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Abstract

We propose an efficient column generation method to minimize the
probability of delay propagations along aircraft rotations. In this way,
delay resistant schedules can be constructed. Computational results
for large-scale real-world problems demonstrate substantial punctuality
improvements. The method can be generalized to crew and integrated
scheduling problems.

1 Introduction

The tail assignment problem is one of the classical planning problems in
the operation of an airline, see Yu (1997) [20] and Barnhart, Belobaba &
Odoni (2003) [3] for an overview on airline optimization in general, and
Grönkvist (2005) [12] and the references therein for a recent survey on tail
assignment. It deals with the construction of rotations for individual units
of aircraft in order to cover the legs of a flight schedule. Tail assignment
is not a cost minimization problem; the number of aircraft that is needed
to operate a flight schedule is determined in the preceding fleet assignment
step. One rather optimizes aircraft maintenances and, in particular, buffer

times between successive flights of an aircraft in such a way that delays can
be absorbed and the operation becomes more “robust”. In fact, the ongoing
dissemination of optimization technology is cutting at safety margins, such
that deviations between the plan and the actual operation have become an
increasingly serious problem in the last decade. Eurocontrol has estimated
average delay costs at 72 e per minute, see Eurocontrol (2000) [10], Boydell
(2005) [6], and Cook, Tanner & Anderson (2004) [8] for detailed analyses.
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It is therefore necessary to take the risk of disturbances into account and to
make delay costs an explicit optimization objective.

The literature has suggested a number of approaches to this robust tail as-

signment problem. The simplest is based on the notion of key performance

indicators (KPI), which augment or replace the objective of an ordinary tail
assignment problem by some term that heuristically measures robustness
and favors, e.g., even distributions of ground times, assignments of certain
amounts of buffer time before a leg, etc. Examples of more sophisticated
KPIs are swap opportunities (Burke et al. (2007) [7]), cancellation cycles
(Rosenberger, Johnson & Nemhauser (2004) [17]), and propagated delays
emerging from individual arcs AhmadBeygi, Cohn & Lapp (2008) [2], see
also AhmadBeygi et al. (2007) [1] and Bian et al. (2003) [5] for KPI analyses
of historical aircraft schedules. Comparing the behavior of a KPI schedule
to a traditional schedule via simulation shows that such an approach can
indeed lead to a substantial reduction of delays. In principle, approaches of
robust optimization could also be applied, see Bertsimas & Sim (2003) [4] and
Stiller (2008) [19] for a recent overview, but probably at a high cost. This
seems to be the reason why, as far as we know, such worst case concepts have
not yet been applied to concrete tail assignment problems. From a math-
ematical point of view, the most satisfying solution method for robust tail
assignment problems is stochastic optimization. In such an approach, one
optimizes the expectation of some delay statistic along individual rotations,
using a stochastic model of delay generation and propagation. The methods
differ in the way in which the delay propagation is computed. Lan (2003)
[14]; Lan, Clarke & Barnhart (2006) [15] “sample” the delay in the sense
that they simulate a rotation on a number of historical scenarios; the re-
sulting histogram is fitted with a continuous (log-normal) distribution. This
fitting is time consuming. Fuhr (2007) [11] computes the delay analytically
using a special class of (Erlang-Exp/Exp-Erlang) distributions, which (up
to an approximation error) are closed under convolution. The disadvantage
of this method is that the starting distributions can not be freely chosen.
Kleywegt, Shapiro & Homem-de Mello (2001) [13] propose a general Monte
Carlo approach, which approximates expected values by averages of sam-
ples. This method can be, but has not been, applied to the tail assignment
problem, such that its potential in this setting remains unclear.

We propose in this paper a novel method to derive the probability of delay
propagation (PDP) along an aircraft rotation directly by a numerical com-
putation of convolutions from discretized probability density functions. This
algorithm is used as a pricing routine in a column generation approach to the
robust tail assignment problem. We show that our PDP method is accurate
and computationally efficient. In fact, approximation errors of less than 1%
in comparison to a simulation can be achieved at low computational costs.
In our scenarios, which are already optimized with respect to KPI methods,
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Figure 1: Effect of aircraft routing on delay propagation (thick: plan, thin:
day of operation).

PDP optimization achieves additional reductions in delay propagation of up
to 5%.

The paper is structured as follows. Section 2 analyzes the propagation of
delay along an aircraft rotation. We propose a shortest-path type most
robust rotation algorithm to compute a rotation with minimum probability
of delay propagation. This algorithm is used as a pricing routine in a column
generation approach to the robust tail optimization problem in Section 3.
In Section 4, this algorithm is applied to construct robust aircraft rotations
for large-scale real-world scenarios covering four months of operation of one
subfleet of a European short haul carrier. We compare our PDP approach
with a KPI method and prove its validity by directly simulating historical
situations.

2 Delay Propagation

On the day of operation, aircraft rotations get disturbed by random events
like bad weather, passenger and baggage handling problems, equipment mal-
functions, etc. This causes genuine delays of legs, which are inevitable. Such
delays are called primary delays. After a landing, some of the delay can be
absorbed by ground buffer times. If no recovery action (like a swap) is
taken, which we assume in this paper, the remaining delay is propagated to
the succeeding leg. Such a delay, that is propagated from a preceding leg, is
called a secondary delay. There is nothing we can do about primary delays.
But secondary delays, i.e., delay propagation, can be reduced by construct-
ing aircraft rotations in such a way that buffer times are allocated at the
“right” connections. In our data, secondary delays amount to approximately
30% of all delays.

Figure 1 shows an example of the influence of aircraft rotations on the
propagation of delay. We consider an airport with two incoming legs A

3



Figure 2: Effect of aircraft routing on delay propagation along an entire
rotation.

and B and two outgoing legs C and D. The left side of the picture shows
two rotations that connect legs AC and BD in a FIFO manner, resulting in a
nearly even distribution of buffer times. However, suppose that leg A tends
to be delayed more often than leg B. Then it can make sense to allocate
more buffer after leg A by connecting legs AD and BC. Such a solution is
shown on the right.

Thinking this example through, it becomes apparent that the propagation of
delay from one leg to another does not only depend on the two legs involved,
but on the entire rotation. The arrival delay of a leg depends on preceding
legs, and the effect of a delay depends on the succeeding legs. Figure 2
illustrates these facts by showing the rotations of Figure 1 in whole. We
see that leg A is preceded by leg G, and that there is no ground buffer
between these legs. Arrival delays of leg G are therefore fully propagated
to leg A, such that the arrival delay of leg A in this rotation may well be
much higher than one would expect by considering leg A alone. Similarly,
leg C is followed by leg F with 25 minutes of ground buffer and leg D is
followed by leg E with no buffer. It may therefore be appropriate to cover
legs D and E in a rotation that is unlikely to be delayed, because there
is no possibility to reduce propagated or additional primary delay. Such a
solution is shown on the right. The example shows that delay propagation
has to be computed for an entire aircraft rotation, and can not be decided
locally. For this reason, arc-based KPI approaches can not correctly predict
the robustness of a rotation.

In the following subsections, we develop a stochastic model for primary
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and secondary delays and a robust shortest path framework to compute a
rotation with minimum probability of delay propagation.

2.1 Stochastic Model

We propose a delay propagation model that distinguishes gate and block
phases in a rotation, see Rosenberger et al. (2002) [16] for more details
on aircraft operations and associated models. A gate phase represents the
ground time of an aircraft at a gate, i.e., the time between the arrival of
an incoming leg at a gate and the departure of the succeeding outgoing leg
from this gate. A block phase represents the taxi-out, en route, and taxi-in
time of a leg. The duration of each such phase can deviate from the schedule
because of primary delays (note that a gate phase can only be delayed, but
a block phase can also be shorter than scheduled due to early arrivals, i.e.,
a block delay is actually a “block deviation”).

Modeling the primary delays by random variables, we derive random vari-
ables for the secondary delay along a rotation. The model can be formally
described as follows. Consider a rotation r = (1, . . . , k) with k legs. Denote
by bi,i+1 the buffer time between legs i and i + 1, i = 1, . . . , k − 1, and
by ω the maximal negative deviation of the block time of a leg (clearly, ω
is smaller than the scheduled block time). Consider the following random
variables:

• Gi: the delay of the gate phase before leg i, i = 1, . . . , k,

• Bi: the deviation from the block time of leg i, i = 1, . . . , k,

• ADr
i : the arrival delay of leg i in rotation r, i = 1, . . . , k,

• PDr
i : the delay propagated to leg i in rotation r, i = 1, . . . , k.

We assume that all primary delay variables Gi and Bi are independent. We
further assume that Gi ≥ 0 and Bi ≥ −ω, i = 1, . . . , k. We will now argue
that the delay propagated to leg i in rotation r is given by the recursion

PDr
1 = 0, PDr

i+1 = max {PDr
i + Gi + Bi − bi,i+1, 0} , i = 2, . . . , k.

(1)
To this purpose, we show by induction that the arrival delay and the delay
propagated to leg i in rotation r are

ADr
i = PDr

i + Gi + Bi ≥ −ω, i = 1, . . . , k
PDr

1 = 0, PDr
i = max

{

ADr
i−1 − bi−1,i, 0

}

, i = 2, . . . , k.

Substituting for ADr
i gives Equation (1). In fact, since leg 1 is the first leg

in rotation r, there is no propagated delay from previous legs, i.e., PDr
1 = 0.
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Hence, the arrival delay of leg 1 in rotation r is the sum of the gate delay
G1 and the block deviation B1

ADr
1 = G1 + B1 = PDr

1 + G1 + B1 ≥ −ω.

Now consider leg i + 1, i ≥ 1. Clearly, if the arrival delay ADr
i is greater

than the buffer time bi,i+1, then bi,i+1 minutes of delay will be absorbed by
the ground buffer and only the remaining delay will propagate to leg i + 1.
Otherwise no delay will propagate to leg i + 1. On the other hand, early
arrival of the aircraft does not propagate to the next leg. Therefore, the
delay propagated to leg i + 1 in rotation r is

PDr
i+1 = max {ADr

i − bi,i+1, 0} .

The arrival delay of leg i+1 in rotation r is the sum of the propagated delay
from leg i and the primary gate delay Gi and the block deviation Bi

ADr
i+1 = PDr

i + Gi+1 + Bi+1 ≥ −ω.

The random variables ADr
i and PDr

i can be used in various ways to define
a quantitative measure of the robustness of a rotation r. We focus on the
probability of delay propagation (PDP) Pr[PDr

i > 0] and use the “total
probability of delay propagation” in rotation r defined as

dr =
∑

i∈r

Pr[PDr
i > 0] (2)

as a measure of robustness, i.e., we measure robustness in terms of (total)
PDP (a rotation is more robust if its total PDP is smaller). We have defined
the PDP for a leg in a rotation, and the total PDP for a rotation; for
simplicity of notation, let us also speak of the PDP of a rotation in lieu of
the total PDP. We remark that we have also tried other measures such as
the “total expected propagated delay ” (EPD), the “total expected arrival
delay” (EAD), etc. These objectives produce similar results.

2.2 Minimizing the Probability of Delay Propagation

We consider the following graph theoretic framework to identify a rotation
of minimal PDP. Let G = (V, A) be an acyclic digraph, whose vertices
V correspond to the legs of a flight schedule and whose arcs e = (u, v)
correspond to feasible connections of these legs. (Namely, a connection
between legs u and v is feasible if the arrival airport of leg u is the same as
the departure airport of leg v and if the scheduled departure time of leg v is
greater than the scheduled arrival time of leg u plus some minimum ground
time.) Associated with each leg v are two random variables Gv ≥ 0 and Bv,
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representing ground delays and block time deviations, and associated with
each arc (u, v) is some integer value b(u,v), representing the buffer time in
the connection of legs u and v. Then the arrival delay ADr

v at leg v, the
propagated delay PDr

v to leg v, and the PDP dr are well defined for every
path in D, respectively, cf. Section 2.1. Given two legs s and t, the Most

Robust Rotation Problem (MoRoRoP) is to find the most robust st-path in
D, i.e., the st-path of smallest PDP.

Algorithm 1: Most Robust Rotation Algorithm.

Input : Digraph D = (V, A) with random node variables Gv ≥ 0
and Bv and arc buffers b(u,v) ≥ 0, two nodes s and t

Output: PDP of a most robust st-path in D
Ls := {(0, 0)}1

Lv := ∅ for all v ∈ V \ {s}2

sort V topologically as v1, . . . , vj = s, . . . , vk = t, . . . , vn3

for i = j to k − 1 do4

u := vi5

for all (u, v) ∈ E do6

for (du, PDu) ∈ Lu do7

PDv := max(PDu + Gu + Bu − buv, 0)8

duv := Pr[PDv > 0]9

Lv := Lv ∪ {(du + duv, PDv)}10

end11

remove all dominated labels from Lv12

end13

end14

return min(dt,PDt)∈Lt
dt15

Algorithm 1 solves the most robust rotation problem. It assigns sets Lv of
labels (cv, PDv) to the nodes, that store the PDP of the current path to node
v and the propagated delay. Labels are “pushed” along a topological node
order; this guarantees finiteness. To save some running time over pure enu-
meration, labels are pruned by dominance. Namely, (c1, PD1) is dominated
by label (c2, PD2) if c2 ≤ c1 and FPD1

(x) ≤ FPD2
(x) for ∀x ∈ R, where FX

denotes the cumulative distribution function of a random variable X.

2.3 Discretization

An implementation of the most robust rotation Algorithm 1 requires an
encoding of the random variables Gv, Bv, and PDv. These variables are
summed up (Line 8), a nonnegative constant is subtracted (Line 8), the
positive part is taken (Line 8), probabilities are computed (Line 9), and
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dominance is checked (Line 12). All these operations can be performed
using probability density functions, and we propose to use a discretization
of the densities for numerical computations. Namely, we approximate the
probability density function fX of a random variable X by a step function
f̃k

X with constant step size k and a finite number of non-zero segments

f̃X(x) =

{

αi, for x ∈]k(i − 1), ki], i = lX , . . . , uX ,

0, else,
(3)

where lX and uX are integer lower and upper step bounds and

αi =

∫ ki

k(i−1) fX(x)dx

k
=

FX(ki) − FX(k(i − 1))

k
, i = lX , . . . , uX .

To approximate the primary delay variables Gi and Bi, we choose a step size
k and a small real number ǫ > 0. For X = Bi, we set lX = −⌊ω/k⌋, uX such
that Pr[Bi > uXk] < ǫ, and normalize. For X = Gi, we set lX = 0, uX such
that Pr[Gi > uXk] < ǫ, and normalize. Starting from this initialization, we
compute approximations to the derived distributions as follows.

Summation. The summations in Line 8 of Algorithm 1 involve indepen-
dent random variables. Given integrable probability density functions fX

and fY of two independent random variables X and Y , the probability den-
sity function fZ of their sum Z = X+Y can be computed by the convolution

fZ(t) =

∫ ∞

−∞
fX(t − x)fY (x)dx.

The convolution of two step functions f ′
Z = f̃X + f̃Y with identical step

size k (but not necessarily identical upper and lower step bounds lX , lY ,
and uX , uY ) is a piecewise affine function with segment step points in the
set

{lZ , . . . , uZ} = {lX + lY , . . . , uX + uY }.

The function values at the end points of the line segments are

f ′
Z(ik) =

min{uX ,i−lY }
∑

j=max{lX ,i−uY }

kf̃X(jk)f̃Y ((i − j)k), i = lX + lY , . . . , uX + uY .

Averages of these values can be used to again approximate f ′
Z by a step

function with step size k

f̃Z(x) =

{

βi, for x ∈]k(i − 1), ki], i = lZ , . . . , uZ ,

0, else,
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where

βi =
f ′

Z(k(i − 1)) + f ′
Z(ki)

2
, i = lZ , . . . , uZ .

Note that
∫ ∞
−∞ f̃(x) = 1 for f = f̃X , f̃Y , f̃Z . Executing this procedure in

Algorithm 1, step functions with increasing numbers of nonzero segments
build up.

Nonnegative Constant. The summations in Line 8 of Algorithm 1 also
involve the subtraction of a nonnegative constant. Let f̃X be a step function
(3) with step size k and lower and upper step bounds lX and uX and let b
be a nonnegative constant. For b = k, the probability density function of
Y = X − b = X − k is

f̃Y (x) =

{

αi+1, for x ∈]k(i − 1), ki], i = lY , . . . , uY ,

0, else,

where lY = lX − 1 and uY = uX − 1. For 0 < b < k the probability density
function of Y = X − b is a step function with step size k and “shifted
segments”. It can be approximated by a step function with step size k and
segment end points in kZ as

f̃Y (x) =























αi
k−b
k

, for x ∈]k(i − 1), ki], i = uX

αi+1b+αi(k−b)
k

, for x ∈]k(i − 1), ki], i = lX , . . . , uX − 1,

αi+1
b
k
, for x ∈]k(i − 1), ki], i = lX − 1,

0, else,

i.e., lY = lX − 1 and uY = uX . The remaining cases follow.

Positive Part. Line 8 of Algorithm 1 requires taking the positive part of
a random variable. Consider W = max (Z, 0) where Z is a random variable
with discretized probability density function (3) with step size k and step
bounds lZ , uZ . If Z ≥ 0, fW = fZ , so assume Z 6≥ 0, i.e., lZ < 0. Then fW

can be approximated as

f̃W (x) =



















0
∑

j=lZ

αj , for x ∈] − k(i − 1), ki], i = 0,

αi, for x ∈]k(i − 1), ki], i = 1, . . . , uZ ,

0, else,

i.e., lW = 0 and uW = max{0, uZ}. We remark that we actually use a differ-
ent density function in our implementation that involves a point distribution
at zero; for simplicity of exposition, we omit the details here.
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Probability. The probability that a random variable is positive must be
computed in Line 9 of Algorithm 1. If f̃X is a discretized probability density
function (3) with step size k and lower and upper step bounds lX , uX , this
probability is

Pr[X > 0] = k

uX
∑

i=1

αi.

Dominance. Comparing the distribution functions of two random vari-
ables with discretized probability density functions f̃X and f̃Y in Line 12 of
Algorithm 1 can be done by checking FX ≥ FY as

j
∑

i=min{lX ,lY }

f̃X(ik) ≥

j
∑

i=min{lX ,lY }

f̃Y (ik), j = min{lX , lY }, . . . ,max{uX , uY }.

***

Approximating the density functions of random variables as described in this
section throughout the course of Algorithm 1 results in the computation of
an “approximately most robust rotation” with an “approximate PDP” of
d̃r. The computational complexity of these computations depends on the
development of the span uX − lX of the step bounds. If convolutions are
computed and if constants are subtracted, the span increases, if positive
parts are taken, the span decreases. We heuristically decrease the span
further by cutting off segments in the tail of the distribution as long as their
total probability is less than some small constant. In our computations, the
span then typically increases along the first three or four arcs, and remains
constant afterwards. Clearly, the precision also deteriorates with increasing
path length. In practice, however, the accuracy is high, as we will see in the
computational Section 4.

3 Robust Tail Assignment

The tail assignment problem is about the construction of rotations for a set
of individual aircraft in order to cover a set of flights. The problem is solved
on a daily basis before the day of operation in order to adjust short- to
long-term maintenances and other operational requirements. More details
can be found in the thesis of Grönkvist (2005) [12].
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3.1 Integer Programming Model

The tail assignment problem can be modeled as a set partitioning problem
with base constraints, see again Grönkvist (2005) [12].

min
∑

k

∑

r∈Rk

drx
k
r (4)

∑

k

∑

r:l∈r,r∈Rk

xr = 1 ∀l ∈ L (5)

∑

k

∑

p∈Rk

abpx
k
p ≤ rb ∀b ∈ B (6)

∑

j∈Rk

xk
j = 1 ∀k (7)

xk
r ∈ {0, 1} ∀k,∀r ∈ Rk. (8)

Here, Rk is the set of feasible rotations for aircraft k. Constraint (5) guar-
antees that every leg is covered by exactly one rotation. Constraint (6) en-
sures that the base constraints (which model, e.g., maintenance capacities)
are satisfied. The objective maximizes robustness in the sense of minimizing
the probability of delay propagation. Using discretization, the objective is
approximated as

∑

k

∑

r∈Rk
d̃rx

k
r .

3.2 Column Generation

We use a column generation algorithm to solve the tail assignment problem.
Such an algorithm solves the linear programming relaxation of the problem,
the so-called master problem, in an iterative way. In each iteration, a subset
of columns is considered and the associated reduced master LP is solved.
Then the pricing problem to identify new columns with negative reduced
cost is solved. These columns are added to the reduced master problem.
This process is repeated until no more improving columns exist. At this
point, the master LP is solved. An integer solution is constructed by a
rounding heuristic in a second phase.

Associating dual variables πl, l ∈ L, with the leg covering Constraints (5),
µb, b ∈ B, with the base Constraints (6), and νk, k ∈ K, with the aircraft
Constraints (8), the pricing problem to construct for aircraft k a rotation
r ∈ Rk of negative reduced cost can be stated as

min
r∈Rk

dr = min
r∈Rk

dr −
∑

l∈r

πl +
∑

b∈B

abrµb − νk.

Assuming furthermore that the consumption of base resources on a rotation
for aircraft k can be expressed in terms of base resource consumptions ab,k

l
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Algorithm 2: Resource Constrained Most Robust Rotation Algo-
rithm.

Input : Digraph D = (V, A) with random node variables Gv ≥ 0
and Bv, arc buffers b(u,v) ≥ 0 and base resource

consumptions ab,k

(u,v), rotation feasibility oracle, aircraft k,
two nodes s and t

Output: Most negative reduced cost of rotation r ∈ Rk for aircraft k
Ls := {(−νk, 0)}1

Lv := ∅ for all v ∈ V \ {s}2

sort V topologically as v1, . . . , vj = s, . . . , vk = t, . . . , vn3

for i = j to k − 1 do4

u := vi5

for all (u, v) ∈ E do6

for (du, PDu) ∈ Lu do7

updatePathResourceConsumption(u,v,(du, PDu))8

if resourceConsumptionNotValid() then9

next10

end11

PDuv := max(PDu + Gv + Bv − buv, 0)12

duv := Pr[PDv > 0] − πv +
∑

b∈B µba
b,k
v13

Lv := Lv ∪ {(du + duv, PDuv)}14

end15

remove all dominated labels from Lv16

end17

end18

return min(dt,PDt)∈Lt
dt19

on legs l, the pricing problem becomes

min
r∈Rk

dr = min
r∈Rk

dr −
∑

l∈r

πl +
∑

l∈r

∑

b∈B

µba
b,k
l − νk. (9)

For typical tail assignment problems, this is a resource constrained most

robust rotation problem. Algorithm 2 shows pseudocode of a corresponding
resource constrained most robust rotation algorithm. The algorithm handles
feasibility rules for aircraft rotations by means of a feasibility oracle. Using
discretization, we are looking for minimal approximate reduced costs

min
r∈Rk

d̃r = min
r∈Rk

d̃r −
∑

l∈r

πl +
∑

l∈r

∑

b∈B

µba
b,k
l − νk

in our implementation.
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4 Computational Results

We report in this section on computational results for the solution of real-
world large-scale tail assignment problems with our PDP method. Our
code extends the pricing algorithm of the commercial state-of-the-art tail
assignment optimizer tail xOPT from the NetLine planning system of
Lufthansa Systems Berlin GmbH (LSB) (see Schickinger (2008) [18]) in order
to handle the probability of delay propagation as a robustness objective.
In other words, we use tail xOPT with the pricing Algorithm 2 for our
computations; we will refer to this method as PDP. Simulations were done
using a fast, event-based engine Dammer (2010) [9].

We first discuss our test instances and, in particular, the concrete form of
our stochastic model for our data. We then compare our PDP approach to a
traditional KPI method, and investigate its accuracy and efficiency. Finally,
we benchmark our approach on historic situations in order to show that our
model indeed “captures reality”.

All computations were made on a 64-bit desktop PC with two Intel(R)
Core(TM) 2 processors with 3.0 GHz and 8 GB of RAM memory, running
openSuse Linux 11.2. Our code is implemented in C++ and was compiled
using g++ 3.4.

4.1 Data

LSB provided historical data on the operation of a fleet of a European short
haul carrier. It consists of a logfile on the operation of all 350,000 flights
that were flown by this fleet over a period of 28 months in the airline’s hub-
and-spoke network (with two hubs), see Figure 3 for an illustration. The
data contains information about departure and arrival times, and about
departure delays including the IATA codes. Using these codes, we identified
primary and secondary delays. The primary delays were analyzed to build
the stochastic model.

Gate Delays. The two constitutive factors are the probability that a delay
occurs and, subordinately, the length of the delay. In fact, our analysis shows
that the length of a gate delay is independent of the airport and the time
of day, while the frequency of delay occurrences depends on the airport and
the time of day. We therefore derived the probability of a gate delay for
each airport and hour of the day as the ratio of the number of departing
flights with primary gate delays over the number of all departing flights.
The length of gate delays was modeled in terms of a universal log-normal
distribution that was fitted over all airports, and a power-law distribution
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Figure 3: Flight network for one day of operation of a European short haul
carrier (time goes up).

for delays of more than 60 minutes in order to account for the heavy tails
that we observed. Cutting off delays greater than or equal to 220 minutes,
the probability density function fGi

(x) for a gate delay of leg i that results
from these considerations is (modulo some normalization)

fGi
(x) =























p(ai, ti)Ln(x, µ, σ), 0 < x <= 60,

p(ai, ti)Pl(x, α), 60 < x < 220,

1 − p(ai, ti), x = 0,

0, else.

Here, Ln(µ, σ) denotes the probability density function of a log-normal dis-
tribution with mean µ and standard deviation σ, Pl(α) denotes the prob-
ability density function of a power-law distribution with parameter α, and
p(ai, ti) is a probability of delay occurrence that depends on the departure
airport a(i), and the hour of departure t(i) of leg i.

Block Delays. Our analysis shows that block delays (and early arrivals)
depend only on the scheduled block duration, see Figure 4. This at first
sight surprising finding can be explained as a result of regular flight time
adjustments by the airline in order to match scheduled and observed flight
times. Modeling block delays by a log-logistic distribution, the probability
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Figure 4: Historic block delay distributions for legs with scheduled leg du-
rations of 60, 100, and 200 minutes.

min max avg

legs acft time legs acft time legs acft time

January 44 12 3840 105 17 8830 88 15 7447
February 94 15 8295 118 17 10065 109 16 9339
March 94 15 7900 121 17 10390 110 16.3 9483
April 93 15 7080 118 18 9750 103 16 8648

Table 1: Statistics on tail assignment instances. Maximum, minimum, and
average number of legs, aircraft, and flight time per day.

density function fBi
(x) for block delays of leg i becomes

fBi
(x) = Llg

(

x, α(ℓi), β(ℓi)
)

, x ∈ R.

Here, Llg
(

x, α(ℓi), β(ℓi)
)

is the probability density function of a log-logistic
distribution with parameters α(ℓi) and β(ℓi) that depend on the scheduled
duration ℓi of leg i.

Scenarios. We test our method on four scenarios that each cover one
month of data, namely, January, February, March, and April 2007. Table 1
lists some statistics on these scenarios. Each of them consists of several
days. In the upcoming computations, these days will always be optimized
individually, i.e., we run the optimizer for about 30 one day instances of a
monthly scenario.

4.2 Maximizing Robustness

We compare our PDP approach in this section with a KPI method that uses
no stochastic information. This method, further referred to as ORC (Origi-
nal Robustness Costs), rewards ground buffer times between two successive
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ORC PDP savings

PDP EAD CPU PDP EAD CPU PDP EAD

Month (#) [min] [s] [min] [s] [min]

January (26) 414.51 28488 28 395.46 28085 66 19.05 403
February (22) 540.48 31870 31 530.42 31652 89 10.06 218
March (21) 516.69 30363 31 507.91 30174 75 8.78 189
April (27) 465.48 34453 42 449.16 34159 71 16.51 294

Table 2: Optimizing the robustness of airline rotations using a KPI method
(ORC) and a stochastic optimization method (PDP).

legs in a rotation up to a maximum value of 15 minutes. This is a standard
practitioner’s approach; it aims at distributing ground buffers of reasonable
length in a homogenous way.

Table 2 summarizes the results of our experiments. The first column of the
table identifies the scenario. Because of some data inconsistencies we were
not able to optimize every day of every month; the numbers in brackets
in the second column give the number of optimized days. The columns
labeled PDP show the probability of delay propagation over all rotations in
all schedules that have been constructed for a scenario using the respective
optimization method. For the ORC schedules, these numbers have been
computed a posteriori, for the PDP schedules, they constitute the objective.
In all cases, a discretization step size of one minute was used. The columns
labeled EAP give the total expected arrival delay minutes. Arrival delay
causes disruptions of passenger connections and excess working time for
crews; this is some measure of increase in operation costs. The columns
labeled CPU list the average computation time of one instance of a scenario
in CPU seconds. The last two columns of the table summarize the expected
improvements of PDP over ORC. With up to 5%, they are substantial.

Figure 5 gives a more detailed impression of these improvements. It plots
the arrival delays measured in 500 simulation runs of an ORC and a PDP
schedule for one particular day of operation. Points on the right of the
diagonal represent simulation runs in which PDP outperformed ORC, points
on the left of the diagonal represent points where ORC outperformed PDP.
This happens in only 21% of all cases. This means that PDP is not only
better than ORC on average, but also in the vast majority of cases. Note also
that the superiority grows with the number of disruptions. In an average
simulation, the PDP schedule saves 29 minutes of arrival delay over the ORC
solution, and 62 minutes in simulations where both schedules suffer at least
1000 minutes of arrival delay.
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Figure 5: Comparing average arrival delay minutes for 500 disruption sim-
ulations of an ORC and an PDP schedule.

4.3 Complexity

The accuracy and the running time of the PDP method can be controlled
in terms of the step size parameter. The smaller the step size, the higher
the accuracy, but also the computational effort. We now investigate this
tradeoff, as well as the accuracy per se. To determine the approximation
error, we estimate the “true” probability of delay propagation of a schedule
by averaging over the results of 100,000 runs of a simulator that generates
random disruptions according to our stochastic model, see Dammer (2010)
[9].

We start with an experiment that is designed to give an impression of the
speed of the convolution algorithm. In order to eliminate influences from
different execution paths of the column generation algorithm, we simply
use the PDP algorithm to compute the probability of delay propagation for
two (not optimized) schedules SC1 and SC2, i.e., we take the rotations of a
schedule and compute their PDPs. Changing the discretization step size, the
results then differ only with respect to accuracy and computation time. As
usual, both instances cover a single day of operation. Instance SC1 involves
100 legs flown by 16 aircraft; SC2 has 103 legs covered by 21 aircraft. The
rotations involve up to 8 legs.

Table 3 shows the effect of six different step sizes ranging from 0.1 to 4.0
minutes. The first column in both subtables gives the name of the instance,
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step size CPU PDP error
[m] [s] [%]

SC1 0.1 15.4 25.0586 0.11
SC1 0.5 1.0 25.0672 0.15
SC1 1.0 0.5 25.0917 0.25
SC1 2.0 0.4 25.2227 0.77
SC1 3.0 0.4 25.4775 1.79
SC1 4.0 0.3 25.7657 2.94

SIM 25.0303

step size CPU PDP error
[m] [s] [%]

SC2 0.1 12.8 21.3792 0.09
SC2 0.5 1.0 21.3858 0.12
SC2 1.0 0.6 21.4047 0.21
SC2 2.0 0.5 21.5145 0.72
SC2 3.0 0.4 21.7354 1.76
SC2 4.0 0.4 21.9386 2.70

SIM 21.3605

Table 3: Investigating the influence of discretization step sizes on running
time and accuracy of convolution computations.

step size PDP time PDP
[m] (opt.) [s] (sim.)

SC1 0.1 19.7268 4450 19.7469
SC1 0.5 19.7362 231 19.7382
SC1 1.0 19.7450 70 19.7239
SC1 2.0 19.8693 45 19.7313
SC1 3.0 20.0651 29 19.7239
SC1 4.0 20.3353 31 19.7562

step size PDP time PDP
[m] (opt.) [s] (sim.)

SC2 0.1 18.9141 616 18.8499
SC2 0.5 18.878 17 18.8071
SC2 1.0 18.8955 19 18.8088
SC2 2.0 19.0195 8 18.8459
SC2 3.0 19.2033 7 18.8208
SC2 4.0 19.3789 11 18.8252

Table 4: Investigating the influence of discretization step sizes on running
time and accuracy of tail optimization.

the column labeled step size [m] and CPU [s] gives exactly this. The PDP
column gives the objective as computed by our algorithm, except for the last
row, which gives the averaged result of 100,000 simulation runs. The last
column gives the approximation error as the relative difference between the
values computed by the PDP algorithm and the simulation. It can be seen
that the error is in general very small, even a relatively coarse discretization
step size of two minutes gives very accurate results. Moreover, even coarser
discretizations do not pay off with respect to running times. A discretization
step size of one minute, which is the standard setting that we have used for
computations throughout this paper, seems to be perfectly adequate.

Table 4 investigates the effects of varying step sizes on a run of the PDP
optimization algorithm for the same scenarios. Throughout the column
generation, many rotations are constructed and many delay distributions are
computed, such that the running times, listed in the columns labeled CPU
[s], are much higher than those in Table 3. The columns labeled PDP (opt.)
give the PDP value computed by the optimizer. This value is compared
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with the average delay propagation over 10,000 simulation runs for such
a solution, listed in the columns labeled PDP (sim.). It can be seen that
the solution quality of the PDP approach is insensitive to the discretization
step size, i.e., even with very coarse discretizations, the method computes
very good solutions. In other words, the important point is to take delay
propagation into account; if one does, the quality of the discretization does
not influence the quality of the solution much. However, the objective values
computed by the optimizer become increasingly bad estimates of the “true”
objective for coarser discretizations. Again, a discretization step size of one
minute appears to be a good setting.

leg duration buffer PDP step size 1.0 step size 4.0

[m] [m] (sim.) PDP error [%] PDP error [%]

1 60 25 0 0 0 0 0
2 100 10 0.0478 0.0470 1.67 0.0483 1.05
3 115 20 0.2144 0.2136 0.37 0.2213 3.22
4 40 0 0.0957 0.0949 0.84 0.0985 2.93
5 45 10 0.5521 0.5514 0.13 0.5608 1.58
6 75 20 0.3365 0.3367 0.06 0.3486 3.60
7 90 15 0.1959 0.1955 0.20 0.2035 3.88
8 70 - 0.1428 0.1432 0.28 0.1489 4.27

leg duration buffer PDP step size 1.0 step size 4.0

[m] [m] (sim.) PDP error [%] PDP error [%]

1 95 0 0 0 0 0 0
2 95 0 0.3177 0.3176 0.03 0.3267 2.83
3 65 0 0.4596 0.4591 0.11 0.4711 2.50
4 60 - 0.5746 0.5743 0.05 0.5873 2.21

leg duration buffer PDP step size 1.0 step size 4.0

[m] [m] (sim.) PDP error [%] PDP error [%]

1 95 55 0 0 0 0 0
2 100 35 0.0110 0.0109 0.91 0.0110 0
3 95 0 0.0195 0.0194 0.51 0.0195 1.53
4 85 35 0.4402 0.4395 0.16 0.4402 2.20
5 120 - 0.0600 0.0589 1.84 0.0600 2.17

Table 5: Probability of delay propagation for individual legs in rotations.

We finally take a closer look at the probability of delay propagation on
individual rotations. Table 5 reports PDP values on the individual legs of

19



three rotations that were computed in the optimization of instance SC2 for
Table 3 with discretization step sizes of one and four minutes. The columns
of this table list the legs in the three rotations considered, scheduled block
times in minutes, ground buffer times in minutes, simulated PDP values,
and optimized PDP values as well as the relative error for discretization
step sizes of one and four minutes, respectively. The solution quality is
again very good. For a discretization step size of one minute, the PDP
is forecasted with an error less than 1% on each individual legs, except on
legs with very small PDPs in the order of the computational precision. Such
errors are irrelevant in practice. Note also that the approximation error does
not grow with the length of the rotation. For a step size of four minutes,
the results for individual legs become less reliable. Again, a discretization
step of one minute suggests itself.

4.4 Proof of the concept

All hitherto presented results depend on the correctness of our stochastic
optimization model. In order to verify the superiority of a PDP approach
over an ORC approach, we have run a direct simulation on the basis of
historic data, i.e., we applied primary delays as recorded in our data to
schedules that were optimized with the PDP and the ORC method. This
evaluation does not depend on the stochastic model. In our experiment,
each day in each scenario was optimized with respect to ORC and PDP,
and then evaluated with respect to the historic disturbances as observed on
the respective days of operation.

ORC PDP savings

Month DP [#] AM [m] DP [#] AM [m] DP [#] AM [m]

January (26) 559 48670 531 47051 28 1619
February (22) 554 26301 536 25934 18 367
March (21) 662 39048 637 38743 25 305
April (27) 466 27044 465 27160 1 -116

Table 6: Directly testing ORC and PDP schedules on historic data.

Table 6 shows the results. The columns of this table give the name of the
scenario and the number of days that were evaluated, the columns labeled
DP and AM give the number of delay propagations and the arrival delay in
minutes that would have resulted in the historic situation for an ORC and a
PDP optimized schedule, and the savings. The PDP schedules would have
clearly outperformed the ORC schedules.
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5 Conclusion

We have developed a novel stochastic optimization approach in order to
construct robust aircraft rotations in the sense of minimizing the total prob-
ability of delay propagation along aircraft rotations. The method is fast,
accurate, and produces substantially more robust schedules than traditional
KPI approaches with respect to evaluation criteria such as total PDP, PDP
on individual legs, stochastic and historic simulation. The PDP method is
easily plugged into any column generation framework, and therefore gener-
alizes to crew scheduling, crew rostering, and other problems that can be
solved with set partitioning approaches.
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