beyond contact (grey: phase of contact).

For j = 6 and TOL = 10−4 · E0, the integration scheme has carried out 40
timesteps where only 4 of them have been rejected. The repeats occur when the
two bodies come into contact. Table 5 contains the number of accepted and re-
jected timesteps for different tolerances and refinement levels of the grid. For small
tolerances, the adaptive timestep control requires a sufficiently high resolution of
the grid near the changing contact boundaries in order to avoid effects of spatial
discretization.

j / TOL 10−3 · E0 10−4 · E0 10−5 · E0

5 8 (2) 31 (5) 75 (15)
6 8 (2) 40 (4) 89 (13)
7 12 (3) 37 (4) 104 (11)
8 10 (2) 33 (4) 146 (9)
9 10 (2) 55 (5) 180 (10)

Table 3: Total number of timesteps (number of rejected timesteps) depending on
tolerance TOL and refinement level j of the grid.

Figure 7 shows the time evolution of the physical energy norm of X̄. The norm
becomes extremely large at the timepoint when the two bodies come into contact.
In Figure 8, we see the spatial distribution of Ẋ for a fixed time. As expected,
the quantity is located near the part of the possible contact boundaries where the
active set changes.
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Figure 7: Time evolution of ‖X̄‖E (grey: phase of contact).

Figure 8: Estimated spatial distribution of Ẋ(t + τ)|t=0.051.

6 Conclusion

The paper has suggested an adaptive timestep control in the contact–stabilized
Newmark method for dynamical contact problems (ContacX). Both theoretical
analysis and numerical experiments have led to a perturbed asymptotic error ex-
pansion of the scheme. We have constructed an error estimator via modified extrap-
olation techniques and a problem-adapted timestep size selection. First numerical
experiments exhibit a close connection between our new theory and our numerical
findings.
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