Solving Large-scale
Open Pit Mining Production Scheduling Problems
by Integer Programming

™

Solving Large-scale
Open Pit Mining Production Scheduling Problems

by Integer Programming

Diplomarbeit bei
Prof. Dr. Rolf H. M6hring

vorgelegt von
Ambros M. Gleixner

am Institut fir Mathematik
Fakultat II — Mathematik und Naturwissenschaften
Technische Universitat Berlin

Juni 2008

Abstract

Since the initial application of mathematical optimisation methods to mine
planning in 1965, the Lerchs-Grossmann algorithm for computing the ulti-
mate pit limit, operations researchers have worked on a variety of challenging
problems in the area of open pit mining. This thesis focuses on the open pit
mining production scheduling problem: Given the discretisation of an orebody
as a block model, determine the sequence in which the blocks should be re-
moved from the pit, over the lifespan of the mine, such that the net present
value of the mining operation is maximised.

In practise, when some material has been removed from the pit, it must be
processed further in order to extract the valuable elements contained therein.
If the concentration of valuable elements is not sufficiently high, the material
is discarded as waste or stockpiled. Realistically-sized block models can con-
tain hundreds of thousands of blocks. A common approach to render these
problem instances computationally tractable is the aggregation of blocks to
larger scheduling units.

The thrust of this thesis is the investigation of a new mixed-integer pro-
gramming formulation for the open pit mining production scheduling problem,
which allows for processing decisions to be made at block level, while the ac-
tual mining schedule is still computed at aggregate level. A drawback of this
model in its full form is the large number of additional variables needed to
model the processing decisions. One main result of this thesis shows how these
processing variables can be aggregated efficiently to reduce the problem size
significantly, while practically incurring no loss in net present value.

The second focus is on the application of lagrangean relaxation to the re-
source constraints. Using a result of Mohring et al. [41] for project scheduling,
the lagrangean relaxation can be solved efficiently via minimum cut compu-
tations in a weighted digraph. Experiments with a bundle algorithm imple-
mentation by Helmberg [25] showed how the lagrangean dual can be solved
within a small fraction of the time required by standard linear programming
algorithms, while yielding practically the same dual bound.

Finally, several problem-specific heuristics are presented together with
computational results: two greedy sub-MIP start heuristics and a large neigh-
bourhood search heuristic. A combination of a lagrangean-based start heuris-
tic followed by a large neighbourhood search proved to be effective in gener-

ating solutions with objective values within a 0.05% gap of the optimum.

Zusammenfassung

Seit 1965 Lerchs und Grossmann die ersten mathematischen Algorithmen zur
Erstellung optimierter Abbaupliane im Tagebau entwarfen, wurde an einer
Vielzahl anspruchsvoller Optimierungsprobleme in diesem Anwendungsbereich
geforscht. Die vorliegende Arbeit widmet sich dem Problem der Produktions-
planung im Tagebau (“open pit mining production scheduling problem”):
Ausgehend von einer Diskretisierung des Erzvorkommens, einem sogenannten
Blockmodell, besteht die Aufgabe darin, eine zeitliche Abbaureihenfolge fiir die
Blocke zu bestimmen, die den diskontierten Ertrag der Ausgrabungen maxi-
miert.

In der Praxis muss abgebautes Material weiterverarbeitet werden, um Erz
von minderwertigem Erdreich zu trennen. Dieser Vorgang ist allein bei aus-
reichend hohem Erzgehalt rentabel, Material von zu niedrigem Erzgehalt wird
entsorgt oder bevorratet. Blockmodelle realistischer Grofie bestehen aus hun-
derttausenden von Blocken. Ein {iblicher Ansatz zur Losung von Problemen
dieser Groflenordnung ist die Aggregation von Blocken zu grofieren Einheiten.

Ein Schwerpunkt dieser Arbeit besteht in der Untersuchung einer neuarti-
gen Formulierung des Problems als gemischt-ganzzahliges Programm, welches
eine selektive Weiterverarbeitung des abgebauten Materials auf Blockebene
ermoglicht, den Abbau selbst jedoch auf Aggregatsebene belédsst. Ein Nachteil
des neuen Modells besteht in der groflen Anzahl zusétzlicher Variablen zur
Steuerung der Weiterverarbeitung. Als Hauptresultat prasentiert die Arbeit
eine erfolgreiche Methode zur Aggregation dieser Variablen, um den zuséitz-
lichen Rechenaufwand zu begrenzen.

Der zweite Schwerpunkt liegt auf der Anwendung der Lagrange-Relaxation
auf die Ressourcenbeschrankungen des Tagebauproduktionsplanungsproblems.
Mithilfe eines Resultats von Mohring et al. [41] fiir Projektplanungsprobleme
kann das verbleibende Programm effizient durch die Berechnung minimaler
Schnitte in einem Digraphen gelost werden. Ergebnisse von Experimenten
mit einem Biindelalgorithmus in einer Implementierung von Helmberg [25]
zeigen, dass das der Lagrange-Relaxation entsprechende duale Problem in
einem Bruchteil der Zeit gelost werden kann, die zur direkten Losung der
LP-Relaxation benotigt wird, und dennoch im wesentlichen dieselbe duale
Schranke liefert.

Zum Abschluss werden verschiedene problemspezifische Heuristiken vorge-
stellt und anhand von Ergebnissen aus Experimenten bewertet: zwei Startheu-
ristiken sowie eine Verbesserungsheuristik geméfl dem “large neighbourhood
search”-Paradigma. Die Kombination einer Lagrange-basierten Startheuristik
mit anschlieBendem Verbesserungsschritt stellt sich dabei als besonders effek-
tiv heraus und erzeugt auf einer Reihe realistischer Testinstanzen hochwertige

Losungen mit Zielfunktionswerten innerhalb 0.05% des Optimums.

Acknowledgements

I was introduced to the field of optimisation in open pit mining by Gary Froy-
land, who was my supervisor during my honours year at the University of New
South Wales in Sydney, Australia. The mixed-integer programming model in-
vestigated in this thesis is his brainchild. Many thanks for the guidance and
support I received during this inspiring year go to him, as well as to Irina
Dumitrescu and Natashia Boland — working together with you was as fruitful
as it was pleasant. I want to thank the Mine Optimisation Group at BHP
Billiton Pty. Ltd. in Melbourne, in particular Peter Stone, Mark Zuckerberg
and Merab Menabde, for being able to present and discuss my work and for
providing me with the data that made it possible to evaluate the approaches
developed on real-world open pit mines.

In Berlin, I am indebted to my supervisor Rolf Mohring, especially that
he understood and agreed when I intended to adjust the topic of this thesis.
Thanks to Marco Liibbecke for his guidance in laying out this thesis. Many
thanks go to the optimisation group at the Konrad Zuse Institute Berlin, in
particular to Tobias Achterberg, Timo Berthold and Kati Wolter for taking
their time to introduce me to SCIP. Equally much I want to thank Andreas
Bley and Marc Pfetsch for their helpful and clarifying comments on my work.

Finally, special thanks go to the Egervary Research Group of Andras Frank
at the Eotvos Lorand University in Budapest, Hungary, where I had the op-
portunity to study for three months. Exchanging mathematical as well as
non-mathematical thoughts with all of you and learning from your culture
and language was a very enriching experience. In particular, I want to thank

Léaszlé Végh for his remarks on the complexity proofs.

Contents

Abstract / Zusammenfassung iii
Acknowledgements v
1 Introduction 1
1.1 A brief introduction to open pit mining 1
1.2 Mathematical prerequisites, thesis outline and contribution 4
1.2.1 Mathematical prerequisites 4
1.2.2 Outline of the thesis 4
1.2.3 Contribution of the thesis 6

1.3 Data sets, hardware and software used in the computational
experiments Lo Lo 6

2 Modelling the open pit mining production scheduling problem 9

2.1 General model outline and notation 9
2.2 Previousworko 13
2.2.1 Heuristic approaches and dynamic programming 13
2.2.2 Integer programming formulations 13
2.2.3 Mixed-integer programming formulations 16

2.3 A new mixed-integer programming formulation with integrated

cutoff grade optimisation 17
2.3.1 Themodel 17
2.3.2 Discussion 19

2.4 Closely related problems 21
2.4.1 The precedence-constrained knapsack problem 21
2.4.2 The resource-constrained project scheduling problem . . 22

2.5 Complexity analysis, 25
2.6 Conclusion e 27
3 Structural analysis 29
3.1 Redundancy in the LP-relaxation 29
3.2 Knapsack structureso 33

3.3 Integrality of the precedence polytope 39

vii

viii

3.4 A lagrangean relaxation approach 41
3.4.1 Lagrangean relaxation in the literature 41
3.4.2 Lagrangean relaxation of the resource constraints 41

3.4.3 Solving the lagrangean relaxation by minimum cut com-

putations Lo 43
3.4.4 Lagrange multipliers and cutoff grades 50
3.5 Valid inequalities oL 51
3.5.1 Integrating valid inequalities in the LP-relaxation 52
3.5.2 Integrating valid inequalities in the lagrangean relaxation 53
3.5.3 OPMPSP-specific valid inequalities 54
3.6 Conclusion o 56
Dual bound computation 57
4.1 The lagrangean dual 57
4.1.1 The lagrangean dual — a convex nondifferentiable opti-
misation problemo o000 57
4.1.2 The subgradient method (Uzawa [49]) 59
4.1.3 The cutting plane method of Cheney-Goldstein [13] and
Kelley [31]. o 60
4.1.4 Column generation 60
4.1.5 ACCPM — analytic centre cutting plane methods (Goffin
et.al [21])o oL 62
4.1.6 Bundle methods (Lemaréchal [35]) 63
4.2 Computational comparison of LP-relaxation and lagrangean dual 64
4.2.1 Computational experiments with the LP-relaxation . . . 64
4.2.2 Computational experiments with the lagrangean dual . 64
4.2.3 Conclusiono 69
Aggregation of processing decisions 71
5.1 Aggregation in large-scale optimisation 71
5.1.1 Column aggregation in linear programming 72
5.1.2 Standard disaggregation methods 74
5.2 Binnings — a column aggregation scheme for the open pit mining
production scheduling problem 75
5.3 LP-based binnings L. 7
5.3.1 Binnings based on primal LP-solutions 78
5.3.2 Binnings based on dual LP-solutions 79
5.3.3 Computational comparison 80
5.4 Disaggregation of binnings 82

5.5 Conclusion 84

6 Primal solutions 85

6.1 Start heuristics for the OPMPSP 85
6.1.1 A generic greedy sub-MIP heuristic. 86
6.1.2 A time-based greedy heuristic 89
6.1.3 A greedy heuristic based on lagrangean relaxation . . . 89

6.1.4 An improved optimality measure for the generic greedy

sub-MIP heuristic 90

6.1.5 Computational comparison 92

6.2 An improvement heuristic for the OPMPSP 94
6.2.1 An OPMPSP-specific large neighbourhood search heuris-

tic . . e 95

6.2.2 Computational evaluation 95

6.3 A lagrangean-based branch-and-cut approach — preliminary ex-

periments Lo L 97

6.4 Conclusion 100
Conclusion 103
List of frequently used notation 107
List of mathematical programmes 108
List of tables 109
List of figures 109

References 111

Chapter 1

Introduction

The history of mathematical optimisation in the field of mine planning dates
back as far as 1965, when Lerchs and Grossmann [37] considered the problem
of determining the ultimate pit limit of an open pit mine, i.e. the part of the
orebody the mining of which will return the highest profit, not considering the
course of time. To this end, they proposed two algorithms for the maximum
closure problem! on a directed acyclic graph with node weights: a dynamical
programming approach as well as a graph-theoretical algorithm. The latter
has become widely known as the Lerchs-Grossmann algorithm and has over
years been the benchmark algorithm for the maximum closure problem.?

Computing the ultimate pit limit is only a first step in open pit mine
planning and this field provides many more applications for mathematical
optimisation. One particular challenge posed by all of these problems is the
large-scale nature of realistically-sized mine models. The special focus of this
thesis will be on the problem of determining an actual mining schedule over
a time span of several years such that the net present value is maximised, the
so-called open pit mining production scheduling problem.

Section 1.1 introduces basic terminology and modelling assumptions ap-
pearing in open pit mining. An outline of the thesis is provided in Section 1.2,
while Section 1.3 gives details on the data sets, hardware and software used

for experiments.

1.1 A brief introduction to open pit mining

Fricke [18, pp. 2] gives an extensive description of terminology and techniques

appearing in mining applications. The following will provide the basic notions.

!Given a directed acyclic graph with node weights, the maximum closure problem is to
find a subset of nodes with maximum weight such that no arc leaves the subset.

20nly over the past 15 years, a network flow approach has become more efficient due
to the advances in network flow algorithms, see e.g. Caccetta et al. [8] and Hochbaum and
Chen [28].

2 Chapter 1. Introduction

A mineral is a natural resource that is located in the earth and can be
extracted. Ore specifically is a naturally appearing aggregation of — one or
more — solid minerals valuable enough to be mined. The grade of some material
is the percentage of ore contained therein, the rest being waste. Base metals
are special types of ore, such as copper or zinc, which are roughly understood
to be metals that are sold in pure form, where “impurities” can be disregarded.

Base metals are mostly found close to the surface and can be extracted
by the method of open pit mining: Waste on the top is removed first, until
valuable material can be extracted in small pieces (called mining). As a second
procedure, the mined material has to be refined to the final product (called
processing). Mined material will only be processed if the prospective profit
exceeds the cost. The grade of ore at which refinement is no longer profitable
(and the material discarded as waste) is termed cutoff grade.

For the planning of open pit mining operations, the orebody is generally
approximated by subdividing it into small mining units called blocks. This
is essentially a discretisation of the orebody into a three-dimensional array of
mostly regular blocks, called the block model, and thus well-suited for adoption
in a mathematical model. A major assumption here, as in many applications
found in the literature, is the complete knowledge of the geological properties
of each block which are essential for mine planning.? For open pit mining of

base metals it is often sufficient to know the rock and ore tonnage.

Figure 1.1: Example of a two-dimensional block model with ultimate pit limit

The brighter blocks form the so-called ultimate pit limit of the mine: Given fixed profits for
each block, the ultimate pit limit is the contour of those blocks which can be feasibly mined
so as to yield the maximum profit — not considering the course of time, i.e. the net present
value objective. An optimal schedule for the open pit mining production scheduling problem
can always be found within the ultimate pit limit, see e.g. [9].

This information is subsequently used to calculate the cost of mining and
processing and to make an assumption about the return that selling the final
product will yield. Amongst other things due to varying metal prices, this in-
volves a considerable level of risk making best- and worst-case analysis crucial.

Furthermore, since a mine is usually operated for several years, the time value

3An important area of research deals with methods taking into account the uncertainty
of the available orebody data. It may be expected that advances in solving deterministic
models will in turn be able to improve the solution of stochastic models.

1.1 A brief introduction to open pit mining 3

of money has to be accounted for. By discounting the cash flows occurring
during each time period to the present, one obtains the so-called net present
value, which is the significant value to be considered for maximising the profit
of a mining operation. Again, we will assume that this has been taken into
account and hence fixed values can be assigned to mining costs and processing
profits for each block.

Among the various problems appearing in mine planning, this thesis will
focus on the open pit mining production scheduling problem (OPMPSP).* The
standard assumptions made for this approach, most of which were already

mentioned above, can be summarised as outlined by Froyland et al. [19]:
m A deterministic block model is given as input data,

m mining and processing costs, the selling price of the product and future

discount rates are perfectly known into the future,

m the infrastructure is fixed (though not necessarily constant) throughout

the life of the mine (e.g. mining and processing capacities),

m grade control is assumed to be perfect (i.e. once a block has been blasted,

its content is precisely known) and

m the requirement to maintain safe wall slopes (and remove overlying ma-
terial before the underlying) can be modelled as precedence relations
between the blocks (i.e. for each block to be mined, a cone of predeces-

sor blocks has to be extracted previously).

Then, the OPMPSP consists of determining a feasible order for the mining of
blocks which will maximise the net present value. This can be interpreted as a
constrained scheduling problem by identifying blocks with jobs, where mainly

two types of constraints® are present:

m removal of overlying blocks before the underlying ones and maintenance

of safe wall slopes (precedence constraints), and
m limitation on mining and processing activities (resource constraints).

One aspect which makes mine planning particularly interesting and challeng-
ing is the large-scale nature of realistically-sized open pit mines, which can

consist of hundreds of thousands of blocks. Despite more than forty years

4For a general survey of the major applications of mathematical optimisation in the field
of mining, see Fricke [18, pp. 45].

5There exist many variants of the OPMPSP which incorporate further constraints, such as
limiting conditions on impurities, or which consider the additional possibility of stockpiling
mined material for delayed processing, etc. Some of the methods developed here may also
be applicable to those more specific models.

4 Chapter 1. Introduction

of mathematical research, as Fricke [18, p. 5] points out, “determination of
methods to achieve this in time frames acceptable in industry for models of

realistic size remains an open question in mine planning.”

1.2 Mathematical prerequisites, thesis outline and
contribution

1.2.1 Mathematical prerequisites

The thesis addresses readers with a good understanding of the fundamen-
tal concepts of linear and mixed-integer programming. The theory used in-
cludes duality for linear programmes, LP- and lagrangean relaxation for mixed-
integer programmes and total unimodularity of matrices. For the complexity
proofs, the reader should be familiar with polynomial time reducibility. We
will follow Mohring et al. [41] with a solution approach for a lagrangean re-
laxation subproblem for which minimum s-t-cuts are computed in a weighted
digraph. Basic knowledge in (algorithmic) graph theory is recommended for
this section. Also recommended is an understanding of the fundamental com-
ponents of LP-based branch-and-cut algorithms for general MIP-solving. We
refer to the books by Nemhauser and Wolsey [42] and Wolsey [50].
Algorithms for solving the lagrangean dual and the theory of column aggre-

gation for linear programmes are applied and will be described where needed.

1.2.2 Outline of the thesis

The thesis focuses on the problem of production scheduling for open pit mines,
short OPMPSP. Chapter 2 introduces the problem by giving a precise descrip-
tion of the OPMPSP as understood in this thesis. We continue with a survey of
prominent integer and mixed-integer programming formulations found in the
literature. Subsequently, a new mixed-integer programming model D-MIP is
presented, allowing for integrated cutoff grade optimisation. This formulation
serves as the basis for the thesis — its advantages over other formulations found
in the literature are pointed out and possible shortcomings are addressed.
We highlight the connection to two closely related problems, the precedence-
constrained knapsack problem and the resource-constrained project scheduling
problem. Finally, we prove that optimising the new mixed-integer program-
ming model introduced is NP-hard.

Before devising and evaluating specialised methods computationally, Chap-
ter 3 provides the theoretical background and analyses basic structural prop-
erties of programme D-MIP: We show how the standard LP-relaxation can
be reduced in size and describe an application of lagrangean relaxation by
resource constraints. The structure yielded by the knapsack constraints on
the processing variables in D-MIP is analysed and appears prominently in

Chapter 5. We also give the somewhat complementary result that the feasible

1.2 Mathematical prerequisites, thesis outline and contribution 5

region without resource constraints is integral. Finally, we mention how to in-
tegrate valid inequalities into the reduced LP-relaxations and the lagrangean
approach under a reasonable condition.

Our central aim is naturally to obtain high quality OPMPSP-solutions.
To this end, heuristic methods are presented and tested in Chapter 6. Before,
however, Chapter 4 is concerned with the in some sense complementary ques-
tion: How can the quality of primal solutions be evaluated most efficiently by
computing dual bounds? Being able to obtain good bounds on the optimal
objective value within reasonable running times is a key ingredient for many
optimisation algorithms, such as for a classical branch-and-bound approach.
The computation of dual bounds is not only of theoretical importance, though.
It is essential also in practise in order to evaluate the quality of solutions and
provide engineers with confidence in the mine plans developed.

Chapter 4 will give an overview over the methods commonly applied for
solving the lagrangean dual — the problem of computing the best dual bound
achievable by the lagrangean relaxation approach introduced in Chapter 3.
On basis of computational results, we can compare the solution of the LP-
relaxation by standard linear programming algorithms with the solution of
the lagrangean dual by a bundle algorithm. The latter proves to outperform
the LP-approach clearly with respect to the running time, while yielding prac-
tically the same dual bound. Solving the lagrangean dual also provides us
rapidly with near-optimal dual multipliers associated with the resource con-
straints, which are utilised in the next chapter.

Chapter 5 draws upon the theory from Section 3.2 to devise methods for
reducing the large number of additional processing variables in D-MIP. To
this end, a specialised column aggregation approach is presented using so-
called “binnings”. Computational experiments show that this helps to reduce
the problem size significantly, while incurring practically no loss in objective
function value.

With efficient methods for computing dual bounds at hand and having re-
duced the problem size significantly, Chapter 6 proposes methods for obtaining
high-quality primal solutions. We describe two start heuristic based on a com-
mon generic greedy scheme: one proceeding by time periods, another based
on a solution of the lagrangean relaxation from Section 3.4. Computational
results show the lagrangean-based heuristic to be superior to the time-based
one, but both produce solutions of very reasonable to high quality. A method
is discussed how these heuristics can be improved further by adding a more
global perspective to the greedy steps. We also propose a simple, yet effective
large neighbourhood search heuristic, which serves to improve the solutions
obtained by the start heuristics even further.

To conclude, Section 6.3 describes how the primal heuristics can be brought

together with the lagrangean dual bound computation from Chapter 4 in a

6 Chapter 1. Introduction

customised branch-and-bound algorithm. Details on preliminary experiments
using SCIP [3] as a branch-and-bound framework are reported. Integration of
valid inequalities into the lagrangean approach appears to be one promising

direction for further research.

1.2.3 Contribution of the thesis

The major contribution of this thesis is the investigation of a new mixed-
integer programming formulation for the OPMPSP, which allows for integrated
cutoff grade optimisation. We highlight the knapsack structure on additional
processing variables and show how their values in an optimal solution are
distributed according to their oregrade. Using this insight, in Chapter 5 we
can devise an efficient column aggregation scheme according to what we called
“binnings”. Computational results show how this leads to significant reduction
of the number of variables, while incurring only negligible decrease in objective
value. These results appear also in the paper by Boland et al. [6].

Also, the computational experiments conducted for Chapter 4 could es-
tablish the efficiency of a lagrangean approach which uses a bundle algorithm
to solve the lagrangean dual and, following a result of Mohring et al. [41],
efficient minimum cut computations in a weighted digraph for optimising the
subproblems.

Furthermore, Chapter 6 proposes a series of integer programming heuris-
tics, which proved very effective in computational experiments.

Preliminary experiments using SCIP [3] as a branch-and-bound frame-
work indicated how the quick dual bound computation and the successful
primal heuristics could be brought together to develop an OPMPSP-specific

lagrangean-based branch-and-cut approach in further research.

1.3 Data sets, hardware and software used in the

computational experiments

To evaluate the theoretical methods presented, the author conducted a series
of experiments on data sets of three open pit mines provided by the research
partner BHP Billiton Pty. Ltd.% All of the data sets are based on a simple
block model, but because the number of blocks is usually too large to solve
the OPMPSP, blocks are aggregated to bigger mining units, simply called
“aggregates”. (See Chapter 2 for a more detailed explanation.)

Rock and ore data is given for each single block and precedence rela-
tions between blocks are determined to maintain safe wall slopes. Precedence
relations between the aggregates stem from the block precedence relations.

Scheduling periods are time periods of one year each with a discount factor of

Shttp://www.bhpbilliton.com/

http://www.bhpbilliton.com/

1.3 Data sets, hardware and software 7

10% per year. Realistic values for mining costs and processing profits as well
as for mining and processing capacities were chosen by BHP Billiton Pty. Ltd.

The three data sets are as follows:

m Data set “marvin” is based on an artificially created block model pro-
vided with the Whittle 4X mine planning software [39]. It consists of
8513 blocks and was aggregated at three different resolutions, to 115,
296 and 1038 aggregates. The lifespan of this mine is 15 years, i.e. the
profitable part of the orebody can be fully mined within that time frame.
Fach aggregate has on average 2.4, 3.1 and 5.0 immediate predecessor

aggregates, mspectively.7

m Data set “wa” is based on the block model of a real-world open pit mine
in Western Australia, consisting of 96821 blocks aggregated to 125 ag-
gregates. Here, the aggregates are so-called “panels”, i.e. single layers of
blocks without block-to-block precedence relations. Each aggregate has
an average of 2.0 immediate predecessor aggregates. The lifespan of this

mine is 25 years.

m Data set “ca” is based on the block model of a real-world open pit
mine in Canada, consisting of 29266 blocks, which was aggregated to
121 aggregates. Each aggregate has on average 2.2 immediate predeces-
sor aggregates. While for each of the models above, one fixed scenario
for rock and ore content of the blocks is given, for this data set, 25 dif-
ferent scenarios for rock and ore tonnages were computed. The lifespan

of this mine is 15 years.

This gives 29 problem instances, which the author used for computational
evaluation of the methods presented. Experiments on the “marvin”-instances
will highlight in particular the impact of the aggregation resolution when using
the same data for fixed rock and ore tonnage. From a computational point of
view, the instance marvin-1038-8513 is particularly difficult with the largest
number of aggregates and precedence relations. In contrast, the “ca”-scenarios
allow for tests on computationally more and less difficult instances based on
the same precedence model. The “wa”-model stands out due to the large
number of blocks within each aggregate, and will therefore be of particular
interest for evaluation of the aggregation techniques presented in Chapter 5.
The algorithms were implemented in C++ and conducted on a personal
computer with a 32-bit Intel Pentium 4 3 GHz processor and 2 GB RAM. All
algorithms were run single-threaded. For solving linear and mixed-integer lin-
ear programmes, the state-of-the-art software CPLEX 11.0 [29] was used. The

e Yr, P(k)/K with the notation introduced in Section 2.1.

8 Chapter 1. Introduction

ConicBundle software [25] of Helmberg provided an implementation of a bun-
dle algorithm for solving the lagrangean dual in Chapter 4. For the minimum
cut computations used to solve the lagrangean relaxation, an implementation
of the pseudoflow algorithm by Chandran and Hochbaum [12] was integrated.
Finally, the author conducted preliminary experiments with a lagrangean-
based branch-and-bound algorithm, which are described in Section 6.3. For
these experiments, the constraint integer programming solver SCIP 1.05 [3]

was embedded and used as a general branch-and-bound framework.

Chapter 2

Modelling the open pit
mining production scheduling

problem

In the previous chapter, we only gave a vague description of the open pit
mining production scheduling problem. This chapter will make it precise and
give various integer and mixed-integer programming formulations.

The first section specifies in detail our understanding of the OPMPSP
and introduces important notation used throughout the thesis. Section 2.2
presents solution approaches found in the literature, in particular focusing on
integer programming models. For these models, cutoff grades, i.e. ore grades
below which mined material is discarded as waste, need to be determined
prior to the optimisation process. In Section 2.3 we introduce a new mixed-
integer programming formulation which will be the focus of the thesis. This
model distinguishes itself from the other models found in the literature by
allowing for integrated cutoff grade optimisation. The decision which blocks
are to be processed is not made a priori, but within the model and thus
subject to optimisation itself. Section 2.4 highlights the connection to two
closely related problems, the precedence-constrained knapsack problem and the
resource-constrained project scheduling problem. The last section gives a proof
of NP-hardness.

2.1 General model outline and notation

In this section we will specify the details of our OPMPSP-model. First, we
need to clarify what is understood by a feasible mine schedule. Given the block
model of an open pit mine, our goal is to determine the order in which the
blocks should be mined such as to maximise profit in a net present value sense.

In classical machine scheduling, one would want to determine the exact order

10 Chapter 2. Modelling the OPMPSP

of blocks to achieve this goal. However, note that changes in the order on small
time scales have only a very minor effect on the net present value objective.
Hence, determining the exact order of blocks appears to be unnecessary and
would likely increase the computational effort disproportionally.

Instead we subdivide the lifespan of the mine into discrete, not necessar-
ily uniform time periods 1,...,7. Then, by a schedule we understand an
assignment of blocks to one or more time periods during which the block is
mined and processed. While in most scheduling applications every job must
be scheduled, we do not require that every block is removed from the pit.
Mining will be stopped as soon as no further increase in the net present value
can be achieved, and the unmined material will remain in the pit.

One major condition on a feasible mine plan is that overlying material
must be removed before the underlying while maintaining safe wall slopes. As
outlined in Section 1.1, we make the standard assumption that this require-
ment can be expressed by means of precedence relations between blocks: For
each block we are given a set of predecessor blocks which need to be mined be-
forehand. Mathematically, this is represented by a directed acyclic predecessor
graph with blocks as nodes and arcs pointing from blocks to their predeces-

sors. Without loss of generality we may assume that this predecessor graph

Sl S Sl Sl Sl S Sl Sl Sl Sl Sl sl Sl sl Sl sl Sl s s s
Sl Sl Sl Sl Sl Sl Sl sl Sl sl Sl sl sl Sl sl Sl sl Sl st
Sl Sl Sl Sl Sl Sl Sl sl Sl s Sl sl sl Sl sl sl st

NS N S Sl S S S
NS N \TXT%%;TXT/

Figure 2.1: Example of a two-dimensional block model with transitively reduced precedence
relations

Safe wall slopes are determined by an angle of 45°. Precedence arcs point from blocks to
their immediate predecessors.

is transitively reduced and consider only so-called immediate predecessors for
each block.!

In our model, several blocks may be scheduled during the same time period,
even if one is the predecessor of another, but any feasible schedule has to obey

the precedence constraints that

m a block can only be mined during some time period t € {1,...,T} if all
of its predecessor blocks have been mined completely before or during

time period %,

LA directed acyclic digraph D = (V, A) is transitively reduced, if for all pairs of arcs (u,v),
(v,w) € A, the arc (u,w) is not also contained in A. By deleting such “superfluous” arcs,
any directed acyclic digraph can be transitively reduced.

2.1 General model outline and notation 11

and the resource constraints demanding that

m during each time period the amount of rock mined and processed must

not exceed the mining and processing capacities, respectively.

High resolution block models of realistically-sized open pit mines usually
contain too many blocks for the OPMPSP to be solved directly. Therefore,
a common approach in mine planning is to aggregate the block model, i.e. to
partition the set of blocks into subsets, which we will call (mining) aggregates,
and schedule the fewer number of aggregates instead of the blocks. The block
precedence relations naturally induce precedence relations between aggregates:
Aggregate Ky is a predecessor of aggregate Ko if and only if Ky contains a
predecessor block of some block in K. In the block precedence graph, this
corresponds to contracting the node set formed by each of the aggregates.

There are different methods for aggregating block models, for details we
refer to the literature. One recently proposed method is for example the
aggregation according to so-called fundamental trees by Johnson, Dagdelen
and Ramazan [30, 45]. They define a fundamental tree as a minimal group of
blocks that have positive undiscounted value in total and obey the precedence
constraints between the blocks in the group. In the experiments conducted,
the data sets used were already provided with aggregated block models.

Figure 2.2: Example of a two-dimensional aggregated block model

Precedence relations between aggregates are computed on basis of block precedence relations
and subsequently transitively reduced.

An aggregated block model can theoretically be viewed as a block model
at lower resolution. However, an essential feature of an aggregate is the un-
derlying block structure. While a block is assumed to have a homogeneous
distribution of ore, an aggregate may, and usually will contain blocks of differ-
ent oregrades. In this context, it needs to be emphasised again that the mining
operations consist of two procedures: the removal of rock material from the
pit, which we will call mining, and the subsequent refinement of the mined
material, referred to as processing. Even if the mining schedule is determined
at aggregate level, making processing decisions at aggregate level appears to

be highly suboptimal. Processing decisions clearly depend on the oregrade,

12 Chapter 2. Modelling the OPMPSP

thus — unless an aggregate shows a completely homogeneous distribution of
ore — they should not be made at aggregate level, but at a higher resolution,
ideally at block level.

By default, the OPMPSP assumes a simple block model or aggregated
block model as input. On basis of the above discussion, we will consider a
basic block model together with an aggregation as input. To summarise, an
instance of the OPMPSP is given by the following data:

m A block model of an open pit mine with precedence relations between the
blocks: Let N be the total number of blocks and N = {1,..., N} denote
the set of blocks (or block indices, to be exact). For each block i € N,
we denote by P(i) C N the set of its immediate predecessors, i.e. those
neighbouring blocks which have to be fully mined before the mining of

block 7 can be started.

m An aggregation of blocks into (mining) aggregates: Let K be the to-
tal number of aggregates, then all aggregates K1,...,Kx C N form a
partition of the set of blocks. The precedence relations at block level
naturally determine precedence relations for the aggregates: Denote by

P(k) C{1,...,K} the (indices of) immediate predecessor aggregates of
Ky, for k€ {1,...,K}.

m A discretisation of the mine’s lifespan with discount rates for each time
period: Let T denote the number of (not necessarily uniform) time peri-
ods and r1,...,rr denote the discount rates for each time period. Then

the net present value of a cash flow C' occurring in some time period

. t
tefl,... . T}is [, 1<

m Mining costs and processing profits: For block i € N' and time period
te{l,...,T}, let ¢;+ denote the cost of mining and let p; ; denote the
profit from processing block 7 in time period ¢, already in the net present
value sense. This yields mining costs and processing profits for the ag-
gregates: Cp; = Zie,ck ciy and pyy = Zielck pi¢ for all ke {1,..., K}
and t € {1,...,T}.

m Rock tonnages and mining and processing capacities: Let a; > 0 de-
note the rock tonnage of block i € N and define a, = >_,x, a; as the
rock tonnage of aggregate Ky, k€ {1,...,K}. The total amount of
rock being mined and processed per time period is limited: Let U™
and U} denote the capacities for mining and processing during time

period t € {1,...,T}, respectively.

2.2 Previous work 13

2.2 Previous work

2.2.1 Heuristic approaches and dynamic programming

The main approaches to solving the OPMPSP found in the literature are
heuristics, dynamic programming and integer programming. One well-known
heuristic approach, which has also been used in commercial mine planning
software, for instance the Whittle software package [39], is based on the Lerchs-
Grossmann algorithm for determining the ultimate pit, see introduction to
Chapter 1. Here, a series of nested ultimate pits is created by decreasing the
sale price of ore from its true value step by step. The schedule is then defined
by excavating these nested pits in order from smallest to largest pit.

A dynamic programming approach to the OPMPSP seems natural and
is described by Onur and Dowd [43]. However, they noted that a purely
dynamic programming approach is unlikely to be able to solve realistically-
sized problem instances due to the large size of the state space.

The signicant improvements to mixed-integer programming solvers in re-
cent years allow larger and larger problems to be solved optimally or near-
optimally. This prompts further investigation of integer and mixed-integer
programming techniques to solving the OPMPSP and the remainder of this
thesis will focus on this approach. In the following sections, we present several
typical formulations found in the literature. Similar models are increasingly
used in commercial mine planning software, for instance the Whittle software
package [39]. Finally, we present a novel mixed-integer programming model
allowing for integrated cutoff grade optimisation, which will be the subject of

the following chapters.

2.2.2 Integer programming formulations

Among the integer programming formulations found in the literature, we want
to highlight a relatively recent one given by Caccetta and Hill [9] in the frame-
work of a specialised branch-and-cut algorithm. Their formulation assumes a
basic block model with homogeneous ore distribution within each block.

The set of blocks A is partitioned into one set of high-value ore blocks O
to be processed and another set of waste blocks WW. This way, a fixed value
Pi+ can be assigned to each block i € N for the profit gained from mining this
block in time period t € {1,...,T}, in the net present value sense. With the

notation introduced in Section 2.1 we can write

Dit — Cit ifi e O,
—Cit if i € W.

Dit = (2.1)

14 Chapter 2. Modelling the OPMPSP

The formulation uses the binary decision variables

1 if block 7 is mined during
Tiy = one of the time periods 1,...,t,

0 otherwise,

forallie N, te{1,...,T}.

For simplicity of notation, we add variables z;o =0 for all i€ N. In
this model, the mining of a block i € A/ cannot be spread out over several
time periods: x;; — x;4—1 is 1 if and only if block 7 is mined during time pe-
riod t € {1,...,T}, 0 otherwise. They also include continuous reporting vari-
ables my for the rock tonnage of ore blocks mined in time period t € {1,...,T}.

The Caccetta-Hill formulation reads

maximise
N T
Z Zﬁz’,t (Tit — Tig—1) (2.2)
i=1 t=1

subject to
Tit—1 — Tit <0 for all 7 € N, t e {2, ce ,T}, (22&)
Tip — Tjy <0 for all i e N, j € P(i),

te{l,...,T}, (2.2b)

Zai(xi,t - xi,t—l) — my = 0 for all ¢ S {1, e ,T}, (2.20)
€O
LY < my <UP forallte{l,..., T}, (2.2d)
> aiwiy — wig1) <UY forallte{l,...,T}, (2.2¢)
ieWw

zip € {0,1} forallie N, te{1,...,T}, (2.2f)
zip=0 for all i € NV. (2.2g)

Constraints (2.2a) let each block be mined at most once. (2.2b) ensures the
precedence constraints. (2.2c) and (2.2d) give maximal and minimal amounts
for the total rock tonnage of ore blocks mined per time period. The total
rock tonnage of waste blocks mined per time period is bounded above by
constraint (2.2e). Despite the continuous my,...,mp, this is not a “real”
mixed-integer programming formulation, since reporting variables can easily
be substituted, yielding a pure binary integer programme.

The Caccetta-Hill-formulation is also the basis for much of the work of
Fricke [18]. He generalises the partition into ore and waste blocks by consider-
ing arbitrarily many so-called attributes r € R such as ore, waste, impurities,

etc. For each of these attributes, ¢] denotes the total tonnage of attribute r

2.2 Previous work 15

in block i € N. The total tonnage of each attribute mined per period is con-
strained by an upper bound.

As in the Caccetta-Hill-formulation, an a priori decision on which blocks
to process and which blocks to discard as waste after mining must be made.
Then as in (2.1) a fixed value p;; can be assigned to each block i € N for the
profit gained from mining this block in time period ¢ € {1,...,T}, in the net
present value sense.

Fricke’s generalised integer programming formulation for the OPMPSP
(see [18, pp. 97]) reads

maximise
N T
SN pig (wiy — wig-1) (2.3)
i=1 t=1
subject to
Tit—1 — Tit <0 forallie N, te{2,...,T}, (2.3a)
Tit — Tjy <0 for all i € N, j € P(i),
te{l,...,T}, (2.3b)
N
qu(:ﬂm —xip—1) < U/ forallt e {1,...,T}, r e R, (2.3¢)
i=1
zip €{0,1} forallieN,te{l,...,T}, (2.3d)
zip=0 for all i € NV. (2.3e)

Constraints (2.3a) ensure that each block is mined at most once and are some-
times called reserve constraints. (2.3b) are the precedence constraints. Con-
straints like (2.3c) limiting certain “activities” of the mining operations are
often called production or resource constraints.

Typically, the total amount of rock which can be mined and processed per
time period is limited by the mine’s infrastructure. This can be expressed by
including two attributes in the model. For block i € N, define q? as its rock

tonnage a;, and

1 a; if block ¢ will be processed after mining,
q, pr—
' 0 otherwise.

Then ZZ]\LI q?(:cm — x;4—1) is the total rock tonnage mined, Zf\il qi1 (it — xig—1)
is the total rock tonnage processed during time period ¢t € {1,...,T}. These
amounts can be limited by a mining capacity U and a processing capacity U}
for each time period t € {1,...,T}.

16 Chapter 2. Modelling the OPMPSP

2.2.3 Mixed-integer programming formulations

The binary integer programming formulations presented above restrict them-
selves to schedules that force each block to be mined completely during one
period. These models usually cannot be solved on the most highly resolved
block models, but only on aggregated block models as described in Section 2.1.
Therefore, this restriction may become more and more unrealistic as the di-
mensions of the open pit mine and the sizes of blocks respectively aggregates
grow — the mining of a block or aggregate is rather a continuous process than
a discrete one.

Smith [48] presents a qualitative description of a mixed-integer program-
ming formulation for the OPMPSP. His model allows for blocks to be mined
fractionally, but no explicit formulation is given. Within the framework of
stochastic mine planning, Menabde et al. [40] also present a mixed-integer
programming formulation allowing for fractions of blocks to be mined. Fricke
[18, pp. 103] simplifies this to a formulation for the deterministic OPMPSP
and gives a generalised version for arbitrarily many attributes as in the integer

programming formulation (2.3). We have binary decision variables

1 if block 7 may be mined
Tiyp = during time periods ¢,..., T,

0 otherwise,
and continuous variables

yit € [0,1] as the fraction of block ¢ mined in time period ¢

for i € N and ¢t € {1,...,T}. With the same notation as in (2.3), we get

maximise
N T
ZZ Dit Yit (2.4)
i=1 t=1
subject to
Tip—1—Tip <0 foralli e N, te{2,...,T}, (2.4a)
t
> Yis—wip <0 forallie N, te{l,...,T}, (2.4b)
s=1
t
Tig— Y s <O foralli e N, j € P(i), t € {1,...,T}, (2.4c)
N s=1
> iy <ur forall t € {1,...,T}, r € R, (2.4d)
i=1
rip €{0,1} forallie N, te{l,...,T}, (2.4e)
0<y <1 forallie N, te{1,...,T}. (2.4f)

A block i € N with z;; = 1 for some time period ¢t € {1,...,T} can now be

2.3 An MIP-formulation with integrated cutoff grade optimisation 17

mined in fractions spread out over the time periods from min{t|x;; = 1} to T
The precedence constraints are ensured by (2.4b) and (2.4c) together. Both
the objective function and the resource constraints (2.4d) now contain only

the continuous variables.

2.3 A new mixed-integer programming formulation with
integrated cutoff grade optimisation

2.3.1 The model

The formulations from the previous section all require an a priori decision
about cutoff grades, i.e. the oregrade above which mined material is worth-
while to be processed. A lowest cutoff grade is always given by the oregrade
at which the profit returned from selling the final product equals the pro-
cessing costs. However, note that due to the net present value objective and
limited processing capacities, the optimal cutoff grade typically varies over
time. Profit made during early time periods pays off more, making it prof-
itable to reach high value material as early as possible. Often the material
of high oregrade is located towards the bottom of the pit and the overlying
material might have to be mined faster than it can be processed due to the
limited infrastructure. Therefore, even material with an oregrade sufficiently
high to allow for profitable processing might be discarded as waste in early
time periods.? This typically yields cutoff grades which are decreasing over
time.

The formulations from the previous section all take a block model with ho-
mogeneous oregrade distribution as input. In practise, however, they cannot
be solved on the most highly resolved block models, but only on aggregated
block models as introduced in Section 2.1. While the mining decisions have
to be made at aggregate level, processing decisions depend on the oregrade
and should therefore take into account the heterogeneous oregrade distribu-
tion within the aggregates. This can be achieved by introducing continuous
variables for the processing of each block. The mixed-integer programming
formulation presented in the following was introduced by Boland et al. [6].

To model the mining process, we use three sets of variables. For the mining

process, we have the binary decision variables

1 if aggr. K, may be mined
Tt = during time periods ¢,...,T,

0 otherwise,

2In practise, this material is of course stockpiled and saved for processing during later
periods when the cutoff grade is lower again.

18 Chapter 2. Modelling the OPMPSP
and the continuous variables
Ykt € [0,1] as the fraction of aggreg. IC, mined during time period ¢

for all ke {1,...,K} and t € {1,...,T}. Additionally, we define for each
block i € N and t € {1,...,T}

zit € [0,1] as the fraction of block i processed during time period ¢.

With the notation introduced in Section 2.1, this gives the following mixed-

integer programming model, which we will later refer to as D-MIP:3

maximise
K T N T
ZZ —Ch,t Ykt + ZZ Diyt Zit (2.5)
k=1 t=1 i=1 t=1
subject to
Tpi-1 — T <0 forall k € {1,...,K}, t€{2,...,T}, (2.5a)
t
> Yk —wpt <0 forall ke {1,..., K}, t e {1,...,T}, (2.5b)
s=1
t
Tht— Y Yos <O for all k € {1,...,K}, £ € P(k),
= te{l,...,T}, (2.5¢)
Zit — Ykt <0 forall k € {1,..., K}, i € K,

te{l,...,T}, (2.5d)

aRYk.t < UM forall t € {1,...,T}, (2.5¢)

K
k=1
N
> aiziy <UP for all t € {1,...,T}, (2.5f)
i=1

i € {0,1} forallke{l,...,K}, te{l,...,T}, (2.5g)
Ypt <1 forall k e {1,...,K},te{1,...,T}, (2.5h)
zip <1 forallie N, te{l,...,T}. (2.51)

The first part of the objective function, Zszl Zle —Cht Ykt evaluates to
the cost for the mining operations, which is always negative. The second
part, Zf\il Zle Dit %it, gives the profit returned from processing and will
be nonnegative for any optimal schedule (z-variables with negative objective
coefficient can always be set to their lower bound zero). Due to the reserve

constraints (2.5a), the mining of every aggregate is started at most once.

3D-MIP stands for “Disaggregated MIP”, which will become clear in the context of
Chapter 5.

2.3 An MIP-formulation with integrated cutoff grade optimisation 19

Constraints (2.5b) and (2.5¢) together ensure precedence-feasibility. Note that
instead of (2.5b) we could also write y;; < zi ;. However, (2.5b) results in a
stronger LP-relaxation. By (2.5d), only as much can be processed as has been
mined already. (2.5e) and (2.5f) guarantee that the resource constraints on

mining and processing activities are respected.

2.3.2 Discussion

The improvements in the new model presented over the ones found in the
literature are two-fold: First, processing decisions can be made at a higher
spatial resolution than the mining decision and thus results in a more accu-
rate modelling of the real orebody. Second, the separation of processing and
mining decisions is a crucial improvement in itself. The models found in the
literature require an a priori determination of cutoff grades, which might be
suboptimal. With the new model, optimal cutoff grades are automatically
determined within the optimisation procedure itself.

Some points of criticism need to be addressed which might be aimed at the
practicality of this model. A major assumption is hidden in constraints (2.5d).
When a fraction of some aggregate has been mined in some time period, then
it is implicitly assumed that all of the blocks in this aggregate have been
mined by the same fraction and thus may be processed by this same amount.
This is certainly unrealistic, since the mining proceeds block by block. When
half of an aggregate, say, has been mined, then this should mean that half
of the blocks have been mined completely instead of all of the blocks having
been mined by half. This results in a violation of the precedence constraints,
since material at the bottom of an aggregate may be accessed before all of the
overlying has been removed.

In one type of aggregate model important in mine planning applications,
blocks are aggregated to so-called “panels”, for instance in the data set “wa”
described in Section 1.3. Panels are single layers of blocks and thus contain no
block-to-block precedence relations. In this case, the model presented will not
at all result in the violation of precedence constraints. For other aggregations,
aggregates might consist of a small number of several consecutive layers. In
an optimal solution, however, aggregates will typically be fully mined and
processed within one or two consecutive time periods. Therefore, the impact
of possibly violated precedence constraints may be expected to be minor.

Another possibility to overcome this drawback is simply to consider a ver-
sion where each aggregate has to be mined completely within one time period.
In this case, no block-to-block precedence constraints will be violated. This

corresponds to setting yi; = g — xp—1 for t € {2,..., T} and yp1 = xp 1.

20 Chapter 2. Modelling the OPMPSP

Substituting the y-variables accordingly yields the programme D-MIP’

maximise
K T N T
Z Z —Ct(Tht — Thp—1) + Z Z Pit Zijt (2.6)
k=1 t=1 i=1 t=1
subject to
Tht—1 — Tht <0 forall k e {1,...,K},
te{2,...,T}, (2.6a)
Tht — Tuy <0 forall k € {1,..., K}, £ € P(k),
te{l,...,T}, (2.6b)
Zip — (Xpt — Tpg—1) <O for all k € {1,..., K}, i € K,
te{l,...,T}, (2.6¢)
K
> ap(why —wke1) KU forallte{1,..., T}, (2.6d)
k=1
N
> aizig <UP for all t € {1,...,T7}, (2.6¢)
i=1
Zpo =0 forall k e {1,...,K}, (2.6f)

xpy €{0,1} forall ke {l,..., K},
te{l,...,T}, (2.6g)

0< 2y <1 forallie N, te{1,...,T}. (2.6h)

Because this programme results from D-MIP by mere addition of the con-
straints s = Zi:l yps forall k e {1,..., K}, t € {1,...,T}, D-MIP can be
viewed as a relaxation of D-MIP’. All the theory and methods developed in
the following chapters for D-MIP are fully applicable to D-MIP’. We consider
D-MIP as a better approximation of the reality, just because it allows the
continuous mining process to be performed across the borders given by the
time discretisation.

From a computational point of view, D-MIP might seem inferior to the
models from Section 2.2.2 because it contains the large number of additional
z-variables for processing. One of the main results of this thesis is presented
in Chapter 5 and addresses exactly this objection. Many of the processing
variables can be aggregated to a single variable and thus only comparatively
few of them remain. Computational results show that this reduction in size,
although heuristic, does not come at the cost of objective value.

A more general point of criticism towards all the integer programming

models presented here could be that a real-world mine plan must consider

2.4 Closely related problems 21

many technical details which are not included in the constraints of these mod-
els: haul roads, minimal footprint for excavation equipment, etc. However,
the claim is not that the solutions of the OPMPSP-models will be completely
practical in every technical detail. Nevertheless, it is certainly possible to
construct a realistic mine plan on the basis of OPMPSP-schedules. If we can
compute optimal or near-optimal solutions of the OPMPSP, this will in turn

yield superior real-world mine plans.

2.4 Closely related problems

In the following, we will briefly present two NP-hard optimisation problems,
the precedence-constrained knapsack problem and the resource-constrained
project scheduling problem, both of which are structurally closely related to
the OPMPSP. The notation used is restricted to this section.

2.4.1 The precedence-constrained knapsack problem

Suppose a set of items i € N/ = {1,..., N} with non-negative weights w; and
profits ¢; is given. The problem of choosing a subset of these items of total
weight that does not exceed a given capacity U (“packing a knapsack”) such
that the overall profit is maximised is called the 0-1 knapsack problem.* It

can be written as a binary integer programme
N
maximise E CiT;
=1

N
KP
subject to Zwﬂi <U, (KP)
i=1

z; € {0,1} for all i € NV,

where for any i € N/

1 if item ¢ is included in the knapsack,
Ty =
0 otherwise.

Along with many variants, the 0-1 knapsack problem has been widely studied
since the early days of mathematical optimisation as it is the simplest proto-
type of an integer programme. A thorough presentation of knapsack problems
is given by Kellerer et al. [32].

Of particular interest in relation to the OPMPSP is the so-called precedence-
constrained knapsack problem, a variant that is further complicated by addi-
tionally introducing precedence constraints on the items to be included in the

knapsack. If we denote by P(i) the set of predecessors of item i € N, i.e. the

4Generally, the weights and profits are assumed to be integer, but many results hold
equally for rational and real values.

22 Chapter 2. Modelling the OPMPSP

set of items which need to be included before item ¢, then the precedence-
constrained knapsack problem can be written as

N
maximise g CiT;
i=1

N
subject to sz‘ﬂfz‘ <U, (PCKP)
i=1

z; <z for all i € N, j € P(4),
z; € {0,1} for all i € NV.

Both KP and PCKP yield NP-hard optimisation problems, as shown by
Kellerer [32, pp. 483], for example.

The OPMPSP-formulations and PCKP are related in the sense that the
OPMPSP-formulations “contain” PCKP-structure. Fricke’s binary integer
programme (2.3) from Section 2.2.2 transforms directly into PCKP for a single
time period and one attribute. The PCKP-structure can also be found in the
formulations D-MIP and D-MIP’ from Section 2.3 and can for instance be

used to derive valid inequalities, as will be shown in Chapter 3.

2.4.2 The resource-constrained project scheduling problem

The problem of sequencing or scheduling a number of tasks of a given project
arises in many different areas of application, reaching from production plan-
ning to project management. Project scheduling is a generic term for a class of
problems of scheduling a set of precedence-constrained jobs such as to optimise
a given objective function subject to various constraints, which may include
due dates, release dates or resource constraints. Different types of objectives
are considered, such as minimising the duration of a schedule or maximising
its net present value.

More formally, we are given a set A/ of jobs 1,..., N with integral process-
ing times p; > 0, ¢ € N, which have to be scheduled over time periods 1,...,T
of unit length. A schedule is represented by a vector S = (Si,...,Sn) of the
jobs’ start times. Several jobs may be processed in one time period as long as
they respect the other constraints present. All jobs must be scheduled during
the time available.

Precedence constraints are modelled by a weighted digraph G = (N,),
where to each arc (7,) € £ C N xN we assign a time lag d; ; of integral length.
Then, (i,7) € £ means that job i cannot be started earlier than d; ; periods
after start of job j, i.e. S; > Sj + d; j. Ordinary precedence constraints could
be modelled by letting d; ; = pj, if job j is a predecessor of job i.

For the OPMPSP, the variant of the resource-constrained project scheduling
problem is of particular interest, where additionally a set of resources R is

given and each job i € N requires an amount ¢! of resource r € R per time

2.4 Closely related problems 23

period of being processed. The availability of resource r € R during time
period ¢t € {1,...,T'} is limited by Uy
A common integer programming formulation was first proposed in a paper

of Pritsker et al. [44]. Define the binary decision variables

1 if job 7 starts at time ¢,
Yit =
0 otherwise,
foralli € Nand t € {1,...,7}.%> This yields a start-time-dependent objective

function. Pritsker et al. formulated the following integer programme RCPSP:

maximise

N T
Z Z Cit Yi,t (2.7)

i=1 t=1
subject to

Zyi,t =1 for all i € NV, (2.7a)
D tyir — i) =di for all (i,7) € &, (2.7b)

N t
Z Z q; Yi,s< Uf forallr e R, t e {1,...,T}, (2.7¢c)

yie €4{0,1} forallie N, te{1,...,T}. (2.7d)

Constraints (2.7a) demand that each job must be started exactly once during
time periods 1,...,7. (2.7b) models the precedence constraints between jobs.
To ensure that all jobs are not only started but also completed at the latest in
time period T', we can add an additional job to A with processing time 0 having
all other jobs as predecessors. Finally, (2.7c) are the resource constraints
for each time period and resource. For a more detailed explanation of the
constraints, we refer to Pritsker et al. [44].

One apparent difference between resource-constrained project scheduling
and the OPMPSP-models is that the latter requires all jobs to be scheduled,
while we did not demand that all blocks need to be removed from the pit.
Mathematically however, this is equivalent since we can introduce a “slack
time period” T'4+1 to our OPMPSP-schedules with the corresponding objective
coeflicients all being zero. Then the blocks remaining in the pit can be “mined”
during time period T'4+1 without change in the objective function value.

This way, Fricke’s binary integer programme (2.3) from Section 2.2.2 (on
T time periods) can be written in the form of RCPSP (on T'+1 time periods):

5Strictly speaking, they introduced decision variables equal to 1 if job 4 is completed in
time period ¢, 0 otherwise. However, the formulation with start times resembles more our
OPMPSP-models and is essentially the same.

24 Chapter 2. Modelling the OPMPSP

For the precedence graph define & = {(4,7)|i € N,j € P(i)} with zero time
lags. Set the processing time p; to 1 and the objective coefficients ¢; 741 to 0
for each block i € N'. Then the capacity Ur,, on attribute r € R can be
set to infinity (or any value greater than or equal to ZZ]\LI q;) to effectively
remove the resource constraints for the slack time period T+1. This yields

the programme

maximise

N T
Z Z Ci,t Yit

i=1 t=1

subject to
T+1

Zyivt =1 for all i € NV,
t=1

T+1 T+1
Ztyi,t—ztyj,t>0 for all i € N, j € P(4),
t=1 t=1

N
ZQ:yi,t U/ forallre R, te{1,...,T},
i=1

yir €{0,1} forallie N, te {1,...,T+1}.

To see that this is equivalent to (2.3), it only remains to perform the sub-
stitution ;s = @it — xi4—1 for all i € N and ¢ € {1,...,T+1}. The nonneg-
ativity of the y-variables gives the reserve constraints (2.3a). The resource
constraints transform directly to (2.3c). Because of the integrality of the y-
variables, the term Zf:ﬁl ty;+ evaluates exactly to the time period in which
some block i € N is scheduled. Thus it can be checked that for any i € N
and j € P(i), the condition ZtT:Jrll tyis > ZtT:ll ty;¢ is equivalent to the prece-
dence constraints (2.3b), z;¢ < x4 for all time periods t € {1,...,T}. The
constraint Etlel ¥i+ = 1 translates into x; 741 = 1, and finally we can remove
all variables x; 741 together with the trivial constraints x; 7 < ;741 for all
blocks i € N.

We will be able to exploit this insight later in Chapter 3 when inspecting
the lagrangean relaxation of the resource constraints in D-MIP. Resource-
constrained project scheduling itself is NP-hard, since it contains Fricke’s
OPMPSP-formulation (2.3), which in turn contains the precedence-constrained
knapsack problem. However, without resource constraints, project scheduling
problems can be solved in polynomial time. Mohring et al. [41] show how
this is done efficiently by computing a minimum s-t-cut in a suitably con-
structed network. We will see that the same approach can be used to solve

the subproblem remaining after relaxing the resource constraints of D-MIP.

2.5 Complexity analysis 25

2.5 Complexity analysis

We conclude Chapter 2 by demonstrating the computational difficulty posed
also by the new OPMPSP-models:

Proposition 2.1 The optimisation problems given by D-MIP and D-MIP’
are NP-hard.

Proof. We show that the precedence-constrained knapsack problem can be
reduced to D-MIP’ and to D-MIP. Since the precedence-constrained knapsack
problem is NP-hard (see e.g. Kellerer et al. [32]), the other problems are as

well.
PCKP — D-MIP’: To polynomially transform an instance of PCKP into
an equivalent instance of D-MIP’, we need to map the items 1,...,N in

PCKP onto aggregates in D-MIP’ and “forget” about blocks and z-variables
in D-MIP’. In D-MIP’, let T'=1 and K = N; furthermore, set ¢, = —cs,
pi1 =0, ax = wy for all k,i € {1,...,N}, U™ =U and U} = 0. Because the
z-variables have zero objective coeflicients, they can be disregarded together
with the processing constraint and what effectively remains is the original
precedence-constrained knapsack problem.

PCKP — D-MIP: This reduction is slightly more complicated than the
above ones. Let an instance of PCKP on N items be given as in Section 2.4.1.
For each item i € {1,..., N}, define two aggregates K; and Ky, for D-MIP
and let T'= 1. The precedence relations on these aggregates are defined by
P(i) ={N+i}and P(N +i) = P(i) forall i € {1,..., N}, where P(i) is the
predecessor set for item ¢ in the PCKP-instance.

In the precedence graph (with arcs pointing from items to their predeces-
sors), this would correspond to applying a node splitting technique: Take each
node v in the precedence graph of PCKP and split it into two nodes v* and
v~. For any arc (u,w) in the original graph, draw an arc from u* to w™, and
add further arcs from v~ to v™ for each node v of the original graph. Here,
the “—"-nodes correspond to aggregate numbers 1,..., N and the “4”-nodes
correspond to aggregate numbers N+1,...,2N. The idea is now to define
the knapsack constraint on the “+7-aggregates and assign the profits to the
“—"-aggregates.

The z-variables and processing constraints can be removed as described
above. In the objective function, set ¢;; = —¢; and ¢n4;1 =0 for

all € {1,...,N}. In the mining constraints, set a; =0 and ay4; = w; for

26 Chapter 2. Modelling the OPMPSP

ie{l,...,N}, U™ =U. Then the corresponding D-MIP-instance reads

maximise
N
Zci Yil (2.8)
i=1
subject to
Y1 — Tk <O for all k € {1,...,2N}, (2.8a)
rp1—Y1 <O for all k € {1,...,2N}, ¢ € P(k), (2.8b)
N
sz‘ Yn+yin SU (2.8¢)
i=1
zry € {0,1} forall k € {1,...,2N}, (2.8d)
0<yr1 <1 for all k € {1,...,2N}. (2.8¢)

It remains to prove that this programme and the original instance of PCKP
are equivalent. First we show that without changing the objective value we
can choose the y-variables to be integral. The constraints (2.8b) can be split
up into

i1 S YN+il and Tn41 < Y

foralli € {1,...,N} and j € P(i). If in any feasible solution we decrease the
value of the variables yn1;1 to x;1, all the constraints remain satisfied and
the objective value does not change. Thus, we can assume that yn4i1 = ;1
is integral for all ¢ € {1,..., N}.

Furthermore, the variables y; 1, i € {1,..., N}, are only bounded by inte-
gral values in constraints (2.8a) and (2.8b). Hence, if in a feasible solution one
of these variables is fractional, both rounding up and down will preserve fea-
sibility. Therefore, in any optimal solution, the variables y;+, i € {1,..., N},
must be integral if ¢; is non-zero; otherwise they could be rounded up or down
to increase the objective value.

Then we may assume (without changing the objective value) that con-
straints (2.8a) hold with equality and yn4i1 = 21 = y;1 foralli € {1,..., N}

Substituting all the redundant variables, (2.8) becomes

N

maximise Z Ci Yi1
i=1

subject to ;1 —y;1 <0 forallie {1,...,N}, j € P(3),
N
Z Wi Yi,1 < U7
i=1

yin € {0,1} for alli e {1,...,N}.
which is exactly the original PCKP. O

2.6 Conclusion 27

2.6 Conclusion

With Section 2.1, this chapter gave a precise description of the open pit mining
production scheduling problem as understood in this thesis. In Section 2.2,
we mentioned very briefly the main solution approaches taken in the literature
— heuristics, dynamic programming and integer programming — to conclude
that integer programming currently seems a most promising area of research
for the OPMPSP. We presented classical integer and mixed-integer program-
ming formulations from the literature, all of which required cutoff grades to
be determined a priori, i.e. previous and hence not subject to the actual op-
timisation itself. We continued to describe a formulation overcoming this
disadvantage, allowing for integrated cutoff grade optimisation. This model
was first described and studied by Boland et al. [6], and will be the main sub-
ject of the following chapters. We addressed several points of criticism which
could be directed towards this model and the integer programming approach
in general.

Section 2.4 highlighted the important connection to two closely related
problems, the precedence-constrained knapsack problem and the resource-
constrained project scheduling problem. In the next chapter it will be shown
in Section 3.4.3, how a result of Méhring et al. [41] for the latter can be applied
to the OPMPSP-formulations under consideration in a straightforward way.
To conclude, we used the connection to the precedence-constrained knapsack
problem to prove that open pit mining production scheduling is NP-hard, not
only for the standard integer programming formulations, but equally for the

mixed-integer programming formulations considered here.

Chapter 3

Structural analysis

This chapter analyses structural properties of the OPMPSP-formulation
D-MIP introduced in Section 2.3. The following chapters will largely be based
on the insights presented here. In Section 3.1 we show how the corresponding
LP-relaxation can be reduced in size to be solved faster by any of the known
LP-algorithms. Section 3.2 highlights the structure given by the knapsack con-
straints together with its implications for optimal cutoff grades, Section 3.3
proves that the feasible region remaining when the knapsack constraints are
removed is an integral polyhedron. This result also serves as a motivation to
apply lagrangean relaxation to the resource constraints, which is the focus of
Section 3.4. In Section 3.5, we briefly outline valid inequalities arising from the
precedence-constrained knapsack problem structure and show how they can
be added to the reduced LP-relaxation from Section 3.1 and the lagrangean

relaxation from Section 3.4.

3.1 Redundancy in the LP-relaxation

A common method for solving mixed-integer programmes is a branch-and-
bound approach. Within this, computation of dual bounds, for instance given
by the LP-relaxation, is an essential part. Another motivation for looking
closer at the LP-relaxation are results in the next section which interpret the
dual multipliers associated with the processing constraints in relation to cutoff
grades.

Removing the integrality condition on the xz-variables of programme D-MIP

from Section 2.3, i.e. replacing (2.5g) by
0<zp, <1 forallke{1,...,K},te{l,..., T},

gives the standard LP-relaxation, which we will further refer to as D-LP.
Note that the z-variables have zero coefficients in the objective function
of D-LP. Furthermore, if in any optimal solution we decrease their values to

the lower bounds given by constraints (2.5b), the other constraints (2.5a) and

29

30 Chapter 3. Structural analysis

(2.5¢) involving z-variables will also remain satisfied. Hence, without loss in
the objective function value, we may assume that xj; = Zizl Yk,s holds for
allk € {1,..., K} and t € {1,...,T}. Substituting the z-variables accordingly
yields the linear programme y-D-LP:

maximise
K T N T
Z Z —CrtYkt T Z Z Dit Zit (3.1)
k=1 t=1 i=1 t=1

subject to

N
—_

for all k € {1,..., K}, (3.1a)

T
Z Ykt
t=1

t t
Z Yk,s — Z Yi,s <
s=1 s=1

/
o

for all k € {1,...,K}, £ € P(k),
te{l,...,T}, (3.1b)

Zit — Ykt <0 forall k € {1,...,K}, i € Kk,

te{l,...,T}, (3.1c)

Ykt < Utm for all £ € {1, ce ,T}, (31d)

K
k=1
N
> aiziy <UP forallte{l,...,T}, (3.1e)
i=1

0 forall ke {1,...,K}, te{l,..., T}, (3.1f)
0 forallie N, te{1,...,T}. (3.1g)

Alternatively, we can substitute the y-variables according to Y s = @ — Tp¢—1
forall k € {1,..., K}, t € {1,...,T}, where x}¢ = 0 are auxiliary “variables”

used for simplicity of notation. The resulting linear programme x-D-LP reads

maximise
K T N T
Z Z —Crt(Tht — Thp—1) + Z Z Dit Zit (3.2)
k=1 t=1 i=1 t=1

subject to

forall ke {1,...,K}, te€{2,...,T}, (3.2a)
forall k € {1,...,K}, £ € P(k),
te{l,...,T}, (3.2b)

Tht—1 — Thit <0

Tkt — Tog <0

Zip — (Tpp— xpp—1) <0 forall ke {1,...,K}, i€ Ky,
te{l,...,T}, (3.2¢)

3.1 Redundancy in the LP-relaxation 31

K
> an(wpy— wp) SUP forall t € {1,..., T}, (3.2d)
k=1
N
Zaiziyt <UP forallte{l,...,T}, (3.2¢)
=1
xpo=0 foralke{l,.. . 6 K}, (3.2f)
0<azp, <1 forallke{l,..., K}, te{l,...,T}, (3.2g)
0< 2z <1 forallieN,te{l,...,T}. (3.2h)

Let the objective functions of D-LP, x-D-LP and y-D-LP be denoted by fp.rp,
fz-p-Lp and fy_p.p, and the corresponding optimal objective values by f} ; p,
frp.pp and f;‘_ p.1p» Tespectively. The following proposition summarises the

connection between the three programmes:

Proposition 3.1 The linear programmes D-LP, x-D-LP and y-D-LP are

equivalent in the following sense:

(i) [bLp=Jfo-pLp = f;-D-LP'

(ii) If (z,y,z) € RET X RET xRN s feasible for D-LP, then (y,z) is fea-
sible for y-D-LP and (%,z) is feasible for x-D-LP with & € REXT given
by

t
Tht = Z Yk,s
s=1
forke{l,....,K}, t€{l,...,T}. The respective objective function val-
ues are equal, i.e. fp.Lp(x,y,2) = fy-p-LP(Y,2) = fo-D-LP(Z, 2).
(iii) If (z,z) € RETXRNT s feasible for x-D-LP, then (x,vy,z) is feasible
for D-LP with y € RET given by

Tt — Tkit—1 fO’f’t:2,...,T,
Ykt =
T fort=1.

forke{l,...,K},t€{l,...,T}. The respective objective function val-

ues are equal, i.e. fp.rp(x,y,2) = fe-p-Lp(x,2).

(iv) If (y,z) € RET xRN s feasible for y-D-LP, then (x,y,z) is feasible
for D-LP with x € R given by

t
Tkt = E Ykt
s=1

forke{l,...,K},t€{l,...,T}. The respective objective function val-

ues are equal, i.e. fp.Lp(x,y,2) = fy-p-LP(Y,2).

32 Chapter 3. Structural analysis

Proof. As explained above, without changing the objective function value we

may assume that constraint (2.5b), i.e.

t

Trt <Y yks forallke{l,... K} te{l,...,T},
s=1

holds with equality in D-LP. O
In Section 2.3, beside D-MIP, we also introduced a variant D-MIP’ which

required every aggregate to be mined completely during one time period. Its
LP-relaxation D-LP’ is identical to xz-D-LP, which gives the following corol-
lary:

Corollary 3.2 D-MIP is a relazation of D-MIP’ and the dual bounds given

by the LP-relaxation of both programmes are identical, i.e.

Ipmp < foove < foop = foops

where 5 yup» foomps fh.op and f1) ;pr denote the optimal objective values

of the corresponding programmes.

Proof. The first inequality holds since D-MIP’ can be obtained from D-MIP
by adding the constraints ;= 22:1 yrs for all ke{l,...,K} and
t € {1,...,T}. The last equality follows from f}, ;p = f¥ p;p=fhH.p> O

This insight gives some reason to expect that, compared to D-MIP’, D-MIP
will be computationally “easier” to solve (optimally or near-optimally) by an
LP-based branch-and-bound algorithm, since the initial dual bound at the
root node is smaller in general. Other aspects, however, might speak against
it, especially the KT additional y-variables present in D-MIP. This will for
instance have an effect on the running time of primal heuristics, and solving
the LP-relaxations at each node, especially at the root node, will take longer in
general. Theoretically, solving the LP-relaxation of D-MIP requires the same
effort as for D-MIP’, since we may use the linear programme z-D-LP identical
to D-LP’. However, when using an out-of-the-box MIP-solver one needs to be

careful, because this redundancy might not be removed completely.

Remark 3.3 Reducing D-LP to x-D-LP or y-D-LP is basically a presolving
technique. Later on, we will be interested in the values of optimal dual mul-
tipliers associated with the resource constraints. In general, presolving steps
can affect the dual space. Here it is straightforward to check that the dual
multipliers associated with the resource constraints are optimal for D-LP if
and only if they are optimal for xz-D-LP if and only if they are optimal for
y-D-LP.

3.2 Knapsack structures 33

3.2 Knapsack structures

In this section we analyse optimal solutions of D-MIP, more precisely their
z-components. Because the following discussion is independent of the inte-
grality conditions in D-MIP, it is equally valid for its LP-relaxation D-LP.
The results hold analogously for the case of D-MIP’, but for simplicity of the
exposition, we only consider D-MIP and D-LP.

Let an optimal solution (z*,y*,z*) of either D-MIP or D-LP be fixed.
The z-variables are subject only to the constraints (2.5d), (2.5f) and (2.51).
Because of optimality, for any fixed time period ¢t € {1,...,T'}, (Zj’t>z‘e/\/ e RN

must form an optimal solution to the linear programme

N

maximise Z DitZit (3.3)
i=1
N

subject to Zaizi,t <Up, (3.3a)
i=1

0< 2zip <y, forallke{l,...,K} i€ K. (3.3b)

Problems of this form, i.e. with continuous variables ranging from 0 to an up-
per bound and one knapsack constraint are called continuous bounded knap-
sack problems. They can be viewed as the LP-relaxation of a bounded knap-
sack problem, which differs from the standard 0-1 knapsack problem (see Sec-
tion 2.4.1) only because the variables are not binary, but take integer values
ranging from zero to an upper bound.

An optimal solution of a continuous bounded knapsack problem can be
determined by ordering items according to non-increasing cost per unit weight.

More precisely, we can prove the following result:

Proposition 3.4 Let (z*,y*, 2*) € RET X RET X RNT be an optimal solu-
tion of D-MIP or D-LP. Then there exists a sequence o = (01,...,07) of

non-negative values such that

0 if M < ot
P @i ’ (3.4)
bt * :f Dist

Yp, if >0y,

holds for alli € N and t € {1,...,T}.

Proof. As mentioned above, (z;" t) N € RN must be an optimal solution
) ie

of (3.3) for each fixed time period ¢ € {1,...,T'}. Since the programmes (3.3)

are not related for different values of ¢, each time period can be treated

separately. Therefore, it suffices to show that for any continuous bounded

34 Chapter 3. Structural analysis

knapsack problem

N
maximise Z CiT;
i=1
N CBKP)
subject to Zwixi < U, (
i=1
0< z; <b; forallie{l,...,N},
where ¢; € R, w; > 0,b; > 0fori € {1,..., N}, there exists a value p > 0 such
that
0 if & <p,
T; = Wi P
b; if 7% > p,

holds for all i € {1,..., N} in any optimal solution z.

Let the items be ordered by non-increasing profit per unit weight, i.e.

— T = e e e = T .

C1 > C2 S S CN

w1 w9 WN
Without loss of generality we may further assume that profits are non-negative.
It is always suboptimal to include items with negative profit, thus z; = 0 holds
in any optimal solution if % <0<p.

Now, if all items can be fully included in the knapsack, i.e. if Efi qwib; < U,
then any optimal solution will fully contain all items of positive weight and
we can choose p = 0. Therefore we may assume without loss of generality
that Zf\il w;b; > U. In this case, there exists exactly one item s € {1,..., N},

called split item, with

s—1 S
Zwibi < U and Zwibi > U.
=1

=1

Now, an optimal solution of (CBKP) is given by

x; =b; forallie{l,...,s—1},

z; =0 forallie {s+1,...,N}.

A proof for unit bounds is given by Kellerer et al. [32, pp. 18] and holds

analogously for the general case. From the proof it also follows that

T = ws’
if S Cs
0 1fwi<w57

holds for all ¢ € {1,..., N} in any optimal solution z. Hence, the choice p = =
has the desired properties. a

3.2 Knapsack structures 35

Definition 3.5 We callo = (01,...,07) a sequence of split ratios for D-MIP

or D-LP, if condition (3.4) is satisfied for some optimal solution (z*,y*,z*).

Corollary 3.6 A sequence of split ratios exists for any instance of D-MIP
and D-LP.

Proof. For any instance of D-MIP or D-LP, the feasible region is not empty
(the zero-solution is always feasible) and bounded. Hence, an optimal solution

exists and Proposition 3.4 guarantees a sequence of split ratios. O

The following proposition explains how to compute split ratios in theory,

given an optimal solution (z*,y*, z*) of D-MIP or D-LP:

c RKXT %]RKXT

Proposition 3.7 Let (z*,y*, z¥) xRNXT be an optimal solu-

tion of D-MIP or D-LP. Split ratios oy, t € {1,...,T}, are given by any values

oy in the interval [o,, 7|, where

Pit
g, = max 4 0, max
a;

z;ft>0,iej\/}. (3.6)

Zip < y/ﬂ;ta kek,ie ’Ck}} (3.5)

and

_ . Dit
0y = min
a;

If (z*,y*, 2*) is a unique solution to D-MIP or D-LP, respectively, then any

sequence of split ratios is of this form.

Proof. Let p be a sequence of split ratios as guaranteed by Proposition 3.4,

and let t € {1,...,T} be a fixed time period. It follows from (3.4) that for

all ke {1,...,K} and i € K,

pit) = i if 27, >0,

@i <pe i 2 <y

Hence, 0 < g; < pt < 7 and so the interval [o;, 7] is not empty. By definition

of g, and ¢, any choice of o; € [g,, 7] will satisfy (3.4) for (z*, y*, z*).
Suppose (x*,y*, z*) is the only optimal solution to D-MIP, then any se-

quence of split ratios o must satisfy (3.4) for (z*, y*, 2*). It follows immediately

that oy € [g;,0¢] for all t € {1,...,T}, again by definition of g, and 7,. O

Remark 3.8 Proposition 3.7 also shows that in general split ratios are not
uniquely determined. In some time period ¢ € {1,...,T}, though, for which
0 < zf; <y, holds for some k € {1,..., K}, i € K, the value p;’; is contained

in the domain of both (3.5) and (3.6) and the interval [g,, o] shrinks to one

point.

36 Chapter 3. Structural analysis

Note that Proposition 3.7 is only a theoretical result, since it already re-
quires an optimal solution of D-MIP. The computational benefit from knowl-
edge about split ratios is apparent, though. If we knew a sequence o of split
ratios for D-MIP, we could reduce the programme significantly in size: For
alli e N, te{l,...,T} with p;—: < oy, replace z;; by 0; if p;—: > o, then sub-
stitute z;; = yi. However, the following proposition shows that computing
split ratios is NP-hard. Therefore, Chapter 5 will pursue a slightly different

approach using heuristic ideas.
Proposition 3.9 Computing split ratios for D-MIP is NP-hard.

Proof. The notion of split ratios as introduced in this section is equally
valid for D-MIP’ and all the results from above hold correspondingly. For
clarity of exposition, we will first give the proof that computing split ratios
for D-MIP’ is NP-hard. For this we show how the precedence-constrained
knapsack problem can be solved using split ratios to indicate whether some
item is included in an optimal solution.

Let an instance of PCKP be given as in Section 2.4.2, with N items of
positive integer weight and objective coefficient, say. Choose an arbitrary
item j € {1,..., N}, for which we want to determine whether it is included
in some optimal solution. Construct an instance of D-MIP’ with one time
period, T'=1, and K = N+1 aggregates as follows.

Aggregates K1,...,Kn correspond to the knapsack items: Set ap = wy,
P(k) = P(k) and ¢,1 = —cy, for all k € {1,...,N}. Aggregate K41 has an
auxiliary function and will be “mined” in any optimal solution due to its large
objective coefficient and no predecessors: Set any1 = wj, P(N+1) =0 and
ent+11 = —CY where C¥ = Zfil c; + 1. All aggregates are singletons, say
Kr ={k} and a = ay, for all kK € {1,..., N+1}. The objective coefficients of

the z-variables are

% for k = j,
Pkl = % for k = N+1,
0 otherwise.

Finally, set the mining and processing capacities by U* = U + w; and U} = %

3.2 Knapsack structures 37

All in all, this gives the D-MIP’-instance

maximise
al 1 1
Z crrg + Clenyrg + 3% + 3N+ (3.7)
k=1
subject to
Tl — Ty <0 forall k € {1,...,N}, £ € P(k), (3.7a)
2k — Tk <0 for all k € {1,...,N+1}, (3.7b)
N
Zwkxk,l + wjrNy1,1 < U+ Wi, (3.7C)
k=1
N w.
Zwkzm +wjzNt1,1 < TJ, (3.7d)
k=1
zp1 € {0,1} forall k € {1,..., N+1}, (3.7¢)
0< 2,1 <1 for all k € {1,..., N+1}. (3.7f)

Step 1: We show that if (x, z) is an optimal solution of D-MIP’, then the set
of knapsack items I = {k € {1,..., N} |z, = 1} gives an optimal solution of
PCKP.

Let (x,z) be optimal for D-MIP’ then the items in I are precedence-
feasible because of (3.7a). Since xxn1,; must be 1 for optimality in D-MIP’,
the knapsack constraint in PCKP is satisfied due to (3.7c). Constraint (3.7d)
ensures that zj1 + 2y41,1 < % Hence, if fp_ap(z,z) is the objective value
of (z,z) and ¢(I) the objective value of the knapsack solution, then

o 1

fp-mrp(x,z) — C° — 3 <) < fpmp(x, 2) — C°. (3.8)

Now suppose that I is not an optimal knapsack, i.e. there is a feasible set
of items I C {1,..., N} with ¢(I) > ¢(I). Because we assumed the objective

coefficients to be integral, we know that even ¢(I) > ¢(I) + 1 holds. Defining
1 ifke TU{N+1},
0 otherwise,

gives a feasible solution (Z,0) of D-MIP’. But

(N +1+0C°

(3.8)
> fp-mip(z, 2),

fo-mip(E,0) = e(I) + C° >

> c(I)+C° +

NI—= O

which would contradict the optimality of (z, z).

38 Chapter 3. Structural analysis

Step 2: Suppose an optimal split ratio o1 for D-MIP’ is known, i.e. there
is an optimal solution (x, z) of D-MIP’ such that

0 if Pl o o1
a M

2k = o (3.9)
1 if Y > o1,

for all k € {1,..., N+1}. Then the characterisation

1
> e opig =1 3.10
o1 30, L1 (3.10)

holds. For if o1 < 3%],, then %1 = i > o1 and by (3.9), zj1 = ;1 holds.
But 21 < % because of (3.7d), and so z;; = 0. Conversely, if o1 > % holds,
then zy411 =0 by (3.9). Since (z, 2) is optimal, 41,1 = 1 and (3.7d) must
be tight. But then z;; = %, implying x;1 = 1 by (3.7b).

All in all, this gives an algorithm for solving the following problem: Given
an instance of PCKP (with positive weights and objective coefficients) and an
item j € {1,..., N}, decide whether there exists an optimal solution including
item j, or there exists an optimal solution not including item j. (One of the
alternatives must hold.)

First, construct the D-MIP’-instance (3.7) as above. Second, compute a
split ratio oq. If o9 > 3%j, then D-MIP’ has an optimal solution with x;; =1
according to (3.10), and Step 1 gives an optimal solution of PCKP including j.
Otherwise, if o1 < %j, then D-MIP’ has an optimal solution with x;; = 0,
and Step 1 gives an optimal solution of PCKP not including j.

This test for containment can be turned into an algorithm for solving
PCKP in a straightforward way: Start with an arbitrary item and test for its
containment in an optimal solution. If it is contained in an optimal solution,
then mark them as included in the knapsack with all its predecessors. This
yields a new, smaller problem with those items removed and the upper bound
decreased by the sum of the weights of the removed items. Otherwise, if the
item is not included for some optimal solution, then only remove it with all
its successors and mark the removed items as not included in the knapsack.
Continue by choosing another item until none are left.

This procedure finishes with an optimal solution after at most as many
steps as items. Hence, if split ratios can be computed efficiently, then PCKP
can be solved efficiently, i.e. in polynomial time. Since the precedence-con-
strained knapsack problem is NP-hard (see e.g. Kellerer et al. [32]), even when
restricted to positive integer weights and objective coefficients, this proves the
computation of split ratios for D-MIP’ to be NP-hard as well.

To give an analogous proof for the case of D-MIP, the node splitting tech-
nique from the proof of Proposition 2.1 can be used. The proof is essentially

identical except for the additional technical details from node splitting. O

3.3 Integrality of the precedence polytope 39

3.3 Integrality of the precedence polytope

In this section, we will inspect the “precedence polyhedron” given by all the

constraints of D-MIP except for the resource constraints, i.e. the polyhedron

P = {(x7y7z)

We will prove that P is integral, i.e. each of the components of an extreme

z € [0, 1] y € [0,1]57 2 € [0, 1]V
with (2.5a), (2.5b), (2.5¢) and (2.5d) |

point of P is either 0 or 1. This holds essentially because of the close relation to
unconstrained project scheduling. For the latter, Sankaran et al. [47] show this

integrality property for a formulation with ordinary precedence constraints.
Proposition 3.10 P is integral.

Proof. Step 1: First of all, we prove the integrality for the polyhedron Py

given by the inequalities

g1 —2pe <Oforallke{l,.... K}, te{2,...,T},
t

> yks— kg <Oforallke{l,... K}, te{l,...,T},
s=1

¢ _ (3.11)
Ty — Y s <Oforallke{l,...,K}, 1€ P(k), te{l,...,T},
s=1

lforall ke {1,...,K}, te{1,...,T},
lforall ke {l,..., K}, te{1,...,T}.

0 Tl t
0

NN

<
<

Ykt

Vg

For all ke {1,...,K}, perform the substitution given by yr1 = uy; and
Ypt = Ukt — up—1 for t € {2,...,T}. This transforms (3.11) equivalently into

g1 —ape <Oforallke{l,..., K}, te{2,...,T},

g1 —upe <0 forall ke {l,... K}, te{2,...,T},

upy —xpy < Oforallke{l,... K}, te {_1,...,T}7 (3.12)
zre—uy <Oforallke{l,..., K}, leP(k),te{l,...,T},

0< apy <lforallke{l,....K} te{l,...,T},

0< wpy <lforallke{l,...,K}, te{l,...,T}

This transformation is linear, bijective and maps integer points to integer
points. Hence, it induces a bijection between the extreme points of (3.11) and
(3.12). Therefore, it suffices to show the integrality of the polyhedron given
by (3.12).

This is due to total unimodularity: A matrix with integer entries is called
totally unimodular if the determinant of each square submatrix is 0, 1 or —1.

If an m xn-matrix A is totally unimodular and d € R™ is integral, then all

40 Chapter 3. Structural analysis

extreme points of the polyhedron {x € R"| Az < d} are integral. Now the
total unimodularity of the matrix given by (3.12) follows from a simple cri-
terion, see for instance the book of Nemhauser and Wolsey [42, pp. 540]:
Each row contains — besides zeros — either exactly one entry 1 or —1, or two
entries 1 and —1. The right hand side is the zero vector and so the extreme
points are integral.

Now, consider also the z-variables with the constraints
0<z<yg: forallke{l,...,K},ie Ky, te{l,...,T}. (3.13)

Inequalities (3.11) and (3.13) together determine the polyhedron P as defined
above. Let (Z,9, 2) be an extreme point of P.

Step 2: We show that (Z,¢) is an extreme point of Fy. Suppose
m . .
(‘%a Z)) = Z Oéj(.fL’J, yj)
j=1

where E;nzl aj(z7,y7) is a convex combination of some points (z7,y7) € Fy.
Foreach k€ {1,...,K},i€ Ky, t € {1,...,T} and j € {1,...,m}, define

. 0 lf gk,t == 0,
i) o5
“it “ul y]., otherwise.
Ykt
Since 0 < =L < 1, all (z7,97,27), 5 € {1,...,m}, satisfy (3.13) and are in P.
Ykt

By definition,
m
(@,5,2) =) ajal g/, o).
j=1

As (z,9, 2) is assumed to be an extreme point of P, it follows that o; = 0 holds
for all j € {1,...,m} with (27,47, 27) # (2,9, 2). Hence, for all j € {1,...,m}

(a?,y7) # (2,9) = a; = 0.

So the only possibilities to write (#,7) as convex combination of other points
in Py are trivial convex combinations, i.e. (Z,¢) is an extreme point of Py.

Step 3: Finally, we show that any extreme point (Z,4,2) of P is inte-
gral. Step 1 and 2 together yield that all 2- and g-components are binary.
For ke {l,...,K} and t € {1,...,T} with gr, =0, 2,; =0 for all i € K,
by (3.13). Suppose that i« =1 and 0 < Z; 4= < 1 holds for some k* € K,
i* € K= and t* € {1,...,T}. Then we can form a non-trivial convex combi-
nation

(£,9,2) = Zir (2,5, 21) + (1 = 2) (2,5, 2°),

where zl-l*7t* =1, 2z, =0 and Zil,t = zzt = %y for all (i,t) e Nx{1,...,T}
different from (i*,¢*). This is a contradiction to (z,9,Z) being an extreme

N

point of P, thus all Z-variables are integral as well. O

3.4 A lagrangean relaxation approach 41

The same result holds for the precedence polyhedron of D-MIP’, as can be

shown by an analogous proof.

3.4 A lagrangean relaxation approach

3.4.1 Lagrangean relaxation in the literature

Fisher [17] gives a review of applications of the lagrangean approach in integer
programming during the first decade since its initial application by Held and
Karp [24]. As he points out, “[one] of the most computationally useful ideas
of the 1970s is the observation that many hard problems can be viewed as
easy problems complicated by a relatively small set of side constraints.” The
OPMPSP-formulations from Chapter 2 are prototypical examples for this: In
Section 3.3 we showed that the precedence polytope, i.e. the feasible region
remaining when the resource constraints are relaxed, are integral. Hence,
optimisation over this polytope can be done in polynomial time — in this
sense an “easy” problem. Adding the comparatively small number of 27 re-
source constraints, however, results in NP-hard optimisation problems, see
Proposition 2.1.

This motivates the application of lagrangean relaxation to the resource
constraints, hoping to obtain the same dual bounds faster than by the standard
LP-relaxation. For the resource-contrained project scheduling problem (see
Section 2.4.2), similar approaches have been developed and tested by Méhring
et al. [41] and Kimms [33].

Particularly interesting in the OPMPSP-context is an application of la-
grangean relaxation by Caccetta et al. [10] to an integer programming for-
mulation of the OPMPSP. Although they use a slightly different model, the
ideas and results are closely related. The resource constraints are dualised
and the resulting problem is reduced in size. A subgradient algorithm is used
to find optimal Lagrange multipliers. Schedules obtained from solving the
lagrangean relaxation are precedence feasible, but violate the resource con-
straints. Thus a heuristic is proposed in order to reconstruct a fully feasible
schedule. They also show how Lagrange multipliers may be understood as
cutoff grades. Section 3.4.4 will give a similar interpretation for our OPMPSP-
formulation D-MIP.

3.4.2 Lagrangean relaxation of the resource constraints

To formulate the lagrangean relaxation, we introduce non-negative dual La-
grange multipliers p, ..., pur for the mining constraints (2.5e) and 7y, ..., 7
for the processing constraints (2.5f) in D-MIP. We drop the resource con-

straints from the list of constraints in D-MIP and add penal terms to the

42 Chapter 3. Structural analysis

objective function corresponding to their violation. For fixed Lagrange multi-

pliers u, 7w € R;, this gives the objective function

K T N T
Z Z —Ch,tYkt T Z Zpi,tzi,t (3.14)
B
=1

fD—LR(/J,,) (ZL‘, Y,z
1 t=1 =1 t=1

) =
K T N
+ Zﬂt (Utm — Z ak?Jk,t) + Z U’ (Utp - Z aizi,t> .
t k=1 t=1 i=1

The resulting lagrangean relaxation D-LR(u,) reads

maximise
fD—LR(qu) (.TC, Y, Z) (315)
subject to
Tpi1 —The <0 forall ke {1,...,K}, te{2,...,T}, (3.15a)
t
D Yks— ke <O forall k€ {1,...,K},te{1,...,T}, (3.15b)
s=1
¢
Tht — > Yos <0 for all k € {1,...,K}, £ € P(k),
= te{l,...,T}, (3.15¢)
Zit — Ykt <0 forall k € {1,...,K}, i € Kk,
te{l,...,T}, (3.15d)
zry €{0,1} forall ke {1,...,K}, te{l,...,T}, (3.15¢)
0<yrs <1 forall ke {1,..., K}, te{1,...,T}, (3.15f)
0<z,; <1 forallie N, te{l,...,T}. (3.15g)

If we denote by f}, , R(the optimal objective value of D-LR(u,) for fixed

By)
Lagrange multipliers u, 7 € R;FO, then the so-called dual function is given by

¢ : RZOXRQ) - R’ (:U’vﬂ-) L fB—LR(M, w)*

The value of ¢(u, 7) gives an upper bound on f}, ;,;p, the optimal objective
value of D-MIP, for any choice of Lagrange multipliers u, 7 € Rgo. The prob-
lem of computing the best, i.e. lowest, possible bound of that form,

(b* = min ¢(M77T)7 (D_LD)

u,ﬂERgo

is commonly referred to as lagrangean dual. It is a basic result from Inte-
ger Programming that ¢* is at least as low a bound as the bound from the
LP-relaxation. However, because the so-called Integrality Property holds, i.e.

because the feasible region of the lagrangean relaxation problem (3.15) is in-

tegral, we obtain the same bound as by LP-relaxation:

3.4 A lagrangean relaxation approach 43
Proposition 3.11 ¢* = f} ;p.

Proof. The feasible region of the lagrangean relaxation given by constraints
(3.15a) to (3.15g) is exactly the precedence polytope P, for which Proposi-
tion 3.10 guarantees integrality. From a result of Geoffrion [20] it follows that
in this case the LD-bound equals the LP-bound. O

This result shows that from a computational perspective the integrality of
the precedence polytope P is not only beneficial. If P was not integral, we
could hope for the lagrangean relaxation approach to provide us with tighter
bounds than the LP-relaxation — with P integral it is clear that lagrangean
relaxation can do no better than the LP-relaxation, at least in terms of the
dual bound obtained. The use of lagrangean relaxation, however, is not limited
to the computation of dual bounds. Although solutions of the lagrangean
relaxation are in general not completely feasible for the original problem, they
can often be used as a basis for heuristics, an aspect that will be treated
further in Chapter 6.

As Geoffrion [20] also points out, generally “it is more promising to use
Lagrangean relaxations for which the Integrality Property does not hold.” He
adds, though, that “this negative conclusion rests on the implicit assumption
that [the LP-relaxation] is of manageable size”. Since realistic OPMPSP-
instances are large-scale, this assumption may not hold. Geoffrion also men-
tions another case where the lagrangean approach may be valuable despite
yielding at best the LP-bound — if “a near-optimal solution [of the lagrangean
dual] can be found by specialised means more rapidly than [the LP-relaxation]
can be solved by linear programming methods”.

The following shall demonstrate exactly this: Programme (3.15) can be
transformed to an unconstrained project scheduling problem and solved ef-
ficiently via minimum cut computations in a suitably constructed network,

following an approach of Mohring et al. [41].

3.4.3 Solving the lagrangean relaxation by minimum cut

computations

For this section fix Lagrange multipliers 1,7 € RZ and consider D-LR(u,).
The z-variables are merely bounded below by 0 and bounded above by cor-
responding y-variables according to constraints (3.15d). Hence, their value
in an optimal solution may be deduced from their coefficient in the objective
function.

Forke{l,...,.K},ie Ky, t€{1,...,T},

Rit = Dit — T4

44 Chapter 3. Structural analysis

is the objective coefficient of z; ; and

0 if k;¢ <0,
2y = . 4t (3.16)
y;;’t if kip >0,

will hold in any optimal solution (z*,y*, 2*) of D-LR(u,). For each aggre-
gate Ki, k€ {1,...,K},and t € {1,...,T}, define the “sub-aggregate”

K;t {i € K| kit > 0}.

With this notation and (3.16), the objective function (3.14) transforms to

f:z:y-D-LR(u,) (:C, y)
K T K T
= Z Z —Cht Ykt T Z Z Z DitYkt
=1 t=1 k=11=1 e,
T K T K
+> (Utm - Z%%,t) Y m | UP =D aiyky
t=1 k=1 t=1 k=1,cic+

T
Wk tYkt + Z (,UtUtm + Wth)a
t=1

E

=1t

Il
i

where
Wit = —Ck,t — MO + Z Dit — TtQ; -
—_———
€0, =k

Thus we obtain the programme zy-D-LR(u,):

maximise
K T T
fey-D-LR(, =) =) wpayks + Y (UM + mUY) (3.17)
k=1 t=1 t=1
subject to

Tpi1—The <O forall ke {1,..., K}, te{2,...,T}, (3.17a)

> ks —ake <0 forallke{l,..., K}, te{l,...,T}, (3.17b)

Thi— > yus <0 forallke{l,...,K}, £ € P(k),
te{l,....,T}, (3.17¢)
xpy €{0,1} forall ke {1,..., K}, te{1,...,T}, (3.17d)
0<yps <1 forall k e {1,..., K}, te{l,...,T}. (3.17¢)

Step 1 in the proof of Proposition 3.10 showed that the feasible region is an

integral polyhedron. Hence, we may assume the y-variables to be binary.

3.4 A lagrangean relaxation approach 45

Furthermore, it can be seen that in any feasible solution, decreasing the
value of 54 to S0 yrs for all k€ {1,...,K} and t € {1,...,T} will pre-
serve feasibility. The objective function f,,_p.rr(u, x) does not depend on the
x-variables, hence we may assume without loss in the objective value, that con-
straint (3.17b) holds with equality and substitute the z-variables accordingly.
This yields the programme y-D-LR(u,):

maximise
K T T
fy-D-LR(s, oy Z Z Wk tYk,t + Z (MtUtm + 7TtUtp) (3.18)
k=1t=1 t=1
subject to
T
Zym <1 for all k € {1,..., K}, (3.18a)
t=1

t
Zy;@s—Zy&séO forall k € {1,...,K}, £ € P(k),
5= =t te{l,...,T}, (3.18h)

ypt € {0, 1} forall k e {1,..., K}, te{1,...,T}, (3.18¢)

which has almost the form of an unconstrained project scheduling problem. It
only remains to add a slack time period T'+1, during which all the aggregates
not mined can be scheduled with zero cost. The resulting project scheduling
formulation PS-D-LR(p,) reads

maximise
K T T
fy-D-LR(u, = (Y Z Z Wk tYkt T+ Z (MtUtm + 7TtUtp) (3.19)
k=1 t=1 t=1
subject to
T+1
Zym =1 for all k € {1,..., K}, (3.19a)
t t
> U= Y <O forall k€ {1,...,K}, £ € P(k),
s= s=1

te{l,...,T}, (3.19b)

Ykt €{0,1} forall k e {1,..., K},
te{l,...,T+}. (3.19)

Méhring et al. [41] present an algorithm to solve unconstrained project schedul-
ing efficiently by minimum cut computations in a suitably constructed net-
work, which we will outline in the following.

For fixed Lagrange multipliers, the term Ethl (,utUtm + mUY) is an addi-
tive constant and can be disregarded when finding optimal solutions. Further-

more, we can shift the objective coefficients of the variables y. 1, ..., yg 741 for

46 Chapter 3. Structural analysis

some k € {1,..., K} by the same arbitrary constant C' — due to constraints
(3.19a) this is equivalent to adding a constant offset of C' to the objective

function:

T T+1
Z(wk,t + Okt + Cypr1 = Z Wk, tYk,t + Z Cyrt = Z WYkt + C.

t=1

We use this to transform PS-D-LR(p, 7) to a minimisation problem with non-

negative objective coefficients. For each k € {1,..., K} let

wp ™ = max{ maXT Wit O}
t_

=1l,...

and define
n wp®™ —wgy fort=1,...,T,
Wg s =
wp fort =T+1.

Then the objective function

K T+1 T
+

E : E :wk,tyk,t E W™ — Wi)Ykt + WYk 1

k=1 t=1)

>
5

(
[

T T+1
- Z Wk tYk,t T+ Z w?“l/k,t)

k=1 \ i=1 =1
K T
= —Zzwktl}kzt +Zwmax
k=1 t=1
T K
= —fPs-D-LR(u, =) (Y) + Z (U + mUF) + Z wi”
=1 k=1

~
constant w.r.t. y

differs from fpg.p.pr(u, x) Only by its sign and an offset which is constant with
respect to y. Thus, an optimal solution for PS-D-LR(u,) can be computed

by solving the unconstrained project scheduling problem

minimise
K T+1

DD Wik (3.20)

k=1 t=1
subject to (3.19a), (3.19b), (3.19¢c).

To this end, we construct the following capacitated digraph D = (V, A) ac-
cording to Mohring et al. [41]: The node set contains a source a, a sink b and
one node for each k € {1,...,K} and t € {0,...,T+1}, i.e.

V={a,b}U{vps|k=1,...,K, t=0,...,T+1}.

3.4 A lagrangean relaxation approach 47

A C V xV consists of three types of arcs:

» auxiliary arcs (a, vy o) leaving the source and (v 741, b) entering the sink
for all k € {1,...,K};

m assignment arcs ep; = (vps—1,vk¢) for all ke{l,...,K} and
te{l,...,T+1} — one directed chain for each aggregate; and

m precedence arcs (v, v) for all ke {l,...,K}, (€7P(k) and
te{l,....,T+1}.

Each assignment arc ej; = (vk—1,vk,) for k€ {1,..., K}, t e {1,...,T+1}
takes capacity c(vg¢—1,Vkt) = Wk, which is non-negative by definition. The
auxiliary arcs and the precedence arcs are assigned infinite capacity.

By an a-b-cut of D we understand any ordered pair (X, X) of disjoint node
sets X,X CV with XUX =V and a € X, b € X. Its capacity is defined by

ueX,ueX

possibly infinite. A minimum a-b-cut is an a-b-cut of minimal capacity.

We call an a-b-cut of D a K-cut if it contains exactly one assignment arc
for each aggregate. For now, the capacities of assignment arcs are all finite,
and an a-b-cut of finite capacity always exists. In Section 3.5, though, we will
incorporate valid inequalities into the relaxations which will result in possibly

infinite capacities even on the assignment arcs.

Lemma 3.12 Let (X, X) be a minimum a-b-cut of D. Then there exists a K -
cut (X*, X*) of D with the same capacity. Given (X, X), the K-cut (X*, X*)
can be computed in time O(KT).

Proof. W.Lo.g. we may assume that ¢(X, X) is finite. (X, X) must contain
at least one assignment arc for each aggregate Ky, k € {1,..., K}, otherwise
there would be a path (a, vk, ...,V r+1,b) connecting a and b. It can be
checked that choosing for each aggregate only the assignment arc in the cut
with lowest time index already gives an a-b-cut, for details see Mohring et
al. [41]. This gives a K-cut with the same capacity, since ¢(X, X) was already
minimal.

To compute this K-cut, given (X, X), one must inspect at most 7'+ 1 nodes
for each aggregate. 0

The relation between feasible schedules for (3.20) and finite K-cuts is intu-
itive. Given a finite K-cut, schedule each aggregate Ky, k € {1,..., K}, in the
time period ¢t € {1,...,T} for which the corresponding assignment arc ey is

in the cut — or schedule K, not at all if e, 711 was included. Feasibility of the

48 Chapter 3. Structural analysis

resulting schedule is guaranteed since precedence arcs can never be included
in a finite cut.

Conversely, any feasible schedule for (3.20) immediately gives a finite K-cut:
For each k € {1,..., K}, if aggregate Ky is scheduled in time period ¢, then
delete the assignment arc ey ; from D, respectively ey, 711 if K was not sched-
uled. The project scheduling constraints guarantee that this splits D into two
components which indeed form a finite a-b-cut. The objective function value
of a schedule equals the capacity of the corresponding cut by construction.
The following proposition now gives the precise relation between a-b-cuts of D

and the original lagrangean relaxation D-LR(u,7):

Proposition 3.13 Let Lagrange multipliers p,m € R;FO be fixred. D-LR(pu,)
is feasible if and only if the digraph D contains an a-b-cut of finite value.
Let (x,y,z) be an optimal solution of D-LR(u,), then (X,V —X) with

X={a}U{vpolk=1,..., K} U{vps|ap; =0,k=1,... . K, t=1,...,T}

is a minimum K -cut of D. Conversely, let (X, X) be a finite minimum K -cut

of D, and define for each k € {1,..., K}, i € K, t € {1,...,T},

1 if v € X,

Lkt = .

0 otherwise,

1 if Vg t—1 S X, Ukt S X,
Ykt =)

0 otherwise,

yk,t le S ’Clj,t’
Zit =

0 otherwise.

Then (x,y,z) is an optimal solution of D-LR(u,).

Proof. In the above discussion we have explained in detail the relation
between the solution sets of D-LR(u,) and (3.20). The mapping

F 2 {0, 10 — RETXRIOTXRYT v — (9, 2)

defined by

¢
Tpt = E Yk,s»
s=1

.@k,t = Ykt

X yre ifi € KL,
Zit =

0 otherwise,

3.4 A lagrangean relaxation approach 49

for all ke {1,...,K}, i€ K and t € {1,...,T}, maps every solution y of
(3.20) injectively to a solution F'(y) of D-LR(u,m). The objective function

values are related by

K T+1 T K
Z Z wi Ykt = = Fp-LR(=) (F () + Z (U + mUP) + ngla)(’
k=1 t=1 =1 k=1

constant w.r.t. y

so minimisers of (3.20) correspond to maximisers of D-LR(u, 7). F' is not sur-
jective on the set of feasible solutions of D-LR(u,), but the optimal objective
value of D-LR(u,7) is contained in the image of fp.pp(,, - © F. Therefore,
optimal solutions of D-LR(u,) can be computed by first solving (3.20) and
subsequently applying the transformation F. Feasible solutions of (3.20) are
in turn in a natural one-to-one-correspondence with finite K-cuts of D as ex-
plained in the last preceding paragraph, for details see the proof by Mohring
et al. [41].

Now, because its feasible region is bounded, D-LR(u,) is feasible if and
only if it has an optimal solution. Those are exactly of the form F(y) for a
solution y of (3.20). Since solutions of (3.20) correspond one-to-one to finite
K-cuts of D, the first statement about feasibility is proven. Following this
chain of relations in detail yields exactly the correspondences between optimal

solutions as stated in the proposition. O

This shows that D-LR(u,) can be solved efficiently. The algorithm de-

scribed has the following complexity:

Corollary 3.14 For fized Lagrange multipliers p, ™ € Rgo, D-LR(u,) can be
solved in time O(NT + mKT?log(K*T/m)), if m = Y1, |P (k)| is in Q(K).

Proof. The digraph consists of K(T'+2)+ 2, i.e. O(KT), nodes and
K(T +3)+m(T — 1) arcs, which is O(mT) if we assume that m is Q(K),

1" The analysis of

i.e. that the precedence graph is not unrealistically sparse.
the push-relabel-algorithm by Goldberg and Tarjan [23] gives the complexity
of computing a minimum a-b-cut of D as O(mKT?log(K?T/m)). Converting
this into a K-cut is possible in O(KT) time, and deducing the solution for
the original problem D-LR(u,7) has complexity O(NT), because the values

of the z-variables need to be determined. O

!By definition, m € QK if K € O(m).

50 Chapter 3. Structural analysis

3.4.4 Lagrange multipliers and cutoff grades

Consider again the original lagrangean relaxation D-LR(u,) for some fixed
multipliers u, 7 € R;FO. Above we already pointed out that in any optimal

solution (x*,y*, z*) the z-variables must satisfy condition (3.16), i.e.

0 if Rit < 0,
Zit = . .
Yrt if kip >0,

with ;¢ = piy — ma; for all i € N and t € {1,...,T}. This means that in
some time period t € {1,...,T}, a block i € N is selected for processing if

Pbi,t
a;

the ratio of processing profit to rock weight is greater than the Lagrange
multiplier 7, and discarded as waste if it is less.

The processing profit p; ¢ is typically of the form

a?recore — a;CP
aA+nt

where 7 is some discount rate, a"® denotes the amount of ore in block 7, C°*

the sale price per unit ore and CP the processing cost per unit rock. Then

Kig >0 <= (af"°C" — a;CP) /(1 +7)" > may

ag™ (14 r)im + CP
= > Core :

i.e. block 7 is selected for processing in time period t if its oregrade exceeds
the value of (1+T)Ct+ffcp — exactly a cutoff grade decision depending on the
Lagrange multipliers for the processing constraints.

If we let my = 0, i.e. if we do not penalise violation of the processing con-
straint and allow for arbitrarily much rock to be processed, we get the lowest
reasonable cutoff grade of % and select all blocks whose processing profit
just outweighs the cost. As m; grows, the cutoff grade also grows, and more
and more material with oregrade above this basic cutoff grade is discarded so
as to avoid further increase of processing constraint violation.

An analogous interpretation of Lagrange multipliers is given by Caccetta et
al. [10] for a slightly different OPMPSP-formulation. Further insight is gained
when looking at the role of optimal Lagrange multipliers, i.e. of Lagrange mul-
tipliers p,w € Rgo which solve the lagrangean dual and for which D-LR(u,)
yields an upper bound as low as the LP-bound: ¢(u,7) = fE_LR(M’ﬂ) = ¢*.
Because the precedence polyhedron remaining after relaxation of the resource
constraints is integral, optimal Lagrange multipliers are exactly optimal dual
multipliers associated with the relaxed constraints in the LP-relaxation (see

e.g. Geoffrion [20]). With this in mind, the following result appears natural:

3.5 Valid inequalities 51

Proposition 3.15 Let 7* € R; be a vector of optimal dual multipliers asso-

ctated with the processing constraints
N
> aiziy <UP forallte{l,...,T}
i=1

in D-LP. Then © = (x},...,7}) is a sequence of split ratios for D-LP as
defined in Section 3.2. Fven more,
. 0 if Bat < mf,

yr, if Pt > ¥,

) a;

holds for allk € {1,..., K}, i € Ki, t € {1,...,T}, not only for some, but for
any optimal solution (x*,y*,z*) of D-LP.

Proof. Fix any optimal primal solution (x*, y*, z*) of D-LP. Let w denote the
vector of (non-negative) dual variables for constraints (2.5d) in D-LP. Fix val-
ues for k € K, i € Ky and ¢t € {1,...,T}. The primal variable z;; corresponds
to the constraint

Wit + QT 2= Py

in the dual programme. By definition, the dual variable w;; corresponds to

the constraint z;; < yi;. Complementary slackness yields
W;t (yZ,t - Z;kt) =0,
24 (w;k,t + a;m; — pig) =0,
where w;’jt denotes the value of the dual variable w; ; in the same optimal dual

Dit *
o < then

solution from which 7* was taken. Now, if

* * *
Wiy T aimy —pix > wiy 20

Dit *
o > m; then

and so 2, = 0. If
Wiy = pit —a;my >0

* %
and 27, =y ;. O

3.5 Valid inequalities

This section treats the addition of valid inequalities to the LP- and lagrangean
relaxation in order to tighten the dual bounds. We recall the following basic

definition from integer programming:

Definition 3.16 An inequality b'x < by with b € R™, by € R, is called valid
inequality for a set X CR™ if b"x < by holds for all x € X.

52 Chapter 3. Structural analysis

Here, X is typically the feasible region of an integer or mixed-integer linear
programme. By definition, adding a valid inequality b'x < by to the list of con-
straints does not change the feasible region itself, i.e. {x € X |b'x < by} = X.
However, in general it can restrict the domain over which the LP-relaxation
is solved. For “good” valid inequalities, this results in tighter dual bounds.

First, we will show how general valid inequalities for D-MIP are integrated
into the LP- and lagrangean relaxation. Second, we will look at problem spe-

cific valid inequalities for D-MIP, in particular valid fixings of single variables.

3.5.1 Integrating valid inequalities in the LP-relaxation

A general valid inequality for D-MIP has the form
b '+ 0%y + 63 2 < bo, (3.21)

where b!, b2 € REXT p3 € RVXT and by € R. (Because the zero solution is
always feasible, we know that by > 0.) This can simply be appended to the
list of constraints of the standard LP-relaxation D-LP. For the reduced LP-
relaxations z-D-LP and y-D-LP as well as for integration into the lagrangean

approach, the following observation is crucial:

Lemma 3.17 Let (3.21) be a valid inequality for D-MIP with b* > 0, then

K T T N T
Z Z <bi,t + Z bllq,s> Ykt + Z Z bitzi,t < b (3.22)
k=1 t=1 s=t

=1 t=1

is also valid for D-MIP. The optimal objective values of D-LP with (3.21), of
y-D-LP with (3.22) and of x-D-LP with

K [T-1 N T
D (bhs+ Ve = bhorr) Tt + (bhr +05r) zer | + > Y bz < bo
k=1 Lt=1 i=1 t=1
(3.23)
are equal.

Proof. By definition, (3.21) holds for any feasible solution (x,y, z) of D-MIP.
For b' > 0, constraint (2.5b) yields

K T /T K T t K T
9SO SN PIED 9 SUN 0 9P B) oot
k=1t=1 \s=t k=1 t=1 s=1 k=1 t=1

With this, (3.22) follows directly from (3.21).

The solution sets of y-D-LP and x-D-LP are in one-to-one correspondence
via the substitution z; = 22:1 Yrs- This is exactly how (3.23) is derived
from (3.22) and vice versa, thus also the solution sets of y-D-LP with (3.22)
and of x-D-LP with (3.23) are in one-to-one correspondence and the optimal

objective values are equal.

3.5 Valid inequalities 53

The rest follows if we assume that (2.5b) holds with equality in D-LP. As

explained in Section 3.1, this does not affect the objective value. O

First, note that in general (3.23) is not valid for D-MIP. Consider for
example the mining constraints (2.5e), which are trivially valid inequalities.
For these, (3.23) reads

K

1 < U resp. Zakxkt—xkt 1) UM forallt € {2,...,T},
k=1 k=1

(]~
Al
e

(For the variant D-MIP’, where each aggregate must be completely mined
during one time period, (3.23) is valid, though.)

Second, the condition b' > 0 holds for a large class of valid inequalities, for
example for combinatorial cutting planes such as the knapsack cover inequal-
ities mentioned in Section 3.5.3, where coefficients are 0 or 1.

Here, we treated only the case of one single valid inequality, but everything

holds equally for arbitrarily many valid inequalities.

3.5.2 Integrating valid inequalities in the lagrangean relaxation

Consider again a valid inequality for D-MIP of the form (3.21). One possibility
is to append (3.21) to the list of constraints of the lagrangean relaxation.
This would destroy the integrality of the feasible region and the solution via
computing a minimum K-cut could not be applied anymore.

Hence, we rather dualise the valid inequality in the same way as the re-
source constraints. However, the transformation of the lagrangean relaxation
to a project scheduling problem relied on zero coefficients of the z-variables
in the objective function — this is not satisfied if b' # 0 in (3.21). Under the
assumption that b' > 0, Proposition 3.17 showed that (3.22) is equally valid
and yields the same dual bound. Compared to the original one, it has the
favourable property that it does not depend on the z-variables. Now, if we
introduce a non-negative Lagrange multiplier o and penalise the violation of

(3.22) in the objective function, then the extended lagrangean relaxation reads

maximise
K T N T
Z Z —Ch,tYk,t T Z Z DitZi
k=1 t=1 i=1 t=1
T K T N
+ Z fht <Utm _ Z akyk,t> + Z " (Utp — Z a;zi t) (3.24)
T K o T N le
+ o bO_ZZ<b%,t+Zbks>ykt Zzb,t'zlt]
k=1t=1 s=t i=1 t=1

subject to (3.15a), (3.15b), (3.15¢), (3.15d), (3.15e), (3.15f), (3.15g).

54 Chapter 3. Structural analysis

The underlying polyhedron is the same as for the original lagrangean relax-
ation and thus integral. Hence, Proposition 3.11 continues to hold: The lowest
possible bound obtained from the extended lagrangean relaxation (3.24) equals
the optimal objective value of D-LP with (3.21) added.

For fixed Lagrange multipliers u, m € Rgo, a € R, the extended lagrangean
relaxation can be solved by computing a minimum K-cut as described in Sec-
tion 3.4 — only the new objective coefficients must be taken into account. The

objective coefficient of variable z;, i € N, t € {1,...,T}, is now
_ 3
Rit = Dijt — TeQi — abi7t7

and in general K1, w and w™ change.

Note that adding valid inequalities which involve some of the z-variables
can destroy the structure given by split ratios as presented in Section 3.2.
Also the relation between Lagrange multipliers and cutoff grades given in
Section 3.4.4 is distorted. For valid inequalities (3.21) with % = 0, though,
the outlined structure on the z-variables is preserved.

Proposition 3.15 gave the result that any optimal dual multiplier vector m
for the processing constraints gives split ratios for D-LP. If we add valid in-
equalities to D-LP which do not involve the z-variables, then this result con-
tinues to hold. Since D-LP strengthened by the additional valid inequalities
gives a better approximation of D-MIP, the split ratios for this strengthened
LP-relaxation might be expected to be closer to the split ratios for D-MIP. In
particular the problem specific valid inequalities presented next only depend

on the z-variables.

3.5.3 OPMPSP-specific valid inequalities

In Section 2.4.1 we pointed out the structure of the precedence-constrained
knapsack problem found in the OPMPSP-formulations. Inequalities which
are valid for the precedence-constrained knapsack problem can be used to
deduce valid inequalities for D-MIP and D-MIP’. Prototypical examples are
knapsack cover-like inequalities:

Consider the knapsack problem KP from Section 2.4.1. We call s subset
of items S C N a cover if not all of the items in S can be included in the
knapsack due to) ,.gw; > U. Then the at most |S| — 1 items from S can be
chosen, i.e. the so-called knapsack cover inequality >, ¢ x; < |S| — 1 is valid
for KP.

Fricke [18] gives an extensive exposition of well-known valid inequalities for
the precedence-constrained knapsack problem and presents new results. From
these, he derives valid inequalities for the two OPMPSP-formulations (2.3)
and (2.4), which are also valid for D-MIP’ and D-MIP, respectively. He tests
their effect on solving the models by standard LP-based branch-and-cut — for

3.5 Valid inequalities 55

many inequalities the results were ambiguous, except for the simplest class,
which we will explain in the following and use in all further experiments.

The basic idea is simple: As an example, suppose that for some aggre-
gate K, k € {1,..., K}, the weights a, of all aggregates Ky in the complete
predecessor cone of [sum up to an amount greater than or equal to the
mining capacity of the first time period Uj". Then it is intuitively clear that
none of aggregate Kj can be mined in the first time period and x;; <0 is
valid for D-MIP. A valid inequality of this form is often called variable fixing.
Denote by

_ — — l+1.
ﬁ(k):{6’a(kiko,...,@m_ﬁ)e{1,...,K} }
kiE’P(ki_l) Vi=1,...,m

the set of indices of aggregates which are contained in the complete predecessor
cone of some aggregate Ky, k € {1,..., K}. Then we can prove the following
variable fixings to be valid for D-MIP:

Proposition 3.18 If for ke {1,...,K} and t € {1,...,T},

t
daz=d Ur
s=1

0P (k)
then the variable fizing
Yk,s = 0
is valid for D-MIP for all s € {1,...,t}. If even zéeﬁ(k) ap > 22:1 U holds,

then also

Tpt = 0

1s valid for D-MIP.

Proof. 'We prove the contraposition: Suppose 1 = 1 in a feasible solution
of D-MIP, then

(2. 5c ¢ t
Z ay = Z aéxkt <) Z ay <Z y@,s> + ag Z Yk,s
teP(k teP(k LeP (k) s=1 s=1
(%) K ¢ ¢ K (2.5€)
U5 a (zy) ¥ (zy> 2 z
/=1 s=1 \/=1

must hold, the negation of the inequality required in the proposition. In the
case when even 22:1 Yk,s > 0, then inequality (x) is strict since we assume ay,

to be strictly positive. O

The reason why the weak inequality condition does not imply valid fixings

on z-variables is that a value of 1 for some x4, k € {1,..., K}, t € {1,...,T},

56 Chapter 3. Structural analysis

only allows the mining of aggregate K to be started in time period t — it
does not force mining to be started, i.e. Zizl Yk, can still be zero. Although
fixing xy; to zero in the case where ZZeﬁ(k) ay = Zi:l UM is not theoretically
valid, it does not cut off any feasible mine schedules, which are in fact given
by the values of y- and z-variables. In the reduced LP-relaxations and in the
lagrangean approach, both cases coincide automatically.

For the LP-relaxation, the variable fixings from Proposition 3.18 can simply
be added to the list of constraints in order to strengthen the relaxation. For the
lagrangean relaxation, they could theoretically be treated as valid inequalities
as described in the last preceding section — introduce a new Lagrange multiplier
and dualise the “inequality”. This increases the space of dual multipliers and
makes solving the lagrangean dual more difficult.

Dualising the variable fixing inequality is unnecessary, though, since the
variable fixing does not destroy the integrality of the precedence polytope and
can be taken into account implicitly in the minimum cut approach: Suppose
xy is fixed to zero for some k€ {1,...,K}, te{1,...,T}, then we only
have to modify the minimum cut digraph D slightly: either by shortening

the directed chain (a, vy, ...,V 741,0) to (a,vg¢, ..., Ve 1+1,b) and deleting
the precedence arcs leaving nodes vy 1,...,v;; or by setting the capacities
on the assignment arcs ey 1, ..., ex; to infinity. Both methods guarantee that

aggregate Ky is mined no earlier than during time period ¢+1.

3.6 Conclusion

This chapter provided a starting point for the next chapters by analysing basic
structural properties of the OPMPSP-formulation D-MIP. Section 3.1 treated
the standard LP-relaxation together with a simple reduction, Section 3.4 was
concerned with relaxing the resource constraints in a lagrangean fashion. Both
methods for computing dual bounds will be evaluated in detail in Chapter 4.

Section 3.2 highlighted important knapsack structure and its implications
for optimal cutoff grades. These results will be the basis for the column ag-
gregation techniques discussed in Chapter 5.

In Section 3.5, we showed how valid inequalities can be integrated in the
reduced LP-relaxation and the lagrangean relaxation under a simple condi-
tion. We concluded by briefly outlining valid inequalities which arise from the

precedence-constrained knapsack problem structure.

Chapter 4

Dual bound computation

Our central aim is naturally to obtain high quality OPMPSP-solutions, a
challenging task for an NP-hard problem. To this end, heuristic methods will
be presented and tested in Chapter 6. In some sense complementary, this
chapter is concerned with how to evaluate the quality of primal solutions by
computing dual bounds. Being able to obtain good bounds on the optimal
objective value within reasonable running times is a key ingredient for many
optimisation algorithms, such as for a classical branch-and-bound approach.
The computation of dual bounds is not only of theoretical importance, though.
It is crucial also in practise in order to evaluate the quality of solutions and
provide engineers with confidence in the mine plans developed.

In Chapter 3 we considered two relaxations of D-MIP, the standard LP-
relaxation with simplifications and a lagrangean relaxation of the resource
constraints. This chapter compares the computational performance of both
approaches. Section 4.1 gives a brief survey of several methods for solving
the lagrangean dual. The computational results from Section 4.2 show that
solving the lagrangean dual via a bundle algorithm clearly outperforms solving

the LP-relaxation directly.

4.1 The lagrangean dual

4.1.1 The lagrangean dual — a convex nondifferentiable

optimisation problem

In Section 3.4 we defined the dual function

¢ : Rgo XR; — R, (:U’? 7[') — f;)—LR(,u, ™)

which for a fixed vector of multipliers gives the optimal objective value of

the lagrangean relaxation, providing an upper bound on the optimal objective

57

58 Chapter 4. Dual bound computation

value of D-MIP. The so-called lagrangean dual is the problem of computing ¢*,
the tightest bound achievable by any ¢(u,), i.e.

¢* = min_ ¢y,).

p,mERT

The dual function ¢ is well-known to be piecewise-linear and convex,' thus
solving the lagrangean dual poses a convex nondifferentiable optimisation
problem. In the next sections, we will outline the most prominent methods
from the literature for solving the lagrangean dual.

As a general setting, consider the primal problem
max {c'z|Ax < b, z € Q}, (P)

where ¢ € R", A € R™" b R™ and Q CR™. In the case of P being a
mixed-integer linear programme, Q takes the form {x € Z™ xR" | Bz < d}.2
For fixed Lagrange multiplier vector A € RY|, the lagrangean relaxation with
respect to constraints Ax < b reads

d(N) = max {c'z+ \"(b— Az)} (LR)

zeQ

and the lagrangean dual becomes

¢ = min p(A). (LD)

A0

A fundamental object in nondifferential, convex optimisation is the subdiffer-

ential of a function f:R™ — R at a point u € R™, defined as
Of(uw) ={y e R"| f(v) = f(u) +y'(v—u) for all v € R"}.

Its elements are called subgradients of f at u and by definition provide a linear
underestimation of f. At points, where f is differentiable, the subdifferential
is formed by the gradient alone, but otherwise subgradients are not unique.
By definition of the subdifferential, a point © € R™ is a global minimiser of f if
and only if 0 € f(u). In the lagrangean setting, subgradients are immediately

at hand when the lagrangean relaxation is solved:

Theorem 4.1 Let a Lagrange multiplier vector A € RY be fived and 20 € Q be
an optimal solution of the lagrangean relazation, i.e. ()= cTa:O—f—)\T(b —Axo).

Then b — Az® € 9p(N).

Let @ be the finitely many extreme points of the feasible region of D-LR(u,7),
then fp.pp(u,) (2,y,2) is an affine function of (u,m) for each fixed (x,y,2z) € Q. Thus,
d(1, T) = MaX(5,y 2)eq fD-LR(u, ») (%, Y, 2) is piecewise-linear and convex as the maximum over
finitely many affine functions.

2Lagrangean relaxation is a versatile and general tool and by far not restricted to (mixed-
integer) linear programmes. Further prominent applications are found in Quadratic Pro-
gramming, Semidefinite Programming and others.

4.1 The lagrangean dual 59
Proof. For any X' € RT},
d(\N) = max {cTz+ X' (b— Az)}
c'z® + N (b — Ax)
'z + AT(b— Az%) + (N = A)T(b — A2®)
= ¢(A) + (b— Az")T(N = \),

Z
Z

thus b — Az® € d¢(\) by definition. O

Next, we give a brief survey of methods for solving the lagrangean dual,
largely following Lemaréchal [36]. These methods are — except when we come
to column generation — “oracle-based” in the sense that no further knowledge
about the function ¢ is assumed than the existence of a “black box” type of
algorithm or oracle, which for each A € RY}, returns the function value ¢(\)
together with a subgradient gy € d¢(\). The latter is typically obtained via
Theorem 4.1, though this is not explicitly used by the general convex opti-
misation algorithms. Only the column generation approach, which we will
present in connection with the cutting plane method, will make use of this

specific structure.

4.1.2 The subgradient method (Uzawa [49])

The subgradient method initially devised by Uzawa [49] rests on the following
observation. Suppose we start with a candidate A € RY, then by definition
it holds for any A* € RY| with lower function value, e.g. any minimiser of ¢,

that
P(AN) > d(A") = G(A) + gr (A" = N).

Hence, gy(A* — A) <0, which can be used to show that for ¢ > 0 sufficiently
small, the point A — tgy is strictly closer to A* than A.> This motivates an
iterative algorithm, where starting from some multiplier vector A!, we choose
a stepsize tx > 0 at each iteration K = 1,2,..., and set

/\K+1 —)\K o tKg)\Ka
hoping to move closer to a global minimiser. Convergence of the sequence
(¢ ()\k))kzl o to ¢" is guaranteed for suitable choice of stepsizes, but it is in
general rather slow and depends heavily on the right choice of stepsizes, often

a difficult issue.

I = tgn = XTI = (A= tgn — A7) T(A = tga = A7) = A = N7[I* = 2tg{(A = A") + g9
< A= N2 for 0 <t < 225220

PR (gx # 0 because A is not optimal.)
A

60 Chapter 4. Dual bound computation

4.1.3 The cutting plane method of Cheney-Goldstein [13] and
Kelley [31]

The subgradient method uses only the current subgradient at each iteration.
In contrast, the cutting plane method makes use of the fact that after K it-
erations, the K subgradients provide us with a piecewise-linear underestima-
tion ¢ of ¢, called the current cutting plane model of :
0" () = max {6(X) + gl (A=A},
k=1,..,K
Taking ¢ as an approximation of ¢, we minimise ¢¥ instead of ¢ itself to

obtain the next iterate by solving the linear programme

minimise 7
subject to r > gb()\k) + 9y (A=)\k) forall k € {1,..., K}, (4.1)
(A7) € RT xR,

Let (rf+1, AK+1) be an optimal solution of (4.1), then we set A1 as the next
iterate and call the oracle again. At any time, the optimum ¢* is bracketed
by

which can be used as a stopping criterion. Since the sequence (rk) 6—23..
is nondecreasing and bounded, it converges to a limit. Under the impor-
tant condition that the sequence ()\k)

limyp oo 7 = @*.

k—1 s bounded, we can prove that

4.1.4 Column generation

The subgradient and the cutting plane method are both algorithms designed
for general convex optimisation problems and do not make use of the specific
structure of the original problem. Nevertheless, the cutting plane method
applied to the lagrangean dual of a mixed-integer programme allows for a
clarifying interpretation as the dual version of column generation. Suppose we

want to solve the linear programme
max{c'z| Ar < b, z € conv(Q)}, (4.2)

a relaxation of the original mixed-integer programming problem P. If) is such
that conv(Q) is a bounded polyhedron with extreme points »!,..., 3>, then

all points = € conv(Q)) take the form of a convex combination Y 7, ay»"* and

4.1 The lagrangean dual 61

(4.2) can be reformulated as

XX
maximise ¢’ (E ak%k>
k=1

subject to A (22;1 ak%k) <

Zz(:1 Qg

(MP)

i

)

Il
o = o

o = for all k € {1,...,x},

the so-called Dantzig- Wolfe decomposition of (4.2) (see [15]), also referred to
as the master problem. MP contains a large number of variables, but in a
column generation approach most of them are handled implicitly and only a
small number of columns {z', ..., 25} C {5, .., 55} is present explicitly in

the so-called restricted master problem

K
maximise ¢’ <Z akxk>
k=1
subject to A (Zszl ak:ﬁk> < b, (RMP)

> =54
ap >0 forall ke {l,...,K}.

Solving RMP gives a primal solution as well as a vector A € RYj, of optimal
dual multipliers associated with the inequality constraints A(> szl akmk) < b.
If for all columns k € {1,...,} of MP the reduced cost ¢"»" — A\TAs* is
non-positive, then the optimal RMP-solution is also optimal for MP. Other-
wise, solving the so-called pricing problem
(A {CT%k —)\TA%k} (4.3)
results in one ore more columns with positive reduced cost, which we can add
to the restricted master problem and reoptimise it.
To see the connection with the cutting plane method, form the (bi-)dual

of the linear programme (4.1),

K
maximise Z {qb()\k) — g\ ay
k=1
subject to Zszl —gyeag <0, (4.4)
ZkK:1 Ak =1,
ap 20 forallke{l,...,K}.

We know that for all k € {1,..., K},

d(A\F) = max {ch + M- Ax)} =c"zF + AT (b — AP) (4.5)

zeQ

holds for some optimal z* € Q. If subgradients are computed according to
Theorem 4.1, then g, = b — Az¥. With this, (4.4) takes exactly the form of

62 Chapter 4. Dual bound computation

the restricted master problem RMP. The evaluation of ¢ at an iterate \¥ as
in (4.5) is recognised to be the pricing problem (4.3) from column generation,
only shifted by an additive constant MNeTh,

This connection also shows that column generation is another approach
which can be used to solve the lagrangean dual. Because column generation is
essentially the primal counterpart of the cutting plane method, it exhibits the
same type of “instability” as the cutting plane method which will be explained
in the next section. Here we only want to mention that, as for the cutting plane
method, stabilised variants of column generation exist. For further details on

column generation, see for instance the book of Wolsey [50, Chap. 11].

4.1.5 ACCPM - analytic centre cutting plane methods (Goffin et.
al [21])

The standard cutting plane method as presented above is inherently instable:
Programme (4.1) is always feasible, but by no means guaranteed to be bounded
below and the optimal solution can be given by » = —oo and) at infinity. Even
worse, this behaviour is independent on how close the current iterate might
be to the global minimum of ¢. This may be seen as somewhat related to
the technical condition of ()\k)kzo’l,m being bounded, which is needed for a
convergence proof of the cutting plane method.

In practise, this condition means the necessity to “stabilise” the algorithm,
i.e. to limit the variation of the dual multipliers between the iterations. This
is addressed by the ACCPM, a method first proposed by Goffin et al. [21], as
follows: At iterate K, we define the polyhedron

P = {(\1) €RZ xR [65 (0) <r < minfp(N) [k =1,..., K} |

B() + g5 (A = \¥) for all | € {1,...,K},}

Tz
r<min{¢p(*) |k =1,...,K}

= {()\,r) € RTy xR

which is assumed to be bounded, possibly by artificial means. The standard
cutting plane method chooses a point (/\K“, TKH) on the boundary of Py
with minimal »5*1. The idea of the ACCPM is to use a point in the interior
of Pk instead, more precisely the analytic centre of Pk.

The analytic centre of a bounded polyhedron is defined as the unique point
in the polyhedron maximising the product (or equivalently the sum of logs)
of slacks with respect to the defining constraints. Then instead of (4.1) we

maximise the barrier function
K
B\, r) = log k:@gw(xk) . r} + ; log [r — (W) — gL (A —)\k)}

subject to (A, 7) € Px. From the unique optimum (ASF1 75+1) "we obtain
the next iterate N<+1,

4.1 The lagrangean dual 63

The ACCPM can be viewed as a stabilisation of the standard cutting plane
method in the following sense: We still compute a feasible solution of (4.1),
but we are not as optimistic as to take the cutting plane model ¢X for a good
approximation of the original function ¢ — hence, we do not solve (4.1) to
optimality.

There are further variants like the Proximal-ACCPM, which incorporate
the idea of bundle methods from the next section: Additionally, a quadratic
stabilising term ||\ — M2, X a “proximal reference point”, is subtracted from
the barrier function, resulting in improved convergence. Further details can

be found in the survey paper of Goffin and Vial [22].

4.1.6 Bundle methods (Lemaréchal [35])

The starting point for bundle methods is again the cutting plane method of
Cheney-Goldstein and Kelley. In order to stabilise it, we now choose a stability
centre \ € RTY, which we want the next iterate to be close to. Suppose, we are
in the Kth iteration and one of the last iterates was chosen as the current sta-
bility centre. We add a euclidean penalty term % HA — S\HQ = % ()\ — 5\)7()\ — 5\)
to the cutting plane model ¢, where ¢t > 0 is a “spring strength”, possibly
varying across the iterations.
Thus, instead of the linear programme (4.1) we solve the linear constrained
quadratic programme
minimise 7+ %H)\ — 5\H2
subject to r = ¢(AF) + 9k (A=AF) forallk € {1,...,K}, (4.6)
(A7) € RU xR,
always giving a finite minimiser ()\K+1,7“K+1).
we evaluate ¢ at A1 and take care of the stability centre: We test if the

actual decrease of the ¢-values is large enough compared to the decrease in

To complete the iteration,

the cutting plane model, i.e. if

o(A) =6 (W) = w[p(A) — 6" (V)] = k[6"(A) — 6™ (M)
holds for some fixed tolerance x € (0,1). In this case, we treat the current
cutting plane model as sufficiently good approximation of ¢ and perform a
descent step by setting A1 to be the new stability centre, A = A+ Other-
wise, the stability centre remains unchanged and only the cutting plane model
is enriched, which is called a null step.

Stopping criteria and convergence proofs are at hand: The sequence given
by the objective values (;5(5\) of the stability centres converges to the global
minimum ¢*, and if a global minimiser for ¢ exists, then also the sequence
of stability centres converges to such a minimising point. Initially, a bundle

algorithm of this form was described by Lemaréchal [35]. For a thorough
treatment of the details we refer to [26, Chap. XV].

64 Chapter 4. Dual bound computation

4.2 Computational comparison of LP-relaxation and
lagrangean dual

4.2.1 Computational experiments with the LP-relaxation

To evaluate the performance of solving the LP-relaxations, the author con-
ducted experiments using the state-of-the-art software package CPLEX 11.0
[29], which provides implementations of primal and dual simplex algorithms
as well as an interior-point barrier solver for linear programmes. The main
goal was to determine the fastest way for solving the LP-relaxation in practise
using any of the solvers and formulations from Section 3.1, in order to compare
this with the performance of the lagrangean approach.

The experiments yielded two main results: First, the barrier solver (with-
out crossover to a basic solution) clearly outperformed both simplex vari-
ants. As an example, using the formulation x-D-LP, the barrier solver com-
puted the optimal solution to the three “marvin”-instances within 11, 27 and
260 seconds, respectively, whereas the primal simplex algorithm took 34, 97
and 506 seconds. The dual simplex was even slower by a factor of 2 to 10.
Even more importantly, the largest instance wa-125-96821 could not be solved
at all within a time limit of 1 hour by the primal or dual simplex algorithm.
In contrast, the barrier solver was able to compute an optimal solution within
325 seconds. Even when performing a subsequent crossover to a basic solution,
the barrier solver was by far the fastest algorithm. (For the largest instance
wa-125-96821, a crossover could not be performed due to memory limits.)

Second, among the reduced LP-relaxations, the formulation xz-D-LP per-
formed better than y-D-LP on all but the largest instance. For wa-125-96821,
using the barrier solver, y-D-LP was solved within 314 seconds compared to
324 seconds for x-D-LP. On all other instances, y-D-LP was slower by a fac-
tor between 1.1 and 2.4. Moreover, the experiments indicated that y-D-LP
is numerically more difficult to solve using the barrier solver: On 4 out of
the 25 “ca”-scenarios, the barrier solver terminated only with a near- optimal
solution of y-D-LP due to numerical difficulties, necessitating a crossover to
a basic solution. In contrast, z-D-LP could be solved to optimality on all
instances.

All in all, the experiments established solving the reduced formulation
x-D-LP with the barrier solver as the fastest method on the experimental test
set. For this, the results can be seen in Table 4.1 and are used for comparison

with the lagrangean approach discussed next.

4.2.2 Computational experiments with the lagrangean dual

Which of the methods outlined in Section 4.1 is “best” for solving the la-

grangean dual cannot be decided generally, but will depend on the problem

4.2 Computational comparison of LP-relaxation and lagrangean dual 65

under consideration. Briant et al. [7] compare the classical column genera-
tion approach (respectively the cutting plane method) without stabilisation
on the one hand, and the bundle algorithm on the other hand in experiments
on prominent combinatorial optimisation problems. Their results do not show
one approach clearly outperforming the other. Nevertheless, they indicate
that stabilisation is called for, especially as the dimension of the dual space
grows. It also becomes clear that the bundle algorithm more often works as an
“out-of-the-box” method, while column generation sometimes requires many
considerations to make it work well.

To evaluate the lagrangean approach presented in Section 3.4, the au-
thor decided to conduct experiments with a bundle algorithm, also due to a
good implementation by Helmberg [25] readily available. It provides a scaling
heuristic and the possibility for “active bounds fixing”, i.e. for fixing multipli-
ers temporarily to the stability centre value if their (nonnegativity) bounds are
strongly active. Applying both features helped to improved the performance

of the bundle algorithm in the experiments.

Solving the lagrangean subproblem The lagrangean relaxation subprob-
lem was solved using the minimum cut approach from Section 3.4.3. For com-
puting the minimum a-b-cuts, a relatively new algorithm for the maximum flow
problem in networks was used, the pseudoflow algorithm of Hochbaum [27]. Tt
is based on “normalised trees” and pseudoflows, i.e. “flows” which violate the
flow balance constraints arbitrarily, but satisfy the capacity constraints. Al-
though its worst-time complexity is — with O(mnlogn) for a graph on n nodes
and m arcs — theoretically worse than the push-relabel-algorithm of Goldberg
and Tarjan, it performed better in a recent computational study of Chandran
and Hochbaum [11]. The implementation of Chandran and Hochbaum [12]
could be used in the experiments and showed good performance. It is only
necessary to run the first phase of the pseudoflow algorithm, which computes
a minimum cut, while the second phase for recovering a maximum flow can

be skipped.

Warmstarting One reason for choosing the pseudoflow algorithm was that
it can be initialised with any feasible pseudoflow and hence allows for an
internal warmstart after the capacities have changed. This is exactly the case
here: During the run of the bundle algorithm, the lagrangean subproblem and
thus the minimum cut problem must be solved numerous times on the same
network with capacities changed according to the dual multipliers — there is
reason to hope that warmstarting from a pseudoflow optimal for the previous
assignment of capacities might improve the running time. Unfortunately, the

implementation of Chandran and Hochbaum [12] did not provide this feature.

66 Chapter 4. Dual bound computation

A general purpose warmstart method for any maximum flow algorithm is
described in [11] using the residual graph. Experiments with this approach
proved worse, however, than solving each lagrangean subproblem from scratch.
This might be expected, since the number of arcs is doubled when switching
to the residual graph and further excess and deficit arcs need to be added.
The time for computing each minimum cut turned out to increase by a factor
of at least 2.

In most instances, however, solving the minimum cut problems did not
consume most of the time, anyway. Computing the values of the z-variables
via (3.16) has complexity O(NT) and is time-consuming especially for the
“ca’-instances and for instance wa-125-96821. For instances marvin-115-8513,
marvin-296-8513 and marvin-1038-8513, the minimum cut computations con-
sumed approximately 20%, 47% respectively 79% of the time needed to solve
the lagrangean subproblems. The more aggregates, the more nodes and arcs
are in the network D, hence computing the minimum a-b-cut takes longer. For
the “ca’-instances, minimum cut computations consumed less than 10%, and
for wa-125-96821, only about 3% of the time for solving the subproblem was
spent with computing the minimum cut. All in all, solving the subproblems
consumed the vast majority of the bundle algorithm’s running time.

A last remark on solving the subproblems: The infinite capacity must
be replaced by an upper bound on the minimum cut capacity, which was

computed as Y1 | ¢(eg.r41), compare Section 3.4.3.

Impact of the maximum bundle size As presented in Section 4.1, the
cutting plane model is continuously enriched. In practise, this is usually sub-
optimal though, since solving (4.6) becomes more and more difficult as K
grows and the information from subgradients in early iterations might even
be redundant for the cutting plane model in the neighbourhood of the current
iterate. Thus, the “size of the bundle”, i.e. the number of subgradients kept is
limited and old subgradients are removed if necessary. Figures 4.1, 4.2 and 4.3
show how the running time depends on the maximum bundle size ranging from
10 to 100. As can be seen, especially too small a maximum bundle size can
lead to overly long running times. Choosing the maximum bundle size larger
and larger, a slight increase is recognisable for the instances marvin-115-8513,
marvin-296-8513 and the “ca”-instances.

For comparison with the LP-relaxation, taking the minimal running time
is certainly not representative — the dependence on the maximum bundle sizes
is rather volatile, so one can not guarantee to find the “optimal” value of the
maximum bundle size. Rather it seems fair to select a range of maximum
bundle sizes where the algorithm works well and take the worst value found
in this range. Hence, Table 4.1 reports a min-max running time: From the

running times for 10 consecutive maximum bundle sizes take the highest one

4.2 Computational comparison of LP-relaxation and lagrangean dual

45 12

40

35

20 15 70

15 _—
10 WWMW
5 marvin-296-8513
- : : : : marvin-115-8513
0 L L L L L L L L L L L L L L L)

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

67

Figure 4.1: Running time (in seconds) of the bundle algorithm vs. maximum bundle size for

the three “marvin”-instances

80 ¢ 9

i i i i i i i i i i

/ /

/ ca-121-29266 (avg)
A\ ca-121-29266 (05)

0 i i i i i i i i i i i i i i i i i J

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

4
~ 15 . 70

Figure 4.2: Running time (in seconds) of the bundle algorithm vs. maximum bundle size for

instance ca-121-29266, scenario 5, and for all 25 “ca”-scenarios as average running time

68 Chapter 4. Dual bound computation

300 30

250

200

150

16 L L L L L L L L L L

80

100 -

50

wa-125-96821

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Figure 4.3: Running time (in seconds) of the bundle algorithm vs. maximum bundle size for
instance wa-125-96821

The running times increase drastically for small maximum bundle sizes, up to 1213 seconds
for a maximum bundle size of 10.

and from all these “local worst-case running times” choose the smallest one.
The objective values are reported the same way.

The ConicBundle software [25] of Helmberg also provides a variant of the
bundle algorithm where the subgradients in the bundle are aggregated, so
effectively no bundle is used at all. This variant performed poorly, however.
No better relative precision on the dual bound than 1073 could be achieved
and running times for this were increased by factors of 10 and more compared
to the values from Table 4.1.

Multiplier deviation Furthermore, the value of optimal Lagrange multi-
pliers are of interest, since the next chapter will devise an aggregation method
based on them. Since the lagrangean dual is only solved to near-optimality,
the final multipliers given by the bundle algorithm are not necessarily op-
timal. We report their deviation from the optimal multipliers given by the
LP-relaxation: In the last column, we report the relative euclidean distance
||(ND_LDa 71.D—LD) _ (,uD‘LP, 7.rD-LP) H/H(ND_LPa TrD‘LP)|

rel. mul. dev.” gives the maximum relative deviation of a single multiplier,

maxi—1,...7 {|u 0 — N |pf | |7 PP — a PP | PR L

for zero denominators, we added 1079 in the denominators.) For these two

|, while the column “max.
To account

columns, not the min-max values as above are reported, but the largest, i.e.

worst, values over all maximum bundle sizes.

4.2 Computational comparison of LP-relaxation and lagrangean dual 69

Problem instance LP-relaxation Lagrangean dual
time obj. val. time obj. val. rel. rel. max. rel. rel. euc.
s] [10%] s] [10%] time obj. val. mul. dev. mul. dev.
marvin-115-8513 11.2 7.230097 1.8 7.230097 0.158787 1.000000 0.008098 0.000263
marvin-296-8513 272 7.276624 2.6 7.276631 0.094993 1.000001 0.150439 0.003054
marvin-1038-8513 259.5 7.306851 9.5 7.306854 0.036415 1.000001 0.032616 0.000609
ca-121-29266 (avg) 34.9 59.898146 6.1 59.898190 0.175164 1.000001 0.028502 0.001276
ca-121-29266 (05) 64.7 60.899745 6.6 60.899800 0.101763 1.000001 0.078292 0.005544
wa-125-96821 3244 0.508814 21.8 0.508815 0.067139 1.000001 0.005166 0.000223

Table 4.1: Computational results for solving LP-relaxation and lagrangean dual

For the LP-relaxation, formulation z-D-LP from Section 3.1 was solved using the CPLEX
barrier solver [29]. Crossover to a basic solution was not performed.

The minimum cut computations for the lagrangean relaxation subproblems were solved us-
ing the Pseudoflow Solver [12] (highest label variant) of Chandran and Hochbaum. The
lagrangean dual itself was solved using the ConicBundle software [25] of Helmberg with a
relative precision of 1079 on the objective value. However, the bundle algorithm always
stopped before reaching this precision due to numerical limits of the interplay between sub-
problem and quadratic programming solver. The effective precision reached (relative to the
objective value from the LP-relaxation) can be seen in column “rel. obj. val.” to be very
small: at most 107°.

For the “ca”-instances, we report the arithmetic mean over all 25 scenarios. The values
for scenario 5, the “hardest” scenario with respect to the running time for solving the LP-
relaxation, are stated separately.

4.2.3 Conclusion

Using the bundle method, the lagrangean dual yielded practically the same
bound as the LP-relaxation, i.e. within a relative precision of 1076, With re-
spect to computing time, the lagrangean approach clearly outperformed solv-
ing the LP-relaxation directly, even using the fastest method available, i.e.
solving x-D-LP using the barrier solver. For the standard LP-relaxation D-LP
and the simplex variants, the result would be even clearer. In particular, for
the largest problem instances wa-125-96821 (with the largest number of con-
tinuous variables) and marvin-1038-8513 (with the largest number of binary
variables), where computing the LP-relaxation took more than 4 respectively
5 minutes, the lagrangean dual could be solved within 10 and 22 seconds.

The maximum relative deviation of the single multipliers, however, seems
unsatisfactory large at first sight, in particular for instance marvin-296-8513.
First, these are worst case values over all bundle sizes, the average is signif-
icantly lower. Second, the high deviations always stem from the last time
periods, when the multipliers are almost negligible. If we would disregard
these time periods, all the values would drop by a factor between 5 and 10,
e.g. to a value of 0.012 for marvin-296-8513. Third, it is not even guaranteed
that the optimal multipliers have to be unique, so deviation from one optimal
multiplier vector does not necessarily indicate suboptimality.

As a last remark, the dual multipliers for the mining constraints were

zero in all LP- and LD-solutions, i.e. the mining constraints are never tight.

70 Chapter 4. Dual bound computation

The processing constraints seem to be the main restrictions on the mining

operations.

Chapter 5

Aggregation of processing

decisions

The integration of cutoff grade optimisation in the new OPMPSP-formulation
D-MIP introduced in Chapter 2 first appears to come at the cost of the com-
paratively large additional number of continuous variables. However, the re-
sults in Section 3.2 showed that many of them take the same value in an
optimal solution. This chapter exploits this insight by determining variables
with similar values in an optimal solution in a heuristic manner based on
the LP-relaxation of D-MIP, and subsequently aggregating such variables to
reduce the size of the programme.

Section 5.1 briefly outlines the concept of aggregation in large-scale opti-
misation, especially the method of column aggregation for linear programmes.
Based on this, Section 5.2 introduces the general idea of binnings, thus em-
ploying column aggregation to the OPMPSP-formulation D-MIP. Section 5.3
proposes various binnings based on primal and dual optimal solutions of the
LP-relaxation and compares them computationally. Finally, Section 5.4 ex-
plains how a solution to the original D-MIP can be reconstructed easily from a
solution to the aggregated problem and evaluates this disaggregation method

giving experimental results.

5.1 Aggregation in large-scale optimisation

Modelling real world systems inherently involves abstraction and approxima-
tion. Generally speaking, more accurate modelling of a problem will usually
improve the quality of the final solution, but also increase the difficulty of
finding it. The question to what level of detail a problem can be modelled and
solved, therefore, becomes a crucial one. It is dealt with in two different, in
some sense complementary ways: aggregate modelling and model aggregation.

The first is concerned with the aggregate level of detail employed in a model,

71

72 Chapter 5. Aggregation of processing decisions

while the latter focuses on solving a given, large optimisation problem by re-
placing it with a smaller more tractable model. As an example, the idea to
model the precedence constraints in the OPMPSP on aggregate instead of on
block level may be understood as aggregate modelling technique. In contrast,
this section will deal with a model aggregation technique to reduce the size of
the OPMPSP-formulation D-MIP.

Rogers et al. [46] develop a general framework for model aggregation and
disaggregation methodology, which they describe as a set of methods for solv-

ing optimisation problems by
m combining data,

m solving an auxiliary model (or models) which is reduced in size and/or

complexity relative to the original model and

m analysing the results of the auxiliary model in terms of the original

model.

In Section 5.1.1, we outline how this general idea is applied in linear program-
ming by aggregating variables. Section 5.2 introduces the concept of binnings,
a column aggregation approach for the OPMPSP-formulation D-MIP. In
Section 5.3 we propose several specific types of binning and compare them

computationally.

5.1.1 Column aggregation in linear programming

We largely follow the exposition in Litvinchev and Tsurkov [38, Chap. 1].

Consider a problem

Z = max c'z

subject to Az < b, (5.1)

<b
x>0,
where ¢ € R", A € R™*™ and b € R™. (5.1) is referred to as the original prob-
lem and assumed to have a finite optimal solution, which cannot be computed
directly due to a large number of variables n. Let S be a partition of the set
of column indices {1,...,n} into subsets Sk, k € {1,...,K}, i.e. Sy NS, =10
for any k # [and Ule Sy ={1,...,n}. For each k € {1,..., K}, choose a
(nonnegative non-zero) weighting vector g* € RZ,, g* # 0, with gf =0 for
all © € Si. Set

Ak = Agh, & = Tk,

k

i.e. A* is an m-vector (¢é* a real value) obtained as non-zero linear combination

of the columns of A (of the entries of ¢) with indices in Sk.

5.1 Aggregation in large-scale optimisation 73

Define A = (Al,...,AK> e R™*K and ¢ = (l,...,¢K)" € RK. Then the

programme

2 = max e'X
subject to AX

X=>0

)

is called the (column or variable) aggregated problem of (5.1). X € RX is a
vector of aggregated decision variables. The matrix g = (gl, 9K) € R%K
is referred to as the weighting matriz of the aggregation.! For a given original
problem, (5.2) is fully determined by the pair (S, g).

Note that (5.2) should be significantly reduced in size compared to the
original problem such that an optimal solution can be computed. Also, aggre-
gation can result in an infeasible problem even if the original problem has a

feasible solution. We exclude this case:
Assumption 5.1 (S, g) is chosen such that (5.2) is feasible.

With the weighting matrix g, we can write ¢ and A as g'cand Ag, respec-

tively, and so (5.2) is the same as

2 = max c'gX
subject to Ag X < b, (5.3)
X >0.

Since all entries of g are nonnegative and each column contains at least one
non-zero entry, X > 0 if and only if ¢X > 0. This shows that (5.3) is exactly
the problem obtained by the linear substitution z = ¢gX in (5.1), and for any
feasible solution X of (5.2), gX is feasible for (5.1). It follows that

£ =max {c'gX | AgX <b, X € Rl } <max{c'z| Az <b z €RL} =2,

proving the intuition that aggregating variables yields a lower objective value.
Also, we may interpret (5.2) as the problem obtained from (5.1) by additionally
constraining the feasible region to the set {x = gX | X € R§0 .

Remark 5.2 Zipkin [52] uses the normalising condition

n
geEG=SgeRy~E ng:ngzlforallke{l,...,K}
i=1 1€Sk

for the weighting matrix, which is also adopted by Litvinchev and Tsurkov [38].

'!One might imagine, without loss of generality, the case where the variables in (5.1)
are ordered such that aggregation occurs in increasing order, i.e. S1 contains 1,...,|S1],
So ={|S1]+1,...,|S1| + |S2]}, etc., where g has a block-diagonal-like structure.

74 Chapter 5. Aggregation of processing decisions

For x = gX this yields the property that
Xk = ngXk = Zﬂ%
1€Sy €S
i.e. an aggregated variable is equal to the sum of all variables of the aggre-
gate. Note that this normalisation poses no restrictions on the possibilities of
aggregations, since the set {x =gX|X €]Rgo} is invariant when we multiply
columns of g by positive scalars. This property is also unnecessary for the
theory (e.g. proofs for error bounds do not involve the normalisation) and in
some cases it may be convenient to consider non-normalised weighting matrices

where Ziesk gF # 1 for some aggregates k € {1,..., K}.

5.1.2 Standard disaggregation methods

Solving the aggregated problem is only an auxiliary step: Once a solution X of
(5.2) is at hand, it has to be interpreted in terms of the original problem (5.1).
A simple way to deduce a feasible solution for the original problem is to apply

fized-weight disaggregation, i.e.
i =gF Xy forallie S, ke {l,... K}.

We noted that variable aggregation is essentially the linear substitution z = g X.
In this sense, the fixed-weight disaggregation transforms X back to & = gX .
From the reformulation of (5.2) in (5.3), it is clear that the fixed-weight dis-
aggregated solution Z is feasible for (5.1) and c& = 2.

In general, we can obtain a better objective solution value, however, when
performing so-called optimal disaggregation of X: Forallk € {1,..., K}, solve
the subproblems

max ¢k

subject to Az® < AFX,
¥ =0 foralli¢ Sy,

7
>0,

(5.4)

yielding optimal solutions Z¥. Combining these via & = Zle i* gives a fea-
sible solution to (5.1), since Z > 0 and

K K
Az = ZA:E’“ < ZA’% =AX <b.
k=1 k=1
Moreover, the vector g¥X}, is feasible for (5.4). So first an optimal solution

always exists for each of the subproblems, and second

K K K
c'T = Z k> Zchka =c' <Z gka> =c"gX =c'%,
k=1

k=1 k=1

i.e. Z is at least as good a solution to (5.1) as &.

5.2 Binnings — a column aggregation scheme for the OPMPSP 75

The quality of a feasible solution of (5.1) obtained this way naturally de-
pends on the problem at hand and the specific aggregation used. Given a
linear programme (5.1) and a weighting matrix, provable error bounds on the
loss of accuracy caused by aggregation can be computed, and thus the optimal
objective value of (5.1) can be bounded. There are two general types of error
bounds: While a priori error bounds can be computed merely on the basis
of (5.1) and the weighting matrix, for a posteriori error bounds, an optimal
solution to the aggregated problem (5.2) must be at hand. For specific error

bounds and further details we refer to Litvinchev and Tsurkov [38].

5.2 Binnings — a column aggregation scheme for the open pit
mining production scheduling problem

The OPMPSP-formulation D-MIP models the mining operations more accu-
rately than other formulations by distinguishing between mining and process-
ing. This comes at the price of a larger, more difficult to solve programme:
While the mixed-integer programming formulation (2.4), for instance, consists
of 2KT variables, D-MIP has NT additional continuous variables, and thus
2KT+ NT variables altogether. The problem instance wa-125-96821 described
in Section 1.3 and used in the experiments shows how the number of blocks N
can easily be one or two orders of magnitude greater than the number of ag-
gregates K. Hence, D-MIP can be significantly more difficult to solve than
the programmes without integrated cutoff grade optimisation.

To alleviate the computational burden springing from the additional z-
variables, Section 3.2 motivates a column aggregation approach. With the
existence of split ratios, Proposition 3.4 proves that in any optimal solution of
D-MIP, for each aggregate K, k € {1,..., K}, and time period t € {1,...,T},
the variables z; ¢, © € Ky, take at most three distinct values: 0, yj; and possibly
a value in between for blocks with %t equal to the split ratio o;. With the
values of split ratios at hand, we could use this to substitute the z-variables
for blocks of almost all oregrades.

With Proposition 3.9, however, we showed that split ratios are NP-hard
to compute. Thus determining their exact value is not efficiently possible
unless P is NP, so a less strict approach seems to be called for. The following

concept proves to be helpful:

Definition 5.3 Consider an instance of D-MIP with aggregates K1, ..., Kk.
A set of blocks B C Ky, is called a bin for aggregate Ky, k € {1,...,K}. A bin-
ning is a collection B = (Bk,t lk=1,...,K,t=1,... ,T) where each By s a
set of pairwise disjoint bins partitioning Ky, i.e.

Ke= |J B

BEBk’t

76 Chapter 5. Aggregation of processing decisions

forallke{l,..., K} andt € {1,...,T}. Write By = {Bl,...,B
Net = ‘Bk,t’-

with

Tkt

First some more notation: Each block 7 € NV is contained in exactly one ag-
gregate: denote its index by k(7). Furthermore, given a binning, then for fixed
time period t € {1,...,T}, each block i € N is contained in exactly one bin
— denote this bin number by b(i,t). Now any binning B partitions the set of

z-variables in D-MIP, more precisely their index set:

(GolieNt=1,..T = |J {GnliecB}.

~ I

1. K,
1,..T,
1ngt

b

Suppose the binning can be chosen such that any of the parts above com-
prises the indices of z-variables with similar value in an optimal solution. In
this case, it is reasonable to aggregate the z-variables of D-MIP according
to this partition. For each k € {1,..., K} and t € {1,...,T}, introduce new
aggregate variables

Zk,t,17 cey Zk,t,nkyt

and aggregate according to

Zit = Zr(i) t,b(it) (5.5)

for all blocks i € A and time period ¢t € {1,...,T}. The corresponding weight-
ing matrix has all entries from {0, 1} and does not satisfy Zipkin’s normalising
condition from Remark 5.2. Substituting (5.5) in D-MIP gives the aggregate
programme B-MIP(B),

maximise
Nkt
ZZ —Chkt Ykt + Z YieB, Dit Zk,t,b (5.6)
k=1 t=1
subject to
Tht—1 — Tt <0 forall ke {1,...,K}, t€{2,...,T}, (5.6a)
t
> Yks — Thy <0 forallke{l,...,K}, te{l,...,T}, (5.6b)
s=1
t
Tht — > Yo <0 forall k € {1,...,K}, L € P(k),
= te{l,...,T}, (5.60)
Zkﬂg,b—yk,t <0 fOl“aHk‘E{1,...,K},t€{1,...,T},

be{1,... n}, (5.6d)

5.3 LP-based binnings 7

K
> arys <UM™ forallted{l,...,T}, (5.6¢)
k=1
> (Sien,ai) Zegp < UP forallte{l,...,T}, (5.6f)
k=1,...K
b:l,...,nk’t

zre € {0,1} forall k € {1,... K}, t € {1,...,T}, (5.6g)

ke <1 forall k e {1,...,K}, te{l,...,T}, (5.6h)

<1 forall ke {1,..., K}, te{1,...,T},
be{l,....ng}. (5.61)

Two extreme choices of binnings are the “block binning” BPlock

, where bins
are singletons consisting of one block each, and the “aggregate binning” 5288,
where each aggregate forms only one bin. B°* is the most refined binning —
B-MIP(BblOCk) is identical to the original D-MIP — and gives the best optimal
objective value achievable by any B-MIP(B). Binning B is the coarsest
binning with the least number of Z-variables and yields the lowest optimal
objective value. The optimal objective value for any binning B will lie in

between:

* * * *
f B-MIP(BE) S Fpvips) < f B-MIP(Bblock) = fp-pip-

Our goal is to determine binnings with as few bins as possible in order to
reduce the number of variables, while the objective value remains close to

fb_ap- the optimal objective value of D-MIP.

Remark 5.4 The structure of the aggregated problem is essentially the same
as for the original D-MIP. Looking at one fixed time period, B-MIP(B) can be
imagined as D-MIP with the same aggregate, but lower block resolution. This
“block resolution”, however, is allowed to vary over time, while it is constant in
D-MIP. Although perhaps counterintuitive at first, this variability is crucial.
In general, cutoff grades change over time and thus for different time periods
different blocks will have comparable processing priority. Therefore, applying
the same aggregation for each time period is in general suboptimal.

It is straightforward to check that due to the similar structure, all of the
results for D-MIP from Chapter 3 hold for B-MIP(B) correspondingly.

5.3 LP-based binnings

Determing the exact “processing priority” of each block, i.e. computing split
ratios for D-MIP, is NP-hard, see Proposition 3.9. The idea of this chapter is
to use the LP-relaxation as an approximation. Although this is only a heuristic

approach, Section 3.2 supports it to some extent: The values of z-variables

78 Chapter 5. Aggregation of processing decisions

in optimal LP-solutions also follow split ratios, although their values will in
general differ from the ones for D-MIP.

5.3.1 Binnings based on primal LP-solutions

One idea is to create binnings by inspecting the values of z-variables in an
optimal (primal) solution (z*,y*, z*) of D-LP. Different z-values indicate dif-
ferent processing decisions and the corresponding blocks should be in different

var as follows:

bins. Precisely, construct a variable primal LP-binning BP™™
For each k € {1,..., K} andt € {1,...,T}, let s1,..., sy, , be the distinct

values in {27, |i € Ky}, ngs = Hzi*,t |i € Ki}|. Then, define nj, bins
Bb:{iEN|ZZt:Sb},

one for each z-value s, b€ {1,...,ng,}, yielding B,Izrtim'var ={Bi,...,Bn,, }.
All in all, this gives the binning

gprim-var _ (Bigm“’aWk: 1,...,K, t= 1,...,T).

This type of binning exhibits the following shortcoming: For each aggre-
gate Ky, k€ {1,..., K}, the value y;, will be zero for the majority of the

time periods ¢ € {1,...,T}. Then the z-values do not provide any informa-
tion about the processing priority of the blocks and Bzrtlm'var consists of only

one bin, Ky, itself.

One possibility to overcome this is to consider only the time period during
which most of an aggregate is mined, motivated by viewing this time period
as the most indicative one. Precisely, for each k € {1,..., K}, let t*(k) be the
(earliest) time period with y;t* (k) = MaX¢=1,.T y;i. In a similar manner as
above, let n; = HZZt*(k) li e ICkH and let sq,..., sy, be the distinct values in
the set {z;"t*(k) |i € Ki}. Define ny bins

forallb € {1,...,nx}, and with this B,]Zrlim'cons =...= Bgr}m'var ={B1,...,By,}.
All in all, this gives a constant primal LP-binning

gprim-cons _ (Eftim-cons}k: 1,...,K, t= 1,...,T)-

Compared to BP'm-var this binning gives a much more refined picture of the
block structure of an aggregate for all those periods with zero processing in
the optimal LP-solution. However, it is restricted to the same aggregation
level over all time periods, which is in general suboptimal when cutoff grades

vary, see Remark 5.4.

5.3 LP-based binnings 79

3.5
+
3+
+~
25 F)
%
2 N\
%
1.5 =
+\
1t +
.
0.5 F
>
=+ _
.
+
0 ~+ t
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 5.1: Comparison of split ratios for D-MIP and D-LP for instance marvin-115-8513

The bars indicate the intervals [o,,7¢] computed from an optimal solution of D-MIP accord-
ing to Proposition 3.7. The solid line follows a sequence of split ratios 7 for the correspond-
ing LP-relaxation D-LP computed as optimal dual multipliers of the processing constraints.
The open pit mine is fully exploited during the first 13 years (in the LP-solution), thus the
y-variables are zero for the last two years and 14 = 15 = +00. The maximum relative
deviation between m; and the closest ratio in [o,, 7] is 8.3%.

5.3.2 Binnings based on dual LP-solutions

A straightforward idea is to use split ratios for D-LP as approximate split
ratios for D-MIP. There is no proven connection between both, but Figure 5.1,
for instance, shows comparable behaviour. We must not expect the two to
coincide, though: As Figure 5.1 shows, split-ratios for D-LP can exceed or fall
below the range of split ratios for D-MIP given by Proposition 3.7. Therefore,
treating split ratios from D-LP as split ratios for D-MIP seems to be too
optimistic. Instead we try to over- respectively underestimate them in the
following way.

Let m € Rgo be a sequence of split ratios for D-LP, for instance given by
optimal dual multipliers of the processing constraints, and choose € > 0. For
each k € {1,..., K}, t€{1,...,T}, form two bins

B‘:{z’e/\/’ it <(1—e)7rt}

a;

and

B+:{iej\/ pi’t>(1+e)7rt}.

a;

For the remaining blocks, let 71,...,7; be the distinct values in the set

80 Chapter 5. Aggregation of processing decisions

Di,t
a;

Put € (1 — €)my, (1 + €)7¢] } and form bins

a;
Dit
a;

forb € {1,...,l}. Allin all, this gives the partition B, = {B~,B", By,...,B;}.
Together, these form the dual LP-binning

Bb—{iEN

B = (B, |k=1,....K,t=1,...,T).

If m© provided split ratios for D-MIP, then even for € = 0, B—MIP(BE) would
yield the same optimal solution as D-MIP. In general, we expect larger values
of € to be necessary, though, in order to have the optimal objective value of
B—MIP(Bﬁ) still close to the one of D-MIP.

Since 7 is a sequence of split ratios for D-LP, the binning B€ is a refinement
of the variable primal LP-binning BP"™Va" for any € > 0, due to (3.4). With
respect to the objective value, the dual LP-binning will therefore be superior

to the variable primal LP-binning.

5.3.3 Computational comparison

To compare the different binnings presented, each B-MIP(BB) was solved using
the CPLEX MIP-solver [29], also for the extreme cases of Bk and %8¢, The
results can be found in Table 5.1. Progress is reported by stating the running
time and relative primal-dual-gap when the gap first dropped below 1% and
below 0.5%. Final values are given after reaching proven optimality or hitting
the time limit of 1 hour. For the instances which could not be solved to opti-
mality within 1 hour, a second run was performed using two parallel threads
and a time limit of 5 hours. The resulting “best objective value” is stated
in the previous but last column. This way all instances could be solved to
very small gaps, most to proven optimality, which is marked with a star. The
last column reports how this “best objective value” for the respective binning
relates to the one obtained for B—MIP(BblOCk).

First, the comparatively small number of bins is notable for all binnings
except for BP% of course. In most cases, there are on average less than two
bins per aggregate. Even for instance wa-125-96821 with the largest number
of 96821 blocks, the most refined dual LP-binning B%! only yields on average
1904.1 bins per period, thus decreasing the number of z-variables by a factor
of almost 50, even more for the coarser binnings.

Second, this results in a substantial decrease of the running times as can
be seen in Table 5.1. Only for instance marvin-1038-8513 the effect is minor,

Bprim-var

even with a slight increase for This might be expected, since the
number of blocks is already comparatively small for BP°k. The number of

instances which could be solved to optimality within the time limit of 1 hour

5.3 LP-based binnings 81

Problem Binning Bins per 1% gap 0.5% gap Optimality/time limit Best Best
instance B period obj. val. obj. val.
[10%] rel. to
time gap time gap time b&b obj. val gap BPblock

) % B (%] nodes [0 [%]
marvin ~ BPlock 8513.0 240.0 0.865 337.8 0.444 3600.0 4652 7.177235 0.014 7.177235" 1.000000
-115 Bo! 266.0 157 0.806 341 0.393 4275 5174 7177185 0 7.177185% 0.999993
-8513 BOO® 2143 21.9 1.000 32.8 0.442 964.0 17918 7.176498 0 7.176498" 0.999897
Boot 175.6 24.8 0.543 27.6 0477 2972.7 124119 7.173551 0O 7.173551% 0.999487
prrimeeons 1630 18.6 0.642 23.0 0.455 94.9 3035 7.170070 0 7.170070% 0.999002
prrim-var 1933 344 0.727 38.0 0.399 46.8 517 6.990731 0 6.990731% 0.974015
Bes 1150 423 0970 55.6 0.486 117.3 1264 5.392583 0 5.392583* 0.751345

marvin BPlock 8513.0 495.3 0.922 679.0 0.432 3600.0 2501 7.220962 0.093 7.221446 1.000000

-296 BOt 489.1 1309 0.767 251.4 0.433 3600.0 9026 7.221193 0.055 7.221193 0.999965
-8513 Bo-os 439.3 1523 0.529 169.2 0.462 3600.0 9536 7.220084 0.056 7.220664* 0.999892
Boot 399.9 1586 0.712 196.4 0.484 3600.0 14119 7.218661 0.042 7.218820* 0.999636
prrim-cons 3990 156.4 0.682 184.9 0.368 3600.0 22090 7.213103 0.022 7.213103* 0.998845
prrim-var 3139 1333 0.760 188.8 0.472 872.8 4538 7.168841 0 7.168841% 0.992715
Bse 206.0 284.4 0.703 323.8 0.374 3600.0 18386 5.767265 0.029 5.767305* 0.798630

marvin BPlock 8513.0 2869.3 0.355 2869.3 0.355 3600.0 181 7.260396 0.267 7.262462 1.000000

-1038 Bo! 1294.3 24819 0.559 28254 0.373 3600.0 271 7.259532 0.270 7.262117 0.999952
-8513 Bo-0® 1249.9 2715.6 0.188 2715.6 0.188 3600.0 171 7.258831 0.157 7.261993 0.999935
Bo-ot 1213.8 2394.1 0.112 2394.1 0.112 3600.0 331 7.261893 0.049 7.262143" 0.999956

prrim-cons 19340 2247.9 0.282 2247.9 0.282 3600.0 378 7.253915 0.170 7.256165 0.999133
prrim-var 0723 3067.2 0.461 3067.2 0.461 3600.0 101 7.255896 0.320 7.256970" 0.999244

Bes 1038.0 - - - - 3600.0 31 5.863011 9.185 6.328216 0.871360
ca-121 BPlock 29266.0 974.6 0.391 990.0 0.269 2272.9 501 59.730918 0.000 59.730918" 1.000000
-29266 B! 403.8 57.7 0.480 61.4 0.225 145.0 607 59.730819 0 59.730819™ 0.999998
(avg) Bo-0° 293.3 52.7 0.350 53.9 0.222 121.1 620 59.730726 0 59.730726™ 0.999997
Bo-ot 202.7 42.6 0.396 42,9 0.252 93.4 674 59.729226 0 59.729226™ 0.999972
pprim-cons 178 1 24.6 0.382 26.1 0.170 40.3 314 59.562580 0 59.562580" 0.997182
pprim-var 138.1 34.4 0.700 36.7 0.308 41.2 148 59.305581 0 59.305581" 0.992879
B8 121.0 29.1 0.399 30.2 0.275 34.5 159 36.518095 0 36.518095" 0.611377

wa-125 BPlock 96821.0 - - - _ - _ _ _

-96821 B! 1904.1 - - — - 3600.0 189 0.494093 1.477 0.494147 —
Bo-0° 1078.8 3397.0 0.993 — - 3600.0 520 0.494152 0.963 0.494159 —
Bo- 398.6 495.6 0.752 648.0 0.499 3600.0 9049 0.494107 0.037 0.494107" —
prrim-cons 9340 159.4 0.935 269.7 0.500 1407.5 12615 0.494068 0 0.494068" —
pprim-var 148.8 98.6 0.940 126.2 0.493 256.3 2147 0.494076 0O 0.494076™ —
B&e 125.0 — - - — 3600.0 21846 0.281546 1.009 0.281553 —

Table 5.1: Computational results for solving B-MIP(B) for different binnings B

The CPLEX MIP-solver [29] was used to solve B-MIP(B) for the binnings introduced in
Section 5.3. The LP-relaxation at the root node was solved using the barrier solver with
subsequent crossover to a simplex basis. MIP-emphasis was set to 0 (“balance optimality
and integer feasibility”) and traditional branch-and-cut search without parallelisation was
used. In most cases, the problems could not be solved within the time limit of 1 hour. For
these, a second run with 2 parallel threads and a time limit of 5 hours was performed. The
resulting “best objective value” is reported in the previous but last column and marked with
a star, if proven to be optimal. The last column reports how this “best objective value” for
the respective binning relates to the one obtained for B-MIP(B°®). Note also that since
the number of bins varies over time, column “Bins per period” gives the average value equal
to the number of z-variables divided by number of time periods.

For the “ca’-instances, the values reported are arithmetic mean values over all 25 scenarios.
Except for two scenarios with binning B°°% all could be solved to optimality within the
time limit of 1 hour. For wa-125-96821, B-MIP(B"°%) could not be solved at all due to
memory limits.

82 Chapter 5. Aggregation of processing decisions

also increased. For the largest instance wa-125-96821 especially the binning
approach was effective: Whereas B—MIP(BblOCk) could not be solved at all
due to memory limits, all other binnings yielded gaps of less than 1.5%, even
proven optimality for the primal LP-binnings.

Third, and most importantly, the last column shows that these improve-
ments in solvability do not come at the cost of solution quality. The dual LP-
binnings decreased the objective value by less than 0.06% in all cases, a value
absolutely negligible for practical purposes. The primal LP-binnings prove to
be inferior to the dual LP-binnings in terms of objective value, although the
running times might be smaller. All in all, these results confirm the usefulness
of aggregation approach by binnings. The disaggregation experiments from

next section will strengthen them even more.

5.4 Disaggregation of binnings
Once an optimal or near-optimal solution (z*, y*, Z*) is computed for B-MIP(B)

with some binning B, the next and final step is to disaggregate this to a so-
lution for the original problem D-MIP. Standard fixed-weight disaggregation
simply keeps the x- and y-values and assigns the Z*-values for some bin to the
corresponding z-variables for the blocks contained in that bin. More precisely,
let
Z;'k,t = Zz,t,b

for all ke {1,...,K}, i€ K and t € {1,...,T}, then (z*,y*, 2*) is feasible
for D-MIP and has the same objective value as (z*,y*, Z*).

Performing optimal disaggregation as described in Section 5.1.2 is another
possibility, but in terms of objective value, the following approach will be
superior. The main difficulty in solving D-MIP is determining optimal values
for the integer variables x. Fixing those to the values given by x* from the
solution to B-MIP(B) leaves only a linear programme to be solved. This way,
a feasible solution to D-MIP can be determined in reasonable time with best
objective value — assuming that the integer variables, which were not subject
to aggregation, are not affected by the disaggregation procedure.

To evaluate the effect of this disaggregation, the author conducted experi-
ments similar to those for Table 5.1: B-MIP(B) was solved with the time limit
of 1 hour, the obtained solution was subsequently disaggregated by solving a
linear programme as described above, results are reported in Table 5.2. Using
the CPLEX barrier-solver [29] with crossover to a basic solution, disaggrega-
tion took less than 38 seconds in all cases, for the smaller marvin-instances
at most 5 seconds. The increase of the objective value compared to fixed-
weight disaggregation can be seen to be very small, especially for the dual
LP-binnings. This emphasises once more the high quality of this aggregation
approach.

5.4 Disaggregation of binnings 83

Problem instance B-MIP(B) Disaggregation to D-MIP Disaggr.
obj. val.

binning B bins per time b&b obj. val gap time obj. val rel. rel. to

period [s] nodes (10%] [%] s] [10%] obj. val. BPlock

marvin-115-8513 BPlock 8513.0 3600.0 4652 7.177235 0.014 — 7.177235 1.000000 1.000000
B! 266.0 427.5 5174 T7.177185 0 1.8 7.177235 1.000007 1.000000

B-05 214.3 964.0 17918 7.176498 0 1.8 7.177044 1.000076 0.999973

B-0L 175.6 2972.7 124119 7.173551 0 1.8 7.173963 1.000058 0.999544

prim-cons 163.0 94.9 3035 7.170070 0 2.1 7.175644 1.000777 0.999778

pprim-var 123.3 46.8 517 6.990731 0 4.8 7.128473 1.019703 0.993206

B&8 115.0 117.3 1264 5.392583 0 3.8 6.086696 1.128716 0.848056

marvin-296-8513 BPlock 8513.0 3600.0 2501 7.220962 0.093 — 7.220962 1.000000 1.000000
B! 489.1 3600.0 9026 7.221193 0.055 1.0 7.221232 1.000005 1.000037

BO-05 439.3 3600.0 9536 7.220084 0.056 1.0 7.220209 1.000017 0.999896

Bo-0 399.9 3600.0 14119 7.218661 0.042 1.0 7.219413 1.000104 0.999785

gprim-cons 392.0 3600.0 22090 7.213103 0.022 1.0 7.218101 1.000693 0.999604

pprim-var 313.2 8728 4538 7.168841 0 1.1 7.196448 1.003851 0.996605

Bes 206.0 3600.0 18386 5.767265 0.029 0.7 6.381381 1.106483 0.883730

marvin-1038-8513 BPlock 8513.0 3600.0 181 7.260396 0.267 — 7.260396 1.000000 1.000000
B! 1294.3 3600.0 271 7.259532 0.270 1.2 7.259980 1.000062 0.999943

Bo-0° 1249.9 3600.0 171 7.258831 0.157 1.4 7.258997 1.000023 0.999807

BO-0L 1213.8 3600.0 331 7.261893 0.049 1.3 7.261937 1.000006 1.000212

pprim-cons 1234.0 3600.0 378 7.253915 0.170 1.5 7.258118 1.000579 0.999686
pprim-var 1072.3 3600.0 101 7.255896 0.320 1.4 7.257076 1.000163 0.999543

Bree 1038.0 3600.0 31 5.863011 9.185 1.1 7.006841 1.195093 0.965077
ca-121-29266 Bblock 20266.0 2272.9 501 59.730918 0.000 — 59.730918 1.000000 1.000000
(avg) B! 403.8 145.0 607 59.730819 0 37.0 59.730918 1.000002 1.000000

BO-05 293.3 121.1 620 59.730726 0 36.2 59.730917 1.000003 1.000000

Boot 202.7 93.4 674 59.729226 0 37.3 59.730303 1.000018 0.999990

pgprim-cons 178.1 40.3 314 59.562580 0 34.7 59.722332 1.002679 0.999856

pprim-var 138.1 41.2 148 59.305581 0 32.5 59.662778 1.006120 0.998859

Bes 121.0 34.5 159 36.518095 0 24.8 57.004820 1.561625 0.954360
wa-125-96821 Bhlock 96821.0 - - - - - - - -

B! 1904.1 3600.0 189 0.494093 1.477 22.6 0.494129 1.000072 —

BO-Os 1078.8 3600.0 520 0.494152 0.963 19.8 0.494155 1.000007 —

B0 398.6 3600.0 9049 0.494107 0.037 17.3 0.494162 1.000112 —

gprim-cons 234.0 1407.5 12615 0.494068 0 19.5 0.494154 1.000174 —

prrim-var 1488 256.3 2147 0.494076 0 16.4 0.494162 1.000175 —

Bee 125.0 3600.0 21846 0.281546 1.009 17.1 0.470499 1.671130 —

Table 5.2: Computational results for solving B-MIP(B) for different binnings B with subse-
quent disaggregation to D-MIP

The CPLEX MIP-solver [29] was used to solve B-MIP(B) with a time limit of 1 hour, for
details see Table 5.1. Subsequently, the best integer solution obtained for B-MIP(B) was
disaggregated to a solution of D-MIP as described in Section 5.4 — via fixing the z-variables in
D-MIP to their values in the B-MIP(BB)-solution and solving the resulting linear programme.
This linear programme is solved using the CPLEX barrier-solver [29] with crossover to a basic
solution, the time and objective value is reported. (For BP°°k 1o disaggregation is necessary,
since B—M[P(Bbl“k) is identical to D-MIP.) Column “rel. obj. val” states the disaggregated
objective value relative to the objective value obtained for B-MIP(B3) and thus shows how
this disaggregation method compares to fixed-weight disaggregation. The last column reports
how the disaggregated objective value for the respective binning relates to the objective value
obtained for B-MIP(BP°%*). Where B-MIP(B"°*) could not be solved to optimality within
the time limit of 1 hour, the disaggregated objective value for coarser binnings can even
exceed the objective value for B-MIP(B"°*).

For the “ca”-instances, the values reported are the arithmetic mean values over all 25 sce-
narios. For wa-125-96821, B-MIP(B"'°*) could not be solved at all due to memory limits.

84 Chapter 5. Aggregation of processing decisions

The last column in Table 5.2 shows how the disaggregated objective value
compares to the objective value obtained by directly solving the original pro-
gramme D-MIP, i.e. B—MIP(BblOCk). Even more than Table 5.1, this shows
that the loss in solution quality is very minor and completely negligible for
practical purposes. For the marvin-instances, B—MIP(BblOCk) could not be
solved to optimality within the time limit of 1 hour and so in two cases,
the disaggregated objective value could even exceed the objective value ob-
tained by directly solving B-MIP(BblOCk). For the “ca”-instances, the dual
LP-binnings B%! and B%% yielded the same objective value on average, and

B9 5 decrease as small as 0.001%.

5.5 Conclusion

This chapter was concerned with the novelty of the OPMPSP-formulation
D-MIP used in this thesis: the integrated optimisation of cutoff grades. To
achieve this, a possibly large number of additional continuous variables had
to be used in D-MIP, which at first sight increases the computational diffi-
culty of solving the programme. To overcome this disadvantage, this chapter
developed the concept of binnings, a column aggregation approach: Follow-
ing this, most of the new variables can be aggregated to reduce the size of
D-MIP. Various binnings were proposed and compared computationally. The
results proved this concept very successful, leading to significantly decreased
running times when solving the aggregated programmes by the commercial
MIP-solver CPLEX 11.0 [29]. For one instance in the test set, finding a solu-
tion was even impossible using the original formulation, whereas it could be
solved to small optimality gaps when applying suitable binnings. Most impor-
tantly, for the best binnings the aggregation led to practically no loss in the
objective value. All in all, this shows that the additional flexibility provided
by the new OPMPSP-formulation does not necessarily come at the cost of

increasing the computational difficulty immensely.

Chapter 6

Primal solutions

In this chapter we are finally concerned with probably the most relevant ques-
tion from the application point of view: methods for computing primal solu-
tions of high quality. Since the OPMPSP is NP-hard, it is natural to consider
heuristic approaches. This chapter presents several integer-programming-
based heuristics.

Section 6.1 introduces a generic class of greedy sub-MIP algorithms, which
can serve as start heuristics. Two specific heuristics of this form are pro-
posed, one proceeding by time periods and one based on a solution of the
lagrangean relaxation from Section 3.4. Section 6.2 presents a large neighbour-
hood search heuristic, which can be used to improve given solutions further.
All heuristics are evaluated computationally. Section 6.3 describes preliminary
experiments, which have been conducted with a promising branch-and-bound
approach based on lagrangean relaxation. Instead of solving the LP-relaxation
directly, dual bounds were computed using the lagrangean approach described
in Section 3.4 and successfully tested in Chapter 4. With further research con-
cerning the integration of valid inequalities, this promises to be a successful

approach to obtain solutions of provably high quality.

6.1 Start heuristics for the OPMPSP

As Kleinberg and Tardos [34] explain, “[it] is hard, if not impossible, to define
precisely what is meant by a greedy algorithm.” Vaguely they call an algo-
rithm greedy “if it builds up a solution in small steps, choosing a decision at
each step myopically to optimize some underlying criterion. One can often de-
sign many different greedy algorithms for the same problem, each one locally,
incrementally optimizing some different measure on its way to a solution.”
In the following, we first introduce a generic greedy heuristic for the
OPMPSP. Subsequently, we present two specific algorithms of this type, and
then describe an improved optimality measure for the greedy steps in the

generic algorithm. For the exposition, we consider the special case of D-MIP,

85

86 Chapter 6. Primal solutions

but the concept can be applied analogously to the other formulations from
Chapter 2. In particular, we will test the algorithms on the aggregated mixed-
integer programme B—MIP(BO'Ol) from Chapter 5.

6.1.1 A generic greedy sub-MIP heuristic

The general idea is simple: We try to determine “good” values for the integer
variables of D-MIP in a greedy fashion. To this end, solve D-MIP on a suitable
subset of its variables and fix some of the z-variables to the values obtained.
Subsequently, new variables are added and the programme is resolved. This
procedure is iterated until all variables have been added to the model.

Heuristics, which apply the optimisation of smaller mixed-integer pro-
grammes, are also termed sub-MIP heuristics. One of the advantages of sub-
MIP heuristics is for instance that any improvement in general MIP-solving
automatically leads to improved performance of the sub-MIP heuristic. Using
sub-MIP heuristics for general MIP-solving was probably first considered by
Fischetti and Lodi [16]. A detailed description and computational evaluation
of several general sub-MIP heuristics is given by Berthold [5, 4].

To ensure that the procedure described above yields a feasible solution,

the following notion is useful:

Definition 6.1 Let an instance of D-MIP on K aggregates and T time periods
be given, and let the set of predecessors of aggregate Ky, k € {1,..., K} be
denoted by P(k). We call 7 C{1,...,K}x{1,...,T} a precedence-feasible
index set for D-MIP if for all (k,t) € J, also

(¢,5) € J forall £ € P(k)U{k}, s € {1,...,t}. (6.1)

By the very definition of a precedence-feasible index set 7, the following
mixed-integer programme, which arises from D-MIP by restriction of its fea-

sible region, is well-defined:

maximise
Z —Ckt Ykt T Z Dit Zit (6.2)
(kt)yeJ (k,t)yeJ
subject to
Tht—1— Tt <0 for all (k,t) e J,t > 2, (6.2a)
t
> Uks—aRe <0 for all (k,t) € J, (6.2b)
s=1

t
The— > yes <O for all (k,t) € J, £ € P(k), (6.2¢)
s=1

6.1 Start heuristics for the OPMPSP 87

Zit — Ykt <0 for all (k,t) € J, 1 € Ky, (6.2d)
deyk,t <UM for all t € {1,...,T}, (6.2¢)
k:(kt)eg

> ams <UP forall t € {1,...,T}, (6.2f)
k:(k,t)€Ti€KE

zre € {0,1} for all (k,t) € J, (6.2g)

O0<ype <1 for all (k,t) € J, (6.2h)

0<z,; <1 for all (k,t) € J, i € K. (6.21)

Now suppose we are given an increasing and exhausting sequence of precedence-

feasible index sets,
WA ChcC...CT={1,....,K}x{1,....T}.

The algorithm starts by solving the above programme for J = J1, which we
refer to as G-MIP;. This yields a solution (:U(l), y, z(l)). At iteration r > 2
of the algorithm, let (:c(r_l),y(’“_l),z(r_l)) be a solution of G-MIP,_;. Fur-
thermore, choose a subset of indices J, C J,_1, for which the corresponding
z-variables shall be fixed to their value in 2("=1). Then solve programme (6.2)
for J = J, with the additional constraint

e =2y, " for all (k,t) € J. (6.3)

We will refer to this programme as G-MIP,. This process is iterated until
r = q is reached. The solution of the last programme, G-MIP,, provides a
solution of D-MIP, since J, = {1,..., K} x{1,...,T}.

The following simple lemma shows that this generic algorithm is well-
defined in the sense that the programmes G-MIP, ..., G-MIP, can be solved

sequentially, each of them having a feasible solution:

Lemma 6.2
(i) G-MIP; is feasible.

1) For 2<r<q, let (V"7 y\"=), 2" e a feasible solution o
For 2 ! (r=1) y(r=1) »=1)) p feasible sol f
G-MIP,_y and J, C Jr—1. Then programme G-MIP, is feasible.

Proof. For (i), because we consider only nonnegative mining and processing
capacities, the zero solution is feasible for G-MIP; in any case.
For (ii), we can extend the solution (33(7“_1), y(r=1), z(’"_l)) of G-MIP,_1 by

assigning zero mining and processing “activity” to the new variables. It is

88

Chapter 6. Primal solutions

straightforward to check that (Z, 7, 2) defined by

2, if (k.1) € Joo1,
Zro = § max {2}) s<ti(hs) €T} i3s5<t: (k) € T,
0 otherwise,
] y if (k,t) € Jp_1,
Ykt =
0 otherwise,
Zi(;_l) if (kvt) € Jr-1,
Zig = ’
0 otherwise,
for all (k,t) € J,, © € K, is feasible for G-MIP,. O

Since the procedure is heuristic anyway, the G-MIP, do not necessarily

have to be solved to optimality. Solving only to a certain optimality gap or,

when using a standard LP-based branch-and-cut solver, imposing a limit on

the number of branch-and-bound nodes or the number of simplex iterations,

might result in superior performance in practise. We summarise the generic

algorithm in pseudocode:

©

Generic greedy algorithm

Input: OPMPSP-instance as described in Section 2.1
Sequence of precedence-feasible index sets
0AR”C...CTy={1,....,K}x{1,....T}

Parameter: Gap limit € > 0

Output: Solution (z*,y*, z*) of D-MIP

begin
solve G-MIP; to a proven optimality gap of €
(:z:(l),y(l), z(l)) «—— incumbent solution obtained for G-MIP;
for r =2 to ¢ do

choose J, C J,—1

solve G-MIP, to a proven optimality gap of €

(:U(T),y(T), z(T)) +— incumbent solution obtained for G-MIP,
(z*, y*, 2*) — (:n(‘I), Y@, z(q))
end

The next sections will present two choices for the sequence of precedence-

feasible index sets, yielding specific algorithms of this type.

6.1 Start heuristics for the OPMPSP 89

6.1.2 A time-based greedy heuristic

The first specific algorithm is a generalisation of a greedy heuristic proposed
by Fricke [18, pp. 196] for the OPMPSP-formulation (2.3). First, (2.3) is
solved only for the time period ¢ = 1. This schedule is fixed and a schedule for
the next time period is determined on top of that. Iterating this up to time
period T yields a feasible schedule. In computational experiments conducted
by Fricke, this heuristic performed well only for a relatively shallow open pit
mine, where most of the orebody can be accessed already in early time periods.
For deeper open pit mines, the heuristic proved to be not sufficiently farsighted
and yielded highly suboptimal objective values.

Fricke suggested to take into account all time periods as follows: At it-
eration ¢, the time periods ¢+ 1,...,7T are not disregarded as above, but
aggregated suitably into one time period and considered in the optimisation.
This approach yielded significantly better results with respect to the objective
value, but consumed considerably more running time in turn.

We propose a slightly different possibility to overcome the disadvantages
of the “greediness”: Let L be the look-ahead, i.e. the number of time periods
to consider during each iteration and let F' be the number of time periods to
be fixed after each iteration, 1 < F' < L <T. First, we optimise a schedule
for time periods 1,...,L, and fix the z-variables for time periods 1,...,F.
Subsequently, we add the next F' time periods and iterate.

Precisely, define 7; = {(k,t)|k=1,...,K} for all t € {1,...,T}. This

gives a sequence of index sets
Jr=TU---U Tmin{(rfl)FJrL,T}

for r=1,...,q, where ¢ = min{r|(r —1)F + L > T}. These index sets are
trivially precedence-feasible according to Definition 6.1, increasing, and
Jo=A{1,...,K}x{1,...,T}. Hence, we obtain a well-defined algorithm of

the generic type from Section 6.1.1, if we specify the choice in Line 5:
\775271U"'U7'(r—1)F

forr=2,...,q.

For L = F =1, the algorithm proceeds as the heuristic of Fricke, which
was described initially. Computational results for 1 < F' < L < 3 are reported
in Section 6.1.5.

6.1.3 A greedy heuristic based on lagrangean relaxation

While the above heuristic used index sets for all aggregates and a certain range
of time periods, this one will select indices only for a subset of aggregates, but
all time periods 1,...,T. It is based on the observation that any solution to

the lagrangean relaxation described in Section 3.4, already provides us with

90 Chapter 6. Primal solutions

a precedence-feasible schedule, “only” the resource constraints are possibly
violated. A common approach is to transform such partially feasible solutions
to fully feasible solutions in a heuristic manner.

D—LR
z Y

of D-LR(u,) for some Lagrange multipliers p, m € Rgo, preferably optimal or
near-optimal. Then for each t € {1,...,T},

Suppose we have computed an optimal solution (D-LR zD_LR)

Co={ke{l,... K}z =1}

is the set of indices of aggregates which are started to be mined before or
during time period t in the solution of the lagrangean relaxation. This gives

a sequence of index sets
Jr ={(k,t)|keC,t =1,...,T},

forr=1,...,7, and J, ={1,..., K} x{1,...,T}, ¢ =T+1. The index sets
(D—LR yD-LR ,D-LR

the constraints of D-LR(u,), Jr41 trivially. After each iteration, we fix all

Ji,...,Jr are precedence-feasible because) satisfies

the newly added z-variables, i.e. for r = 2,...,q, we choose
;77»/ = \.77"—1

in the generic algorithm.

Note that C; may be empty for some ¢ € {1,...,T}, depending on the
solution of the lagrangean relaxation. Then in the corresponding iteration
no new variables are added and it can be skipped without even building and

solving the programme G-MIP;.

6.1.4 An improved optimality measure for the generic greedy
sub-MIP heuristic

The greedy heuristics presented above proceed from top of the open pit mine
to the bottom, at each iteration finding a locally optimal schedule. In cases,
where most of the ore is located at the bottom of the mine, this is problematic
during the first iterations, where only blocks close to the surface can be feasibly
mined. In particular, if negative net present value during early time periods
must necessarily occur in order to access high-value material in later time
periods, a greedy approach will fail: The zero solution will appear superior to
the greedy algorithm with its limited horizon.

The time-based greedy heuristic from Section 6.1.2 tried to overcome this
by looking ahead at time periods in the close future. However, if we want
to remain within reasonable running times, we will unlikely be able to use
a large look-ahead. One approach to reach a more global perspective is the

following: At iteration r of the generic greedy algorithm from Section 6.1.1,

6.1 Start heuristics for the OPMPSP 91

the values of zy,, (k,t) € J», were determined by disregarding the columns
corresponding to indices not comprised by J,.

Instead of completely removing those columns from the model, one might
merely relax the integrality conditions on them. This also leads to reduced
computational effort, but keeps the global perspective. Instead of G-MIP,, we
solve the programme PIR-MIP, !

maximise
K T N T
ZZ—Ek,t Ykt + ZZ Dit Zit (6.4)
k=1 t=1 i=1 t=1
subject to
Tht—1 — Tt <0 forall ke {1,...,K},te€{2,...,T}, (6.4a)
t
> Yk —wRs <O forall ke {1,...,K}, te{l,...,T}, (6.4b)
s=1
t —
xk,t—Zy&s <0 for all k € {1,...,K}, £ € P(k),
=t te{l,...,T}, (6.4c)
Zit — Ykt <0 for allkE{l,...,K},iEKk,

te{l,...,T}, (6.4d)

K
> arys <Um for all t € {1,...,T}, (6.4¢)
k=1
N
> aiziy <UP forall t € {1,...,T}, (6.4f)
=1
Th =27V for all (k,t) € T, (6.4g)
zre € {0,1} for all (k,t) € 7, (6.4h)
0<xpe <1 forall k e {1,..., K}, t€{l,..., T}, (6.4i)
0<yrs <1 forall k e {1,..., K}, te{l,..., T}, (6.4))
0< 2 <1 foralli e N, te{l,...,T}. (6.4k)

This is exactly the original problem D-MIP, when (6.4g) is added and (2.5g),
i.e. the integrality constraint on the z-variables, is replaced by (6.4h) and
(6.4i). PIR-MIP; does not contain constraint (6.4g), of course.

A corresponding version of Lemma 6.2 holds equally for PIR-MIP, and is
not restated here. Hence, if we replace G-MIP, by PIR-MIP, in the generic
greedy heuristic from Section 6.1.1, we obtain a well-defined algorithm. The
underlying criterion which the greedy algorithm optimises at each step is now

extended to a more global perspective.

! PIR-MIP for “partially integer-relaxed MIP”.

92 Chapter 6. Primal solutions

Following the same reasoning as in Section 3.1, programme PIR-MIP,
can be simplified: We may assume that for all (k,t) ¢ J,, constraint (6.4Db)
holds with equality, without loss in objective value. Then we can perform the
substitution ap,; = S\ yrs for all (k,t) € {1,...,K}x{1,...,T} = J, and
remove the corresponding constraints in (6.4a).

The next section will compare the heuristics which were proposed so far

computationally.

6.1.5 Computational comparison

In order to evaluate the two types of start heuristics following the generic
greedy scheme from Section 6.1.1 — the time-based heuristic from Section 6.1.2
for 1 < F < L <3, and the lagrangean-based heuristic from Section 6.1.3 —,
the author conducted experiments on the data sets described in Section 1.3.
The algorithms were run for the aggregated programme B—MIP(BO'Ol) from
the previous chapter.

The sub-MIPs — G-MIP, respectively PIR-MIP, — were solved to a relative
optimality gap of 0.01% using the CPLEX MIP-solver [29] with MIP-emphasis 1
(emphasis on integer feasibility), traditional branch-and-cut search and primal
simplex for the root relaxation. The latter proved faster than using barrier
or dual simplex algorithm. The results are reported in Table 6.1. All of the
heuristics showed a very consistent performance, always yielding objective val-
ues within 10% of the global optimum. Only 7 runs with time-based heuristics
yielded objective values lower than 95% of the optimum. For all instances, so-
lutions within 0.5% of the optimum could be obtained within running times
of at most 81 seconds.

The variant using G-MIP, as sub-MIPs consumed running times of less
than 16 seconds for almost all problem instances. Only for the largest and
most difficult instance marvin-1038-8513, the running time was as large as
133.2 seconds. Among the time-based heuristics, the versions with L > F' per-
formed better in general, as might be expected. Only for the “ca”’-instances,
surprisingly the most shortsighted heuristic with L = F' = 1 yielded the high-
est objective value on average.

With G-MIP, as sub-MIPs, the time-based heuristics were mostly faster
than the lagrangean-based heuristic, but the latter outperformed them clearly
with respect to the objective value. Even for the most difficult problem in-
stance marvin-1038-8513, the lagrangean-based heuristic computed a schedule
within 0.432% of the optimum and 1.052% of the LP-gap, taking 81 seconds.
Compared to this, in the experiments conducted for Table 5.1, it took al-
most 40 minutes to obtain a solution with less than 1% primal-dual-gap using
CPLEX 11.0 [29]. For all other instances, the optimality gap was consistently

below 0.1% and consumed never more than 16 seconds of running time. For

6.1 Start heuristics for the OPMPSP 93

Problem instance Heuristic L F' G-MIP, as sub-MIPs PIR-MIP, as sub-MIPs
time opt. gap LP-gap time opt. gap LP-gap rel. rel.
[s] [%] [%] s] (%] [%] time obj. val.
marvin-115-8513 time-based 1 1 0.5 2.401 3.268 12.9 0.005 0.793 23.888889 1.024552
time-based 2 1 1.0 0.317 1.108 18.9 0.005 0.793 19.285714 1.003125
time-based 3 1 2.3 0.287 1.078 30.5 0.003 0.791 13.038462 1.002846
time-based 2 2 0.6 2.310 3.171 11.2 0.008 0.796 19.362069 1.023566
time-based 3 2 1.0 0.267 1.058 16.8 0.003 0.791 16.421569 1.002651
time-based 3 3 0.8 0.312 1.103 14.9 0.003 0.791 17.761905 1.003099
lagr.-based — — 0.6 0.075 0.864 10.9 0.030 0.819 17.901639 1.000449
marvin-296-8513 time-based 1 1 1.3 8.744 10.459 210.9 0.009 0.810 158.556391 1.095724
time-based 2 1 3.6 7.871 9.413 2449 0.023 0.824 67.460055 1.085187
time-based 3 1 9.9 1.096 1.917 326.0 0.016 0.816 32.865927 1.010920
time-based 2 2 1.6 9.685 11.610 169.5 0.032 0.833 103.975460 1.106877
time-based 3 2 4.8 0.563 1.371 165.6 0.023 0.824 34.497917 1.005429
time-based 3 3 3.9 3.421 4.371 130.5 0.016 0.816 33.803109 1.035260
lagr.-based — — 15.7 0.060 0.861 1449 0.032 0.833 9.258786 1.000278
marvin-1038-8513 time-based 1 1 7.5 9.667 11.383 — — - — —
time-based 2 1 29.4 5.571 6.552 - — - — —
time-based 3 1 133.2 2.668 3.374 - — — — —
time-based 2 2 13.2 8.372 9.809 — — - — —
time-based 3 2 67.7 3.835 4.629 — — - — —
time-based 3 3 49.1 4.814 5.705 — — - — —
lagr.-based — — 81.0 0.432 1.052 — — - — —

ca-121-29266 (avg) time-based 1 1 0.5 1.266 1.572 16.6 0.502 0.790 36.009565 1.007717
time-based 2 1 0.8 3.295 3.717 22.9 0.021 0.304 28.868115 1.033845
time-based 3 1 1.5 3.740 4.209 30.7 0.012 0.295 21.087243 1.038791

22 0.5 2.175 2.526 14.5 0.107 0.391 31.540400 1.021156
time-based 3 2 0.8 4.172 4.692 20.2 0.014 0.297 25.460765 1.043609
time-based 3 3 0.6 2.318 2.679 15.5 0.111 0.394 26.885813 1.022765

lagr.-based — — 6.3 0.084 0.368 19.5 0.026 0.309 3.120772 1.000575

time-based

wa-125-96821 time-based 1
time-based 2
time-based 3

1 1.8 9.469 13.747 168.4 1.107 4.130 92.500000 1.092360
1 3.4 1.990 5.067 220.9 0.005 2,982 65.741071 1.020248
1 6.8 1.377 4.415 272.0 0.006 2.983 40.001471 1.013906
time-based 2 1.7 2.083 5.167 117.3 0.093 3.073 67.436782 1.020316
2 3.7 0.676 3.677 136.8 0.001 2,978 36.981081 1.006793
time-based 3 2.5 4.631 7.977 90.2 0.761 3.766 36.366935 1.040576
lagr.-based — — 8.7 0.000 2977 137.0 0.000 2.977 15.761795 1.000001

time-based

w W N

Table 6.1: Computational results on the performance of start heuristics for B-MIP(B°")

Two heuristics following the generic greedy scheme from Section 6.1.1 were tested: the time-
based heuristic from Section 6.1.2 for 1 < F' < L < 3, and the lagrangean-based heuristic
from Section 6.1.3.

For each heuristic, we report the overall running time including the time to build and alter
the sub-MIPs. The latter is negligible compared to the time to solve the sub-MIPs, though.
Columns “opt. gap” report the gap of the objective value obtained by the heuristic to the
optimal objective value available from Table 5.1 and is calculated as 2% Objc‘)pvflgbkf“‘;l‘jbj‘ val
Columns “LP-gap” state the gap to the dual bound given by the LP-relaxation, calculated
as LP'bO}LI‘SiA_ZELi‘Ar‘VZFj' val * The last two columns compare the variant using PIR-MIP, from
Section 6.1.4 with the heuristics using G-MIP, as initially introduced. For the instance
marvin-1038-8513, the heuristics with PIR-MIP, as sub-MIPs failed to finish within the
time limit of 30 minutes. For the “ca”’-instances, the values given are arithmetic mean

values over all 25 scenarios.

94 Chapter 6. Primal solutions

wa-125-96821, the lagrangean-based heuristic even yielded a scheduled with
optimal objective value.

The variant using PIR-MIP, as sub-MIPs proved even more effective. For
the time-based heuristics especially the more global perspective led to signifi-
cantly lower optimality gaps. In most cases, the objective value obtained was
within 0.05% of the optimum. Again, the lagrangean heuristic showed the
most consistent behaviour.

This superior performance comes at the cost of increased running times as
large as 326 seconds. Even more, for the largest instance marvin-1038-8513,
none of the heuristics using PIR-MIP, finished within the time limit of 30
minutes. However, there is great potential to speed up the solution of the
sub-MIPs PIR-MIP,.

To begin with, for simplicity of implementation the sub-MIPs were solved
as (6.4) and not in the simplified version as explained. Using the latter should
yield shorter running times. In general, a large fraction of the time for solv-
ing the sub-MIPs is spent on the solution of the LP-relaxations, in particular
at the root node. The experiments in Chapter 4 demonstrated that the la-
grangean dual can be solved much faster than the LP-relaxation. Solving the
lagrangean dual for example via a bundle algorithm as in Chapter 4 (or other
means, such as stabilised column-generation) can also provide a solution to
the LP-relaxation. This may be expected to speed up the solution of the sub-
MIPs PIR-MIP,, yielding significantly reduced overall running times for the
heuristics. Then the heuristics can be applied to larger problem instances,

such as marvin-1038-8513, as well.

6.2 An improvement heuristic for the OPMPSP

In contrast to start heuristics as presented in the previous sections, improve-
ment heuristics require one or more feasible solutions as input, on basis of
which they search for solutions with superior objective value.

One type of improvement heuristics following the local search paradigm

2 Given some reference

are so-called large neighbourhood search heuristics.
point in the solution space (or a relaxation of the solution space), the idea is
to define a neighbourhood about this point — typically “large” compared to
classical local search methods — and search it for superior feasible solutions.
This search is typically conducted by solving a sub-MIP obtained from the
original mixed-integer programme by merely restricting the domains of the
variables.

In the following, we present an OPMPSP-specific heuristic of this type. For

the exposition, we consider again the case of D-MIP, but the concept can be

2One example of a large neighbourhood search heuristic used in general MIP-solving is
the so-called relaxation-induced neighbourhood search by Danna et al. [14].

6.2 An improvement heuristic for the OPMPSP 95

applied analogously to the other formulations from Chapter 2. In particular,
we will test the heuristic on the solutions from Table 6.1 for B—MIP(BO'M).

6.2.1 An OPMPSP-specific large neighbourhood search heuristic

Let a feasible solution (z*,y*, z*) of D-MIP be given. To define a neighbour-
hood about this solution, we regard all solutions in which the mining of each
aggregate starts at most § time periods earlier or later than in (x*, y*, 2*), for
fixed 6 € {1,2,...}. For each k € {1,..., K}, let t*(k) denote the time period
during which the mining of aggregate ICy, is started, T'+1 if it is not scheduled
at all:
(k) = min{t|zy; =1} if oy =1,

T+1 otherwise.

Then we can define a neighbourhood about (z*,y*, 2*) as described above by

(2,9, 2) Vke{l,...,K},te{l,...,T}:
5—LN(1‘*7Z/*, z*) = feasible for . 0 if t < t*(k) _5— 1’ 7
kit =
b-MIP 1 it e> (k) + 0.

and solve the programme 0-LNS-MIP(z*, y*, z*):

maximise
K T
Z Z —Chkt Ykt + Zpi,tzi,t (6.5)
k=1 t=t*(k)—1 i€k,

subject to (z,y,z) € 0-LN (z*,y*, z").

Because (z*,y*, z*) € 6-LN (z*, y*, z*), this programme is feasible. It contains
at most (20 + 1)K (non-fixed) integer variables and is, for small values of ¢,
significantly reduced in size compared to the full D-MIP.

The next section will give computational results on the performance of this

improvement heuristic for § = 1 and § = 2.

6.2.2 Computational evaluation

The author conducted experiments solving programmes 1-LNS-MIP(z*, y*, z*)
and 2-LNS-MIP(x*,y*, z*). The reference solutions (z*,y*, z*) were obtained
by the start heuristics from Section 6.1 with G-MIP, as sub-MIPs, see Ta-
ble 6.1. Again, the CPLEX MIP-solver [29] was used to solve (6.5) with
MIP-emphasis 1 (emphasis on integer feasibility), traditional branch-and-cut
search and primal simplex for the root relaxation. The programmes were
solved near-optimally with a relative optimality gap of ¢ = 0.01% and a time
limit of 30 minutes, which was hit once for instance marvin-296-8513. The ob-

jective value of the reference solutions provides a lower bound on the optimal

96 Chapter 6. Primal solutions

Problem Reference solution 1-LNS-MIP 2-LNS-MIP
instance
heuristic L F' opt. gap time rel. opt. gap LP-gap time rel. opt. gap LP-gap
[%] [s] obj. val. (%] [%] [s] obj. val. [%] (%]
marvin time-based 1 1 2.401 6.8 1.024355 0.024 0.812 88.0 1.024584 0.001 0.790
-115 time-based 2 1 0.317 4.0 1.003107 0.007 0.795 45.9 1.003153 0.002 0.791
-8513 time-based 3 1 0.287 1.3 1.002598 0.027 0.816 51.4 1.002859 0.001 0.790
time-based 2 2 2.310 8.9 1.023551 0.009 0.798 83.7 1.023646 0.000 0.788
time-based 3 2 0.267 8.3 1.002461 0.022 0.810 109.3 1.002679 0.000 0.788
time-based 3 3 0.312 3.3 1.002907 0.022 0.810 51.8 1.003108 0.002 0.790
lagr.-based — — 0.075 8.7 1.000726 0.003 0.791 69.0 1.000739 0.001 0.790
marvin time-based 1 1 8.744 1.1 1.087429 0.766 1.579 1669.7 1.094933 0.081 0.882
-296 time-based 2 1 7.871 0.9 1.076337 0.838 1.653 1179.5 1.084651 0.072 0.874
-8513 time-based 3 1 1.096 398.4 1.009744 0.132 0.934 1171.2 1.011078 0.000 0.801
time-based 2 2 9.685 0.9 1.084565 2.047 2,907 685.9 1.106043 0.107 0.909
time-based 3 2 0.563 88.2 1.004979 0.067 0.869 1454.2 1.005657 0.000 0.801
time-based 3 3 3.421 26.2 1.033586 0.177 0.980 1800.0 1.034716 0.068 0.869
lagr.-based — — 0.060 69.1 1.000361 0.024 0.825 815.1 1.000597 0.000 0.801
marvin time-based 1 1 9.667 27.9 1.089816 1.554 2.204 1499.5 1.106811 0.019 0.634
-1038 time-based 2 1 5.571 36.6 1.056380 0.247 0.865 790.2 1.058776 0.021 0.637
-8513 time-based 3 1 2.668 178.9 1.026597 0.079 0.695 1397.2 1.027307 0.010 0.626
time-based 2 2 8.372 8.1 1.081951 0.863 1.492 1032.7 1.091058 0.029 0.645
time-based 3 2 3.835 85.8 1.038690 0.115 0.731 1218.9 1.039696 0.018 0.634
time-based 3 3 4.814 62.4 1.049420 0.110 0.727 1021.5 1.050363 0.021 0.636
lagr.-based — — 0.432 129.5 1.003939 0.039 0.655 804.9 1.004236 0.010 0.626
ca-121 time-based 1 1 1.266 0.6 1.012671 0.019 0.301 2.9 1.012769 0.009 0.292
-29266 time-based 2 1 3.295 0.4 1.029783 0.424 0.714 3.6 1.034184 0.006 0.289
(avg) time-based 3 1 3.740 0.4 1.031939 0.682 0.978 2.9 1.039110 0.004 0.287
time-based 2 2 2.175 0.5 1.021108 0.119 0.404 2.8 1.022293 0.007 0.290
time-based 3 2 4.172 0.4 1.032759 1.054 1.362 2.4 1.043897 0.006 0.289
time-based 3 3 2.318 0.4 1.021961 0.185 0.470 3.3 1.023810 0.008 0.291
lagr.-based — — 0.084 0.4 1.000787 0.007 0.289 2.3 1.000813 0.004 0.287
wa-125 time-based 1 1 9.469 14.6 1.071364 3.008 6.170 25.7 1.072236 2.929 6.084
-96821 time-based 2 1 1.990 2.5 1.018723 0.155 3.136 79.6 1.020303 0.000 2.977
time-based 3 1 1.377 11.4 1.013962 0.000 2977 181.3 1.013965 0.000 2.977
time-based 2 2 2.083 22.8 1.021271 0.000 2,977 108.7 1.021271 0.000 2.977
time-based 3 2 0.676 15.4 1.006804 0.000 2.977 72.5 1.006804 0.000 2.977
time-based 3 3 4.631 8.7 1.047638 0.087 3.067 40.7 1.048547 0.001 2.977
lagr.-based — — 0.000 30.7 1.000001 0.000 2.977 82.2 1.000002 0.000 2.977

Table 6.2: Computational results on the performance of an OPMPSP-specific large neigh-
bourhood search heuristic for B-MIP(BO'OI)

Programmes 1-LNS-MIP(z*,y",z*) and 2-LNS-MIP(z*,y*,z") were solved for reference
solutions (z*,y",z") obtained by the start heuristics from Section 6.1 with G-MIP, as
sub-MIPs, see Table 6.1. Columns “rel. obj. val.” report the final objective value of
0-LNS-MIP(x*,y*,z") relative to the objective value of the reference solution. Columns
“opt. gap” state the gap of the final objective value obtained by the heuristic to the op-
timal objective value available from Table 5.1 and is calculated as 22% Obj(;pvta_”l;bk}e'“;fbj' val
Columns “LP-gap” report the gap to the dual bound given by the LP-relaxation, calculated
ag LEP-bound—heur. obj. val g, t}e “ca”-instances, the values given are arithmetic mean values

heur. obj. val
over all 25 scenarios.

objective value and was applied as a lower cutoff value during the branch-and-
cut algorithm. The results are reported in Table 6.2.

The heuristic 1-LNS-MIP already showed very good performance. Run-
ning times are reasonable compared to the values in Table 5.1, often even
within a few seconds, except for some runs with the larger problem instances
marvin-296-8513 and marvin-1038-8513. The highest objective values were

obtained when starting from best solutions, i.e. from the solution obtained by

6.3 A lagrangean-based branch-and-cut approach — preliminary experiments 97

the lagrangean-based heuristic. By this, for all instances a final objective value
within 0.05% of the optimum could be reached. Moreover, for the reference so-
lutions obtained by the time-based heuristics, which had mostly comparatively
large optimality gaps, the optimality gap could be reduced significantly.

Naturally, solving 2-LNS-MIP yielded even better results with respect to
the objective value. Starting from the lagrangean-based heuristic solution,
the objective value obtained was within 0.01% of the optimum in all cases.
However, especially for the “marvin”-instances running times seem too large
when compared with the values in Table 5.1.

Note though that the sub-MIPs must not necessarily be solved to a relative
optimality gap of 0.01%, as done here, where a lot of time is consumed to
lower the dual bound. Solving only to a larger gap might yield almost as
high an objective value, while consuming less time. When integrating these
large neighbourhood search heuristics within a branch-and-cut framework, the
running time allowed can easily be controlled, for example by limiting the
number of branch-and-bound nodes or the number of simplex iterations used
for solving the sub-MIP.

The programmes §-LNS-MIP have exactly the same structure as the orig-
inal formulation. The next section will explain how the standard LP-based
branch-and-cut approach might allow for improvements through integration of
the lagrangean approach which was developed in Section 3.4 and successfully
tested in Chapter 4. A simple possibility is to solve the LP-relaxation at the

root node via solution of the lagrangean dual.

6.3 A lagrangean-based branch-and-cut approach —
preliminary experiments

In the previous sections we presented heuristics which produced high quality
solutions within less than 0.05% of the optimal objective value on all test in-
stances. The optimum needed for this evaluation could be computed using the
branch-and-cut MIP-solver CPLEX 11.0 [29]. This was possible because we
used data sets where the number of aggregates (and hence integer variables)
was rather small compared to realistically-sized block models.? Certainly, us-
ing aggregation methods like the fundamental tree method [30, 45] mentioned
briefly in Chapter 2, even very large-scale block models can be reduced to a
tractable number of aggregates. Nevertheless, it is desirable to use as large a
number of aggregates as possible in order to retain a good approximation of
the original block model.

A main time-consuming factor when applying a standard LP-based branch-

and-cut algorithm is the solution of the LP-relaxation, especially at the root

3The data sets were primarily chosen for experiments with the aggregation approach from
Chapter 5. For these, not necessarily the large number of aggregates, but rather the large
number of blocks within each aggregate was relevant.

98 Chapter 6. Primal solutions

node. The experiments in Chapter 4 showed that for programme D-MIP
the lagrangean dual arising from relaxation of the resource constraints can
be solved within a fraction of the time necessary to solve the LP-relaxation,
yielding practically the same bound. This can be used in various ways to
improve the standard LP-based branch-and-cut approach.

First, solving the lagrangean dual, e.g. by a bundle algorithm as in Chap-
ter 4 or by other means, such as stabilised column generation, can also provide
a (possibly approximate) solution to the LP-relaxation by aggregating solu-
tions of the lagrangean subproblems. Thus, one possibility is to solve the root
relaxation this way (followed by a crossover to a simplex basis) instead of using
standard simplex or interior point algorithms. This should already lead to a
significant speed-up at the root node, especially for large-scale instances.

Considering the computational results of Chapter 4, the lagrangean ap-
proach could be of use even further by replacing the LP-relaxation also at the
nodes of the branch-and-bound tree. To evaluate the viability of a completely
lagrangean-based branch-and-cut approach, the author conducted preliminary
experiments using the software SCIP 1.05 [3], a framework for solving con-
straint integer programmes. Constraint integer programming [1, 2] is a gener-
alisation of mixed-integer programming and SCIP provides a highly customis-
able branch-cut-and-price framework for solving mixed-integer programmes.
By default, SCIP is LP-based, but the LP-functionality can be turned off and
customised methods for computing dual bounds can be integrated. Only when
all integer variables are fixed, the remaining linear programme must be solved.
Interfaces for several LP-solvers exist. The author used CPLEX 11.0 [29] in
his experiments.

As for testing the heuristics in Tables 6.1 and 6.2, the experiments were
conducted for the aggregated programme B—MIP(BO'OI). Thus, using the bun-
dle algorithm as in Chapter 4, the dual bound at the root node could be com-
puted even faster than in Table 4.1 for D-MIP. When solving the lagrangean
dual at the nodes of the branch-and-bound tree, the optimal dual multipliers
were saved for the last two nodes processed. This way, when selecting a child
node after branching, the bundle algorithm could be warmstarted from the
multipliers of the parent node. This yielded an even faster computation of the
dual bound. By additionally storing the optimal multipliers at the root node,
a warmstart was also possible when selecting a non-child-node in the tree.

Branching decisions on the integer variables are realised by fixing x-vari-
ables to 0 or 1 in D-LR(p,w). For a down-branch, this carries over to the
equivalent project scheduling formulation PS-D-LR(u,). For an up-branch,
however, one must be careful: It can be shown that not the variable corre-

sponding to the aggregate itself, but the variables for all of its predecessors

6.3 A lagrangean-based branch-and-cut approach — preliminary experiments 99

must be fixed to 1 in PS-D-LR(p, 7). In the minimum cut digraph D as de-
scribed in Section 3.4.3, this can be enforced by setting capacities of certain
assignment arcs to infinity.

At the nodes of the branch-and-bound tree, the lagrangean-based greedy
heuristic was applied to a solution of the current lagrangean relaxation for
optimal multipliers, always giving a feasible solution, possibly inferior to the
incumbent, though. Applying the large neighbourhood search heuristic from
Section 6.2, the incumbent solution was improved further. As stated above,
it is crucial to keep control of the computational effort such that the overall
search process profits from the provided solutions, but does not suffer from the
computational overhead. In the experiments, this was achieved by applying
the heuristics only at a certain frequency. Other possibilities include limiting
the number of branch-and-bound nodes or the number of simplex iterations.

Because the lagrangean dual can also provide an LP-solution at each node,
the same branching rules as in LP-based branch-and-bound could be applied.
For the experiments though, variants of strong branching were used. These
could be performed extensively due to the fast dual bound computation. More-
over, heuristics were run immediately at the root node. This gave a primal
bound right from the start and was used during strong branching: If the local
dual bound dropped below this primal bound for some branching, the branch
was pruned and the corresponding x-variable fixed to the opposite value.

This approach proved very successful in creating high quality solutions,
due to the good performance of the heuristics integrated. However, a pure
branch-and-bound approach seems to be insufficient when it comes to proving
optimality. Various branching and node selection rules were tried, but by
branching alone the dual bound did not decrease during the early stages of
the branch-and-bound process. This was confirmed by experiments where
SCIP was run with standard settings, but cutting plane separators turned off:
The dual bound remained at the level of the initial root dual bound.

One possibility to obtain tighter bounds is to try lagrangean relaxation
of a different set of constraints such that a nonintegral feasible region is left.
This would most likely yield tighter bounds than given by the LP-relaxation.
On the other hand, solving the lagrangean subproblems will probably become
more time-consuming.

Alternatively, we showed in Section 3.5 how to integrate valid inequali-
ties into the lagrangean relaxation. SCIP provides routines for separation of
several general mixed-integer cutting planes which do not depend on the sim-
plex tableau, such as complemented mixed-integer rounding inequalities, see
Wolter [51]. This allows for computing valid inequalities which are violated
by a fractional LP-solution given by the bundle algorithm. If the coefficients

of the z-variables in the valid inequality are nonnegative, it can be dualised

100 Chapter 6. Primal solutions

as described in Section 3.5. For specific combinatorial cutting planes, as for
example discussed by Fricke [18], the latter condition is generally satisfied. A
branch-and-cut algorithm of this type seems promising and worthwhile being

considered for further research.

6.4 Conclusion

This chapter presented several heuristic methods proving to be successful in
computing OPMPSP-solutions of high quality. Section 6.1 described two
start heuristic based on a common generic greedy scheme: one proceeding
by time periods and one based on a solution of the lagrangean relaxation from
Section 3.4. The latter especially proved very successful in the experiments
conducted and yielded high quality solutions with objective values within a
0.5% gap of the optimum.

In Section 6.1.4 we discussed how these heuristics can be improved by
adding a more global perspective to the greedy steps. On one hand, these
variants performed even more successful in the experiments with respect to
the objective value. On the other hand, these gains in objective value came
at the cost of highly increased running times. However, we noted potential to
decrease these running times by a more careful implementation and utilisation
of the lagrangean approach. Also, it must be pointed out that the improvement
over the “standard” greedy scheme is not only a quantitative one meaning that
it would result in a slightly increased objective value. It is of a different quality
in the respect that it has a global perspective: At each greedy step, the entire
orebody for all time periods is taken into consideration, of course in a relaxed
form. Hence, it may be expected to yield consistently good results also in cases
where typical shortsighted greedy approaches will fail: for example for open
pit mines where all the high-value material is located towards the bottom of
the pit.

With the effective large neighbourhood search heuristic described and
tested in Section 6.2, the solutions obtained by the start heuristics could be
improved even further. For all test instances, high quality solutions with ob-
jective value within 0.05% gap of the optimum were found.

Finally, an outlook on possible further research directions was given: The
primal heuristics from this chapter can be brought together with the la-
grangean dual bound computation from Chapter 4 in a customised branch-
and-bound algorithm. To evaluate the effectiveness of this approach, the
author conducted preliminary experiments using SCIP [3] as a branch-and-
bound framework. The experiments were described in detail in Section 6.3.
The results proved this approach successful in generating solutions with ob-
jective value very close to the optimum. However, it also became clear that

branch-and-bound alone is insufficient to decrease the optimality gap in the

6.4 Conclusion 101

early stages of the branch-and-bound process. To obtain tighter dual bounds,
either different lagrangean relaxations need to be applied, or valid inequalities
integrated into the one already used. Testing this computationally seems to

be a promising direction for further research.

Conclusion

Since the initial application of mathematical optimisation methods to mine
planning in 1965, the Lerchs-Grossmann algorithm for computing the ulti-
mate pit limit, operations researchers have worked on a variety of challenging
problems in the area of open pit mining. This thesis focused on the open pit
mining production scheduling problem, which was described in detail in Sec-
tion 2.1. Historically, the open pit mining production scheduling problem was
mainly addressed by means of heuristics. Exact methods were not applicable
to large-scale real-world problem instances. Only through the improvement
in general MIP-solving during recent years has integer programming become
viable solution approach. This thesis treated several aspects of solving open
pit mining production scheduling problems by integer programming.

A common method for making large-scale block models of open pit mines
computationally tractable is to aggregate blocks to bigger units, which we
called mining aggregates. Researchers have developed specified methods for
this aggregation, which take into account the net present value objective as well
as the precedence relations. One example briefly mentioned is the fundamental
tree algorithm of Johnson, Dagdelen and Ramazan [30, 45]. Aggregation meth-
ods such as this yield mining aggregates with precedence relations aligned to
the precedence relations of the underlying block model — the precedence struc-
ture is therefore approximated reasonably well. However, the standard integer
programming formulations in the literature presuppose a homogeneous distri-
bution of ore within each mining aggregate, and hence these formulations yield
a rather bad approximation of the original block structure with respect to the
ore distribution. Therefore, in this thesis we considered a new mixed-integer
programming formulation first described by Boland et al. [6].

This model respects the in general heterogeneous ore distribution by sepa-
rately deciding for each block whether it should be processed? or discarded as
waste, depending on the oregrade. Thus, implicitly the model allows for inte-
grated cutoff grade optimisation, i.e. for determining the optimal value of the

oregrade below which material should be discarded as waste. The investigation

4In this context, “processing” means the further refinement and extraction of ore from
material excavated from the open pit mine.

103

104 Chapter 6. Conclusion

of this new model is the thrust of this thesis. Parts of the results presented,
especially from Section 3.2 and Chapter 5, have also appeared in [6].

In Section 3.2 we formally proved the existence of so-called “split ratios”,
which perform the function of what are referred to as cutoff grades in mining
terminology. Given values for these split ratios, the variables controlling the
block processing decisions could be suitably removed, yielding a significantly
smaller, but equivalent programme. However, we showed that computing split
ratios is NP-hard. Therefore, Chapter 5 proposed a slightly less rigorous ap-
proach using column aggregation techniques. Split ratios for the LP-relaxation
were used heuristically as approximations to exact split ratios, and blocks with
similar oregrade were aggregated to so-called “bins”. This approach proved to
be very successful in computational experiments: The size of the programmes
could be reduced drastically while incurring only a completely negligible de-
crease in objective value.

Another focus of the thesis was lagrangean relaxation: In Section 3.4, we
relaxed the resource constraints in a lagrangean fashion, leaving an integral
feasible region. Because of the close connection of open pit mining production
scheduling to resource-constrained project scheduling, a result of Mohring et
al. [41] could be applied to this lagrangean subproblem in a straightforward
way: For fixed Lagrange multipliers, the lagrangean relaxation could be solved
efficiently by computing minimum s-¢t-cuts in a suitably constructed network.

For Chapter 4 we conducted experiments solving the corresponding la-
grangean dual by means of a bundle algorithm. By this method, the dual
LP-bound and dual multipliers associated with the resource constraints could
be computed near-optimally, taking only a fraction of the time needed to solve
the LP-relaxation by one of the standard linear programming algorithms. Fast
computation of optimal multipliers associated with the processing constraints
proved to be of interest also for the aggregation approach in Chapter 5, as the
very successful dual LP-binnings were based on them.

Chapter 6 proposed several heuristics specific to the open pit mining pro-
duction scheduling problem. As start heuristics, we introduced a generic class
of greedy sub-MIP heuristics and two specific algorithms of this type: one
proceeding by time periods, another converting a solution of the lagrangean
relaxation to a fully feasible solution. The latter especially showed very good
performance in computational experiments and yielded solutions of high qual-
ity with objective values within a 0.5% gap of the optimum. We also proposed
an interesting improvement of these start heuristics by adding a more global
perspective to the single greedy steps. The computational results were promis-
ing: With respect to the objective value, this variant clearly outperformed the

initially tested heuristics. The problem was that, considering that these were

105

heuristics, running times were too large. We noted, however, that this draw-
back might be overcome by a more sophisticated implementation and by in-
tegration of the lagrangean approach. A large neighbourhood search heuristic
specific to the open pit mining production scheduling problem proved effective
in improving solutions obtained by the start heuristics described above even
further.

Moreover, the rapid solution of the lagrangean dual, as seen in compu-
tational results from Chapter 4, motivated preliminary experiments with a
lagrangean-based branch-and-bound algorithm. Details of these experiments
were described in Section 6.3. Due to the integration of the efficient heuris-
tics described, the approach proved very effective in computing high quality
solutions. However, the experiments also showed that branching alone seems
insufficient to decrease the optimality gap in the early stages of the branch-
and-bound algorithm. The dual bound remained at the level of the initial root
bound. We concluded that either integrating valid inequalities or trying la-
grangean relaxation with a different set of constraints is necessary to yield not
only high-value primal solutions, but also a good proof of optimality. Testing

this computationally seems to be a promising direction for further research.

List of frequently used

notation

[, T

Pit

rock tonnage of block 4

rock tonnage of aggregate ICy,

binning

cost of mining block ¢ during time period ¢

cost of mining aggregate K during time period ¢

objective function (of some programme)

optimal objective value (of some programme)

(lagrangean) dual function

precedence-feasible index set

objective coefficient of variable z;; in the lagrangean relaxation
D-LR(pu,)

number of aggregates

aggregate number k, a subset of the set of blocks N = {1,..., N}
subset of blocks 7 in aggregate Kj with positive x;

vectors of dual multipliers for mining and processing constraints,
respectively, p,m € Rgo

set of blocks (or block indices), N'={1,..., N}

profit from processing block ¢ during time period ¢

set of immediate predecessor blocks (or block indices) of block i,
P(i) CN

set of immediate predecessor aggregates (or aggregate indices) of
aggregate Ky, P(k) C {1,...,K}

sequence of split ratios for D-MIP or D-LP, 0 = (o1,...,07)
number of time periods

mining capacity for time period ¢

processing capacity for time period ¢

107

List of mathem. programmes

Caccetta-Hill’s integer programming formulation for the OPMPSP . . . 14
Fricke’s integer programming formulation for the OPMPSP 15
Fricke’s mixed-integer programming formulation for the OPMPSP . . . 16

D-MIP — mixed-integer programming formulation for the OPMPSP with

integrated cutoff grade optimisation and mining of aggregates

over multiple time periods L oo 18
D-MIP’ — mixed-integer programming formulation for the OPMPSP

with integrated cutoff grade optimisation and complete mining

of each aggregate within one time period 20
KP — integer programming formulation for the knapsack problem 21

PCKP — integer programming formulation for the precedence-constrained

knapsack problem L 22
RCPSP — integer programming formulation for the resource-constrained

project scheduling problem 23
D-LP - linear programming relaxation of D-MIP 29

y-D-LP — reduced linear programming relaxation of D-MIP with non-
cumulative variableso oo 30
x-D-LP/D-LP’ —reduced linear programming relaxation of D-MIP with
cumulative variables, equivalent to the linear programming re-
laxation of D-MIP’ 30
D-LR(u,) — lagrangean relaxation of D-MIP with respect to the re-
source constraints (for fixed Lagrange multiplier vectors p,m) . 42
PS-D-LR(p, m) — lagrangean relaxation D-LR(u,) in project scheduling
form (for fixed Lagrange multiplier vectors p, m) 45
B-MIP(B) — D-MIP with z-variables aggregated according to binning B 76
G-MIP, — sub-MIP in step r of the generic greedy algorithm for D-MIP 87
PIR-MIP, — sub-MIP in step r of the generic greedy algorithm for
D-MIP with “improved global perspective” from Section 6.1.4 . 91
0-LNS-MIP(z*, y*, z*) — sub-MIP for the OPMPSP-specific large neigh-
bourhood search heuristic from Section 6.2 (about solution
(T y™, 2%)) 95

108

List of tables

4.1

5.1

5.2

6.1

6.2

Computational results for solving LP-relaxation and lagrangean

dual 69
Computational results for solving B-MIP(B) for different bin-
nings B 81
Computational results for solving B-MIP(B) for different bin-
nings B with subsequent disaggregation to D-MIP 83

Computational results on the performance of start heuristics
for B-MIP(B™Y) 93
Computational results on the performance of an OPMPSP-
specific large neighbourhood search heuristic for B—MIP(BO'(H) 96

List of figures

1.1
2.1

2.2
4.1

4.2

4.3

5.1

Example of a two-dimensional block model with ultimate pit limit 2
Example of a two-dimensional block model with transitively
reduced precedence relations 10
Example of a two-dimensional aggregated block model 11
Running time (in seconds) of the bundle algorithm vs. maxi-
mum bundle size for the three “marvin”-instances 67
Running time (in seconds) of the bundle algorithm vs. maxi-
mum bundle size for instance ca-121-29266, scenario 5, and for
all 25 “ca”-scenarios as average running time 67
Running time (in seconds) of the bundle algorithm vs. maxi-
mum bundle size for instance wa-125-96821 68
Comparison of split ratios for D-MIP and D-LP for instance
marvin-115-8513o 79

109

References

1]

2]

Tobias Achterberg. Constraint Integer Programming. PhD thesis, Tech-
nische Universitat Berlin, July 2007.

Tobias Achterberg, Timo Berthold, Thorsten Koch and Kati Wolter. Con-
straint Integer Programming: a new approach to integrate CP and MIP.
In: Laurent Perron and Michael A. Trick (eds.), Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization
Problems, volume 5015 of LNCS, pages 6-20. Springer-Verlag, 2008.

Tobias Achterberg, Timo Berthold, Marc Pfetsch and Kati Wolter. SCIP
(Solving Constraint Integer Programs), Documentation. http://scip.
zib.de/.

Timo Berthold. Heuristics of the branch-cut-and-price-framework SCIP.
In: Jorg Kalcsics and Stefan Nickel (eds.), Operations Research Proceed-
ings 2007, pages 31-36. Springer-Verlag, 2008.

Timo Berthold. Primal heuristics for mixed integer programs. Master’s
thesis, Technische Universitat Berlin, September 2006.

Natashia Boland, Irina Dumitrescu, Gary Froyland and Ambros M.
Gleixner. LP-based disaggregation approaches to solving the open pit
mining production scheduling problem with block processing selectivity.

Computers and Operations Research, to appear.

Olivier Briant, Claude Lemaréchal, Philippe Meurdesoif, Sophie Michel,
Nancy Perrot and Frangois Vanderbeck. Comparison of bundle and clas-

sical column generation. Technical Report 5453, INRIA, January 2005.

Louis Caccetta, Lou M. Giannini and P. Kelsey. On the implementation
of exact optimization techniques for open pit design. Asia-Pacific Journal
of Operational Research, 11:155-170, 1994.

Louis Caccetta and Stephen P. Hill. An application of branch and cut to
open pit mine scheduling. Journal of Global Optimization, 27:349-365,
2003.

111

http://scip.zib.de/
http://scip.zib.de/

[10]

[11]

[12]

[13]

[14]

[20]

[21]

112

Louis Caccetta, P. Kelsey and Lou M. Giannini. Open pit mine production
scheduling. In: Proceedings of the Third Regional APCOM Symposium,
pages 65-72, Kalgoorlie, WA, Australia, 1998.

Bala G. Chandran and Dorit S. Hochbaum. A computational study of the
pseudoflow and push-relabel algorithms for the maximum flow problem.

Operations Research, to appear.

Bala G. Chandran and Dorit S. Hochbaum. Pseudoflow Solver
Version 3.21. http://riot.ieor.berkeley.edu/riot/Applications/
Pseudoflow/maxflow.html (accessed April 2008).

E. Ward Cheney and Allen A. Goldstein. Newton’s method for convex
programming and tchebycheff approximation. Numerische Mathematik,

1:253-268, 1959.

Emilie Danna, Edward Rothberg and Claude Le Pape. Exploring relax-
ation induced neighborhoods to improve MIP solutions. Mathematical
Programming A, 102(1):71-90, 2004.

George B. Dantzig and Philip Wolfe. Decomposition priciple for linear
programs. Operations Research, 8(1):101-111, 1960.

Matteo Fischetti and Andrea Lodi. Local branching. Mathematical Pro-
gramming B, 98(1-3):23-47, 2003.

Marshall L. Fisher. The lagrangian relaxation method for solving integer

programming problems. Management Science, 27(1):1-18, 1981.

Christopher Fricke. Applications of Integer Programming in Open Pit
Mining. PhD thesis, University of Melbourne, August 2006.

Gary Froyland, Merab Menabde, Peter Stone and Dave Hodson. The
value of additional drilling to open pit mining projects. In: Proceedings
of the International Symposium on Orebody Modelling and Strategic Mine
Planning: Uncertainty and Risk Management, pages 169-176, Perth, WA,
Australia, 2004.

Arthur M. Geoffrion. Lagrangean relaxation for integer programming.
Mathematical Programming Study, 2:82-114, 1974.

Jean-Louis Goffin, Alain Haurie and Jean-Philippe Vial. Decomposition
and nondifferentiable optimization with the projective algorithm. Man-
agement Science, 38(2):284-302, 1992.

http://riot.ieor.berkeley.edu/riot/Applications/Pseudoflow/maxflow.html
http://riot.ieor.berkeley.edu/riot/Applications/Pseudoflow/maxflow.html

[22]

[24]

[25]

[26]

Jean-Louis Goffin and Jean-Philippe Vial. Convex nondifferentiable opti-
mization: A survey focused on the analytic center cutting plane method.
Optimization Methods and Software, 17(5):805-867, 2002.

Andrew V. Goldberg and Robert E. Tarjan. A new approach to the
maximum-flow problem. Journal of the ACM, 35:921-940, 1988.

Michael Held and Richard M. Karp. The traveling salesman problem and
minimum spanning trees. Operations Research, 18:1138-1162, 1970.

Christoph Helmberg. The ConicBundle Library for Convex Opti-
mazation Version 0.2d. http://www-user.tu-chemnitz.de/~helmberg/
ConicBundle/ (accessed April 2008).

Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex Analysis
and Minimization Algorithms. Springer-Verlag, Berlin, Germany, 1993.

Two volumes.

Dorit S. Hochbaum. The pseudoflow algorithm and the pseudoflow-based
simplex for the maximum flow problem. In: Proceedings of Integer Pro-
gramming and Combinatorial Optimization, 6th International IPCO con-
ference, pages 325-337, Houston, TX, USA, 1998.

Dorit S. Hochbaum and Anna Chen. Performance analysis and best im-
plementations of old and new algorithms for the open-pit mining problem.

Operations Research, 48:894-914, 2000.
llog Inc. Ilog CPLEX 11.0 User’s Manual, September 2007.

Thys B. Johnson, Kadri Dagdelen and Salih Ramazan. Open pit mine
scheduling based on fundamental tree algorithm. In: Proceedings 30th
APCOM, pages 147-159, Phoenix, AZ, USA, 2002.

James E. Kelley Jr. The cutting-plane method for solving convex pro-
grams. Journal of the Society for Industrial and Applied Mathematics,
8(4):703-712, 1960.

Hans Kellerer, Ulrich Pferschy and David Pisinger. Knapsack Problems.
Springer-Verlag, Berlin, Germany, 2004.

Alf Kimms. Maximizing the net present value of a project under resource
constraints using a lagrangian relaxation based heuristc with tight upper
bounds. Annals of Operations Research, 102:221-236, 2001.

Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley,
Boston, MA, USA, 2005.

113

http://www-user.tu-chemnitz.de/~helmberg/ConicBundle/
http://www-user.tu-chemnitz.de/~helmberg/ConicBundle/

[35]

[42]

[43]

[44]

[45]

114

Claude Lemaréchal. An algorithm for minimizing convex functions. In:
Jack L. Rosenfeld (ed.), Information Processing 74, pages 552-556, North
Holland, 1974.

Claude Lemaréchal. Lagrangian relaxation. In: Michael Jiinger and Denis
Naddef (eds.), Computational Combinatorial Optimization: Optimal Or
Provably Near-optimal Solutions, pages 112-156. Springer-Verlag, Berlin,
Germany, 2001.

Helmut Lerchs and Ingo F. Grossmann. Optimum design of open-pit
mines. Transactions CIM, LXVIII:17-24, 1965.

Igor Litvinchev and Vladimir Tsurkov. Aggregation in Large-Scale Opti-
mization, volume 83 of Applied Optimization. Kluwer Academic Publish-

ers, Dordrecht, The Netherlands, 2003.

Gemcom Ltd. Gemcom Whittle. http://www.gemcomsoftware.com/
products/whittle/ (accessed May 2008).

Merab Menabde, Gary Froyland, Peter Stone and Gavin Yeates. Mining
schedule optimisation for conditionally simulated orebodies. In: Proceed-
ings of the International Symposium on Orebody Modelling and Strate-
gic Mine Planning: Uncertainty and Risk Management, pages 347-352,
Perth, WA, Australia, 2004.

Rolf H. Mohring, Andreas S. Schulz, Frederik Stork and Marc Uetz. Solv-
ing project scheduling problems by minimum cut computations. Manage-
ment Science, 49(3):330-350, 2003.

George L. Nemhauser and Laurence A. Wolsey. Integer and Combinato-
rial Optimization. Wiley-Interscience Series in Discrete Mathematics and
Optimization. John Wiley & Sons, New York, USA, 1988.

Ahmet H. Onur and Peter A. Dowd. Open-pit optimization — part 2:
Production scheduling and inclusion of roadways. In: Transactions of
the Institution of Mining and Metallurgy (Section A: Mining Industry),
volume 102, pages 105-113, 1993.

A. Alan B. Pritsker, Lawrence J. Watters and Philip M. Wolfe. Multi-
project scheduling with limited resources: A zero-one programming ap-
proach. Management Science, 16(1):93-108, 1969.

Salih Ramazan. The new fundamental tree algorithm for production
scheduling of open pit mines. Furopean Journal of Operational Research,
177(2):1153-1166, 2007.

http://www.gemcomsoftware.com/products/whittle/
http://www.gemcomsoftware.com/products/whittle/

[46]

[49]

[50]

David F. Rogers, Robert D. Plante, Richard T. Wong and James R.
Evans. Aggregation and disaggregation techniques and methodology in
optimization. Operations Research, 39(4):553-582, 1991.

Jayaram K. Sankaran, Dennis L. Bricker and Shuw-Hwey Juang. A
strong fractional cutting-plane algorithm for resource-constrained project
scheduling. International Journal of Industrial Engineering, 6:99-111,
1999.

M.L. Smith. Optimizing inventory stockpiles and mine production: An
application of separable and goal programming to phosphate mining using
AMPL/CPLEX. CIM Bulletin, 92:61-64, 1999.

Hirofumi Uzawa. Iterative methods for concave programming. In: Ken-
neth J. Arrow, Leonid Hurwicz and Hirofumi Uzawa (eds.), Studies in
Linear and Non-Linear Programming, pages 154-165. Stanford Univer-
sity Press, 1959.

Laurence A. Wolsey. Integer Programming. Wiley-Interscience Series in
Discrete Mathematics and Optimization. John Wiley & Sons, New York,
USA, 1998.

Kati Wolter. Implementation of cutting plane separators for mixed integer

programs. Master’s thesis, Technische Universitat Berlin, December 2006.

Paul H. Zipkin. Bounds on the effect of aggregating variables in linear
programs. Operations Research, 28(2):403-418, 1980.

115

	Abstract / Zusammenfassung
	Acknowledgements
	Introduction
	A brief introduction to open pit mining
	Mathematical prerequisites, thesis outline and contribution
	Mathematical prerequisites
	Outline of the thesis
	Contribution of the thesis

	Data sets, hardware and software used in the computational experiments

	Modelling the open pit mining production scheduling problem
	General model outline and notation
	Previous work
	Heuristic approaches and dynamic programming
	Integer programming formulations
	Mixed-integer programming formulations

	A new mixed-integer programming formulation with integrated cutoff grade optimisation
	The model
	Discussion

	Closely related problems
	The precedence-constrained knapsack problem
	The resource-constrained project scheduling problem

	Complexity analysis
	Conclusion

	Structural analysis
	Redundancy in the LP-relaxation
	Knapsack structures
	Integrality of the precedence polytope
	A lagrangean relaxation approach
	Lagrangean relaxation in the literature
	Lagrangean relaxation of the resource constraints
	Solving the lagrangean relaxation by minimum cut computations
	Lagrange multipliers and cutoff grades

	Valid inequalities
	Integrating valid inequalities in the LP-relaxation
	Integrating valid inequalities in the lagrangean relaxation
	OPMPSP-specific valid inequalities

	Conclusion

	Dual bound computation
	The lagrangean dual
	The lagrangean dual -- a convex nondifferentiable optimisation problem
	The subgradient method (Uzawa uzawa:1959)
	The cutting plane method of Cheney-Goldstein cheney:1959 and Kelley kelley:1960
	Column generation
	ACCPM -- analytic centre cutting plane methods (Goffin et. al goffin:1992)
	Bundle methods (Lemaréchal lemarechal:1974)

	Computational comparison of LP-relaxation and lagrangean dual
	Computational experiments with the LP-relaxation
	Computational experiments with the lagrangean dual
	Conclusion

	Aggregation of processing decisions
	Aggregation in large-scale optimisation
	Column aggregation in linear programming
	Standard disaggregation methods

	Binnings -- a column aggregation scheme for the open pit mining production scheduling problem
	LP-based binnings
	Binnings based on primal LP-solutions
	Binnings based on dual LP-solutions
	Computational comparison

	Disaggregation of binnings
	Conclusion

	Primal solutions
	Start heuristics for the OPMPSP
	A generic greedy sub-MIP heuristic
	A time-based greedy heuristic
	A greedy heuristic based on lagrangean relaxation
	An improved optimality measure for the generic greedy sub-MIP heuristic
	Computational comparison

	An improvement heuristic for the OPMPSP
	An OPMPSP-specific large neighbourhood search heuristic
	Computational evaluation

	A lagrangean-based branch-and-cut approach -- preliminary experiments
	Conclusion

	Conclusion
	List of frequently used notation
	List of mathematical programmes
	List of tables
	List of figures
	References

