
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

MONIKA MOSER, SEIF HARIDI, TALLAT M. SHAFAAT,
THORSTEN SCHÜTT, MIKAEL HÖGQVIST, ALEXANDER

REINEFELD

Transactional DHT Algorithms

This work is partially funded by the European Commission through the SELFMAN project with contract number 034084.

ZIB-Report 09-34 (October 2009)

Transactional DHT Algorithms

Monika Moser1, Seif Haridi2, Tallat M. Shafaat2, Thorsten Schütt1, Mikael
Högqvist1, Alexander Reinefeld1

1 Zuse Institute Berlin (ZIB), Germany
2 Royal Institute of Technology (KTH), Sweden

Abstract. We present a framework for transactional data access on
data stored in a DHT. It allows to atomically read and write items and
to run distributed transactions consisting of a sequence of read and write
operations on the items. Items are symmetrically replicated in order to
achieve durability of data stored in the SON. To provide availability of
items despite the unavailability of some replicas, operations on items are
quorum-based. They make progress as long as a majority of replicas can
be accessed. Our framework processes transactions optimistically with
an atomic commit protocol that is based on Paxos atomic commit. We
present algorithms for the whole framework with an event based notation.
Additionally we discuss the problem of lookup inconsistencies and its
implications on the one-copy serializability property of the transaction
processing in our framework.

Table of Contents

Transactional DHT Algorithms . 1
Monika Moser, Seif Haridi, Tallat M. Shafaat, Thorsten Schütt,
Mikael Högqvist, Alexander Reinefeld

1 Introduction . 3
2 Structured Overlay Network . 3

2.1 The Overlay Model . 4
2.2 Lookup Consistency and Responsibility . 5
2.3 Availability . 7

3 Transactions on a SON . 7
3.1 1-Copy Serializability . 7
3.2 Transaction Processing . 8

The Paxos Protocol . 9
Atomic Commit with Paxos . 10

3.3 Replication . 11
3.4 Serializability in Presence of Responsibility Inconsistency 11

4 Transaction Algorithms . 12
4.1 System Architecture . 12
4.2 Transaction ID and Transaction Item . 12
4.3 System Assumptions . 13
4.4 Identifiers, Modules and Operations . 13
4.5 Algorithms . 15
4.6 Read Phase . 15
4.7 Commit Phase . 20

Initialization . 20
Validation . 22
Consensus . 24

5 Transaction Algorithms: Failure Handling . 30
5.1 Failure of the Leader . 30
5.2 Failure of a TP . 32

6 Transactional Replica Maintenance . 33
6.1 Copy Operation . 34
6.2 Join and Leave . 34

7 Evaluation . 36
7.1 Analytical Evaluation of the Commit Protocol 36

Number of messages . 36
Upper Timebounds . 37

7.2 Experimental Evaluation . 38
8 Discussions . 40

1 Introduction

DHTs are fully decentralized and highly scalable systems that provide the ability
to store and lookup data. They use the lookup service of a Structured Overlay
Network for Internet-scale applications. The interface DHTs provide on their
data is mostly a simple put/get interface. Often data in DHTs is immutable
or consistency guarantees on data are weak. However many distributed systems
require stronger guarantees like they are given by atomic data operations. We
present a framework with transactional access to data stored in a DHT. It pro-
vides high availability of data and one-copy serializability for transactions on
that data. A transaction consists of a sequence of one or more read and/or write
operations that is executed atomically.

DHTs are dynamic systems where nodes are able to join the system or crash
at any time. In order to maintain durability and availability of data, items are
replicated. Each item consists of a fixed number of replicas. To tolerate the
unavailability of a subset of replicas our transaction mechanisms are majority-
based. This means that they are able to make progress if a majority of replicas
is accessible. Therefore replication factor has to be chosen in a way that the
availability of a majority of replicas is very high.

Read and write operations access at least a majority of replicas and choose the
one with the highest timestamp. The atomic commit protocol that is needed to
coordinate a distributed transaction also makes use of the majority idea. In order
to prevent a single transaction manager from blocking the whole protocol if it
fails, the framework uses a Paxos based non-blocking atomic commit protocol[7].
There, the single transaction manager is replaced by a set of nodes that all
together act as the transaction manager. The protocol makes progress if the
majority of these nodes does not fail until every participant in the transaction
receives the outcome of the transaction.

In this paper we present the algorithms for our transactional framework.
We use an event-based notation as it is well suited to present an asynchronous
message-passing system. The framework builds on various techniques known
from distributed database systems. The processing of transactions is done opti-
mistically with a non-blocking atomic commit protocol in the end. Concurrency
control is included in the atomic commit phase. The basic idea is to either ac-
quire all necessary locks at the same time or to abort the transaction, thus
avoiding distributed deadlock detection. Timestamps are used for each replica
to determine whether items read in the read phase of the transaction are still
valid in the commit phase. As the transaction processing is optimistic locks are
only held during the commit phase. We combine the non-blocking Paxos atomic
commit protocol with quorum techniques for access on replicated data.

2 Structured Overlay Network

In this section we introduce the model of the SON which underlies our frame-
work. Thereby we refer to self-stabilization mechanisms that are used in Chord

[13]. However our framework is not restricted to a DHT based on Chord but can
be applied to other key-based SONs.

2.1 The Overlay Model

A Model of a Ring-based SON. A DHT makes use of an identifier space, which
for our purposes is defined as a set of integers {0, 1, · · · ,N − 1}, where N is
some a priori fixed, large, and globally known integer. This identifier space is
perceived as a ring that wraps around at N − 1.

Every node in the system, has an unique identifier from the identifier space.
Each node keeps two pointers: succ, to its successor on the ring, and pred to its
predecessor. The successor of a node with identifier p is the first node found going
in a clockwise direction on the ring starting at p. The predecessor of a node with
identifier p is the first node met going anti-clockwise on the ring starting at p.
For each node p, a successor-list is also maintained consisting of p’s c immediate
successors, where c is typically set to log2(n), where n is the network size.

Ring-based DHTs also maintain additional routing pointers, called fingers,
on top of the ring to enhance routing [1]. For our analysis, we assume that
these pointers are placed as in Chord. Hence, each node p keeps a pointer to the
successor of the identifier p + 2i (mod N) for 0 ≤ i < log2(N). Our results are
independent of the chosen scheme for placing the fingers.

Dealing with Joins and Failures in Chord. A DHT system is a continuously
running system and there is no notion of crash recovery. Whenever a node fails
there is another node that becomes responsible for the items of the failed nodes.
The protocols are based on a crash-stop model of nodes. This implies that if a
node crashes and then reboot to re-join the network, it will be considered as a
new node.

Chord handles joins and failures using a protocol called periodic stabilization.
Figure 1 shows part of the protocol presented in [13]. Failures of predecessors
are handled by having each node periodically check whether its pred is alive,
and setting pred := nil if the predecessor is found dead. Moreover, each node
periodically checks to see if succ is alive. If it is found to be dead, it is replaced
by the closest alive successor in the successor-list.

Each node periodically asks for its successor’s pred pointer, and updates its
succ pointer if it gets a closer successor. Thereafter, the node notifies its current
succ about its own existence, such that the successor can update its pred pointer
if it finds that the notifying node is a closer predecessor than pred.

Joins are also handled by the ring stabilization protocol. Joining nodes lookup
their successor s on the ring, and sets succ := s. Periodic stabilization will
eventually fix its predecessor and successor. Hence, any joining node is eventually
properly incorporated into the ring.

Failure Detectors. DHTs provide a platform for Internet-scale systems, aimed
at working on an asynchronous network. Informally, a network is asynchronous
if there is no bound on message delay. Thus, no timing assumptions can be made

n.join(n′)
predecessor = nil;
sucessor = n′.findsuccessor(n);

n.stabilize()
x = successor.predecessor;
if (x ∈ (n, successor])
successor = x;
successor.notify(n);

// n’ thinks it might be our predecessor.
n.notify(n′)

if (predecessor is nil or n′ ∈ (predecessor, n])
predecessor = n′;

n.check predecessor()
if (predecessor has failed)

predecessor = nil;

Fig. 1: Part of the Chord protocol, presented in [13], which is related to successor and
predecessor pointers.

in such a system. Due to the absence of timing restrictions in an asynchronous
model, it is difficult to determine if a node has actually crashed or is very slow
to respond. This gives rise to inaccurate suspicion of node failure.

Failure detectors are modules used by a node to determine if its neighbors are
alive or dead. Since we are working in an asynchronous model, a failure detector
can only provide probabilistic results about the failure of a node. Thus, we have
failure detectors working probabilistically.

Failure detectors are defined based on two properties: completeness and ac-
curacy [3]. In a crash-stop model, completeness requires the failure detector to
eventually detect all crashed nodes. Accuracy relates to the mistake a failure de-
tector can make to decide if a node has crashed or not. A perfect failure detector
is accurate all the times, while the accuracy of an unreliable failure detector is
defined by its probability of working correctly.

2.2 Lookup Consistency and Responsibility

A consequence of imperfect failure detectors are inconsistent lookups and in-
consistent responsibilities. We explain these terms in the following. Lookup con-
sistency and responsibility consistency are important concepts when we reason
about data consistency in our transactional DHT. Basically responsibility con-
sistency is a requirement for guaranteeing data consistency.

In the following, we define lookup consistency and responsibility consistency,
and explain how they can be violated. We use the term configuration of a SON
to denote the set of all nodes and their pointers to neighboring nodes at a certain

point in time. A SON evolves by either changing a pointer, or adding/removing
a node.

Definition 1 A lookup for a key is consistent, if in a configuration lookups for
this key made from different nodes, return the same node.

Lookup consistency can be violated if some nodes’ successor pointers do not
reflect the current ring structure. Figure 2a illustrates a scenario, where lookups
for key k can return inconsistent results. It shows nodes with their successor and
predecessor pointers. This configuration may occur if node N1 falsely suspected
N2 as failed, while at the same time N2 falsely suspected N3 as failed. A lookup
for key k ending at N2 will return N4 as the responsible node for k, whereas a
lookup ending in N1 would return N3.

(a) (b)

Fig. 2: Lookup inconsistency and responsibility inconsistency. Nodes with successor
and predecessor pointers: (a) Example with wrong successor pointers. (b) Example
with wrong successor pointers and overlapping responsibilities.

Definition 2 A node n is said to be locally responsible for a certain key, if the
key is in the range between its predecessor and itself, noted as (n.pred, n]. We
call a node globally responsible for a key, if it is the only node in the system
that is locally responsible for it.

The responsibility of a node changes whenever its predecessor is changed. If
a node has an incorrect predecessor pointer, the range of keys it is responsible
for can overlap with another node’s key range. Thus there are several nodes
responsible for a part of the key range.

Definition 3 The responsibility for a key k is consistent if there is a node glob-
ally responsible for k.

A configuration where responsibility consistency for key k is violated is shown
in Figure 2b. Here, lookup consistency for k cannot be guaranteed and both
nodes, N3 and N4, are locally responsible for k. However, in Figure 2a, N3 is
globally responsible despite lookup inconsistency and N4 is not responsible. The
configuration depicted in Figure 2b can arise from the configuration shown in
Figure 2a with an additional wrong suspicion of node N4 about its predecessor
N3.

Lookup consistency and responsibility consistency cannot be guaranteed in
a SON. As we will show later responsibility consistency is an assumption of our

system in order to guarantee data consistency. However in [12] we show that
the probability for a violation of responsibility consistency is very low. E.g. with
a reasonable probability for a failure detector to make false positives with two
percent the probability to get consistent responsibility for a replica is more than
99.999%.

2.3 Availability

Another important property in our system is the availability of a key. In order
to make progress operations in our system have to be able to access a sufficient
number of replicas.

Definition 4 A key k is available if there exists a reachable node n such that n
is locally responsible for k.

Availability of a key in a SON is both affected by churn and inaccurate failure
detectors. Due to churn a key is unavailable when the node that is responsible
for it fails until a successor node takes over responsibility and is reachable in the
system. This is illustrated in Figure 3b where the key k is unavailable because
of the failure of node N2. A node n is said to be reachable for a node n′, if there
exists a path from n to n′. Also during a join process when a node is transferring
responsibility for a certain key range to the joining node, keys in that range are
unavailable until the joining node is reachable in the system. Figure 3c illustrates
a scenario where the joining node N2 already took over responsibility for key
k but is not yet reachable in the system as node N1 has not set its successor
pointer to N2. In the second case inaccurate failure detectors cause unavailability
when a node that falsely suspects its successor will remove the pointer to this
node. Thus, keys for which the suspected node is responsible will temporarily
become unavailable. In figure 3d node N1 suspects node N2, thus k becomes
unavailable.

3 Transactions on a SON

Usually DHTs provide a simple put/get interface to store and retrieve data.
Hardly they provide consistency guarantees on data and often they are restricted
to immutable data. Our framework is able to provide a transactional interface
on top of a SON. It provides read and write operations that are executed trans-
actionally as well as the ability to execute transactions that consist of a sequence
of different operations.

3.1 1-Copy Serializability

Our algorithms provide 1-copy serializability. In our system items are replicated
and there might exist replicas with different versions. However transactions pro-
duce a serializable history as if there was only one copy available to transactions.
A history H of transactions is serializable if all committed transactions in H is-
sue the same operations and receive the same responses as in some sequential
history S that consists of the transactions committed in H [8].

(a) (b)

(c) (d)

Fig. 3: Availability. Nodes with successor and predecessor pointers: (a) Example where
key k is available. (b) Example where k is unavailable due to the failure of N2. (c)
Example where k is unavailable during the joining process of N2. (d) Example where
k is unavailable because N1 suspected N2 to have failed.

3.2 Transaction Processing

Transactions in our system are executed optimistically. They are processed in
the following three phases:

– Read phase (R): Operations that are part of the transaction are executed
within a transaction managers local workspace that is private to the transac-
tion. Changes made by write operations are not visible to other transactions.

– Validation phase (V): Once a transaction should be committed, all in-
volved data managers that are responsible for the data that is part of the
transaction, check whether the operations are valid. Version numbers are
used to determine if another transaction has made changes after the trans-
action’s read phase.

– Write phase (W): If all data managers successfully validated the opera-
tions on their data, changes can be made permanent.

Atomic Commit. The validation phase and the write phase are executed within
an atomic commit protocol. An atomic commit protocol coordinates all processes
that are involved in a transaction. It ensures that all data managers decide
on the same outcome of the transaction. The decision is commit if all data
managers are able to validate the operations or abort if there exists at least
one data manager that cannot validate an operation. Figure 4 shows a basic
commit algorithm called the 2-Phase-Commit Protocol. There is one node called
the transaction manager (TM) that coordinates the protocol. Data managers
are called transaction participants (TP). The TM asks the TPs to validate by
sending a prepare request. The TPs either reply with prepared or abort. The TM
collects the votes and sends commit if all TPs voted to be prepared otherwise
it sends abort. When a TP receives commit it will make all changes permanent
if promised to do when sending the prepared message. If a TP receives abort
it won’t make any changes permanent. Our framework executes transactions

Fig. 4: State-charts for a 2-Phase-Commit Protocol with 2 Participants and 1 Trans-
action Manager

optimistically in the read phase. Thus the commit protocol will decide on abort
if other transactions were committed in between.

A 2-Phase-Commit protocol is blocking if the TM fails in the state collecting
and the TPs are not able to retrieve the outcome of the transaction. Therefore
we use a non-blocking atomic commit protocol that is based on Paxos [10] in
our framework. Gray introduced Paxos Atomic Commit in [7]. It uses replicated
transaction managers which all collect votes from the data managers. If the
leading transaction manager fails, these replicated transaction managers take
over and distribute the decision of the atomic commit protocol to all participants.
The Paxos Protocol and the Paxos Atomic Commit protocol are described later
in this section.

Concurrency Control. Once a data manger successfully validates an operation
on an item it has to ensure that no other transaction gets validated on the same
item with a conflicting operation until the atomic commit protocol decides on
the outcome. Therefore read and write locks are used during the commit phase
that prevent concurrent conflicting validations.

Locks are only held during the atomic commit phase. Instead of letting trans-
actions wait for a lock a TP will vote to abort in the atomic commit phase if
it cannot acquire the lock for an operation. In that case the transaction has
to be re-executed. This avoids distributed deadlock detection. We assume that
read and write operations are less frequent than in traditional database systems.
Thus the ratio of aborted transactions should be small.

The Paxos Protocol Paxos is an algorithm which guarantees uniform con-
sensus. Consensus is necessary when a set of nodes has to decide on a common
value. Uniform consensus satisfies the following properties: 1. Uniform agree-
ment, which means that no two nodes decide differently, regardless of whether
they fail after the decision was taken; 2. Validity describes the property that
the value which is decided can only be a value that has been proposed by some

node; 3. Integrity, meaning no node may decide twice and finally 4. Termination,
every node eventually decides some value [9]. Paxos assumes an eventual leader
election to guarantee termination. Eventual leader election can be built by using
inaccurate failure detectors.

Paxos defines different roles for the nodes. There are Proposers, which pro-
pose a value, and Acceptors, which either accept a proposal or reject it in a way
that guarantees uniform agreement. Paxos as described in [10] assumes that each
node may act as both proposer and acceptor. In our solution presented below
we use different nodes as proposers and acceptors.

The above mentioned properties of uniform agreement can be guaranteed by
Paxos whenever a majority of acceptors is alive. That means, it tolerates the
failure of F acceptors out of initially 2F + 1 acceptors.

Paxos basically consists of two phases called the read and write phase. In
the read phase a node makes a proposal and tries to get a promise that his
value will be accepted by a majority or it gets a value that it must adopt for
the write phase. In the write phase a node tries to impose the value resulting
from the read phase on a majority of nodes. Either the read or write phase may
fail. Proposals are ordered by proposal numbers. By using an eventual leader to
coordinate different proposals, the algorithm will eventually terminate.

Atomic Commit with Paxos Uniform consensus alone is not enough for
solving atomic commit. Atomic commit has additional requirements on the value
decided. If some node proposes abort or is perceived to have crashed by other
nodes before a decision was taken, then all nodes have to decide on abort. To
decide on commit, all nodes have to propose prepared.

In the Paxos Commit protocol [7] we have a set of acceptors, with a distin-
guished leader, and a set of proposers. The set of acceptors play the role of the
coordinator and the set of proposers are those who have to decide in the atomic
commit protocol.

Each proposer creates a separate instance of the Paxos algorithm with itself
as the only proposer to decide on either prepared or abort. All instances share
the same set of acceptors. It can be noted that the Paxos consensus can be
optimized, because there is only one proposer for each instance. If a proposer
fails, one of the acceptors, normally the leader, acts on behalf of that proposer
in the particular Paxos instance and proposes abort.

Acceptors store the decision of all proposers and send the acknowledgment for
the vote of a TP’s Paxos instance to the leader. Whenever the leader has collected
enough acknowledgments for each participant’s Paxos instance, it decides on
commit if all instances have decided on prepared or it decides on abort if there
is at least one Paxos instance of a participant that decides on abort. Thereafter
the final abort/commit is sent to the initial proposers. If the leader is suspected
by the eventual failure detector, another leader will take over and can extract
the decision from a majority of acceptors and complete the protocol.

The state-chart of a proposer is similar to the state-chart of a TP in the
original 2PC protocol, as shown in figure 4. Also the state-chart of an acceptor

is similar to that of the TM, referring to the same figure. But instead of sending
the decision commit to the participants, the acceptors send the outcome to the
leader.

3.3 Replication

To provide higher reliability items are replicated. Each item has a fixed number
of replicas. The replication scheme used here is key based. A key based replication
essentially means that an item, which is a key-value pair, is stored under r replica
keys. Thus, to store an item under key k, the value will be stored in the DHT
under keys Kr = {k1, k2, k3 . . . kr}. We say that the replication degree is r and
for key k, the set Kr to be the set of keys under which k is replicated. Each
replica can be accessed symmetrically as the function to determine the replica
keys is system-wide known [4].

As SONs usually are highly dynamic systems, operations on an item should
make progress despite the unavailability of a number of replicas. Reads and writes
thus require that a majority of replicas is accessible. A minority of replicas might
be temporarily unavailable without hindering progress. Operations in our SON
use majority-based algorithms. Majority-based algorithms are a special case of
quorum algorithms. Quorum algorithms were introduced by Gifford [6] in order
to maintain replicated data. Each replica is assigned a certain amount of votes.
Read operations have to collect rv votes and write operations have to collect wv
votes, where rv + wv exceeds the total number of votes assigned to all replicas
of an item. This ensures that read operations include at least one replica that
was included by the latest write operation. In majority-based algorithms each
replica is assigned exactly one vote and read and write operations have to include
a majority of m = b r

2c+ 1 votes. Thus they intersect in at least one replica.

3.4 Serializability in Presence of Responsibility Inconsistency

In order to ensure that rv + wv always exceeds the total number of votes as-
signed to all replicas, the number of replicas in the system has to be constant for
our majority-based algorithms. Each operation on an item has to ensure that
it includes at least a majority of replicas, while the majority is based on the
system’s replication factor r. An additional replica that is added to the system
would violate the above mentioned condition. However a responsibility incon-
sistency is equal to adding an additional replica. In that case two conflicting
operations might end up with working on two disjoint sets with a majority of
replicas, which we call majority set. This happens if two operations work on ma-
jority sets that both include distinct nodes that are involved in a responsibility
inconsistency for one replica, but have no other replica in common. In that case
it is not possible to detect a conflict between these operations, which can violate
serializability. As it is not possible to ensure responsibility consistency, it is not
possible to ensure serializability. However the existence of a responsibility incon-
sistency does not necessarily implicate disjoint majority sets for two conflicting
operations.

In [12] we calculated the probability for two operations in one configuration
to work on non-disjoint majority sets. If the probability for a failure detector to
make false positives is 2% and therefore the probability to have a consistent re-
sponsibility is 99.999%, the probability for non-disjoint majority sets is 99.9999%
if r = 3.

4 Transaction Algorithms

In this section we present the algorithms for the transactional DHT. We use an
event based notation similar to the one used in [9].

4.1 System Architecture

Nodes in the system can take different roles in a transaction. For each transac-
tion there exists the role of a leading Transaction Manager (TM), called Leader,
which is the node the client is connected to. Additionally, a number of repli-
cated Transaction Managers (rTM) are created according to the set of acceptors
in Paxos commit. Nodes that are responsible for a replica of an item that is
involved in the transaction have the role of a Transaction Participants (TP) in
the protocol. Each node of the SON can have any number of TMs and TPs that
are involved in different transactions. If there are multiple TPs on a node, they
must share the database that contains the items with information about read
and write locks. Each TP maintains a set of records for ongoing transactions,
that have not yet been committed. Each record has a transaction ID, the new
proposed value for the items the TP maintains and the new proposed version.

4.2 Transaction ID and Transaction Item

The leader of each transaction creates an unique transaction ID (TID). This ID is
part of the SON’s key space and can be treated like a item key. The leader creates
the TID in a way such that it has a replica key of TID in its own key space.
According to the replication scheme there are r−1 additional replica keys for the
TID. The set of rTMs is determined by the nodes that are responsible for these
associated replica keys. Thus the number of all TMs (Leader + rTMs) is equal to
the replication factor r. At the end of a transaction each TM will store a replica
of a so called transaction item with {TID,Decision} as the {key, value} pair.
We assume that a majority of rTMs does not change its responsibility such that
the replica of the TID would not be part of its key space any more. Therefore a
node that did not recieve the decision of the transaction can retrieve the decision
by doing a quorum read on an item with the TID as key. The transaction item is
maintained in the same way as normal items are. However it has to be garbage
collected after a certain time.

4.3 System Assumptions

We identify the assumptions related to liveness, no nodes are blocked, and safety,
no data is corrupted and 1-copy serializability is not violated. For liveness, it is
assumed that direct communication between nodes as well as the bulk procedure
is reliable. In addition, a majority of TMs must be alive and keep the TID within
their range of responsibility until all alive TPs receive the transaction decision.
This assumption is an extension of Paxos where all acceptors (TMs) must be
alive during the protocol. For safety, we assume that a majority of replicas for
an item are alive and that a majority of lookups targeting these replicase are
consistent. A violation of the safety requirements may lead to inconsistent state.
The probability of this happening is directly related to the replication factor.

4.4 Identifiers, Modules and Operations

Identifiers. Figure 5 lists all identifiers and variables used in the algorithms. The
first part contains general identifiers that are used at transaction managers and
transaction participants. The second part contains variables that are maintained
by a transaction manager. Additionally, we introduce structures for votes that
are received by transaction managers and for acknowledgments of votes. The last
part contains variables that store information kept by a transaction participant.

External Modules Used in the Algorithms. The following modules are used by
the algorithms

– EventuallyPerfectFailureDetector (♦P) [9]
– EventualLeaderDetector (Ω) [9]

A leader uses a failure detector on every replica of the involved items. If it
does not get a vote for a replica within a certain time threshold, it will start
a failure handling procedure. A failure detector raises the event suspect(tp)
when it suspects the transaction participant tp to have failed. A leader election
mechanism is used to guarantee progress of the atomic commit protocol. The set
of replicated transaction manager will elect a new leader if they suspect the leader
to have failed. The leader detector module raises the event trust(newleader)
to install a new leader.

Bulk Operation. The algorithms make use of a so called bulk operation [5]. This
operation sends events to all nodes that are responsible for a key in a specified
set of identifiers. E.g. a read operation on an item can be done with a bulk
operation on the set of replica keys for that item.

Identifiers
item record

item.key key
item.val value
item.ts timestamp/version number
item.op kind of operation: write or read

tm transaction manager
tp transaction participant
r replication degree of the system

Information maintained by a TM
tid ID of the transaction
TPs set of Transaction Participants
TMs set of replicated Transaction Managers
I set of items involved in the transaction
Votes Votes of the participants
AcksTMs Acknowledgments sent by the TMs to the Leader
outcome Overall outcome of the transaction
state Either collectingNodes/collectingVotes/locallyDecided/decided
Suspected set of nodes which are suspected to have failed
leader the address of the leader
client the address of the client issuing the transaction
vts timestamp of a vote
rvts timestamp of a vote acknowledged in a read phase
wvts timestamp of a vote acknowledged in a write phase
ItemsInTrans set of items that are currently involved in a transaction

Information contained in a vote
i.key key of the item the vote refers to
rkey the key of the replica
vote PREPARED/ABORT decision of a tp
vts timestamp of the proposal - number of the proposal

Votes[i.key][rkey] = (vote, rts, wvts)
vote PREPARED/ABORT decision of a tp
rvts timestamp of the vote that was accepted during the read phase
wvts timestamp of the vote that was accepted (write phase)

AcksTMs[i.key][rkey]: {(vote, vts)*}
vote PREPARED/ABORT decision of a tp
vts timestamp of the proposal that was accepted (write phase)

Information kept by a TP
tid ID of the transaction
TMs transaction managers
i the item
decision of tp the decision it made

Fig. 5: Identifiers used in the algorithms

4.5 Algorithms

In the following we present the algorithms for the transaction processing. We
first show the algorithm for the fault-free scenario. The algorithms for failure
handling are shown separately in Section 5. The whole transaction processing
algorithms refers to the execution of exactly one transaction. Thus we commit
information that identifies a particular transaction for better readability.

The algorithms can be structured into different phases. Figure 6 identifies two
main phases of a transaction. One is the Read Phase where the client determines
the operations that are part of the transaction. The second one is the Commit
phase which we further divide into Initialization, Validation and Consensus.

In the initialization phase the leader determines all nodes that act as repli-
cated transaction managers (TMs). It determines the nodes by a key based search
(lookup). After initialization these nodes communicate directly with each other
without using a key based search. In the validation phase all TPs are sent a
prepare request by a key based search. They are asked to validate the operations
on the items they are responsible for. After validation the consensus on the out-
come of the transaction is started, based on the validation results. The outcome
is sent to the TPs directly with out doing a lookup.

4.6 Read Phase

During the read phase the client determines the operations that are part of
the transaction. It can be any sequence of read and write operations. A client
is connected to a certain node in the system. This node becomes the initial
transaction manager which will act as the leader during the protocol. Figure 7
shows the particular communication steps in the read phase. The client instructs
the leader to start a transaction (Algorithm 1) and to do operations until the
client tells the leader to commit the transaction. The leader keeps track of the
operations and keeps updates on items private to its local workspace. For read
operations it will retrieve the value and version number of the item the client
wants to read, while for write operation it has to retrieve the version number only
(Algorithm 2). When the client signals the end of the transaction the leader will
start a commit phase. Instead of instructing the leader to commit the transaction
the client can also instruct it to abort the transaction before the commit phase.
E.g. if the client reads a value that does not meet a certain condition. In that
case the leader can simply throw away logged information on that transaction
as the TPs have not yet made changes to their state, such that they do not have
to be notified about this user triggered abort. Once a client tells the leader to
commit a transaction the client cannot abort it any more on its own behalf.

Algorithm 2 includes a function latest(Items) which extracts the item with
the highest version number from a set of items. It uses a DB(key, rkey) function
that reads a replica from the local database. The replica is identified by the key
of the item and a replica key or replica number. The function replicakeys(key)
return all keys of replicas for a certain key.

Fig. 6: The figure shows the different phases for a transaction together with the mes-
sages sent between the participating nodes

Fig. 7: The figure shows the messages which are part of the read phase. To start a
transaction a client issues a BeginTransaction and signals the end of a transaction by
a request to commit the transaction. In between it will add several read and write
operations.

Algorithm 1 Interface to the Transaction Manager: Client signals Begin and
End of a Transaction
1: upon event beginTransaction() from client at tm
2: client := client
3: I := ∅
4: readID:= writeID:= ⊥
5: tid := generateTID()
6: end event

7: upon event commitTransaction() from client at tm
8: trigger startCommit()
9: end event

10: upon event abortTransaction() from client at tm
11: delete information on transaction
12: end event

Algorithm 2 Processing of a Read Operation due to a Client’s Read Request
1: function latest(Items) returns item is
2: tmp item := item{key:= ⊥, val:=⊥, ts:=−1, op:=⊥}
3: foreach i in Items do
4: if i.ts >tmp item.ts then
5: tmp item := i
6: end if
7: end foreach
8: return tmp item

. A client requests a read operation at the Transaction Manager
9: upon event read(key) from client at tm

10: readID := createRID()
11: Reads := ∅
12: trigger bulk(replicakeys(key), {Read, key, readID})
13: end event

. At the Transaction Participant
14: upon event bulk(rkey,{Read, key, readID}) from tm at tp
15: i := DB(key, rkey)
16: sendto tm : readresponse(key, i.val, i.ts, readID)
17: end event

. At the Transaction Manager
18: upon event readresponse(key, val, ts, id) from tp at tm
19: if readID=id then
20: Reads := Reads ∪{(key, val, ts)}
21: end if
22: end event

23: upon |Reads| ≥ (br/2c+ 1) ∧ readID 6=⊥ do
24: (k, val, v):= latest(Reads)
25: I:= I ∪ item{key:= k, val:=val, ts:=v, op:=r}
26: sendto client : readReturn(value)
27: readID := ⊥
28: end event

Algorithm 3 Processing of a Write Operation due to a Client’s Write Request

. A client requests a write operation at the Transaction Manager
1: upon event write(key, value) from client at tm
2: writeID := createWID()
3: Writes := ∅
4: trigger bulk(ReplicaKeys(key), {Write, key, writeID})
5: end event

. At the Transaction Participant
6: upon event bulk(rkey,{Write, key, writeID}) from tm at tp
7: i := DB(key, rkey)
8: sendto tm : writeresponse(key, i.ts, writeID)
9: end event

. At the Transaction Manager
10: upon event writeresponse(key, ts, id) from tp at tm
11: if writeID=id then
12: Writes := Writes ∪{(key, ts)}
13: end if
14: end event

15: upon |Writes| ≥ (br/2c+ 1) ∧ writeID 6=⊥ do
16: (k, v):= latest(Writes)
17: I:= I ∪ item{key:= k, val:=value, ts:=v+1, op:=w}
18: sendto client : WriteReturn(success)
19: writeID := ⊥
20: end event

4.7 Commit Phase

Fig. 8: Before starting the commit protocol the Leader determines the nodes that act
as replicated TMs.

Initialization Figure 8 shows the course of events of the initialization phase.
Initially nodes that have to act as rTMs are determined by a key based search
based on the replica keys of the transaction ID. They have to be known before
the commit protocol is started in order to enable leader election among the TMs
and make the protocol fault-tolerant and non-blocking. In the next phase the
leader will tell the rTMs the addresses of all other rTMs. As long as a majority
of rTMs is reachable the protocol can decide on an outcome of the transaction.

Algorithm 4 contains the events and event handlers of the initialization phase.
A node that gets a request to initialize a rTM has to initialize its data structures
to collect the votes and the acknowledgments. For each item key and its replica
keys the vote is initialized with a rts (read timestamp) with a value 1. The
reason is that a TP will immediately start a write phase in its Paxos instance
as it can be sure to be the first one that votes in that particular instance [7]. A
TP’s proposal number thus is 1.

Once the leader has collected enough TMs it can start the next phase. The
leader always tries to collect all TMs. However if some of these nodes do not
respond it can start the next phase after a timeout if it has collected at least
a majority of TMs. A majority of TMs including the leader is necessary to
guarantee progress for Paxos atomic commit.

Algorithm 4 Initialize the involved processes
1: upon event startCommit() at leader

. client is the process issuing the transaction
2: trigger bulk(replicas(tid), {InitRTM, leader, tid, I, client})
3: end event

4: upon event bulk(rtid, {InitRTM, l, id, Items, cl}) from s at rtm
5: . A new transaction manager instance is created
6: leader := l
7: tid:= id
8: I := Items
9: client := cl

10: foreach i in I do
11: foreach rkey in replicaKeys(i.key) do
12: Votes [i.key][rkey] := (⊥, 1, 0)
13: AcksTMs [i.key][rkey] := ∅ . Necessary if it becomes a leader
14: end foreach
15: end foreach
16: sendto leader : registerRTM(rtm)
17: state:= collectingVotes
18: end event

19: upon event registerRTM() from rtm at tm
20: TMs := TMs ∪ rtm
21: end event

22: upon (|TMs| = r) do
23: trigger startValidation
24: end event

Fig. 9: The Leader sends a Prepare messages to the TPs which will start the validation
and tells the TMs about all rTMs.

Validation After the initialization phase the leader tells each rTM the addresses
of the other rTMs such that these are able to run a leader election mechanism
among them. Additionally the leader sends the prepare request to the TPs to-
gether with the addresses of the nodes that act as rTMs. The prepare request
is sent with a lookup operation on all replicas of the involved items. Figure 9
shows the course of events and Algorithm 5 the event handlers at the TMs.

The TPs check whether they can validate the operations sent by the prepare
request. Each TP therefore locally applies the concurrency control mechanism.
This is based on timestamps and locks. A node uses two dictionaries readLock
and writeLock that contain locks on items. While write locks are exclusive,
several read locks can be set at the same time. The locks are globally stored in a
node. The storeToLOG(Params) is a function that stores any information on a
transaction in a TP’s LOG. The getFromLOG() function accordingly gets the
information from the LOG. Algorithm 6 contains the procedure for validation.

For read operations a TP checks whether there is no lock for a concurrent
write and whether the timestamp of the read request is valid, i.e. larger than
or equal to the local item. If both checks are successful it will add a read lock
and return prepared. For write operations the TP first ensures that there are no
read or write locks set for concurrent conflicting operations. Then it compares
the timestamp of the proposed item and the local item. This timestamp must to
be equal to the currently stored timestamp + 1. If this is not the case, it means
that a write operation has changed the item since it was accessed during the read
phase. If both of the checks were successful the procedure will return prepared,
otherwise abort. After the validation procedure, the TP starts to propose in a
Paxos instance for this particular validation result.

Algorithm 5 Transaction Manager: Sending of a Prepare request
1: upon event startValidation at tm
2: sendtoall TMs : RTMs(TMs, I)
3: foreach i in I do
4: trigger bulk(replicas(i), {Prepare, leader, tid, i, rkey, TMs})
5: end foreach
6: state:= collectingVotes
7: end event

8: upon event RTMs(rtms, I) from tm at rtm
9: TMs:= rtms

10: (Ω).init(rtms)
11: foreach i in I do
12: �P.init({replica : (i.key, rkey) ∈ i})
13: end foreach
14: end event

Algorithm 6 Validation Procedure at a Transaction Participant/Concurrency
Control
1: upon event Prepare(item, rkey, tid, TMs) from tm at tp
2: ItemsInTrans:= ItemsInTrans ∪ (rkey, tid)
3: vote:= validate(item, rkey)
4: trigger propose(item.key, rkey, TMs, vote, 1)
5: end event

6: procedure validate(item rkey, tid) returns PREPARED/ABORT is
7: i:= DB(item.key, rkey)
8: result := ⊥
9: if item.op = read then

10: if writeLock[(i.key, rkey)] = ⊥ & (item.ts ≥i.ts) then
11: readLock[(i.key, rkey)] := readLock[(i.key, rkey)] + 1
12: storeToLOG(tid, item.key, item.ts,r, rkey,PREPARED)
13: result:= PREPARED
14: else
15: storeToLOG(tid, item.key, item.ts,r, rkey,ABORT)
16: result := ABORT
17: end if
18: else
19: if writeLock[(i.key, rkey)] = ⊥ & readLock[(i.key, rkey)] = ⊥ & (item.ts =

i.ts+1) then
20: writeLock[(key, rkey)] := 1
21: storeToLOG(tid, item.key, item.ts, item.val,w, rkey, PREPARED)
22: result:= PREPARED
23: else
24: store (tid, item.key, item.ts, item.val,w, rkey, ABORT)
25: result := ABORT
26: end if
27: end if
28: return result

Consensus This phase uses the Paxos atomic commit protocol [7]. At the end
of it each TP has to receive the same decision on the transaction to ensure the
uniform consensus properties. The decision will be commit if the decision for all
items is prepared, it will be abort if the decision for at least one item is abort.

A Paxos instance is started for each replica. The TP that is responsible for
the replica uses this Paxos instance to distribute its vote on the set of replicated
transaction managers that act as the acceptors. The replicated transaction man-
agers accept the vote of a TP if they did not get a read request with a higher
timestamp for the particular Paxos instance. Instead of sending the acknowledg-
ment to the TP they send it to the leader (Algorithm 8). The reason is that the
decision on the outcome of the atomic commit protocol is based on the decisions
for all items. Therefore, the leader collects all acknowledgments from where it
can derive the outcome of the atomic commit protocol. As soon as the outcome
is known the leader sends it to all involved nodes and notifies the client.

Fig. 10: After validation the TPs start a consensus to distribute their validation result.
The leader will collect the decision for each particular consensus instance and conclude
on the overall outcome of the transactions based on these instances.

As items in our DHT are replicated and operation on items require at least a
majority of replicas to be accessible, the decision for an item also has to be based
on a majority of replicas. Therefore the TM collects the votes of the TPs per
item. A decision for an item is prepared if a majority of TPs that are responsible
for a replica of that item vote to be prepared. The decision for an item is abort
if there cannot be a majority of TPs that are responsible for a replica that vote
to be prepared (Algorithm 9).

A TP that retrieves the decision for a transaction reads the information
about the item it voted for from its LOG (Algorithms 10 and 11). It has to reset
locks and write the item to the database if necessary. The learners are related
to replica maintenance, which is explained in Section 6.

A TM that retrieves the decision for a transaction stores the decision in a spe-
cial item, called transaction item, by calling storeTransactionItem(decision).
This item is replicated like all other items. The key for this transaction item can
be deduced from the transaction ID. All TMs are nodes that are responsible for
a replica key of the transaction item. If a node does not receive the decision by
the normal execution of the protocol it can retrieve the decision by reading the
transaction item like every normal item. We assume that a majority of replicated
transaction managers may not fail and may not change their responsibility of
the key range where the replica key of the TID is a member of until the outcome
of the transaction is stored in the DHT. This can be achieved by choosing a
proper replication factor.

Algorithm 7 Start Paxos Atomic Commit: Propose in a Paxos Instance
1: upon event propose(key, rkey, TMs, vote, ts) at p
2: if ts=1 then
3: sendtoall TMs : vote(key, rkey, vote, ts)
4: else
5: sendtoall TMs : readVote(key, rkey, ts) . See failure handling in 13
6: end if
7: end event

Algorithm 8 Paxos Atomic Commit - Write Phase
1: upon event vote(key, rkey, vote, vts) from n at tm . n is either a tp or a tm
2: if vts = 1 then
3: TPs[key]:= TPs[key] ∪ (p, rkey)
4: end if
5: (currVote, rvts, wvts) := Votes[key][rkey]
6: if vts ≥rvts and vts ≥ wvts then
7: Votes[x.key][rkey] := (vote, rvts, vts)
8: sendto Leader : voteAck(key, rkey, vote, vts)
9: end if

10: end event

11: upon event voteAck(key, rkey, vote, vts) from tm at leader
12: AcksTMs[key][rkey] := AcksTMs[key][rkey] ∪ {(vote, vts)}
13: end event

Algorithm 9 Paxos Atomic Commit - Making the Decision
. Ensure that a majority of TMs has stored the decision for a particular replica

1: function isPreparedReplica(i, rkey) returns boolean is
2: acks := AcksTMs[i.key][rkey]
3: return ∃vts : |{(PREPARED, vts)} ∈ acks| ≥ br/2c+ 1

4: function isAbortReplica(i, n) returns boolean is
5: acks := AcksTMs[i.key][rkey]
6: return ∃vts : |{(ABORT, vts)} ∈ acks| ≥ br/2c+ 1

. Check whether the votes for a majority of replicas for an item is PREPARED
7: function isPrepared(i) returns boolean is
8: return |{rkey : isPreparedReplica(i, rkey)}| ≥ br/2c+ 1

9: function isAbort(i) returns boolean is
10: return |{rkey : isAbortReplica(i, rkey)}| ≥ dr/2e

11: upon ∀i ∈ I: isPrepared(i) at leader do
12: sendtoall TPs : decision(COMMIT)
13: sendtoall TMs : decision(COMMIT)
14: state:= decided
15: sendto client : outcome(COMMIT)
16: end event

17: upon ∃i ∈ I: isAbort(i) at leader do
18: sendtoall TPs : decision(ABORT)
19: sendtoall TMs : decision(ABORT)
20: state:= decided
21: sendto client : outcome(ABORT)
22: end event

23: upon event decision(decision) from tm at tm
24: storeTransactionItem(decision)
25: state:= decided
26: end event

27: upon event decision(decision) from tm at tp
28: trigger decide(decision)
29: end event

Algorithm 10 Paxos Atomic Commit - Decide COMMIT at a TP
1: upon event decide(COMMIT) at tp
2: if not stored(COMMIT) then
3: item := getFromLOG(tid)
4: if Item = ⊥ then
5: sendafterdelay(time, decision(COMMIT)) to tp
6: else
7: (key, val, ts, op, rkey, vote, tid) = item
8: if op = r then
9: if vote = PREPARED then

10: readLock[(key, rkey)] := readLock[(key, rkey)] - 1
11: end if
12: else . op = w
13: if vote = PREPARED then
14: writeLock[(key, rkey)] := 0
15: DB(key, rkey) := (val, ts)
16: else
17: DB(key, rkey) := (val, ts)
18: end if
19: end if
20: learners := {l|(l, ltid) ∈ Learners[rkey] ∧ ltid == tid}
21: foreach l in learners do
22: remove(learners, Learners[rkey])
23: ltidrest := {tid|(lr, tid) ∈ Learners[rkey] ∧ lr == l}
24: if ltidrest = ∅ then
25: sendto l : copydataResponse({(key, val, ts)})
26: end if
27: end foreach
28: ItemsInTrans := ItemsInTrans \rkey
29: storeToLOG(COMMIT)
30: end if
31: end if
32: end event

Algorithm 11 Paxos Atomic Commit - Decide ABORT at a TP
1: upon event decide(ABORT) at tp
2: if not stored(ABORT) then
3: item := getFromLOG()
4: if item = ⊥ then
5: sendafterdelay(time, decision(tid, ABORT)) to tp
6: else
7: (key, val, ts, op, rkey, vote, tid) = item
8: if op = r then
9: if vote = PREPARED then

10: readLock[(key, rkey)] := readLock[(key, rkey)] - 1
11: end if
12: else . op = w
13: if vote = PREPARED then
14: writeLock[(key, rkey)]) := 0
15: end if
16: end if
17: learners := {l|(l, ltid) ∈ Learners[rkey] ∧ ltid == tid}
18: foreach l in learners do
19: remove(learners, Learners[rkey])
20: ltidrest := {tid|(lr, tid) ∈ Learners[rkey] ∧ lr == l}
21: if ltidrest = ∅ then
22: sendto l : copydataResponse({(key, val, ts)})
23: end if
24: end foreach
25: end if
26: storeToLOG(ABORT)
27: end if
28: end event

5 Transaction Algorithms: Failure Handling

This section covers failure handling of the atomic commit protocol during the
consensus phase. Critical failures are those that block the transaction partici-
pants leaving a replica in a locked state. These can occur after the leader has sent
the prepare request to the TPs. If the leader fails before that or if the leader
cannot contact enough TPs or rTMs the transaction will simply be aborted.
Failures have to be handled in a way that guarantees progress of the transaction
processing while guaranteeing the properties of uniform consensus and atomic
commit. In the following we distinguish between the failure of a TP and the
failure of a leader. The failure handling reflects the one described in the Paxos
atomic commit paper[7].

5.1 Failure of the Leader

When the leader fails the leader election mechanism will elect a new leader among
all TMs. This new leader has to retrieve enough acknowledgments from the TPs’
Paxos instances in order to be able to decide on the outcome of the transaction.
Therefore it starts with a read phase in each single Paxos instance of the TPs
(Algorithm13). In the write phase it will adopt the votes that have been proposed
so far or vote to abort if there hadn’t been a vote in the Paxos instance. As soon
as the new leader got enough acknowledgments it can distribute the outcome of
the commit phase. Figure 11 shows the course of events when a leader fails.

Algorithm 12 Replicated Transaction Manager: Trusting a New Leader
1: upon event trust(leader) at tm
2: Leader := leader
3: newts := nextVts()
4: if state 6= decided ∧Leader = self then
5: foreach i in I do
6: foreach rkey in replicas(i.key) do
7: trigger propose(i.key, rkey, TMs, ⊥, newts)
8: end foreach
9: end foreach

10: end if
11: end event

Fig. 11: If a Leader fails, another node will become the new leader and start a read
phase in each TP’s Paxos instance.

Algorithm 13 Paxos Atomic Commit - Read phase
1: upon event readVote(i.key, rkey, vts) from leader at tm
2: (currVote, rvts, wvts) := Votes[i.key][rkey]
3: if vts >rvts and vts >wvts then
4: Votes[i.key][rkey] := (currVote, vts, wvts)
5: sendto Leader : readVoteAck(i.key, rkey, vts, (currVote, wvts))
6: end if
7: end event

8: upon event readVoteAck(i.key, rkey, vts, (vote, wvts)) from tm at leader
9: ReadVotes[i.key][rkey][vts] := ReadVotes[i.key][rkey][vts] ∪ {(vote, wvts)}

10: end event

11: upon ∃i.key, rkey, vts : | ReadVotes[i.key][rkey][vts]| ≥ br/2c+ 1 at Leader do
12: vote := highest(ReadVotes[i.key][rkey][vts])
13: if vote = ⊥ then
14: vote := ABORT
15: end if
16: sendtoall TMs : vote(i.key, rkey, vote, vts)
17: end event

5.2 Failure of a TP

It must be noted that the protocol makes progress as long as foreach item a
majority of TPs that are responsible for a replica is alive. In that case it is not
necessary to start a failure handling for a TP. If there exists one item for which
a majority of TPs cannot be reached, a leader would have to start voting in as
many Paxos instances it needs to get a majority of votes for the item. However
this situation occurs only if the system is broken, as we assume that for each
item a majority of nodes being responsible for a replica is always available.

When the leader does not get a vote for a replica it suspects the corresponding
TP to have failed. It will start to propose in the Paxos instance for that replica.
As it does not know whether its suspicion is correct or the TP is alive and has
already started to vote, the leader starts with a read phase. It will learn from
the TMs whether there has been a vote made by the TP. If this is not the case
the leader is free in its decision and will start a write phase with the value abort.
Thus the leader decides to abort on behalf of the suspected TP.

Algorithm 14 Leader: Suspecting a TP during Consensus - Start a Read Phase
1: function nextVts() returns vts is
2: select the next vts depending on the nodes key
3: . TMr will come with a proposal numbered r+1
4: . Set of TMs: TM1, TM2, .., TMr

5:

6: upon event suspect((key, rkey)) at leader
7: foreach i in I do
8: trigger propose(key, rkey, TMs, nextVts())
9: end foreach

10: end event

6 Transactional Replica Maintenance

When a node joins the structured overlay network it will take over the responsi-
bility for a certain key range from an existing node in the system. Similarly, when
a node fails, its successor in the structured overlay network has to take over re-
sponsibility for the failed node’s key range. A node knows that its responsibility
has changed whenever it has to update its predecessor pointer.

The framework has to handle joins and failures of a node on the data level in
a way that maintains data consistency. Handling these events on the data level
is done after they are handled on the overlay level. E.g. a joining node n first
sets its successor and predecessor pointers and notifies the corresponding nodes
about itself. Thereafter the new node n has to retrieve the data it is responsible
for. Data retrieval mechanisms may not decrease the number of up-to-date copies
for an item and they may not violate serializability of transactions.

Whenever the predecessor of a node is changed the event is handled on the
data-level. There are two possible situations. Either the range the node is re-
sponsible for was increased or it was decreased. In the first case the node has
to fetch the data it has not stored yet, in the second case the node has to drop
data it is no longer responsible for.

A new copy of an item can be initialized by any transaction that writes that
item or it is initialized explicitly[2]. As the first possibility may potentially take
a long time and other copies of the item might fail during that time, it is better
to do an explicit initialization of the copy to decrease the probability of a system
failure. The system fails if an operation that is performed on a majority of nodes
holding a replica cannot return an up-to-date item. Explicit initializing of a new
copy can be done by a copy operation that reads the existing copies of the item
and stores the current value in the new copy. Additionally all transactions that
update the item must know of the new copy. Otherwise a non-serial history could
arise by the following three events:

– Transaction T1 updates x and y
– Node N1 joins and will become responsible for replicas x1 and y1

– Transaction T3 reads x and y

The non-serial sequential history of events and transaction phases that can
occur:

1. T1 - Initialization phase: Get addresses of involved nodes
2. T1 - Validation phase: Send prepare request with lookup
3. N1 joins the ring (updates its successor, predecessor and the others)
4. N1 copies x1 from an existing copy: Gets the old value
5. T1 - Consensus phase: Outcome is received by all TPs
6. N1 copies y1 from an existing copy: Gets the new value
7. x1 at N1 is out of date

In this situation the number of replicas that are out of date would be in-
creased. This happens if the initialization of an item does not take into account
ongoing transactions on the item. The copy operation to initialize a replica has
to be done either with a transaction or by adding the new node as learner to
ongoing transactions, as we will explain in the following. A node that has to ini-
tialize the replicas in its range has to know which items exist that have replicas
in that range and it has to copy the data for these replicas. If the initialization
would have been done by one transaction this transaction would fail if there is
even one single write operation on one of the items. Another possibility is that all
ongoing transactions have the new node as a so called learner for the outcome.
This concept is used in our framework and introduced in the following.

6.1 Copy Operation

The operation that initializes copies in a certain key range will be called copy
operation in the following. Within this operation a node asks the nodes that are
responsible for the corresponding remaining replicas of the items in its new range
to send their replicas to it. It has to read from at least a majority of replicas.
Once the nodes being responsible for the remaining replicas get a copy request,
they have to remember the new node as a learner for all ongoing transactions.
They send to the new node all replicas that are not involved in a transaction.
Items that are currently involved in the transaction are sent as soon as there is
no transaction run on them any more for which the new node is registered as
learner. This is a way to let all ongoing transactions know the new copy. The
new node will not be able to answer requests for items in its range until it has
retrieved the data for it.

6.2 Join and Leave

When a node joins or leaves the system the successor of the joining or leaving
node changes its predecessor. This means that the key range of the successor
node is changed. In the following we assume that the routing layer triggers an
event called NewPredecessor. Upon such an event a node checks whether the

range it is responsible for has increased or has decreased. In the first case it has
to copy data, in the second case it has to drop data. Similarly, a new node will
fetch data once it knows the range it is responsible for.

Algorithm 15 Data Level: New Predecessor Event from the Routing Level
. The NewPredecessor event is triggered on the routing level, after a new

predecessor is set due to join or periodic stabilization
1: upon event NewPredecessor(prevpred, newpred) at n
2: if newpred 6= nil then
3: if newpred ∈ (prevpred, n) then
4: trigger dropData(prevpred, newpred)
5: else
6: trigger fetchData(newpred, prevpred)
7: end if
8: else
9: oldpred=prevpred

10: end if
11: if prevpred = nil then
12: trigger dropData(n, newpred)
13: if oldpred ∈ (newpred, n) then
14: trigger fetchData(newpred, oldpred)
15: end if
16: end if
17: end event

Algorithm 16 shows the copy operation. A node that has to fetch data first
calculates all the other replica keys that correspond to its key range. It starts
a bulk operation with these replica keys to read the data it has to store. Each
node that gets a copydata request will send the values or add the requesting
node as a learner to the transactions on items that are in the requested range.

Algorithm 16 Data level: Drop and fetch data
. After setting successor and predecessor and notifying the others

1: upon event fetchData(start, end) at n
2: ReplicaKeys:= getCorrespondingReplicaKeys(start, end),
3: trigger bulk(ReplicaKeys, {copydata})
4: end event

. After a new predecessor is set on the overlay level
5: upon event DropData(start, end) at n
6: DB:= DB \ DB ([start, end])
7: end event

8: upon event bulk([x, y], {copydata})) from n′ at n
9: foreach (r.key, tid) in ItemsInTrans do

10: if r.key ∈ [x, y] then
11: Learners([r.key]) = Learners([r.key]) ∪ (n′, tid)
12: end if
13: end foreach
14: Items := DB([x, y])
15: Items := Items \ ItemsInTrans
16: sendto n′ : copydataResponse(Items)
17: end event

18: upon event copydataResponse(Replicas) from n at newnode
19: foreach i in Replicas do
20: myrkey := getOwnReplicaKey(i.key)
21: MyData[(myrkey, i.key)]:= MyData([(myrkey, i.key)]) ∪ (i.val, item.ts)
22: if | MyData [(myrkey, i.key)]| ≥ br/2c+ 1 then
23: if latest(MyData[(myrkey, i.key)]) > DB(i.key,myrkey) then
24: DB(i.key,myrkey):=(i.val, i.ts)
25: end if
26: end if
27: end foreach
28: end event

7 Evaluation

7.1 Analytical Evaluation of the Commit Protocol

Number of messages Figure 12 illustrates the different communication steps
that are necessary for a failure free execution of the protocol. Including the
initialization phase six steps are required to make a decision on the outcome of
the transaction. Note that in our algorithms the leader is at the same time a
transaction manager. The number of messages depends on the replication factor
r in the system and the number n of items involved in the transaction. This are
the number of messages sent in each step:

1. r Lookup message for TMs

Fig. 12: The figure shows the communication steps required for the whole atomic
commit protocol

2. r Registration messages from TMs
3. n * r + r Prepare request to TPs and information message to TMs
4. n * r * r Vote of TPs to all TMs
5. n * r * r Acknowledgment for each vote
6. n * r + r Decision sent to the TPs and TMs

Overall we need (1+r)2nr+4r messages. The r messages from the first step use
a bulk operation that is based on lookups. Similarly the n ∗ r prepare requests
in the third step also use lookups. Note that the number of messages can be
optimized. A TM can send all the acknowledgments for the votes it got within
one message instead of sending a separate message for each vote.

Upper Timebounds

1. O(logN) Lookup request to TMs
2. O(1) Direct communication: Latency of slowest TM
3. O(logN) Lookup request to TPs
4. O(1) Direct communication: Latency of slowest conncection from a TP to a

TM in a majority for an item

5. O(1) Direct communication: Latency of slowest TM to leader connection
6. O(1) Direct communication: Latency of slowest leader to TMs and TPs con-

nection

7.2 Experimental Evaluation

The transaction algorithm is implemented as part of Scalaris [11], a P2P-based
key/value store. We tested the performance of Scalaris and the transaction algo-
rithm on an Intel cluster up to 16 nodes. Each node has two Quad-Core E5420s
(8 cores in total) running at 2.5 GHz and 16 GB of main memory. The nodes are
connected via GigE and Infiniband; we used the GigE network for our evaluation.

On each physical node we were running one multi-core Erlang virtual ma-
chine. Each virtual machine hosted 16 Scalaris nodes. We used a replication
degree of four, that is, there exist four copies of each key-value pair.

We tested two operations: a read and a modify operation. The read operation
reads a key-value pair. The modify operation reads a key-value pair, increments
the value and writes the result back to the distributed Scalaris store. To guaran-
tee consistency, the read-increment-write is executed within a transaction. The
read operation, in contrast, simply reads from a majority of the keys. The bench-
marks involved the following steps:

– Start watch.
– Start n Erlang client processes in each VM.
– Execute the read or modify operation i times in each client.
– Wait for all clients to finish.
– Stop watch.

 0

 5000

 10000

 15000

 20000

 25000

 0 2 4 6 8 10 12 14 16

Tr
an

sa
ct

io
ns

/s

Nodes

Read

1 client
2 clients
5 clients

10 clients

Fig. 13: Read performance of the transaction algorithm. The read operation is exe-
cuted with increasing number of local threads and cluster sizes.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2 4 6 8 10 12 14 16

Tr
an

sa
ct

io
ns

/s

Nodes

Modify

1 client
2 clients
5 clients

10 clients
50 clients

100 clients

Fig. 14: Write performance of the transaction algorithm. The write operation is exe-
cuted with increasing number of local threads and cluster sizes.

Figure 13 and 14 shows the results for various numbers of clients per VM
(see the colored graphs). In the read benchmarks depicted in Fig. 13, each thread
reads a key 2000 times while the modify benchmarks in Fig. 14 modify each key
100 time in each thread.

As can be seen, the system scales about linearly over a wide range of system
sizes. In the read benchmarks (Fig. 13), two clients per VM produce an optimal
load for the system, resulting in more than 20,000 read operations per second
on a 16 node (=128 core) cluster. Using only one client (red graph) does not
produce enough operations to saturate the system, while five clients (blue graph)
cause too much contention. Note that each read operation involves accessing a
majority (3 out of 4) replicas.

The performance of the modify operation (Fig. 14) is of course lower, but
still scales nicely with increasing system sizes. Here, the best performance of
5,500 transactions per second is reached with fifty load generators per VM, each
of them generating approximately seven transactions per second. This results in
344 transactions per second on each server.

Note that each modify transaction requires Scalaris to execute the adapted
Paxos algorithm, which involves finding a majority (i.e. 3 out of 4) of transaction
participants and transaction managers, plus the communication between them.
The performance graphs illustrate that a single client per VM does not produce
enough transaction load, while fifty clients are optimal to hide the communica-
tion latency between the transaction rounds. Increasing the concurrency fur-
ther to 100 clients does not improve the performance, because this causes too
much contention. Note that for the 100-clients-case, there are actually 16*100
clients issuing increment transactions. Overall, both graphs illustrate the linear
scalability of Scalaris.

8 Discussions

The algorithms do not include garbage collection issues. A transaction man-
ager has to keep the information for a transaction long enough to be sure that
each transaction participant knows the outcome. Transaction participants could
acknowledge that they got the decision of the atomic commit protocol.

References

1. L. O. Alima, A. Ghodsi, and S. Haridi. A Framework for Structured Peer-to-
Peer Overlay Networks. In Post-proceedings of Global Computing, Lecture Notes
in Computer Science (LNCS), pages 223–250. Springer Verlag, 2004.

2. Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concurrency con-
trol and recovery in database systems. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1987.

3. Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43, 1996.

4. A. Ghodsi, L. O. Alima, and S. Haridi. Symmetric Replication for Structured
Peer-to-Peer Systems . In Proceedings of the 3rd International VLDB Workshop
on Databases, Information Systems and Peer-to-Peer Computing (DBISP2P’05),
volume 4125 of Lecture Notes in Computer Science (LNCS), pages 74–85. Springer-
Verlag, 2005.

5. Ali Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash Tables.
PhD thesis, KTH — Royal Institute of Technology, Stockholm, Sweden, December
2006.

6. David K. Gifford. Weighted voting for replicated data. In SOSP ’79: Proceedings
of the seventh ACM symposium on Operating systems principles, pages 150–162,
New York, NY, USA, 1979. ACM Press.

7. Jim Gray and Leslie Lamport. Consensus on transaction commit. ACM Trans.
Database Syst., 31(1):133–160, 2006.

8. Rachid Guerraoui and Michal Kapalka. On the correctness of transactional mem-
ory. In PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Symposium on Prin-
ciples and practice of parallel programming, pages 175–184, New York, NY, USA,
2008. ACM.

9. Rachid Guerraoui and Lúıs Rodrigues. Introduction to Reliable Distributed Pro-
gramming. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

10. Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–
169, 1998.

11. Thorsten Schütt, Florian Schintke, and Alexander Reinefeld. Scalaris: Reliable
transactional p2p key/value store. In ACM SIGPLAN Erlang Workshop, Septem-
ber 2008.

12. Tallat M. Shafaat, Monika Moser, Ali Ghodsi, Thorsten Schütt, and Alexander
Reinefeld. On consistency of data in structured overlay networks. In CoreGRID
Integration Workshop 2008, 2008.

13. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A
scalable Peer-To-Peer lookup service for internet applications. In Proceedings of
the 2001 ACM SIGCOMM Conference, pages 149–160, 2001.

