TakustraBe 7
D-14195 Berlin-Dahlem
Germany

Konrad-Zuse-Zentrum =
fur Informationstechnik Berlin —

MARCUS WEBER

A Subspace Approach to Molecular
Markov State Models via an
Infinitesimal Generator

Z1B-Report 09-27 (September 2009)






A Subspace Approach to Molecular Markov State
Models via an Infinitesimal Generator

Marcus Weber

September 7, 2009

Abstract

Supercomputers can simulate complex molecular systems. However,
there is a very large gap between the fastest oscillations of covalent bonds
of a molecule and the time-scale of the dominant processes. In order to
extract the dominant time-scales and to identify the dominant processes,
a clustering of information is needed. This thesis shows that only the
subspace-based Robust Perron Cluster Analysis (PCCA+) can solve this
problem correctly by the construction of a Markov State Model. PCCA+
allows for time-extrapolation in molecular kinetics. This thesis shows the
difference between molecular dynamics and molecular kinetics. Only in
the molecular kinetics framework a definition of transition rates is possible.
In this context, the existence of an infinitesimal generator of the dynamical
processes is discussed. If the existence is assumed, the Theorem of Gaufl
can be applied in order to compute transition rates efficiently. Molecular
dynamics, however, is not able to provide a suitable statistical basis for
the determination of the transition pattern.
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1 Introduction

The computer simulation of molecular systems is a research area with a fine tra-
dition. Nowadays, supercomputers like ANTON [58] are specifically designed to
generate classical molecular dynamics trajectories. Researchers are interested in
classical molecular simulations in order to understand protein folding processes
and interactions between molecules like ligands and proteins. In Figure 1, an
example of a result from a molecular simulation is shown. The binding path
of a ligand into the active site of a protein, DPP-4, has been investigated with
computational methods [8].

Figure 1: A binding path of a DPP-4 ligand from the surface of the protein into
the active site.

In classical molecular dynamics, the equations of motion of an N-atoms
molecular system are solved in configurational space (3N cartesian coordinates)
and in momenta space (3N momentum variables). One problem with the simu-
lation of molecular systems is the gap between the fastest oscillations of covalent
bonds of a molecule (some femtoseconds) and the time-scale of the interesting



processes (some microseconds for fast folding processes)[24]. Another problem
is the evaluation of forces acting on the atoms of the molecular system. This
evaluation is very expensive. ANTON can generate a trajectory of 10,000 ns
per day for a large protein structure (23,000 atoms plus explicit water) [73].
Thus, in order to simulate one second in “real life” ANTON needs about 270
years of computing time'. Even if we can generate and analyze a trajectory of
this length, it is not clear that the generated statistical data contains enough
information about the molecular processes and time-scales under consideration.
In Section 2.3, this direct sampling approach will be investigated. In Figure 2,
e.g., a typical time-series plot of an observable taken from a dynamics simulation
of a small molecule is shown.
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Figure 2: A typical time-series plot of an observable from a molecular dynamics
simulation of a small molecule.

Simply speaking, the molecule has two different conformations. The relative
position of the oxygen atom, as measured by means of an internal coordinate,
determines its conformation. Here, the internal coordinate is a dihedral angle.
In the time-series plot, one can see that the molecule jumps between two confor-
mations. The conformations are indicated by blue and red colored stripes. Peter
Deuflhard, Christof Schiitte et al. [18, 16, 19, 55, 17] intoduced this set-based
approach to conformation dynamics, which was inspired by ideas of Michael
Dellnitz et al. [15]. The observation in Figure 2 is that the molecular system
stays in a conformation for a very long time compared to the time-scale of sim-
ulation before it jumps to another conformation. Consequently, Deuflhard et al.
used this kind of observation in order to define(!) conformations as metastable
sets in the configurational space of the molecular system. Their approach will
be investigated in Section 2.2. It is the theoretical framework of this thesis. The
set-based concept can be extended to more than two conformations. It can also
be extended to the situation of Figure 1. The binding process of a ligand into an
active site can be seen as a transition process between different conformations

n fact, ANTON is the first computer which can reach this efficiency. A single CPU
can simulate about 1 ns per day. At the time ANTON was designed, comparable parallel
computers could only simulate about 100 ns per day.



along the binding path. An observable can, e.g., characterize the relative posi-
tion of the ligand to the active site. In this case, a similar behaviour compared
to that in Figure 2 can be expected for the observable, but for a much longer
time-scale. In Figure 3 the corresponding conformations for the above example
are illustrated using volume rendering techniques. These are the interesting

Figure 3: The simulation of a binding process of a ligand into an active site of
a protein can also be seen as a conformation dynamics problem. The statistical
weights of the conformations and the corresponding transition pattern is an
important information for the optimization of ligand molecules, see Section 5.

questions:

Q1 What are the statistical weights of the conformations? In other words,
what is the probability for the system to be in one of the conformations?

Q2 How can we describe the transition pattern between the conformations?
In other words, how can we estimate the probability to stay in one of
the conformations, as well as the probability to move between certain
conformations?

Based on the conformation dynamics approach, the questions Q1 and Q2 can
be answered by a Markov State Model. The transition pattern between the
conformations is given by a row-stochastic transition matrix and the statistical
weights are given by the dominant left eigenvector of this transition matrix [55].
This is a statement about the mathematical formulation of the answers to Q1
and Q2. It is not a statement about how to get the statistical information to
build up the Markov State Model. Figure 2 clearly shows that a direct sampling
approach leads to redundant statistical data. E.g., follow the trajectory in Fig-
ure 2 when the system is in the red conformation for the first time. During the
simulation a lot of redundant data about the local distribution of the dihedral
angle inside this “red conformation”(A) is collected until the trajectory jumps
to the “blue conformation” (B) again. Although the overall generated simula-
tion data is by far sufficient to estimate the local distributions of the observable
inside the two conformations, the sampling does not contain enough data in
order to make a statistically relevant statement about the transition pattern of



the system. There are too few jumps between the conformations A and B inside
the trajetory. These jumps are rare events. Thus, the transition pattern (Q2)
cannot be extracted from the time-series in Figure 2. Additionally, even the
statistical weights (Q1) of the two conformations cannot be extracted from the
presented time-series. If the trajectory rarely jumps between its conformations,
the weighting between the conformations may be wrong [70]. In order to answer
the aforementioned questions of conformation dynamics, the applied simulation
method has to balance between two different requirements

R1 In order to figure out the statistical weights of the conformations, the sam-
pling method can not be based on rare jumps between the conformations.

R2 For an analysis of the transition pattern, the sampling method has to
focus in the transition regions. In our example: The region between the
two stripes in Figure 2.

These two requirements are contradictory, because for R1 the sampled trajec-
tory avoids spending time in transition regions whereas for R2 it focusses on
these regions. In my opinion, these two requirements lead to different sampling
approaches. The second requirement R2 can be realized by a deeper analysis
of transition regions, which is explained in Section 2.4. This requirement is the
most difficult part of conformation dynamics and will be the main investigation
later. The first requirement R1 can be implemented by using a special sampling
scheme, which will be explained in Section 4.4.

Conceptual change. At this stage, everything seems to be solvable using
the given Markov State Model framework of conformation dynamics. Answer-
ing the two questions (Q1 and Q2) seems to be a purely technical problem:
The requirements (R1 and R2) simply lead to different sampling schemes. How-
ever, conformation dynamics has a conceptual problem. In Figure 4, a sketch
of the set-based concept of conformation dynamics is shown. The state space
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Figure 4: The states of a trajectory of a molecular dynamics simulation are
assigned to two conformations A and B.

is decomposed into metastable sets (in our example: A and B). Each state of a
time-discrete trajectory (circles in the first row) can be assigned to one of these
sets, i.e., to one of the conformations. Note that in this concept, the states
in the transition region in Figure 2 have to be uniquely assigned to A or B as
well. Whereas, the first row in Figure 4 is a Markov chain in state space, the
projected time-series (AABBA...) does not have a Markov property [65, 69].
This aspect will be discussed in Section 3.3. Thus, presenting a Markov State
Model as a solution of the conformation dynamics problem disguises that the
projection from a dynamics simulation in a continuous state space onto a finite
number of sets destroys the Markov property. There are several approaches in



literature, which try to correct the results of conformation dynamics in this di-
rection. A rigorous approach is given by the computation of commitor functions,
see Section 2.6. This approach is only valid for the case of two conformations.
Therefore, the present thesis focuses in analyzing the projection in Figure 4 from
a different point of view. Instead of analyzing molecular dynamics trajectories
a transfer operator concept will be used, introduced by Schiitte [55]. A transfer
operator will be defined, which is different from Schiitte’s operator. The wishful
properties of such a new transfer operator will be derived in Section 3.1. In
order to deduce a valid projection of this new transfer operator to a low dimen-
sional Markov State Model, conformations are not defined by sets any more.
Conformations are given by membership functions computed as a linear combi-
nation of dominant eigenfunctions of the transfer operator. This approach will
include the key for an efficient sampling of the state space. A direct estimation
of the infinitesimal generator (Section 3.5) of the new transfer operator will be
used to adaptively and hierarchically sample from the state space, i.e., generate
sampling data where only “more information” is needed.

2 Molecular kinetics in the canonical ensemble

All considerations in the present theses assume a canonical ensemble, i.e., the
simulation results are valid for systems with a constant number of particles NV,
constant volume V and constant temperature T. The theoretical construction
of a canonical ensemble as well as the state of the art methods to characterize its
dynamical behaviour is explained in the upcoming sections. This is neccessary
because the basic assumptions should be clear before the mentioned conceptual
change is introduced in Section 3.

2.1 From molecular dynamics to Markov State Models

In Figure 5, an isolated system is indicated by a box with a hatched barrier.
The system cannot interact with its suroundings, the transfer of matter and
of heat is blocked. Imagine a thermos flask. This isolated system cannot be
modelled with computational methods because it consists of too many particles.
A certain homogeneity is assumed: The system is devided into a large number
of identical, closed subsystems. A closed system can exchange heat with the
surroundings, but it cannot tranfer matter. Each subsystem is a copy of a
certain molecular system. E.g., imagine a certain protein with its ligand in a
water box as a subsystem in Figure 5. In the classical framework of this thesis,
each subsystem has the same number N and types and connectivities of atoms.
The subsystems have the same volume. However, they are different with regard
to their molecular state. Each subsystem has its own configurational state
q € 2 C R*N and momentum state p € R*N. Thus, the total energy H of each
subsytem is different. The total energy H(g,p) of such a classical molecular
system is the sum H(q,p) = V(q) + K(p) of its potential energy, V : Q — R,
only depending on ¢, and its kinetic energy, K : R3N — R, only depending on
p. Taking all these conditions into account, Boltzmann derived the probability
density function 7 : Q x RN — R, of states (¢, p) of the subsystems as

7(4,) = 5 exp(— H(g,p)). 1)



Figure 5: An isolated system devided into a large (infinite) number of closed
subsystems. Each subsystem is a copy of the same molecular system with the
same number of atoms and the same volume, but with a different molecular
state given by configurational ¢ and momentum coordinates p.

where Z > 0 is the normalization constant (also called partition function), and
0 is derived from the Lagrange multiplier of the above constraints. In order to
compute the Boltzman distribution as a solution of an optimization problem,
one can either ask for the most probable distribution or maximize the entropy
[35] of the isolated system?. The factor 3 can be related to the temperature
T of the system 3 = (kgT)~!, where kg is the Boltzmann constant. Thus,
besides the number of particles and the volume of the subsystems, temperature
is a further common property (see Figure 5). The states of the subsystems are
time-dependent. The Boltzmann distribution is a dynamical equilibrium of the
system. There are two different ways to characterize this dynamical process:
molecular dynamics and molecular kinetics.

Molecular dynamics. A molecular dynamics simulation of the system in
Figure 5 picks out only one subsystem of the canonical ensemble and deter-
mines its time-dependent evolution. This is done independently from the states
of the other subsystems. In the context of the canonical ensemble, molecular
dynamics can be seen as a simulation of a closed molecular (sub)system. For
this simulation a dynamical model has to be defined. This model has to qualify
and quantify the interchange of energy between the subsystems of the canoni-
cal ensemble. One important dynamical model is Hamiltonian dynamics®. In
this dynamical model, the time-evolution of the states is given by a first order
differential equation

q(t) = VpK(p(1),
plt) = =VgVia(®)), 2)

2The Boltzmann distribution is the equilibrium distribution of the states of the subsystems
in Figure 5. Entropy increases as long as the system is not in an equilibrium state. In an
equilibrium state, entropy reaches its maximum.

3Hamiltonian dynamics is a dynamical model of an isolated subsystem, but an isolated
subsystem is just a special case of a closed subsystem without interchange of energy.



where ¢ and p are the time-derivatives of ¢(t) and p(¢). A short calculation shows
that 4 (g(t),p(t)) = 0 in the case of Hamiltonian dynamics (2). Furthermore,
the phase space volume is time-invariant with regard to the symplectic dynamics.
Therefore, the density 7 of states is preserved assuming Hamiltonian dynamics.
Hamiltonian dynamics is a valid dynamical model with regard to the canon-
ical ensemble (it preserves the equilibrium state of the system dynamically).
This insight contradicts a common opinion. In fact, Hamiltonian dynamics is a
valid dynamical model for a simulation at constant temperature. The important
insight is that temperature is not a property of a molecular state, it is a prop-
erty of an ensemble. However, Hamiltonian dynamics is not recommended for
constant-temperture simulations, because it is not ergodic in this context. Given
an initial state (¢(0), p(0)), the Hamiltonian dynamics trajectory does not come
arbitrarily close to all the states of the subsystems. It keeps its initial energy
level, whereas, the subsystems have different total energy levels in Figure 5. As
a consequence, self-equilibration of the isolated system, i.e., convergence against
the Boltzmann distribution of states, cannot be explained assuming Hamilto-
nian dynamics as a dynamical model for the canonical ensemble. In Section 2.3,
modifications of Hamiltonian dynamics are presented, which are often used for
an ergodic molecular dynamics simulation at constant temperature.

Mbolecular kinetics. In molecular dynamics a single trajectory is analyzed.
A “transition” takes place if this special trajectory leaves a certain subset of
the state space and enters a different one. In molecular kinetics, however, an
ensemble of trajectories is analyzed, i.e. the propagation of probability densities
is observed. From this point of view, a “transition” takes place if an arbitrary
of the observed trajectories leaves a certain subset of the state space and enters
a different one. In particular, the transition pattern of molecular kinetics does
not hold for the behaviour of single subsystems. Statements like “transition
rates between the conformations correspond to a long-time dynamics trajec-
tory” are not possible with regard to this approach. It is not possible to claim
that the molecular kinetics transition pattern represents a single realization of
a dynamical model. The computed transition rates can also not be validated
by experiments observing the dynamics of a single molecule. Although, there
are two main assumptions in the molecular dynamics approach which are rel-
evant for molecular kinetics, too. The first assumption is a kind of a Markov
property: Equation (2) is a first order deterministic differential equation. In
order to predict the future evolution of the system it is sufficient to know the
current state (g(t),p(f)). Note that for all dynamical models in Section 2.3,
i.e, also for first order stochastic differential equations and for time-continuous
time-harmonic Markov processes, this Markov property holds. The second as-
sumption of molecular dynamics is given by the independence of the energy
transfer of the subsystems with regard to the rest of the ensemble. In other
words, the subsystems do not “see” if the ensemble is equilirated or not.

An important consequence: The ensemble is always (at each point of time)
driven by the same dynamical model, no matter if the ensemble is on its way to
equilibrium or if it has already reached its dynamical equilibrium.

In molecular kinetics, the evolution of the probability density of the states of
the subsystems is determined. In this context, the basic assumptions can be
expressed mathematically by an operator equation. Given a time-dependent



probability density function p: R x Q x R*N — R of states (¢,p) € Q x R3N at
time ¢ and a lag-time T > 0, the evolution of the probability density function at
time t + 7 can be expressed as:

p(t+7—7'7') :fs(’r)p(tv’v')v (3)

where Py(7) : L1(Q x R3N) — L1(Q x R3N) is a lag-time-dependent (but not
time-dependent) operator which propagates probability density functions*. In
Section 3.2 it will be shown that our approach defines a Markov operator P(7),
a projection of P(7) to configurational space €. Equation (3) is too complex to
be solved for high-dimensional molecular systems. The complexity of this equa-
tion is reduced by using the aforementioned conformation dynamics approach.
The probability density function p(t,-,-) is projected to a time-dependent low-
dimensional vector w(t) € R™. The elements of this vector are given by the
statistical weights of the n conformations at time ¢. In Figure 18 at the end
of this thesis, a plot of the time-dependent evolution of a w-vector (with 3 ele-
ments) is shown as an example for this kind of complexity reduction. In Figure 6,
a sketch of the complexity reduction can be seen. Whereas the projection shown
in Figure 4 is based on a molecular dynamics simulation, Figure 6 presents the
conformation dynamics approach in the desired molecular kinetics framework.
The propagation of the vectors w in Figure 6 is done by an n x n-matrix P’ (1)
via w(t +7) = P (7)w(t). In order to get a commuting diagram in Figure 6,

P - P - P - P L
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Figure 6: Complexity reduction of molecular kinetics. Solid lines: propaga-
tion of probability density functions via Pgs(7). Dashed lines: projection of
probability density functions to a low-dimensional vector w. Dash-dotted lines:

propagation of statistical weights via an n x n-matrix P.J (7).

(&
more, the sum of the elements of w has to be 1 for every time-step in Figure 6.

Column-stochastic matrices having positive eigenvalues present one possible(!)
class of matrices in this context. Column-stochastic matrices have non-negative
elements and their column sums are equal to 1. In this special case, the trans-
posed P.(7) can be interpreted as a transition matrix of a Markov chain. This
is the reason why this matrix is called Markov State Model in conformation
dynamics. Each conformation is denoted as one possible Markov state of the
system. The transition behaviour is given by P.(7). The aim of conformation
dynamics is to compute this Markov State Model®.

the matrix P, (7) has to preserve the non-negativity of w (at least). Further-

4Note that for a non-negative probability density function p the normalization 1 =
fR3N fQ p(t,q,p) dqdp holds, i.e., p(t,-,-) € L} (Q x R3N). The connection of (3) to ordi-
nary reaction kinetics is visible if p(t, g, p) is interpreted as “concentration” of “species” (g, p)
at time ¢t.

51f PJ () is column-stochastic, then P.(7) is a row-stochastic matriz. However, P, (1) is
not neccessarily column-stochastic. Nevertheless, the technical term “Markov State Model”

will be used for P.(7) throughout this thesis.



2.2 Transfer operator approach

The set-based concept of the transfer operator approach [55] of Schiitte et al. is
a method to find a Markov State Model P.(7). This approach is explained in this
section. As mentioned before, the investigations can be restricted to the case of
an equilibrated system. In the classical framework of this thesis, the total energy
H is the sum of kinetic and potential energy. The Boltzmann distribution = can
be decomposed, m = m,7,, into a probability density function m, : RN - R
for the kinetic energy in momentum space and a probability density function
mq : @ — R for the potential energy in configurational space. In order to
generate a Markov State Model P, using the transfer operator approach, the
molecular kinetics information is derived from a molecular dynamics simulation
with a pre-defined dynamical model. Hamiltonian dynamics has been identified
above as a valid dynamical model for the canonical ensemble. In his thesis,
Schiitte defined a tranfer operator 7(7) : L3?(Q) — L3:*() on the basis of
Hamiltonian dynamics as

T(7) fq) = o f ¥~ (g, p)) mp(p) dp. (4)
Equation (4) can be understood as follows: Given an initial state (g, p), a back-
ward Hamiltonian dynamics for a lag-time 7 is investigated. The final state is
denoted as ¥~7(q,p). Via II,, this final state is projected to position space.
The integral in (4) averages over all possible initial momentum variables with
given Boltzmann distribution 7,. The definition of conformations as metastable
sets leads to a decomposition of the configurational space €. In the set-based
approach, the conformations x1, ..., xn are given by the characteristic functions
of the corresponding subsets of €2, i.e., in terms of functions y; : 2 — {0,1}.
The conformations y; form a partition of unity via ., xi(q) = 1 for all ¢ € Q.
In order to identify the conformations y, the configurational space is decom-
posed into a larger (but finite) number of subsets represented by characteristic
functions ®; : @ — {0,1}, ¢ = 1,...,m, with m > n. A transition probabil-
ity matrix P(7) € R™*™ between these small subsets is used to identify the
metastable subsets x; of the configurational space. The discretization scheme
of the tranfer operator approach to conformation dynamics can be written as

7T—P—P. (5)

A continuous transfer operator 7 (1) is defined to characterize the collective
transfer of initial states for a certain dynamical model of the molecular system.
A discretization of this operator via basis functions ® leads to a transition
matrix P(7) which is used to identify the conformations x and the Markov
State Model P.(7). On the basis of the transfer operator 7(7), the element
(i,4) of the transition matrix P(7) can be computed as

(@4, T(7)®;)x

: (6)

P(r)(i.) = =g

where (f,g)r, is the mg-scalar product defined as [, f(q) 9(q) 74(q) dg, and e :
) — {1} is a constant function. The nominator in (6) counts the number of
states which undergo a transition from set ®; to set ®; in time 7. This number is
divided by the statistical weight of set ®; in equilibrium, given by d; := (4, €), .
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Thus, the expression (6) denotes the conditional probability for a transition from
set ®; to set ®;. The matrix P, can be derived from the operator 7 in a similar
way. Just exchange the ®-basis functions by x-basis functions in (6). 7(7) in
(4) is a transfer operator. 7 (7) is not acting on density functions, it is acting
on membership functions. Thus, stationarity is characterized by the equation
e = T (1) e, where e is the constant function e = 1 in Q. In contrast to 7, the
operator P4(7) in (3) is acting on density functions. In this case, stationarity is
characterized by m = P4(7) 7, with the Boltzmann density 7. Consequently, 7
is dicretized with a set of basis functions ® or y, which is a partition of unity
(and not a partition of 7,). 7 and the projection of Py to configurational space
are adjoint operators, which can be seen by the fact that a y-discretization of 7°
leads to P. and a y-discretization of P, leads to Pc—r in Section 2.1. The transfer
operator approach is a powerful concept for molecular kinetics investigations.
For the computation of P and P,, however, high dimensional integrals have to
be solved, see (6). In this equation, the computation of the term 7 (7)®;(7) can
be based on short-time 7 molecular dynamics simulation data. As mentioned
before, Hamiltonian dynamics is not ergodic. Therefore, we will explain how to
compute the transition matrix P on the basis of molecular dynamics simulation
data for different dynamical models. This requires a generalization of 7.

2.3 Thermostated molecular dynamics simulations

Many researchers have created possible dynamical models for a canonical ensem-
ble, such that the distribution of simulation data of a single long-time trajectory
converges to (1). They have been inspired by the equations of motion (2). There
are two main approaches used in practice.

1. A deterministic approach: Instead of (2) an alternative but similar deter-
ministic dynamical system is defined which converges against Boltzmann
distribution. A well-known example is the time-reversible Nosé-Hoover dy-
namics [25, 31]. Another example is the Berendsen thermostat [5] which
does not generate the canonical ensemble exactly. Other time-reversible
deterministic thermostats can be found in [32]. It should be mentioned,
that the term “deterministic approach” is only of academic interest. From
a numerical point of view, the Ljapunov exponent of the dynamical sys-
tems is usually very high: Long-time deterministic dynamical systems are
chaotic. This is the reason why many researchers prefer molecular dynam-
ics simulations for generating Boltzmann distributed ensembles.

2. A stochastic approach: Besides Smoluchowski [33] and Langevin dynamics
[53], the class of hybrid Monte-Carlo methods (HMC) [20] is an example
for a stochastic dynamical model®. In HMC, the system is mainly prop-
agated according to (2). Sole exception: After a certain time-span the
momentum coordinates are refreshed randomly and a Metropolis-like ac-
ceptance step assures the convergence of the system towards (1). Since
a total refreshing of momentum variables seems to be unphysical, there
are alternative variants of this method. In these variants, momentum
variables are more or less conserved, e.g., like in targeted shadow HMC

.

6The data in Figure 2 has been generated with HMC.
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Besides possible physical inconsistencies of the above dynamical models, there is
always an unkown additional parameter which defines how fast the trajectories
can change between the energy levels of H. From a physical point of view, this
parameter determines the quality of the energy transfer between the molecular
system and its environment in order to equilibrate temperature. This param-
eter is difficult to define and often appears arbitrarily. However, the transfer
operator approach can be extended to these different dynamical models. The
two classes of dynamical models have an important property in common — the
Markov property. Given a starting point (g,p) € Q x R*Y, one can determine a
probability for the possible future evolution of the system. These propabilities
only depend on the starting point (q,p). From this point of view, a 7-time-
discretized computation of one of the mentioned dynamical models is nothing
else but a realization of a Markov chain in phase space. A generalized transfer
operator P(7) : L1?(Q) — Lp?(Q) can be written as:

P(r) 1) = [

R3N

(/Qf@ ¥_-(ql(q,p)) dfi) 7p(p) dp. (7)

In equation (7), the initial state (q,p) determines a probability density function
\IJ_T( “|(q, p)) for the possible evolutions of the system in configurational space
in time 7. For an explanation see Figure 7. W_. is a Dirac delta function in
the case of deterministic dynamics, because the initial state (¢(0),p(0)) exactly
defines the final configurational state ¢(—7). Equation (7) can be used to define
a generalized transfer operator for any of the dynamical models (deterministic
and stochastic) mentioned above, even in the case of a dynamical model which is
independent from momentum variables” — like Smoluchowski dynamics. 7 in (4)
is a special case® of P. There is a very simple way to derive a transition matrix

(9.p) (9.p)

[

(a,p) o
Figure 7: Left. In the case of (4), Hamiltonian dynamics is deterministic. A
given initial state (¢,p) leads to a fixed propagated state (¢,p) = ¥~ 7 (g, p).
Right. In the general case of (7) with a stochastic differential equation or with
a Markov chain, the initial state (g,p) is propagated to different states with

a different probability. ¥_.(-|(g,p)) is the corresponding probability density
function in .

P from the continuous operator P via (6), where 7 is replaced by P. One can
simply count the transitions between subsets (defined by ®) of  in a long-term
molecular dynamics trajectory generated by one of the above ergodic dynamical

"In this case ¥_ is independend from p.
8The lag-time dependence P(7) is omitted sometimes. In this case, a common property of
all operators P(7) for 7 > 0 is adressed.
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models for lag-time 7. This gives the nominator in (6). Dividing this number by
the equilibrium population of each set ®; directly leads to a transition matrix
P. This direct sampling approach is very common, but it does not solve the
conformation dynamics problem, as mentioned in the introduction. An adaptive
discretization approach for the computation of P is needed.

2.4 Hierachical, adaptive, and meshless discretization

As mentioned in the introduction, long-term molecular dynamics trajectories
are not suitable for solving the conformation dynamics problem. Long-term
trajectories include a lot of redundant data concering the local distribution of
states inside the metastable subsets of 2. They don’t contain enough data for
the evaluation of the transition pattern between these sets or of the statistical
weights of the conformations. Suitable discretizations ® for the approximation
P of T can be found adaptively and hierachically with a set of meshless basis
functions. This has been shown by Weber [64] and Roblitz [50]. Their concept
can be extended to ergodic dynamical models, i.e. to the generalized operator
P(7). Instead of computing one long-time trajectory, one can estimate the
transition matrix P(7) on the basis of many short-time trajectories of length .
Once one has estimated a transition matrix P(7) in this way, it is also possible
to initiate an hierachical refinement of the set of basis functions ® in order
to improve the estimated transition behaviour [50]. This adaptive hierarchical
scheme cannot be mesh-based, because of the high-dimensional configurational
space €. A meshless discretization approach is mandatory. In this thesis, a
Voronoi tesselation ® of Q is recommended as meshless approach, see also [64,
50]. A Voronoi tesselation is based on nodes qi,...,qm € Q and on a distance
measure dist : 2 x 2 — Ry. The nodes are configurational states that represent
the different configurations of the molecular system in a sufficient way. The
basis functions are given by:

1, dist(g,q:) = min dist(g, )
P;(q) = T : (8)
0, else

In an hierarchical sampling approach, the set of basis functions @ is not extended
by simply adding nodes to the Voronoi tesselation. This would also cause the
“old” basis functions and integrals in (6) to have to be recomputed. In an hier-
achical approach [64, 50], a certain basis function ®; is determined, which will
be refined. The basis function ®; is eleminated from the set of basis functions.
A new Voronoi tesselation ®1,...,®~ is defined with nodes qi,...,q¢~ € Q
stemming from subset ®;. Finally, the new basis functions <I>i£f>1, cee @ﬂi)% are
added to the set of basis functions. With this procedure, the partition of unity
is preserved (even in the case where ®; can have values between 0 and 1). The
other basis functions ®;,j # 4, are unchanged. Given a set of basis functions

®,;,i=1,...,m, the matrix element P(%,j) of P(7) can be computed via (6) as
. (@i, P(7)®;)n
P = AT
(7)(i.4) o
Jo ®i(@) P(1)®,(q) mq dg
Jo ®i(@) mq(q) dg

13



= /Q/RSN (/Q@j@ v_,(ql(q,p)) d )Mﬂp(p) dpdg

(1) (I1)

The above expression is an expectation value of an observable O(q, p) according
to a distribution 7;(q,p) of states (g,p). The distribution is given by the term
(II). It is a Boltzmann distribution of molecular states, where the configura-
tional part is restricted to a subset ®; of 2. The observable (I) itself is again an
expectation value. The observable of this nested expectation value is ®,;(g) and
the distribution is given by ¥_,(g). A very common and efficient method to
evaluate continuous expectation values numerically is the following approach:
Generate a set of states according to the given distribution. Then compute
the mean value of the observable for the generated set of states. In the case of
P(7)(4,j) one has to generate a set of Boltzmann distributed states (g, p), where
the g-variable is restricted to a subset ®;. With this set of initial states (g, p),
one has to compute the mean value of ®;(q), where the states ¢ are taken from
different realizations of the dynamical model represented by ¥_,(-, (¢,p)). In
our group, the technical term for generating restricted states (g, p) is horizontal
sampling. The different realizations of the dynamical model based on states
(g,p) are called vertical sampling. In this Monte Carlo quadrature approach for
the estimation of P(7)(i, j), the approximated transition matrix P(7) is a ran-
dom matrix due to truncated (finite) sampling. There are two main questions
to be solved in an adaptive sampling scheme for the estimation of P(7):

AS1 Given a discretization ®. How many horizontal and how many vertical
sampling points should be generated in order to estimate P?

AS2 Given a sampling and an estimation P. How should the discretization set
®; be determined that has to be refined?

Roblitz [50] proposed a solution for these two questions. Her ideas were based
on the adaptive sampling approach of Singhal Hinrichs and Pande [30]. The hor-
izontal and the vertical sampling have to provide enough data for the statistics
in order to approximate P(7) well. During the horizontal sampling, a tran-
sition matrix P is not yet available. For this sampling, Roblitz proposed a
hybrid Monte-Carlo method for each subset ®; of ). She applied a distribution
based Gelman-Rubin convergence indicator [27] as a stopping criterion (AS1).
If a maximal number of samplig steps has been reached during the horizontal
sampling of a subset ®;, this basis function has to be refined (AS2). After the
horizontal sampling has converged for all basis functions ®;, the matrix elements
of P can be sampled. Each horizontal sampling i can be used in order to start
vertical samplings to compute one row P( )(4,:) of P. Thus, the matrix P is a
row-wise correlated random matrix. This structure can be used to derive error
bonds based on a stochastic error norm [50]. Roblitz computed an error bound
for the dominant eigenspace of P in order to define a stopping criterion for the
vertical samplings (AS1). This error bound also identifies the basis function
®; which mainly contributes to this error. The vertical sampling of this basis
function has to be extended. If a vertical sampling based on the horizontal
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sampling of ®; does not converge in a pre-defined maximal number of sampling
steps, ®; has to be refined (AS2). The procedure has to be repeated until every
horizontal and every vertical sampling has converged.

Advantages of an adaptive sampling. In fact, the adaptive hierarchical
meshless sampling approach by Roblitz can be seen as the solution of the con-
formation dynamics problem, especially of the question Q2 in the introduction.
The approximation P of P is error-based and can be improved by adding basis
functions to ®. The algorithm avoids the sampling of redundant data, because
of its adaptive structure. It also avoids long-term dynamics simulations and
can be applied to non-ergodic dynamical models like Hamiltonian dynamics.
Concerning the identification of conformations y on the basis of P, the adaptive
sampling approach is also effective and robust, because x is computed from the
dominant eigenspace of P (Section 3.3), which is the error-controled object in
the algorithm. Especially in transition regions, the discretization of €2 is refined
in the adaptive sampling algorithm. The algorithm satisfies requirement R2
given in the introduction.

Computing the statistical weights with an adaptive sampling. A di-
rect sampling approach with an ergodic thermostated dynamical model provides
statistical weights of the conformations by simply counting the states of the
trajectory sampled per conformation. In an adaptive sampling approach, the
statistical weight w; := (xi, €)x, of the conformation x; cannot be estimated by
counting the states in the set x;. The reason is that the number of sampling
points generated per discretization set ®; is not determined by the weight d;, it
is the result of a convergence criterion. Because of the following equality

@y = Yod PP

R
(1) = / @, (@)my(@) da;
= <e’q)j>‘ffq
= d, 9)

for the j-th element of the vector matrix product d' P(7), the weights d can
be estimated by computing the left eigenvector d of the approximation ﬁ(r) of
P(r) for the eigenvalue 1. The step () in (9) uses the fact that m,m, is the
stationary Boltzmann density and, therefore, idependent from a propagation
via W_,. The eigenvalue A\; = 1 is the dominant eigenvalue of P according
to a Gerschgorin estimation [28] for a row-stochastic matrix P. If the matrix
P is irreducible® and primitive!®, then the theorem of Frobenius and Perron
[48] says that the dominant left eigenvector of P is positive. Furthermore, it is

91t cannot be decomposed into independet block matrices.
10For a primitive matrix A, there is a number k € N with A* > 0.

15



geometrically and algebraically simple. Thus, the statistical weights of P are
uniquely defined by (9). Although, the computation of an approximation d of
d via solving an eigenvalue problem can have a unique solution, the condition
number of the eigenproblem d' = d' P can be very high. Weber et al. [70] have
shown, that in the case of a metastable dynamical system the computation of
the stationary density by solving the eigenproblem (9) is ill-conditioned. A very
small error |[P — PJ|o can lead to a very large error ||d — JHOO < K||P = Plloo.
Simply adding more functions to the basis ®, cannot improve the estimation of
the stationary density, because the condition of the weight computation depends
on the eigenvalue structure of P which mainly depends on P and not on the
discretization ®. For the Meyer condition number x of the statistical weight
computation, the following estimation holds:

1 < 2(m—1)
— Y T SKkSTm oy o
mll—=2A| = 7 Hi:2(1_)‘i)

where A1,..., A, are the sorted eigenvalues of P, see [26, 46, 64] and (3.3) in
[10]. Thus, even if d is taken as the error-controled object of the adaptive sam-
pling approach (see [41]), this only can improve the result to a certain degree.
A possible solution of this condition problem has been mentioned in the intro-
duction: One has to separate the the estimation of the statistical weights from
the computation of transition probabilities. This estimation of the statistical
weights can be done by a Markov chain which jumps between the basis func-
tions ®; or between the conformations x; [63, 70] rapidly. A rapidly mizing
Markov chain can answer question Q1 given in the introduction and it satisfies
the corresponding requirement R1. In fact, there are many possible approaches
to a well-conditioned solution of the statistical weights problem in literature:
The ratio of the statistical weight d; of subset ®; and the weight d; of subset
®; can be written in terms of a free energy difference AA;; between ®; and ®;.
This free energy difference is connected to the ratio via

(10)

AA; = _% In (ZJ) (11)

Note that for the computation of free energy differences there are a lot of ef-
ficient sampling approaches which can also be applied in the context of this
thesis. For an excellent overview see [9]. All of the algorithms shown in that
textbook circumvent the problem of rare events because of the aforementioned
reasons. The estimation of the statistical weights can be done with methods for
the computation of free energy differences, see also Section 4.4.

Increasing number of Voronoi cells. The construction of a rapidly mixing
Markov chain can solve the problem of computing statistical weights of the con-
formations. A rapidly mixing sampling scheme can also accelerate the horizintal
sampling part of the adaptive algorithm. The vertical sampling part, however,
cannot be replaced by an artificial Markov chain. The vertical sampling has
to correctly reproduce the dynamical model W_... From this point of view, the
increasing number of Voronoi cells during the adaptive sampling algorithm is
a further problem. Transitions in lag-time 7 do not only occur between neigh-
bouring cells. Therefore, the statistics of the vertical sampling algorithm has to
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be sufficient for an increasing number of possible transitions in order to approx-
imate P (7). This can lead to a slower convergence rate of the vertical sampling
part at a higher level of the hierarchical refinement and can therefore introduce
further refinements. This may be a vicious circle in the aforementioned adaptive
sampling algorithm if convergence of the vertical sampling is crucial. For very
short lag-times 7, however, the transitions between non-neighbouring cells can
be neglected. Thus, the trick is to take the derivative of P(7) for lag-time 7 = 0.
In the following, we will assume that the operator P(7) defines an infinitesimal
operator

Q= lim ———, (12)

T—0+ T

where Z is the identity operator. P in (7) has been defined on the basis of a
dynamical model. The realizations of the dynamical model are time-continuous
trajectories in configurational space. In this case, Q is well-defined via (12) [38].
In Section 3.5, we will assume that the transfer operator P meets the Chapman-
Komolgorov equation P(r+0) = P(7) P(c) for all lag-times 7, > 0. According
to [38] Q is an infinitesimal generator of P

P(7) = exp(1 Q). (13)

Hamiltonian dynamics projected to configurational space (represented by the
transfer operator 7') does not have an infinitesimal generator [33], because the
Chapman-Komolgorov equation does not hold. Smolukowsky dynamics (also
called Brownian dynamics) is an example for a dynamical model that has an
infinitesimal generator [33]. Conceptually, Q is connected to the computation
of transition rates. Many modern sampling approaches estimate transition rates
between conformations instead of estimating transition probabilities. Transition
path sampling [14], its more efficient variant called transition interface sampling
[22], and its workable variant called Markovian milestoning [61] are important
examples of estimating transition rates. The basis for these algorithms is the
assumption of the existence of an infinitesimal generator Q.

2.5 Markovian milestoning with Voronoi tesselations

The transfer operator P is acting on membership functions. For a time-dependent
membership function f: R x Q — [0, 1], the following equations hold

ft+m7)="P(r) f(t)
ft+7)—f(t) _ Plr) -1

T T

= f=9f, (14)

where f is the time derivative of f. Thus, Q is the infinitesimal generator of a
time-continuous Markov process, see [38]. This insight can be used in order to
estimate Q on the basis of molecular dynamics simulations.

In this section, an algorithm is explained which takes only transitions be-
tween neighbouring Voronoi cells into account. The title of this section is also
the title of an article of Vanden-Eijnden and Venturoli [61]. In their article, the
authors describe an algorithmic approach to compute transition rates between
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conformations. This algorithm is very similar to the aformentioned adaptive
sampling algorithm of Roblitz except that it is based on Q instead of P(7). The
first step of Markovian milestoning is a discretization of {2 into m Voronoi cells
®4,...,®,,. For these Voronoi cells an m X m-rate matrix Q* is computed on
the basis of a sampling. In Markovian milestoning, only the restricted horizonal
sampling part of the adaptive sampling algorithm is needed. However, an arti-
ficial, rapidly mixing sampling scheme is not applicable for this part, because
the trajectories have to represent the dynamical model W, of the molecular sys-
tem correctly in order to extract the rates Q*. Whenever a horizontal sampling
trajectory hits an edge of a Voronoi cell, the momenta are reversed. The corre-
sponding state is denoted as a hitting point. In a hitting point, the trajectory
is reflected at the edge of the cell and thus stays in the same Voronoi cell ®;
throughout the simulation. Using this kind of restricted sampling, an ergodic
dynamical model generates a local Boltzmann distribution of states inside ®;.
Plotting the histogram of the hitting points for each edge of the Voronoi cells
provides a sampling of the Boltzmann distribution of states restricted to these
edges. Intuitively, one would expect that the Boltzmann distribution restricted
to the edges of the cells to include all relevant information'® for the rate esti-
mation between cell ®; and a neighbouring cell ®;, i.e. for the matrix element
Q*(4,7). One has to stress that, in general, this intuitive approach is incor-
rect. This has been shown in [61]. However, in Section 4.1 we will show that
the intuitive approach is correct in a special situation. The key is, one has to
understand what the term “incorrect” means in this context.

Correct computation of transition rates. In order to define transition
rates between conformations, the assumption of the existence of an infinitesimal
generator Q of the semi-group of transfer operators P(7) is important. If ® is
a Voronoi tesselation, a Galerkin discretization ) of this operator Q is given by

(@i, QPj)r,
<¢)ia e>7rq .

Although Q is a Galerkin discretization of the infinitesimal generator Q of P(T),
Q is not the infinitesimal generator of the Galerkin discretization P(7) of P(T)
defined in (6). This is the most important thing to know when using a set-based
decomposition approach of §2 in order to derive transition rates. The reason
for this “incorrectness” is simple: The set of operators P(7),7 > 0, does not
have an infinitesimal generator, because the Chapman-Komolgorov equation
does not hold for the discretized operators [52, 66]. In general, P(T + o) #
P(1)P(0), for 7,0 > 0, because the discretization P(7) is based on a projection.
Thus, there is no way to find a “correct” transition rate matrix @, because it
does not exist in the set-based approach. Furthermore, there is no way to find
the “correct” Markov State Model P(7) in the set-based approach, because an

Qi,j) = (15)

iterative application (P(7)) "ot P(7) is different from the Galerkin discretization
of (P(T))k and different from a Galerkin discretization of P(k 7), see [69, 65, 40].

This means, the wishful time extrapolation, T — k7, is not possible in this
way. Two different errors can be defined in the framework of transition rate
estimation.

I Note that this thesis proposes to use exactly this information in order to approximate a
Galerkin discretization @ of Q in Section 4.1.
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Definition 1. For a given lag-time 7 > 0 the iteration error is defined as the
difference between the Galerkin discretization of (P(7)) ¥ denoted as G ((P(7)) k)

and the iterative application (P(T))k of the Galerkin discretization of P(7)
with regard to a suitable matrix norm, i.e. the iteration error is given as

IG((P()") = (G(P()) ]I

Definition 2. For a given lag-time 7 > 0 the time extrapolation error is de-
fined as the difference between the Galerkin discretization of (P(k T)) and the

iterative application (P(7))" of the Galerkin discretization of P(r) with re-
gard to a suitable matrix norm, i.e. the time extrapolation error is given as

IG(P(kT) = (G(P())"I.

In the case of an existing infinitesimal generator Q the equation P(k7) =

(77(7)) holds. The iteration error and the time extrapolation error are identical.
There exists very different ways to handle these errors in literature:

e In the Markovian milestoning approach, Vanden-Eijnden and Venturoli
[61] only count hitting points on the edge between ®; and ®; if the cor-
responding trajectory has hit a different cell (diffrent from ®;) before.
These hitting points are denoted as first hitting points. The rate matrix
@Q* computed on the basis of first hitting points is different from Q. In
Markovian milestoning, the matrix ()* is not used as an infinites-
imal generator. It is used in order to compute the transition rates k4 _.p
and kp_, o between two selected Voronoi cells denoted as “conformations”
A and B, respectively. Note that in the approach of Vanden-Eijnden
and Venturoli there is a distinction between conformations and transition
regions which is not desired in the conformation dynamics approach of
Deuflhard and Schiitte. The Markovian milestoning can be seen as an
efficient analysis of transition regions.

e Sarich, Noé and Schiitte give an error bound [52] for the iteration
error. They conclude that the error is small if the sets ®; correlate well
with the dominant eigenfunctions of P (7). In Section 3.3, the conforma-
tions x are defined as a linear combination of the dominant eigenfunctions
of P(7). It will be shown that the iteration error theoretically vanishes in
this case. The existence of an infinitesimal generator Q is not a neccessary
condition in this context.

e In the case of an ergodic dynamical model, the asymptotic result of it-
eration, P> (1), is a matrix with identical rows. These rows are given
by the vector d (statistical weights of the sets ®)[4]. The same holds for
a Galerkin discretization P(k7) of P(k7) for k — oo. Thus, asymptot-
ically the time extrapolation error vanishes. Many researchers test the
Markovianity of their Markov State Model [29, 11, 60]. They determine if

P(2k7)~ P(kT)P(kT)

holds, e.g., by computing the eigenvalues of P(k7) and P(2k 7). Having
the asymptotical result in mind, it is clear that there is a k£ > 0 for which
the approximation is good. The statement in this context is that the
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iterative application of P(o) is correct only for lag-times o > k7,
whereas for lag-times o < k7 it is incorrect. In Section 3.3 it is shown
that a function based approach does not need this concept of an optimal
lag-time if an infinitesimal generator Q exists.

Summarizing, the interpretation of the matrix @ as an infinitesimal generator
and the interpretation of P(7) as a Markov State Model are incorrect. In the
followings, these interpretations will not be used for these matrices any more. It
is not appropriate to ignore the contiuous nature of P and Q by taking P and Q
as a starting point of the conformation dynamics analysis of a molecular system.
In fact, there is already a rigorous theoretical approach to transition rates taking
the continuous operator Q into account — the Transition Path Theory based on
a commitor function approach [43].

2.6 Commitor functions

Transition Path Theory (TPT)[21, 44, 72] is a rigorous way to compute tran-
sition rates between two conformations A and B. The basis for TPT is the
computation of commitor functions fa, fg : @ — [0,1]. In the first step, the
two conformations A and B are defined as (small) subsets of 2, whereas the
rest 1 — (AU B) is the transition region between A and B. In the second step
the following boundary value problem is solved [43]:

Qfa=0, in Q— (AU B),

fA = 1, on@A,
fa=0,0n0B, (16)
fA = 1, inA,
fA = 07 in B.

For solving the equation, the infinitesimal generator Q has to be known explic-
itly. In the case of Smoluchowsky dynamics, Q is an elliptic partial differential
operator [33, 43]. The function fg = 1 — f4 solves the above equation when
changing the roles of A and B. The important statistical information used for
TPT can be derived from the commitor functions: The function value fa(q)
is the probability that a realization of the dynamical model (according to Q)
starting in ¢ € Q) reaches set A before it reaches set B. Some properties of
this approach do not fit into the conformation dynamcis framework given in the
Introduction:

(i) The commitor function concept is designed for the case of two conforma-
tions n = 2. (ii) The conformations are subsets of Q and have to be pre-defined
(they are not a result of the commitor function calculation). (iii) Like in Marko-
vian milestoning, there is a distinction between conformations and transition
regions, which is not the case for the desired partition-of-unity decomposition
of Q into conformations proposed by Deuflhard and Schiitte.

In order to use the commitor function concept in the conformation dynamics
framework, some conceptual changes have to be made. The distinction (iii)
between conformations and transition regions can be neglected if the sets A
and B in (16) are replaced by two different points A and B in Q. In this
case, the commitor functions f4 and fp themselves define the conformations
in a fuzzy sense. fa and fp are interpreted as membership functions. The
partition-of-unity property, fa + fg = e, holds. For the case of two metastable
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conformations n = 2 and for the case of using points A and B instead of sets,
Berezhkovskii and Szabo [6] have shown that (16) is approximately solved by a
linear combination of the leading two eigenfunctions of Q corresponding to the
eigenvalues 0 = £ > & ~ 0. The leading eigenfunction of Q is the constant
function e = 1. The second eigenfunction X, : 2 — R is assumed to be real and
bounded. The linear combination is done in such a way that the constraints of
the equation are satisfied:

Xy — mingeq X2(q)
max,eq Xo(q) — mingeq X2(q)’

Jar fB=1— fa. (17)
It is easy to check that these functions approximately solve the system of equa-
tions (16) because of the approximatly zero eigenvalue of X5. Note that comput-
ing fa and fp on the basis of a linear combination of the leading eigenfunctions
of Q also defines(!) the points A and B in (17). In this equation, the point
A is a maximum of the eigenfunction Xs, while B is a minimum of X,. This
solves the problem of the identification of conformations (ii). The approximate
solutions (17) of f4 and fp are exactly the same as the membership functions
x1 and x2 identified by Robust Perron Cluster Analysis (PCCA+) for the case
of two conformations, see Deuflhard and Weber [19, 64].

Xy — mingeq X2(q)
maxgeq X2(q) — mingeq X2(q)’

X1 = x2=1-x1. (18)
Via PCCA+, the generalization (i) of the commitor function concept to more
than n = 2 conformations is simple. For the case of n > 2 conformations, the
membership functions xi,..., X, are determined as linear combination of the
leading n eigenfunctions of Q such that certain constraints are satisfied. For
the concept of Robust Perron Cluster Analysis (PCCA+) see Section 3.3. Since
Xi can be seen as a membership function of conformation ¢, these functions
themselves will be denoted as conformations in the followings. At this stage,
the picture is clear. For all of the aforementioned algorithms, the main subject
of conformation dynamics is the analysis of the dominant eigenfunctions of the
infinitesimal generator Q. This can be seen as follows:

e Vanden-Eijnden and Venturoli explained [61] that the restricted horizon-
tal sampling of the Markovian milestoning algorithm is theoretically valid
only if successive transitions between the Voronoi cells are statistically in-
dependent. This is the case only if ® provides a good set of basis functions
to discretize equation (16), because the optimal choice for the Voronoi cells
in Markovian milestoning is given by the isocommitor surfaces [61]. Solv-
ing equation (16) is very similar to computing the dominant eigenfunctions
of Q as shown before.

e Sarich et al. [52] explained, that a Markov State Model has a small itera-
tion error only if the discretization sets ® provide a good approximation
of the eigenfunctions of P. The eigenfunctions of Q are identical to the
eigenfunctions of P(7).

e Roblitz [50] has introduced an error bound as a stopping criterion of the
adaptive sampling approach. The adaptive sampling approach terminates
if the dominant subspace of P(7) is determined sufficiently. In case of a
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self-adjoint transfer operator, the dominant eigenfunctions of Q span the
dominant invariant subspace of P(7).

At the Molecular Kinetics Workshop 2009 in Berlin, Vijay Pande had the im-
pression that theories are converging in the field of molecular simulation. In
my opinion, analyzing the dominant invariant subspace of an infinitesimal gen-
erator @ will be a possible limit of this unification. In the next section, the
corresponding theory will be derived.

3 Design of a generalized Markov operator

In Equation (7), a generalized transfer operator P(7) : L}rf(ﬂ) — L}Tf (2) has
been defined which characterizes the transfer of membership functions f : Q —
[0, 1] with regard to different dynamical models ¥_,. In the above sections, the
first step of molecular simulation has always been the selection of a dynamical
model. Instead of selecting one special dynamical model in the followings, a
generalized transfer operator will be designed which meets certain wishful prop-
erties. This operator will be discretized. However, realizations of a dynamical
model cannot be applied for the computation of this discretization as long as
the dynamical model is undefined. Fortunately, we are only interested in the
dominant invariant subspace of the operator P(7) which is identical to the dom-
inant invariant subspace of Q. It will be shown that a discretization of Q can
be computed without realizations of a dynamical model.

3.1 Wishful Properties

Self-adjointness. A very important property of Hamiltonian dynamics is its
time-reversibility. Changing the sign of the initial momentum vector p(0) and
then solving the equations of motion is the same as starting in (¢(0),p(0)) and
going backward in time. In the canonical ensemble, the probability for a momen-
tum vector p(0) is equal to the probability for —p(0), i.e. for every Hamiltonian
dynamics trajectory in the canonical ensemble there exists a reverse trajectory.
Physically, the Boltzmann density of states in the canonical ensemble is a de-
tailed balanced dynamical equilibrium with regard to this dynamical model. This
property should be valid for the designed operator P, too. Detailed balance is
the first wishful property of P. Thus, the frequency of transitions ¢ — ¢ is equal
to the frequency of transitions ¢ — ¢ for all pairs of states (¢, ¢) € £ in the canon-
ical ensemble. This can be expressed by m,(q) - P(¢ — q) = mq(q) - P(¢ — q),
where P(q — q) is the conditional probability density for a transition from ¢ to
q. In the general case of ¥_ ., detailed balance can be written as

@ [ V@) m) =) [ V@) mi) . (19)

P(q—q) P(g—q)

Theorem 1. Given the operator P(7) : L3 (Q) — L7 (Q) defined in (7)
and the detailed balance condition (19), then P(r) is a linear, 7 -self-adjoint
operator with ||P(7) f|lx, < ||fl|lx,. In particular, P has a real-valued spectrum
o(P) with o(P) C [-1,1].
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Proof: Linearity is easy to check. Self-adjointness is a direct consequence of
equation (19):

(6, P(7) ), / 9(0) P(7) £() malg) dg

/Qg(q) ASN Af(a Vs (m(q’p)) dq m(p) dp m4(q) dq
/aN /Q/ 9(q W*T(EI](Q;P)) 7q(q) mp(p) dq dgq dp

Q

:/ //g F@ Y (al(@ ) 7g(@) mp(p) da dF dp
R3N JQ JQ
- /Mg@qumq

= 7) 9, fm,-

In order to prove |[P(7) fllr, < ||f||7r , note that according to the Cauchy-
Schwarz inequality, ([, f(z) 7 (x)dx)* < [, f*(x) 7(x) dz for a probability den-
sity function 7 : @ — R. Thus, the followmg holds

1P FI2, = | (P() £(@)” mela) da
( /R / F(@) Y- (dl(g.p)) dgmy(p >dp)2wq<q>dq
/Q/Rg /f q) V- (fﬂ(q p)) dq) 7q(q) p(p) dp dg
/Q/R3N/Qf (@) Y _+(ql(q,p)) 7q(q) mp(p) dq dp dgq

@ = [ [ P@ @@ m @) i dp da

- / (@) 7y(@) dG
= I,

S—5—

IN

IN

The detailed balance condition has been used in (x). The spectral properties of
P are a consequence of self-adjointness and the above estimation. ¢.e.d.

Discrete dominant eigenvalues. The second wishful property of a general-
ized transfer operator P(7) is the existence of a dominant discrete spectrum of
eigenvalues 1 = A\; > Ao > A3...\,. The dominant eigenvalue is A\; = 1 because
of Theorem 1 and because of P(7)e = e. The eigenvalues are real according to
Theorem 1. A conjecture by Schiitte [55] says that in realistic applications of
the transfer operator approach, the dominat discrete spectrum of 7 is bounded
away from the essential spectrum of 7. Huisinga [33] has derived properties of a
generalized transfer operator such that the essential spectrum is well separated

from the dominant eigenvalues near A\; = 1. For the operator P(7) we will
assume that there is a set of eigenvalues {\1,..., A\, } which are close to A\; =1
and corresponding eigenvectors { X7, ..., X, }. This assumption can be justified

by a perturbation approach. The inequality ||P(7) f|/x, < |[f|x, in Theorem 1
is sharp. It can be shown that certain indicator functions I, are eigenfunctions
of P corresponding to the eigenvalue A = 1.
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Definition 3. A stable subsets M C Q of W__ is defined as follows: If a
position state ¢ is in the closure of M, then fRSN v, (@’I(q,p))ﬂp(p) dp = 0 for
all ¢ M and 7 € R.

Lemma 1. If Iy : Q — {0,1} is the indicator function of a stable subset
M C Q, then P(7) Iy = Ip. In particular, the indicator functions of stable
subsets of Q span an eigenspace of P(7) according to the dominant eigenvalue

A=1.

Proof: If M C  is a stable subset, then its complement Q\M is also stable.
This can be shown by applying the detailed balance condition (19) for ¢ ¢
M and ¢ € M. The definition of stability means that there is no transition

between M and its complement Q\M. Stability of M and Q\M directly implies
P(1) Ine(q) = 0 for all ¢ ¢ M, because the integrand

21“)/ - (@(¢,p)) 7(p) dp

is zero for all g € Q. For g € M:

PO v = [ (] 1@ v @) dd) o) do
= [ (] @ v Gla.n) da) o) do
[ (] vl da) my(0)

= 1

The last equality uses the fact, that ¥_ . is a density function that is normalized
in M. g.e.d.

In the case of metastable subsets, a perturbation approach justifies the exis-
tence of eigenfunctions X; with eigenvalues A\; =~ 1. The identification of these
metastable subsets is an important aim of conformation dynamics. Note that
the two mentioned wishful properties are also valid for the transfer operator 7.
In Section 3.5 a further wishful property of P will be given which is not valid
for 7.

3.2 From a transfer operator to a Markov operator

Markov operator. P(7) is a transfer operator which acts on membership
functions. It is not a desired Markov operator'? P(7) propagating density func-
tions. We will see that defining a transfer operator P(7) via listing wishful
properties also defines a corresponding projected Markov operator P(7) acting
in configurational space. If M denoteb the adjoint operator of M with regard
to the scalar product (f, g) fQ q) dq, then the following equations hold

Pomy = Pomy

121n this thesis a transfer operator and its adjoint Markov operator are defined. In literature
often the technical terms forward and backward operator are used instead.
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= myoP

(#) = moP, (20)

where 7, is the Nemytskii operator multiplying a function f point-wise with
the configurational Boltzmann density function 7. For the reason of simplicity
the same expression 7, is used for the operator and for the function. Equation
(*) is valid because of the ms-self-adjointness of P. From equation (20) one can
derive an expression for the propagator P:

P=mngoPom, " (21)

It can be shown that P(7) is a linear Markov operator because it is preserving
the || - |[1-norm for a nonnegative function f:

P(r) fli = (e [P(r) fI)
(x1) = (&P(1)f)

(k2) = (P(r)e,(ry" f)x,

= (e )=l

where the positivity of P is used in (*;) and the 7 -self-adjointness of P is used
in (*2). Thus, equation (21) means that the space of membership functions and
the space of density functions is connected by multiplication with m,;. In the
upcoming sections, only the operator P(7) will be investigated. Keep in mind
that there is a simple relation between P and P. If P has an eigenfunction
X : Q — R corresponding to an eigenvalue A, then P has an eigenfunction
(mq X) with eigenvalue A. Thus, the spectral properties in Theorem 1 are also
valid for P.

Markov property. In Section 2.1, the propagator P, has been defined in
state space. Whereas, in (21) the propagator is only acting in configurational
space (. Is it sufficient for conformation dynamics to assume a Markov operator
with the aformentioned wishful properties in configurational space (and not in
state space)? In fact there exist an argument against this simplification: The
Markov property of molecular dynamics is valid for all dynamical models, but
only in state space. E.g., being a first order differential equation, Hamiltonian
dynamics is Markovian in state space. The equivalent Newton dynamics in con-
figurational space is a second order differential equation in g. Given an initial
configurational state ¢(0), it is not possible to predict the future evolution ¢(t) of
the system. Thus, Newton dynamics is not Markovian in configurational space.
In the molecular kinetics approach to conformation dynamics, however, the en-
semble of states is important and not a single trajectory. For the evaluation
of P(7) it is assumed that the momentum states p are equilibrated according
to the Boltzmann distribution 7,. Thus, one can predict the future evolution
p(t,-) of an initial density p(0,-) : @ — R, assuming equilibrated momentum
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states. Using the molecular kinetics approach, a non-linear dynamical model
(like Hamiltonian dynamics) which is only Markovian in state space can there-
fore be transformed into a linear Markov operator P acting in configurational
space. The Markov property does not hold for the dynamical model in con-
figurational space, but the Markov property holds for the evolution of density
functions in configurational space assuming equilibrated momentum states.

3.3 Subspace approach

A projection of P(7) to a low-dimensional Markov State Model P.(7) is based on
a Galerkin discretization. A Galerkin discretization on the basis of sets is shown
in equation (6). As mentioned in Section 2.6, the conformations xi,...,xn :
) — [0,1] are not sets, they are membership functions with values between 0
and 1. In this situation the Galerkin basis functions x = {x1,...xn} are not
orthogonal. A Galerkin discretization of P has the following form!3

P.(m) = G(P(7) == (6 X)mg) " (6 P(T) Xy (22)

In equation (22), the expression (x, x)=, is an n x n-matrix. The element (3, j) of
this matrix is given by the scalar product (X, X;)=,. The matrix (x, P(7) X)x, is
defined analogously. The construction of a Markov State Model P.(7) based on
P(7) is an important step in conformation dynamics. Time extrapolation and
complexity reduction are the main intentions, see Figure 6. The iteration error

of P.(7) is zero, if the Galerkin discretization of (P(T))k is equal to the iteration

(PC(T))k. With other words, the iteration error is zero if the diagram in Figure
8 commutes. As mentioned before, there is an intermediate step between the

P(r) — (P(r))"

complexity|reduction complexity|reduction

Figure 8: If iteration and complexity reduction commute, the iteration error of
the Markov State Model P.(7) is zero. With a set-based concept of conformation
dynamics this is not possible.

operator P and the Markov State Model P,. This intermediate step is a Voronoi
tesselation @ of Q2. The basis extension of x using the set ® of basis functions

13In the case that the conformations x;,i = 1,...,n, define separated sets, equation (22)
has the same form like equation (6), because in this case X? = x: and x;x; = 0 for i # j.

26



is given by:

Q) = Z Xdisc(i7j> (I)j(q)a (23>

where Xdisc 18 @ n X m-matrix. The element (i,5) of x4isc defines whether the
subset ®; is part of conformation x;. In the early articles about the transfer
operator approach, the elements of yg;s. were defined as 0 or 1 [17]. In general,
this set-based Markov State Model has a non-vanishing iteration error because
the diagram in Figure 8 does not commute for this choice of x. However, if we
abandon the set-based concept of conformations and define a set of membership
functions x1,...,xn which can have values within the interval [0, 1], there is
a possible Galerkin discritzation of P(7) such that the diagram in Figure 8
commutes, see also [40] and Theorem 2. Thus, in the recent years the set-based
concept was abandoned in favor of a function-based approach. In the first step,
elements between 0 and 1 were allowed for the matrix ygsc in (23), as long as
the conformations still form a partition of unity. This has led to the Robust
Perron Cluster Analysis algorithm (PCCA+) by Deuflhard and Weber [19] for
the identification of x4is. on the basis of P(7). This approach will be described
in this section. In the second step, the subspace based discretization of (2
was extended to a basis expansion (23) with a set of basis functions ®; which
form a non-negative partition of unity and have values between 0 and 1, see
[64]. The second step was neccessary in order to compute the transition matrix
P numerically [71]. This numerical trick will be used in Section 4.1 again.
According to the wishful properties of P(7), there is a set of eigenfunctions
X ={Xy,...,X,} corresponding to the real eigenvalues 1 = X\ > Xy > ... >
An. P is mg-self-adjoint. Thus, the set of eigenfunctions can be assumed to be
normalized via (X, X)., = I, where I is the n x n unity matrix.

Theorem 2. Given the mg-self-adjoint transfer operator P(7) in the situation
of Theorem 1 and a set X = {X1,...,X,} of normalized eigenfunctions with
P(1)X = XA, where A = diag(\q, ..., \,) is the diagonal matrix of eigenvalues.
Furthermore, given a set of functions x = XA that is a linear combination of the
eigenvectors X with a regular n x n-transformation matrix A, then the iteration
error for the Galerkin discretization Px(7) = G(P(7)) defined in (22) vanishes.

Proof: By inserting the eigenvalue equation into the Galerkin discretization:

G(PE)") = (bex)m) (0 (7’( )" X)m,

= (AT (X X)s, A)° FAT(X, (P(7)" X)), A
(AT A) T AT(X, X),, AR A
AT AR A

In particular, G(P(7)) = A~* A A. Furthermore,

G((P(r)") = AT'A*



q.e.d.

The diagram in Figure 8 commutes if the Galerkin discretization of the trans-
fer operator is based on eigenfunctions. This also holds for the corresponding
Markov operator P(7). In terms of density propagation, the results of the prop-
agated full density compared to the propagated projected density are identical
if the projection of the initial density can be done without any error, see Figure
6. Let X, be the invariant subspace spanned by the dominant eigenfunctions
of P. The initial densities which allow for a correct propagation stem from
the function space m;X. = span({mgX1,...,TqXn}) spanned by the partially
equilibrated, restricted Boltzmann densities.

Robust Perron Cluster Analysis (PCCA+). Theorem 2 holds for arbi-
trary regular transformations A of X. However, the theorem only makes sense
in the context of conformation dynamics if y = XA can be interpreted as mem-
bership functions. PCCA+ (see [19, 64]) determines a transformation matrix
A € R™™ such that nonnegativity x; > 0,4 = 1,...,n, and the partition-of-
unity property, > -, xi(q) = 1,q € ©, hold. In this situation the transformation
matrix A has a special structure [64]. Note that in standard PCCA+ only finite
transition matrices have been investigated so far. In the followings, the results of
PCCA+ are discussed for the continuous operator P(7) and the corresponding
algorithmic change is explained in Section 3.4. For the purposes of this thesis
the following property of A is important.

Lemma 3. The partition-of-unity property of the conformations x1, ..., xn is
equivalent to Ae = e; for the constant vector e € R™, e; = 1, and the first unit
vector e] = (1,0,...,0) € R™.

Proof: The partition-of-unity relation >, x; = Xi can be expressed by
xe = X1 which is equivalent to X Ae = X;. For a linear independent set of
eigenfunctions this is equivalent to Ae = e;. ¢.e.d.

In order to derive properties about the Markov State Model P.(7) a further
preparation is needed.

Lemma 4 Let W be the n x n diagonal matrix of the statistical weights w; :=
(Xi;€)x, of the conformations, W = diag(ws,...,w,). In this situation the
vector w' = (w1,...,wy) solves the eigenproblems w' = w W= {x, P(7)X)x,
and w' = wTW’1<X,X>,,q.

Proof: Note that the matrices My = (x,P(7)x)x, and My = (X, X)r, are
symmetric. Note that w'W ™! = ¢ and that the row sums of the matrices
My and M, are given by the statistical weights of the conformations due to the
partition-of-unity property of the basis functions x. g.e.d.

With these preparations the next Theorem shows that the Markov State
Model P. has the expected properties.
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Theorem 3. In the situation of Theorem 2, with a transformation matrix A
defined via PCCA+, the Markov State Model P.(7) has the following properties:

(i) The rowsum of P.(7) is 1, i.e. P.(7)e = e for the constant vector e €
R" e; =1.

(ii) P.(7) is a Petrov-Galerkin discretization of the Markov operator P(7).

(iii) w is an eigenvector of P.[(7) corresponding to the eigenvalue A = 1 (i.e.
wlP(t)=wT).

(iv) In Section 3.5, we will assume that P has an infinitesimal generator Q. If
Q is the infinitesimal generator of the set of operators P(c),o > 0, then
P, has an infinitesimal generator Q). with Q. =G (Q)

Proof: According to Lemma 3 the relation Ae = ey holds, where A is regular.
Furthermore, A; = 1. Thus, the following equations hold P.(7)e = A"1AAe =
A~1Ae; = A7te; = e. This shows that (i) is true. (ii): In terms of the Markov
operator P in (21), the following equation holds

(06 X)m) "~ 06PE) X)my = (06 (T X)) ™ 06 P(T) (700 X))-

Thus, the (-,-)r, -Galerkin discretization of P can be seen as a (-,-)-Petrov-
Galerkin discretization of P with membership functions y in the test space and
density functions (g x) in the trial space. (iii) is a consequence of Lemma 4
because

Pe= W00 X) %) " (WG P(T)X) ,)-

In the situation of (iv) an infinitesimal generator Q of P(o) exists. The eigen-
functions of Q are identical to the eigenfunctions of P(7). The corresponding
eigenvalues &1,...,&, of Q meet the property exp(7§;) = A;. A computation
similar to the proof of Theorem 2 shows that the Galerkin discretization G(Q)
of Q is given by G(Q) = A~'ZA, where Z is the diagonal matrix of eigenvalues
E = diag(&1, ..., &n). Note, that this expression is an infinitesimal generator of
P.(0). g.ed

Optimization problem. The nonnegativity property and the partition-of-
unity property define a feasible set F C R™ ™ of transformation matrices A.
As shown by Weber [64], this feasible set F is a convex polytope in R™*™.
PCCA+ is formulated as a maximization problem on the set F. The solution
of the maximization problem is based on a transformation of the constraint
optimization problem in n? variables into an unconstraint optimization problem
in (n — 1)? variables. This transformation uses the fact, that the objective
function of PCCA+ is convex. In this case, the maximum of the objective
function is attained at a vertex of F. For n = 2 conformations (disgarding
permutation of indices) the convex polytope F has only one vertex leading
uniquely to the solution (18) of PCCA+. For n > 2 conformations, the optimal
tranformation matrices A can depend on the choice of the convex objective
function. Two different points of view are dicussed in this context in order
to define a suitable optimization problem: The interpretation of P.(7) as a
transition matrix and the interpretation of x as a commitor function.
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P.(7) as a transition matrix. Although P.(7) is the correct Markov State
Model, P.(7) in equation (22) can not be interpreted as a transition matrix
between conformations. The reason is that is does not have the form of equation
(6). In equation (6) the number of transitions is devided by the weight of the
corresponding Voronoi cell. The matrix W~ (x, P(T)x)r, in Lemma 4 has an
appropriate form that can be interpreted as a transition matrix. The difference
between P,.(7) and this matrix is given by

(W‘1<x,x>ﬁq> P. =W x, P(T)X)x,-

S =W, X)r, is a row-stochastic n x n-matrix. The maximal value for the
trace of S is given by n. If the trace of S is n, then S is the identity matrix. If the
matrix S is the identity matrix, then P.(7) can be interpreted as a transition
matrix. Thus, the objective function for the optimal choice of A is given by
the trance of S. Roblitz [50] has introduced this objective function. She has
shown that optimizing trace(S) is equvalent to optimizing the crispness of the
conformations . With other words, by optimizing trace(S), the interpretation
of x as sets is also intended. In order to derive an expression for trace(S)
in terms of the transformation matrix A, there is a further property of the
transformation matrix 4 which is a consequence of Theorem 3.

Corollary 1. Assume that the second eigenvalue of P(7) is not 1, Ay # 1. In
the situation of PCCA+, the first row of A is the vector w' of the statistical
weights of the conformations, i.e. e] A=w".

Proof: This corollary is a consequence of Theorem 3 (iii):

The only vector which meets v" A = v T in the situation of Ay # 1 is the vector
v=ep,ie ef =w' A andef A=w". ge.d

From Lemma 4, the objective function for an interpretation of P.(7) as a
transition matrix is given by

Ig[A] = trace(diag(Ae;) TATA) = Z Z ('1((]1713)) (24)

i=1 j=1

Being a sum of convex functions Ir is convex. For the proof of convexity the
positivity of A(1,4) shown in Lemma 4 is important.

x as a commitor function. In Section 2.6, comittor functions have been
defined for the case of n = 2 conformations. The resulting membership func-
tions of PCCA+ for the case of n > 2 conformations form a partition-of unity
discretization of (). In realistic molecular applications of the conformation dy-
namics approach, mainly one or two different membership functions contribute
to this partition-of-unity locally. In transition regions, the configurational space
Q can be seen locally as a transition region between two conformations. This
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allows for an interpretation of y as a set of commitor functions. In order to
interpret x; as a commitor function, the function y; should be an approximate
solution of the corresponding equation (16). The condition Qx; ~ 0 holds if x;
is a linear combination of the eigenfunctions of Q corresponding to eigenvalues
¢ ~ 0. Futhermore, there should exist a point ¢; € Q such that x;(¢;) = 1
(see Section 2.6). This value is the maximal value of x; according to the con-
straints of the optimization problem of PCCA+. The corresponding objective
function is given by the sum of the maximal values of the membership functions
Xi»t = 1,...,n. This objective function Iy [A] has been introduced by Weber
[64]. It is a convex function. Weber has shown that in the case that the optimal
function value is Iy [A] = n, the solution of PCCA+ is unique. F has only one
vertex (neglecting the permutation of indices of the conformations). Note, that
X; need not be an indicator function of a set if its maximal value is 1. Whereas,
Xx: must be an indicator function if the coresponding diagonal element (4,%) of
S is 1. The following Lemma shows the corresponding relation between Ir and
TIw.

Lemma 5. In the case of PCCA+, for a given solution A the relation Ig[A] <
Iy [A] holds.

Proof:
_ - <X1aXt>7Tq . X“(ma‘XQEQXL( )) >7Tq
ol = 2 LS s,
_ = max v <X1ae>7rq .
- ;(qeﬂ xi(q)) T = Iw|[A].
g.e.d.

Thus, for an optimal transition matrix A with Ir[A] ~ n the function value
Iy [A] is also approximately or equal to n. This means that an optimization of
IR is suggested in the followings.

3.4 Discretization Error

Theorem 2 and 3 hold for P.(7) only if the matrix A and the eigenvalues A are
computed without error. Given a set of Voronoi cells ®, the Galerkin discretiza-
tion P(7) of P(7) can be computed according to an equation of the type (6).
In a numerical approach, PCCA+ is applied to the discrete eigenvectors and
eigenvalues of P(7) leading to the discrete conformations Xgisc. Xdise 1S used
for a basis expension of y as shown in (23). For a given discretization ®, it
can be assumed that P(7) has been estimated in a stable way with controllable
small sampling error, e.g. by using adaptive sampling of Roblitz or of Pande
and Singhal-Hinrichs. However, if we have computed the correct discretiza-
tion P(7), there is still a difference between the dominant spectrum Ag;s. of
P(7) and the true spectrum A of P (7). There is also a difference between the
transformation matrix Ag;s. for the discrete eigenvectors X ;5. of P(7) and the
transformation matrix A of X. This error is denoted as the discretization error.
Whereas the true Markov State Model is given by P. = A~ 1A A, the matrix
P AdlscAdzscAdlsc is the result of a numerical method which is based on a
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Voronoi tesselation ® of 2. The matrix 15C depends on the computed eigenval-
ues Agisc and on the computed transformation matrix Ag;s.. If we can find an
hierachical adaptive dicretization scheme which minimizes the errors ||A—Agisc||
and || A — Agisc||, then the true Markov State Model is approximated by this
approach. Does this approach also approximate the metastability of P.(7) and
the statistical weights of the conformations? The answer is yes.

Discretization error in terms of a metastability. In literature there exist
different definitions for the metastability of a Markov chain. On the basis of the
Markov State Model P.(7), Huisinga [33] defines metastability as the trace of
the matrix P.(7). In the case of Theorem 2,

trace(P.(7)) = trace(A) trace(P.(7)) = trace(Agisc)-

Thus, the error in terms of metastability only depends on the approximation
error of the eigenvalues and not on the approximation error of the transfor-
mation matrix. Weber [64] defines metastability as the determinant of P.(7).
The reason for this definition becomes clear if the existence of an infinitesimal
generator @), of P, is assumed (see Theorem 3 (iv)):

det(P.(7)) = det(exp(T Q.)) = exp(trace(T Q.)) = H exp(T Qc(i,1)).
i=1

If Q. is interpreted as an infinitesimal generator of a Markov jump process, then
the term exp(7Q.(7,7)) can be seen as the holding probability h;(7) [38, 62] of
conformation x;, i.e. it is the probability that a process starting in x; stays in
x; during the simulation time 7. Thus, the determinant of P.(7) is the product
of the holding probabilities. Furthermore,

det(P(7)) = det(A)  det(Py(7)) = det(Agsse)-

Thus, also for the determinant-based definiton of metastability the discretization
error only depends on the approximation error of the eigenvalues.

Discretization error in terms of the statistical weights. Lemma 4 has
shown that the computation of the first row of A is equivalent to the deter-
mination of the statistical weights of the conformations. Thus, the correct
computation of the statistical weights directly depends on the correct approx-
imation of A. We have seen in Section 2.4 that the computation of statistical
weights d;,7 = 1,...,m of the Voronoi cells is ill-conditioned in the case of a
decomposition approach. Whenever a metastable sampling scheme is used to
determine statistical weights, their computation is ill-conditioned. Assume that
we can compute the weights d; with controllable small error (see Section 4.4).
In this case, the statistical weights of the conformations in equilibrium are given
by wgisc(1) = Z;’;l Xdisc(%, ) dj in the numerical approach.

Controling the discretization error of the transformation matrix. If
the objective function Ir[A] is used for an optimization of the transformation
matrix 4, then this objective function is independent from the eigenfunctions
and eigenvalues of P(7), see (24). The discretization error of A only depends
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on the constraints of the optimization problem. In order to understand the
influence of the discretization ® to the construction of Ag;s. via PCCA+, one
has to understand the PCCA+ algorithm. PCCA+ solves the optimization
problem with an iterative optimization routine. Given a non-optimal feasible

transformation matrix A((;-l . in step s of the algorithm an feasible transformation

matrix AE;:’CD is proposed by an unconstraint local optimization step followed

by a mapping step. In the optimization step, the elements of an infeasible

. .. s+l . .
transformation matrix Af;—:c ) are determined exept for the elements of its first

row and its first column. In order to derive the next step of the iterative scheme,
(s+1)

disc - In

the infeasible transformation matrix is mapped to a feasible matrix A

1
this mapping h : Adi:c) .Ag;jcl the eigenvector data Xgis. is used in the

algorithm. This is the only part of the algorithm where the discretization can
influence the transformation matrix Ag;s.. The following three steps are used
for the mapping h (see [64]):

—(s+1)

disc

(4,1) is defined as Ay (4,1) ==

disc

1. For j = 2,...,n the element A
- Z AE;:: ( j,i). This is done because of Lemma 3. The row-sums for

the rows j=2,...,n of a feasible transformation matrix are zero. Note
that the row-sums are still zero if A;:—C ) is multiplied with a scalar v > 0.

This step is independent from the discretization of €.

Al )( i) is defined as A(S—H)( 1,4) =

disc disc

2. For ¢ = 1,...,n the element A

— mm E .A((;ljc (j,1) Xaisc(l, 7). This step is also invariant against pos-

I=1,.
itive scahng of Admc Y. It assures feasibility of the transformation matrix

according to the nonnegativity constraint. This step depends on the dis-
cretization of 2.

3. The row-sum of the first row is determined

(s+1
dzsc

HM:

The matrix ZE;:CI) is multiplied with !
+1) —1—5(s+1)
‘Afibzsc =7 Adisc .

(s+1) .
disc

By this scaling, the row-sum of the first row of A is 1. According to

1
Lemma 3, .Adsljc ) is a feasible transformation matrix.

A PCCA+ algorithm which provides an optimial transformation matrix 4 in
the continuous case is simply given by a replacement of the term

(s+1) (s+1)

Adzsc ( ):: - InlIl ZAdzsc XdZSC(l Z)
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of (2.) by the term!*

n
ATV, 0 = — inf ST AT (4 Xi(g)-
qeN =

The only difference between the dicretized and the continuous algorithm is given
by this replacement. Note, that the above mapping & is not a projection in the
feasible set F of transformation matrices. A transformation matrix Ag;s. is
mapped to an edge of F. Convexity of the objective function assures that the
optimal value is element of the image of the mapping h. For the computation of
the tranformation matrix A in the continuous case it is imporant to approximate
the eigenfunctions X; of P(r) well.

Controling the discretization error of the eigenvalues. For the anal-
ysis of the discretization error of the eigenvalue matrix Ag;s., one step of an
hierachical refinement is investigated. We will assume that an arbitary Voronoi
cell is refined. Without loss of generality we will assume, that the Voronoi
cell ®,,, is decomposed into two new cells ¢ <I>1 and ® <I>2 according to Sec-
tlon 2.4. The eigenvalues of a matrix P(r) € R™*™ discretized according to
= {®q,...,P,,} are compared with the eigenvalues of a matrix P*(7) €
R(m+1)x(m“) discretized according to ®* = {®,...,® @1, @, <I>2} If this
refinement does not change the n dominant elgenvalues, the discretization error
vanishes for ®. The analysis of the discretization error is done in the follow-
ing way. Solving the eigenvalue problem for P*(7) (i.e. on the finer level) via
P*X5 = XMoo, where X3, € RU™FDXn and A% € R™™, provides
a method for finding a good approximation Xdisc of the eigenvectors Xg;s. of
P(7). Using this approximation, the difference of the eigenvalues of P(7) and
P*(7) can be estimated. The estimation is based on the following lemma.

disc disc

Lemma 6. Let A € R™*™ be a matrix with real eigenvalues A1, ..., A, and
corresponding eigenvectors xi,...,x,, € R™. Further, assume that the eigen-
vectors are orthonormal with regard to a vector norm H |I. For a vector y € R™
with y # 0 and for a number A € R let A := Ay — Ay, then

~min |)\ —N < IA]
S Tl

Proof: This result is well known, it is a simple computation of the basis ex-
tension of A in terms of the normalized vectors z;. ¢.e.d.

Let df, := (®,, 1, e)r, and dj;, 1 = (D, D, e)r, be the weights of the new
basis functions. With o := d;, /(d;, + d, ;1) the elements of the last row and
the last column of the coarse matrix P(7) can be computed via

P(r)(m,k) = aP*(T)( E)+ (1 —a)P*(r)(m+1,k),
P(r)(k,m) = P*(r )k,m)+P*( Yk,m+1),

for k = 1,...,m. This is a consequence of (6) and ®,, = <1>m§>1 + @mCT)g.
The relation can be written in matrix form as P(r) = EP*(7)F with matrices

14In the following it is assumed that the eigenfunctions of P(7) are bounded.
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E e Rm*(m+l) and F € Rt For 4 = 1,...,m, the matrix elements are
E(i,i) = F(i,4) = 1. Furthermore, E(m,m) = o, E(m,m + 1) = 1 — «, and
F(m,m) = F(m+ 1,m) = 1. All remaining elements of E and F are zero. For

*

the approximation of the eigenvectors, Xg;sc := EX};,. is defined similar to y

in Lemma 6. The following equations hold

P(T)jzdisc = EP*(T)FEX;isc = EP*(T) : (X;isc + (FE - I) X:ikisc)
N—_——
=G
= EP* (T)X;isc + EP* (T)GX;ikisc = )?diSCAjlisc + EP* (T)GX;lkisc‘

Equivalently, _ _
P(T)Xdisc - XdiSCAZisc = EP” (T)GX;isc‘

According to Lemma 6 the difference between the eigenvalues Ag;s. of P(7) and
the eigenvalues A%, . of P*(7) is in the order of |[EP*(7)GX},,.||. This norm
is small if (P*(7)G) approximately vanishes. A short calculation shows that all

non-vanishing elements of this matrix have the form
+((1 —a) P*(r)(k,m) —a P*(t)(k,m+1)), k=1,....m+1.

Thus, the matrix (P*(7)G) would be zero if either P*(7)(k, m+1) and P*(7)(k, m)
are zero (this is denoted as property P1) or
P*(r)(k,m) dy,

= k=1,... 1.
P bmt 1)y, o™

The latter one is denoted as property P2. In order to find a good decomposition
of ) assume a discretization & = {®q,...,P,,}. Furthermore, assume that
every Voronoi cell ®;,2 =1,...,m has one of the following properties:

1) The statistical weight of ®; is small. The conditional probability for a
transition from any set £ = 1,...,m into this set ®; in time 7 is neglectable
small. This means that for a further refinement of ®; property P1 is valid.

2) Inside the Voronoi cell ®; the dynamics is rapidly mixing. Assume
a realization of the dynamical model ¥_.. starting in any Voronoi cell @y
having an end point ¢ in cell ®;. Because of the rapidly mixing dynamics
inside ®;, the probability for a certain end point ¢ is approximately given
by the restricted Boltzmann distribution proportional to m,®;(g). A fur-
ther refinement of ® will have the property P2: The probability to end
in a certain subset of ®; is given by the relative statistical weight of this
subset.

Thus, for such a kind of decompostion the discretization error of the eigenvalues
is small. If P(7) is used, Voronoi cells ®; with a small weight d; need not be
refined in an adaptive hierarchical scheme in order to approximate A.

3.5 An infinitesimal generator

In Section 3.3 it has been shown that the iteration error for a transfer operator
having the aforementioned properties is vanishing for an appropriate selection
of x. Thus, iterative application of P.(7) in terms of the diagram in Figure 8
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provides the correct transition pattern of the system. In general, an iterative
application of P(7) is not a time extrapolation in terms of the dynamical model
which is in the “heart” of P. To give an example: The two aformentioned
wishful properties, self-adjointness and discrete dominant eigenvalues, also hold
for the transfer operator 7 (7) in (4) which is based on Hamiltonian dynamics.
According to Section 3.2, there is the corresponding Markov operator 7 (7)
propagating configurational density functions. Given an initial density function
p(0,) : © — Ry, the propagated density is p(r,-) = 7(7)p(0,-). For this
propagation an equilibrated density 7, of initial momentum states is assumed.
At time 7 the initial equilibrium distribution of momentum variables is not
preserved by Hamiltonian dynamics if the initial density p is different from
mq. Whereas, an iterative application of 7T (1) always assumes an equilibrated
density of momentum variables at the starting point. In general,

(T(7))* p(0,-) # T(27) p(0,-)

because the iterative application of T is not a continuation of the Hamilto-
nian dynamics (in particular it is not a continuation in momentum space).
The Chapman-Komolgorov equation does not hold for the set of operators
T(7),7 > 0. Although for a special choice of conformations the iteration er-
ror vanishes (see Theorem 2), the time extrapolation error is not zero, because
(T(’T))k # T (k7). In this strict sense: Time extrapolation, 7 — k7, is not pos-
sible in conformation dynamics by using a discretization G(T(T)) as a Markov
State Model if the Chapman-Komolgorov equation does not hold. The Markov
property of a dynamical model (like Hamiltonian dynamics) is lost when go-
ing from state space to configurational space. The configurational space based
transfer operator 7 has not lost its Markov property, it has lost its Chapman-
Komolgorov property. For the upcoming sections, the Chapman-Komolgorov
property is added to the wishful properties of P which allows for a time ex-
trapolation on the basis of transition rates. In this case an infinitesimal gener-
ator Q exists. The Smolukowsy dynamics is one possible(!) dynamical model
which leads to a m,-self-adjoint transfer operator having an infinitesimal gen-
erator Q [33]. In the followings, some alternative approaches are listed which
can circumvent the assumption of a Chapman-Komolgorov property. From a
mathematical point of view these alternatives can only lead to approximate
time-extrapolations.

Alternative 1. As an operator acting on the space of membership functions
T(1): L?Tq — L2 does not meet the Chapman-Komolgorov property, but as an
operator T (1) : {ge} — {e} it meets this property for obvious reasons. In terms
of the Markov operator 7 (1) this simply means that the Boltzmann density 7,
is invariant with regard to Hamiltonian dynamics (and with regard to any of
the aforementioned dynamical models) for any lag-time 7. The restriction to
Ty means that an iterative application of the operator 7T (7) is a correct con-
tinuation of Hamiltonian dynamics, because at any time 7 > 0 the momentum
states are distributed according to m,. In the case of a Boltzmann equilibrated
ensemble of initial states, time extrapolation is trivial because the equilibrated
density is the stationary density. The argumentation is still valid, if we go
from {e} to the space ¥ = span({I;; M isstable}) spanned by the indicator
functions Ip; of the stable subsets M of 2. Approximately, it also holds for
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a space of metastable membership functions ¥, = span({x1,...,xn}), because
T (7)x = x for all lag-times 7 which are not too large. In the space X, the
Chapman-Komolgorov property is approximately valid for 7(7) : ¥, — X..
Consequently, transition rates between conformations exist, which allows for
time extrapolation. Although the transfer operator 7 does not have an in-
finitesimal generator, rates between the conformations (and only between the
conformations) can be defined.

This is a mathematical description of Alternative 1. The physical inter-
pretation is as follows. The conformation dynamics framework of Deuflhard
and Schiitte does not distinguish between conformations and transition regions.
A transition from one conformation y; to a different conformation x; can be
considered as instantanious. The assumption X &~ ¥, means that the conforma-
tions are like traps. Transitions between the conformations are rare, instantan-
ious events. In contrast to that, self-equilibration within the conformations is a
rapidly mixing process. Thus, we can consider the approach as a computation
of rates between always self-equilibrated subsystems of 2. This point of view
is the basis of a very efficient parallel sampling algorithm of Voter [62]: If rates
between conformations exist, then holding probabilities h; can be defined and
related to the diagonal elements of Q., h;(t) = exp(t Q.(4,7)), see also page 32.
These holding probabilities of the conformations can be determined with the
parallel sampling approach of Voter. In contrast to Theorem 2, Voter defines
conformations as sets. This is neccessary, because holding probabilities can only
be defined rigorously if they are based on sets.

Alternative 2. Researchers testing Markovianity [29, 11, 60] claim that the
Chapman-Komolgorov property for a transfer operator P is violated only for
small lag-times. P; can be any transfer operator meeting the wishful properties
in Section 3.1 if it corresponds to an ergodic dynamical model. In the case of
an ergodic dynamical model, there is an optimal lag-time o: Some observables
O(Py (1)) of Py (e.g. the dominant eigenvalues) meet O(Py (k7)) ~ O((P1(7))*)
if these observables are tested only for transfer operators P;(7) with 7 > o. For
these observables, the Chapman-Komolgorov relation approximately holds. In
molecular applications, this optimal lag-time o is much smaller than the slowest
time-scale of the system. The transfer operator P;(o) defines metastable con-
formations. On the basis of the mg-self-adjoint transfer operator P (o) having
a discrete dominant spectrum and a fixed lag-time o, a possible transfer opera-
tor Po(7) which meets the Champman-Komolgorov property can be defined for
arbitrary lag-times 7 > 0 as

Pa(7) i= exp(= (Py(o) = ).
If Py is defined in this way it is 7 -self-adjoint and has a discrete dominant spec-
trum of eigenvalues. The eigenvectors of Py (o) and Ps are identical. Further-
more, the dominant eigenvalues of Pa (o) and P; (o) are almost identical, because
exp(A — 1)=A for A &~ 1. From this point of view Pa(0) is not only an alterna-
tive transfer opertor (instead of P; (o)) which meets the Chapman-Komolgorov
property, it also approximates the Markov State Model G(Pi (o)) ~ G(P2(0))
very well in the situation of Theorem 2. The reason is that the dominant eigen-
functions and eigenvalues of P;(0) and Pa2(0) are almost identical. Note that
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G(P2(0)) has a vanishing iteration error in Theorem 2. It has also a vanish-

ing time extrapolation error because (772((7))1C = Ps(k o). Summarizing, Pa(0)
meets all wishful properties and has a vanishing time extrapolation error. From
this insight one can conclude that the approximation G(P1(0)) ~ G(Pz(0)) is
an appropriate Markov State Model for time extrapolation ¢ — ko, too. This
seems to be a good justification for testing Markovianity and generating Markov
State Models for optimal lag-times o. However, note that besides the dominant
spectral properties, the transfer operators, P;(c) and Pa(0), are very different.

Physically, P; is constructed on the basis of a dynamical model. What

kind of dynamical model is time-extrapolated by computing G (PQ(U))k? The
infinitesimal generator Q* of Ps is

This equation looks like an approximation of (12) using a finite difference
(but with a large value of o instead of a small one). Whereas Alternative
1 uses a short-time argument (for short lag-times the metastable subsets are
traps), Alternative 2 uses a long-time argument (for large lag-times Markovian-
ity holds). For the reason of a large lag-time, o > 0, any discretization of
Q* based on Voronoi cells leads to non-vanishing “transition rates” Q*(i,j) be-
tween non-neighbouring cells. This is unphysical, because instantanious tran-
sitions between non-neighbouring Voronoi cells do not exist if we consider a
time-continuous dynamics trajectory in the “heart” of P,. Although this is a
strong argument against this alternative approach, one can find examples for
the construction of transition rates between non-neighbouring sets in literature.
One famous example is Markovian milestoning in Section 2.5 which defines
transition rates between two Voronoi cells A and B which are separated in )
by a transition region. From a mathematical point of view, the assumption of
transition rates between non-neighbouring subsets of 2 allows for a valid time
extrapolation even if an infinitesimal generator does not exist. There is an im-
portant lesson to learn from Alternative 2. Two very different transfer operators
P1(7) and Pa(7) can have the same Galerkin discretization in Theorem 2, i.e.
G(P1(r)) = G(P2(7)). The operators can, therefore, lead to the same Markov
State Model P.(7) of the molecular system. In the framework of instantanious
transitions between the conformations, this means that it is not so important to
know how the dynamical model acts within the conformations. It is only impor-
tant to know how it interacts between the conformations. This special aspect
is used in a very important part of this thesis when exploiting the Theorem of
Gauf} in Section 4.1.

Alternative 3. Alternative 3 provides a possible interpretation of the results
of the algorithm given in Section 4 if it is assumed that P does not have an
infinitesimal generator. For example, the Markov operator 7 does not have an
infinitesimal generator. The reason is the projection from state space to con-
figurational space. For a propagation of densities via Hamiltonian dynamics,
there exits an infinitesimal generator in state space [25, 33] — the classical Li-
ouville operator £. One could have derived the aforementioned results on the
basis of a state space instead of using the projection to configurational space.
In this case, Theorem 2 would be valid if the conformations y; are linear com-
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binations of the dominant eigenfunctions X; : Q x R*N — R of L. For these
state space based conformations, time extrapolation would be possible because
iteration error and time extrapolation error would be zero. The approximation
of Alternative 3 is that there exist!® eigenfunctions X;(q,p) = X;(q) for all
pe R3N and i =1,...,n, i.e. there is a set of dominant eingenfunctions X; of
L which are independent from the momentum state. In order to approximate
these eigenfunctions using a discretization approach only a decomposition of €2
is needed.

From a physical point of view, Alternative 3 assumes that the time-scale of
transitions between conformations is much longer than the time-scale of momen-
tum state equilibration. Note that conformations are defined in configurational
space. The assumption of fast momentum state equilibration is a physical basis
for all conformation dynamics algorithms.

4 Algorithmic Details

For the algorithmic realization of the aforementioned theoretical approach, an
adaptive hierarchical scheme will be applied. Recall the adatptive sampling al-
gorithm of Roblitz in Section 2.4. In Figure 9, the situation of a one-dimensional
configurational space is shown. €0 is decomposed into Voronoi cells. One of it,

energy
4

Figure 9: Voronoi tesselation of a one-dimensional configurational space 2. A
Voronoi cell ®; is an interval of 2. The energy difference between the left and
the right border of ®; determines the ratio between the transition frequency.

®;, is shown in the figure. Assuming, that the restricted Boltzmann distribution
according to ®; has already been sampled (horizontal sampling for ®;) and one
wants to determine the transition behaviour from ®; to the other subsets of 2
in a vertical sampling. In this case, the dynamical process ¥_, mainly leaves
the cell ®; by crossing the left border rather than by crossing the right one.
According to Boltzmann, the ratio r of observing a state at the left border with
regard to observing a state at the right border is r = exp(—f AFE). The ratio

15For Hamiltonian dynamics in state space, there exist stable subsets of Q x R3N. Every
connected component of the preimage (with regard to the total energy H) of an interval in R
is a stable subset of the state space. These subsets are not p-independent. The assumption is
that there exist metastable subsets which are nearly p-independent.
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exponentially decreases with AE. For AE = 15[kJ/mol] and a temperature of
300K, the ratio is r &= 0.002. When starting M vertical samplings, only a small
portion of (M - r) realizations of ¥_. are expected to cross the right border.
For a good statistics, an order of O(1/r) vertical samplings is neccessary. This
leads to a slowly converging sampling statistics for the transition matrix Pif
barriers are too high. A slow convergence rate implies further refinements in the
adaptive sampling scheme of R6blitz. This might lead to a curse of dimension-
ality. However, if the matrix ) is computed in the adaptive approach (instead
of the transition matrix P(7)), then it is sufficient to generate the horizontal
sampling. This can be seen by the Theorem of Gausf.

4.1 Theorem of Gauf}

U_.(g;(g,p)) is a probability density function. Using the continuity equation
[12], it can be shown that

Ol v = | @)

= div(¥(§: (g,p)) - 4)

div (d4—q - ). (25)

In (25) the term ¢ denotes the velocity vector of the probability density function
in the starting point (¢, p) and d4=g is a Dirac delta function. From the Marko-
vianity assumption given in the introduction, the velocity vector ¢ = v(q,p)
only depends on the initial state (g, p). It can be an averaged vector of many re-
alizations v(q, p) for stochastic dynamical models. Let the restricted Boltzmann
density inside the Voronoi cell ®; be denoted as

o P; (q) ﬂq(q)
7Tz(‘]) : fQ dq

With this praparation and (25) it can be shown that for Q(i, j) = 9/ P(7)(3, j),
with i # j, the following equations hold

6%— T:OP(T)(i7j) / /RgN /Q (q) div(84=q - 0(q,p)) d(}} m:(q) 7 (p) dp dg
//RSN /j div(34=g - 9(q,p)) di]} 7i(q) 7(p) dp dq

/Q /Rw ]i 5 (0g=q - v(q,p),v) dS] mi(q) w(p) dp dg

) = [ (e, 0) 70) dp m@as. (o

o7 lr=0

— —
* *
N —
N N
I I

=:z(q)

For (') it is used that ®;(q) is the indicator function of a Voronoi cell which is
also denoted as ®;. (x?) is a consequence of the Theorem of GauB (divergence
theorem [23]), where (-,v) is the scalar product with the surface normal vector
v of the surface 0®; and fa@j dS is the corresponding surface integral. From

(%?) to (¥3) it is used, that the sets ®; and ®; have an intersecting interface

40



and that only trajectories going from ®; to ®; can contribute to instantanious
transitions through this interface (positive sign of the scalar product with the
surface normal vector v). Note that @ is not an infinitesimal generator of
P(7),7 > 0. The elements of Q) are not rates! This has been explained in
Section 2.5. @ is simply the Galerkin discretization of Q on the basis of a set
of functions ®. The integral in equation (26) has the form

Qi) = o 1)

where z(q) is a result of a mean value computation for the set of momentum
variables p distributed according to 7, (p) and for the mean velocity vector (g, p)
depending on ¢ and p.

Algorithmic approach by using soft basis functions. Using the Theorem
of Gauf, a horizontal sampling is sufficient for the computation of ). One can
generate Boltzmann distributed states inside the Voronoi cell ®; and restrict
this sampling to the boundaries afterwards. Obviously, a sampling of states
inside a Voronoi cell will never hit a boundary of this cell exactly. Instead of
a crisp Voronoi tesselation ®[>°! one can, therefore, use continuous membership
functions @[ with lim,_ . @ = &[>, One possible class of membership
functions has been defined by Weber [64]:

3l (q) exp(—adist(q, ¢;))

=S exp(—adist(q, q0)) (28)

Using the basis of membership functions (28), the Galerkin discretization @ in
(27) can be formulated in terms of a regularization Q. The outer diagonal
elements of Q) are given by

(@l zplely

<(I)[a] €>ﬂ— ) (29)

Qi) = /Q 2(q) 1 () 7 (g) dg = 1

where p is an unknown scaling factor which represents the difference between a
volume and a surface measure. (29) can be seen as a mean value computation

of the function z(q)@&a] (q) for a restricted Boltzmann distribution of states ¢
[a]

according to m;° with its corresponding density function

. 2@ male)
Jo @7 a) m4(g) dg

Note that the outer diagonal elements of QI in (29) are identical to outer
diagonal elements of the stochastic mass matriz defined by Roblitz in [50] except
for the additional term z and the scaling factor p. The stochastic mass matrix
defines the overlap of the basis functions ®l*] and measures their crispness. The
adaptive sampling algorithm and the statstical error analysis of Roblitz can be
used to generate the matrix QI without performing the vertical sampling. The
binding process in Section 5 has been constructed with this kind of approach
using the software code ZIBgridfree [71, 64, 50] for a given value a > 0. For
high dimensional molecular systems, this approach may be applicable, but it
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suffers from the fact that low-weighted boundaries of the Voronoi cells are not
sampled sufficiently. What has been said about Figure 9 does not only hold for
the vertical sampling, it may also be a problem of the horizontal sampling, even
if a rapidly mixing sampling scheme is available.

Surface sampling. The horizontal sampling step of ZIBgridfree can be re-
placed by a sampling on the edges of the Voronoi cells. Expanding equation
(27) with the term §,, 5 74(q) dS leads to:

. fa@i@j 7q(q) dS 7q(q) sy
Qi,j) = f@%@)dq.jé@@j 2(q) W ds = d7i.<z>8¢‘i¢‘j’ (30)

where s;; is the weight of the surface 0®;®;, d; is the weight of the Voronoi cell
$,; and <Z>aq>iq>j is the mean value of z with regard to the restricted Boltzmann
distribution on the surface 0®;®;.

Illustrative example. In order to clearify the computation of @, we start
with a simplified 2-dimensional example of a potential energy function. In this
example, a system of two atoms moving in one dimension is analyzed. The
potential energy function is V : R?> — R with

Vig) = 3exp(—qf—(qz—%)2) —3eXp(—qf—(Q2—g)2)
—5 exp(—(q1 — 1)* = ¢3) — 5 exp(—(q1 + 1)* — ¢3)
+0.2¢1 + 0.2 (g2 — é)‘*. (31)

A contour plot of this ¢-symmetric function is shown in Fig. 10, see also [45].
The potential function has three local minima. The matrix @ will be evaluated

2
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Figure 10: Potential energy function. The function has three local minima.
Two deeper ones at about (—1;0), (1;0), and one minimum at about (0;5/3).

for a set of indicator functions ® stemming from a regular grid of 9 x 9 = 81
discretization boxes in Q = [—2;2] x [—2;2]. Up to this stage, the dynamical
model which is in the “heart” of Q is not yet defined. The computation of
o(q,p) is based on further assumptions. For the computation of Q we will

42



assume that the mean velocity vector ©(g,p) is independent from ¢ (like in
Hamiltonian dynamics) in this simple example. We will also assume that z(q) is
independent!® from the direction of the normal vector v. In this case, 2(q) = z
is a constant number only leading to a rescaling of Q. In the upcoming sections,
@ is only computed up to an unknown scaling factor 4 > 0. z can be set to 1.
The normalization of the densities is also part of the unknown scaling factor pu.
Thus, instead of the normalized expression 7,(¢), the integrals in (30) are based
on the Boltzmann expression exp(—3V (g)). Because of z = 1 the computation
of the elements of Q(¢,7),% # j, is only based on the ratio s;;/d;, i.e. only
on the weights of intersecting surfaces and on the weights of the boxes. The
diagonal elements of @) are determined such that the row sums of Q) are zero.
The surface weights s;; = fa&bi@j exp(—FV(q))dS can be computed numerically
with a one-dimesnional Gauf-Legendre quadrature rule based on 5 nodes per
surface [59]. The weights of the boxes d; = f<1>7< exp(—BV(q)) dg are computed by
a two-dimensional Gau-Legendre quadrature rule based on 25 nodes per box.
After computation of the matrix @, the matrix (). is approximated analogously
to P. in Section 3.4 by Q. = A;:sc Edise Adise. The matrices Ag;se and Zgisc
are 3 x 3 matrices in our example. These matrices are approximations of the
matrices A and = for the continuous operator Q. Note that the matrices A and
= are also 3 x 3-dimensional in the continuous case. Without loss of generality,
the scaling of @ is chosen in a particular way: @ defines an 81 x 81-matrix
M := @ + I which is a stochastic matrix with minimal diagonal element 0.
The dominant eigenvectors X ;s of M and the dominant eigenvectors of @) are
identical. Since M is a stochastic matrix, the standard PCCA+ algorithm can
be applied in order to find xg4;sc and the corresponding transformation matrix
Agise- If Agise = 1 is an eigenvalue of M, then £g;5c = Agisc — 1 18 an eigenvalue
of Q. For the regular 9 x 9-discretization, the results are

0 0 0
Edisc = | 0 —0.000065 0
0 0 —0.012396

and
0.002413 0.498793  0.498794

Agise = | 0.000000 —0.480285 0.480285
—0.039562  0.019781  0.019781

Note, that Ag;s. meets the theoretical results from Lemma 3 and Corollary 1.
The statistical weights w of the conformations are given by the first row of
Agise- Because of the symmetric discretization, the statistical weights represent
the symmetry of the potential energy function. Furthermore, the approximated
infinitesimal generator has the desired symmetry

_ —0.012366  0.006183  0.006183
Q.= 0.000030 —0.000047 0.000017 | . (32)
0.000030  0.000017  —0.000047

Note, that @c is computed up to an unknown scaling factor u. Therefore, it
is computed without giving the time unit. If the time unit is unknown the

16For Hamiltonian dynamics, the velocity vector is #(q,p) = ¢ = M ~'p. For this special
choice z is independent from the direction of v if all masses of the atoms are equal.
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absolut values of @C do not make sense. Only ratios of elements of éc can
be interpreted physically. In order to give an example for a possible physical
interpretation: The transition rate from conformation two (one of the deeper
minima in Figure 10) to the upper minimum is about 2 times larger than the
transition rate between the deeper minima, @0(27 ~2- @0(27 3).

Further theoretical results. The optimal value of the objective function
Ig[Adisc) is 2.575 according to (24). A Markov state model P.(7) = exp(7 Q.)
based on the approximation @C of . only insufficiently allows for an interpre-
tation as a transition matrix, because the membership functions x are not crisp,
they are only nearly indicator functions of sets. The value of Iy [Agisc| is 2.867.
The feasible set F has several vertices and allows for more than one possible
transformation matrix Ag;s. depending on the choice of the convex objective
function. If Iy [Agisc] = 3, then there would be (up to permutation of cluster
indices) only one vertex of F, which would lead to an optimal solution A in-
dependent from the choice of a convex objective function [64]. The Ig-optimal
membership functions according to the 9 x 9-grid based basis expansion are
plotted in the left column of Figure 13.

From low dimensions to high dimensions. For the computation of @ in
the 2-dimensional example, a regular grid is used as discretization of Q. It
is not clear if this grid is fine enough to approximate A and = sufficiently.
In higher dimensions, a regular grid discretization would lead to the curse of
dimensionality. An adaptive, hierarchical, and meshless refinement strategy as
in the algorithm of Roblitz should be applied, see Sections 4.2 and 4.3. For
realistic molecules, the aforementioned assumptions about z(q) do not hold.
Therefore, a computation of the mean values (z)ps,5, is needed in (30), see
also Section 4.3. The computation of the surface and volume integrals in higher
dimensions can not be based on Gaufi-Legendre quadrature rules. Again, the
curse of dimensionality is the reason [47]. Monte-Carlo quadrature methods are
appropriate, see Section 4.4.

Figure 11: Final discretization of an adaptive refinement approach. Starting
with 16 discretization boxes the algorithm terminates after a decomposition of
Q) into 86 boxes.
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Figure 12: The decreasing maximal y g;s.-difference between neighbouring boxes
in the adaptive refinement approach.

4.2 Adaptive and hierarchical refinement

There are mainly two sources of numerical errors when approximating the in-
finitesimal generator in the illustrative example. The first error is given by the
numerical quadrature error, because the entries of (Q are not computed analyt-
ically, they are computed by a Gaufl-Legendre quadrature rule. Roblitz mainly
concentrates on this type of error in her thesis [50]. For high-dimensional ap-
plications, Monte-Carlo quadrature is used which leads to a stochastic error.
For the present section, it will be assumed that the quadrature error can be
controled and is reasonably small. Besides the quadrature error there is the
discretization error adressed in Section 3.4. This error will be controled by the
adaptive refinement procedure.

Adaptivity. As mentioned before, the approximation quality of the eigenfunc-
tions and of the eigenvalues of P determine the discretization error. Assuming
the existence of an infinitesimal generator'”, the eigenfunctions of P are given
by the eigenfunctions of Q. The space spanned by the eigenfunctions of Q is
identical to the space spanned by the conformations x1, x2, and x3. This leads
to a very simple refinement strategy. For a given discretization ®, the 1-norm
difference between the n-vectors yaisc(4,:) and Xgisc(J,:) (rows of the matrix
Xdisc) is determined if ®; and ®; are neighbouring discretization boxes. The
basis set ®; is hierarchically refined in the direction where the set ®; is lo-
cated in Q if the ygisc-difference is maximal for the pair (i,7) of discretization
sets. The maximal yg4;s.-difference is a number between 0 and 2 independent
from the dimension of the space €2 and independent from the number n of con-
formations. A corresponding adaptive decomposition of Q for the illustrative
example of the three-minima potential in Figure 10 is shown in Figure 11. Star-
tig with 4 x 4 = 16 discretization boxes and a maximal y4;s.-difference of 1.9,
the refinement has been terminated for a maximal y4;s.-difference of 0.7 and
86 discretization boxes. The decreasing maximal difference during the refine-
ment algorithm can be seen in Figure 12. The eigenfunctions are approximated
adaptively. The discretization is also appropriate for the approximation of the

170One can also assume Alternative 3 in Section 3.5. In this case the eigenfunctions of
P are the p-independent eigenfunctions of £. They can be approximated by an adaptive
decomposition of €.
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Figure 13: Final membership functions of the three conformations of the po-
tential in Fig. 10 (white= 0, black= 1). Left column: Membership functions
for a regular 9x9-grid-based decomposition of 2. Right column: Membership
functions for an adaptive decomposition of 2. The membership functions are
nearly constant inside the metastable parts. High gradients can be found in
transition regions where a refinement of the basis functions is needed.

eigenvalues of the transfer operator P, because the boxes ®; either have a small
weight d; or they represent a rapidly mixing part of the potential V' (as described
at the end of Section 3.4). If the approximation @C is based on Gauf-Legendre
quadrature, the result is

_ —0.002962  0.001408 0.001554
Q.= | 0.000007 —0.000009 0.000002 | . (33)
0.000007  0.000002  —0.000009

As explained before, only ratios of the entries of ). can be interpreted physically
as long as the time unit of Q. is unknown. The ratios of the type Q.(4,7)/Qc(J,?)
of the elements of Q. are almost identical in (32) and (33). The reason is that
the statistical weights of the conformations are almost identical in (32) and (33).
The ratios Q.(2,1)/Qc(2, 3) are different in (32) and (33), because the transition
regions are better resolved in the adaptive approach. The good approximation
of the transition regions in the adaptive algorithm also leads to membership
functions which are more crisp than the grid-based membership functions. This
fact can be seen in the optimal value of the objective function Ir[Agisc] =
2.811. This value is larger than 2.575 in the grid-based case. The function Ip
is maximized for an optimal transformation matrix Ag;s. which is also optimal
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Figure 14: A membership function according to the PCCA+ algorithm for the
case of n = 2 conformations and for the discretization shown in Figure 11.

for the objective function Iy [Agisc] = 2.959 ~ 3. The interpretation of x1, x2,
and 3 as commitor functions is possible. In Section 2.6, committor functions
are only defined for the case of n = 2 conformations. A resulting membership
function of the PCCA+ algorithm for the given adaptive discretization and for
n = 2 conformations is shown in Figure 14. A comparison of this membership
function with the committor function of the potential V' computed by Metzner
[43] clearly shows that the two concepts (the concept of membership functions
and the concept of commitor functions) are strongly related.

Avoiding degeneration of (.. Note that the elemets of the matrix @c in
(33) are smaller than the corresponding elements of the approximated infinites-
imal generator (32) in the grid-based approach. The reason is given by the
special scaling of ) such that the matrix M = @ + I is a stochastic matrix with
minimal diagonal element 0. The problem is that in (30) the matrix elements
of () are antipropotional to the weights of the basis functions which leads to
large entries for small weighted discretization boxes. This can be a numerical
problem. Note, however, that all numerical computations can be done using a
matrix Q := DQ instead of Q, where D is the diagonal matrix of the weights d;
of the basis functions ®,;. Q is a symmetic matrix with row-sum zero. Instead
of using the matix M = Q + I for the scaling of @, the matrix M := (Q + I)
can be used. The eigenvector computation can be done by solving a generalized
symmetric eigenvalue problem

MXdisc =D Xdisc A.

In this case, the minor influence of discretization boxes with small weights can
be used numerically.

Estimation of the time unit. The scaling of @ has a further consequence.
The appropriate scaling factor u for Q. is missing. In other words, the time unit
of Q. is unknown. The aforementioned illustrative example has been constructed
with 3 conformations. The reason is that a 2-conformations example would be
trivial. For 2 conformations, the matrix Q. is always given by

Qe=p <w1_11 w1_11>
.= ] 1.
Waq —Wsg

47



Disgarding p it only depends on the weights of the conformations. The weights
of the conformations, however, can be estimated by computing free energy differ-
ences. Dynamical information is not neccessary. Execpt for the identification of
the conformations x1 and x2 in €, a numerical simulation of a 2-conformations
molecular system can not contribute to the theoretical understanding of its kinet-
ics, because (without knowing u) the free energy difference between the confor-
mations is the only information included in Q.. There are researchers who try
to interpret the simulation data of a 2-conformations system in terms of local
transition rates. Note, however, that the discretized matrix @ is never appro-
priate for an interpretation in terms of rates according to Section 2.5! Starting
with n = 3 conformations, the matrix (). can provide interesting kinetic in-
formations without knowing the scaling factor u, e.g. by determining ratios of
outer diagonal elements of Q. which are not of the type Q.(i,7)/Qc(j,%). In
the illustrative example it can be answerd wether transitions from conformation
2 to 1 or transitions from 2 to 3 are preferred. This information can not be
derived from the statistical weights of the conformations. However, researches
may be interested in the absolute values of ().. In this case an estimation of
1 is needed. If a theoretical understanding of experimental data is intended,
then the time unit of ). can simply be adjusted by the experiment, see also
[68]. Can p be determined soley with theoretical methods? As explained in
Section 2.1, the transition pattern of molecular kinetics is not valid for single
trajectories stemming from dynamics simulations. The transition pattern can
approximately be derived from an ensemble of molecular subsystems distributed
according to the x-restricted Boltzmann distribution of states (see Alternative 1
in Section 3.5). Simulating many trajectories in parallel like in the algorithm of
Voter [62] can represent this ensemble of subsystems. First-exit times stemming
from this simulations can be used to rescale the diagonal elements of ().. The re-
lation between the diagonal elements of (). and the holding probabilities is used
for this rescaling. For the computation of the holding probabilities, the confor-
mations have to be transformed into indicator functions of sets. The approach
is an approximation. Furthemore, waiting for a first transition of an arbitrary
trajectory in an canonical ensemble can take a lot of time. Another approach
is to estimate the holding probabilities for the discretization sets ®1,...,®P,,
which should be much smaller than the holding probabilities of x1,..., X, for
small times ¢t > 0, see also [65] and [39]. This approach disguises the fact that
@ is not a transition rate matrix of a Markov process. The holding probability
of ®; is not independent from the special choice of the initial state ¢ € ®;.
This independence may be regarded as valid for subsets of 2 which include(!)
a rapidly mixing part of the configurational space, i.e. it is valid for a union of
discretization sets ®; with xgisc(i,1) & 1 for a given I € {1,...,n}. This ends
up in a similar approach like Voter’s algorithm. Nevertheless, an estimation of
the time unit using a theoretical approach is always based on the realization of
a molecular dynamics simulation which needs to specify the dynamical model.
Furthermore, the estimation of a time unit by computing holding probabilities is
always based on further assumptions (interpretation of x as indicator functions
or regarding @ as a transition rate matrix).
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4.3 Meshless basis functions

In high-dimensional cases a box dicretization of §2 is not appropriate. Instead
of using a box discretization, Voronoi cells are suitable for high-dimesnional
systems.

Simplification by neglecting fast degrees of freedom. For the construc-
tion of Voronoi cells, the definition of a distance function dist : Q@ x @ — R
is required, see (8). From a mathematical point of view this distance function
should be zero, dist(q, ¢*) = 0, only if two configurations are identical ¢ = ¢*.
However, in realistic applications this would lead to an unneccessary combina-
torial blow-up of the configurational space. Generated statistical information
would never be sufficient for the evaluation of ). Pre-knowlegde about the
molecular system should be incooperated into the distance function computa-
tion. The conformations x;(q) identify parts of configurational space which can
be described by a much longer time-scale than the fast degrees of freedom of the
dynamical model. Therefore, an efficient distance computation would provide
dist(g,¢*) = 0, if ¢ and ¢* are configurations which are connected by a rapidly
mixing dynamical process. When discretizing (2, the distance function can ac-
count for these fast degrees of freedom and exclude them from the computation
of dist(q, ¢*).

¢ Rotation and translation. There are many cases in which rotational
and translational degrees of freedom of the whole system are not relevant
for the time-scale of the chemical process to be investigated (e.g., protein
folding). In this case, Kabsch [36, 37] has formulated an algorithm which
can be used in order to align two configurational states ¢ and ¢* before
computing their distance in configurational space.

e Neglecting atoms. The easiest way to simplify Voronoi cells in config-
urational space is to neglect atoms for the computation of the distances.
Whereas, all atoms are regarded for the computation of energies, velocities
etc. the definition of eigenfunctions is restricted to a subspace of Q (this
approach is comparable to neglecting the momentum coordinates in Al-
ternative 3 in Section 3.5). When neglecting atoms, it should be clear that
conformational changes can be identified only on the basis of the observed
atoms, because it is not important to include all atoms (which influence
the conformational change) in the computation of the distance function.
It is only important to include all atoms that allow for the identification(!)
of conformational changes. Thus, it can be appropriate to neglect all ex-
plicit water molecules from distance computation if the conformational
changes of the system can be observed in the remaining degrees of free-
dom. Although, the water molecules have an important influence in the
chemical process, the conformational change can be seen in the movement
of the remaining atoms.

e Internal coordinates. Instead of taking all cartesian coordinates of the
observed atoms, one can restrict the point of view to a small set of internal
coordinates which indicate conformational changes. This method can only
be used if enough pre-knowledge about the molecular system has been col-
lected. Bond lengths and bond angles are often preserved in a molecular

49



simulation of high-dimensional molecular models. Therefore, the restric-
tion to torsion angles can be appropriate. This reduction method should
only be applied if possible conformational changes are known in advance.

Fast degrees of freedom can be excluded from the configurational space 2 with a
combination of the aforementioned simplifications of the distance computation
in €. The binding path simulation in Section 5 has been identified with a
distance function based on a set of internal coordinates.

Restricted sampling. In the illustrative example, z(q) in (30) has been a
constant function. In general, this assumption does not hold. In a numerical
computation for a given configurational state ¢, the term z(g) in (27) can be
approximated with standard Monte Carlo quadrature methods based on known
distributions of the variables. The value (2)a¢,e, in (30) is the averaged positive
value of the scalar product (7(g,p),v) determined for the set of m,-distributed
momentum vectors p and the Boltzmann distributed g-vectors, where this ¢-
distribution is restricted to the surface 0®;®; between the Voronoi cells ®; and
®;. In order to determine (z)se,, in (30) numerically, a Monte-Carlo sampling
of the Boltzmann distribution of configurational states ¢ € 0®;®; is needed.
This can be done by using a constraint molecular dynamics algorithm [51, 2]
combined with a Hybrid Monte-Carlo approach (HMC) [20]. HMC genreates
a Markov chain of configurational states. It consists of a proposal step and an
acceptance step. In the proposal step, a new configurational state ¢ is gener-
ated on the basis of a given state q. This is done with a molecular dynamics
simulation with randomized initial momenta. The constraints to be fixed for ¢
are given by the following system of equalities and inequalities.

dist(q, qr) > dist(q,¢;),Vk =1,...,m, (34)

where g, k = 1,...m, are the centers of the Voronoi cells. In an implementation
of this sampling method, only the equalities are fixed by the constraint molec-
ular dynamics. The inequalities are tested in the acceptance step of the HMC
sampling algorithm. If ¢ is accepted, it is the next step of the Markov chain. If
it is rejected, the starting point ¢ is repeated in the chain. For each sampling
point (g,p) of a HMC sampling algorithm, one has to determine the averaged
velocity vector v(g,p) for the selected dynamical model first. If it is assumed
that the averaged velocity of the dynamical model is given by Hamiltonian dy-
namics, then (g, p) = M ~'p, where M is the diagonal matrix of atom masses.
In a second step one has to determine the scalar product (o(q,p),v). If one of
the aforementioned simplifications is applied in the distance computation, the
surface normal vector v(q) depends on the configurational state ¢ € 0®; ®;.
In the case of a Voronoi tesselation, this surface normal vector is given by the
difference vector v(g) x V,dist(q, g;) — V,dist(g, ¢;) (normalized to |||z = 1).

First step of HMC. A feasible starting point ¢ which meets the constraints
(34) has to be determined. This can be done by using the function basis ®!°J
n (28). A feasible point, ¢ € 9®;®;, has the following property

1
lim ————=s,

el (@ @@
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where s is the number of inequalities in (34) which are active in ¢g. For an
infeasible point, ¢ & 0®;®; the limit tends to infinity. In order to find a feasible
starting point with a low energy value V() one can, therefore, minimize the

function
4
[c] o]
;7 (q) ®;°(q)
within a homotopy method for o« — oo. If the minimal value I[C?‘ J does not

converge for &« — oo, then the Voronoi cells ®; and ®; are not neighbouring
and do not share a common surface 90®;®;.

16°(@ =

Avoiding the computation of 2(g). Assuming ¥(g,p) = M ~!p combined
with a special choice of dist(-,-) can be used in order to avoid the computation
of z(g). If the distance function computation is only based on one type of atoms
(e.g. on a subset of carbon atoms of the system) by neglecting the rest of the
atoms or by soley including corresponding internal coordinates in the distance
function, then the surface normal vector v has only non-vanishing components
for the entries corresponding to the coordinates of these atoms. For these atoms,
the averavged velocity distribution M ~!p is isotropic for p distributed according
to m,. Le., z is a constant number, independent from the direction of v. This
constant number can be included in the unknown scaling factor p by setting
z=1.

4.4 Efficient free energy calculation

For high-dimensional examples, the numerical computation of (z)ss,s, in (30)
has been explained so far. In the illustrative example, the expressions s;;/d;
have been computed with GauB-Legendre quadrature. For high-dimesional in-
tegrals, only Monte-Carlo methods are suitable. Standard Monte Carlo quarda-
ture methods are not appropriate in order to determine the expressions s;;/d;
in (30). The weights of the surfaces and of the Voronoi cells have to be com-
puted by a routine which can determine free energy differences in 2. With other
words, an algorithm is searched which meets requirement R1 of the introduction
not only for the statistical weights of the conformations but also for the weights
of discretization boxes and for the weights of the surfaces. Three different ap-
proaches will be discussed here. The first approach is called ConfJump which is
a Metropolis-Monte-Carlo sampling scheme for the computation of free enregy
differences. The second approach is based on the Jarzynski Identity. The third
approach is a heuristical method which only takes into account restricted Boltz-
mann samplings (restricted to cells and surfaces). The latter method is based
on a density estimation approach introduced by Weber and Andrae in [67]. It
is recommended to apply a combination of desnity estimation and Jarzynski’s
Identity which will be explained at the end of this section.

ConfJump. Instead of determining the absolute values of d; and s;; one can
alternatively estimate the ratios s;;/sk or d;/d;. If these ratios are computed,
the absolute values of the weights are known for d; by a normalization to
Zﬁl d; = 1. The values s;; can be determined with this procedure except
for the scalar factor p. There are a lot of methods in literature which estimate
the ratios of weights of diffrent parts of the configurational space by defining
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a Metropolis-Monte-Carlo like sampling approach. This sampling is based on
jumps between the restricted parts of the space. For a survey see [7]. Conf-
Jump [63] is one algorithm of this type, it is very similar to the Smart Darting
Monte Carlo algorithm of Andricioaei et al. [3] and the Jump Between Wells
(JBW) algorithm of Senderowitz et al. [56, 57]. The ConfJump method is em-
bedded into a HMC-sampling of the restricted parts (Voronoi cells or surfaces)
of the configurational space. During the HMC sampling, sometimes (with a
given probability) the molecular dynamics proposal step is replaced by a jump
from the current part (A) of the configurational space to another restricted part
(B) of Q. For the construction of the jump it is important that the conditional
probability for being in A and proposing a jump from a certain state ¢ € A
to ¢* € B is identical to the probability for beinig in B and proposing a jump
from ¢* € B to ¢ € A. There are many different ways to construct a suitable
jump. One possible construction is as follows. For each restricted part i of
the configurational space a representative configurational state g; is selected in
advance. If a jump from A to B is intended in the ConfJump algorithm, then
the difference vector A := g4 — g between the current sampling point ¢ and the
representative g4 is determined. The proposed new configurational state ¢* in
B is given by ¢* = qg — A. The jump is accepted, if the potential energy has
decreased, V(q) > V(¢*), during the jump or if a Metropolis like acceptance
criterion holds for the energy difference. If the jump is rejected, the HMC sam-
pling continues in the old part A of Q. If the jump is accepted, the sampling
continues in the new part B. When ConflJump has converged, the number of
sampling points per part of {2 represent the relative weights of these parts. In
order to improve the jump acceptance rate, one can shift the minimal potential
energy level of all restricted parts to 0 in advance. In this case, the acceptance
is improved because the jumps are performed between configurational states
with similar potential energies. After convergence of the sampling, one has to
reweight the number of sampling points per part with the Boltzmann expres-
sion of the energy shift. Even by using the energy shift, the construction of a
jump proposal step in this scheme is not a trivial task. In our experiments, for
every molecular system, a different jump strategy have to be applied in order
to yield a suitable acceptance ratio. A severe problem of all jump methods is
given by the treatment of explicit water molecules. Whenever a jump between
two configurational states of a molecular system is performed, it is not easy to
rearrange the water molecules within a reversible(!) proposal step. Instead of
a reversible jump, the next approach to weighting is based on a non-reversible
transport of sampling points and can, therefore, tackle the problem of explicit
water molecules.

Jarzynski Identity. Determining the ratios of weights is like a computation
of free energy differences, see (11). For the estimation of free energy differences,
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the Jarzynski Identity'® is very important [34, 13, 49]:
(exp(—=BW)) = exp(=F AA), (35)

where W is the work along a non-reversible process. On the right hand side
of equation (35) there is the desired free energy difference between Voronoi
cells or between surfaces of Voronoi cells. The left hand side of (35) can be
understood as an algorithmic approach towards the computation of free-energy
differences. A restricted Boltzmann distribution of states (restricted to Voronoi
cells or restricted to surfaces) can be seen as a Boltzmann distribution according
to a modified Hamiltonian. Assume H (g, p,0) represents the Hamiltonian for
the restricted sampling of the Voronoi cell ®; with m,-distributed momenta,
whereas, H(q,p,t) for a fixed value ¢ > 0 represents the Hamiltonian according
to the restricted Botzmann distribution in Voronoi cell ®; with m,-distributed
momenta. The approach is a non-reversible biased density propagation method
transporting a density according to the Hamiltonian H (g, p,0) to a Hamiltonian
H(g,p,t) in time t. If the parameter ¢ is fixed, the corresponding Hamiltonians
H(-,-,7) can be approximated by using the basis functions in (28) with a > 0.
For a transport from cell ®; to cell ®; the Hamiltonian is:

Hg.p.7) = —% (@ (g)) — %ln@&a‘(m)/ﬂ (@) + V(@) + K(p).

For a tranport from surface 0®;®; to surface 0®;®;, the Hamiltonian is:

]. 1 a— (T
1 S (@l (g))

n(@ (@) - 5

H(g.p.1) = —%ln@E‘”(q))—
+V(q) + K(p).

Assume that the restricted density of ®; has been sampled with HMC. Then,
a molecular dynamics simulation accoring to the time-dependent Hamiltonian
H(.,-,-) starting in (¢(0),p(0),0) and ending in (q(¢),p(t),t) transports the
HMC-sampling point (¢(0), p(0)) from one restricted region to the state (q(¢), p(t))
of the other restricted part of configurational space. The left hand side in (35)
is the averaged exponential work of this biased molecular dynamics simulation.
The average is taken over the sampling points in ®;. Note that selecting Hamil-
tonian dynamics for the computation of free energy differences is not defining
the dynamical model of P(7). Hamiltonian dynamics is selected, because it is
a symplectic mapping. Any dynamical model can be used in order to prop-
agate the density (even stochastic dynamical models). However, Hamiltonian
dynamics offers a simple way to compute the work W along the propagation.
Using that W = H(q(t),p(t),t) — H(¢q(0),p(0),0) for Hamiltonian dynamics (see
Section 5.3.1 in [9]) and (11), the Jarzynski Identity is given by
di

(o2 (= 8H(0).p0), 0~ H@©),p0),0))) = T 60

181t is not possible to write down this equation without stressing out the incredible impor-
tance of Jarzynski’s Identity for all fields of thermodynamics. Jarzynski’s Identity replaces the
second law of thermodynamics. This law has been (W) < AA for non-reversible dynamical
processes. It has been formulated in terms of an inequality (only for reversible processes the
equality holds). Jarzynski has shown that the second law can be formulated in terms of an
equality. Although the dynamical processes are assumed to be reversible on a microscopic and
infinitesimal level (self-adjointness of P), via Jarzynski’s Identity it is possible to compute the
statistical weights of conformations by a substitution of the reversible metastable process with
a rapidly mixing non-reversible dynamics.

53



The equation (36) is formulated for the weights d;, d;. For s;; there is an anal-
ogous equation. In an algorithmic realization of (36), an ensemble of states
distributed according to H(g,p,0) is generated first. In a second step the al-
gorithm performs biased molecular dynamics trajectories on all the sampling
points. This simulation propagates the density from one to other restricted
regions of . In order to compute equation (36) numerically, the exponential
difference between the Hamiltonian in the starting points and the Hamiltonian
in the end points of the molecular dynamics trajectory have to be averaged.

Density estimation. It can be very difficult to design a suitable algorithm
for the biased movement of densities in Jarzynki’s approach with a reasonable
small amount of work W and a suitable simulation time ¢. Instead of performing
a biased dynamics simulation for the determination of free energy differences
one can also estimate the free enery differences on the basis of the generated
restricted HMC sampling data within the cells and on the surfaces (see Section
4.3). This approach will be formulated for the computation of free energy dif-
ferences between the Voronoi cells (for the determination of d;), but it can also
be applied for the estimation of s;;. Assume, there is a small Jz-environment
of a given configurational state ¢ € ®; in which the value exp(—3V(q)) can be
considered as constant. In this case, the following equation holds:

(g) exp(—BV(q)) )
/5 dq - exp(~BV(q /5% ) Aiexp(—ﬁV(q))dq

_.<5>M oxd;

(37)

If configurational states ¢; € ®; and g; € ®; are selected with an identical
J-environment, then equation (37) can be reformulated as

i ep(=BV(@) O, 9

dj  exp(=BV(g;)) (O)m,
In (38), the expression (d),, can be approximated by the averaged number of
states which are element of the j-environment of ¢;. The averaged value is taken
over a set of states which are distributed according to the restricted Boltzmann
sampling of ®;. This is comparable to a density estimation of this restricted
sampling at ¢;. In order to use (38) in a numerical routine, one has to determine
a representative g; for each Voronoi cell ®; and one has to count the averaged
number of sampling points which are element of a small environment of ¢;. It
is important to take a d-environment with a constant volume for each Voronoi
cell ®;. The representative ¢; can be a local minimum.

Illustrative example. Using a Voronoi tessellation and an adaptive refine-
ment in the sence of Section 4.2 by inserting new nodes of Voronoi cells, the
final discretization of the configurational space {2 and the conformations can be
seen in Figure 15. The conformations have been computed on the basis of the
aforementioned density estimation approach. The statistical weights of the con-
formations are w; = 0.0021, we = 0.4905, and w3 = 0.5075, in good agreement
with the results of Section 4.1. The optimal value of Iy [Agisc] = 2.963 allows
for an interpretation of the membership functions as commitor functions. The
density estimation method is suitable for determining the statistical weights of
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the conformations. Unfortunately, it tends to overestimate the transition rates
in @, because it is based on a truncated HMC sampling which leads to a bad
density estimation at the surfaces of the Voronoi cells. In particular, the volume
of small surfaces is overestimated.

X1 X2

X3

Figure 15: Final membership functions of the three conformations of the poten-
tial in Fig. 10 (white= 0, black= 1). Final Voronoi discretization ®.

Combination of density estimation and Jarzynski’s Identity. The den-
sity estimation method is suitable for the estimation of the weights d; of the
Voronoi cells. Assume, HMC samplings restricted to the Voronoi cells have been
generated and evaluated according to (38). In this case, the absolute values of d;
are known using the sum-1-normalization. Furthermore, for each surface 0®;®;
a restricted Boltzmann distribution has already been generated in order to com-
pute (z)ps,a,; according to Section 4.3. This restricted sampling of 0®;®; can
be propagated from the surface into the cell ®; by Jarzynski’s method. In this
case,

(exp (~ B(H(a(t).p(8).1) — H(a(0).p(0).0)) = . (30)

HSij

where p is the unknown scaling factor. The Hamiltonian is

1 1
Hg,p,7) = =5 (@ (a)) - 5
During the propagation of the initial density, the influence of ®; is decreasing.
Using this direction, from the surface to the cell, is the mathematical trick
to hit the Voronoi cell surfaces exactly. This is the main difference to the
approach (29). The special choice of the density propagation is also a trick to
avoid explosion of the work W, because energy is taken away from the system
during the molecular dynamics simulation. The energy term of the barrier
function of ®; is decreasing. The inverse of (39) is the matrix element (i, 7). In
practise, this direct computation of @) often leads to incorrect weights, i.e. d'Q #
0 because of the truncated sampling of the surfaces. In order to circumvent
this problem, one can apply the inverse of (39) to generate the outer diaginal
elements of a matrix @ first. In a second step the rows of @) are multiplied with

(@ T () + V(g) + K(p).
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the weights of the Voronoi cells in order to get the matix Q. This matrix should
be symmetric. Le., it is symmetrized and the negative row sums are entered
on its diagonal. The result is a symmetric matrix @ with row-sum zero and
the diagonal matrix D of the weights of the Voronoi cells. These matrices can
be used in order to compute the eigenvalues and eigenvectors of the discretized
problem.

Interpretation. How can the presented algorithmic approach be compared to
existing methods in literature? In the combined algorithm, a biased molecular
dynamics simulation is used to propagate!® a restricted Boltzmann distribution
according to cell ®; over surface PP, into a restricted Boltzmann distribu-
tion of cell ®5. Then, a biased simulation is used to propagate a restricted
Boltzmann distribution according to cell ®5 into a restricted Boltzmann distri-
bution of cell ®3 and so forth... I.e. by telescoping all these simulations in the
algorithm, theoretically, a restricted Boltzmann distribution of a starting cell A
is transformed into a restricted Boltzmann distribution of a final cell B. This
is exactly the main algorithmic framework of computing free energy differences
and kinetic information on the basis of Jarzynski’s identity in literature [9], if
the predefined sets A and B are denoted as “conformations”. The present the-
sis is a step beyond these algorithms, because it provides a method to identify
conformations without predefining them. Furthermore, it does not need the dis-
tinction between Voronoi cells A and B (denoted as conformations) and the rest
of the configurational space (denoted as transition region). The reason is that
the present thesis offers a way for the correct time-extrapolation of dynamical
simulations which is not possible within the common set-based concept.

5 Binding paths

In this very short section the results in Figure 3 of a binding path simulation of
an inhibitor candidate of DPP-4 should be explained in the context of the afore-
mentioned theoretical investigations. With permission, the results and figures
are taken from [8]. An inhibition of DPP-4 is a possible drug target in order
to treat diabetes mellitus type 2 patients. For the simulation of a binding path
of the inhibitor candidate, the software code ZIBgridfree has been used in order
to generate restricted HMC samplings of Voronoi cells located in the binding
pocket of DPP-4. For this sampling, the concept of equation (29) for the compu-
tation of a Galerkin discretization @ of Q has been applied. By using PCCA+
for the matrix @, the conformations x of the binding process can be identified.
These conformations are visualized in Figure 3. For the visualization, the sam-
pling points of the voronoi cell ®; are weighted with the corresponding weight d;
and with the corresponding membership value x4;sc(%, 1), where [ is the index of
the conformation to be visualized. Then, a volume rendering method is applied
[54] in order to show the restricted Boltzmann distribution of the conformations.
The binding process of the inhibitor candidate can be decomposed into several
steps represented by these conformations. The steps of the binding path are
visualized in Figure 1 by selecting one configurational state per conformation
out of the sampling data. A combination of these two visualization types is
shown in Figure 16. On the basis of @ one can also quantify the percentage of

19 A propagation from d®1®5 to ®;1 can be seen as the corresponding backward propagation.
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Figure 16: A binding path of a DPP-4 ligand from the surface of the protein
into the active site.

the flux taking place between the diffrent conformational barriers and the sta-
tistical weights of the conformations. This is visualized in Figure 17. At this
stage, we have to recall an important theoretical result. In contrast to a molec-
ular dynamics simulation of the binding process of the inhibitor candidate, the
results of a molecular kinetics simulation do not hold for the transition pattern
of single molecules. The binding process of an ensemble of DPP-4-inhibitor-
systems is observed. A transition is happening if an arbitary inhibitor molecule
in the canonical ensemble leaves a conformation A and enters the next step of
the binding path. If we want to wait for the transition of a special inhibitor
candidate of the ensemble, this may take much more time. Thus, the barriers
identified between the conformations of a molecular kinetics simulation are a
fortiori barriers for the single inhibitor molecules during their own binding pro-
cess. The identification of conformations and the characterization of barriers
during the binding process can contribute to the design of inhibitor molecules
for pharmaceutical industry. It is important to accelerate the binding process of
inhibitor molecules, because this can extend the activity period of the drug, see
Figure 18. The inhibitor molecule should bind to the DPP-4 target and reach
the activity window much faster than the elemination process (by metabolism)
takes place. The molecular kinetics framework fits exactly to the framework of
pharmacokinetic investigations and can contribute to the simulation of possible
drug candidates.
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Figure 17: Percentage of the flux between the conformations and their statistical
weights.

6 Conclusion

Before concluding the thesis, let me stress two very important aspects of the
aformentioned algorithmic approach towards the estimation of transition rates.
One aspect is concerning the overestimation of transition rates and the other
aspect is concerning the complexity reduction within the algorithmic framework.

The overestimation of transition rates. If one compares the statistical
analysis of rare events with the observation of lotto players waiting for the jack-
pot, molecular dynamics is like observing one special player all the time. It can
take a lot of time, until this special player wins the jackpot. Molecular kinetics
is like observing all players together. Whenever one arbitrary player wins, we
observe the rare event. It is important to know this difference, because otherwise
the motivation for playing lotto is based on incorrect assumptions. Being seri-
ous again, the transition rates of molecular kinetics overestimate the “transition
rates” of molecular dynamics. This is a conceptual overestimation. However,
only in the framework of molecular kinetics, time-extrapolation is possible. Fur-
thermore, the concept of molecular kinetics fits into the analysis of the kinetics
of binding processes in pharmaceutical applications. Besides the conceptual
overestimation, there is also a numerical overestimation of rates. The Galerkin
discretization in (22) can be seen as the Rayleigh-Ritz principle of molecular
kinetics. The determinant or the trace of P.(7) is maximized (metastability
is maximized) only for the special choice of x as a linear combination of the
dominant eigenfunctions of P(7) in Theorem 2. For all conformations x which
are different from this choice (in particular for set-based conformations) the
metastability is underestimated, i.e. rates are overestimated. In the numerical
approach, an approximation of the eigenfunctions of P(7) is computed. Rates
are overestimated in numerical approaches. The optimal rates are given by
Theorem 2.
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Figure 18: The injection of an inhibitor molecule at time zero (green curve)
starts two processes in the human body: The binding process to the target
molecule (blue curve) and the elemination process of the unbonded inhibitor
molecule (red curve). Good drug candidates have an extended activity period.
Accelerating the binding process by injecting more drug molecules is often im-
possible because it can reach a toxic dosis.

Complexity reduction. The aim of my work at the Zuse Institute in Berlin
was to get rid of Hamiltonian dynamics simulations for the analysis of tran-
sition networks of molecular systems. In 1998, Peter Deuflhard stressed that
long-time Hamiltonian dynamics simulations can not solve an ill-conditioned
problem. Thus, this kind of simulation approach for molecular systems can not
be the basis for the analysis of molecular systems. A good starting point to
invent something new. Reading this thesis one may come to the conclusion that
Hamiltonian dynamics occurs at many different “places” of the software code.
The first place is the Hybrid Monte-Carlo sampling routine. HMC is based on
a molecular dynamics simulation used in order to perform the proposal step. In
fact, ZIBgridfree does not perform molecular dynamics simulations on the full
molecular system in each HMC step. It does not need a computation of all
potential energy terms during the proposal step. The reason is that HMC does
not need molecular dynamics. From a mathematical point of view, HMC only
needs a reversible, volume-preserving mapping as proposal step. The second
place where Hamiltonian dynamics may be important for the algorithmic real-
ization is given by the propagation of HMC sampling points from the surface
of Voronoi cells into the center of them. As mentioned in Section 4.4, Hamil-
tonian dynamics is selected in this context for the presentation of theoretical
results because it simplifies the computation of the work W along the propaga-
tion. Note that an arbitrary non-reversible propagation can be applied. This is
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the key contribution of Jarzynski’s Identity in statistical thermodynamics. For
arbitrary non-reversible propagations, the work can be computed as

_ [P oH(g(7),p().7)
e [ s

But how can one get rid of molecular dynamics simulations, although transition
rates have to be computed (which are based on a dynamical model). Isn’t there
the theorem that says, that complexity of a problem can not be reduced by
reformulation? The intrinsic reduction of the complexity of the conformation
dynamics approach is given by the Theorem of Gaufl and the insight that know-
ing the exact transition processes within the conformations is not neccessary for
the computation of transition rates between the conformations. Note, however,
that being blind for the transition processes within the conformations is not the
solution. Some information is needed which is given by the eigenfunctions of the
generator Q. Whatever is the answer to the question of complexity, one aspect is
clear: Molecular simulation can definitely get by without long-time Hamiltonian
dynamics trajectories! Furthermore, long-time Hamiltonian dynamics trajecto-
ries focus in the simulation of the transition processes within the conformations
which is the most uninteresting information for conformation dynamics.

Results. This thesis summarizes important aspects of my theroretical work
at the Zuse Institute Berlin since 2005. This includes the idea of a meshless,
adaptive, and hierarchical refinement of the conformational space in order to
identify the conformations of molecular systems and their transition pattern.
It also includes the insight that a computation of statistical weights of con-
formations needs a different algorithmic approach than the simulation of rare
transition events. In my former work I have also shown that the molecular dy-
namics approach to conformation dynamics suffers from a loss of the Markov
property (see Figure 4). In this context, this thesis includes my first idea for
the construction of a clustering routine — the linear combination of eigenvectors.
Some aspects in this thesis are beyond my already published results. Especially,
the importance of the Robust Perron Cluster Analysis (PCCA+) in the context
of correct time-extrapolation is stressed in this thesis by Theorem 2. Up to now,
this aspect has only been investigated with numerical methods. In this thesis,
the PCCA+ algorithm has been extended from discrete transition matrices to
continuous operators in Section 3.4. Lemma 3 and Corollary 1 which have been
shown for the discrete case in [64] are valid for the continuous case, too. The
main motivation to change the point of view from discrete transition matrices
to a continuous transfer operator is given in Section 2.5. The discrete transition
matrix P(7) can not be used for a time-extrapolation of dynamics simulation
data. In fact, the assumption of a Chapman-Komolgorov property is impor-
tant in the context of time-extrapolation which, in general, does not hold for
discrete transition matrices. This insight has also led to the design of a gen-
eralized transfer operator in Section 2.3, because Schiitte’s continuous tranfer
operator does not meet the Chapman-Komolgorov property, too. The gener-
alized transfer operator framework offers a common basis for different modern
algorithmic approaches to a simulation of rare transition events. It has been
shown how to simulate transition rates for a variety of dynamical models pre-
sented in Section 2.3. The framework is not valid for molecular dynamics. It is
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valid for molecular kinetics. In Section 2.1 (from my point of view, for the first
time) a clear distiction between molecular dynamics and molecular kinetics is
introduced starting from the basic assumptions of a canonical ensemble. The
present thesis has shown, how Markovian milestoning, adaptive sampling, com-
mitor functions, and Markov State Model simulation can be compared within
this molecular kinetics framework using the generalized transfer operator. Al-
though the assumption of an existing infinitesimal generator Q of the generalized
transfer operator ’P(T) is one important aspect for a correct time-extrapolation,
this assumption may be too rigorous for realistic molecular models. This thesis
offers different alternative approaches to the transition rate computation even if
an infinitesimal generator does not exist, see Section 3.5. From an algorithmic
point of view, the Theorem of Gaufl can be used to effectively compute the
discretization @ of the infinitesimal generator Q (or the infinitesimal genera-
tor £) in high-deminsional spaces. Instead of estimating the transition pattern
by a time-consuming realization of the metastable dynamical model (and by
“waiting” for the rare transition events), only the computation of Boltzmann
distributions at the surfaces of Voronoi cells is needed which can be done with
accelerated (rapidly mixing) sampling schemes. The algorithmic point of view
has changed with this new concept: It is not important to simulate a statisti-
cally relevant number of transitions in order to compute a Markov State Model
P.(7), it is even not neccessary to simulate a molecular system according to the
metastable dynamical model. In Section 3.4 and Theorem 3 (iv), it has been
shown that all relevant information is included in y (i.e. in the transformation
matrix A) and in the eigenvalues =. These quantities can be computed without
performing simulations of the selected dynamical model. Instead of applying
molecular dynamics simulations, it is only important to figure out free energy
differences between certain subsets of the configurational space efficiently. The
latter requirement has been solved by Jarzynski’s Identity in Section 4.4. The
main task of an adaptive algorithm is to figure out which parts of the configu-
rational space (surfaces and cells) have to be compared in terms of free energy
differences. The presented adaptive algorithm performes refinements in regions
in which the membership functions x have large gradients (transition regions).
In these regions, the dynamics is not rapidly mixing but the refined Voronoi
cells have a decreasing Boltzmann weight. In Section 3.4 it has been shown
that this kind of refinement, which is suitable for the approximation of the con-
formations Y, is also suitable for the approximation of the eigenvalues of P(7).
Finally, this thesis has presented two general requirements which have to be
satisfied for any algorithmic approach in order to answer the questions of con-
formation dynamics. Requirement R1 of the introduction (correct statistical
weights) is solved by Jarzynski’s Identity. Requirement R2 of the introduc-
tion (correct transition pattern) is solved by an adaptive refinement of Voronoi
cells in the transition regions of the configurational space. Using the Theorem
of GauB for the construction of ) and for the identification of conformations
and transition regions is the key idea in this thesis for an efficient algorithmic
realization of the adaptive scheme.

Outlook. The present thesis has been written for the case of classical molec-
ular systems. Although current applications of ZIBgridfree do not include the
breaking or making of covalent bonds, this kind of processes can be included
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in the theoretical framework of this thesis. If we consider ab initio molecular
dynamics simulations [42] where the electrons are treated quantum-chemically
and the nuclei are treated classically (Born-Oppenheimer approximation), then
the aforementioned methods can be applied to simulate chemical reactions and
reaction kinetics. For example, imagine an isolated reaction tube like in Figure
5. The rearragement of atoms within a subsystem of this ensemble can lead
to a bond breaking and bond making situation. If this process happens, the
configurational change can be expressed locally by a reaction of the type

CaCO3 +2HCl = CaCly + H20 + COs.

This reaction can be seen as a transition between two configurations in 2. Actu-
ally, € is the space of the cartesian coordinates of the atoms in the subsystem.
The cartesian coordinates, however, do not describe the dominant transition
processes of the subsystems in terms of reactions adequately. In this case, a
better description is available. Q* = N9 is the discrete space which counts the
copy number of the d-entities in the observed subsystem. In the above reac-
tion, the copy number of the entities “CaCO3” and “HCI” in the subsystem
is changing as well as the copy number of the entities “CaCls”, “H>0O”, and
“CO3”. If the above reaction is one time-determining process of the subsystem
simulated with the aforementioned methods, then this reaction corresponds to
a barrier in the configurational space and separates two conformations of the
system. The rate of the reaction is then given by the corresponding element of
Q.. The classical image of reaction kinetics is, that the two conformations can
be well-distinguished (set-based concept in §2). The atoms are either arranged
according to conformation A (“CaCO3+2 HC1”) or according to conformation
B (“CaCly + H20 + CO3”). From this thesis, however, we know that reaction
rates in (). are incorrect, if we assume a set-based decomposition of the state
space. The less metastable the conformations are, the more “fuzzy” are the
membership functions x of the conformations, the less visible is the distinction
between the conformations. In quantum chemistry this aspect is known as dis-
tinction between statistical and mon-statistical reactions. The incorrectness of
the set-based reaction rates (in terms of a time-extrapolation, see Section 2.5) is
often corrected in literature by introducing a “statistical reaction with memory”,
i.e. by abandoning the Markov assumption. In my opinion, the introduction of
an artificial memory is not necessary, if reaction kinetics is based on continuous
membership functions rather than on sets. In this case, the Markov property is
preserved. The rates are correct, but the decompostion of the configurational
space into conformations (reactants and products) is no longer sharp.
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