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Chapter 1

Co-Reservation of Resources in the
Grid

In [SC92], Smarr and Catlett introduced the term Meta Computing for the transparent
use of high-performance supercomputers distributed at different national laboratories
in the US. Meta computing aims at the sharing of resources – hardware and software
– and the collaboration of scientists spread over various geographical locations and
different administrative domains. By taking an analogy from the Power Grid, which
provides power as an Utility – nearly everywhere and everytime – Foster and Kessel-
man pioneered the term Grid Computing [FK99]. According to Foster [Fos02] a Grid is
concerned with:

– autonomously managed resources,

– standards, protocols and interfaces to uniformly access resources, and

– coordinating the provision of non-trivial quality-of-service.

Software frameworks such as the Globus Toolkit [GT] and Unicore [Uni08] virtual-
ize the interfaces of the resources and thus provide a uniform access to them. They,
however, do not coordinate the execution of applications which range from atomic ac-
tivities – a single data transfer, a compute job, etc. – to complex scenarios containing
multiple activities spanning distributed resources. Coordination is important for all
stakeholders – users, resource providers and virtual organizations (VO) – particularly
to balance their often conflicting interests. Users are mainly interested in obtaining
guarantees on the quality-of-service (QoS) for the execution of their applications. Pro-
viders aim at a high utilization of their resources. Virtual organizations want to en-
sure a fair sharing of the resources among their members – the users – to support their
mission, e.g., analyzing the data of large scientific experiments, enabling world-wide
collaborations, etc. Common QoS parameters are the response time of activities, the al-
located network bandwidth or the cost for using a resource. Desiring guarantees is not
unique to Grid computing. For example, in the travel business it is common practice
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4 Chapter 1. Co-Reservation of Resources in the Grid

to obtain reservations for seats of a flight, hotel rooms, car rentals, etc. Such guaran-
tees are particularly useful if the application (travel) is composed of multiple activities
serviced by autonomous resources.

This thesis proposes CORES – a system architecture and mechanisms for
obtaining guarantees on the execution of complex applications in Grid envi-
ronments.

1.1 Obtaining Guarantees in Grid Environments

In the first development phase of Grid computing (1995-2005), the focus was on pro-
viding a uniform interface to the multitude of resources. During that phase, only very
basic coordination mechanisms were employed. These mechanisms applied greedy
algorithms for balancing the workload and ensured the control flow of workflows,
but did not provide efficient means for guaranteeing QoS parameters. Examples of
such mechanisms include the Globus Toolkit component DUROC [CFK99] and the leg-
endary phone call method, i.e., a user asks a resource owner to drain its system in order
to let the user’s jobs start at some agreed time. Obtaining guarantees on QoS parame-
ters faces two big challenges in Grids, namely, the autonomy of the resources and the
lack of global information. The former results in having limited control over when an
activity is actually started by a resource’s local management system. The latter does
not only concern the problem of having incomplete information on the current state of
the resources, but also the intractability to compute every possible schedule depending
on future events such as the entry of new activities or the (unexpected) termination of
existing ones.

1.2 Goals of a Resource Management System for Obtain-
ing Guarantees

A resource management system for obtaining guarantees on QoS parameters is con-
cerned with questions like

Q1 – How can users efficiently and easily describe their applications and the required
quality-of-service?

Q2 – How can the resources determine their availability, but retain as much auton-
omy as possible at the same time?

Q3 – How are candidates for reservations selected in order to satisfy the goals of both
the users and the providers?

Q4 – How are reservations actually obtained?

Q5 – How is a co-reservation system embedded into Grid resource management?
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The main stakeholders in Grid resource management – the users and the providers
– aim at different often conflicting goals. For example, users want to pay the lowest
price, while providers wish to maximize their profit.

Goals of the Users. Users are mainly concerned with the description of their appli-
cation scenarios. The description language must be easy to understand and use, yet
it must be expressive to support the wide range of scenarios and it must be flexible to
support new application scenarios. Notable features of such a description language,
are capabilities to express moldable application parts as well as flexible means to spec-
ify temporal and spatial relationships between any two pairs of parts and, last but not
least, the ability to define criteria for selecting the “best” solution. Apart from these
goals of the description of scenarios, users are interested in an efficient processing and
high success rate of their requests.

Goals of the Providers. Providers are mainly interested in retaining as much as pos-
sible their autonomy and in minimizing side-effects such as decreased utilization and
degraded quality-of-service of their background workload. Thus, they require facili-
ties for properly and efficiently advertising their offers – when and at which conditions
resources may be reserved – and means to describe their constraints and criteria for ac-
cepting requests. In addition, enhanced mechanisms are needed for efficiently and
reliably managing the actual allocation of resources to multiple requests.

1.3 General Approaches for Obtaining Guarantees

Depending on the resource management architecture and the goals of the stakeholders
different approaches exist for providing guarantees on QoS parameters. First, a cen-
tral scheduler could serve all activities by maintaining a global allocation table. This
approach would not only violate the autonomy of the resources, but would not scale
very well. Second, resources are allocated in best-effort manner. That is, an application
scheduler submits sub-activities to eligible resources, but the resources’ local manage-
ment systems decide when these activities are executed. The application scheduler
may use prediction mechanisms or activity replication to improve the level of guaran-
tee. This approach suffers from the lack of global information, i.e., the desired QoS
can only be met with a large overhead if at all. Third, the application scheduler and the
local resource management systems collaborate by supporting priorities of activities
and by pre-empting activities with low priorities to meet the guarantees of highly pri-
oritized activities [BHL+06]. This approach provides a means to trade-off the level of
autonomy with the level of guarantee. Fourth, the application scheduler reserves suf-
ficient capacity at the desired resources in advance. In this approach, the local resource
management systems retain the autonomy, except that they agree to some schedule
decisions in advance and guarantee to abide by them. Fifth, the local resource man-
agement systems bilaterally negotiate an efficient execution of complex distributed ap-
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plications. While this scenario seems well suited to cope with the two main challenges
of Grid computing, it requires non-trivial changes of the scheduling mechanisms at the
local resource management systems.

1.4 The Approach of CORES

The CORES framework follows the fourth approach – reserving resources in advance
– to obtain guarantees on QoS parameters for the execution of complex applications
in Grid environments. The approach was chosen, because it balances the goals of the
resource providers – autonomy and information hiding – and the goals of the users –
level of guarantees on the QoS – best.

CORES provides a generic system architecture for reserving multiple resources in
advance. The fundamental assumptions in CORES are that

– local resource management systems provide means for reserving capacity in ad-
vance, and

– the means for deriving the future status of resources are available or may be
added to the resources’ local management system.

CORES’s reservation mechanism contains the following steps.

1. The requests and resources are described.

2. Eligible resources are determined by matching static requirements and properties
of the requests and resources.

3. The future status of the resources is calculated by the resources’ local manage-
ment systems.

4. Appropriate sets of candidates are selected for reservation.

5. The resources are actually allocated.

In CORES, the input to the resource reservation algorithms are flexible reservation
requests. That is, a request specifies ranges of the parameters start time, end time and
service level, and a utility function. The reservation system selects the best combination
of parameter values to assign requests to resources with a start time, end time and a
service level.

1.5 State of the Art

We briefly highlight the most prominent work related to reserving resources in ad-
vance. Each chapter contains a detailed analysis of the state of the art.
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Over the last ten years, mechanisms to reserve resources in advance have gained
more and more attention in the research on Grid computing. First, a generic frame-
work [FKL+99] was depicted by Foster et al. Thereafter, the attention has shifted to
address the questions Q1 – Q5 (cf. Section 1.2) in more detail.

Raman [RLS98] (Condor ClassAds), Stokes-Rees [SR06] (GRDL), and Wolf [Wol07]
(D-GRDL) proposed languages for describing requests and resources (Q1).

Methods for predicting future values of key parameters of a resource management
system (Q2) such as the execution time of jobs or the waiting time of jobs are studied by
many authors, i.e., Andrzejak et al. [AC05], Downey [Dow97], Li et al. [LGTW04, Li07],
Röblitz et al. [RSR06, RR06] and Smith et al. [SFT98, STF99].

The selection of candidates (Q3) was studied in several proposals, e.g., Brandic et
al. [BBES05], Naik et al. [NLYW05], Röblitz [Röb08b, Röb08a] and Zeng et al. [ZBN+04].

Methods for actually obtaining reservations (Q4) are closely related to transactions
in distributed database systems (e.g., SAGAS [GMS87], flexible transactions [ELLR90],
etc.) and the composition of web services (e.g., WS-BusinessActivity [FL07]), and have
seen little improvements in the context of Grid resource management. The resource in-
dependent protocol SNAP for reserving Grid resources was introduced by Czajkowski
et al. [CFK+02]. The OGF standard WS-Agreement [ACD+07] defines a protocol for
negotiating service level agreements between consumers (users) and providers. Ma-
cLaren proposed HARC [Mac07] which puts emphasis on handling failures in the con-
text of reserving multiple Grid resources.

Several proposals were made for embedding reservation systems into Grid resource
management systems (Q5). In [RR05], we proposed to consider co-reservations as Vir-
tual Resources, which may provide enhanced management capabilities such as external
scheduling, resource aggregation and fault recovery.

1.6 Organization of the Thesis

The thesis is organized in three parts. The first part contains

– a description of the application scenarios (Chapter 2),

– an overview of three approaches for guaranteeing quality-of-service (Chapter 3),

– a summary of performance models (Chapter 4), and

– a mathematical formulation of the co-reservation problem (Chapter 5).

The main part provides

– a system architecture and life cycle for managing co-reservations (Chapter 6),

– a language for describing requests and resources (Chapter 7),

– an analysis of existing mechanisms for matching static requirements (Chapter 8),
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– a versatile method for determining the future state of resources (Chapter 9),

– integer and binary models for mapping requests to resources (Chapter 10),

– a study of efficient methods for allocating multiple resources (Chapter 11), and

– a model for embedding co-reservations into Grid resource management (Chap-
ter 12).

The third part concludes the thesis (Chapter 13) and lists terminology (Appendix A).



Chapter 2

Application Scenarios

We describe two application scenarios – parallel jobs and job chains – which are in the
focus of this thesis. The applications shall be executed on a distributed infrastructure
spanning multiple autonomous domains – the Grid. First, we emphasize the essential
properties of the scenarios and reference actual projects where the scenarios frequently
appear (cf. Section 2.1). Thereafter, we introduce several extensions which apply to
both application scenarios (cf. Section 2.2).

2.1 Basic Scenarios

For each application type – parallel jobs and job chains – we present basic considera-
tions of both the users and the resource providers. The main difference between the
two application types is their temporal structure. Parallel jobs require that (most) parts
are executed in parallel, while the parts of job chains are executed in a sequence.

BS1 – Parallel Jobs. The most basic parallel job (cf. Example 2.1) requires two com-
pute resources and a network connection between them. At each resource, the appli-
cation needs a certain software and hardware environment, in which it executes with
known characteristics. The most important hardware aspects are the architecture of
the processor, its clock frequency as well as the required main memory and local disk
space. The software environment contains the names and versions of the operating
system, libraries and software packages. The execution characteristics are given by
simple estimates of the runtime for a fixed number of processors. The network connec-
tion between the compute parts must feature a minimum bandwidth and a maximum
latency to allow an efficient communication between the application parts. The re-
source providers (not shown in Example 2.1) may grant or deny access based on the
affiliation of the user, the requested capacity or (virtually) any policy.

9
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Example 2.1 (Collisions of Black Holes)
Run two instances of the Cactus Code [ADF+01, GAL+03, Cac06], each at a Linux
cluster (kernel version 2.6.1 or higher) with 128 x86-processors, two gigabytes of main
memory per processor and 50 gigabytes of local disk space. Both instances require 48
hours execution time. The efficient execution requires a network connection between the
two sites with a maximum latency of 50 milliseconds and a minimum bandwidth of 1
Gbit/s.

A similar application is the simulation of gravitational forces [Aar03, Spr05, Gad06]
in the astrophysics community. Co-executing multiple application parts – making
archived data available, accessing data from a program, using licenses of a 3rd party
software package, etc. – at the same time is a generalization of the parallel job type.

BS2 – Job Chains. The simplest job chain just requires a single compute part, a data
source and a network connection for transferring the data from the source to the com-
pute site (cf. Example 2.2). The compute part may be described as those of the parallel
jobs. The data part defines a logical file name and its size. In contrast to parallel jobs,
the parts are executed in sequence. First, data is restored from an archive system, then
transferred to a compute site, where it will be processed. A small extension would in-
volve multiple data processing steps and data transfers in between them, all of which
are executed sequentially.

The resource providers (not shown in Example 2.2) may grant or deny access based
on the affiliation of the user, the ownership of and permissions to read the data, the
requested capacity or (virtually) any policy.

Example 2.2 (Stormtrack Analysis in Climate Research)
The analysis of stormtracks (cf. case study in [GLPS07]) is composed of four steps.
First, raw data is staged from archives and filtered to extract information about geopo-
tential heights. Second, the extracted information – depending on the field size and
temporal resolution up to tens of GB – is transferred to the compute resource. Third,
the stormtrack is calculated by a single sequential application. Last, the results (from
a few KB to hundreds of MB) are transferred to a server specified by the user. The
analysis shall be finished no later than 2008-03-04 06:00 PM UTC.

Job chains occur in many disciplines, for example, the post-processing of data obtained
from LHC experiments in high-energy physics [FGPS07], the detection of gravitational
waves in astrophysics [ESR+07], image processing in medical sciences [KPS+07] or
the continuous analysis of data recorded by sensor networks in earth science research
[KLHW07]. Note, we aim at static job chains, i.e., those whose control-flow is known
a-priori.

2.2 Advanced Scenarios

The advanced scenarios extend the basic scenarios in the following seven aspects.
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AS1 – Types of Applications. The scenario of Example 2.3 differs from the basic ones,
because it does not require all resources at the same time nor in a specific order, but it
needs a certain capacity within a given period of time. The needed capacity may be
aggregated from many sites, hence a co-reservation may be used. Using virtualization
mechanisms, the aggregated resources can be made accessible as if there were provided
at a single site.

Example 2.3 (Parameter Sweep Study)
For a parameter sweep study 1 million short (10 minutes) single processor jobs need to be
executed until 2008-04-17 08:00 AM UTC, but the study cannot start before 2008-04-14
06:00 PM UTC.

AS2 – Types of Resources. In addition to compute resources, data servers and net-
work connections, applications may require the availability of software licenses (cf.
Example 2.4) and special purpose machines for visualizing the simulated or analyzed
data. Also, other resources such as web servers, database servers or custom application
servers may be integrated into the scenarios.

Example 2.4 (Computational Fluid Dynamics)
A step of a job chain uses the Fluent package thus requiring a license during its execu-
tion.

AS3 – Number of Resources. The number of needed resources increases with ad-
ditional types of resources, demands for a larger aggregated capacity or longer job
chains.

Example 2.5 (Visualization of simulation results)
The simulation results (cf. Example 2.1) shall be visualized at the Studio da Vinci at
Zuse Institute Berlin.

AS4 – Richer Means to Describe Application Characteristics. A user may provide
more information on the characteristics of the whole application and its parts. Ex-
ample 2.6 illustrates the relation of the application’s execution time and the allocated
capacity.

Example 2.6 (Moldable Parallel Computation)
The parallel application of Example 2.1 requires 64 hours on 64 processors, 96 hours on
32 processors, 160 hours on 16 processors and so forth. In this example, the speed-up of
the application complies to Amdahl’s law with the parameters s = 1

65 and p = 64
65 (cf.

Section 4.1.1).

AS5 – Arbitrary Constraints and Objectives. Constraints and objectives may guide
the assignment of simulation parts to resources in a flexible way, particularly, they may
be specified on any subset of the individual parts of an application. For example, users
are limited by an available budget (constraint on all parts) and wish to minimize the
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total costs1 (objective on all parts) as well as the end time of the whole application
(objective on all parts or the ‘last’) or to trade-off end time with costs. On the other
side, resource providers are interested in high utilization and maximizing their profit
(objectives on a single part).

Example 2.7 (Cost Limit, Overlapping Tasks & Minimal Cost)
The costs for executing the stormtrack analysis (cf. Example 2.2) may not exceed 200
Euro. Also, the first and the second step as well as the third and the forth step may
(partially) overlap, that is, data transfers may start as soon as data is available. Finally,
the costs shall be minimized if multiple schedules satisfying the budget constraint exist.

AS6 – Types of Agreements. Depending on the requests and the capabilities of the
resource management systems, different levels of guarantees on the allocation of the
resources may be needed. For example, merely transferring small files between work-
flow steps may be executed in best-effort manner, planning a demo (cf. Example 2.8)
requires a firm guarantee that the resource will be available, applications involving
business processes may require compensation if the desired service level is not provi-
sioned, etc.

Example 2.8 (High Level of Allocation Guarantee)
The additional visualization step (cf. Example 2.5) must happen from 2008-06-23 10:00
AM UTC to 2008-06-23 12:00 AM UTC, because a demo is planned for that time.

1Costs can be monetary or expressed in equivalents of processing hours.



Chapter 3

Coordination Approaches in Grid
Resource Management

The application scenarios presented in Chapter 2 require the coordinated use of re-
sources in a Grid. First, we give a brief overview of the resource management in ex-
isting Grid environments (cf. Section 3.1). Thereafter, we present the three approaches
which build upon the capabilities of the existing resource management functions. In
particular, we study what can be achieved with best effort co-allocation (cf. Section 3.2),
we outline a scheme based on advance co-reservations (cf. Section 3.3) and we sketch
a mechanism for peer-to-peer co-scheduling (cf. Section 3.4).

3.1 Resource Management in Grid Environments

Figure 3.1 shows the levels of resource management in existing Grid environments. On
top of the physical resources, operating systems such as UNIX, Linux, Windows, etc.,
provide basic capabilities, i.e., process creation, process isolation, scheduling of pro-
cesses, memory management, disk quota enforcement, access to network devices and
so forth. At the next level, local resource management systems control the admission of
activities to pools of physical resources. Grid-level resource management builds upon
local resource management by introducing a virtualization layer (Grid-Middleware)
and, at the top level, a coordination layer (Grid-Broker).

3.1.1 Machine-level Resource Management

The overall goal of machine-level resource management is to allow access by multiple
users and the simultaneous execution of multiple programs using the physical devices
of a machine. Therefore, operating systems provide means to create processes, files
and connections, to control and schedule processes, to read and write data to files
and connections and to delete processes, files and connections. Furthermore, the op-
erating system prevents unauthorized access to data in files and data in the memory

13
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Physical Resources
compute nodes, storage servers, network links,

licenses, visualization equipment

Operating System
UNIX, Linux, Windows, Mac OS

Local Resource Management
System/Scheduler
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Grid-Broker
GridWay, EGEE WMS, Nimrod/G, Condor/G

Machine-level
Resource
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Site-level
Resource
Management

Grid-level
Resource
Management

Figure 3.1: Layered resource management in existing Grid environments.

of processes. At the machine-level, operating systems are typically executed as sin-
gle system images providing a uniform view of the physical devices. In a multi-user
and multi-tasking environment, operating systems trade-off the fairness among the
users and high utilization. For example, if disk usage quota cannot be enforced, each
user/group may be assigned a single device to guarantee their requirements. Simi-
larly, if the maximum parallelism of a session (by creating new processes or threads)
cannot be controlled, each compute job is assigned a full node. The usage quota en-
forcement capabilities of existing operating systems may be extended by virtualization
layers such as Xen [Xen08] or VMware [Vmw08].

3.1.2 Site-level Resource Management

Often single machines, belonging to the same site, the same research or business group,
or the same administrative domain, are pooled together to employ a uniform admis-
sion control policy and enable fair sharing of them. For example, compute nodes
may be aggregated in clusters managed by well-known tools such as Condor [LLM88],
Torque/Maui [JSC01], PBSPro [PBS04], LoadLeveler [Loa08], Sun Grid Engine [Sge08],
CCS [KR98], OAR [CCG+05]. All of these systems provide a similar set of core func-
tions, but some support enhanced management capabilities, too. Core functions in-
clude: monitoring the status of machines, providing a single entry point for activities
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(e.g., compute jobs), queuing and scheduling of workload, priority-based ordering of
activities, supporting heterogeneous machines, management of job steps, job depen-
dencies as well as the setup of job environments, monitoring the status of jobs and ac-
counting of resource usage. On compute resources, often first-come-first-served (FCFS)
together with backfilling are used as scheduling policy. Enhanced management capa-
bilities are job check-pointing and advance reservation. Typically, activities can be sub-
mitted by any user from the front-end of a resource. Each site, however, autonomously
decides when these activities are executed. In particular, many resource management
systems make that decision when resources are available, i.e., they do not calculate a
schedule in advance. Reservations provide a means to make that decision in advance
and provide a guarantee that the associated activities may start at the desired time.

3.1.3 Grid-level Resource Management

Grid-level resource management is split into two layers – the Grid-Middleware and
the Grid-Broker (cf. Fig. 3.1).

The Grid-Middleware serves as an abstraction layer virtualizing site-level resource
management systems. Grid-Middlewares such as the Globus Toolkit [GLO08] and Uni-
core [Uni08] provide generic means for authentication and authorization; submission,
monitoring and control of activities; transferring data (files) and accessing informa-
tion about the status of resources. The information about the status of resources cov-
ers, however, mainly static properties (cf. schemata such as GLUE [GLU08]). More
importantly, information about the past and current workload may be hidden, in-
complete or simply outdated. Grid-Middleware also supports a minimal layout of a
generic sandbox for executing compute jobs. For example, with Globus, the expression
${GLOBUS_USER_HOME} allows the user to prepare the job environment independent
of its actual account name and path of the user’s home directory.

Grid-Brokers determine eligible resources for distributing the workload to sites.
Rather than calculating a schedule, workload management in todays Grid environ-
ments is greedy as it only considers one activity request at a time. Enhancing workload
management not just requires to update existing scheduling policies, but to deal with
the lack of global knowledge about the local scheduling policies, to gather detailed in-
formation about the current and future status of the resources, and to extend resource
sharing models towards economic approaches. Besides workload distribution, Grid-
Brokers also take care of preparing the job environment on remote sites, e.g., by initiat-
ing file transfers and delegating credentials, and provide basic fault-recovery, e.g., by
resubmitting jobs to other sites if they failed elsewhere.

3.2 Best Effort Co-Allocation

The best effort co-allocation approach just uses the existing capabilities of Grid-enabled
site-level resource management and the available status information. In particular, we
make the following assumptions.
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– Activities can be submitted to any resource, but the resource’s local management
system decides when to start the activity.

– Sites publish their currently free capacity, their total capacity and the number of
queued activities.

– A Grid-Broker possesses detailed information about activities only if it has sub-
mitted these activities by itself.

Given the above assumptions, we study if and how well the scenarios (cf. Chapter 2)
can be implemented.

The basic parallel application scenario (BS1) – limited to two compute resources
only – can be implemented by means such as DUROC [CFK99] or KOALA [ME05].
DUROC submits two parts, one to each compute site. Once started each part synchro-
nizes with the other part at a barrier. While the first part waits for the second part, no
other job may use the blocked resources. KOALA aims to minimize such waiting by
placing the parts at sites with the largest number of idle processors and may preempt
low-priority jobs if not enough processors are available at the predicted start time. This
approach, however, requires changes to the local scheduling policies.

We assess the quality of best effort co-allocation by using results from advanced
prediction methods. In [Li07], Hui proposed a machine learning approach for pre-
dicting the queue waiting time of two different compute resources and three work-
load traces NIK04, SDSC01 and SDSC02. For the sake of simplicity, we assume that
the errors of the predicted times are normally distributed with the means µ of 300
(NIK04), 375 (SDSC01) and 690 (SDSC02) minutes as well as the variances σ2 of 225
(NIK04), 325 (SDSC01) and 490 (SDSC02). We performed three experiments to sample
the distribution of the absolute difference between the prediction errors. The result-
ing distributions have the means 75 (NIK04/SDSC01), 390 (NIK04/SDSC02) and
315 (SDSC01/SDSC02). We can expect that resources are wasted at the site starting
first for duration of the difference of the prediction error. The more processors a part
requests, the larger is the effective loss in throughput at the site starting first. A simi-
lar analysis can be performed for parallel applications requiring more than two parts
(AS3) and for job chains (BS2). In certain circumstances, prediction-based coordination
may be sufficient, for example, meeting deadlines can be relatively easy if the deadline
is well behind the predicted response time. Best effort co-allocation may also cope with
larger numbers of resources (AS3), different types of resources (AS2) and applications
(AS1). On the other hand, they are not well suited to handle richer means for describ-
ing application characteristics (AS4), are not able to satisfy arbitrary constraints and
objectives (AS5), particularly, economic ones and may not support different types of
agreements well (AS6).
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3.3 Advance Co-Reservation

The co-reservation approach requires that the site-level resource management systems
allow to reserve fractions of their capacity for a specified period of time. In practice,
this period should begin at some time in the future. Using this capability, a central
co-reservation service may request reservations such that the relationships between
any two pairs of application parts are satisfied. By gathering additional informa-
tion about the future status of the resources, especially their availability and costs,
the co-reservation service may find reservation candidates which not only satisfy the
constraints but also the objectives of all stakeholders. The disadvantages of the co-
reservation approach are that the schedule must be fixed in advance and that the site-
level resource management systems loose some autonomy in scheduling their work-
load. However, the SLRMSs retain the full autonomy on granting or denying requests
for advance reservations. The advance co-reservation approach serves all aspects of
the application scenarios very well.

3.4 Peer-to-Peer Co-Scheduling

In the P2P co-scheduling approach, the start times of the application parts are explic-
itly coordinated between any pair of site-level resource management systems (SLRMS).
That is, the coordination is fully decentralized. Since each SLRMS is aware of the struc-
ture of a complex application – at least it knows which parts are directly dependent of
the part the SLRMS manages – it needs to negotiate the start time of its own part with
the SLRMSs of the adjacent parts. Depending on the inherent flexibility of the ap-
plication and the flexibility in the scheduling of the current workload of an SLRMS
such negotiations may span all SLRMSs managing a complex application. That is,
P2P co-scheduling requires a distributed consensus protocol. However, the consen-
sus protocol may not simply employ a majority scheme since the minority may not
be able to implement the majority decision. Moreover, finding an optimal schedule
considering economic metrics may only be possible if the values of these metrics are
known a-priori. Finally, implementing the decisions of the consensus protocol may
require changes of each site-level resource management system. The advantage of P2P
co-scheduling is that it does not require reservations unless the application must be
executed during specific periods of time. Thus, coordinating complex applications by
P2P co-scheduling may yield smaller impacts on other applications than achieved with
a co-reservation scheme.

3.5 Summary

Table 3.1 provides a high-level overview of the approaches, comparing them with re-
spect to the implementation of the application scenarios. In this work, we will exploit
the advance co-reservation approach, because basic advance reservation capabilities
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are supported by many site-level resource management systems and the approach al-
lows a wider range of scenarios. In specific environments, P2P co-scheduling or best
effort co-allocation may be sufficient tough.

Table 3.1: Comparison of the approaches for supporting the complex application sce-
narios described in Chapter 2.

Approaches

best effort advance peer-to-peer

Phase co-allocation co-reservation co-scheduling

submit centrally steered,
wait time prediction

centrally steered,
status probing

no coordination

start no coordination no coordination explicit, decentral-
ized coordination

runtime explicit, decentral-
ized coordination

no coordination no coordination



Chapter 4

Activity Performance Models

We introduce performance models of compute jobs depending on the number of pro-
cessors (cf. Section 4.1) and the type of the processors (cf. Section 4.2).

4.1 Speed-up Models of Parallel Programs

We present two performance models of parallel applications – Amdahl and Downey
– and provide several definitions for calculating the speed-up, the resulting execution
time and the required number of processors to achieve a specific speed-up or execution
time.

4.1.1 Amdahl’s Law

By noticing that the runtime of any parallel program cannot be shorter than the time
needed for executing its sequential part – no matter how many processors one might
employ – Amdahl formulated his famous speed-up model [Amd67]

SA(n, s, p) = s+ p

s+ p
n

, (4.1)

where n ∈ N, n > 0 is the number of processors, s is the sequential and p is the parallel
fraction of the program. Thus, s + p = 1 holds for any program. Figure 4.1 illustrates
SA for various parallel fractions and numbers of processors.

The inverse function S−1
A (sup, s, p) calculates the number of processors needed to

obtain a given speed-up sup. If the condition 1
sup

> s holds, the inverse function is
defined by Eq. (4.2).

S−1
A (sup, s, p) = p

1
sup
− s

. (4.2)

Given a reference execution time durref and a reference number of processors npref , the
execution time on n processors is defined as

dur(n, s, p, npref ) = durref
SA(npref , s, p)
SA(n, s, p) . (4.3)
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Figure 4.1: Amdahl’s law for various parallel fractions p and numbers of processors.

4.1.2 Downey’s Performance Model

Amdahl’s model has been criticized for being too simple and therefore unusable in
practice. When the average degree of parallelism A and its variance σ are known,
Downey’s speed-up model (cf. Eq. (4.4)) provides a better speedup estimate for a pro-
gram running on n ∈ N+ processors.

SD(n) =



An
A+σ/2(n−1) σ ≤ 1 ∧ 1 ≤n≤ A

An
σ(A−1/2)+n(1−σ/2) σ ≤ 1 ∧ A ≤n≤ 2A− 1

A σ ≤ 1 ∧ n≥ 2A− 1
An(σ+1)

σ(n+A−1)+A σ ≥ 1 ∧ 1 ≤n≤ A+ Aσ − σ
A σ ≥ 1 ∧ n≥ A+ Aσ − σ

(4.4)

4.1.3 Miscellaneous Speed-Up Models

Besides Amdahl and Downey many more speed-up or performance models exist. We
briefly list a few of them.

Gustafson [Gus88] adjusts Amdahl’s law by the observation that the achievable
speed-up may also depend on the execution time of the application. Based on the
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observation that any parallel program contains a computation and a communication
part, Gruber et al. propose the Γ-model [GVV+03]. The Γ-model characterizes parallel
applications by the quotient of the computation part and the communication part and
the machines by the quotient of their maximum local processor performance and the
per processor network communication bandwidth. Gruber et al. argue that all these
parameters can be easily obtained. Thus, compute clusters can be tailored to the appli-
cations. In the “database” performance model, the execution time and speed-up of a
parallel application is derived by evaluating workload traces. Those workload traces
must comprise information about the executable (name and version), the number of
used processors, the network between the processors, the application parameters, and
so forth.

4.2 Processors’ Performance in a Grid

In a Grid, compute resources may have different types or versions of a processor in-
stalled. Thus, the required execution time of a program may be adjusted by the broker
beforehand. For the sake of simplicity, we assume the performance of a processor is
characterized by a single metric. The higher is the metric’s value, the higher is the pro-
cessor’s performance. Given a reference execution time durref on a reference processor
with the performance ppref and the performance pp of a target processor, a sequential
program requires the execution time dur◦(pp) (cf. Eq. (4.5)).

dur◦(pp) = durref
ppref
pp

(4.5)

For parallel programs, we integrated the heterogeneity of processors in a Grid into
Amdahl’s law [Amd67] by combining Equations (4.1) and (4.5). First, we adapted the
speed-up SA defined in Eq. (4.1) to take the performances of the target processor pp
and the reference processor ppref into account. The adapted speed-up S?A is defined in
Eq. (4.6).

S?A(n, s, p, pp, ppref ) = 1
s+ p

n

pp

ppref
(4.6)

The inverse function S?A
−1 calculates the number of processors needed to obtain a given

speed-up sup. If the condition pp
sup·ppref

> s holds, the inverse function is defined by
Eq. (4.7).

S?A
−1(sup, s, p, pp, ppref ) = p

pp
sup·ppref

− s
(4.7)

Figure 4.2 illustrates Eq. (4.6). The execution time dur? of a parallel program is calcu-
lated as the product of the reference execution time durref and the ratio of the original
speed-up SA to the adapted speed-up S?A. The adapted duration is defined by Eq. (4.8).

dur?(n, s, p, pp, npref , ppref , durref ) = durref
SA(npref , s, p)

S?A(n, s, p, pp, ppref )
(4.8)
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Figure 4.2: Amdahl’s law in a Grid scenario for compute resources with different
relative processor performances pp/ppref and an application with a parallel fraction
p = 0.99.

Finally, Eq. (4.9) defines the inverse function of dur?, which calculates the number of
processors needed to execute an application within a given duration dur.

dur?−1(dur, s, p, pp, npref , ppref , durref ) =

S?A
−1
(
durref · SA(npref , s, p)

dur
, n, s, p, pp, ppref

)
(4.9)
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Mathematical Formalization of the
Co-Reservation Problem

The co-reservation problemCoRP of assigning partially related requests to resources is
described as abstract optimization problem. First, the sets of requests and resources are
introduced. Then, we define the variables and their domains. Next, we present a core
concept exploited in CORES – the properties of requests and resources. Then, we use
these properties in several types of constraints: single assignment constraints, multi
assignments constraints, and temporal and spatial relationships. Finally, we define the
criteria for finding optimal solutions.

5.1 Problem Notation

We denote the co-reservation problem CoRP by the set of problem instances {CoRPi}.
Each instance is a tuple 〈Ri, Si, Ti, Di, Qi, SICi, Pi, SACi, TRi, SRi,MACi, Oi〉 of sets,
which are empty by default. In the failure free case, the set CoRP contains a single ele-
ment only. Additional elements may be created through refining the original problem
instance iteratively (cf. Section 10.6). A solution is found by solving all instances (ele-
ments of CoRP ) individually and selecting the solution of the instance with the “best”
objective value as global solution. Note, in the following of this chapter we will omit
the subscript i.

5.2 Requests, Resources, Variables and Domains

Definition 1 (Requests and Resources). The sets R = {r1, . . . , rL} (L ∈ N, rl ∈ N) and
S = {s1, . . . , sK} (K ∈ N, sk ∈ N+) denote the finite set of L requests and the finite set of K
resources, respectively. ♦

Definition 2 (Variables). For each request r ∈ R, the variables Vs(r) (resource), Vt(r) (start
time), Vd(r) (duration) and Vq(r) (service level) are searched for. ♦

23
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Definition 3 (Domain of Vs(r)). The domain dom(Vs(r)) of the variable Vs(r) is the union
of the sets {0} and S(r) ⊆ S. ♦

The set {0} is used if the request is not assigned to any resource. The set S(r) contains
the eligible resources of the request r. That is, each pair (r, s) with s ∈ S(r) satisfies
the static requirements of both, the request r and the resource s.

Definition 4 (Domains of Vt(r), Vd(r) and Vq(r)). The domains dom(Vt(r)), dom(Vd(r))
and dom(Vq(r)) of the variables Vt(r), Vd(r) and Vq(r), respectively, are defined as finite sub-
sets of the natural numbers N, i.e.,

∀r ∈ R : dom(Vt(r)) ⊂ N ∧ dom(Vd(r)) ⊂ N ∧ dom(Vq(r)) ⊂ N . ♦

The sets T , D and Q denote the unions of the the domains of the start times, the dura-
tions and the service levels, respectively. They are formally defined as follows

T =
⋃

l∈[1,L]
dom(Vt(rl)) , D =

⋃
l∈[1,L]

dom(Vd(rl)) , Q =
⋃

l∈[1,L]
dom(Vq(rl)) .

5.3 Assignments and their Combinations

Definition 5 (Assignment). A tuple 〈r, s, t, d, q〉 with r ∈ R, s ∈ S(r), t ∈ dom(Vt(r)),
d ∈ dom(Vd(r)) and q ∈ dom(Vq(r)) is called an assignment of the request r to the resource s
at the start time t for the duration d with the service level q. ♦

The expression r . s denotes any assignment of the request r to the resource s. Any
assignment involving the request r and the resource s are denoted by the term r. and
.s, respectively.

Definition 6 (Combination of Assignments). We call the set CA = {〈ri, si, ti, di, qi〉},
which contains one element per request ri, i = 1, . . . , L, a combination of assignments. ♦

A combination of assignments CA represents a solution candidate of the co-reservation
problem.

Definition 7 (Mapped Combination of Assignments). The set CAS ⊆ CA denotes the
combination of assignments, which involves any resource in S, but the virtual resource 0, i.e.,

CAS = {〈ri, si, ti, di, qi〉 |〈ri, si, ti, di, qi〉 ∈ CA ∧ si 6= 0} . ♦

5.4 Properties

Before we formally define the constraints, we introduce properties as a means to de-
scribe the features of an entity in a given assignment. For example, the required dura-
tion of a request may depend on the service level (bandwidth, number of processors)
offered in an assignment. Similarly, the requested reservation fee may depend on the
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requester’s affiliation or the offered service level. In a real system, properties are de-
rived from the descriptions of the requests, the resources and – in particular – through
the prediction of the future status (step Â in Fig. 6.2 on page 38).

Definition 8 (Property). A property pidx.y is a mapping

pidx.y : T ×D ×Q −→ R ,

with id ∈ N being an identifier and x . y referring to an assignment or a set of assignments.♦

In the following, we often use strings as identifiers, for example, stt for the start time of
a reservation, cost for its reservation fee, fit for its fitness in a resource’s local schedule.

The sets Pr. and P.s contain all properties of the request r and the resource s, re-
spectively. The set of all properties of an assignment r . s, denoted by Pr.s, is defined
as the union Pr. ∪ P.s. The set

P =
⋃

rl∈R, sk∈S(rl)
Prl.sk

contains all properties of all assignments. The parameters of an assignment 〈r, s, t, d, q〉
may be denoted by specific properties as well. For example, the start time of the re-
quest r may be defined through the property

psttr. (t, d, q) = t .

Similarly, its duration can be defined as

pdurr. (t, d, q) = d .

5.5 Constraints

We define several types of constraints:

– single assignment constraints, which a single assignment must fulfill,

– temporal relationships, which must be fulfilled by pairs of assignments,

– spatial relationships, which must be fulfilled by two to three assignments, and

– multi assignments constraints, which restrict up to L assignments.

For all types (except spatial relationships), we distinguish equality and inequality con-
straints. Spatial relationships always use equality as relation. We denote equality and
inequality constraints by the superscripts = and ≥, respectively.

Definition 9 (Single Assignment Constraint). A constraint on a single assignment r . s
is a mapping

sac=,≥
r.s,h : T ×D ×Q −→ R ,

with h ∈ N enumerating the constraints of the assignment r . s. ♦
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The actual mapping of a constraint on the assignment r . s is constructed as some ar-
bitrary combination of the properties in Pr.s. Common combinations are the weighted
sum, euclidean norm or minimum and maximum.

Example 5.1 (Deadline of a Job Chain)
The result of a sequential 3-step job chain must be available no later than some dead-
line pdlr3.. Under the assumption that request r3 represents the third step, this require-
ment can be expressed as follows

sac≥r3.,1 (t, d, q) = pdlr3.(t, d, q)− p
stt
r3. (t, d, q)− pdurr3. (t, d, q) .

Definition 10 (Boolean Value of a Single Assignment Constraint). The boolean value
bool() of a constraint saccopr.s is defined as follows

bool (saccopr.s(t, d, q)) =


1 cop equals ′=′ ∧ sac=

r.s(t, d, q) = 0 ,
1 cop equals ′≥′ ∧ sac≥r.s(t, d, q) ≥ 0 ,
0 elsewise . ♦

The set of all constraints on the single assignment r . s is denoted by SACr.s. The set

SAC =
⋃

rl∈R, sk∈S(rl)
SACrl.sk

contains all single assignment constraints of all assignments.

We model temporal relationships between two assignments ra .sa (short A) and rb .sb
(short B) by special equality and inequality constraints.

Definition 11 (Temporal Relationship). A temporal relationship between two assignments
A and B is a mapping

tr=,≥
A:B,h

: (T ×D ×Q)2 −→ R ,

with h ∈ N enumerating the temporal relationships between the assignments A and B. ♦

The actual mapping of a temporal relationship tr
A:B is constructed as some arbitrary

combination of the (temporal) properties in P
A
∪ P

B
.

Example 5.2 (Precedence Relations of a Job Chain)
The first step (request r1) of the above sequential 3-step job chain (cf. Example 5.1) shall
precede the second step (request r2). This requirement can be expressed as follows

tr≥r1.:r2.,1 (t1, d1, q1, t2, d2, q2) = psttr2. (t1, d1, q1, t2, d2, q2)−
psttr1. (t1, d1, q1, t2, d2, q2)−
pdurr1. (t1, d1, q1, t2, d2, q2) .
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Definition 12 (Boolean Value of a Temporal Relationship). The boolean value bool() of
a temporal constraint trcop

A:B,x
is defined as follows

bool
(
trcop
A:B,x

(ta, da, qa, tb, db, qb)
)

=


1 cop equals ′=′ ∧ tr=

A:B,x
(ta, da, qa, tb, db, qb) = 0 ,

1 cop equals ′≥′ ∧ tr≥
A:B,x

(ta, da, qa, tb, db, qb) ≥ 0 ,
0 elsewise . ♦

The sets TR=
A:B and TR≥A:B, respectively, contain all temporal equality and inequality

constraints between the assignments A and B. The set of all temporal constraints be-
tween the assignments A and B is denoted by TRA:B = TR=

A:B ∪ TR
≥
A:B. The set

TR =
⋃

rl1∈R,
sk1∈S(rl1)

⋃
rl2∈R,

sk2∈S(rl2)

TR rl1.sk1:rl2.sk2

contains all temporal relationships between any two assignments.

Spatial relationships are used to co-locate two requests at the same site, e.g., input
data with a compute part, and to ensure connectivity for a network request and the
participants on both ends. We distinguish two types of spatial relationships – one
including non-network resources only and one for linking network resources and non-
network resources. The former is denoted by the superscript nnt, the latter by the
superscript net.

Definition 13 (Non-Network Spatial Relationship). We model spatial relationships be-
tween two assignments A and B involving non-network resources only by special equality
constraints denoted by srnnt

A:B,h
, which is a mapping

srnnt
A:B,h

: (T ×D ×Q)2 −→ R ,

with h ∈ N non-network spatial relationships between the assignments A and B. ♦

Definition 14 (Network Spatial Relationship). A spatial relationship linking two assign-
ments A and B of non-network resources and an assignment C of a network resource is a
mapping

srnet
A:B:C,h

: (T ×D ×Q)3 −→ R2 ,

with h ∈ N network spatial relationships between the assignments A, B and C. ♦

The actual mapping of the spatial relationships srnnt
A:B,h

and srnet
A:B:C,h

is constructed by a
specific combination of the spatial properties in P

A
∪ P

B
and P

A
∪ P

B
∪ P

C
, respectively.

The construction uses, in particular, the properties pleft.s and pright.s , which denote the
left and the right network end-point of an assignment involving the resource s. For as-
signments involving point-to-point network resources, these properties evaluate to dif-
ferent values because they connect two sides. For assignments involving non-network
resources, they evaluate to the same value.
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Definition 15 (Boolean Value of Non-Network Spatial Relationships). The boolean
value bool() of a non-network spatial relationship srnnt

A:B,h
is defined as follows

bool
(
srnnt
A:B,h

(ta, da, qa, tb, db, qb)
)

=


1 srnnt

A:B,h
(ta, da, qa, tb, db, qb) = 0 ,

0 elsewise . ♦

Definition 16 (Boolean Value of a Network Spatial Relationship). The boolean value
bool() of a network spatial relationship srnet

A:B:C,h
is defined as follows

bool
(
srnet
A:B:C

(ta, da, qa, tb, db, qb , tc, dc, qc)
)

=


1 srnet

A:B:C
(ta, da, qa, tb, db, qb , tc, dc, qc) = (0, 0) ,

0 elsewise . ♦

The sets SRnnt
A:B and SRnet

A:B:C , respectively, contain all spatial non-network and network
relationships between the assignments A and B as well as among the assignments A,
B and C. The set

SR =
⋃

rl1∈R,
sk1∈S(rl1)

⋃
rl2∈R,

sk2∈S(rl2)

SRnnt
rl1.sk1:rl2.sk2

∪
⋃

rl1∈R,
sk1∈S(rl1)

⋃
rl2∈R,

sk2∈S(rl2)

⋃
rl3∈R,

sk3∈S(rl3)

SRnet
rl1.sk1:rl2.sk2:rl3.sk3

contains all non-network and network spatial relationships.

Example 5.3 (Transfer of Data)
Transferring a data set from an archive (request r1) to a supercomputer (request r3)
requires a network resource (request r2) connecting the archive and the supercomputer.
The spatial properties of seven resources are given by the table

Resource
Property s1 s2 s3 s4 s5 s6 s7

pleft 1 1 9 1 3 2 2
pright 1 9 9 3 3 3 2

.

The following assignments are possible A1 = r1 . s1, A2 = r1 . s7, B1 = r2 . s2,
B2 = r2 . s4, B3 = r2 . s6, C1 = r3 . s3 and C2 = r3 . s5. Thus, the following 12
spatial constraints srnet implement the desired relationship, where tdq abbreviates the
parameters t1, d1, q1, t2, d2, q2, t3, d3, q3.

srnet
A1:B1:C1,1(tdq) = (0, 0), srnet

A1:B1:C2,2(tdq) = (0, 1), srnet
A1:B2:C1,3(tdq) = (0, 1)

srnet
A1:B2:C2,4(tdq) = (0, 0), srnet

A1:B3:C1,5(tdq) = (1, 1), srnet
A1:B3:C2,6(tdq) = (1, 0)

srnet
A2:B1:C1,7(tdq) = (1, 0), srnet

A2:B1:C2,8(tdq) = (1, 1), srnet
A2:B2:C1,9(tdq) = (1, 1)

srnet
A2:B2:C2,10(tdq) = (1, 0), srnet

A2:B3:C1,11(tdq) = (0, 1), srnet
A2:B3:C2,12(tdq) = (0, 0)
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A Multi Assignments Constraint models constraints between multiple assignments.

Definition 17 (Multi Assignments Constraint). A constraint between multiple assign-
ments MA = (ma1, . . . ,maL) is a mapping

mac=,≥
MA,h

: (T ×D ×Q)L −→ R ,

with h ∈ N enumerating the constraints between the assignments MA and L being the number
of requests in R. ♦

The actual mapping of a constraint mac=,≥
MA

is constructed as some arbitrary combina-
tion of the properties in P

MA
= ⋃L

i=1 Pmai . Note, a mapping may constrain all assign-
ments (|MA| = L), but it does not need to do so. Which assignments are constrained
by a specific multi assignments constraint is defined by the actual mapping.

Example 5.4 (Limiting the Total Reservation Cost)
The total reservation cost of the 3-step job chain (cf. Examples 5.1, 5.2 and 5.3) must not
exceed the maximum budget pbudgetr1. . The reservation costs of the steps are given by the
properties pcostr1. , pcostr2. and pcostr3. . Then, the budget constraint is expressed as follows

mac≥r1.:r2.:r3.,1 (t1, d1, q1, t2, d2, q2, t3, d3, q3) =

pbudgetr1. (t1, d1, q1, t2, d2, q2, t3, d3, q3)− pcostr1. (t1, d1, q1, t2, d2, q2, t3, d3, q3)−
pcostr2. (t1, d1, q1, t2, d2, q2, t3, d3, q3)− pcostr3. (t1, d1, q1, t2, d2, q2, t3, d3, q3) .

Note, we arbitrarily associated the budget property with request r1.

Definition 18 (Boolean Value of a Multi Assignments Constraint). The boolean value
bool() of a constraint maccop

MA,h
is defined as follows

bool
(
maccop

MA,h
(t1, d1, q1, . . . , tL , dL , qL)

)
=

1 cop equals ′=′ ∧ mac=
MA,h

(t1, d1, q1, . . . , tL , dL , qL) = 0 ,

1 cop equals ′≥′ ∧ mac≥
MA,h

(t1, d1, q1, . . . , tL , dL , qL) ≥ 0 ,

0 elsewise . ♦

The set of all constraints between the assignments in MA is denoted by MACMA. The
set

MAC =
⋃

MA∈P(CA)
MACMA

contains all constraints on all multi assignments.
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Feasible Solution. We call a candidate solutionCAS a feasible solution if the following
conjunction holds (tdqX abbreviates tX , dX , qX for X ∈ CAS). ∧
〈r,s,t,d,q〉∈CAS

∧
sac∈SACr.s

bool (sac(t, d, q))
 ∧

 ∧
A,B∈CAS∧A 6=B

∧
tr∈TRA:B

bool (tr(tdqA, tdqB))
∧

 ∧
A,B∈CAS ∧A 6=B

∧
sr∈SRnnt

A:B

bool (sr(tdqA, tdqB))
 ∧

 ∧
A,B,C∈CAS ∧A 6=B ∧B 6=C ∧A 6=C

∧
sr∈SRnet

A:B:C

bool (sr(tdqA, tdqB, tdqC))
 ∧

 ∧
MA∈P(CAS)

∧
mac∈MACMA

bool
(
mac(t1, d1, q1, . . . , t|MA|, d|MA|, q|MA|)

)
The above condition only takes the combinations CAS ⊆ CA into account, because the
assignments in CA \ CAS involve the virtual resource 0. That is, the corresponding
requests are not mapped to a resource, and their constraints need not be taken into
account.

5.6 Optimization Criteria

We distinguish objectives of the requests and the resources. While their definition is
essentially the same, the differentiation is made to formulate some conditions on their
construction (see below).

Definition 19 (Objective of a Co-Reservation Request). A co-reservation request’s ob-

jective on a combination of assignments CAS is a pair
(
of
R,CAS,h

, oω
R,CAS,h

)
of

a mapping of
R,CAS,h

: (T ×D ×Q)L −→ [−1, 1]

and a weight oω
R,CAS,h

∈ [0, 1] ,

with h ∈ N enumerating the request’s objectives on a combination of assignments CAS . ♦

The mapping of
R,CAS,h

of an objective o
R,CAS,h

is constructed as some arbitrary combi-
nation of the properties in PCAS . The set OR,CAS contains all objectives of the co-
reservation request R on the combination of assignments CAS .

Definition 20 (Objective of a Resource). An objective of a resource sk on a combination of

assignments CAS is pair
(
of
sk,CA

S,h
, oω
sk,CA

S,h

)
of

a mapping of
sk,CA

S,h
: (T ×D ×Q)L −→ [−1, 1]

and a weight oω
sk,CA

S,h
∈ [0, 1] ,

with h ∈ N enumerating the resource’s objectives on a combination of assignments CAS . ♦
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The mapping of
sk,CA

S,h
of an objective o

sk,CA
S,h

is constructed as some arbitrary combina-
tion of the properties in PCAS . The sets Osk,CAS (k = 1, . . . , K) contain all objectives of
the resource sk on the combination of assignments CAS .

Let FS = {CASi } denote the set of all feasible solutions. The weights of the objectives
must satisfy the conditions

∀CAS ∈ FS :
∑

o∈O
R,CAS

oω = 1, and ∀s ∈ S, ∀CAS ∈ FS :
∑

o∈O
s,CAS

oω = 1 .

Let the set O(CAS) contain all objectives on a combination of assignments CAS , i.e.,
O(CAS) = OR,CAS ∪ Os1,CAS ∪ . . . ∪ OsK ,CAS .

Definition 21 (Global Optimization Criteria). The criteria B :FS −→ N defines an order
on the feasible solutions FS by applying some function to the objectives O(CAS). ♦

We call a feasible solution CAS optimal if the following condition holds.

B
(
CAS

)
= min

fs∈FS
B(fs)

Criteria for calculating B could be the weighted sum, a prioritization of the objectives
or the Pareto-set of the solutions.

Note, the reservation system can specify the criteria B such that the objectives of
either side – the requests or the resources – are preferred or balanced.

Example 5.5 (Min End Time & Max Fitness)
The user wants the results of the job chain as soon as possible. In contrast, the resources
want to maximize the fitness of the assignments. The user’s goal is expressed as follows

of
R,CAS,1 (t1, d1, q1, t2, d2, q2, t3, d3, q3) =

psttr3. (t1, d1, q1, t2, d2, q2, t3, d3, q3) +
pdurr3. (t1, d1, q1, t2, d2, q2, t3, d3, q3)

oωR,CAS,1 = 1 .

The goal of the resources is expressed by the following objectives

∀sk ∈ S :

of
sk,CAS,1

(t1, d1, q1, t2, d2, q2, t3, d3, q3) =

(−1)·pfit.sk (t1, d1, q1, t2, d2, q2, t3, d3, q3)

oωsk,CAS,1 = 1 .

Note, the fitness property is multiplied by −1 to invert the optimization sense (minimize
→ maximize).
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Chapter 6

General System Architecture

First, we describe the life cycle of a co-reservation (cf. Section 6.1). Then, we present
the general system architecture (cf. Section 6.2). Last, we give an overview of the pro-
cessing steps (cf. Section 6.3).

6.1 The Life Cycle of a Co-Reservation

A co-reservation is composed of m atomic reservations (m ∈ N+). First, we describe
the life cycle of an atomic reservation. Then, we define the life cycle of a co-reservation.

Life Cycle of an Atomic Reservation. Figure 6.1 shows the life cycle of an atomic
reservation. Any atomic reservation begins in the state specified and ends in one of
the states failed, done or canceled. During the processing of a request a reservation
may iterate multiple times over the states resource candidates, reservation candidates,
candidate selected and denied. A granted reservation may either be active or inactive.

The state changes in the middle pillar and the state inactive correspond to the sim-
plest failure-free life cycle of an atomic reservation. Successful requests for reserving
resources in advance stay inactive until their begin time is reached.

The processing re-iterates over the states resource candidates, reservation candi-
dates and candidate selected if the original candidate could not be acquired (upward
arrows starting from state denied) or if a change of an inactive reservation was re-
quested (upward arrows starting from state inactive).

The state canceled may be reached if a granted reservation (states active and inac-
tive) is terminated. An active reservation becomes done if its end time is reached.

An atomic reservation fails (state failed) if no alternatives to denied candidates are
found or if a resource failure occurs (dashed arrows in Fig. 6.1).

Life Cycle of a Co-Reservation. Let zj denote the state of the j-th atomic reservation
(j = 1, . . . ,m). The tuple Zk := 〈z1, . . . , zm〉 describes the k-th state in the life cycle of a
co-reservation with m parts (k ∈ N).

35
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Figure 6.1: Life cycle of an atomic reservation.
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Any co-reservation begins its life cycle in the state Z0 := 〈specified, . . . , specified〉.
Different parts of a co-reservation may be in different states at the same time. Hence,
the life cycle of a co-reservation can be described as state sequence ZS := Z0Z1Z2 . . . ,
where, without loss of generality, two succeeding states Zk and Zk+1 only differ in the
state change of one atomic reservation.

A co-reservation ends if all parts are in one of the terminal states failed, done and
canceled. Note, different parts may be in different terminal states.

6.2 System Architecture

Figure 6.2 shows the three main components of the co-reservation framework CORES:
the Grid Reservation Service (GRS), the Resource Catalog (RC) and the Local Reservation
Service (LRS). The interplay of these components is depicted by arrows, whose num-
bers and labels refer to the description of the processing steps presented in Section 6.3.

Note, while Fig. 6.2 only shows a single instance of the GRS, the RC and the client,
multiple instances of each of these entities may exist. For example, different clients
may use different GRS instances, which compete for the same resources. However, a
single co-reservation request is processed by a single GRS instance only.

Grid Reservation Service. The Grid Reservation Service is the central component
which receives co-reservation requests and coordinates their processing. It may op-
erate in two modes: (1) single request and (2) bucket of requests. In the former, it
processes incoming requests serially. Thus, the client receives the response as early
as possible. In the latter, it gathers requests and processes them together to achieve a
higher resource utilization and fair sharing among the clients.

Introducing the GRS as the central component does not exclude the existence of
multiple instances of GRSs. In particular, each large organization or even small groups
of researchers may deploy their own instance which can incorporate domain specific
knowledge about both the applications of the researchers and the resources they wish
to use. Because the GRS coordinates the processing of co-reservation requests, each of
the following chapters covers some of its aspects. Particularly, the steps for mapping
requests to co-reservation candidates and for allocating resources to candidates are
presented in Chapter 10 and 11, respectively.

Resource Catalog. The Resource Catalog (RC) stores static information about the
resources. Each resource registers itself with at least one RC providing information
such as its type, its capacity, its performance metrics, authorization requirements, re-
source management capabilities, etc. An RC offers a querying interface which is used
by the GRS to determine reservable resources matching static requirements of a co-
reservation request. The description of resources and their matching with request parts
are described in Chapters 7 and 8.
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Figure 6.2: Components of the reservation framework and their interplay in the pro-
cessing of a co-reservation request.

Local Reservation Service. The Local Reservation Service (LRS) provides a generic
interface to the resource management system of a resource and enhances its functional-
ity to support the reservation mechanism. By providing a generic interface it simplifies
the communication with the GRS. The proposed co-reservation mechanism needs in-
formation about the future status of the resources. Because, current resource manage-
ment systems provide only very limited information, the LRS integrates mechanisms
for deriving the information. The advantage of deriving such information at the re-
source is, that all – especially confidential – local information is available and each
resource can more easily control what information is made available to the GRS. We
describe several methods for probing the future status of resources in Chapter 9.
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6.3 Processing Steps

The following processing steps cover the life cycle of a co-reservation except for the
states done and canceled and the state changes originating in state the inactive.

À The co-reservation request is described in the Simple Reservation Language (SRL)
and send to the Grid Reservation Service (GRS).

The SRL is presented in Chapter 7.

Á On receipt of a request, the GRS queries resource catalogs to determine eligible
resources which match the requested type as well as static characteristics such as
the required operating system.

This step is discussed in Chapter 8.

Â The eligible resources are asked to provide detailed status information covering
the time period of the co-reservation request.

This step is described in Chapter 9.

Ã The GRS compiles the status information, the constraints and the objectives of all
involved parties into a single instance of an optimization problem and solves it
by using standard tools.

This step is discussed in Chapter 10.

Ä To acquire the reservations represented by the solution, the GRS sends reserve
messages – one for each co-reservation part – to the LRSs of the selected re-
sources.

This step is discussed in Chapter 11.

Å If some reservations were not granted, the optimization problem is refined and
the mechanism continues with step Ã.

This step is described in Section 10.6.

Æ If all reservations were admitted or no solution could be found, the reservation
system generates a corresponding response message.





Chapter 7

Description of Requests and Resources

The processing of co-reservation requests begins with a description of the requirements
and objectives of all involved parties – the users and the providers. We propose the
Simple Reservation Language (SRL) for specifying requests and resources. Designing a
description language must answer the general questions:

– What kind of information should be described?, and

– How should the information be structured?

From a user’s point of view a request description must define:

– Who is requesting a reservation?,

– What types of resources and which quantity or Quality-of-Service of each re-
source shall be reserved?,

– When should the reservation begin and how long will it last?, and

– Which reservation parameters are preferred if the reservation system may select
among many?

From the provider’s point of view a resource description must define:

– Who is allowed to acquire reservations?,

– What type of service and which service level (Quality-of-Service) does the re-
source provide?,

– Which service manages reservation requests?, and

– Which constraints and objectives shall be met by any reservation?

Chapter Outline. In Section 7.1 we discuss the requirements on such a language. The
state of the art in description languages for requests and resources is presented in Sec-
tion 7.2. Thereafter, we present the Simple Reservation Language in detail (cf. Section 7.3).
The chapter is summarized in Section 7.4.

41
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7.1 Requirements

The co-reservation procedure involves several participants – the consumers and the
providers – with diverse and often conflicting goals. We derive requirements of a uni-
form language, which lets all participants describe their functional and non-functional
requirements. The language needs to support a wide range of scenarios – from rigid
atomic requests and resources to flexible multi-part requests (cf. Chapter 2).

7.1.1 Functional Requirements

A co-reservation consists of multiple atomic parts. First, we present the requirements
considering atomic parts only. Thereafter, we discuss additional requirements to com-
pose multiple parts into a co-reservation. In each category, we describe issues related
to properties, constraints and objectives.

Properties of Atomic Parts

A description language must provide means to describe the fixed as well as the vari-
able properties of an atomic part. Fixed properties define information which does not
depend on the matching. In contrast, the value of a variable property depends on the
parameters offered by a matching candidate.

Example 7.1 (Fixed properties)
An atomic reservation request may have a type, for example compute, storage or net-
work, which does not depend on the matching. Also, the name of the requester is the
same in all possible matchings.

Similarly, the type of a resource does not depend on the matching. Also, properties
describing hardware features, e.g., architecture of a processor or the network technology,
are the same for all matchings.

Example 7.2 (Variable properties)
The duration of a reservation depends on the quality-of-service offered in a matching. For
example, the transfer time of 10 gigabyte of data depends on the available bandwidth as
illustrated in the table below.

Data Sizes

Bandwidth 1 GB 500 GB 1 TB 1 PB 10 PB

10 Mbit/s 15’ 5 d 10 d 25 y 250 y
100 Mbit/s 1’40" 12 h 24 h 2.5 y 25 y

1 Gbit/s 10" 1 h 2h 3 m 2.5 y
10 Gbit/s 1" 6’ 12’ 10 d 3 m
40 Gbit/s 1" 1’30" 3’ 2.5 d 1 m

A similar relation exists for the execution time of a program, which depends – among
many other parameters – on the clock frequency of the processor and on the number of
processors being used. A basic relation is defined by Eq. (4.6). In a commercial scenario,
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the price a consumer is willing to pay may depend on the parameters of the matching
candidate. For example, the higher is the offered bandwidth or the earlier would the
request finish, the higher is the available budget.

Constraints of Atomic Parts

While properties are used to describe the parameters of a request or a resource, con-
straints are used to pose restrictions on possible matchings between requests and re-
sources. Thus, the set of feasible matchings is described by the properties and the
constraints.

Because the properties of a part may be variable and depend on the matching party,
it must be possible to formulate constraints on all attributes of a matching.

Example 7.3 (Constraints of atomic parts)
A request for a compute resource may pose constraints on the type of the resource, i.e.,
compute, on the architecture of the processor, the operating system, the clock frequency of
the processor. Furthermore, it may limit the number of used processors if the scalability
of the program is bounded.

A resource will restrict the types and sizes of requests it serves, or grant access to
certain users or virtual organizations (VO) only. It may also impose limits on the ag-
gregated share assigned to all reservations or to all allocations of a certain user or VO by
enforcing a threshold on the fit value, which is a variable property of a resource.

Objectives of Atomic Parts

Assuming that a request and a resource can participate in many matchings, both the
users and the providers may prefer certain matchings over others. The description
language must provide means to describe these preferences called objectives. If a
request consists of multiple objectives, it must be possible to declare their (relative)
importance.

Example 7.4 (Objectives of atomic parts)
Common user objectives are to minimize the completion time of a compute task or to
minimize the costs of using a resource.

In contrast, a resource provider may want to maximize the utilization of its resources
or minimize the power consumption.

Properties of Multiple Parts

A request consisting of multiple parts may need to define global properties such as
the total budget or a global identifier. Similarly, multiple resources can be grouped
together. Such a group may be described with global properties like an identifier, the
total capacity or an abstract capacity in the case of composite resources.
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Constraints of Multiple Parts

We observe three sources for constraints of multiple parts. First, temporal relationships
between pairs of matchings are needed. For example, a distributed parallel simulation
may require that all parts begin at the same time. In a job chain scenario with known
execution times for each request part, temporal constraints define the order in which
the parts are executed. Second, spatial relationships between pairs of matchings need
to be described. For example, if two compute parts shall be connected by a dedicated
link, we need two spatial constraints which specify that compute resource one is con-
nected to one endpoint of the link while compute resource two is connected to the
other endpoint. Third, aggregated parameters may be restricted. For example, if the
total costs for all parts must not exceed a certain budget.

Objectives of Multiple Parts

Objectives of multiple parts are needed to specify global preferences. For example, a
user may want to minimize the costs of a request or minimize the total completion time
of a job chain. The reservation system may prefer combinations with a high aggregated
fitness value, i.e., those for which subsequent reserve messages are likely to succeed.

Auxiliary Request Parts

Auxiliary request parts describe resources which shall not be reserved, but influence
the other matchings. For example, data resources can be requested with an auxiliary
part. Such part may match multiple instances of a data item, e.g., replica of a file.
Considering the network bandwidth between the data resources and eligible compute
sites, the co-reservation mechanism can chose the best combination of data, network
and compute resources, but will only reserve the compute and network resources1. Ad-
ditionally, auxiliary request parts can be used to describe existing reservations which
shall be replaced or augmented by new parts. Note, replacing an existing reservation
with a new one may require additional support from the resource’s local management
system.

7.1.2 Non-functional Requirements

Non-functional requirements define criteria on the quality of a system. A descrip-
tion language defines a format for exchanging information between different compo-
nents. In the co-reservation framework, information is exchanged between users and
the GRSs, but also between the GRSs and the resource catalogs and the LRSs. Hence,
the language must be easy to use by human beings and portable to simplify the ex-
change of information. Since, the number of feasible matchings may be very high and

1In fact, we may wish to reserve data resources in the sense that the accessed data is made available
on-line before it is read by a job, i.e., staged from tape to disk for low latency access.
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the state of the resources in a Grid may change quickly, it must provide all informa-
tion to facilitate an efficient processing. In particular, no communication with a user
should be needed to determine the preferred set of candidates. The language must
be extensible both, in the type of the resources or requests and in the set of proper-
ties, constraints and objectives it supports. Traditionally, most resource management
systems consider only a small set of types of resources. These types are compute, stor-
age and network. Applying Grid technology to areas different from high-performance
computing necessitates the representation of additional types of resources such as web
services or robotic telescopes.

Specifying requests and resources in the same language, acknowledges the sym-
metry of the matching process, simplifies the deployment of the language and im-
proves resolving errors. Therefore, requests and resources shall be described by uni-
form means.

7.2 State of the Art

Languages for describing requests and resources play a fundamental role to resource
management. In this section, we will review approaches from batch systems, Grid
resource management systems and generic resource description frameworks. We di-
vided the languages in three categories, depending on if they may be used to describe
(1) requests only (cf. Section 7.2.1), (2) resources only (cf. Section 7.2.2) or (3) both re-
quests and resources (cf. Section 7.2.3). In each category, we present a prominent lan-
guage in detail and relate other approaches to it. Despite the long history of describing
resources and requests, we will focus at languages developed over the past 20 years
only. We summarize the as-is state of the features of the presented languages in Ta-
ble 7.2.

7.2.1 Request Description Languages

In the Globus Toolkit (GT) [GT], resource allocation requests are described with the
GT Resource Specification Language (RSL). The language groups relations of an atomic
part by the operator & and supports the composition of complex requests by the op-
erator +. A relation is either a binding of a value to a key or a comparison of a key
with a value. The former is expressed by assignment statements and mainly used for
describing parameters of the job execution such as the executable, the program argu-
ments, needed directories, etc. The latter is described by boolean expressions and used
to define constraints on the matching resources.

Recently, the NorduGrid project [NG] proposed xRSL – an extended version of
Globus RSL. xRSL extends RSL by introducing new keys and a distinction between
the User-side RSL and the GM-side RSL2. A user only needs to provide keys of the user-
side part. Keys of the GM-side are added by a special user interface of the NorduGrid

2GM stands for Grid Manager.



46 Chapter 7. Description of Requests and Resources

middleware.
The Open Grid Forum (OGF) [OGF] conducts standardization efforts to define a

common language for submitting jobs. The OGF Job Submission Description Lan-
guage (JSDL) [JSD] is an XML3 format to describe properties and requirements of a
Grid job. Essentially, JSDL provides the same features as xRSL does.

The UNiform Interface to COmputing REsources (UNICORE) [Uni08] was devel-
oped to provide access to supercomputers at high-performance computing (HPC) cen-
ters. UNICORE’s job model supports single task and workflow applications. Each
task is described by its fixed resource requirements, its input and output data and the
actions it will perform. All these information are encapsulated in the Abstract Job Ob-
ject (AJO).

The above languages, designed to solely describe job requests, can be seen as gener-
alized batch job description languages. For example, the cluster batch system TORQUE
[TOR08] uses a specific list of pre-defined attributes to describe a job. Names of at-
tributes may be different among cluster batch systems. A Grid-level description lan-
guage defines common names for attributes. During the submission of a job, these
attribute names need to be mapped to the corresponding name of the target system.

7.2.2 Resource Description Languages

The Monitoring and Discovery Service (MDS) [MDS] provides means to store and
query information on the characteristics and current load of, compute and storage re-
sources. It is a building block of the Globus Toolkit [GT] since its first version was
released in 1997. MDS includes components for caching and aggregating information,
the Index Service, and for notification of certain conditions, the Trigger Service. Be-
cause of its flexible architecture and use of well-known web standards such as XML
for the representation of information and XSLT4 for transforming the information for-
mat of different information providers, MDS can manage information of diverse enti-
ties. The information is stored in (key,value)-attributes, which may be grouped into
classes defined by a schema. An example for a widely used schema is the GLUE
schema [GLU08]. The Grid Laboratory Uniform Environment (GLUE) schema was
initially developed as a joint effort by the EU projects DataGrid [EDG08] and DataTAG
[EDT08] and the then international Virtual Data Grid Laboratory (iVDGL). The GLUE
schema aims to ease the sharing of compute and storage resources managed by differ-
ent Grid middlewares or associated with different Grid environments. In particular, it
provides a uniform representation of the resources, thus simplifying the design of Grid
brokers and information indexes. The schema defines several classes of (key,value)-
attributes, which cover specific aspects of a resource. For example, the class Computin-
gElement encapsulates a batch queue of a local resource management system. Table 7.1
shows selected attributes of the class ComputingElement (cf. version 1.3 of the GLUE
schema specification [GLU07]).

3XML stands for the standard eXtensible Markup Language of the W3C (http://www.w3.org/).
4XSLT stands for the W3C recommendation of XSL Transformations (http://www.w3.org/TR/xslt).



7.2. State of the Art 47

Table 7.1: Selected attributes of the GLUE schema class ComputingElement.

Name Description Value

Info.TotalCPUs Total number of processors 128

Benchmark.SI00 SPECint2000 value of a processor 1569

Processor.ClockSpeed Clock frequency (MHz) of a processor 2600

MainMemory.RAMSize Main memory size (megabyte) of a node 512

State.TotalJobs Total number of current jobs 144

State.RunningJobs Number of running jobs 42

State.WaitingJobs Number of waiting jobs 100

The UNICORE resource model [Uni08] covers the capabilities and capacity of a
HPC system. It also provides rules for enacting tasks, e.g., setting environment vari-
ables and providing configuration parameters. The capacity of a system is described
with a small set of attributes such as the number of nodes, the number of processors
per node, the main memory per node, the queues, the CPU time limit, etc. Access
to a resource is only granted to users which are registered with the UNICORE User
DataBase.

7.2.3 Symmetric Description Languages

Condor [LLM88] is a resource management for clusters built from workstations or ded-
icated machines. The core of Condor is its very flexible resource and request descrip-
tion mechanism Condor ClassAds [RLS98]. Both, the resources and the requests are
described by classified advertisements (short: ClassAd) using the same syntax and se-
mantics. Each ClassAd describes an entity by attributes, requirements and a ranking
criteria. An attribute is a (key,value)-pair such as the type of the entity or its name.
Requirements are complex boolean expressions, whose clauses refer to attributes of
matching candidates. A ranking criteria is an arithmetic function, which may refer-
ence values of the matching candidates, too. For example, a job request may prefer the
resource with the fastest processor. Matching two entities is a symmetric process, that
is, entity A matches B and vice versa. In particular, both entities may specify require-
ments and ranking criteria, which must be satisfied. Due to the generic model Condor
ClassAds builds upon, it satisfies many of the requirements listed in Section 7.1. There-
fore, the SRL will inherit the core elements of Condor ClassAds and extend it where
necessary (cf. Section 7.3).

The RedLine Description Language [LF03b] is a generalization of Condor ClassAds,
more specifically, it replaces (key,value)-attributes by equality constraints and the re-
quirements attribute by a set of constraints. Thus, a RedLine ClassAd consists of con-
straints only. Bi-lateral matching is performed by the conjunction of the constraints of
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the matching candidates. Multi-lateral matching is defined by two constructs ISA and
ISA SET, which facilitate the description of a multi-part request or resource.

In his dissertation “A REST Model for High Throughput Scheduling in Computational
Grids”, Stokes-Rees [SR06] proposes a set theory formalization of Condor ClassAds.
While Condor ClassAds needs to handle tri-state logic5, this is avoided in the proposed
Grid Resource Description Language (GRDL) [SR06]. Thus, the language is easier to
implement and to use. In contrast to many other approaches, the GRDL supports
the heterogeneity in Grids by applying transformations on attributes. For example, the
available storage capacity of a resource, given in units of one terabyte, can be converted
into units of one gigabyte if a request uses this base unit.

The D-Grid Resource Description Language (D-GRDL) [Wol07] is also based on
XML, but enables hierarchies of resource classes as well as aggregations of multiple re-
sources. For example, a compute node may aggregate several software packages. The
D-GRDL allows arbitrary constraints in disjunctive normal form. Since it only aims
at identifying a set of eligible resources, but not at selecting the “best” among them,
it does not provide means for expressing preferences. Although, only the requests
may constrain the matching, we presented the D-GRDL under symmetric languages,
because it allows to describe both the requests and the resources.

The Resource and Service Description (RSD) [BGKR98] language is a uniform ap-
proach to describe requests and resources. It features fixed properties, implicit con-
straints on properties of atomic parts and a means to describe complex environments
and requests. RSD instances are composed of nodes, e.g., atomic parts, and edges,
which are network links between the nodes. Arbitrary attributes may be associated
with both the nodes and the edges. The language was designed to describe large par-
allel HPC applications and static meta-computers. It does not, however, support arbi-
trary constraints among the different parts of an application or objectives to select a set
of matching resources.

7.2.4 Requirement Matrix and Use in Grid Projects

Table 7.2 summarizes the presented approaches for describing requests and resources.
Additionally, the table shows the use of these approaches in recent and on-going re-
source management projects.

7.3 The Simple Reservation Language

Based on the requirements listed in Section 7.1 and the survey of existing description
languages in Section 7.2, we propose the Simple Reservation Language (SRL). The basic
concept is inherited from languages such as Condor ClassAds [RLS98], that is, both, the
requests for co-reservations and the resources are described with the same language.
The main differences to these languages are: (1) the introduction of variable properties,

5See Section 8.2.1 on page 62 on handling the issue of tri-state logic.
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(2) a more flexible way to specify constraints (like in RedLine [LF03b]), (3) a specific
naming scheme for (key,value)-attributes and (4) a precise definition of the semantics of
a core set of attributes.

As outlined in the introduction, we regard the co-reservation problem as an opti-
mization problem. Formally, the descriptions must define a set of variables including
their domains, a set of constraints on these variables’ domains and an objective func-
tion which is to be optimized. The SRL follows a less formal approach by letting a
user and a provider define certain attributes, i.e., the SRL vocabulary, which are trans-
formed into the corresponding mathematical expressions. Figure 7.1 illustrates the
use of the SRL. First, the consumers (users) and providers (resources) describe their
requirements. Next, the descriptions are pre-processed, that is, adding implicit con-
straints (added red line) and adding inherited attributes.

consumer provider

REQ.TS.est := Wed Dec 12 18:00:00 UTC 2007
REQ.QOS.type := compute
REQ.QOS.cpu := 64
REQ.OBJ.cost := min,REQ.QOS.cost,15
. . .

REQ.TS.est := Wed Dec 12 18:00:00 UTC 2007
REQ.QOS.type := compute
REQ.QOS.cpu := 64
REQ.CON.begin := REQ.TS.start >= REQ.TS.est
REQ.OBJ.cost := min,REQ.QOS.cost,15
. . .

RES.QOS.type := compute
RES.QOS.cpu := 128
RES.CON.cpu := OTHER.QOS.cpu < RES.QOS.cpu
RES.OBJ.fit := max,RES.QOS.fit,30
. . .

RES.QOS.type := compute
RES.QOS.cpu := 128
RES.CON.cpu := OTHER.QOS.cpu < RES.QOS.cpu
RES.OBJ.fit := max,RES.QOS.fit,30
. . .

Write descriptions

Pre-processing of descriptions

Figure 7.1: Overview of the main processing steps of SRL descriptions.

7.3.1 Syntax of the Simple Reservation Language

An SRL description consists of (key,value)-attributes with each key being a string of
three components: an identifier <id>, a scope <scope> and a name <name>. Defini-
tion 22 formally introduces attributes.

Definition 22 (Attribute). The syntax of an attribute is defined by the following EBNF.

attribute ::= key ’:=’ value
key ::= id’.’scope’.’name[elem]
id ::= namestring | ’ROOT’ | ’OTHER’ | ’*’
scope ::= ’TS’ | ’QOS’ | ’MISC’ | ’CON’ | ’OBJ’
name ::= namestring
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elem ::= ’{’ak’}’ | ’[1]’ | ’[2]’
value ::= scopestring
namestring ::= letter { numlet }
ak ::= string
scopestring ::= datespec | qosspec | miscspec | constraint |

objective

The alternatives of scopestring are defined in Def. 23, 24, 25, 26 and 27. ♦

The identifier <id> of an attribute names the part of the entity6. Thus, it is possible to
reference attributes of a specific part from within any other part. The identifier ROOT
refers to global attributes. The identifier OTHER references an attribute of the matching
party. Using the identifier * with a certain scope <scope> and name <name>, the
expression *.scope.name evaluates to the set of attribute keys of an entity, where
the scope and the name of each element of the set matches the scope <scope> and the
name <name>.

Each scope denotes a specific group of attributes. We distinguish three kinds of
scopes, based on its appearance in a (key,value)-attribute. Scopes which can appear in
the key are left-hand side scopes. The ones which can appear in the value are right-hand
side scopes. Scopes which may appear on both sides are left-/right-hand side scopes. The
scopes defined in the SRL, are shown in Table 7.3. Global attributes of the scopes TS,
QOS and MISC are inherited by all parts of an entity. If a part requires a different value
of the attribute, it may overwrite it by using the same scope and name in the key.

Table 7.3: Attribute scopes of the Simple Reservation Language.

Used in Scope Description

key & value TS Temporal specification of a request/resource
key & value QOS QoS specification of a request/resource
key & value MISC Miscellaneous attributes of a request/resource

key CON Constraints of a request/resource
key OBJ Objectives of a request/resource

value RVC Attributes of a reservation candidate

The name of an attribute is an alpha-numeric string. For each scope there exist several
keys with a pre-defined semantics which we will present in Section 7.3.2. Apart from
the pre-defined names, any other string may be used, but its semantics is only defined
by the described relationships to other attributes.

The optional extension to a name – {ak} or [1/2] – is used to reference named
fractions of the value or elements of a pair. The fraction is named by the string ak.

6We use the term entity if a statement applies to both, the resources and the requests.
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The first element of a pair is referenced with the extension [1], the second with [2].
The non-terminals letter and numlet refer to any letter (a-z and A-Z) and any digit,
letter and underscore, respectively.

Definition 23 (Temporal Scope). We define the syntax of datespec – the value domain
of the temporal scope – as follows

datespec ::= datespec aop datespec | ’(’ datespec ’)’ |
absdate | ’+’ reldate | duration | key

aop ::= ’+’ | ’-’ | ’*’ | ’/’
absdate ::= epochseconds | UTCstring
reldate ::= posint timeunit {’:’ reldate}
duration ::= posint timeunit {’:’ duration}
timeunit ::= ’d’ | ’h’ | ’m’ | ’s’ ♦

The non-terminal epochseconds specifies the date as seconds since the epoch, i.e.,
defined as “00:00:00 1970-01-01 UTC” with UTC being the Coordinated Universal Time.
UTCstring is used to define the date in a more natural, i.e., human readable, format.

The relative date (cf. non-terminal reldate) begins with a plus sign and may be
given by a colon separated list of days, hours, minutes or seconds (cf. non-terminal
timeunit). All these parts can take any positive integer (cf. non-terminal posint).
During the pre-processing of descriptions, the relative dates and the durations are
translated into epoch seconds and seconds, respectively.

Definition 24 (Quality-of-Service Scope). The syntax of qosspec – the value domain of
the quality-of-service scope – is defined as follows

qosspec ::= qosspec aop qosspec | (’ qosspec ’)’ | restype |
aarray | pvector | vstring

restype ::= ’compute’ | ’storage’ | ’network’ | ’data’ |’any’
aarray ::= aelem { ’:’ aelem }
pvector ::= pair { ’:’ pair }
aelem ::= vstring ’=>’ vstring
pair ::= vstring ’/’ vstring ♦

The non-terminal restype specifies one of the supported resource types. The non-
terminal vstring may be any string excluding line feeds.

Definition 25 (Miscellaneous Scope). The syntax of miscspec – the value domain of the
miscellaneous scope – is defined as follows

miscspec ::= vstring ♦

The non-terminal vstring may be any string excluding line feeds.

Definition 26 (Constraint Scope). The syntax of constraint – the value domain of the
constraint scope – is defined as follows
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constraint ::= boolexpr | ’not’ boolexpr |
boolexpr boolop boolexpr

boolexpr ::= expression op expression
expression ::= key | sop key | number
sop ::= ’sum’ | ’min’ | ’max’ | ’prod’
op ::= ’==’ | ’!=’ | ’>’ | ’>=’ | ’<=’ | ’<’ | in
boolop ::= ’and’ | ’or’ ♦

The non-terminal number may be any number, i.e., integer, real, boolean. Note, the
operators !=, >, < and in are primarily used in the matching of static requirements (cf.
Chapter 8). If they may be used for specifying dynamic requirements depends on the
employed optimization techniques (cf. Chapter 10).

Definition 27 (Objective Scope). The syntax of objective – the value domain of the
objective scope – is defined as follows

objective ::= sense ’,’ objexpr ’,’ weight
sense ::= ’min’ | ’max’
objexpr ::= key | number | objexpr aop objexpr
aop ::= ’+’ | ’-’ | ’*’ | ’/’ ♦

The non-terminal weight may be any real number. The non-terminal number may be
any number, i.e., integer, real, boolean.

Example 7.5 (Attributes)
The following eight attributes illustrate the use of the SRL for describing a co-reservation
request containing two parts REQ1 and REQ2.

REQ1.TS.est := Tue Dec 12 18:00:00 UTC 2006
REQ1.TS.dur := 21600
REQ2.TS.let := Fri Dec 15 18:00:00 UTC 2006
REQ1.QOS.type := compute
REQ1.QOS.cpu := 16
ROOT.CON.cost := sum *.MISC.cost <= 10000
REQ2.CON.time := REQ1.TS.start == REQ2.TS.start
REQ1.OBJ.cost := min,REQ1.MISC.cost,8

The attributes REQ1.TS.est and REQ1.TS.dur define the earliest start time and
the duration of part REQ1, respectively. The attribute REQ2.TS.let sets the lat-
est end time, i.e., deadline, of the part REQ2. The attributes REQ1.QOS.type and
REQ1.QOS.cpu define the type of the requested resource and the amount to be re-
served, respectively. A global constraint on the total cost is given with the attribute
ROOT.CON.cost. The attribute REQ2.CON.time defines a constraint on the start
times of the parts REQ1 and REQ2. Note, it does not matter which identifier is used for
the key of a constraint, because the optimization problem combines all constraints in a
single conjunction. The last attribute defines an optimization criteria of the part REQ1.
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7.3.2 Pre-defined Types and Attributes

The Simple Reservation Language defines a small set of common attributes and assigns
a specific semantics to them. Thus, the writing and processing of SRL descriptions is
simplified and less prone to ambiguous interpretations. In the following, we describe
the pre-defined attributes of the scopes TS, QOS and MISC. Note, there exist no pre-
defined attributes of the scopes CON and OBJ.

Temporal Scope TS

The scope TS contains six pre-defined attribute keys – x.TS.est, x.TS.dur,
x.TS.durref, x.TS.let, x.TS.start and x.TS.end – where x represents any
part of a description. The semantics of these keys is as follows.

The earliest start time of a reservation is given by the value of x.TS.est. The
latest end time of a reservation is given by the value of x.TS.let. The corresponding
attributes are used in the probing and candidate selection steps. For the latter step,
the attributes are translated into constraints, i.e., x.TS.est ≤ x.TS.start and x.TS.let ≥
x.TS.end.

The actual start and end time of a reservation are denoted by the keys x.TS.start
and x.TS.end, respectively. Note, these attributes are typically set in the candidate se-
lection step, such that they do not violate the constraints on the earliest start time and
the latest end time. They may, however, also be fixed in the description of a request or
a resource.

The value of the key x.TS.dur defines the actual duration of the reservation. It may
be fixed to a certain value or a function of parameters such as QoS attributes. The value
of the key x.TS.durref defines the duration with respect to reference QoS attributes.
This attribute may be used to simplify the specification of moldable requests, whose
duration depend on the acquired QoS level.

Quality-Of-Service Scope QOS

The scope QOS has one common pre-defined attribute key – x.QOS.type – and several
type-dependent pre-defined keys.

The values of the key x.QOS.type are compute, storage, network, data and any.
In Table 7.4, we list the type-dependent pre-defined attribute keys for these values (ex-
cept for any). The type any may be used for a service whose type is not among the
ones listed in Table 7.4. For example, the set of attributes can easily be extended to re-
serve more abstract resources such as web server capacity or database querying capac-
ity by introducing attributes such as x.QOS.webresponsetime or x.QOS.dbmsquerytime,
respectively.

For each resource type – except network – we define two attributes domain and
url which correspond to the IP domain the resource is associated with and the service
which manages the resource, respectively. Since a network link connects two resources,
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we define attributes for both ‘sides’ of it – domainleft and domainright as well as
urlleft and urlright.

Table 7.4: Pre-defined attribute keys (name in x.QOS.name) for the several service types.

Name Semantics Value Format

compute type
arch CPU architecture String
os operating system (string/version number)-pair
swenv software environment Vector of (string/version number)-pairs

np number of CPUs Positive integer
nplb lower bound on np Positive integer
npub upper bound on np Positive integer
npref reference np Positive integer

perf CPU performance (benchmark name/benchmark value)-pair
perfref reference CPU perf. (benchmark name/benchmark value)-pair

spm speed-up model String, e.g., amdahl, downey, gamma
spp speed-up parameter aarray (cf. Def. 24) mapping strings to numbers, which

are accessed with the syntax x.QOS.spp{str}

ram RAM memory Positive integer plus a byte unit (MB, GB, . . . )
disk disk space Positive integer plus a byte unit (GB, TB, . . . )

storage type
disk storage space Positive integer plus a byte unit (GB, TB, . . . )
bwmax max bandwidth Positive integer plus a byte/time unit (GB/s, TB/s, . . . )

network type
bwmax max bandwidth Positive integer plus a byte/time unit (MB/s, GB/s, . . . )
bwavail available bandwidth Positive integer plus a byte/time unit (MB/s, GB/s, . . . )
latency latency Positive integer plus a time unit (µs, ms, s, . . . )

data type
lfn logical file name URL pointing to a replica catalog
pfn physical file name URL of the location from where the file can be obtained
size size of the file Positive integer plus a byte unit (MB, GB, . . . )

Miscellaneous Scope MISC

The scope MISC contains four pre-defined attribute keys – x.MISC.owner, x.MISC.vo,
x.MISC.serviceurl and x.MISC.reserve. The key x.MISC.owner is used to associate an
owner with a description, e.g., a user for a request or an institute name with a resource.
The owner may be identified by several means such as a local UNIX account, an X.509
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certificate, etc. The key x.MISC.vo associates a virtual organization with a request or a
resource. The key x.MISC.serviceurl is used for identifying the service which man-
ages the access to a resource, e.g., a local resource management system or a Globus
GRAM interface. The key x.MISC.reserve is used to specify if the request part is to be
reserved or not. This feature may be used for combining reservations with best-effort
allocations, for specifying parts which are already reserved or simply for specifying
parts which may not be reserved.

7.3.3 Pre-processing SRL Descriptions

Pre-processing is used to transparently enable complex relationships among attributes
and to set default values if applicable. Thus, writing a request or resource descrip-
tion is further simplified. We distinguish three kinds of pre-processing operations: (1)
setting a default value, (2) adding constraints and (3) adding variable properties. For
example, if a request part does not specify an earliest start time (x.TS.est), the attribute
is set to the current time. Examples for adding constraints were discussed above (cf.
Section ‘Scope TS’). The pre-processing operations for the scope TS are summarized in
Table 7.5.

Table 7.5: Pre-processing operations for attribute keys of the scope TS.

Attribute Pre-processing Operation

x.TS.est := val add constraint x.CON.tsest := x.TS.start >= val

x.TS.let := val add constraint x.CON.tslet := x.TS.end <= val

x.TS.dur := expr add constraint x.CON.tsdur := x.TS.start +x.TS.dur == x.TS.end

In the scope QOS, pre-processing is only applied to attribute keys of the service type
compute. The pre-processing operations concerning the scope QOS and service type
compute are summarized in Table 7.6.

Table 7.6: Pre-processing operations for attribute keys of the scope QOS.

Attribute Pre-processing Operation

x.QOS.nplb := val add constraint x.CON.qosnplb := x.QOS.np >= val

x.QOS.npub := val add constraint x.CON.qosnpub := x.QOS.np <= val

Finally, there are a few pre-processing operations which involve attributes of both the
scope TS and the scope QOS. These operations define a relationship between the du-
ration and the QoS-level of a reservation. In the following, we present two operations
concerning the execution time of a parallel program that could be run on the reserved
resources. The operations depend on the used speed-up model, e.g., Amdahl, and if
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we assume homogeneous or heterogeneous site characteristics, i.e., processor charac-
teristics. Note, similar operations may be defined for network connections if they are
used to transmit an a-priori known data volume.

If Grid resources possess processors with the same performance, the pre-processing
operation applies Amdahl’s law (Eq. (4.3)) and adds the variable property

x.TS.dur := x.TS.durref

* (x.QOS.spp{seq} + x.QOS.spp{par} / x.QOS.npref)

/ (x.QOS.spp{seq} + x.QOS.spp{par} / x.QOS.np)

In a Grid using heterogeneous processors, the pre-processing operation applies the
adapted Amdahl’s law (Eq. (4.6)) and adds the variable property

x.TS.dur := x.TS.durref

* (x.QOS.perfref[2] / x.QOS.perf[2])

* (x.QOS.spp{seq} + x.QOS.spp{par} / x.QOS.npref)

/ (x.QOS.spp{seq} + x.QOS.spp{par} / x.QOS.np)

Similar operations can be defined for other speed-up models, e.g., Downey or Gamma.

7.3.4 Evaluation of the Simple Reservation Language

We evaluate the Simple Reservation Language (SRL) with respect to the functional and
non-functional requirements.

Functional Requirements. The SRL supports fixed and variable properties of indi-
vidual parts and an entity as a whole (via identifier ROOT). Furthermore, constraints
and objectives may be specified on the same granularity. Auxiliary parts are supported
through the attribute key x.MISC.reserve. Finally, allowing references to attributes of
any part within an entity itself and to the matching party, provides a sufficient degree
of expressiveness. It may be further enhanced by introducing higher-level constructs
such as for-loops. Hence, the SRL satisfies the functional requirements listed in Sec-
tion 7.1.1.

Non-Functional Requirements. The SRL is a uniform approach to describe all enti-
ties involved in managing co-reservations. The language is portable, because the small
set of syntax rules and the use of pure ASCII characters enables its use on any system
environment. Because the language does not restrict the definition of attribute names
(except for those with pre-defined semantics) and supports any resource type with the
type any, it can easily be extended to describe parts belonging to none of the pre-
defined types. The efficient processing of SRL instances is facilitated by the objectives
for selecting a co-reservation candidate. Finally, the syntax, in particular, the use of the
scopes, the provision of attributes with pre-defined semantics and the corresponding
pre-processing operations ease the use of the language.
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7.4 Summary

While we introduced attribute keys with pre-defined semantics, we were, intention-
ally, not providing nor requesting any guidelines on writing descriptions. Especially,
we did not classify certain attributes as mandatory or optional. Clearly, the more in-
formation a description contains, the easier a resource manager can process it. Leaving
important information, such as the type of a part, unspecified, may result in a less
efficient processing, due to a larger search space, or undesired results, because more
candidates match the description. The language also provides a powerful feature for
new users or resources to test their description without actually acquiring any reserva-
tion. If the attribute reserve is set to false, the whole processing is performed except
for the step which actually secures a reservation.

Note, we did not introduce specific operators for non-numeric attributes such as the
software environment, the operating system or the architecture. Constraints on these
attributes may use the usual comparison operators !=, ==, >=, >, < and >=. Note, the
applicable operators used in the optimization step (cf. Chapter 10) may depend on the
capabilities of the solver. For example, standard LP solvers only support the use of ==,
>= and <=.
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Finding Eligible Resources

Upon reception of a co-reservation request the Grid Reservation Service (GRS) deter-
mines eligible resources taking the requirements of the request and the resources into
account. That is, the GRS matches descriptions of atomic request parts with descrip-
tions of resources and vice-versa. The actual matching operation is carried out by
querying the Resource Catalog (cf. step Á in Fig. 6.2 on page 38). The query considers
the static requirements only. Formally, the matching can be modeled as a constraint
satisfaction problem, where the variables of one side are filled in with the character-
istics of the other. For example, to find compute resources operated under Linux a
request may write the following constraint in SRL notation

IBM.CON.os := OTHER.QOS.os == "Linux" .

Likewise, a resource may constrain the requests by the affiliation of the user as in

RES.CON.aff := OTHER.MISC.owner in {AstroGrid-D, C3-Grid} .

The broker component of many of todays Grid resource management systems apply
constraint satisfaction mechanisms to match static requirements of requests and re-
sources. Therefore, we will give an overview of the existing approaches and evaluate
them with respect to their applicability in CORES. The main differences between re-
source brokerage in todays Grid environments and CORES are: (1) resource brokerage
effectively ends, while CORES starts with the matching step, and (2) resource broker-
age must determine a single matching resource, while CORES derives a list of can-
didate resources. In Chapter 10, we will see, however, that the matching step is also
required to filter the resources further in order to shrink the size of the search space.

The contributions of this chapter are the requirements on determining eligible re-
sources (Section 8.1) and the presentation of existing approaches on matching descrip-
tions and resource discovery (Section 8.2).

8.1 Requirements

Naturally, a mechanism for matchmaking atomic requests with resources shares some
of the requirements of the Simple Reservation Language (SRL, cf. Chapter 7). More
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precisely, a matchmaking procedure must answer the questions – from the viewpoint
of the user

– Who is requesting a reservation?, and

– What types of resources and which (maximum) quantity or Quality-of-Service of
each resource shall be reserved?,

and from the viewpoint of the resource provider

– Who is allowed to acquire reservations?, and

– What type of service and which maximum service level (Quality-of-Service) does
the resource provides?

In the following, we introduce requirements regarding the representation of static in-
formation, symmetric matching and the types of constraints.

Representation of Static Information. Static information is represented in several
different types – numeric, textual and mixed/composite – and units – megabytes, gi-
gabytes, terabytes, . . . , Mbit/s, Gbit/s, etc. Thus, the matchmaking must be capable
of handling different representation types and of converting the values of attributes.
For example, a compute resource may specify the available main memory as 8 GB
(8 · 230 bytes), but the user requests 1024 MB (1024 · 220 bytes) by writing the SRL con-
straint

REQ.CON.MINMEM := OTHER.QOS.ram >= 1024 MB .

Before the matchmaking procedure can compare the pure numbers they must be con-
verted into the same units, e.g., gigabytes, megabytes or any other common base unit
for the size of the memory. Also, the matchmaking mechanism must be aware of rela-
tionships between certain terms in a domain – e.g., Linux is some form of UNIX which
in turn is an operating system – and shall handle composite expressions appropriately
– e.g., software requirements such as zlib 1.1.4 or newer.

Symmetric Matching. The matchmaker must support symmetric matching, by en-
suring that the constraints of both the requesters and the resources are satisfied. For
example, a resource may limit access to its reservation facility by writing the SRL con-
straint

RES.CON.VO := OTHER.MISC.vo in \{AstroGrid-D, C3-Grid\} .

Thus, all pairs (request, resource) match each other if they satisfy both the constraints
RES.CON.VO and REQ.CON.MINMEM.
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Equality Constraints. An equality constraint is used to restrict a property of the
matching candidate to a single value. For example, if an application requires a spe-
cific number of processors, the client would write the SRL constraint

REQ.CON.NUMCPU := OTHER.QOS.np == 64 .

The matchmaker must support the comparison operator ==.

Inequality Constraints. An inequality constraint is used to bound a property of the
matching candidate. The earlier example of requiring a minimum memory size of
1024 MB implements an inequality constraint. Similarly, a resource may specify its
maximum number of requested processors by the SRL constraint

RES.CON.JOBSIZE := OTHER.QOS.np <= 128 .

The matchmaker must support the following comparison operators: <= (less than or
equal), < (less than), != (not equal), > (bigger than) and >= (bigger than or equal).

Membership Constraints. Often several non-contiguous values may be acceptable
for an entity. Because the acceptable values are non-contiguous, inequality constraints
may not be used for modeling such requirements. Membership constraints require
that the property of an entity is a member of a set. The constraint RES.CON.VO re-
stricting the access to a resource to users from two virtual organizations constitutes a
membership constraint. The matchmaker must support the membership operator in.

Constraints on Non-numeric Properties. Frequently, constraints are given for non-
numeric properties such as the architecture of a processor, the operating system of a
compute resources or its software environment. First, the matchmaker must ensure
that the values of such properties are converted into a common vocabulary. For exam-
ple, if a user requires a compute system running the operating system Linux 2.6.16,
but the resource uses all letters in upper case LINUX 2.6.16 some transformation is
needed to enable matchmaking. Second, the matchmaker must use an appropriate
representation of the domain of the properties to implement the correct semantics of
the comparison operators. For example, if an application requires a compute resource
with the Linux operating system, the following constraint could be defined

REQ.CON.OS := OTHER.QOS.os == Linux .

All resources operating under any version of Linux satisfy this constraint, but not those
running Windows, Mac OS, AIX, etc.
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Complex Constraints. In many situations, basic constraints containing only a single
comparison or membership test are not sufficient. Therefore, the matchmaking mecha-
nism must handle complex constraints composed of simple ones by using the standard
boolean operators and and or. Note, in some cases constraints on mixed/composite
attributes may be modeled by complex constraints. For example, the previously men-
tioned software requirement zlib 1.1.4 or newer could be written as

REQ.CON.SW := zlib in OTHER.QOS.swenv and OTHER.QOS.zlib >= 1.1.4 ,

where OTHER.QOS.swenv is a set of software packages provided by a resource.

Unsupported SRL Features. Because, the matchmaker tries to find eligible resources
for each atomic request relationships between requests need not to be considered. Also,
variable properties such as the future availability or price of a resource are not taken
into account by the matchmaker unless these properties are static.

8.2 State of the Art

We discuss prominent approaches to the problem of matching requests to resources
and vice-versa. In general, the problem is solved by addressing (1) the description of
requests and resources, and (2) the actual matching of these descriptions. We already
discussed the state of the art of description approaches in Section 7.2. Here, we focus on
the matching mechanisms. Specifically, we discuss matchmaking in Condor [LLM88]
and derived systems, matchmaking in todays Grid resource managers and ontology-
based resource discovery.

8.2.1 Matchmaking in Condor and Derived Systems

Condor is a resource management system for clusters built from workstations or ded-
icated machines. The core of Condor is its very flexible resource and request descrip-
tion mechanism Condor ClassAds (cf. Section 7.2.3). In Condor, matching two entities is
a symmetric process. In particular, both entities may specify requirements and ranking
criteria. The actual matchmaking procedure [Ram01] works in two phases – the setup
phase and the match phase. In the setup phase, the algorithm analyzes the constraints
to determine sets of external references, i.e., referenced attributes of the entity being
matched. Then, these sets are used to convert the representation of offers to rectangles.
The setup phase is completed by aggregating, indexing and storing these rectangles.
In the match phase, the following steps are performed.

1. The constraints are converted to the rectangle representation.

2. The matching resources are determined by a window query.

3. The highest ranked resource is selected and removed from the index.
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Because of the generic model Condor ClassAds builds upon, Condor matchmaking
satisfies most of the requirements listed in Section 8.1. The only missing feature is the
ability to reason about non-numeric or composite properties, i.e., Linux is a type of Unix
and the like.

The originally bi-lateral matchmaking of Condor has been extended by gang match-
ing to support complex applications [RLS03]. Other improvements to Condor Clas-
sAds and its matchmaking include the application of constraint satisfaction techniques
by Liu and Foster [LF03b] and the use of set theory by Stokes-Rees [SR06]. By model-
ing the matchmaking as constraint satisfaction problem, Liu and Foster extended the
expressiveness of ClassAds with RedLine [LF03b]. Similar to gang matching [RLS03],
RedLine supports matching of complex application requests to multiple resources.
That is, the matching is only successful if all parts are satisfied. Additionally, Red-
Line facilitates the querying of policies and supports different levels of information
representation. Policies of interest are, for example, when resources are available or
what capacity may be used. Different levels of information representation cope with
the problem that users as well as providers may describe their requests and offers with
textually different but conceptually convertible terms, e.g., Linux is a kind of UNIX.
The prototype of RedLine exploits node consistency to reduce the size of univariate
domains and uses backtracking to solve the remaining constraint satisfaction problem.

In his thesis [SR06], Stokes-Rees mainly tackles two major issues of Condor Clas-
sAds and matchmaking: (1) tri-state logic and (2) scalability. While the first issue may
arise in any environment where some information being referenced by one party is
missing in the descriptions of the other party, the second issue is specific to infrastruc-
tures constructed by large virtual organizations such as the LHCb experiment [LHC08]
of the Large Hadron Collider. Stokes-Rees takes the unique approach of applying set the-
ory to the matchmaking problem. The first issue – tri-state logic – is solved by intro-
ducing requirements. Requirements specialize characteristics by associating matching
operators with them. In brief, a characteristic satisfies a requirement if the character-
istic’s value set is a subset of the range of a requirement. The tri-state logic issue is
removed by defining the range of a requirement with unspecified values simply as
the set containing the entire value space of the requirement’s dimension. The second
issue is addressed by introducing resource templates which facilitate the clustering of
resources with similar characteristics and thereby support an efficient matching of re-
quests and resources. Resource templates are implemented by using partial matching
operators. The rationale behind this is that the particularities of many Grid resources
are not important in distributing high-throughput computing jobs.

8.2.2 Matchmaking Mechanisms in Grid Resource Discovery

In many Grid environments, resource discovery builds upon Condor matchmaking –
the most known are the EGEE Workload Management System [EGE08] and Condor-
G [FTL+01]. The GridWay meta-scheduling framework [Tea07b] provides job descrip-
tion means similar to Condor ClassAds. In particular, it lets users specify a require-
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ment and a rank expression. The actual matchmaking mechanisms employed by Grid-
Way are, however, only briefly described in a few documents [HML03, Tea07a]. In
early versions of GridWay [HML03], the resource discovery is implemented by query-
ing instances of the LDAP-based Globus Toolkit Monitoring and Directory Service
(GT MDS). In more recent versions [Tea07a], GridWay supports several information
drivers which adapts to different information services. Furthermore, new service di-
rectories may be integrated by developing new drivers. Nimrod/G [BAG00] provides
tools for managing distributed parameter sweep simulations. Particularly, it contains
a scheduling component which distributes workload to idle compute resources in a
Grid. The actual resource discovery is implemented by using XPath1 to query the lat-
est versions of the GT MDS. Also, the GridBus broker [VBW04] queries information
services such as GT MDS to discover suitable resources for a job. The Broker Module of
the GridLab Resource Management System (GRMS) [GRM05] encapsulates the match-
making mechanism which uses the information gathered through the Resource Discov-
ery Module (RDM). While the RDM is currently bound to the GT MDS too, the GRMS
architecture, like GridWay, allows to integrate other information services without in-
terfering with the actual matchmaking procedure. The Grid Workflow Execution Ser-
vice (GWES) [Hoh07] maps requests written in the D-GRDL [Wol07] to XQuery2 and
executes them on an XML database storing the descriptions of the resources. Grid-
ARM [SF05], the resource management system of Askalon [FPD+05], provides a flex-
ible mechanism for resource discovery. Its request-resource correlator (RRC) employs
an ontology engine (OE) and a resource discovery (RD) module for matching requests
and resources. First, the OE transforms the request into resource filters by decom-
posing complex requests into smaller parts and adapting them to the query language
supported by the available resource registries. Then, these filters are applied on the
resource registries, e.g., GT MDS, and the results are congregated.

8.2.3 Ontology-based Matching

Often, resource properties are encoded with strings such as “Linux” for the operating
system, “IA64” for the architecture of a processor or “compute” for the type of the
resource. The domain of a single property can be structured by an ontology which
allows to reason about relations between the elements of the domain. For example,
“Linux Kernel 2.6.18” belongs to the kernel version 2.6 of the Linux operating
system. Generally, ontologies can be represented with graphs, where nodes represent
classes of elements. Assuming such structure is given, semantic web technology may
be used to determine if two expressions are in the requested relation (==, <, >, . . . ) or
not.

In [TDK03], Tangmunarunkit et al. apply semantic web technology on the resource
matching problem. Their approach builds on ontologies for defining vocabularies to
describe the properties of requests and resources. The actual matchmaking procedure

1XPath is the W3C recommendation of the XML Path Language (http://www.w3.org/TR/xpath).
2XQuery is the W3C recommend. of the XML Query Language (http://www.w3.org/TR/xquery).
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is defined through inference rules which define conditions on matchings. According
to [TDK03], the main features of a matchmaker are the support of bilateral constraints,
the ability to describe matching preference and the support for multi-lateral matchmaking
and the application of integrity checking. The former two features are readily supported
by approaches such as Condor ClassAds and the like. Although co-reservations re-
quire multiple resources, multi-lateral matchmaking is not sufficient in a co-reservation
context. Multi-lateral matchmaking only covers the second step of the co-reservation
mechanism, i.e., the discovery of eligible resources for each part of the co-reservation
(cf. step Á of Fig. 6.2 on page 38). The actual matching or assignment of parts to
resources is performed in the step determining the best co-reservation candidate (cf.
step Ã of Fig. 6.2 on page 38). In [TDK03], the matchmaking is performed by the fol-
lowing four actions.

1. The resource providers periodically advertise their resources sending an adver-
tisement message described in the resource’s ontology vocabulary to the match-
maker.

2. The clients describe their requests using the request’s ontology vocabulary and
send them to the matchmaker too.

3. The matchmaker applies the inference rules to all descriptions.

4. The matchmaker returns the ordered matching pairs to the client.

8.3 Summary

Table 8.1 summarizes the existing matching approaches. Interestingly, none of the Grid
resource discovery mechanisms supports symmetric matching. Furthermore, they only
provide basic mechanisms for information representation (due to limited sets of at-
tributes) and for specifying non-numeric and complex constraints. A notable exception
is the D-Grid Resource Description Language [Wol07] which provides similar capabil-
ities as the non-Grid approaches. All approaches of the categories Condor and derived
systems and Ontology-based matching support symmetric matching and richer capabili-
ties than most of the discussed Grid resource discovery mechanisms. From these ap-
proaches, the Grid Resource Description Language (GRDL) [SR06] and the mechanism
proposed by Tangmunarunkit [TDK03] implement all the requirements. Whether they
may be used, however, also depends on the actual environment and the availability
of implementations. For example, the software provided with [TDK03] is no longer
maintained and the resource broker developed for [SR06] was not publicly released.
Thus, Condor matchmaking [Ram01] or the D-GRDL [Wol07] may be used, albeit they
do not fulfill all requirements.



66 Chapter 8. Finding Eligible Resources

Table
8.1:

C
om

parison
ofthe

m
atching

approaches.A
bbreviations/S

ym
bols:sym

-sym
m

etric
m

atching,req
-considers

request’s
requirem

ents
only;+

+
-

requirem
ent

very
w

ellsupported,+
-

requirem
ent

w
ellsupported,◦

-
requirem

ent
basically

supported,?
-no

precise
inform

ation
available

or
notapplicable.

R
equirem

ents

Tool/
Paper

Inform
ation

R
epresentation

M
atching

Type
Equality
C

onstraints
Inequality
C

onstraints
M

em
bership

C
onstraints

N
on-num

eric
C

onstraints
C

om
plex

C
onstraints

M
atching

M
ethod

C
ondor

and
derived

system
s

C
ondor

+
sym

+
+

+
+

+
+

◦
+

+
interval

com
parison

R
edLine

+
+

sym
+

+
+

+
?

◦
+

+
constraint

satisfaction

G
R

D
L

+
+

sym
+

+
+

+
+

+
+

+
+

+
setoperators

G
rid

resource
discovery

G
ridW

ay
◦

req
+

+
?

◦
◦

LD
A

P,X
Path

N
im

rod/G
,G

ridBus
◦

req
+

+
?

◦
◦

X
Path

G
R

M
S

◦
req

+
+

?
◦

◦
LD

A
P

G
W

ES/D
-G

R
D

L
+

+
req

+
+

+
+

?
+

+
+

+
X

Q
uery

A
skalon/G

ridA
R

M
◦

req
+

+
?

◦
+

LD
A

P

O
ntology-based

m
atching

Tangm
unarunkit

+
+

sym
+

+
+

+
?

+
+

+
+

inference
rules



Chapter 9

Determining Reservation Candidates

Possessing detailed information about the future status of the resources facilitates (1)
an efficient processing of reservation requests, (2) the managing of non-HPC metrics
such as cost and (3) the expression of resources’ preferences among the reservation
candidates. In specific environments, it may be possible to address these goals indi-
vidually. In versatile Grid infrastructures, however, resource mechanisms must cope
with multiple – often conflicting – goals. For example, a simple heuristic may be to
use the latest possible start time for placing a reservation. While this heuristic may
yield good results with respect to the reservation success rate, application centric goals
– minimal finish time or cost – and resource centric goals – maximal utilization or least
impact on waiting jobs – will only be met by accident. The approach of CORES for
probing the future status of resources – i.e., determining reservation candidates – is
guided by three key decisions:

D1 – the reservation requests are moldable,

D2 – the resource providers calculate the candidates by themselves, and

D3 – the reservation system may interpolate intermediate candidates.

By enabling moldable requests (D1), as shown in Fig. 9.1 and Table 9.1, CORES facili-
tates the efficient processing of requests – compared to a trial-and-error scheme. Letting
the providers calculate the reservation candidates (D2) allows to integrate arbitrary
properties, e.g., reservation costs, cancelation fees, etc., and acknowledges the auton-
omy of the resources. Using interpolation for determining intermediate candidates
(D3) is a means to reduce the overhead for determining candidates.

Chapter Outline. Section 9.1 lists the requirements of determining reservation can-
didates. Section 9.2 discusses the state of the art in predicting the future state of re-
sources. Section 9.3 presents several distributions of time-qos-slots. Thereafter, we de-
velop methods for deriving the future status of resources (cf. Section 9.4). In Section 9.5,
we briefly describe mechanisms for determining intermediate reservation candidates.
We provide extensive experimental results in Section 9.6 and close the chapter with a
summary in Section 9.7.

67
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uid, rpref,

dur(qos)

time

now
est let

durref

qos

qoslow

qoshigh

qosref

Figure 9.1: Moldable reservation request for a single resource. The parameters are
described in Table 9.1.

Table 9.1: Parameters of a moldable reservation request.

Name Description Example

est earliest start time 2007/01/20 06:00

let latest end time 2007/01/22 20:00

durref reference duration in seconds 7200

qoslow lower bound on the QoS 2

qoshigh upper bound on the QoS 7

qosref reference QoS 3

uid requester identification XerTWQ4

rpref reference resource performance SPECint2000/1500

dur(qos) QoS-dependent duration model=>amdahl:seq=>0.1:par=>0.9

prop list of properties cost, cancelation, fitness

9.1 Requirements

Deriving reservation candidates must satisfy several goals depending on the point of
view of a stakeholder.

R1 – Information for Efficiently Processing Requests

The reservation system desires information that enables an efficient processing of res-
ervation requests. For example, Fig. 9.2 shows a compute resource with running jobs
(green boxes marked RJ1, RJ2 and RJ3) and a previously granted reservation (violet
box marked RSV1). For a given moldable reservation request (with a minimum of two
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processors), selected time-qos-slots1 are shown with boxes in red. It is easy to see, that
no candidate may begin before the left-most red box. Without that information, a res-
ervation system would need multiple tries to find an available slot. Especially, if it tries
to acquire the earliest possible time-qos-slot.

time
now

5 10 15

#cpus

RJ1

RJ2

RJ3

RSV1

Figure 9.2: Available time-qos-slots (red boxes) for placing a moldable reservation
request.

R2 – Expression of Providers’ Preferences

The providers are mainly concerned with a high utilization of their resources and a
fair sharing of them by their clients. Taking the waiting jobs (yellow boxes marked
WJ1, WJ2 and WJ3) into account, the set of eligible slots (red boxes) may be different to
Fig. 9.3. That is, the mechanisms must allow the providers to tailor the information –
which slots are preferred – at their needs.

time
now

5 10 15

#cpus

RJ1

RJ2

RJ3
WJ1

WJ2

WJ3

RSV1

Figure 9.3: Available time-qos-slots (red boxes) for placing a moldable reservation
request taking waiting jobs into account.

1A time-qos-slot captures the start time, the end time and the service level of a reservation candidate
but its properties.
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R3 – Arbitrary Properties of Time-QoS-Slots

Besides the intrinsic properties of time-qos-slots – their start time, end time and ser-
vice level – a stakeholder may select slots according to other properties or criteria. For
example, some slots may fit better into a schedule than others or some slots may be
cheaper than others. Instead of limiting CORES to a number of currently used prop-
erties, arbitrary properties shall be supported.

R4 – Efficient Calculation of Reservation Candidates

For two reasons, the candidates itself must be computable in an efficient manner.
First, a high overhead for calculating the candidates would hinder the adoption of the
scheme by local resource management systems. Second, information on reservation
candidates quickly ages due to the dynamic behavior of the resources in a Grid.

9.2 State of the Art

We review approaches for determining the future status of resources. Although we
focus on compute resources, we will also briefly describe related work on other types
of resources.

The state of a compute resource can be described by measuring the available capac-
ity of a number of parameters such as the number of processors, main memory, disk
storage, etc. Determining these parameters for future points in time is a complex task
involving knowledge on the current workload, the scheduling policies, the workload
that will be submitted until the requested time and arbitrary changes to the state by
canceling jobs or failed resources.

In the following, we distinguish two research areas related to the subject of this
chapter: (1) the prediction of job parameters or system utilization for compute re-
sources, and (2) the prediction of workload or utilization parameters in non-compute
resources.

9.2.1 Predicting the Future Status of Compute Resources

In [SFT98], Smith et al. propose mechanisms for predicting the run time of applications.
First, categories of similar jobs are derived by applying genetic algorithms. The actual
run time of a finished job is attached to all categories the job belongs to. Then, the
run time of a new job is derived by determining the categories the job belongs to and
calculating a run time and a confidence interval for each category. The run time is
chosen from the category with the smallest confidence interval. The space needed for
recording the run times of finished jobs can be limited. The run time predictions are
used in [STF99] to predict the waiting time of a new job. The prediction calculates the
schedule of the known workload plus the new job including their predicted run times.
The authors study their method with different scheduling configurations. They found
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that the built-in error for predicting waiting times is 34 to 43 % for least work first (LWF)
scheduling and 3 to 10 % for backfill scheduling. These results were derived knowing
the run time a priori. The errors are caused by jobs that have not been submitted to
the system when the waiting time of a job was predicted. In the simulations without
knowing the run time a priori, the error is 10 to 29 % larger for LWF scheduling and
40 to 74 % larger for backfill scheduling. Compared to the simulations with the run
time estimates of the users, the error is 41 to 123 % smaller for LWF scheduling and 146
to 286 % smaller for backfill scheduling. Furthermore, they found a trend that better
run time predictions lead to better predictions of waiting times. However, the best run
time predictions do not automatically yield the best waiting time predictions.

In [LGTW04], Li et al. propose a mechanism for predicting the waiting time of a
potential job2. Their mechanism is composed of two steps. First, the execution time
of the job is predicted using historical data. The ratio of the average prediction error
to the actual run time varies between 14 % and 35 % for different workload traces. The
corresponding ratios of the user specified run time estimates to the actual run time are
up to two orders of magnitude larger. In the second step, the mechanism appends the
potential job to the waiting queue and simulates the schedule until the potential job
is assigned a start time. An important difference between the mechanisms proposed
in [LGTW04, STF99] and the requirements of CORES, is that Li’s and Smith’s methods
derive a single value – the predicted wait time – for a given job request, while the
reservation mechanism of CORES requires information on the values of a metric over
the whole range [est, let]× [nplow, nphigh].

Ernemann et al. [EHY02] propose a probing mechanism which considers flexible
start times of compute jobs and lets the resources evaluate utility functions defined by
both the requester and the resource owner. The resources’ utility functions calculate
the sum of the surface of the request (number of processors times the run time) and
the idle surface before, after and during the candidate’s execution. In other words, the
utility functions determine a measure of the fragmentation generated by the additional
job. The larger is the fragmentation, the lower is utility function’s value. The proposed
job model, however, does not support jobs waiting in a queue. Indeed, all jobs are
assigned a specific start time in advance, i.e., all job requests are advance reservations.
The proposed probing mechanism does not fulfill all requirements. Particularly, it does
not consider flexible durations and service levels (requirements R1 and R3).

Smith et al. [SFT00] study the impact of supporting advance reservations on parallel
computers. The reservation request specifies a start time for which the algorithm tries
to make a reservation. If no resources are available at the requested time, the local
scheduler responds with a list of available time slots. Through evaluation, Smith et
al. [SFT00] conclude that backfilling, stopping and restarting jobs and more accurate
execution times decrease the impact of reservations on jobs. As in [EHY02], a resource
does not specify its preferences for alternative start times. Moreover, stopping and
restarting of jobs should not be used, because these features are not available on all
systems.

2A potential job is yet to be submitted to a resource.
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In [SCJG00], Snell et al. use probing to determine which time slots are available
for scheduling parallel multi-site jobs. Their approach, however, lacks support for
moldable requests. Also, it provides only very limited capabilities for the resources to
let them express their preferences among the available time slots.

9.2.2 Predicting the Future Status in Non-compute Resources

Mechanisms for reserving resources in networks and multimedia environments have
been studied extensively, e.g., Yuan et al. [YTA03], Chen et al. [CL01], Burchard [Bur04]
and Nahrstedt et al. [NHK96],

Yuan et al. [YTA03] introduce a probing mechanism to efficiently determine avail-
able network characteristics (bandwidth, delay, jitter and loss) along an a-priori known
path connecting an end user and a data provider. Their approach extends earlier work
on reserving network resources for multimedia applications by introducing probe re-
quests, which are flexible in a single parameter – the service level – only. CORES
requires the flexibility in all three parameters – the start time, the duration and the
service level. Furthermore, the support for expressing resource’s preferences is very
limited, because a resource may only accept or deny a specific candidate.

Chen and Lee [CL01] propose an advance reservation model for network transfers.
The start time of a reservation can be chosen from a flexible interval. By booking extra
resources for the length of the flexible interval, the model allows to postpone the deci-
sion on the actual start time until the flexible interval begins. Thus, it does not need to
exhibit the future status of the resources. It only grants or denies requests. The future
status of a resource is only determined and used internally for optimizing the schedule
of requests during overloaded periods. While their approach has some merits for sin-
gle resource requests, it is not applicable in the context of co-reservations. Instead of
booking extra resources, a resource provider should be able to express its preferences
by carefully choosing metrics’ values of time-qos-slots. For example, low fitness values
and high reservation costs for certain start times could indicate peak loads which are
then avoided in the candidate selection phase.

In his dissertation [Bur04], Burchard exploits the multi-protocol label switching stan-
dard (MPLS) to facilitate advance reservations of bandwidth in computer networks.
The proposed mechanisms support requests which are flexible in the start time and
the service level (bandwidth). The result of the mechanisms is, however, only a single
time-qos-slot that fits “best” the flexible request. While this may be enough for single
resource reservations, it does not suffice for co-reservations. Also, the approach does
not support arbitrary properties of time-qos-slots such as cost, fitness, etc. Time-qos-
slots are determined by evaluating information about the currently active workload
and the already known advance reservations. Through analytical analysis and experi-
mental evaluation, the author discovered that arrays are better suited than trees as data
structures for determining time-qos-slots.

Nahrstedt et al. [NHK96] propose a mechanism to specify the end-to-end service
level in a video on demand application scenario. The achievable service level is de-
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termined by processing (relatively) short videos, periodically measuring the desired
service level and calculating the sustainable performance. The mechanism does not
need to know the hardware and software configuration of the environment – i.e., the
processing and sending capacities at the servers, the network characteristics and net-
work load, the clients’ hardware and software capabilities. Instead, it analyzes time
series of measurements of the end-to-end service level at the client, for example, the
frame rate of a transmitted MPEG-1 stream. However, the algorithm is based on the
assumption of lightly loaded networks. Thus, it is only applicable for determining the
achievable service level under ideal conditions. In contrast, a mechanism for reserv-
ing resources in advance needs information about the achievable service levels under
various sub-optimal conditions.

9.3 Distributions of Time-QoS-Slots

A time-qos-slot is constructed from a time window [start, end] and a service level qos.
Time-qos-slots are often illustrated as areas in QoS-time graphs (cf. Figures 9.1, 9.2,
9.3).

Definition 28 (The Set of Time-QoS-Slots). The set of all time-qos-slots TDQ is defined as
the cross product of the sets T (start times), D (durations)3 and Q (service levels). Formally,
TDQ is defined by TDQ = {〈t, d, q〉 | t ∈ T, d ∈ D, q ∈ Q} . ♦

Even for small ranges of the start time T , the durations D and the service levels Q the
space of all time-qos-slots TDQ may simply be too large for calculating the properties
of each element. The overhead for calculating these properties is reduced by selecting
certain elements of the space. These elements form a distribution of time-qos-slots.

Definition 29 (Distribution of Time-QoS-Slots). We define a distribution of time-qos-
slots TDQdist as a subset of the space of all time-qos-slots TDQ, i.e., TDQdist ⊆ TDQ . ♦

Notation 1 (Subsets of a Distribution of Time-QoS-Slots).
We denote the set of all service levels occurring in TDQdist by the term TDQQdist
as abbreviation of the expression

{q | ∃t ∈ T, ∃d ∈ D : 〈t, d, q〉 ∈ TDQdist} .

The set of start times with any duration but the same service level q is denoted
by the term TDQdist(·, ·, q) as abbreviation of the expression

{t | ∃d ∈ D : 〈t, d, q〉 ∈ TDQdist} . ./

The distributions are determined by the resource providers when they are asked for
the future status wrt. a moldable reservation request (cf. Table 9.1). Hence, the two
main goals for deriving a distribution are: (1) the efficiency of its calculation and (2)
the accuracy of the reservation candidates capturing the future status. We will present
the following three distributions in detail:

3The end time of a time window [start, end] is calculated as the sum of the start time and the duration.
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– corner distribution – which only contains the extreme values of the space TDQ,

– even distribution – time-qos-slots are evenly distributed over the space TDQ,
and

– static workload based distribution – most of the time-qos-slots are concentrated
at a specific time of the known workload.

Note, for the sake of simplicity we omit the dimension of the duration in the following
illustrations.

9.3.1 Corner Distribution

The corner distribution only contains the “corners” of the space TDQ.

Definition 30 (Corner Distribution). Given a moldable reservation request (cf. Table 9.1)
and a space of time-qos-slots TDQ, we define the corner distribution to include the following
four tuples4

cdL,L = 〈minT, dur(minQ),minQ〉

cdL,U = 〈minT, dur(maxQ),maxQ〉

cdU,L = 〈max T − dur(minQ), dur(minQ),minQ〉

cdU,U = 〈max T − dur(maxQ), dur(maxQ),maxQ〉

The first letter of the subscripts represents the temporal space, whereas the second letter rep-
resents the service level space. The subscript letters L and U represent the lower and upper
bounds of the individual spaces. The function dur determines the required duration at a given
service level. ♦

Example 9.1 (Corner Distribution)
A moldable request of a parallel computation is given with the following parameters:
est = 3600 (earliest start time), let = 39600 (latest end time), durref = 1800 (reference
duration), qoslow = 16 (minimum number of processors), qoshigh = 128 (maximum
number of processors), qosref = 116 (reference number of processors) and dur(qos) =
{model=>amdahl:par=>0.99} (speed-up model). The time-qos-slots of the cor-
ner distribution are 〈3600, 16〉 (cdL,L), 〈3600, 128〉 (cdL,U ), 〈37800, 16〉 (cdU,L), and
〈39156, 128〉 (cdU,U ).

While the corner distribution can be calculated with constant time complexity O(1),
it alone will be of small use because of the very limited number of elements. Hence,
using the corner distribution requires additional means – such as interpolation (cf. Sec-
tion 9.5) – to determine intermediate time-qos-slots and their properties.

4With the dimension of the durations, the distribution would contain eight elements.
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9.3.2 Even Distribution

The even distribution extends the corner distribution by adding time-qos-slots such
that they are evenly distributed over the space TDQ.

Definition 31 (Even Distribution). Given a moldable reservation request (cf. Table 9.1) and
a space of time-qos-slots TDQ, the even distribution TDQdist satisfies the following conditions:

– the number of time-qos-slots is the same at each service level, i.e.,

∀q1 ∀q2 : q1 ∈ TDQQ
dist ∧ q2 ∈ TDQQ

dist

=⇒ |TDQdist(·, ·, q1)| = |TDQdist(·, ·, q2)| ,

– the start times are evenly distributed over the space T , i.e.,

∀q ∀t ∃k : q ∈ TDQQ
dist ∧ t ∈ TDQdist(·, ·, q) ∧ k ∈ N

=⇒ t = minT +
⌊
kmax T−dur(q)−minT
|TDQdist(·,·,q)|−1

⌋
,

– the service levels are evenly distributed over the space Q, i.e.,

∀q ∃k : q ∈ TDQQ
dist ∧ k ∈ N

=⇒ q = minQ+

kmaxQ−minQ∣∣∣TDQQdist∣∣∣−1

 .
♦

Note, the corner distribution is a special case of the even distribution.

Example 9.2 (Even Distribution)
A moldable request of a parallel computation is given with the following parameters:
est = 3600 (earliest start time), let = 39600 (latest end time), durref = 1800 (reference
duration), qoslow = 16 (minimum number of processors), qoshigh = 128 (maximum
number of processors), qosref = 116 (reference number of processors) and dur(qos) =
{model=>amdahl:par=>0.99} (speed-up model). The time-qos-slots of the even
distribution are shown in Fig. 9.4.

The even distribution can be calculated with quadratic time complexity O(n2), with n
being the maximum of the number of service levels and the number of slots at a single
service level. The even distribution allows to trade-off the accuracy of the properties
with the time complexity. That is, the larger is the distribution, the better is the accu-
racy.

9.3.3 Static Workload Based Distribution

The corner distribution and the even distribution assume that all time-qos-slots are
equally important. In real scenarios, however, this assumption may lead to ineffi-
cient distributions. Considering the time Φmax at which the current workload of a
resource will have been processed, we can deduce the following observations. First,
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Figure 9.4: Even distribution of time-qos-slots for a moldable request of a parallel
computation with the parameters: dur(qos) = model=>amdahl:par=>0.99, qoslow =
16, qoshigh = 128, qosref = 16, durref = 1800, est = 3600, let = 39600. The horizontal
bars illustrate the potential allocation time (begin, duration, end) of a time-qos-slot.

most changes in the available resource capacity will occur before the time Φmax. Sec-
ond, there exists a time Φmin (Φmin ≤ Φmax) until which the available resource capacity
does not increase significantly. Third, the duration of a reservation does not linearly
depend on the service level. For example, most parallel programs contain some se-
quential fraction seq > 0. Hence, smaller service levels (e.g., numbers of processors)
have a greater impact on the required duration of a reservation. Thus, the service lev-
els of time-qos-slots should follow a geometric distribution favoring smaller service
levels.

Definition 32 (Static Workload Based Distribution). Given a moldable reservation re-
quest (cf. Table 9.1), a space of time-qos-slots TDQ and a workload with the times Φmin and
Φmax, the static workload based distribution TDQdist satisfies the following conditions:

– the M > 1 service levels TDQQ
dist form a (nearly) geometric series, i.e.,

∀q ∃m : q ∈ TDQQ
dist ∧ m ∈ N ∧ m ≤M

=⇒ q =
⌈
S−1

(
S(minQ) ·

(
S(maxQ)
S(minQ)

)m−1
M−1

)⌉
with S and S−1 being the speed-up function and its inverse, respectively,

– the number of time-qos-slots is the same at each service level, i.e.,
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∀q1 ∀q2 : q1 ∈ TDQQ
dist ∧ q2 ∈ TDQQ

dist

=⇒ |TDQdist(·, ·, q1)| = |TDQdist(·, ·, q2)| ,

– for each service level q, time-qos-slots are placed at the time bounds est (L) and let (U )

∀q ∈ TDQQ
dist : stwdL,q := 〈minT , dur(q) , q〉

∀q ∈ TDQQ
dist : stwdU,q := 〈max T − dur(q) , dur(q) , q〉

– for each service level q, K time-qos-slots are placed evenly in the interval [Φmin,Φmax]
∀q ∀t ∃k : q ∈ TDQQ

dist ∧ t ∈ TDQdist(·, ·, q) ∧ k ∈ N ∧ k < K

=⇒ t = Φmin +
⌊
kΦmax−dur(q)−Φmin

K−1

⌋
The function dur determines the required duration at a given service level. ♦

Example 9.3 (Static Workload Based Distribution)
A moldable request of a parallel computation is given with the following parameters:
est = 3600 (earliest start time), let = 39600 (latest end time), durref = 1800 (reference
duration), qoslow = 16 (minimum number of processors), qoshigh = 128 (maximum
number of processors), qosref = 116 (reference number of processors) and dur(qos) =
{model=>amdahl:par=>0.99} (speed-up model). Furthermore, the workload pa-
rameters are Φmin = 10800 and Φmax = 28800. Figures 9.5 and 9.6 illustrate the
(nearly) geometric series of service levels and the distribution of time-qos-slots, respec-
tively.

The computational complexity of the static workload based distribution is O(n2) – the
same as of the even distribution if the same number of time-qos-slots are determined
plus some constant overhead for calculating Φmin and Φmax. By placing most of the
time-qos-slots within the interval [Φmin,Φmax] the distribution acknowledges the char-
acteristics of the currently known workload. Moreover it pays attention to the speed-
up model of a moldable request by geometrically distributing the service levels within
the interval [qoslow, qoshigh].

9.3.4 Other Distributions

The above presented distributions are easy to calculate, but neither consider the vari-
ability of the resource’s workload nor the “shape” of a property. Here, we briefly de-
scribe two distributions which address these issues.

Adaptive Workload Based Distribution. The adaptive workload based distribution
is an enhanced version of the static workload based distribution. It determines signif-
icant events of the currently known workload – end time of active requests, start and
end time of existing reservations, start and end time of planned waiting requests – and
derives time-qos-slots for them. From these events, only the most significant can be se-
lected. Example selection criteria for compute resources are: (1) the minimum change
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Figure 9.5: Nearly geometric distribution of the service levels for a mold-
able request of a parallel computation with the parameters: dur(qos) =
model=>amdahl:par=>0.99, qoslow = 16, qoshigh = 128 and M = 8.

in the processor’s allocation must be among the top 10 % of all changes, (2) the change
involves more than 20 % of the total number of processors, (3) the change is larger than
the number of requested processors of the reservation, etc. Then, for each significant
event a number of service levels and durations is determined.

Property Based Distribution. The property based distribution calculates a minimal
number of time-qos-slots such that the characteristics of the property are well repre-
sented. For example, if a provider employs a flat rate for the reservation fee, most of
the above distributions determine far too many time-qos-slots. Also, cost models with
periodic changes (night/day and workday/weekend) are not well covered with the
above distribution models. The property based distribution addresses such situations
by sampling the property functions and deriving time-qos-slots which allow a good
interpolation of intermediate candidates. Obviously, this method is only applicable
if the shape of the property’s function (e.g., periodic costs) is known by the provider.
The computational complexity of this method can be limited by restricting the desired
interpolation accuracy and/or sampling frequency.
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Figure 9.6: Static workload based distribution of time-qos-slots for a mold-
able request of a parallel computation with the parameters: dur(qos) =
model=>amdahl:par=>0.99, qoslow = 16, qoshigh = 128, qosref = 16, durref = 1800,
est = 3600, let = 39600, Φmin = 10800, Φmax = 28800 and M = 8. The horizontal bars
illustrate the potential allocation time (begin, duration, end) of a time-qos-slot.

9.4 Properties of Time-QoS-Slots

While other approaches to advance reservation only consider the pure time-qos-slots
[WWZ05] or single fixed properties of time-qos-slots [BBES05, ZBN+04], CORES en-
ables richer scenarios by associating sets of properties with a time-qos-slot on-demand.
We call an augmented time-qos-slot a reservation candidate, i.e., a tuple

〈begin , duration , qos , {pi}〉 .

Formally, this section is about determining functions of pi – the properties – which
depend on the elements of a time-qos-slot, the workload and the policies of a resource.
In practice, the mechanisms will iterate over the elements of a distribution of time-qos-
slots (cf. Section 9.3) and calculate the values of the needed properties.

The factors influencing the value of a property may be classified into three groups:
(1) parameters of a time-qos-slot, (2) parameters of the workload and (3) resource man-
agement policies.

Parameters of a Time-QoS-Slot. Obviously, the size of a time-qos-slot should have
a direct impact. For example, if the number of requested processors is doubled, the
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reservation fee should double too. Also, the book-ahead time5 may have a significant
influence. For example, if a reservation requests a time-qos-slot after the currently
known workload is finished, the success probability should be very high.

Parameters of the Workload. The policies for handling both the currently known and
the presumed future workload may influence the values of a property. For example,
a resource provider servicing scientific applications might only accept reservations if
they do not delay currently known batch jobs. In contrast, in a commercial scenario,
the acceptance of a request may be a function of the balance of income (fee for the
request) and loss (penalty for preempting active requests).

Resource Management Policies. A resource owner may enforce its policies by ad-
justing the properties accordingly. For example, members of the VO, which owns the
resource, may receive a higher priority. Additionally, a property’s value may reflect
pre-determined service level agreements (SLA) between a VO and a resource provider.
For example, a provider may charge a reduced fee for compute jobs submitted with a
certain SLA.

Section Outline. We introduce several properties specific to compute resources and
describe the calculation of their values in detail. Albeit we focus on specific properties,
it is easy to see that the probing mechanism can be adapted to calculate any other prop-
erty of interest. In Section 9.4.1, we introduce methods for calculating the reservation
success probability pres. In Section 9.4.2, we present a method for calculating the prop-
erty fitness (short fit). In Section 9.4.3, we demonstrate the generality of our approach
by calculating allocation costs of a reservation.

9.4.1 Methods for Deriving the Property pres
Whether or not a time-qos-slot can be successfully reserved depends on many factors
like the current utilization, the amount of the requested capacity, the scheduling poli-
cies, etc. The reservation success probability pres ∈ [0, 1] abstracts from all these factors.
It expresses the likelihood that a time-qos-slot may successfully be reserved.

It is, however, difficult to determine the exact value of pres, mainly for two reasons.
First, the future status of a resource largely depends on the actual run time of the
non-reservation jobs, which is difficult to estimate [LSHS04]. Second, the state of the
resources may change between calculating the value pres and a subsequent reserve
message (cf. Chapter 11). In the following, we describe the methods static and history
for approximating the property pres.

5The time span between the current time and the start time of the time-qos-slot.
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The Method static

The method static calculates pres from the book-ahead time bat, i.e., the time span from
the current time ct to the start time begin of the time-qos-slot. In reserving network
bandwidth, Greenberg et al. [GSW99] observed a certain admission threshold for the
book-ahead time. Before this threshold very few requests are granted. After the thresh-
old almost all requests are granted. We define the corresponding function pstaticres as

pstaticres (bat) = 1− e− bath ,

where h ∈ N+ is constant configured by the resource provider. Figure 9.7 illustrates the
function for different values of h. The admission threshold is set at a pres value of 0.85.
The legend shows the values of the constant h and the corresponding book-ahead time
threshold (in parentheses).
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Figure 9.7: Illustration of the reservation success probability pres calculated with the
method static. The admission threshold is set at 0.85. The legend shows the values of
the constant h and the corresponding book-ahead time threshold (in parentheses).

Given a single time-qos-slot the complexity of the method static is O(1). Thus, cal-
culating the property of a complete distribution of time-qos-slots TDQdist has the same
complexity as the calculation of the distribution.

The Method history

The method history is based on recorded utilization data. Every L seconds the number
of idle processors is stored in a pair (t, n), where t represents the recording time (e.g,
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in seconds since the UNIX epoch) and n is the number of idle processors at that time.
The set H contains all recorded data.
Given a time-qos-slot 〈b, d, np〉 (with np = qos being the number of requested proces-
sors), we will calculate the average number of idle processors during the time window
[b, b + d] for an averaging period ap, which can be a day, a week, etc. The rationale
behind that is to grant requests only if the recorded data indicate that enough capacity
should be available at the time of a request.

In the following, we use a day as averaging period (ap = 86400). Equation (9.1)
determines the time of the day dyt(t) of a recording time t.

dyt(t) = t− ap
⌊
t

ap

⌋
. (9.1)

Let Hday denote the averaged daily history as calculated by

Hday =

(tday, nday)

∣∣∣∣∣∣∣∣nday =

∑
(t,n)∈H ∧ dyt(t)=tday

n∑
(t,n)∈H ∧ dyt(t)=tday

1

 . (9.2)

Then, Eq. (9.3) determines the average number of idle processors H∅
day(b, d) during the

time window [b, b+ d].

H∅
day(b, d) =

∑
(t,n)∈Hday ∧

[t,n)∩[dyt(b),dyt(b+d)) 6=∅

n

∑
(t,n)∈Hday ∧

[t,n)∩[dyt(b),dyt(b+d))6=∅

1 (9.3)

Finally, the property function phistoryres is defined in Eq. (9.4).

phistoryres (b, d, np) =


1 if 2np ≤ H∅

day(b, d)
2− 2np

H∅
day

(b,d) if np ≤ H∅
day(b, d)

0 if np > H∅
day(b, d)

(9.4)

Because the number of idle processors is only an average value, the pres value increases
from 0.0 to 1.0 over an interval from np to 2np idle processors. Figure 9.8 illustrates
the function phistoryres for different numbers of requested processors (symbols) and idle
processors (horizontal axis).

The complexity of the method history is dominated by calculating the average num-
ber of idle processors for a set H as defined by Eq. (9.2). Thus, the complexity is O(n)
with n = 2|H|. If the averaging period ap is known a-priori, the complexity may be
reduced by updating the average history – e.g., Hday – at each recording event. In that
case, the complexity is O(n) still, but with n = 2|Hday| or, more precisely, n = 2dap/Le.
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Figure 9.8: Illustration of the reservation success probability pres calculated with the
method history. The admission threshold is set at a pres value of 0.85. The legend
shows the values of the requested number of processors (np) and the corresponding
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9.4.2 Methods for Deriving the Property fit

The property fit ∈ [0, 1] provides information about, how well the request fits into the
workload of a resource. Although it may be interpreted as reservation success probability,
we do not strictly define nor interpret it as a probability. Instead, we interpret it as a
measure by which a resource specifies its preferences among the time-qos-slots.

The calculation of the property fit takes information about the currently known
workload, the request parameters and the resource’s local scheduling policies into ac-
count. Due to the dynamic nature of a workload, the actual fitness of a time-qos-slot
may quickly change. The methods we propose do not cope with this issue directly. In-
stead, we require that the subsequent reservation steps need to process the information
as soon as possible (cf. Chapter 10).

An important issue in deriving the fitness of time-qos-slots is the inaccurate esti-
mates of the runtime of non-reservation jobs [LSHS04]. As a consequence, each job
finishing earlier than estimated may partially or completely invalidate the determined
fitness values.

In the following, we describe the methods load and what-if for calculating the prop-
erty fit. Table 9.2 lists the main parameters of the currently known workload (at time
ct) of a compute resource with np processors.
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Table 9.2: Parameters of the workload known at the current time ct.

Name Description

For each running batch job rjk, k ∈ [1, K]
rjkstt start time

rjkwct wall clock time, i.e., the limit on the run time
rjknp number of processors

For each waiting batch job wjl, l ∈ [1, L]
wjlwct wall clock time, i.e., the limit on the duration
wjlnp number of processors

For each granted reservation rsvm,m ∈ [1,M ]
rsvmstt start time

rsvmedt end time
rsvmnp number of processors

The Method load

The method load uses information on the current state of the system: running and wait-
ing jobs and active or pending (but already granted) reservations. This information is
used to calculate an approximate time TWKL at which the processing of the current
workload will be finished. Given a time-qos-slot 〈b, d, np〉, Eq. (9.5) defines the prop-
erty fitload.

fitload(b, TWKL) =

1 if b ≥ TWKL

0 if b < TWKL

(9.5)

The time TWKL is calculated as follows. Let rjkret (k ∈ [1, K]) denote the remaining
execution time of the k-th running job as defined by

rjkret = rjkwct − (ct− rjkstt) .

The parameter δrj specifies the average accuracy of the remaining execution time of
the running jobs. The parameter δwj specifies the average accuracy of the estimated
execution time of the waiting jobs.

The approximative time TWKL is calculated in three steps. First, we determine the
average end time Trj of the running jobs as follows

Trj =
⌊

1
np

K∑
k=1

(
rjknp rj

k
ret δrj

)⌋
.



9.4. Properties of Time-QoS-Slots 85

Second, we calculate the average processing time Twj for the waiting jobs using their
estimated execution time as follows

Twj =
⌊

1
np

L∑
l=1

(
wjlnp wj

l
wct δwj

)⌋
.

The intermediate TWKL is the sum of Trj and Twj . Third, we include existing reserva-
tions (scheduled between the current time ct and TWKL) by iteratively increasing TWKL

for such reservations (cf. Alg. 1). In Alg. 1, the setR contains all remaining reservations
whose time window [rsvmstt, rsvmedt) interferes with the time span [ct, TWKL). Clearly, the
algorithm terminates in at most |{rsvm}| rounds of the while–loop.

Algorithm 1: Iterative procedure for calculating the time TWKL.
Require: TWKL ≥ ct, ct ∈ N+, TWKL ∈ N+, RSV = {rsvm}
R⇐ {rsvm |rsvm ∈ RSV ∧ [rsvmstt, rsvmedt) ∩ [ct, TWKL) 6= ∅}
while R 6= ∅ do

TWKL ⇐ TWKL +
⌊

1
np

∑
rsvm∈R

(
rsvmnp (rsvmedt − rsvmstt)

)⌋
RSV ⇐ RSV \R
R ⇐ {rsvm |rsvm ∈ RSV ∧ [rsvmstt, rsvmedt) ∩ [ct, TWKL) 6= ∅}

Although the value of TWKL is only a rough approximation, the method proved to
be reasonable in our experiments (cf. Section 9.6). Due to the definition of the prop-
erty fitness (cf. Eq. (9.5)), however, holes in the schedule between the current time ct
and TWKL are not considered for reservations. Existing reservations starting later than
TWKL are also not taken into account. The latter may lead to failing reservation at-
tempts if requests conflict with the existing advance reservations.

The complexity of calculating Trj and Twj is O(n) (n = K running jobs) and O(n)
(n = L waiting jobs), respectively. In the worst case, the while-loop in Alg. 1 is exe-
cuted M (granted reservations) times if in each round a single reservation is used to
increase TWKL. Hence, determining the set R requires M(M − 1)/2 operations (i.e.,
[rsvmstt, rsvmedt)∩ [ct, TWKL) 6= ∅). Thus, the total complexity of calculating TWKL is O(n2)
(n = M ).

The Method what-if

The basic idea of the method what-if is to let the fitness reflect the impact of a reser-
vation on non-reservation jobs. For this purpose, the local scheduling system must be
able to construct execution plans for jobs without executing them. This requirement
is, however, not very restricting, as commonly-used cluster-level schedulers, such as
Maui [JSC01], CCS [KR01] or OAR [CCG+05], either provide a simulation mode or can
operate in planning mode.
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The method what-if uses three kinds of execution plans: (1) original (ORG), (2) with
reservation placeholder (RSV) and (3) with job placeholder (JOB). In the following we de-
scribe the generation of the execution plans in detail.

Original. The execution plan PORG is the schedule of the current workload
without the reservation request. We use PORG as reference plan.

Reservation Placeholder. Given a time-qos-slot 〈b, d, np〉, this plan places a
temporary reservation for np processors from the time b until the time b + d
into the original schedule. Then, it determines the execution plan PRSV/b by
scheduling the waiting jobs. This procedure is repeated for all time-qos-slots of
a distribution.

Job Placeholder. The scheduler determines the time when a job with the same
duration and processor requirements of the request would have been started.
Therefore a temporary job with an estimated execution time jwct equal to the du-
ration of the reservation request d and the same number of requested processors
is submitted to the scheduler. The resulting execution plan P JOB defines a new
time-qos-slot by setting its properties as follows: b = jstt (the job’s start time),
d = d (duration) and np = np (number of processors).

The algorithm calculates the property fitwhat−if for the execution plans P {JOB,RSV/b}

by using well-known scheduling metrics such as makespan Cmax and average com-
pletion time Cavg of jobs. These metrics are normalized to simplify their weighting in
the subsequent calculation. Other well-known scheduling metrics such as slowdown
or resource utilization can be easily added if needed. If a time-qos-slot cannot be re-
served by a reservation placeholder – because it conflicts with running jobs, the first
job at the head of the waiting queue (EASY backfilling) or existing reservations – its
fitness value is set to zero.

Let N = K + L be the number of jobs of the current workload and P be one of the
above execution plans. The start time of job ji in the execution plan P is denoted by the
term stt(P, ji) where 1 ≤ i ≤ N . The submission time and estimated execution time of
a job ji are denoted by jisbt and jiwct, respectively.

We assess the quality of a simulated execution plan by computing the makespan
and the average completion time. Equation (9.6) defines the makespan Cmax(P ) of an
execution plan P .

Cmax(P ) = max
1≤i≤N

(
stt(P, ji) + jiwct

)
(9.6)

The makespan Cmax, stating how long the resource will be occupied, ranks the execu-
tion plans from the point of view of the resource owner. Let C∗max denote the minimum
makespan for all considered execution plans P {JOB,RSV/b}.

Equation (9.7) defines the average completion time Cavg(P ) of the jobs in an execu-
tion plan P .

Cavg(P ) = 1
N

∑
1≤i≤N

(
stt(P, ji) + jiwct − jisbt

)
(9.7)
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The average completion time Cavg expresses how fast on average the jobs are com-
pleted. Thus, it rates the execution plans from the point of view of the users. Let
C∗avg denote the minimum average completion time for all considered execution plans
P {JOB,RSV/b}.

Let ωCmax denote the weight for the makespan (ωCmax ≥ 0, ωCmax ∈ R) and ωCavg
denote the weight for the average completion time (ωCavg ≥ 0, ωCavg ∈ R). We require
that ωCmax + ωCavg = 1.

The property fitwhat−if of a time-qos-slot 〈b, d, np〉 is defined by Equation 9.8 using
the execution plan “reservation placeholder” PRSV/b generated for that time-qos-slot.

fitwhat−if (b, d, np) = ωCmax
C∗max

Cmax(PRSV/b) + ωCavg
C∗avg

Cavg(PRSV/b) (9.8)

By using the minimum values C∗max and C∗avg as numerator of the fractions, compo-
nents of the makespan and the average completion time are normalized. Thus, the
property’s value is a number in the real interval [0, 1]. The more a time-qos-slot delays
the execution of the local jobs, the lower is the value of fitwhat−if .

The complexity of the method what-if depends on the costs of placing a single job
into the schedule of k running jobs and m granted reservations. In the worst case, it
requires k+m scheduling events to be considered. Thus, the complexity of determining
a schedule for n waiting jobs into a schedule is O(n2) with n ≈ k +m.

9.4.3 Methods for Deriving Reservation Costs

Each resource provider defines the cost cBU of a base unit (unit of time times unit of
service level). A base unit has a duration durBU and is applicable for a single processor
npBU = 1. Assuming that the allocation costs do not change with the time of the day
and the user’s affiliation, Eq. (9.9) defines the basic allocation cost of a time-qos-slot
〈b, d, np〉.

costbasic(b, d, np) = d · np
durBU · npBU

cBU (9.9)

Assuming that the allocation costs change with the time of the day and the day of the
week, Eq. (9.10) defines a more realistic cost function costtime. Instead of using a fixed
cost of the base unit (as above), the cost of a base unit is defined as a function itself.

costtime(b, d, np) = np

durBU · npBU

b+d−1∑
t=b

cBU(t) , (9.10)

where cBU(t) is the time-dependent price of a base unit. The complexity for calculating
costtime is O(n), with n = d.
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9.5 Intermediate Time-QoS-Slots

The number of time-qos-slots calculated by the methods discussed in Section 9.3 is
usually much smaller than the number of feasible time-qos-slots, i.e., the size of the
space TDQ. Considering single resource requests, the small number of determined
slots limits the options for placing a reservation, only. In particular, the placement may
not be the optimal one. Considering co-reservation requests, a small number of slots
may be insufficient for deriving feasible solutions. Therefore, we need a mechanism
for determining intermediate time-qos-slots and calculating their properties. We call a
time-qos-slot 〈bimc, dimc, qimc〉 intermediate if the following condition holds.

∀b ∀q : 〈b, dur(q), q〉 ∈ TDQdist

=⇒ b 6= bimc ∨ dur(q) 6= dimc ∨ q 6= qimc

For example, all time-qos-slots except the four corners (cdL,L, cdL,U , cdU,L and cdU,U ) are
intermediate time-qos-slots of the corner distribution (cf. Def. 30).

While it is straightforward to determine intermediate time-qos-slots, calculating
the values of their properties needs to take various aspects into account. The standard
technique is to interpolate these values. Interpolation techniques have been developed
for many disciplines such as visualization and engineering. Therefore, we discuss the
important aspects of applying interpolation mechanisms to the problem of processing
co-reservation requests, only.

Considering a distribution of time-qos-slots as shown in Fig. 9.9 and the values of a
single property as shown in Fig. 9.10, we discuss the following seven aspects for using
interpolation techniques

A1 – the dimensionality and type of the definition space,

A2 – the used base functions,

A3 – the fitting of the interpolant at the given time-qos-slots (data points),

A4 – the partitioning of the space TDQ,

A5 – the characteristics of the boundaries of adjacent partitions,

A6 – the efficiency of deriving the interpolant, and

A7 – the limitations imposed by the “consumers” of the interpolants.

A1 – Dimensionality of the Definition Space

A property’s value may depend on different numbers of variables. In the example
of Fig. 9.10, the property depends on two variables – the start time and the service
level (number of processors). The interpolation technique may be tailored at specific
characteristics of the application scenario (using domain specific information) or be
commonly applied to any dimensionality of the definition space.
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Figure 9.9: Time-qos-slots for a moldable request with the parameters: dur(qos) =
model=>amdahl:par=>0.99, qoslow = 16, qoshigh = 128, qosref = 16, durref = 1800,
est = 3600, let = 39600. The red triangles mark the start time of a time-qos-slot.
The horizontal bars stretching to the right from the triangles illustrate the duration of a
time-qos-slot. The blue rectangle illustrates the request’s bounds.

A2 – Base Functions

Depending on the application area different base functions are commonly used. For
example, in visualization mechanisms radix functions are often used as base functions.
In scheduling disciplines, however, step functions may be more appropriate, simply
because processing capacity is allocated and freed in chunks of integer numbers. Other
base functions are polynomial and linear (as special case of polynomial). The choice
of the base function depends on many aspects, particularly on the limitations imposed
by the use of the interpolants (cf. aspect A7).

A3 – Fitting of the Interpolant

In general, the interpolant should exactly fit the property’s value at the original time-
qos-slots. Obviously, this may not always be possible, e.g., no linear function may
interpolate the three data points (0, 0), (3, 3) and (6, 5) in the one-dimensional case.
Thus, given the number of time-qos-slots and their property’s values, the interpolant
may exactly fit the values at the given time-qos-slots or approximates them only. If an
interpolant may fit the property’s values of the given time-qos-slots exactly, depends
on the chosen base function (cf. aspect A2) and the partitioning of the space TDQ (cf.
aspects A4 and A5).
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Figure 9.10: Example values of a property for the distribution of time-qos-slots shown
in Fig. 9.9. The triangles correspond to the start time of the time-qos-slots in Fig. 9.9.

A4 – Partitioning of the Space TDQ

Using certain base functions, it may be impossible to determine an interpolant which
exactly fits the property’s values at the original time-qos-slots. If the approximation is
not satisfactory, the space TDQ may be split into several partitions and appropriate in-
terpolants may be calculated for each partition. The partitioning may implement some
regular pattern or be arbitrarily chosen depending on the distribution of the original
time-qos-slots and on the later use in subsequent processing steps.

A5 – Characteristics of the Interpolant

The interpolants of adjacent partitions may be calculated such that their boundaries
meet certain conditions. For example, all adjacent facets have the same property’s
value at the boundary or all adjacent facets possess the same gradient at the boundary.

A6 – Efficiency

Because the status of Grid resources may rapidly change, the calculation of the inter-
polant must be very efficient.
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A7 – Limitations

The interpolant will be used in the subsequent processing step searching for an optimal
co-reservation candidate. Thus, the mechanism or the tool used in the optimization
step may impact decisions on the aspects discussed so far. For example, many standard
solvers only support linear or quadratic functions in constraints and objectives. The
consequence of using linear or quadratic functions can be that the candidate space
must be partitioned to obtain an acceptable fitting of the interpolant.

9.6 Experimental Evaluation

The stakeholders involved in processing a reservation request may have different and
conflicting objectives on the performance for deriving reservation candidates.

Objectives of Different Stakeholders. The requesters desire a well fulfillment of their
objectives, e.g., to allocate the earliest possible time-qos-slot or the cheapest one. The
providers need to ensure a fair treatment of the non-reservation requests and desire a
high utilization of their resources. The reservation system is – for two reasons – mainly
interested in an efficient processing of the requests. First, the status of the resources
may quickly change, and invalidate the properties’ values of the time-qos-slots. Sec-
ond, requesting a reservation at a resource may induce a significant overhead for the
resource to determine if it can admit the request. Thus, the reservation system shall
only request reservations which are likely to succeed.

Evaluation Focus. Albeit most of the methods developed in the previous sections are
generic and applicable to different types of resources, we exclusively used compute
resources in our evaluation. Due to the large number of parameters, the evaluation
covers a subset of the described mechanisms only. Particularly, the experiments use
the even distribution (cf. Section 9.3.2) and test the methods for deriving the properties
pres (cf. Section 9.4.1) and fit (cf. Section 9.4.2).

Evaluation Summary. The main results are:

– using more detailed information leads to better system’s performance,

– larger request’s flexibility results in higher total reservation success rate, and

– a specific workload pattern causes the majority of reservation-induced job delays.

Evaluation Methodology. Job scheduling algorithms are typically evaluated with
off-line simulations based on workload logs of real systems [FF05], i.e., supercomput-
ers or clusters. We evaluated the methods for determining reservation candidates us-
ing the workload log of the SDSC Blue Horizon supercomputer published in [Fei07].



92 Chapter 9. Determining Reservation Candidates

The system has 144 nodes, each of them consisting of an 8-way SMP with a cross-
bar connected to a shared memory. While this gives a total of 1152 CPUs, the sched-
uler always allocates full nodes to requests. Because the workload log contains non-
reservation batch jobs only, we converted a fraction of these into reservation requests.

Section Outline. In the following, we briefly introduce the experimental setup in
Section 9.6.1, describe the main properties of the used job and reservation workloads
in Section 9.6.2, introduce the measured performance metrics in Section 9.6.4, describe
the parameters of the simulation runs in Section 9.6.3, and present the results of the
simulations in Section 9.6.5.

9.6.1 Experimental Setup

The experiments were carried out in a simplified setup with a single, simulated re-
source shown in Fig. 9.11. The resource was managed by a local scheduler (LRMS) in
simulation mode. On top of the LRMS we used the Local Reservation Service (LRS),
which processes the probe messages and forwards reserve messages to the LRMS. The
Grid Reservation Service (GRS) receives the reservation requests.

Resource
compute

LRMS
Local Resource Management

System/Scheduler

LRS
Local Reservation Service

query state &
forward messages

receive state info &
reserve result

Simulation

Controller

GRS
Grid Reservation Service

send probe &
reserve messages

receive canidates &
reserve result

send reservation requests

inject batch jobs &

advance time in real time mode

Figure 9.11: Experimental setup of the reservation framework and the interplay of the
components during a simulation run.
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The discrete event simulation is steered by a single controller which injects jobs into
the LRMS and sends reservation requests to the GRS. It also switches between logical
and real time mode. The former is applied if no reservation request is being processed.
Thus, the duration of a simulation may be much smaller than the time span of the
workload logs. The real time mode is used if a reservation request is being processed.
In that mode, the LRMS receives every n seconds a signal to advance its state by n sec-
onds. Thus, we can model state changes of the resource over the course of processing
a request.

Only a single site (resource) was used in the experiments. In a multi-site scenario,
we expect a higher acceptance rate for reservation requests and load balancing among
the sites. Besides simulating only a single resource and leaving out the resource discov-
ery (cf. Fig. 9.11), we employed two additional restrictions to simplify the experiments.
First, we allowed only one client to request a reservation at any time instance, i.e., we
did not simulate concurrent requests. Second, we used the same user objectives for all
reservation requests. The prioritized user preferences were set to (1) earliest end time,
(2) minimum cost and (3) maximum reservation success probability pres.

9.6.2 Workloads

We describe the creation of the workloads and their quantitative characteristics.

Creation of the Workloads

The original workload log of the SDSC Blue Horizon supercomputer contains 250,440
jobs. We cleaned the log by removing interactive jobs and jobs, which allocated zero
processors or ran for zero seconds. The cleaned log contains 161,016 jobs.

To reduce the run time of a single simulation, we selected the first 2000 batch jobs
from the cleaned log, resulting in a simulated wall clock time of approx. ten days. Since
the workload log does not include information on job reservations, we transformed
10% of the 2000 jobs into reservation requests. This was done by splitting all jobs into
200 groups of 10 consecutive jobs and randomly selecting one job from each group to
become a reservation request. The selection was done once. All simulations were run
with the same sets of remaining batch jobs and converted reservation requests.

The parameters of a converted reservation request rsvi are derived as follows. The
submission time rsvisbt, the reference duration rsvidurref and the reference number of
processors rsvinpref are set to the job’s submission time jobjsbt, the job’s allocated number
of processors jobjnp and the job’s actual execution time jobjaet, respectively. All requests
used Amdahl’s law (cf. Eq. (4.1)) as speed-up model with sequential fractions s in the
interval [0, 0.1]. The properties to be determined were the reservation cost (cost), the
reservation success probability (pres) and the fitness of a time-qos-slot (fit). We chose
varying values for the remaining parameters – the earliest start time (est), the latest end
time (let), and the range of the number of processors ([qoslow, qoshigh]) – for different
simulation runs. The calculation of these parameters is as follows.
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Execution Time Window [est, let] The earliest start time est is the sum of the job’s sub-
mission time jobjsbt and the book-ahead time bat ∈ {0, 2, 4, 6, 12, 24} (in hours).
The book-ahead time bat is the same for all requests in a single simulation run.
The latest end time let is the sum of the earliest start time est, the reference
duration of the reservation request rsvidurref and the start time flexibility stf ∈
{0, 1, 2, 5, 10, 30} (in hours). Note, while the size of the execution time window
may differ for different reservation requests in a single simulation run, the start
time flexibility is the same for all requests in a single simulation run.

Service Level Flexibility [qoslow, qoshigh] The range [qoslow, qoshigh] defines the flexibil-
ity in the number of processors that can be utilized by the program. The bounds
qoslow and qoshigh are determined by multiplying the job’s number of allocated
processors jobjnp by the factors flow and fhigh. In the simulation runs, we used two
sets of factors: 〈1, 1〉 for simulating a program without any flexibility and 〈0.5, 2〉
for simulating a more flexible program. For example, when the original job in
the workload log ran on 8 processors, we used the ranges [8, 8] and [4, 16] in two
different simulation runs.

Characteristics of the Workload of the 1,800 Remaining Jobs

Figure 9.12 shows the distribution of the jobs’ actual execution time. The crosses illus-
trate the number of jobs with a specific execution time (left vertical axis). The violet
curve shows the cumulated number of jobs (right vertical axis).

 0

 10

 20

 30

 40

 50

 1  10  100  1000  10000  100000

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

N
um

be
r o

f j
ob

s

P
er

ce
nt

ag
e

Actual execution time [s]

percentage of jobs
number of jobs

Figure 9.12: Distribution of the actual execution times.
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Figure 9.13 shows the distribution of the numbers of processors. Crosses show the
number of jobs (left axis). The violet curve shows the percentage of jobs (right axis).
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Figure 9.13: Distribution of the number of processors.

Figure 9.14 shows the varying utilization of the processors (vertical axis) along the
simulation time (horizontal axis).
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Figure 9.14: Utilization for the 1,800 remaining batch jobs.



96 Chapter 9. Determining Reservation Candidates

Figure 9.15 shows the backlog (vertical axis) vs. the simulation time.
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Figure 9.15: Backlog for the 1,800 remaining batch jobs.

Characteristics of the Workload of the 200 Reservation Requests

Because the reservation requests were derived from jobs of the workload log, the dis-
tribution of their duration and number of processors shows the same characteristics as
the remaining jobs (cf. Figures 9.12 and 9.13).

Figure 9.16 illustrates the relation between the utilization incurred by the 1,800 re-
maining jobs and the number of processors of the reservation requests. The simulation
time is shown at the horizontal axis. The yellow graph shows the utilization (as in
Fig. 9.14). The red error bars stretching down from the total number of processors show
the reservation requests. Each bar is printed at its earliest start time. The length of each
bar represents the requested number of processors. The illustration shows phases with
a large potential for conflicts between the jobs and the reservation requests (at peak
utilization), but also phases with small potentials for conflicts (at lower utilization).

Figure 9.17 illustrates the relation between the utilization incurred by the 1,800
remaining jobs and the duration of the reservation requests. The utilization part is
the same as in the last figure. The red error bars are printed at the vertical position
1152− rsvnp. Horizontally, each bar begins at its earliest start time (the start time flexi-
bility was set to zero hours) and extends to the right till its latest end time. That is, the
length of each bar illustrates the request’s duration. Clearly, there are many small re-
quests not interfering with the utilization generated by the non-reservation jobs. Even
if they would be requested with different book-ahead times, they would most likely
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Figure 9.16: Example distribution of the requested number of processors (vertical error
bars) drawn at the reservation’s earliest start time vs. the background utilization.

not interfere with the background utilization. On the other hand, the larger reserva-
tion requests interfere with the background utilization for the shown book-ahead times
and would do so at other (larger) book-ahead times, too.
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Figure 9.17: Example distribution of the requested duration (horizontal error bars)
drawn at the reservation’s earliest start time vs. the background utilization.
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9.6.3 Parameters of the Simulations

For each method (pres: static/history; fit: load/what-if) we performed 36 experiments
varying the book-ahead time and the start time flexibility. The book-ahead times bat
were 0, 2, 4, 6, 12 and 24 hours. The values of the start time flexibility stf were 0, 1,
2, 5, 10 and 30 hours. For all experiments, the threshold for filtering reserve messages
at the LRS was arbitrarily set to 0.85. Table 9.3 lists the values of the main parameters
specific to the methods.

Table 9.3: Values of the parameters used in the experiments.

Method Param.=Value Note

static h = 11386 Slots with 6 hours book-ahead time receive a pres value of 0.85.

history ap = 86400 Averaging period of 86400 seconds (1 day)

load δrj = 0.5 Accuracy of the wall clock time of the running jobs

load δwj = 0.5 Accuracy of the wall clock time of the waiting jobs

what-if ωCmax = 0.1 Weight of the makespan

what-if ωCavg = 0.9 Weight of the completion time

9.6.4 Performance Metrics

We measured different performance metrics to study the behavior of the probing mech-
anism. The efficiency of the methods was analyzed by counting the number of reserve
messages sent between the GRS and the LRS as well as between the LRS and the LRMS.
The LRS is not just passing the messages to the LRMS, but performs a filtering of in-
coming messages to ensure reservation admission policies. In particular, it may use the
methods for calculating the properties of a time-qos-slot and let only those messages
pass through whose properties’ values are within a certain range or above/below a
configurable threshold. We measured the number of reserve messages for both suc-
cessful and failed reservation requests.

We studied the impact of the successful reservation requests on the non-reservation
jobs by calculating the delay of the jobs. The more jobs are delayed by reservations,
the less the users will be satisfied. Finally, we measured the number of successful
reservation requests out of the 200.

9.6.5 Simulation Results and Discussion

We present the main results from two extensive sets of experiments performed for two
publications [RSR06, RR06]. We used the same workload log as basis for the two sets
of experiments.
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Reservation Success Rate

The reservation success rate is defined as the ratio of the granted reservation requests
to the submitted reservation requests. We expect the success rate to grow with an ear-
lier booking (larger book-ahead time) and an increased execution time window (larger
start time flexibility). This is because the former reduces the competition of concurrent
jobs, while the latter increases the flexibility in arranging a favorite starting time.

Table 9.4 compares the average reservation success rate of all workloads in an ex-
periment. We find that the more information a method is using, the higher is the reser-
vation success rate. The methods are ordered (1) static, (2) load, (3) history and (4) what-if
wrt. the amount of information they use.

Table 9.4: Comparison of the average reservation success rate.

Method of property pres Method of property fit

LRS filter static history load what-if

load 62.26 % 84.51 % 79.74 % 84.92 %
what-if 68.81 % 96.99 % 79.74 % 97.43 %

Figure 9.18 shows the results for the method what-if using the admission filter load.
The book-ahead time is depicted at the horizontal axis. The reservation success rate
is shown at the vertical axis. Each curve represents a set of simulation runs with the
same start time flexibility.
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Figure 9.18: Reservation success rate for the 200 reservation requests using the
method what-if for the property fit and the load-based LRS admission filter.
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Figure 9.19 shows the results for the method what-if using the admission filter what-if.
The book-ahead time is depicted at the horizontal axis. The reservation success rate
is shown at the vertical axis. Each curve represents a set of simulation runs with the
same start time flexibility.
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Figure 9.19: Reservation success rate for the 200 reservation requests using the
method what-if for the property fit and the what-if -based LRS admission filter.

The results not only confirm our conjecture, but also illustrate how fast the success
rate grows with respect to the added flexibility for choosing the start time (different
curves) and the book-ahead time (x-axis). Furthermore, the admission filter based on
the method load is more restrictive than the one based on the method what-if.

Efficiency of the Reservation Algorithm

Good reservation algorithms must efficiently handle both cases, successful and unsuc-
cessful reservation requests. The philosophy of CORES is to avoid reserve messages
that might fail. It uses the information gathered via the probe messages, in particular,
the reservation success probability pres and the fitness fit. After receiving the reserva-
tion candidates as response to a probe message they are processed in three steps.

First, the Grid Reservation Service (GRS) compares the pres or fit value with a con-
figurable threshold. In the experiments, only candidates with a value greater or equal
to 0.85 are processed further. For example, using the method static all reservation re-
quests with a book-ahead time of more than six hours would pass this check while
all others would be rejected (cf. Fig. 9.7). Similarly, using the method history a reser-
vation request would be accepted if more than 1.74-times of the requested number of
processors are available during the requested period of time (cf. Fig. 9.8).
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Second, the Local Reservation Service (LRS) verifies whether the currently known
workload of the resource permits the request to proceed. At this point, CORES is able
to enforce that reservations may not overtake waiting jobs. Also, the impact of reser-
vations on the normal jobs may be limited. Note, that this and the following check are
more expensive than the GRS check (see above), because they involve communication
with and processing at the resource site. Hence, a high filtering efficiency at the GRS
layer is of prime importance.

Third, the candidate is passed to the local resource management system (LRMS).
The better the GRS threshold filter and the LRS checks are, the less requests will fail
at the local scheduler. Nevertheless, such failures may happen when the values of the
properties were inaccurate or when the requested capacity has been allocated to other
workload entities in the meantime.

Tables 9.5 and 9.6 show the detailed results for all simulations. Each column con-
tains the average values for a series of 36 experiments using the same method to calcu-
late the property and the same method for the LRS filter. The experiments, however,
differed in the book-ahead time and the start time flexibility. Note, because of the ad-
ditional Job Placeholder execution plan, 52 reservation candidates were calculated with
the method what-if.

Table 9.5: Efficiency of the methods static, history, load and what-if to calculate pres
and fit wrt. the successful requests. The numbers represent the average values for
all 36 experiments tested with each combination of a property and an LRS filter.

LRS filter: load LRS filter: what-if

static history load what-if static history load what-if

No. of requests 125 169 159 170 138 194 159 195
No. of candidates 51 51 51 52 51 51 51 52

Filtered by GRS (%) 32.3 33.2 38.9 35.2 34.5 36.2 38.9 38.8
Filtered by LRS (%) 4.8 5.4 0.0 4.8 0.6 1.0 0.1 0.0
Tested by LRMS (%) 0.1 0.2 0.1 0.0 0.0 0.0 0.0 0.0
Successful (%) 2.0 2.0 2.0 1.9 2.0 2.0 2.0 1.9
Not tested (%) 60.8 59.2 59.0 58.1 62.9 60.8 59.0 59.3

From the results for the successful requests we derive the following two findings.

1. Both methods used as LRS filter serve the goal of avoiding a large number of re-
serve messages to the LRMS very well. The method what-if performs marginally
better than the method load (by ≈ 5 %).

2. The what-if -based LRS filter increases the average number of successful requests
by up to 15 %.
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Table 9.6: Efficiency of the methods static, history, load and what-if to calculate pres
and fit wrt. the failed requests. The numbers represent the average values for all 36
experiments tested with each combination of a property and an LRS filter.

LRS filter: load LRS filter: what-if

static history load what-if static history load what-if

No. of requests 75 31 41 30 62 6 41 5
No. of candidates 51 51 51 52 51 51 51 52

Filtered by GRS (%) 91.8 61.3 99.9 68.9 99.5 80.9 99.9 100.0
Filtered by LRS (%) 8.2 38.3 0.0 31.1 0.5 19.1 0.1 0.0
Tested by LRMS (%) 0.0 0.4 0.1 0.0 0.0 0.0 0.0 0.0

From the results for the failed requests we derive the following four findings.

1. As for the successful requests, both methods used as LRS filter avoid sending
most of the reserve messages to the LRMS.

2. The LRS filter load removes up to 30 % more candidates than the what-if -based
filter. These candidates could be successfully reserved as the results (successful
requests) for the what-if -based LRS filter show.

3. The main reason for the higher number of failed requests with the methods static
and load is their inability to consider time-qos-slots before some threshold, i.e., 6
hours for method static with h = 11386 and the backlog time TWKL for the method
load.

4. The property’s value calculated by the method history is too high. Even the opti-
mistic what-if -based LRSfilters out ≈ 20 % of the candidates.

In summary, the method what-if performs best as LRS filter and achieves the best re-
sults for calculating the property’s value for both successful and failed requests. The
method history performs seconds best with respect to the number of successful re-
quests. For the failed requests, it requires a large number of message exchanges be-
tween the GRS and the LRS, especially if the load-based LRS filter is used. Despite its
high efficiency, the method load achieves the third place, because of the low number of
successful requests. The property’s values calculated by this method are too conserva-
tive. The method static performs “worst”. It is, however, a very simple method, which
considers the book-ahead time of a reservation request, but not the current workload
of a resource.
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Table 9.7: Comparison of the makespan results: Each row shows the averages for a
series of 36 experiments using the same method of the property and the LRS filter.

Series (property/ LRS filter) Succ. req. Makespan (s) Makespan (%)

Batch jobs only – 697,197 100.0
static/load 125 +13,210 101.9
static/what-if 138 +16,325 102.3
history/load 169 +14,026 102.0
history/what-if 194 +16,724 102.4
load/load 159 +13,491 101.9
load/what-if 159 +13,489 101.9
what-if /load 170 +14,087 102.0
what-if /what-if 195 +17,152 102.5

Impact on Non-Reservation Jobs

Reservations reduce the scheduling flexibility for non-reservation jobs. The proposed
reservation algorithm assumes that jobs and reservations access resources exclusively.
That means, before a reservation can become active, all user jobs accessing the reserved
resources must have finished. Therefore the LRMS’s scheduler starts only jobs which
are guaranteed to terminate before the reservation begins. Intuitively, this leads to a
lower utilization of resources and lets user jobs experience a higher delay before they can
start. The makespan, i.e., the execution time of the complete schedule, and response
time, i.e., the time each job spends in the system, are considered to be central metrics
for measuring job management performance [FR98]. In the following, we present an
overview and a detailed study of the results of 288 experiments for all combinations of
the properties and the LRS filters.

Average Makespan Results. Table 9.7 shows the results for the makespan. The work-
load of the 1,800 jobs without any reservation has a makespan of 697,197 seconds. With
reservation requests the makespan was extended by 13,210 seconds (static/load-filter)
to 17,152 seconds (what-if /what-if -filter). The LRS filter what-if results in a higher in-
crease in the makespan for all property methods (except the method load). The higher
increase is a result of admitting reservations with earlier begin times.

Average Response Time Results. While the makespan (mainly) reflects the situation
at the end of the batch workload, results for the response time cover all jobs of a work-
load. Table 9.8 shows the results for the jobs which were delayed by reservations. The
workload of the 1,800 jobs without any reservation was used as reference run (column
“Original”). Table 9.8 unveils that only 14 to 18 % of all jobs are delayed.



104 Chapter 9. Determining Reservation Candidates

Table 9.8: Comparison of the response time results: Each row shows the averages for
a series of 36 experiments using the same method of the property and the LRS filter.

Series
(property/LRS filter)

Number of jobs Response time per job

Absolute (%) Original Affected Affected
Original

static/load 260 14.44 5462 11800 2.16
static/what-if 272 15.11 5853 13197 2.25

history/load 302 16.78 8185 14812 1.81
history/what-if 324 18.00 8648 16129 1.87

load/load 295 16.39 7491 14086 1.88
load/what-if 295 16.39 7483 14079 1.88

what-if /load 302 16.78 8172 14790 1.81
what-if /what-if 327 18.17 8622 16197 1.88

The results for the property methods history and what-if are very similar. The in-
crease of the number of delayed jobs between the LRS filter load and what-if is a conse-
quence of the increased number of successful reservation requests (cf. Table 9.7). The
results for the property method load (for both LRS filters) illustrate, again, that it de-
rives more conservative values than the method what-if does. The method static yields
the lowest number of delayed jobs, but it also leads to the lowest number of successful
reservation requests (cf. Table 9.7).

Detailed Analysis of the Job Delays. In the following, we provide a detailed analysis
of the job delays wrt. to the following questions:

Q1 – How does the book-ahead time influence the job delays?

Q2 – How are the delays distributed among the jobs?

Q3 – How are the delays distributed along the simulation time?

Due to the vast amount of data, we only present the detailed results for the experiments
using the property method what-if with the LRS filter what-if and a start time flexibility
of 30 hours. In the six remaining experiments, only the book-ahead time differed (0, 2,
4, 6, 12 and 24 hours).

Question Q1. Table 9.9 shows that the average response time correlates with the
book-ahead time. In general, the higher is the book-ahead time, the more jobs (9.55 % -
23.83 %) are delayed. The relation is, however, not monotonic: the largest book-ahead
time does not need to incur the largest response time. The average ratio of the affected
to the original response time per job ranges between 1.37 and 2.59.
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Table 9.9: Details on the response time of delayed jobs for the experiments using the
property method what-if, the LRS filter what-if and a start time flexibility of 30 hours.

Number of jobs Response time per job

Book-ahead time (hours) Absolute (%) Original Affected Affected
Original

0 172 9.55 10676 14633 1.37
2 280 15.55 8922 14072 1.57
4 319 17.72 9249 14951 1.61
6 429 23.83 8228 16882 2.05

12 393 21.83 9239 23962 2.59
24 407 22.61 7444 18808 2.52

∅ (cf. Table 9.8) 327 18.17 8622 16197 1.88

Question Q2. Figures 9.20 and 9.21 illustrate the delay ratios for individual jobs of
the experiments with 0 and 24 hours book-ahead time, respectively. The jobs’ original
response time is denoted on the horizontal axis. The vertical axis denotes the ratio of
the affected (delayed) to the original response time. The jobs are categorized into five
subjectively defined classes (colored crosses separated by lines, cf. Table 9.10).
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Figure 9.20: Job delay ratios for a book-ahead time of 0 hours.

Figures 9.20 and 9.21 show that most jobs are found in the classes very good, good and
acceptable. While the total number of delayed jobs increases with larger book-ahead
time, these jobs are not evenly distributed over all classes. The class very good gets
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Table 9.10: Job delay classes with jo (original) and jd (delayed) response times.

Class Definition

very good jd
jo
< e2.986−0.259 log jo

good e2.986−0.259 log jo ≤ jd
jo
< e4.663−0.384 log jo

acceptable e4.663−0.384 log jo ≤ jd
jo
< e6.340−0.510 log jo

bad e6.340−0.510 log jo ≤ jd
jo
< e8.017−0.636 log jo

very bad e8.017−0.636 log jo ≤ jd
jo

saturated around 180 jobs (approximately 10 % of all jobs). The other classes receive
increasing numbers of jobs with larger book-ahead times.
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Figure 9.21: Job delay ratios for a book-ahead time of 24 hours.

Question Q3. Figure 9.22 shows the cumulated additional waiting time of the de-
layed jobs for the six experiments with the property method what-if, the LRS filter
what-if and a start time flexibility of 30 hours. For each job, its delay was cumulated at
the job’s start time. The curves show regions with no or small increases and “events”
(or short time frames) with significant increases of the cumulative delay.

The sharp increases of the curves show situations in which blocking jobs or reser-
vations finished and many waiting jobs could start in parallel. A detailed analysis of
the logs revealed a specific pattern illustrated in Fig. 9.23. At the current time ‘now’
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Figure 9.22: Cumulated additional waiting time of delayed jobs for the experiments
with the property method what-if, LRS filter what-if and start time flexibility of 30 hours.

the jobs RJ1/2/3/4 are being executed. Granted advance reservations are shown along
the horizontal axis (marked with RSV). These reservations were small in their size (du-
ration and number of processors). The waiting jobs WJ1/2/3 are planned to start after
the last reservation.

The observed behavior (sharp increases) is caused by the very large job WJ1 which
is planned to start at the end of the last reservation. The number of processors of this
job is close to the total available number of processors of the resource. Therefore the
job is either blocked by already running jobs or by the sequence of reservations. With
EASY backfilling, the job is planned into the schedule to prevent its starvation, after
it has advanced to the head of the waiting queue. No other job is executed before the
large job, because they either request too many processors or too much execution time.
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Figure 9.23: Pattern causing significant delays of jobs.
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The number and the sizes of the sharp increases may be reduced by

Job size limitation: We repeated the experiments with modified batch workloads by
limiting the number of requested processors to 88 (affecting 10 of 1,800 jobs). The
delays were significantly reduced.

Improving execution time estimates: Jobs with more accurate – smaller – execution
time estimates could fit in the hole before a large job. The situation we observed
will not disappear completely, but the number of delayed jobs and their delays
could be reduced.

9.7 Summary

We presented a generic mechanism for deriving the future status of a resource. Given
a flexible reservation request, the mechanism derives

1. a distribution of time-qos-slots,

2. the values for a list of properties at each time-qos-slot, and

3. interpolates values at intermediate time-qos-slots.

We demonstrated the applicability of the mechanism by several methods for deriving
the reservation success probability pres and the fitness fit.

These methods were experimentally evaluated for compute resources wrt. the res-
ervation success rate, the efficiency of the reservation algorithm and the impact on
non-reservation jobs. We found that the methods performed in the following order
(best to worst): (1) what-if, (2) history, (3) load, and (4) static. That order is reciprocally
proportional to the amount of information used by the methods and their complexity.

We also found that the impact on non-reservation jobs is sensitive on the book-
ahead time. A detailed analysis of the job delays showed that a high fraction of the
delays is incurred by a few events. These events show a common pattern, whose am-
plitude may be reduced by limiting the sizes of parallel jobs and by enforcing more
accurate job runtime estimates.
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Mapping Requests to Co-Reservation
Candidates

We present two models for mapping requests to co-reservation candidates. A co-
reservation candidate is composed of multiple reservation candidates, which were de-
rived through the probing step. Particularly, the mapping assigns each atomic request
to a resource at a begin time, for a duration and a service level. The models implement
the mathematical formalization of the co-reservation problem (cf. Chapter 5) as integer
program (IP) and as binary program (BP).

Chapter Outline. We list requirements on mapping mechanisms in Section 10.1. In
Section 10.2, we discuss related work. Thereafter, we incrementally develop the IP
model in Section 10.3. Next, the BP model is developed in Section 10.4. We experimen-
tally evaluate the scalability of the IP and BP models in Section 10.5. In Section 10.6, we
study several strategies for refining the models in case of failures and change requests.
We close the chapter with a summary in Section 10.7.

10.1 Requirements

Mechanisms for mapping co-reservation requests to candidates must fulfill several re-
quirements which are listed below.

R1 – Fairness Among Users and Resources

The mapping shall acknowledge the constraints and objectives of both the users and
the resource providers. This requirement is similar to symmetric matching provided by
Condor ClassAds [RLS98], RedLine [LF03b] and GRDL [SR06] (cf. Section 7.2.3).

109
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R2 – Flexible Construction of Constraints and Objectives

The mechanisms shall support multiple kinds of constraints and objectives. First, this
requirement addresses the type of functions used for aggregating properties to con-
straints and objectives. Second, it concerns the “reach” of single constraints and objec-
tives, i.e., the means to specify relationships among parts of a co-reservation. Third, it
deals with the ability to specify constraints and objectives on any property.

R3 – Efficient Processing of Problem Instances

Because the state of the Grid environment may change quickly, the mechanisms need
to find a solution as soon as possible. If the search space is too large, it shall be easy to
reduce it.

R4 – Effective Means for Determining Alternative Mappings

Even if a solution is found quickly, a subsequent reserve message may fail because of
stiff competition or inaccurately calculated properties. In that case, the problem shall
easily be refined to find alternative mappings.

10.2 State of the Art

Previous work on scheduling multiple advance reservations focused on very specific
applications and only partially supported the generic model presented in Chapter 5.
In contrast, the approach of CORES supports a wide variety of scenarios in terms of
the structure of the applications, the types of the reservable resources and the means
to specify constraints and objectives.

The VIOLA meta-scheduler [WWZ05] schedules rigid compute jobs to multiple
pre-selected resources by incrementally increasing the advance booking period until
all jobs may be allocated. In contrast to our work, it only supports one criteria – the
earliest completion time. It also lacks support for arbitrary constraints.

In [WPH07], Wieczorek et al. present a taxonomy of the multi-criteria Grid work-
flow scheduling problem. In contrast to our generic model, none of the analyzed
approaches supports all capabilities, i.e., multiple criteria, multiple job chains, ad-
vance reservations, moldable requests and different types of requests (compute, net-
work, storage, etc.). In the following, we discuss the most advanced approaches stud-
ied in [WPH07]. Brandic et al. [BBES05] propose a workflow engine which supports
quality-of-service. First, for each workflow activity, it contacts candidate services (cf.
eligible resources in our model) and negotiates a single service level acknowledging
the desired characteristics such as maximum execution time and maximum price. Sec-
ond, it uses integer programming to assign each activity to a single candidate service
such that the utility function is maximized. The utility function is the weighted sum
of the objectives of each activity and the overall workflow. Each activity as well as
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the overall workflow may specify multiple objectives. The major differences to our
approach are the single offer, the missing support for constraints and objectives of the
resources and the lack of temporal and spatial relationships among the activities. In
our model, the number of offers is only limited by the domains of the start time, the
duration and the service level.

The management of workflows has also been extensively studied in the context of
web services. In [ZBN+04], Zeng et al. present a middleware for selecting web service
instances to compose complex workflows. In particular, they propose a QoS model for
atomic web services and for composite services. Based on this model, the middleware
implements a QoS-aware selection of web services such that the user’s satisfaction is
maximized. The user’s satisfaction is defined as the weighted sum of multiple criteria
chosen by the user itself. The actual selection of the web services is implemented using
integer programming. Besides constraints on each individual workflow activity, their
implementation supports global constraints on the aggregated values of individual ac-
tivities. For example, the total budget for executing a workflow or its total execution
time may be limited. A side effect of constraining the execution time is the creation
of a schedule, that is, a solution assigns a start time to each activity. In contrast, our
model explicitly considers the start time as a variable. Additionally, the models of
CORES support moldable service levels and durations to optimize the user’s satis-
faction. Also, the resources (or web services) may specify constraints and objectives
for each involved entity. Moreover, our approach provides rich capabilities for spec-
ifying temporal and spatial relationships and allows to define global constraints and
objectives explicitly.

In [CPEV05], Canfora et al. apply genetic algorithms to optimize the assignment
of workflow activities to candidate services. Their approach supports user defined
constraints and objectives for each activity. The objective of the whole workflow is
constructed by aggregating the objectives of the individual activities. Canfora et al.
describe different aggregation functions depending on the type of the objective (e.g.,
cost, time, availability, etc.) and the structural relationships among the activities (e.g.,
sequence, switch, loop, etc.). In our model, we only support the weighted sum as ag-
gregation function. Moreover, we do not need to distinguish between different struc-
tural elements of a workflow, since we assume that all activities must be executed.
Because we aim at using standard solvers, all constraints and objectives must be linear
functions. In contrast, the use of genetic algorithms allows to use arbitrary functions.
The main difference to our work, however, is the single variable s (representing the
selected resource) per activity. Additionally, our model supports variables for the start
time, the duration and the service level. Of course, that flexibility comes at a high cost,
namely, the size of the search space.

Table 10.1 provides an overview of the discussed related work and compares them
against the approach of CORES.
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10.3 Modeling as Integer Problem

We incrementally develop the integer model of the co-reservation problem beginning
with the variables, continuing with basic integrity constraints, generic constraints, tem-
poral and spatial relationships and concluding with the objective function.

Requests and Resources

The requests R and the resources S are defined as in Def. 1 (cf. page 23). The set of
eligible resources S(r) is defined as in Chapter 5 (cf. page 24).

Variables and their Domains

We associate four variables with each possible assignment rl . sk:

– a binary variable xl,k ∈ {0, 1},

– an integer variable tl,k ∈ T ⊂ N representing the start time,

– an integer variable dl,k ∈ D ⊂ N representing the duration, and

– an integer variable ql,k ∈ Q ⊂ N representing the service level.

The sets T , D, Q are defined as T = {0} ∪ [TLO, TUP ], D = {0} ∪ [DLO, DUP ] and
Q = {0} ∪ [QLO, QUP ], respectively. The terms TLO, DLO, QLO and TUP , DUP , QUP

denote the lower (subscript LO) and the upper (subscript UP ) bounds of the variables’
domain.

We assume that all properties, constraints and objectives (see below) are linear com-
binations of the variables xl,k, tl,k, dl,k and ql,k.

A binary variable xl,k is set to 1 iff the request rl is mapped to the resource sk. The
actual solution variables corresponding to the atomic request rl (cf. Def. 2), comprising
of the resource Vs(rl), the start time Vt(rl), the duration Vd(rl) and the service level Vq(rl)
are derived as follows

Vs(rl) =
K∑
k=1

k xl,k , Vt(rl) =
K∑
k=1

tl,k xl,k , Vd(rl) =
K∑
k=1

dl,k xl,k , Vq(rl) =
K∑
k=1

ql,k xl,k .

Integrity of a Solution

We ensure the integrity of a solution by two restrictions constituting the set SIC (cf.
Chapter 5). Because a request rl shall be mapped at most once to a resource, we constrain
the values of the binary variables as follows

∀rl ∈ R :
∑

sk∈S(rl)
xl,k ≤ 1 .
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The values of the variables tl,k, dl,k and ql,k are further constrained by

∀rl ∈ R ∀sk ∈ S(rl) : tl,k ≥ xl,k TLO , tl,k ≤ xl,k TUP ,

dl,k ≥ xl,kDLO , dl,k ≤ xl,kDUP ,

ql,k ≥ xl,kQLO , ql,k ≤ xl,kQUP .

All these constraints ensure that the variables t/d/ql,k may be set to values in their
domain if the request rl is assigned to the resource sk. Otherwise these variables are
set to zero.

Properties

Any property pidrl.sk (Vt(rl), Vd(rl), Vq(rl)) can be written as linear combination

pidrl.sk(Vt(rl), Vd(rl), Vq(rl)) = αidl,k Vt(rl) + βidl,k Vd(rl) + γidl,k Vq(rl) + δidl,k ,

with id being an identifier and αidl,k, βidl,k, γidl,k, δidl,k ∈ R. We assume that the properties of
all assignments are uniformly enumerated from 1 toM . That is, a property is identified
by the same number id for all assignments.

Constraints on Single Assignments

We implement constraints on single assignments rl . sk by the following expression

∀rl ∈ R, ∀sk ∈ S(r), ∀saccop ∈ SACrl.sk :
M∑
m=1

sacm p
m
rl.sk

(Vt(rl), Vd(rl), Vq(rl)) cop 0 .

The set SACrl.sk contains all single assignment constraints saccop of the assignment rl.sk
with cop being the comparison operator (either = or ≥). The term sacm represents the
aggregation coefficient of the property pmrl.sk .

Example 10.1 (Deadline of a sequential co-reservation)
We illustrate the implementation of the constraint of Example 5.1 (cf. Chapter 5). The
properties psttr3., p

dur
r3. and pdlr3. are identified by the numbers 1, 2 and 3, respectively. The

comparison operator cop is≥ (greater than or equal). TheM = 3 aggregation coefficients
are sac1 = −1, sac2 = −1 and sac3 = 1.

Temporal Relationships

We implement temporal relationships by the following expression

∀trcop ∈ TR :
∑
rl∈R

∑
sk∈S(rl)

M∑
m=1

trm(rl . sk) pmrl.sk(Vt(rl), Vd(rl), Vq(rl)) cop 0 .

The set TR contains all temporal relationships trcop with the comparison operator cop.
The term trm(rl . sk) represents the aggregation coefficient of the property pmrl.sk . That
is, a temporal relationship is defined by appropriate values of the trm(rl . sk).
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Example 10.2 (Sequential Job Chain)
We illustrate the implementation of the constraint of Example 5.2 with L = 3 steps (cf.
Chapter 5). The M = 3 properties are enumerated as in Example 10.1. We use the same
resources (K = 7) and assignments A1/2, B1/2/3 and C1/2 as in Example 5.3. The M · K
aggregation coefficients are

tr1(A1) = −1, tr2(A1) = −1, tr3(A1) = 0 ; tr1(A2) = −1, tr2(A2) = −1, tr3(A2) = 0 ;
tr1(B1) = 1, tr2(B1) = 0, tr3(B1) = 0 ; tr1(B2) = 1, tr2(B2) = 0, tr3(B2) = 0 ;
tr1(B3) = 1, tr2(B3) = 0, tr3(B3) = 0 ;
tr1(C1) = 0, tr2(C1) = 0, tr3(C1) = 0 ; tr1(C2) = 0, tr2(C2) = 0, tr3(C2) = 0 .

Spatial Relationships

We implement non-network and network spatial relationships by the generic expres-
sion

∀sr ∈ SR :
∑
rl∈R

∑
sk∈S(rl)

2∑
m=1

srm(rl . sk) pmrl.sk(Vt(rl), Vd(rl), Vq(rl)) = 0 .

The set SR contains all spatial relationships sr. The spatial properties p1 and p2 rep-
resent the “left” and the “right” end-point of a resource, respectively. These differ for
network resources, but are the same for non-network resources. The term srm(rl . sk)
represents the aggregation coefficient of the spatial property pmrl.sk . Thus, a spatial re-
lationship is defined by appropriate values of the srm(rl . sk).

Example 10.3 (Transfer of Data)
We illustrate the implementation of the spatial relationship of Example 5.3 by two con-
straints sra and srb. The example involves L = 3 steps (cf. Chapter 5). The spatial
properties of the seven resources are given by the table

Resource
Property s1 s2 s3 s4 s5 s6 s7

p1 1 1 9 1 3 2 2
p2 1 9 9 3 3 3 2

We assume the same assignments as in Example 10.2. Most of the 2MK+2MK (2MK

for each constraint) aggregation coefficients sra/bm (A1/2/B1/2/3/C1/2) are set to zero.
The non-zero coefficients are

sra1(A1) = 1, sra1(A2) = 1, sra1(B1) = −1, sra1(B2) = −1, sra1(B3) = −1,

srb2(B1) = −1, srb2(B2) = −1, srb2(B3) = −1, srb2(C1) = 1, srb2(C2) = 1 .

Note, the constraints sra and srb represent the left and the right element of the result
space R2 of Def. 14 (cf. Chapter 5).



116 Chapter 10. Mapping Requests to Co-Reservation Candidates

Constraints on Multi Assignments

We implement constraints on multi assignments as generalization of temporal relation-
ships. Let M denote the total number of properties. Then, the following expression
implements constraints on multi assignments.

∀maccop∈MAC :
∑
rl∈R

∑
sk∈S(rl)

M∑
m=1

macm(rl . sk) pmrl.sk(Vt(rl), Vd(rl), Vq(rl)) cop 0

The set MAC contains all multi assignments constraints maccop with the comparison
operator cop. The term macm(rl . sk) represents the aggregation coefficient of the prop-
erty pmrl.sk . Thus, a multi assignments constraint is implemented by appropriate values
of the macm(rl . sk).

Example 10.4 (Limiting the Total Reservation Cost)
We illustrate the implementation of the constraint of Example 5.4 with L = 3 steps (cf.
Chapter 5). The reservation cost and the maximum budget are given by the properties
p1 and p2, respectively (M = 2). We assume the same assignments as in Example 10.2.
The M ·K aggregation coefficients are

mac1(A1) = −1, mac2(A1) = 1 ; mac1(A2) = −1, mac2(A2) = 1 ;
mac1(B1) = −1, mac2(B1) = 0 ; mac1(B2) = −1, mac2(B2) = 0 ;
mac1(B3) = −1, mac2(B3) = 0 ;
mac1(C1) = −1, mac2(C1) = 0 ; mac1(C2) = −1, mac2(C2) = 0 .

Note, we arbitrarily associated the budget property with request r1.

Objective Function

The objective function is composed of normalized properties ‖pmrl.sk‖pm , aggregation
coefficients om(rl . sk) and the objectives’ weight oω. We normalize a real-valued prop-
erty pmrl.sk as follows

‖pmrl.sk(Vt(rl), Vd(rl), Vq(rl))‖pm =
pmrl.sk(Vt(rl), Vd(rl), Vq(rl))
max(|min(pm)|, |max(pm)|) (10.1)

with min(pm) = min
rl∈R, sk∈S(rl)

pmrl.sk(Vt(rl), Vd(rl), Vq(rl))

and max(pm) = max
rl∈R, sk∈S(rl)

pmrl.sk(Vt(rl), Vd(rl), Vq(rl)) .

The term om(rl . sk) denotes the m-th aggregation coefficient of the assignment rl . sk.
Using the weighted sum as criteria B (cf. Def. 21), the objective function is defined by
the following expression.

minimize∑
rl∈R

∑
sk∈S(rl)

∑
o∈OR

oω
M∑
m=1

om(rl . sk) ‖pmrl.sk(Vt(rl), Vd(rl), Vq(rl))‖pm

+ ∑
rl∈R

∑
sk∈S(rl)

∑
o∈Osk

oω
M∑
m=1

om(rl . sk) ‖pmrl.sk(Vt(rl), Vd(rl), Vq(rl))‖pm
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The terms OR and Osk denote the sets of the objectives of the co-reservation request R
and the resource sk (k = 1, . . . , K), respectively.

Example 10.5 (Min End Time & Max Fitness)
We illustrate the implementation of Example 5.5 with L = 3 steps (cf. Chapter 5). The
end time is calculated as the sum of the start time (property p1) and the duration (prop-
erty p2) of request r3. The fitness (cf. Section 9.4.2) is given by property p3.

Because all entities – the co-reservation request and the resources – possess only a
single objective all weights are set to 1. The properties are normalized as in Eq. (10.1).
We assume the same assignments as in Example 10.2. Most of the M · K aggregation
coefficients o1/2/3(A1/2/B1/2/3/C1/2) of the requests are zero. Also, most of the M ·K
aggregation coefficients of the resources are zero. The non-zero coefficients are

coefficients of the co-reservation request
o1(C1) = 1, o2(C1) = 1, o3(C1) = 0 ; o1(C2) = 1, o2(C2) = 1, o3(C2) = 0 ;

coefficients of resources
o3(A1) = −1, o3(A2) = −1 ; o3(B1) = −1, o3(B2) = −1, o3(B3) = −1 ;
o3(C1) = −1, o3(C2) = −1 .

Note, the coefficients of the resources are negative to invert the optimization sense (min-
imize→ maximize).

10.4 Modeling as Binary Problem

We incrementally develop the binary model of the co-reservation problem beginning
with the variables, continuing with basic integrity constraints, generic constraints, tem-
poral and spatial relationships and concluding with the objective function.

Requests and Resources

The requests R and the resources S are defined as in Def. 1 (cf. page 23). The set of
eligible resources S(r) is defined as in Chapter 5 (cf. page 24).

Variables and their Domains

In the binary model, the properties are only defined at specific tuples constructed from
a matching request-resource-pair (rl, sk) and a time-qos-slot 〈t, d, q〉. Each tuple

〈rl, sk, t, d, q〉

is represented by a binary variable

x〈l,k,t,d,q〉 ∈ {0, 1} .

A binary variable x〈l,k,t,d,q〉 is set to 1 iff the request rl is mapped to the resource sk with
the start time t, the duration d and the service level q.
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Let TDQrl.sk denote the set of all time-qos-slots derived for the assignment rl . sk.
The actual solution variables corresponding to the atomic request rl (cf. Def. 2), com-
prising of the resource Vs(rl), the start time Vt(rl), the duration Vd(rl) and the service
level Vq(rl) are derived as follows

Vs(rl) =
K∑
k=1

∑
〈t,d,q〉∈
TDQrl.sk

k x〈l,k,t,d,q〉 , Vt(rl) =
K∑
k=1

∑
〈t,d,q〉∈
TDQrl.sk

t x〈l,k,t,d,q〉 ,

Vd(rl) =
K∑
k=1

∑
〈t,d,q〉∈
TDQrl.sk

d x〈l,k,t,d,q〉 , Vq(rl) =
K∑
k=1

∑
〈t,d,q〉∈
TDQrl.sk

q x〈l,k,t,d,q〉 .

Integrity of a Solution

Let TDQrl. denote the set of all time-qos-slots derived for the set of assignments rl . .
Because a request rl shall be mapped at most once to a resource and a time-qos-slot, we
constrain the values of the binary variables by

∀rl ∈ R :
∑

sk∈S(rl)

∑
〈t,d,q〉∈TDQrl.sk

x〈l,k,t,d,q〉 ≤ 1 .

Properties

A property pidrl.sk(t, d, q) with identifier id assigns a real-valued number to the tuple
〈rl, sk, t, d, q〉. We assume that all properties are enumerated from 1 to M .

Constraints on Single Assignments

We implement constraints on single assignments rl . sk by

∀rl ∈ R, ∀sk ∈ S(r), ∀saccop ∈ SACrl.sk :
∑
〈t,d,q〉∈
TDQrl.sk

x〈rl,sk,t,d,q〉

(
M∑
m=1

sacm p
m
rl.sk

(t, d, q)
)
cop 0 .

The set SACrl.sk contains all single assignment constraints saccop of the assignment rl.sk
with cop being the comparison operator (either = or ≥). The term sacm represents the
aggregation coefficient of the property pm.

Example 10.6 (Deadline of a sequential co-reservation)
We illustrate the implementation of the constraint of Example 5.1 (cf. Chapter 5). The
properties psttr3., p

dur
r3. and pdlr3. are identified by the numbers 1, 2 and 3, respectively. The

comparison operator cop is≥ (greater than or equal). TheM = 3 aggregation coefficients
are sac1 = −1, sac2 = −1 and sac3 = 1.
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Temporal Relationships

We implement temporal relationships by the following expression

∀trcop ∈ TR :
∑
rl∈R

∑
sk∈S(rl)

∑
〈t,d,q〉∈TDQrl.sk

x〈rl,sk,t,d,q〉

(
M∑
m=1

trm(rl)pmrl.sk(t, d, q)
)
cop 0 .

The set TR contains all temporal relationships trcop with the comparison operator cop.
The term trm(rl) represents the aggregation coefficient of the property pm and the re-
quest rl. That is, a temporal relationship is defined by appropriate values of the trm(rl).

Example 10.7 (Sequential Job Chain)
We illustrate the implementation of the constraint of Example 5.2 with L = 3 steps (cf.
Chapter 5). The M = 3 properties are enumerated as in Example 10.6. The M · L
aggregation coefficients are

tr1(r1) = −1, tr1(r2) = 1, tr1(r3) = 0 ;
tr2(r1) = −1, tr2(r2) = 0, tr2(r3) = 0 ;
tr3(r1) = 0, tr3(r2) = 0, tr3(r3) = 0 .

Spatial Relationships

We implement the two types – non-network and network spatial relationships – by the
generic expression

∀sr ∈ SR :
∑
rl∈R

∑
sk∈S(rl)

∑
〈t,d,q〉∈
TDQrl.sk

x〈rl,sk,t,d,q〉

( 2∑
m=1

srm(rl)pmrl.sk(t, d, q)
)

= 0 .

The set SR contains all spatial relationships sr. The spatial properties p1 and p2 rep-
resent the “left” and the “right” end-point of a resource, respectively. These differ for
network resources, but are the same for non-network resources. The term srm(rl) rep-
resents the aggregation coefficient of the spatial property pm for the request rl. Thus, a
spatial relationship is defined by appropriate values of the srm(rl).

Example 10.8 (Transfer of Data)
We illustrate the implementation of the spatial relationship of Example 5.3 by two con-
straints sra and srb. The example involves L = 3 steps (cf. Chapter 5). The spatial
properties of the seven resources are given by the table

Resource
Property s1 s2 s3 s4 s5 s6 s7

p1 1 1 9 1 3 2 2
p2 1 9 9 3 3 3 2
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The 2L+ 2L (2L for each constraint) aggregation coefficients are

sra1(r1) = 1, sra2(r1) = 0 srb1(r1) = 0, srb2(r1) = 0
sra1(r2) = −1, sra2(r2) = 0 srb1(r2) = 0, srb2(r2) = −1
sra1(r3) = 0, sra2(r3) = 0 srb1(r3) = 0, srb2(r3) = 1 .

Note, the constraints sra and srb represent the left and the right element of the result
space R2 of Def. 14 (cf. Chapter 5).

Constraints on Multi Assignments

We implement constraints on multi assignments as generalization of temporal relation-
ships. Let M denote the total number of properties. Then, the following expression
implements constraints on multi assignments.

∀maccop ∈MAC :
∑
rl∈R

∑
sk∈S(rl)

∑
〈t,d,q〉∈
TDQrl.sk

x〈rl,sk,t,d,q〉

(
M∑
m=1

macm(rl)pmrl.sk(t, d, q)
)

cop 0

The set MAC contains all multi assignments constraints maccop with the comparison
operator cop. The term macm(rl) represents the aggregation coefficient of the prop-
erty pm and the request rl. Thus, a multi assignments constraint is implemented by
appropriate values of the macm(rl).

Example 10.9 (Limiting the Total Reservation Cost)
We illustrate the implementation of the constraint of Example 5.4 with L = 3 steps (cf.
Chapter 5). The reservation cost and the maximum budget are given by the properties p1

and p2, respectively (M = 2). The M · L aggregation coefficients are

mac1(r1) = −1, mac1(r2) = −1, mac1(r3) = −1 ;
mac2(r1) = 1, mac2(r2) = 0, mac2(r3) = 0 .

Note, we arbitrarily associated the budget property with request r1.

Objective Function

The objective function is composed of normalized properties ‖pm‖pm , aggregation co-
efficients om(rl) and om(sk), and the objectives’ weight oω. We normalize a real-valued
property pm as follows

‖pmrl.sk(t, d, q)‖pm =
pmrl.sk(t, d, q)

max(|min(pm)|, |max(pm)|) (10.2)

with min(pm) = min
rl∈R, sk∈S(rl)
〈t,d,q〉∈TDQrl.sk

pmrl.sk(t, d, q)

and max(pm) = max
rl∈R, sk∈S(rl)
〈t,d,q〉∈TDQrl.sk

pmrl.sk(t, d, q) .
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The terms om(rl) and om(sk) denote the m-th aggregation coefficient of the request rl
and the resource sk, respectively. Using the weighted sum as criteria B (cf. Def. 21), the
objective function is defined by the following expression.

minimize∑
rl∈R

∑
sk∈S(rl)

∑
o∈OR

oω
∑

〈t,d,q〉∈
TDQrl.sk

x〈rl,sk,t,d,q〉

(
M∑
m=1

om(rl)‖pmrl.sk(t, d, q)‖pm
)

+ ∑
rl∈R

∑
sk∈S(rl)

∑
o∈Osk

oω
∑

〈t,d,q〉∈
TDQrl.sk

x〈rl,sk,t,d,q〉

(
M∑
m=1

om(sk)‖pmrl.sk(t, d, q)‖pm
)

The terms OR and Osk denote the sets of the objectives of the co-reservation request R
and the resource sk (k = 1, . . . , K), respectively.

Example 10.10 (Min End Time & Max Fitness)
We illustrate the implementation of Example 5.5 with L = 3 steps (cf. Chapter 5). The end
time is calculated as the sum of the start time (property p1) and the duration (property p2) of
request r3. The fitness (cf. Section 9.4.2) is given by property p3. Because all entities – the
co-reservation request and the resources – possess only a single objective all weights are set
to 1. The properties are normalized as in Eq. (10.2). The eligible resources are the same as in
Example 10.9 (K = 7). The M · (L+K) aggregation coefficients are

M · L coefficients of the co-reservation request
o1(r1) = 0, o2(r1) = 0, o3(r1) = 0 ;
o1(r2) = 0, o2(r2) = 0, o3(r2) = 0 ;
o1(r3) = 1, o2(r3) = 1, o3(r3) = 0 ;

M ·K coefficients of resources
o1(s1) = 0, o2(s1) = 0, o3(s1) = −1 ;
o1(s2) = 0, o2(s2) = 0, o3(s2) = −1 ;
o1(s3) = 0, o2(s3) = 0, o3(s3) = −1 ;
o1(s4) = 0, o2(s4) = 0, o3(s4) = −1 ;
o1(s5) = 0, o2(s5) = 0, o3(s5) = −1 ;
o1(s6) = 0, o2(s6) = 0, o3(s6) = −1 ;
o1(s7) = 0, o2(s7) = 0, o3(s7) = −1 .

Note, the coefficients of the resources are negative to invert the optimization sense (minimize
→ maximize).

10.5 Experimental Evaluation

Many optimization problems suffer from a large search space, which is common for
resource management in Grid environments. We will assess the scalability of the mod-
els developed in Section 10.3 and 10.4. In particular, we run experiments with different
combinations of several scenario parameters. The properties of time-qos-slots, the ag-
gregation coefficients of the constraints as well as the objectives are determined by
random number generators. Accordingly, each experiment is repeated several times.
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Table 10.2: Parameters of the experimental evaluation of the integer model.

Parameter Values

Application scenario S1, S2, S3, S4, S5, S6, S7, S8

Number of requests 1, 2, 3
Number of resources 1, 2, 3
Number of constraints 6, 9
Number of runs 3

10.5.1 Evaluation of the Integer Model

We performed 432 experiment runs to study which instances are solvable in a rea-
sonable time and which parameters influence the solving time most. In the experi-
ments, we varied the number of requests, the number of resources, the number of the
constraints per entity (requests and resources) and the structure of the co-reservation
requests. Because we generated random numbers for properties, constraints and ob-
jectives, we repeated each experiment three times. The experiments’ parameters are
shown in Table 10.2. The application scenarios S1-S8 are depicted in Fig. 10.1.
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Figure 10.1: Application scenarios S1 to S8 used in the evaluation of the integer
model. Solid red lines indicate spatial relationships. Temporal relationships are shown
by dashed blue lines plus a comparison operator. The type of a requested resource is
given by the first letter of the tag in a box – C for compute, D for data, N for network
and L for license.

Several problem instances were solved in parallel by running CPLEX [ILO] pro-
cesses – one per single experiment instance – on a SUN Galaxy 4600 16-core system
with 64 GB of RAM. Each process used a single processor core only.
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Figure 10.2: Solving time vs. the scenario and the number of requests for one eligible
resource per request. The error bars show the average, min and max times.

Results

Figures 10.2, 10.3 and 10.4 show the times needed for scheduling requests of the appli-
cation scenarios requiring two to six non-network resources and none to three network
resources. The number of eligible non-network resources per request is one, two and
three in Fig. 10.2, Fig. 10.3 and Fig. 10.4, respectively. The scenarios are ordered such
that their complexity increases along the horizontal axis. For each scenario, four error
bars are plotted, each one corresponding to a combination of the number of requests
and the number of constraints.
Although, the experiments involved only a few number of requests and resources,
we observed large solving times. The solving time increases exponentially, except for
co-reservation requests containing only two parts, i.e., for scenario S1 (cf. Fig. 10.1).
Studying the graphs in more detail, we find that the problem instances with a single
eligible resource per atomic request (all instances in Fig. 10.2) are solvable in reasonable
time.

The problem instances with two and three eligible resources per atomic request
(cf. Fig. 10.3 and 10.4), require more time for finding an optimal solution. Most of the
smaller instances (S1 to S4) and instances with a single request are solved in reasonable
time, i.e., in less than 30 seconds. However, the slightly more complex scenarios require
significantly more time. We also considered even more complex scenarios involving
multiple steps of a job chain. These were solved efficiently in case of a single eligible
resource per atomic request, but often required several hours solving time when the
number of resources was increased.
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Figure 10.3: Solving time vs. the scenario and the number of requests for two eligible
resources per request. The error bars show the average, min and max times.
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Figure 10.4: Solving time vs. the scenario and the number of requests for three eli-
gible resources per request. The error bars show the average, min and max times.

Thus, we can devise the following recommendations for using an integer model to
schedule co-reservations. First, for each atomic request only a single eligible resource
should be considered. This requires a very efficient filtering in the matchmaking (cf.
step Á in Fig. 6.2 on page 38). Second, the number of constraints should be kept small.
Last, requests for complex applications requiring multiple resources should be sched-
uled individually.
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10.5.2 Evaluation of the Binary Model

We used the following scenario for evaluating the binary model.

Reserve 16 CPUs of an IBM p690, 32 CPUs of a PC cluster and a one Gbit/s-network connection
between them, each for six hours between 2007/12/12 06:00pm and 2007/12/15 06:00pm. All
reservations must start at the same time. Reserve a visualization engine for two hours starting
four hours after the reservation on the IBM p690 begins and a 100 Mbit/s-network link between
the p690 and the visualization engine for the same time.

The structure of the scenario is comparable to scenario S6 of Section 10.5.1 albeit S6
requires an additional non-network resource.

Table 10.3: Parameters of the experimental evaluation of the binary model.

Parameter Values

Number of start times
(corresponding time gap)

7 (11h), 12 (6h), 23 (3h), 34 (2h), 67 (1h), 133 (30m),
265 (15m), 397 (10m)

Number of resources 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20

We studied the impact of the number of eligible resources and the number of time-
qos-slots on the time needed to find the optimal co-reservation candidate for a single
co-reservation request. Table 10.3 shows the used parameters. The resulting number
of binary variables is calculated as follows

nbv(S, T ) =
(
3 |S|+ 2 |S|2

)
· |T | ,

where S is the set of resources and T is the set of considered start times. The number
of constraints is always 14 for the given scenario. In the absence of workload traces
for co-reservations we randomly generated the time-qos-slots and their properties (cf.
step Â in Fig. 6.2 on page 38). For each parameter pair (number of resources, number
of time-qos-slots), we executed 10 experiments and calculated the average time for
finding the optimal co-reservation candidate. Several problem instances were solved
in parallel by running CPLEX [ILO] processes – one per single experiment instance –
on a SUN Galaxy 4600 16-core system with 64 GB of RAM. Each process used a single
processor core only.

Figure 10.5 shows the solving time vs. the number of reservation candidates. Each
curve represents the experiments with a specific number of resources.
Whether the solving time is acceptable in real world scenarios depends on several pa-
rameters. First, a client may want a response as soon as possible. Second, the calcu-
lated future status (cf. step Â in Fig. 6.2 on page 38) may only be valid for a certain time.
Thereafter, the “best” co-reservation candidate is sub-optimal or reservation attempts
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Figure 10.5: Solving time for several numbers of resources and time-qos-slots.

(cf. step Ä in Fig. 6.2 on page 38) simply fail. Third, the longer the book-ahead time
(earliest start time) of the co-reservation, the longer solving times may be acceptable.

The experimental results provide two means for limiting the solving time – (1) the
reservation system may ask the resource providers for a limited number of time-qos-
slots and (2) use less eligible resources than found through the resource information
service query (cf. step Á in Fig. 6.2 on page 38).

10.6 Refining IP and BP Models

We introduce several refinement strategies of the models developed in Sections 10.3
and 10.4. Refining a problem instance becomes necessary if

1. a failure occurs while trying to acquire reservations,

2. a failure occurs after the co-reservation was granted, or

3. a change request was issued after the co-reservation was granted.

Refining a problem instance means to adapt the optimization problem such that the
new solution acknowledges the above cases. Handling the second and third case most
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likely requires to perform the matchmaking (cf. step Á in Fig. 6.2 on page 38) and the
probing (cf. step Â in Fig. 6.2 on page 38) again. Thereafter, the actual refinement
strategies are applied. In the first case, the matchmaking and probing steps are not re-
quired. In this section, we only introduce refinement strategies, because matchmaking
and probing can be done by simply executing the mechanisms proposed in Chapter 8
and 9, respectively.

While a change request (third case) defines the desired refinement explicitly, the
failure cases only provide hints on how the mapping should be changed. Therefore,
we develop the following schemes for adapting a problem instance in case a failure
occurred:

– removing the faulty resource completely,

– removing the faulty time-qos-slot only, and

– removing regions around faulty time-qos-slots.

All these schemes may be applied on all request parts requiring a refinement. Because
we consider the refinements of any two request parts as independent, we only illustrate
the refinement of a single request part in the subsequent sections.

Refinement Methodology. Let CoRP = {〈Ri, Si, Ti, Di, Qi, SICi, Pi, SACi, TRi, SRi,
MACi, Oi〉} denote the decomposed co-reservation problem. Initially, the set CoRP
contains a single element – a problem instance – only. Applying certain adaptation
operations may lead to additional elements, i.e., single problem instances are split into
multiple instances. All adaptations need to be carried out on all elements of CoRP .
If parts of a co-reservation candidate should be kept, appropriate equality constraints
are added to all problem instances. The new solution is found by solving all instances
(elements of CoRP ) individually and selecting the solution of the instance with the
smallest objective value as global solution.

Excluding Faulty Resources

The simplest strategy is to exclude the resource incurring the reservation failure from
the co-reservation problem. That is, the resource is treated as if it does not exist.
Clearly, if the resource is the only candidate of a request, the problem becomes infeasi-
ble by excluding the resource. This can be easily avoided by letting the co-reservation
allocator (cf. Chapter 11) verify the number of candidate resources and select the ap-
propriate refinement strategy. In the following, we demonstrate how the integer model
(cf. Section 10.3) and the binary model (cf. Section 10.4) are adapted.

Let sk ∈ S(rl) denote the k-th resource to be excluded from the set of eligible re-
sources S(rl) of request rl.
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Adapting the Integer Model. We exclude the resource sk of request rl by simply
adding the constraint

xl,k = 0 (10.3)

to the solution integrity constraints SICi of each CoRPi ∈ CoRP .

Adapting the Binary Model. We exclude the resource sk of request rl by adding the
constraint ∑

〈t,d,q〉∈TDQrl.sk

x〈rl,sk,t,d,q〉 = 0

to the solution integrity constraints SICi of each CoRPi ∈ CoRP .

Excluding Faulty Time-QoS-Slots

If the failure is limited to a single time-qos-slot 〈tf , df , qf〉 of the assignment rl . sk, the
above strategy may be too restrictive. Thus, we propose a strategy which excludes the
faulty time-qos-slot only.

Adapting the Integer Model. Depending on the relation of tf , df and qf to the bounds
of their corresponding domains T , D, Q, we adapt a problem instance (1) by simply
adjusting the boundary constraints or (2) by splitting the instances for each domain.
We illustrate the adaptation for a single variable and domain, say t and T . Let TLO
and TUP denote the lower and the upper bound of the domain T . If tf equals the lower
bound TLO, we augment the solution integrity constraints SICi of each CoRPi ∈ CoRP
with the constraint

t ≥ (TLO + 1)xl,k .
Similarly, if tf equals the upper bound TUP , we augment the solution integrity con-
straints SICi of each CoRPi ∈ CoRP with the constraint

t ≤ (TUP − 1)xl,k .

If tf neither equals TLO nor TUP , we replace each CoRPi with two instances, CoRPLO
i

and CoRPUP
i . We create the instance CoRPLO

i by adding the constraint

t ≤ (tf − 1)xl,k
to the solution integrity constraints SICi. Similarly, we create the instance CoRPUP

i by
adding the constraint

t ≥ (tf + 1)xl,k
to the solution integrity constraints SICi.

Adapting the Binary Model. We adapt each instance CoRPi by simply adding the
constraint

x〈rl,sk,tf ,qf ,df 〉 = 0 (10.4)

to the solution integrity constraints SICi.



10.6. Refining IP and BP Models 129

domain

region 3

upper boundlower bound

region 1

region 2

region 4

Figure 10.6: Relations of regions to be excluded from a domain.

Excluding Regions around a Faulty Time-QoS-Slot

Excluding just a single faulty time-qos-slot may lead to a solution which is very close
to the failed one. Therefore, it may be more appropriate to exclude regions around a
faulty time-qos-slot from the problem instance.

Given a faulty time-qos-slot 〈tf , qf , df〉 of the assignment rl.sk and region diameters
ta ∈ N+, da ∈ N+ and qa ∈ N+ we propose a strategy which excludes the region
[tf − ta, tf + ta]× [df − da, df + da]× [qf − qa, qf + qa] from the search space. Figure 10.6
shows the four cases of the relation of a single-dimensional region (green boxes) to the
corresponding domain.

Adapting the Integer Model. Depending on the relation of the regions [tf−ta, tf+ta],
[df − da, df + da] and [qf − qa, qf + qa] to the bounds of their corresponding domains T ,
D, Q (cf. Fig. 10.6), we adapt a problem instance (1) by simply adjusting the boundary
constraints (regions 1 and 2), (2) by splitting the instances for each domain (region 3)
or (3) by excluding the resource sk from the problem instance (region 4). We illustrate
the adaptation for a single variable and domain, say t and T . Let TLO and TUP denote
the lower and the upper bounds of the domain T . If the region [tf − ta, tf + ta] overlaps
with the lower bound (cf. region 1 in Fig. 10.6), we augment the solution integrity
constraints SICi of each CoRPi with the constraint

t ≥ (tf + ta + 1)xl,k .

Similarly, if the region overlaps with the domain’s upper bound (region 2 in Fig. 10.6),
we augment the solution integrity constraints SICi of each CoRPi with the constraint

t ≤ (tf − ta − 1)xl,k .

If the region is fully contained in the domain (cf. region 3 in Fig. 10.6), we split each
CoRPi into two instances, say CoRPLO

i and CoRPUP
i . We create CoRPLO

i by adding
the constraint

t ≤ (tf − ta − 1)xl,k
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to the solution integrity constraints SICi. Similarly, we create CoRPUP
i by adding the

constraint
t ≥ (tf + ta + 1)xl,k

to the solution integrity constraints SICi.
If the region is a superset of the domain (cf. region 4 in Fig. 10.6), all time-qos-

slots of the assignment rl . sk must be excluded. This is implemented by removing
the resource sk from any instance CoRPi (cf. Section Excluding Faulty Resources) as in
Eq. (10.3).

Adapting the Binary Model. Let ISl,k(tf , ta, df , da, qf , qa) denote the intersection of
the region [tf ± ta]× [df ± da]× [qf ± qa] and the set TDQl,k, i.e.,

ISl,k(tf , ta, df , da, qf , qa) :={
〈t, d, q〉

∣∣∣〈t, d, q〉 ∈ TDQl,k ∧ 〈t, d, q〉 /∈ [tf ± ta]× [df ± da]× [qf ± qa]
}
.

We exclude the region of time-qos-slots by simply adding the constraint∑
〈t,d,q〉∈

ISl,k(tf ,ta,df ,da,qf ,qa)

x〈rl,sk,t,d,q〉 = 0 (10.5)

to the solution integrity constraints SICi of each CoRPi ∈ CoRP .

10.7 Summary

We presented two approaches for modeling the mapping of requests to co-reservation
candidates, studied their scalability and discussed refinement strategies for determin-
ing alternative mappings.

Both approaches satisfy the requirements R1 (Fairness) and R4 (Refinements) very
well. Concerning requirement R2 (Constraints and Objectives), the integer model lim-
its the base functions to linear combinations. While the binary model is not limited to
linear functions of the properties itself, it is if aggregations of properties are considered.
The less restricted modeling of properties comes at the cost of a lower solution accu-
racy, i.e., each time-qos-slot is modeled by a single binary variable. Both approaches
are only suitable to small problem instances (requirement R4 Efficiency). This issue
can be leveraged by reducing the size of the search space. In the integer model, the
only means is to limit the number of resources. In the binary model, however, it is
possible to trade-off solution accuracy versus solution time by reducing the number of
resources, the considered start times, durations and service levels.
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Allocating Resources to a
Co-Reservation Candidate

The result of the mechanisms proposed in Chapter 10 is a co-reservation candidate CAS

(cf. Def. 7), i.e., a mapping of request parts to resources, start times, durations and ser-
vice levels. We call such a mapping a candidate, because it is not reserved (or allocated)
yet. A mechanism for allocating resources to a co-reservation candidate sends reserve
messages – one for each request part – to the resources specified in the candidate. The
design of such a mechanism is mainly concerned with the following issues:

I1 – What information is passed with the reserve messages?,

I2 – How are the messages sent – sequentially or in parallel?,

I3 – Do successful reserve messages need a confirmation?, and

I4 – How are unsuccessful reserve message handled?

These issues may not be solved individually. For example, consider a scenario where
reservations do not need a confirmation, but may only be canceled by paying a (small)
fee. Then, it may be worthwhile to send the reserve messages one after another and
only send the next if the last one succeeded. Thus, the potential penalty fee for cancel-
ing already granted reservations may be minimized.

The strategy for handling failures may depend on the overall optimization goal.
That is, if reserve messages are denied, a mechanism may follow two main schemes:
(1) cancel already granted parts, refine the co-reservation problem (cf. Section 10.6)
and try to find a new co-reservation candidate and (2) retain already granted parts, but
search for alternatives of the failed parts. While the first method will always derive
the global optimum, it may also require more cancel operations. A consumer wants to
minimize the number of cancelations, because they may incur additional costs. Also,
a provider must deny or postpone requests requiring the capacity already granted to
another reservation. Hence, it could be better for both the requester and the resource
providers if the second method is used. The second method, however, may not find
the global optimum.

131
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We present several mechanisms for allocating resources to a co-reservation candidate.
Each mechanism works under different assumptions and exposes different character-
istics to the requester of a co-reservation and/or to the resources being reserved. All
mechanisms, however, use the same method to send reserve messages.

Information of a reserve Message. Let CAS be a combination of assignments defin-
ing a co-reservation candidate. For any tuple 〈rl, sk, t, d, q〉 ∈ CAS and the properties
Prl.sk , a reserve message contains the following information:

– the start time t of the reservation,

– the duration d of the reservation,

– the service level q of the reservation, and

– a list of pairs (id, val) for all properties pid ∈ Prl.sk and val = pidrl.sk(t, d, q).

Outline. We discuss requirements on the reservation mechanisms in Section 11.1.
Thereafter, we describe the state of the art in Section 11.2. The mechanisms are pre-
sented in Sections 11.3 and 11.4. We close the chapter with a summary in Section 11.5.

11.1 Requirements

All-or-nothing semantics. The requester is interested in a co-reservation of all parts
or none. That is, a mechanism must provide some relaxed form of the well-known
transaction property atomicity [WV02].1

Non-reservable request parts. As described in Section 7.1.1, it may be desirable to
specify auxiliary parts in a co-reservation request. These parts are used to define the
utility function of the mapping, but are not to be reserved. A reservation mechanism
must detect these parts and omit them from acquiring reservations.

Balancing the objectives of the consumers and the providers. Naturally, the par-
ties involved in acquiring a co-reservation have got different and often contradicting
objectives. For example, consumers want a high total reservation success rate, while
providers want to minimize the impact of an allocation mechanism on the utilization
of their resources. A mechanism for acquiring resources to candidates must be able to
balance the objectives of all parties.

1The other transaction properties are of minor interest (isolation), inherently implemented by the
resources’ local management (durability) and achieved through the serialization of reserve messages at
the local reservation services (consistency).
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Handling of concurrent requests. Because multiple reservation services may com-
pete for the same resources or even the same reservation candidates, an allocation
mechanism must resolve deadlocks and livelocks.

11.2 State of the Art

Despite the large amount of work proposing Grid resource management systems, the
requirements listed above are mostly ignored (the second and the third requirement).
We begin our survey on methods for ensuring all-or-nothing semantics in distributed
database systems and Web services management. Thereafter, we present approaches
to co-allocation in Grid resource management.

Transactions in Distributed DBMSs. In [TGGL82], Traiger et al. propose four prop-
erties any transaction mechanism should provide in order to ease the use of a dis-
tributed database system. These properties are location transparency, replication trans-
parency, concurrency transparency and failure transparency. Location and replication
transparency are of no concern to CORES since reservation candidates always ex-
plicitly name the resource, time frame and service level. Concurrency transparency
hides the effects of concurrent transactions, particularly it provides a consistent view
of the data. Albeit multiple co-reservation requests may compete for the same reserva-
tion candidates, concurrency control is provided through the serialization of reserve
messages at each resource. Traditional transactions in DBMSs and allocations of co-
reservations have most in common with respect to failure transparency. In [TGGL82],
four classes of failures – (1) application detected, (2) local node crashes, (3) communica-
tion network failures, and (4) failures at remote nodes – are discussed. Assuming that
all CORES components store their state persistently, a co-reservation mechanism must
pay special attention to application detected failures (1) and communication network
failures (3). The former corresponds to denied reserve messages and may eventually
lead to aborting the whole co-reservation. Communication network failures may cause
a situation, where a resource grants an allocation request but the response is never re-
ceived by the Grid Reservation Service. Such failures may be efficiently detected by
means of timeouts, that is, to let resources grant reservations preliminarily only and
require a confirmation within a certain period of time. The confirmation of multi-
ple preliminary reservations requires an appropriate commit protocol. The often used
two-phase-commit (2PC) protocol [Gra78] is not appropriate because a participant may
not abort a transaction once it has sent a prepared messages (corresponding to grant-
ing a reservation). More advanced transaction management schemes were introduced
to cope with long-lived or long-running transactions. While reserving multiple re-
sources does not necessarily require a long time, some lessons may be learned from
sagas [GMS87] and flexible transactions [ELLR90]. In [GMS87], Garcia-Molina and
Salem proposed to split a transaction into multiple sub-transactions. Sub-transactions
may be committed before their parent transaction commits. If a saga fails, two forms of
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recovery schemes – backward or forward – may be executed. Backward recovery requires
compensation transactions which “semantically” undo the effects of already commit-
ted sub-transactions. Forward recovery requires checkpoints from which all missing
sub-transactions may be performed. At first sight, sagas seem to match the require-
ments of CORES very well – sub-transactions are similar to reservations of individual
resources and compensating is implemented by simply canceling a reservation. How-
ever, the concept of sagas: (1) is too strict with respect to failure recovery, (2) does
not allow “semantically” equivalent sub-transactions substitute for failed ones and (3)
requires all sub-transactions to be given beforehand. In contrast, an allocator of a co-
reservation may consider alternative candidates if one or multiple original candidates
could not be allocated. In [ELLR90], Elmagarmid et al. propose flexible and mixed trans-
actions both possibly spanning multiple autonomous data bases. Flexible transactions
support the concept of alternative sub-transactions, while mixed allow compensable
and un-compensable sub-transactions in a global transaction. They also introduce the
concept of time, that is, support for restrictions when sub-transactions may be exe-
cuted and when the processing must be finished (deadline). The global transaction is
composed statically. In particular, the alternatives and their order must be given before
the actual execution begins. In CORES, reserve messages may always be issued in a
dynamically determined order, but their success probability may change with time.

Transactions in Web Service Environments. The most advanced protocols/mechan-
isms to manage transactions in Web services are the Business Transaction Protocol
(BTP) [FHC04], the Web Services Business Process Execution Language (WS-BPEL)
[AAA+07] and the WS-Coordination protocol family (WS-CO) [FJ07, LW07, FL07].
They propose mechanisms for efficiently processing long-running transactions, resem-
bling flexible transactions as proposed by Elmagarmid et al. [ELLR90]. There are,
however, small differences between them. For example, Sauter and Melzer [SM05]
found that BPEL4WS LRT (the predecessor of WS-BPEL) essentially provides the same
functionality as WS-BusinessActivity (WS-BA, part of WS-CO), but lacks support for
remote activities. More importantly, BPEL4WS LRT only supports static sets of par-
ticipants while WS-BA allows to adapt the set of participants dynamically. Little and
Feingold [LF03a] compared WS-Tx (the predecessor to the WS-Coordination family)
and BTP. They found that WS-CO provides a better separation of business and trans-
action logic. Since, WS-CO builds upon a large family of Web Service standards it only
needs to define the transaction management protocol. In contrast, BTP needs to define
many aspects which are not related to transaction management. Furthermore, they
argue that WS-CO may better leverage transaction management in existing back-ends
than BTP does.

The OASIS’ Web Services (WS) Transactions protocol suite defines the framework
WS-Coordination [FJ07] for coordinating the use of multiple web services as well as the
standards WS-AtomicTransaction [LW07] for short-lived activities and WS-Business-
Activity [FL07] for long-running activities. WS-AtomicTransaction implements the
well-known two-phase commit protocol. WS-BusinessActivity (WS-BA) supports nes-
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ted scopes and relaxed failure handling. That is, the parent scope may continue the
transaction if a child fails. WS-BA introduces the concept of “tentative” operations,
which require a confirmation, and supports the compensation of completed activities.
Ouyang et al. [OSM01] propose an optimistic commit protocol for conversational trans-
actions. Conversational transactions provide all-or-nothing semantics to a set of inde-
pendent component transactions. In their model, component transactions – more pre-
cisely, the attached business logic – may only be undone until some deadline. They ar-
gue that neither two-phase commit [Gra78], the Transaction Internet Protocol [EKL98]
nor the optimistic commit protocol proposed by Levy et al. [LKS91] are well suited
for such conversational transactions. Therefore, Ouyang et al. propose the concept
of transactions in update. Before a component transaction passes its deadline, the cor-
responding e-service repeats the business logic and sends an updated response to its
parent e-service.

Zhao et al. [ZMMS05] propose to first gather reservations for business tasks and
show how reservations may be integrated in protocols such as WS-Tx and WS-Coordi-
nation [FJ07]. The business logic is only executed after all needed reservation are ac-
quired. Thus, other transactions do not see intermediate results as in sagas [GMS87], In-
terBase [ELLR90], the Web Services transaction protocols (BTP [FHC04], WS-Business-
Activity [FL07] and WS-BPEL 2.0 [AAA+07]). Additionally, compensation handlers
are only needed to undo reservations.

In [CBC06], Choudry et al. argue that protection from potentially unsuccessful
transactions through timeouts may increase the failure rate the longer a transaction
lives. They propose that a client pays some fee to held up expired bookings to let the
transaction finish successfully. Bookings may be weighted to acknowledge the differ-
ent importance of different services. As in flexible transactions [ELLR90], the transac-
tion coordinator may consider alternative providers to tolerate denied bookings.

Co-Allocation in Grid Environments. While several systems were developed for co-
allocating multiple resources (cf. Sec. 10.2), most of them ignore the autonomous nature
of Grid resources. That is, these systems do not handle reservation failures appropri-
ately if at all. Therefore, we concentrate on research which emphasizes that particular
characteristic of Grid resources.

Snell et al. [SCJG00] consider several issues arising in meta-scheduling multiple
advance reservations spanning multiple administrative domains. Depending on the
number of meta-schedulers, different behaviors are observed. The information about
the available time slots may be outdated. Thus, allocations may fail. If multiple meta-
schedulers compete for scarce resources, deadlock and livelock situations must be
handled. They propose to alleviate deadlocks by eliminating the hold and wait con-
dition [SGG04]. For livelock situations, they propose two different approaches. In the
first (non-deterministic) approach, all acquired allocations are released and the meta-
scheduler waits some random time before starting a new trial. The second method uses
preliminary reservations. The preliminary reservations need to be confirmed before a
timeout expires.
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GridARS [TNK+08] is an advance reservation-based framework for co-allocating
compute and network resources. Its co-allocation mechanism employs a basic two-
phase commit protocol, allowing the providers to abort after a timeout for confirming
preliminary reservations has expired.
In [KM05], Kuo and Mckeown present a protocol for advance reservation and co-
allocation of resources in a Grid environment. Their protocol covers the whole life
of an application run – from the reservation of the resources until the execution of the
application completes. The basic two-phase commit protocol is made non-blocking by
allowing any party to abort the transaction at any time. Kuo and Mckeown, however,
do not propose schemes for the efficient co-allocation.

HARC [Mac07] proposes a commit protocol based on Paxos Consensus [Lam01]
to improve the fault tolerance of the transaction coordinator. The transaction coordi-
nator is replaced by a set of 2F + 1 acceptors. If no more than F acceptors fail, the
protocol guarantees that both the users and the resources see the same outcome of the
co-allocation process. Like all the other co-allocation protocols, HARC focuses on the
transactional behavior of a co-allocation but on its efficiency.

Summary. We discussed several models addressing the problem of ensuring all-or-
nothing semantics of transactions in data bases [ELLR90, LKS91] and web services
management [AAA+07, FJ07, FL07]. In Grid environments, mechanisms for advance
reservation and co-allocation typically employ a two-phase commit protocol with time-
outs [TNK+08], allowing cancelations any time [KM05] or focus on improving the fault
tolerance of the coordinator [Mac07]. All of the presented prior art, however, does not
propose mechanisms for the efficient allocation of reservations. Therefore, we develop
schemes which build upon transaction models, but specifically address the issues I1–I4
raised at the beginning of this chapter.

11.3 Sequentially Allocating Resources

The general procedure for sequentially allocating resources is shown in Alg. 2. First,
the allocation order is determined (line 1). In each iteration of the main loop (lines 2
to 15), the procedure sends a reserve message for the first remaining request part
(line 3). If the reservation is granted, the reservation counter is increased (line 5) and
the algorithm continues with the next iteration. In case of a failure, the procedure tries
to find alternative reservation candidates for a subset of all request parts (line 7). If an
alternative co-reservation candidate was found, the changed reservations are canceled
(line 9) and the reservation counter is decreased accordingly (line 10). If no alternative
was found, all previously obtained reservations are canceled (line 12) and the algo-
rithm returns with a failure (line 13). Before starting a new iteration, the algorithm
verifies if any previously granted preliminary reservation has expired, decreases the
reservation counter accordingly (line 14) and recalculates the allocation order (line 15).
If all parts have been granted, preliminary reservations are confirmed (line 16). Finally,
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Algorithm 2: General procedure for sequentially allocating resources.
calculate allocation order for candidate CAS1

while ¬ all parts have been successfully reserved do2

send reserve message for 1st remaining request part3

if reservation successful then4

increase reservation counter5

else6

search for alternative co-reservation candidate7

if search successful then8

cancel changed reservations9

decrease reservation counter accordingly10

else11

cancel previously obtained reservations12

return FAILURE13

decrease counter for expired preliminary reservations14

recalculate allocation order for the remaining parts of CAS15

confirm preliminary reservations16

return SUCCESS17

the algorithm returns success (line 17). The algorithm contains two main building
blocks:

1. the calculation of the allocation order (lines 1 and 15), and

2. the search for alternative co-reservation candidates (line 7).

Next, we describe the calculation of the allocation order in detail (cf. Section 11.3.1).
Thereafter, we present schemes for searching alternative co-reservation candidates (cf.
Section 11.3.2).

11.3.1 Calculating the Allocation Order

The participants in a co-reservation – the users and the resource providers – are con-
cerned with different performance metrics of an allocation order. Users are interested
in a high total reservation success rate and a low cancelation fee. Providers want to
minimize the impact on the utilization of the resources. Note, these goals may be
the same or similar to the objectives used for finding a mapping of requests to co-
reservation candidates (cf. Chapter 10).

Let ICAS denote the set of the numbers of the request parts in CAS , i.e.,

ICAS = {i | ∃〈rl, sk, t, d, q〉 ∈ CAS with i = l} . (11.1)
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We define an allocation order as the function

ψ : ICAS −→ [1, |ICAS |] .

That is, the allocation step of part i is denoted by the expression ψ(i). Accordingly, the
expression ψ−1(j) denotes the request part, which is processed at the j-th allocation
step. Let n denote the number of request parts to be reserved, i.e., n = |CAS| = |ICAS |.
The set of all allocation orders defined over ICAS is denoted by AOn.
Next, we formally define the main performance metrics. Thereafter, we present several
ordering schemes and discuss their ability to satisfy the goals of the stakeholders.

Performance Metrics

The terms pcosti , ppeni , pesri and pfiti denote the i-th request part’s reservation cost, reser-
vation cancelation penalty, estimated reservation success rate and reservation fitness,
respectively. We denote the success probability of allocating resources to the i-th re-
quest part (i ∈ ICAS ) during the j-th allocation step by the term p(i, j). The expression
p(i, j) denotes the probability that the allocation of resources to the i-th request part
fails during the j-th step, i.e., p(i, j) = 1 − p(i, j). Note, we assume that allocations of
resources to different request parts are independent of each other. Thus, their success
probability is independent as well.

Total Reservation Success Rate. For a given allocation order ψ, we define the success
probability Pψ

sq(j) of the sequence of the first j allocation steps as

Pψ
sq(j) =

j∏
i=1

p
(
ψ−1 (i) , i

)
. (11.2)

The probability that the sequence from allocation step u to step v for a given order ψ
fails is defined as

Pψ

sq(u, v) =
v∏
i=u

p
(
ψ−1(i), i

)
.

The average total reservation success rate P∅(n) is defined by Eq. (11.3).

P∅(n) = 1
|AOn|

∑
ψ∈AOn

Pψ
sq(n) (11.3)

Utilization. Because reservations block resources requested by other jobs, providers
want to minimize both the number of cancelations and the time between the approval
of a reserve message and the reception of a cancel message. For the sake of simplicity,
we assume that the failure of a single allocation step j results in canceling the previ-
ously granted reservations of the steps 1 to j − 1. Furthermore, we assume that the
loss function ls(i, j, k) specifies the costs incurred by a reservation of part i granted at
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step j and canceled at step k. We define the partial impact Uψ
p (i) on the utilization of

the resource provider addressed by part i as

Uψ
p (i) =


n−1∑
j=ψ(i)

Pψ
sq(j) p

(
ψ−1(j+1) , j+1

)
ls (i, ψ(i) , j+1) if ψ(i)< n ,

0 otherwise .

(11.4)

If the request part i is processed during the first n−1 steps (ψ(i) < n), the order impacts
the utilization. Each summand is composed of three factors: (1) the probability Pψ

sq(j)
that the first j allocation steps succeed, (2) the probability p(ψ−1(j + 1), j + 1) that the
next allocation step j + 1 fails, and (3) the cost ls(i, ψ(i), j + 1) incurred by that failure.

Finally, the average total impact on the utilization of the resource provider ad-
dressed by request part i is defined as

U∅(i) = 1
|AOn|

∑
ψ∈AOn

Uψ
p (i) . (11.5)

Cancelation Fees. Cancelations of already granted reservations may induce some pen-
alty, i.e., a cancelation fee. Naturally, a user is interested in minimizing the total cance-
lation fees.

Let ppeni denote the fee for canceling the reservation of request part i. For a given
allocation order ψ and an allocation step k, we define the partial cancelation fee Fψ

P (k)
of step k as

Fψ
p (k) =

k−1∏
j=1

p
(
ψ−1(j), j

) ·
k−1∑
j=1

ppenψ−1(j)

 · p (ψ−1(k), k
)
.

The three factors are (1) the probability that the k-th allocation step is reached, (2) the
aggregated cancelation fee of the steps 1, . . . , k − 1, and (3) the probability that the k-
th allocation step fails. The expected cancelation fee of a single allocation order ψ is
defined as

Fψ
E =

n∑
k=2

Fψ
P (k) . (11.6)

Finally, the average total cancelation fee considering all possible allocation orders is
defined as

F∅ = 1
|AOn|

∑
ψ∈AOn

Fψ
E . (11.7)

Ordering Schemes

The overall goal of the ordering schemes is to achieve a high satisfaction wrt. the per-
formance metrics presented above. While it is possible to calculate a global optimum,
this may simply take too much time. Hence, the efficient calculation of the allocation
orders requires heuristics which satisfy the goals to some degree. We present the fol-
lowing ordering schemes
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– random order,

– smallest success probability first order,

– earliest start time first order,

– smallest cancelation fee first order, and

– longest confirmation time first order.

Random Order. The allocation order ψ is randomly generated. Thus, the average
total reservation success rate, the average total impact on the utilization of a resource
and the average total cancelation fee are calculated as in Equations (11.3), (11.5) and
(11.7), respectively.

Smallest Success Probability First Order. Clearly, the earlier failing candidates are
identified,

– the earlier alternatives may be looked up,

– the fewer granted reservations need to be canceled, and

– the smaller will the cancelation fee be.

Ordering the n request parts by their increasing estimated success probability is a
means to achieve these properties. The metrics total reservation success rate, partial
impact on the utilization of the resources and the expected cancelation fee of a given
order ψ are calculated with the formulas given in Equations (11.2), (11.4) and (11.6),
respectively.

Earliest Start Time First Order. A co-reservation candidate specifies a start time pstti
for each request part i. The start times may differ if the application requesting the co-
reservation is a job chain. In that case, it may be needed to acquire the reservations in
the order of increasing start times. This is particularly important for parts with small
advance booking times, i.e., the difference of the start time and the current time. An
allocation order with increasing start times can easily be determined.

The properties total reservation success rate, partial impact on the utilization of the
resources and the expected cancelation fee of a given order ψ are calculated with the
formulate given in Equations (11.2), (11.4) and (11.6), respectively.

Smallest Cancelation Fee First Order. In order to minimize the total cancelation fee,
the request parts may be sorted from small to high cancelation fees. Because the esti-
mated success rate pesri of a request part may not correlate with the part’s cancelation
fee, the proposed ordering could contradict the expectation of minimizing the total
cancelation fee.
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Example 11.1 (Smallest Cancelation Fee First Order)
Consider two cases:

(A) for each request part i the cancelation fee ppeni equals the estimated success rate at
step one, i.e., p(i, 1), and

(B) for each request part i the cancelation fee ppeni equals the estimated success rate of
part n+ 1− i at step one, i.e., p(n+ 1− i, 1).

In both cases, we define the estimated success rate as

p(i, j) = (1− (j − 1)αi) pesri .

Let the co-reservation contain three parts with the initial estimated success rates pesr1 =
0.85, pesr2 = 0.90, pesr3 = 0.95 and α1/2/3 = 0.01.

Applying the random order, the average total cancelation fees F∅ (cf. Eq. (11.7))
are 0.264 and 0.259 for the cases (A) and (B), respectively. With the scheme smallest
cancelation fee first, the expected cancelation fees FE (cf. Eq. (11.6)) are 0.170 and 0.335
for the cases (A) and (B), respectively. In fact, the scheme smallest success probability
first achieves the lowest cancelation fees with 0.170 and 0.185 for the cases (A) and (B),
respectively.

Longest Confirmation Time First Order. The approach of charging a penalty for can-
celing a reservation may be enhanced by the following processing steps

1. a provider acknowledges a reserve message with a preliminary reservation,

2. the broker must confirm this reservation until some timeout (set by the provider)
to secure the reservation.

A client may cancel an unconfirmed preliminary reservation without any charge. If
the provider does not receive a confirmation until the timeout expires, the preliminary
reservation is automatically canceled. In contrast, canceling a confirmed reservation
incurs a penalty.

The value of the timeout may correspond to the competition for resources. Since
resources blocked by a preliminary reservation must not be allocated to other requests,
a provider may adapt the timeout to its current load. For example, if a provider re-
ceives many requests, it may ask for a short timeout to minimize the number of denied
requests.

Assuming that the time tacq needed to acquire a preliminary reservation is the same
for all request parts and all steps, the order ψ for acquiring the reservations must satisfy
the following condition

∀i : i < n =⇒ ptmoψ−1(i) ≥ tacq(n− i) , (11.8)

where ptmoψ−1(i) denotes the timeout associated with the request part allocated at step i.



142 Chapter 11. Allocating Resources to a Co-Reservation Candidate

The scheme longest confirmation time first generates an allocation order which may
satisfy Eq. (11.8). In certain cases, however, no allocation order may satisfy the condi-
tion. This is the case, if two (or more) preliminary reservations require a confirmation
before the timeout value tacq.

Given an allocation order ψ, which satisfies Eq. (11.8), the total reservation success
rate Pψsq and the partial impact on the utilization of the resources Uψ

P are calculated by
Equations (11.2) and (11.4), respectively. The expected cancelation fee FψE is zero.

Hybrid Schemes. While the above schemes demonstrate that it is easily possible to
optimize a single performance metric, a real scenario may require to optimize multiple
metrics. In that case, an appropriate means such as a utility function aggregating mul-
tiple metrics or Pareto-optimality may be used. Hybrid schemes may also integrate the
sequential and the concurrent processing of request parts.

11.3.2 Alternative Co-Reservation Candidates

If the allocation of resources to a co-reservation candidate fails, the reservation proce-
dure derives alternative candidates of a subset of all request parts (line 7 of Alg. 2).
The benefit of searching for alternatives is, that some characteristics of the original co-
reservation candidate may be kept. In particular, already granted reservations may
be kept, which can be important if the competition is high for those request parts.
Furthermore, retaining as many granted reservations as possible supports limiting the
cancelation fees.

In this section, we present schemes for deriving subsets of all request parts for
which alternative candidates are determined. The actual mechanisms for determin-
ing such alternatives were discussed in Chapter 10.6. We present the following four
schemes:

ARP – The scheme all request parts always determines alternatives for all request parts.

FRRP – The scheme failed and reserved request parts derives alternatives for the failed
part and some of the already reserved ones.

FNRP – The scheme failed and not reserved request parts determines alternatives for the
failed part and some of the not yet reserved parts.

FTSD – The scheme failed and temporally/spatially dependent request parts acknowledges
the temporal and spatial dependencies of the request.

Scheme – All Request Parts. The scheme all request parts (ARP) determines a com-
plete new co-reservation candidate. That is, any new candidate of a request part must
not be the same as the old one for that request part. Thus, all already reserved candi-
dates need to be canceled. Since determining a complete new co-reservation effectively
requires to execute the optimization procedure (cf. Chapter 10), this scheme may only
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be used if the optimization does not consume too much time. While the scheme incurs
a (possibly) large overhead and leads to less optimal co-reservation candidates, it may
be easily implemented.

Scheme – Failed and Already Reserved Request Parts. The scheme ARP is far too
restrictive, because it always cancels all already gathered reservations. Particularly, if
the request parts are ordered with the scheme smallest success probability first, it would
be better to retain the reservations with the smallest success probability.

The scheme failed and already reserved request parts (FRRP) tries to retain granted
reservations by searching for alternatives of the failed part first. If no alternatives are
found, the scheme gradually widens the search horizon. That is, it incrementally adds
parts to the subset for which alternatives are looked for. The parts added are taken
from those for which reservations were already allocated. Essentially, the scheme im-
plements backtracking as illustrated in Fig. 11.1. The example of the illustration com-
prises seven reserve messages, three searches for alternative candidates, one back-
tracking and one cancel operation.
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Figure 11.1: Illustration of the scheme failed and already reserved request parts.

Because the scheme FRRP retains as many granted reservations as possible, it should
yield higher total reservation success rates, smaller cancelation fees and finish faster if
the number of backtracking steps is small.

Scheme – Failed and Not Yet Reserved Request Parts. The scheme FRRP may re-
quire to cancel already granted reservations. In contrast, the scheme failed and not yet
reserved request parts (FNRP) increases the search horizon by looking for alternative
candidates of request parts which were not yet reserved.
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First, similarly to the scheme FRRP, alternative candidates for the failed request
part are searched for. Thereafter, the subset of request parts is gradually widened. The
scheme FNRP considers the remaining request parts to relax some constraints.

Figure 11.2 shows the processing of an example request requiring six reserve mes-
sages, three searches for alternative candidates and one widening operation. The figure
also shows that the reservation order may be adapted for the new reservation candi-
dates.
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Figure 11.2: Illustration of the scheme failed and not yet reserved request parts.

The scheme FNRP shares the main benefits of the scheme FRRP – it should yield higher
total reservation success rates, smaller cancelation fees and finish faster the later the
first failure occurs. It outperforms the scheme FRRP because it does not need to cancel
already granted reservations.

Scheme – Failed & Temporally/Spatially Dependent Request Parts. In general, the
schemes FRRP and FNRP will outperform the simple scheme ARP, except if the request
parts are in temporal or spatial relationships. In that case, it is more appropriate to
widen the search horizon along the dependency graph with the failed part as starting
node.

For example, Fig. 11.3 shows the spatial relationships on its top. The data part
is connected via a network part to the second compute part (labeled CPU). The first
compute part is not dependent on any other request part. If the reservation of the sec-
ond compute part fails, the scheme failed and temporally/spatially dependent request parts
(FTSD) – like the previous ones – determines an alternative reservation candidate of
the failed part first. Thereafter, it widens the search horizon acknowledging the spatial
relationships. Thus, the search for alternative candidates may reveal other resources
for the data and network parts.
Since the schemes FRRP and FNRP only looked for new candidates of either the data
(FRRP) or the network part (FNRP), it could not find candidates located at different re-
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Figure 11.3: Illustration of the scheme failed and temporally/spatially dependent parts.

sources. For example, if the candidate of the network part is kept (scheme FRRP), only
data and compute resources at the end-points of the network link satisfy the spatial
constraints.

Clearly, the scheme FTSD increases the flexibility for finding alternative reserva-
tion candidates. Thus, it should outperform the other schemes in terms of the total
reservation success rates, the cancelation fees and number of needed reservation steps.

11.4 Concurrently Allocating Resources

The concurrent allocation mechanism, shown in Alg. 3, sends reserve messages in par-
allel for all unrequested parts (line 2), collects responses (line 5) and acts upon them
(lines 7 to 14). Besides sending reserve messages in parallel, a major difference to the
sequential procedure is the necessity to keep track of the current state of a request
part. In addition to the obvious states unrequested, requested, denied, granted, canceled
the states expired and confirmed are needed if granted reservations are preliminary only.
Figure 11.4 illustrates the transitions between different states.
Besides the states, the algorithm requires knowledge of the timeout ptmoi of each pre-
liminarily granted request part i. A timeout value of zero encodes that the granted
reservation is not preliminary and no confirmation is needed. Values greater than zero
simply specify the UNIX epoch at which it expires. We assume that no messages are
lost and that messages are received in the same order as they are sent.

While the concurrent algorithm is similarly structured as the sequential procedure
(cf. Alg. 2), it also differs in certain aspects. First, it does not calculate an allocation or-
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Figure 11.4: State changes of a request part with the concurrent allocation procedure.

der. Second, it keeps track of the yet to be reserved request parts by means of the state
unrequested. Third, it avoids infinite waiting for responses by an additional response
time limit τ . Forth, if a failure – a denied reserve message or response timeout – hap-
pens, it searches for alternative candidates. Fifth, it always sends a cancel message to
parts in the state requested, too. Thus, we avoid ambiguous states of parts with mes-
sages in transit. Last, preliminary reservations with too short confirmation timeouts
are canceled.
Next, we adapt the performance metrics presented for the sequential algorithm (cf.
Section 11.3). Thereafter, we present different schemes for determining alternative co-
reservation candidates.

Performance Metrics

The terms pcosti , ppeni , pesri and pfiti denote the i-th request part’s reservation cost, reser-
vation cancelation penalty, estimated reservation success rate and reservation fitness,
respectively. Note, we assume that allocations of resources to different request parts
are independent of each other. The set ICAS is defined as in Eq. (11.1).

We assume that determining alternative candidates consumes one round and al-
ternatives’ properties pcosti , ppeni , pesri and pfiti will have the same values. The linearly
decreasing success probability p(i, j) (cf. Example 11.1) is kept as if the candidate was
not changed. The term p(i, j) denotes the probability that the reservation of request
part i fails in round j.

Reservation Success Rate. The reservation success rate may be recursively calculated
by constructing a tree of state changes. Figure 11.5 shows an example tree for two re-
quest parts. For the sake of brevity, we assume the only possible states are unrequested,
granted and denied. Accordingly, the permitted state changes are unrequested 7−→granted,
unrequested 7−→ denied and denied 7−→ unrequested. The first two state changes are the
result of sending the message reserve. The third state change happens when alterna-
tive reservation candidates are looked for. Each node is marked with the states of the
requests (upper row) and a probability (lower row). The states of the requests parts
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Algorithm 3: General procedure for concurrently allocating resources.
while some parts are in state unrequested do1

send reserve messages for all unrequested request parts2

initialize timeout τ for response to reserve messages3

while ¬ (received all responses ‖ response time τ expired) do4

collect response and set state (granted or denied)5

set timeout ptmoi for preliminarily granted reservations6

if (some parts were denied ‖ are still requested) then7

search for alternative co-reservation candidate8

if search successful then9

send cancel message to parts with changed candidate10

set state of denied, requested and changed parts to unrequested11

else12

send cancel message to parts in state granted and requested13

return FAILURE14

cancel preliminary reservations with insufficient timeouts ptmoi15

confirm preliminary reservations16

return SUCCESS17

are abbreviated, i.e., U for unrequested, G for granted and D for denied. For example, the
mark G :D denotes the state granted for the first part and the state denied for the second
part. The probability φ of a node denotes the likeliness that this node is reached in
a sequence from the root node. The likeliness to reach a node at depth2 k for a state
change of request part i is calculated by

φ(k, i) =


1 if k = 0 ,
φ(k − 1, i) if denied 7−→ unrequested ,
φ(k − 1, i) · p(i, k) if unrequested 7−→ granted ,
φ(k − 1, i) · p(i, k) if unrequested 7−→ denied .

Usually, the tree has an infinite depth. We calculate the reservation success rate by
adding the likeliness values φ of all nodes in the state G : · · · : G (nodes marked red
in Fig. 11.5) up to a given depth k. The depth is either given explicitly or implicitly
through a threshold on the likeliness value. That is, only nodes with a likeliness value
greater than some value are considered.

Impact on the Utilization of a Resource. Because reservations block capacity re-
quested by other jobs, providers want to minimize both the number of cancelations

2The number of the processing round or step corresponds to the depth in the tree.
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Figure 11.5: Tree of state changes for calculating the reservation success rate.

and the time between the approval of a reservation request and the reception of a can-
celation request. Particularly, if granted reservations are preliminary, providers wish
to receive potential cancelations as soon as possible, because they are not compensated
for the loss incurred by denying other requests. In general, it is difficult to determine
a-priori whether the sequential or the concurrent procedure has a larger impact on the
utilization of a resource.

The impact on the utilization of a resource can be calculated by a similar approach
as the reservation success rate (see above). Particularly, we adapt the tree of state
changes by adding the loss function ls(i, j, k) for each request part (separated by a
colon, middle row). The term ls(i, j, k) denotes the costs incurred by a reservation
of part i granted at step j and canceled at step k. The notation of the states (upper
row) and the calculation of the likeliness of nodes (lower row) is kept unchanged. Fig-
ure 11.6 shows the adapted tree of state changes.
The impact of a reservation of part i canceled at depth k is calculated by considering
all nodes marked with the state G for that part. For all these nodes, the product of
the likeliness value and the loss value is accumulated. For example, canceling the
reservation of request part 2 in round 4, all red elements are used in the calculation of
the cancelation fee. Note, if the resource assigned to a request part differs at different
nodes, the nodes must be partitioned accordingly. Such situations may appear if a
request part was mapped to a different resource in the search for alternative candidates
(cf. Section 11.4.1).

Cancelation Fees. Cancelations of already granted reservations may induce some pen-
alty, i.e., a cancelation fee. We adapt the tree implemented for the calculation of the
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Figure 11.6: Tree of state changes for calculating the impact on the utilization.

impact of a reservation (cf. Fig. 11.6) by replacing the loss values ls(i, j, k) with the can-
celation penalties ppeni . The adapted tree is shown in Fig. 11.7. The cancelation fee of a
single request part is calculated in the same way as the impact on the utilization of a re-
source (see above). The cancelation fee of a co-reservation is the sum of the cancelation
fees of all request parts.

11.4.1 Alternative Co-Reservation Candidates

If the allocation of resources to a co-reservation candidate fails, the reservation proce-
dure (cf. Alg. 3) derives alternative candidates of a subset of all request parts. The
benefit of searching for alternatives is, that some characteristics of the original co-
reservation candidate may be kept. In particular, already granted reservations may
be kept, which can be important if competition is high for those request parts. Fur-
thermore, retaining as many granted reservations as possible supports limiting the
cancelation fees.

In this section, we present schemes for deriving subsets of all request parts for
which alternative candidates are determined thereafter. The actual mechanisms for
determining such alternatives are discussed in Section 10.6. We present the following
three schemes:
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Figure 11.7: Tree of state changes for calculating the cancelation fee.

ARP – The scheme all request parts always determines alternatives for all request parts
regardless of whether resources to some candidates were already reserved.

FEGP – The scheme failed, expired and granted request parts derives alternatives for the
failed and expired parts as well as some of the already reserved ones.

FTSD – The scheme failed and temporally/spatially dependent request parts acknowledges
the temporal and spatial dependencies among the request parts.

Scheme – All Request Parts. The scheme all request parts (ARP) determines a com-
plete new co-reservation candidate. That is, any new candidate of a request part must
not be the same as the old one for that request part. Thus, all already reserved candi-
dates need to be canceled. Since determining a complete new co-reservation effectively
requires to execute the optimization procedure (cf. Chapter 10), this scheme may only
be used if the optimization does not consume too much time. While the scheme incurs
a (possibly) large overhead and leads to less optimal co-reservation candidates, it may
be easily implemented.
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Scheme – Failed, Expired and Granted Request Parts. The scheme ARP always can-
cels all already gathered reservations. While this mechanism is easy to implement, it is
far too restrictive.

The scheme failed, expired and granted request parts (FEGP) searches for alternatives
of the failed, expired and granted request parts. If no alternatives are found for the
initial set of failed and expired parts, the scheme gradually widens the search horizon.
That is, it incrementally adds parts to the subset for which alternatives are looked for.
The parts added are taken from those for which reservations were already allocated.
Therefore, the scheme implements backtracking as illustrated in Fig. 11.8. The exam-
ple of the illustration comprises eight reserve messages, three searches for alternative
candidates and one cancel operation.

RVC 1

time

RVC 2 RVC 3 RVC 4
original reservation

candidates

re
s
e
rv

a
ti
o
n

s
te

p
s

succ succ fail

RVC 3.1

fail

RVC 3.2RVC 2.1

succ

succ

found candidates 3.1 and 4.1

cancel

no alternative candidate foundwiden

found candidates 2.1 and 3.2

candidates 2 and 2.1 differ

allocated candidates:

1, 2.1, 3.2 and 4.1

fail

RVC 4.1

succ

Figure 11.8: Illustration of the scheme failed, expired and granted request parts.

Because the scheme FEGP retains as many granted reservations as possible, it should
yield higher total reservation success rates, smaller cancelation fees and finish faster if
the number of widening operations is small.

Scheme – Failed & Temporally/Spatially Dependent Request Parts. In general, the
scheme FEGP will outperform the simple scheme ARP, except if the request parts are
in temporal or spatial relationships. In that case, it is more appropriate to widen the
search horizon along the dependency graph with the failed and expired parts as start-
ing nodes.

For example, Fig. 11.9 shows the spatial dependencies on its top. The data part
is connected via a network part to the second compute part (labeled CPU). The first
compute part is not dependent on any other request part. If the reservation of the sec-
ond compute part fails, the scheme failed and temporally/spatially dependent request parts
(FTSD) – like the previous one – determines an alternative reservation candidate of the
failed and expired part first. Thereafter, it widens the search horizon acknowledging
the spatial relationships. Thus, the search for alternative candidates may reveal other
resources for the data and network parts.

Since the scheme FEGP does not automatically acknowledge the request’s internal
structure, it might not find candidates located at different resources. For example, if
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the candidate of the network part is kept (widening step in Fig. 11.8), only data and
compute resources at the end-points of the network link satisfy the spatial constraints.
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Figure 11.9: Illustration of the scheme failed and temporally/spatially dependent parts.

Clearly, the scheme FTSD increases the flexibility for finding alternative reservation
candidates. Thus, it should outperform the other schemes in terms of the total reserva-
tion success rates, the cancelation fees and number of needed reservation steps.

11.5 Summary

Both the sequential and the concurrent mechanism may trade the optimality of the
allocated co-reservation with the efficiency of obtaining it. That is, if one or more can-
didates may not be reserved, the optimal alternative co-reservation candidate requires
that a complete new solution is derived by the GRS. Determining new candidates only
for the failed parts may result in non-optimal candidates, but likely yields a higher
efficiency due to fewer canceling operations. The number of search operations may be
slightly smaller for the concurrent scheme, because failures might be detected earlier
as in the sequential scheme. Also, the number of reservation steps will generally be
smaller for the concurrent scheme, simply because it exploits parallelism. If the esti-
mated success rate of the candidates decreases rapidly with the number of reservation
steps, the total reservation success rate of the concurrent scheme will be higher. Be-
cause the sequential mechanism is well suited to control the cancelation cost, it should
be used if granted reservations require a cancelation fee. If not all parts require a can-
celation fee, the schemes can be combined.

The proposed mechanisms only take the allocation efficiency and the impact of
temporary reservations into account. Component failures such as crashing or non-
responding services were not in the focus of this chapter, mainly because these were
extensively studied in research on distributed systems, specifically on failure models,
consensus and transaction commit.



Chapter 12

Using Confirmed Co-Reservations

We introduce the concept of Virtual Resources and describe basic and advanced func-
tions for using confirmed co-reservations.

12.1 The Concept of Virtual Resources

We generalize the resource reservation model by introducing Virtual Resources (VR),
which correspond to confirmed co-reservations. Virtualization is a common concept
found in Grid middleware [CFK+98, RLS03] and many other application scenarios like
the Java 2 Runtime Environment [Jav04] or VMware [Vmw08]. In all these cases, an
abstraction of resources – computers, operating systems, and services – is provided.
The abstraction makes it easier to support the integration of new resources with new
properties. Hence, mechanisms building atop Virtual Resources can be deployed on any
entity which fits into this concept of abstraction.

By viewing a confirmed co-reservation as a Virtual Resource, a co-reservation may
be subject to subsequent reservation requests, thereby allowing nested reservations.
Besides abstracting from resources, virtualization may be used to extend the function-
ality of resource management systems. This enables advanced usage scenarios such as
customized workload scheduling within co-reservations and transparent fault recov-
ery for atomic reservations.

Virtual Resources are built atop physical or virtual resources. The concept of Virtual
Resources is realized by the following basic functions any VR must provide:

– reserving a time-qos-slot of the VR (reserve),

– canceling a confirmed reservation (cancel),

– submitting workload to a confirmed reservation (submit),

– releasing workload from a confirmed reservation (release), and

– querying for the current and the future status (query and probe).

153
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Figure 12.1: Composition of a Virtual Resource (VR).

Enhanced usage scenarios are possible if a VR supports advanced functions1:

– allowing customized workload scheduling within a reservation (execute and ter-
minate), and

– managing resource allocation faults (change).

Figure 12.1 shows the layered model of a Virtual Resource. The lower two layers
build the core of a VR. The upper layer provides means for the integration of multi-
ple resources into a single virtual object and for facilitating transparent fault recovery.
Bottom-up, we have the following components:

Resource Management of a Physical/Virtual Resource: A physical/ virtual resource
is managed by an admission control system (such as Maui [JSC01] or CCS [KR98])
for handling the access to compute resources. It must provide functions for re-
serving a specific amount of the physical or virtual resource for a given time
windows and for assigning workload to confirmed reservations. Functions for
querying its current and future status are also necessary. If they are not available,
they can be emulated in the Abstraction Layer.

Abstraction Layer: This layer provides a conversion from the (proprietary) world of
a specific resource to an instantiation of a VR and vice versa. The former con-
version is used to transform the status information, while the latter provides an

1See Section 12.3 for a detailed discussion of their functionality.
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adaptation of various functions to the (proprietary) management system. Ad-
ditionally, the abstraction layer may enforce access policies employed for inte-
grating resources into a Grid environment, e.g., Globus authorization [FKTT98].
Furthermore, functionality missing in a resource’s management system can be
added by separate plug-ins or by techniques as described in [RSR03].

Integration Layer: The integration layer provides two features. First, it integrates
multiple resources into a single virtual object, thereby allowing a consistent mod-
eling of the underlying resources, i.e., estimating the current and the future status
of the resources. Second, because a client only interacts with this layer, transpar-
ent fault recovery may be implemented here if the underlying resource manage-
ment system does not provide means for substituting faulty resources.

12.2 Basic Functions

The basic functions for managing co-reservations are listed below.

Function reserve: Co-reservations are requested with the function reserve (cf. Chap-
ter 7 for specifying requests). Because a co-reservation is seen as Virtual Resource,
it may be subject to subsequent co-reservation requests. Hence, nested Virtual
Resources may be constructed.

Function cancel: A co-reservation, including all atomic reservation parts and work-
load bound to them, is canceled with the function cancel. However, it may be
possible to retain the workload within the scope of the resource management sys-
tem from which the reservation was granted and let the workload be processed
in best-effort manner.

Function submit: Workload, e.g., compute jobs or data transfers, is bound to reserved
resources by the function submit. This is a generalization of submission func-
tions found in common batch management systems such as OpenPBS [Hen95],
LSF [ZZWD93] or CCS [KR98].

Function release: Workload is removed from a co-reservation by the function release.

Functions query & probe: Status information about the resources within a co-reserva-
tion (e.g., OS type, CPU speed, RAM size, network bandwidth & latency, idle or
busy, etc.) and the workload of a co-reservation (e.g., task owner, runtime limit,
required RAM size, required network bandwidth, waiting/running, etc.) is ob-
tained by the functions query & probe. The layered structure of the Virtual Resource,
allows both an efficient access to the information and fine-grained authorization
for receiving different levels of details.
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12.3 Advanced Functions

Advanced functions include mechanisms to schedule workloads from external com-
ponents (cf. Section 12.3.1), to aggregate resources (cf. Section 12.3.2), and to change
resources for implementing fault recovery (cf. Section 12.3.3).

12.3.1 External Workload Scheduling

Todays local resource management systems only allow to bind workload to reserva-
tions, but the actual scheduling of this workload is performed by the local scheduler.
This is sufficient for workloads containing independent entities – i.e., single jobs or
data transfers – or if the reservation’s owner is satisfied with local scheduling policies.

In contrast, workloads whose entities depend on each other may be handled more
efficiently by an external scheduler. Essentially, a reservation owner should be allowed
to configure (i.e., optimize) the scheduling policies applied to his workload according
to his needs.

Adjusting local scheduling policies to the user’s needs can be achieved in two
ways. First, the local scheduler can be reconfigured such that resources and work-
load bound to a reservation are managed in a different way. For example, the Maui
scheduler [JSC01, Mau04] allows to change the calculation of job priorities and to ad-
just scheduling properties by attaching quality-of-service levels both to reserved re-
sources and jobs. In general, this approach depends on the built-in flexibility in the
local resource management systems.

Second, the local scheduler can be bypassed or switched off for the reserved re-
sources. Then an external system takes over the control over admission of workload
to the reserved resources. We favor this approach, because it is more flexible in which
scheduling algorithm can be used.

A VR’s resource management system essentially must provide a query function to
obtain status information about the resources and the workload (cf. Section 12.2) and
functions for executing and terminating workload elements. The latter functions are
listed below.

Function execute: The execution of a workload element (on a subset of the reserved
resources), e.g., starting a compute job, starting a data transfer, etc., is started by
the function execute.

Function terminate: The execution of a workload element is stopped by the function
terminate.

12.3.2 Resource Aggregation

Although, the Grid potentially provides an abundant number of resources, reservation
requests may fail because no single resource provider matches the requested amount.
In such situations a reservation request requiring a large capacity can be split into
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several atomic reservation requests, each requiring a smaller amount of capacity. This
requires, however, that the considered workload may be split into smaller portions
and distributed to several resources. Due to the many constraints and side-effects, the
splitting is a difficult task by itself which must be done by the requester.

The integration layer of the VR may provide a consistent view of multiple atomic
reservations. Thus, a user does not notice the scattering of a reservation over multi-
ple resources. The integration layer may also implement load balancing strategies to
execute a workload as efficiently as possible.

Another application of resource aggregation capabilities is the adaptation of the
Virtual Resource’s capacity to variable workload demand. For example, in utility com-
puting demand predictions [AC05] may be used to increase/decrease the performance
of a VR by transparently adding/removing atomic reservation parts.

12.3.3 Fault Recovery

In practice, a situation might occur where the reserved resources cannot be claimed,
i.e., by executing workload entities on them. This may be due to resource defects or
due to other workload elements that claim the requested resources with a higher pri-
ority. When the resource provider is able to substitute the missing resource by some
spare one, the problem can be solved locally. Otherwise the whole reservation (or
parts thereof) may be moved to another provider by replacing some atomic reser-
vation parts. We follow the latter approach, because it does not depend on specific
features provided by the local resource providers. If no alternative resource is avail-
able, the workload processing still may continue in best-effort manner or the whole
co-reservation will be canceled. Which policy is appropriate depends on the workload
and the user’s requirements.
User dependent fault recovery may be implemented by associating fault recovery rules
with a co-reservation request. These rules give the integration layer guidelines on how
to cope with faults. The following example illustrates a co-reservation with two atomic
parts A1 and A2 which both have been confirmed, but failed afterwards. In this case,
the following recovery rules will be applied.

A1: fault recovery =
confirmed & unavailable --> reissue request;
requested & failed --> done, cancel co-reservation

A2: fault recovery =
confirmed & unavailable --> done, continue in best-effort;
requested & failed --> done, continue in best-effort

When part A1 becomes unavailable, an alternative resource is looked for (reissue
action). If the search fails, part A1 changes its status to done (cf. Fig. 6.1) and the
whole co-reservation is canceled. In contrast, if part A2 becomes unavailable or the
original request failed, the workload bound to the co-reservation is handled in best-
effort manner.
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Chapter 13

Summary

This thesis proposes CORES – a generic framework for specifying, processing and us-
ing co-reservations of resources in the Grid. The developed mechanisms acknowledge
the characteristics of Grid environments – most importantly the autonomy of the re-
sources and the lack of global information – and provide rich means to balance the
goals of all stakeholders. Particularly, CORES provides

– a mathematical formulation of the co-reservation problem,

– a simple yet powerful language for describing co-reservation requests and re-
sources,

– a versatile mechanism for determining the future status of the resources,

– an optimization approach for mapping requests to co-reservation candidates,

– goal-driven mechanisms for allocating resources to a co-reservation candidate,
and

– a concept for embedding reservations into Grid environments.

It is easy to see, that the problem of reserving multiple resources in advance can be
modeled as optimization problem. The very generic form

min f(x)
subject to h(x) = 0 and g(x) ≥ 0

of an optimization problem, however, is of little use. Therefore, this thesis provides the
means to define the functions h(x), g(x) and f(x) at the necessary – yet convenient to
use – level of detail.

The mathematical formulation (cf. Chapter 5) of the co-reservation problem in-
troduces the concept of properties which capture information about the requests and
the resources. This information may depend on the problem variables composing the
vector x ∈ TDQL, where TDQ is the domain space of a single atomic request and L is
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the number of parts of a co-reservation. In this thesis, the variables were the start time
(domain T ), the duration (domain D) and the service level (domain Q) of a reserva-
tion. The properties are used to define both the constraints (h and g) and the utility (f ).
Besides generic forms of constraints, the mathematical formulation provides means to
define temporal and spatial relationships among the parts of a co-reservation.

The Simple Reservation Language (cf. Chapter 7) builds upon the well-known
Condor ClassAds [RLS98] to support symmetric matching between requests and re-
sources. By grouping attributes into scopes and supporting attributes with pre-defined
semantics the use of the language is kept simple despite the more complex scenarios.
Relationships between request parts are facilitated by identifying each attribute with a
part and referencing them in constraints.

The mechanisms for determining the future status of the resources (cf. Chapter 9)
allow an efficient and flexible calculation of the properties. Instead of separately asking
for the future status at individual points of the space TDQ, flexible probe requests
are issued. The resources may provide as much information as their privacy policy
allows. By calculating distributions of time-qos-slots the resources can trade-off the
accuracy of the properties’ values with the computational complexity. We evaluated
the probing mechanisms through extensive simulations. The evaluation demonstrated
the effectiveness of the approach and revealed a specific workload pattern which may
cause significant job delays.

The mapping of requests to co-reservation candidates (cf. Chapter 10) demonstrates
two implementations of the mathematical formulation of the the co-reservation prob-
lem. The Integer Programming (IP) model aims at very fine-grain solutions, i.e., vir-
tually any element of the space TDQL may be selected in the mapping. The IP model,
however, severely restricts the modeling capabilities of the properties which also af-
fects the representation of the constraints and objectives. Moreover, the approach does
not scale to typical sizes of Grid environments. Because the IP model offers no ade-
quate means to reduce the complexity, it is not well suited for mapping requests to
co-reservation candidates. The Binary Programming (BP) model significantly reduces
the solution granularity by considering a configurable number of points of the space
TDQL only. This has the effect that any property can be modeled, but constraints and
objectives are limited to linear combinations of the properties still. Also, the computa-
tional complexity is greatly reduced. Eventually, it offers a simple means to trade-off
the granularity of a mapping with the computational complexity. Therefore, we claim
that BP is an adequate means for mapping requests to co-reservation candidates.

The allocation of resources to a co-reservation candidate (cf. Chapter 11) must im-
plement an all-or-nothing semantics. This problem is very similar to transaction com-
mit, which was extensively studied in the fields of distributed database management
and composition of web services. Therefore, we set the focus on goal-driven allocation
mechanisms. The aim of such mechanisms is to satisfy certain goals such as maximiz-
ing the reservation success rate, minimizing the impact of the allocation mechanism
on the utilization of the resources and minimizing the cancelation fees. We studied
these goals in the context of sequentially and concurrently allocating resources. Par-
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ticularly, we defined the above goal metrics, presented the sequential and concurrent
algorithms, and illustrated schemes for handling allocation failures.
The concept of virtual resources (cf. Chapter 12) seamlessly embeds co-reservations
into Grid infrastructures. A virtual resource contains an abstraction layer and an inte-
gration layer. The former provides a uniform interface for managing virtual resources.
The latter aggregates several resources, supports a unique view on them and may ex-
tend the basic functionality with transparent fault recovery.

13.1 Outlook

While the proposed framework already supports a wide range of scenarios, it may be
enhanced in several ways. Here, we only briefly describe the most interesting of them.

We assumed that granted reservations may be claimed without any exception. This
is favorable for clients, but puts a high burden on the resource providers. Thus, the
approach could be enhanced by letting providers vary the level of guarantee in the
interval [0, 1] ⊂ R. In the current model, the level is one for granted reservations (and
zero for denied reservations). Introducing such flexible levels of guarantees enables
further means for a provider to lower the impact of reservations, but requires addi-
tional efforts at the client side. That is, a requester might need multiple reservations
for a single part of a co-reservation to ensure that at least one may be claimed.

The proposed mapping models (cf. Chapter 10) are very generic. In specific ap-
plication scenarios, they may be tuned by using domain- and environment-specific
information for further improving the scalability. For example, knowing that the finish
time of an application is the primary optimization criteria, load data of the resources
could be used to begin the search at lightly loaded periods. Also, meta-heuristics such
as genetic algorithms, tabu search, etc. may be adopted for increasing the modeling
capabilities. Very preliminary experiments with genetic algorithms have not lead to
any performance gains tough.

Currently, all parts of a co-reservation request are considered in the optimization
mechanism. Particularly, for sequential job chains this approach seems to be to strict.
It could be sufficient to only reserve resource for the first two to three steps and add
the ones for the higher steps if the first finished. Such scheme may not only lower the
computational complexity, but also enable more dynamic applications whose control
flow depends on the results of its steps.

In this work, we exploited an all-or-nothing semantics for allocating resources to
a co-reservation candidate. In some cases, it may be interesting to employ a relaxed
atomicity criterion. For example, if some network links are not technically reservable,
a probabilistic reservation for these links may be considered. The level of guarantee
may be raised by taking backup links into account and by adapting the execution time
predictions of the whole scenario. Then, one important question is whether the reser-
vation model copes with different levels of guarantees from the beginning or whether it
works in two phases – first the “traditional” 0/1-semantics are applied, then decreased
guarantee levels are considered. Assuming that low quality-of-service requirements
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are more easily to obtain, there is a clear trade-off between reserving such low QoS
with the traditional semantics and achieving high QoS but with lower probabilistic
guarantee levels.
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Appendix A

Glossary

Assignment: See matching.

Atomic Reservation: An atomic reservation ensures that its owner may allocate the
specified resource capacity (quality-of-service) for an agreed period of time.

Atomic Reservation Candidate: An atomic reservation candidate is defined as a time-
qos-slot plus a set of properties such as the reservation fee. Often, the term reser-
vation candidate is used as abbreviation.

Atomic Reservation Request: An atomic reservation request defines the requirements
on a single resource. Often, the term request is used as abbreviation.

Backfilling: Backfilling refines FCFS by allowing some requests to be executed out of
order. On parallel computers, backfilling increases resource utilization. How-
ever, backfilling needs to be properly configured to avoid starvation of large jobs.
Usually, this is achieved by only allowing backfilling if the N jobs at the head of
a FCFS queue are not delayed by “out of order” jobs.

Backlog: The backlog quantifies the load of system at a specific moment in time, e.g.,
the current time. For parallel computers, it is defined as the sum of the remain-
ing execution times jret and jeet of the running jobs (RUN ) and the waiting jobs
(WAIT ) times the allocated number of processors jnp divided by the total num-
ber of processors N , i.e., ∑

j∈RUN
(jret jnp) +

∑
j∈WAIT

(jeet jnp)
 /N .

Batch Job: See non-reservation job.

Best-Effort Resource Management: A resource management is called best-effort if de-
cisions on workload distribution are made on all available information (e.g., the
current load of a system), but without any means to guarantee quality-of-service
levels.
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Book-Ahead Time: The book-ahead time of a request is the period of time between
the current time and the earliest start time of a reservation.

Broker: A broker matches user requests with resource offers.

Client: See consumer.

Co-Reservation: A co-reservation contains multiple atomic reservations.

Co-Reservation Candidate: A co-reservation candidate is a combination of reserva-
tion candidates, one for each part of a co-reservation request.

Co-Reservation Request: A co-reservation request is constructed by combining multi-
ple atomic reservation requests and specifying their relationships (temporal and
spatial).

Consumer: A consumer owns some piece of work to be executed on a resource or by
a set of resources. Consumers issue co-reservation requests.

Eligible Resource: See resource candidate.

Estimated Reservation Success Rate: The metric pesr states the likeliness of success-
fully reserving a time-qos-slot. The estimation is “valid” for the current time
only.

FCFS: First-Come-First-Served (FCFS) is a policy by which requests are executed in
the order of their receipt.

Fitness: The metric pfit states how well a time-qos-slot fits into a schedule.

Flexible Request: See moldable request.

Front-end: The front-end is a machine which hosts the resource’s management system.
For example, the front-end of a compute cluster hosts the scheduling system.

GT: The Globus Toolkit (GT) is a middleware for Grid computing.

GRS: See Grid Reservation Service.

Grid Reservation Service: The Grid Reservation Service (GRS) coordinates the pro-
cessing of co-reservation requests.

Local Reservation Service: The Local Reservation Service (LRS) determines proper-
ties of time-qos-slots and processes reservation requests.

Local Resource Management System: A Local Resource Management System (LRMS)
implements the policies of a provider for managing the workload at its resource.

LRMS: See Local Resource Management System.
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LRS: See Local Reservation Service.

LWF: Least Work First is a scheduling scheme where jobs are executed in the order of
their “work size”. The work size is calculated as the product of the job’s estimated
execution time and its number of processors.

Matching: A matching assigns a request to a resource.

Metric pesr: See estimated (reservation) success rate.

Metric pfit: See fitness.

Moldable Request: A moldable or flexible request specifies ranges for its parameters.
Thus, the reservation system may negotiate a suitable execution time window
and service level with the resource providers.

Non-reservation Job: A non-reservation job is the “normal” job in a batch system. It is
submitted, queued and executed without a reservation, i.e., in best-effort manner.

Normal Job: See non-reservation job.

OGF: The Open Grid Forum (OGF).

Probing: Determines the future status of resources.

Provider: A provider is an entity which offers resources.

QoS, qos, QoS-level: See Quality-of-Service.

Quality-of-Service: The quality of a service (QoS, qos, QoS-level) describes how much
capacity is requested or allocated to a request. We use the term service level in-
terchangeably for quality-of-service. Example service levels are the number of
processors and the network bandwidth.

RC: See Resource Catalog.

Resource: A resource is a piece of hardware or service which can perform certain tasks
such as executing a program, transferring data, etc.

Resource Candidate: A resource candidate satisfies all static requirements of an atom-
ic request and vice-versa (the request satisfies the requirements of the resource).

Resource Catalog: The Resource Catalog (RC) is a directory service (also called reg-
istry) which provides information about the (mainly) static characteristics of re-
sources.

Response Time: The response time of a request covers the period from its submission
till its execution ends.
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Rigid Job: See rigid request.

Rigid Request: We call a request rigid if its requirements do not allow negotiations.
That is, all parameters like the start time, the service level, etc. are given without
any flexibility.

Sandbox: The environment for executing a single compute job is called sandbox. Set-
ting up a sandbox involves providing necessary software, setting environment
variables, making input data accessible. When the job has finished, the sandbox
is removed from the system.

Units: Throughout the thesis we use the following units

Unit Description

KB A “memory” unit for 210 bytes (long: kilobyte(s))
MB A “memory” unit for 220 bytes (long: megabyte(s))
GB A “memory” unit for 230 bytes (long: gigabyte(s))
TB A “memory” unit for 240 bytes (long: terabyte(s))
PB A “memory” unit for 250 bytes (long: petabyte(s))
Mbit/s A “throughput” unit for 220 bits per second
Gbit/s A “throughput” unit for 230 bits per second

User: See consumer.

Virtual Organization: A Virtual Organization (VO) comprises users of several institu-
tions and let them share their aggregated resources.

Waiting Time: The waiting time is the period of time that lasts from the submission
(reception) of a request till it begins its execution.
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