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MOISTURE-GRAVITY WAVE INTERACTIONS IN A MULTISCALE
ENVIRONMENT

DANIEL RUPRECHT*, RUPERT KLEIN*, AND ANDREW J. MAJDA

Abstract. Starting from the conservation laws for mass, momentum and energy together with
a three species, bulk microphysic model, a model for the interaction of internal gravity waves and
deep convective hot towers is derived by using multiscale asymptotic techniques.

From the resulting leading order equations, a closed model is obtained by applying weighted
averages to the smallscale hot towers without requiring further closure approximations. The resulting
model is an extension of the linear, anelastic equations, into which moisture enters as the area fraction
of saturated regions on the microscale with two way coupling between the large and small scale.
Moisture reduces the effective stability in the model and defines a potential temperature sourceterm
related to the net effect of latent heat release or consumption by microscale up- and downdrafts.

The dispersion relation and group velocity of the system is analyzed and moisture is found to have
several effects: It reduces energy transport by waves, increases the vertical wavenumber but decreases
the slope at which wave packets travel and it introduces a lower horizontal cutoff wavenumber, below
which modes turn into evanescent. Further, moisture can cause critical layers.

Numerical examples for steadystate and timedependent mountain waves are shown and the effects
of moisture on these waves are investigated.

1. Introduction. Internal gravity waves are the prominent feature of atmo-
spheric flows on lengthscales reaching from 10 to the order of 100km. Although they
are not resolved in General Circulation Models (GCM), their effects are important
to capture by parameterizations to obtain realistic flows. The development of such
parameterizations usually relies on physical arguments, leading to simplified models
for the process to parameterize. Multiscale asymptotics can be used as a tool to derive
such models in a more systematic way, a strategy discussed for example in [18] and
[14].

This paper is based on the model for fast gravity waves (timescale of ~ 100s) in
a deep convective, hot tower regime that is derived in [15]. Using a slightly extended
ansatz, allowing for a constant background flow, the same steps described there are
repeated and a brief recapitulation of the key steps is given. The main parts of the
paper at hand are first the derivation of a closed set of equations out of the leading
order equations emerging from the multiscale analysis and second an investigation of
some properties of this model and a comparison to the dry case.

The resulting model is an extension of the linear, anelastic equations. It contains
a mechanism for the reduction of the stability frequency by averaged moist dynamics
and includes two additional equations for the averaged perturbation vertical velocity
and potential temperature. These equations will define a sourceterm for the largescale
potential temperature related to moist dynamics of the perturbation quantities. Also,
the largescale flow does enter the equations for the perturbation quantities, so that
there is a bidirectional coupling between large- and smallscale equations.

In [3] a model for steady, moist, hydrostatic flow over a mountain with reversible
moist dynamics is proposed. The model distinguishes between saturated and nonsat-
urated regions by a switching function that depends on the vertical displacement of a
parcel: if the parcel is displaced beyond the lifting condensation level it is treated as
saturated and the dry stability frequency is replaced by the moist stability frequency.
Although being distinctively different, the model derived in the paper at hand has
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certain similiarities worth pointing out: it also employs a switching function distin-
guishing between saturated and nonsaturated regions, but the switch does directly
depend on the mixing ratio of watervapor. Further, because the model is based on an
ansatz with two horizontal scales, the stability frequency not only changes between
moist and dry but is modified in a continous way, depending on the area fraction of
saturated regions on the small scale.

In [2] their model is extended to nonhydrostatic flow with irreversible condensa-
tion and in [1] to nonlinear, steady flow. It is found that moisture adjacent to the
ground can significantly reduce the mountain drag, a result also found in the examples
investigated in the paper at hand.

In [13], nonlinear, nonsteady, nonhydrostatic anelastic flows are investigated.
Here, the mixing ratios of liquid water and vapor are treated as prognostic vari-
ables, defining heating source terms for the potential temperature. Besides finding
again that moisture can reduce drag, it is also found that moisture does reduce the
wave intensity and steepens the resulting wave patterns. While the first result is also
found in the examples in this paper, instead of a steepening of patterns, a reduction
of the propagation angle is observed in the presented examples.

[7] employ a fully compressible model combined with prognostic equations for
watervapor, rainwater and cloudwater to simulate moist mountain waves. They also
find that moisture reduces the vertical flux of horizontal momentum and the amplitude
of the generated wave patterns. Also, they observe an increase in vertical wavelength
for nearly hydrostatic waves. Attenuation of gravity waves by moisture and an increase
of vertical wavelength was also found in the analysis of wave propagation in a fully
saturated atmosphere in [8]. Note that all these models employ explicit closures, while
the model presented in the paper at hand features an analytic mass flux closure.

This paper is organized as follows: In 2, first the Ansatz for the derivation in [15]
is briefly reviewed and extended by a constant, horizontal background wind. Then
the main part in that section is the analytic derivation of a closed set of equations
out of this model. In 3, some properties of the resulting set of equations are pointed
out, for example the dispersion relation and the group velocity, and compared to the
dry case. Section 4 demonstrates the effect of moisture in some numerical examples.

2. Derivation of the model. The derivation in [15] is based on a distinguished
limit for Mach-, barotropic Froude- and bulk microscale Rossby number connected by
a generic asymptotic expansion parameter £:

M~TFr~e? Rog~e ! ase—0 (2.1)

See [14] for a detailed explanation of this technique. The starting point of the model
development are the conservation laws for momentum, mass and energy combined
with a slightly modified version of the bulk microphysics model described in [12].
The prognostic quantities in the original equations are horizontal velocity i, vertical
velocity w, density p, pressure p, potential temperature 6 and the mixing ratios of
water vapor ¢y, cloud water ¢, and rain water g,.

The scales at which the model is focussed are a timescale of 7ot &~ 100s, a vertical
length scale equal to the pressure scale height 2ot = hse &= 10km and two horizontal
scales o &~ 10km and 7ef = 1000m. These scales are connected to the universal
reference quantities for time, length and velocity derived in [14] by the expansion
parameter
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T~ a_ltmf , TR hge , R a_lhsc (2.2)

Zzhsc;u%urcfv

The small horizontal scale ) resolves the horizontal variation inside deep moist con-
vective towers that are common in the tropics. The timescale 7 corresponds to the
advection timescale of this smaller lengthscale while the larger scales x and z describe
the regime of nonrotating and nonhydrostatic gravity waves. Note that the reference
frequency set by the timescale is 0.01s™! and thus compatible with the typical value
used for the stability or Brunt-Vaiséla frequency. Further, it is assumed that the
horizontal velocity is independent of the small horizontal scale 7.

The model distinguishes between saturated and nonsaturated areas by a switching
function H,, defined as a function of the leading order water vapor content:

0 : q\(,o)(x,n,z,r)<q\(,2)(z) (undersaturation)

Hy, (00 (x,1, 2, 7)) = { 1 ¢ (x,m,2,7) > ¥ (z) (saturation) (2.3)
Here, ¢y s is the saturation water vapor mixing ratio computed from Boltons formula
for saturation vapor pressure (see [9] for the formula and [15] for the derivation of an
expression for ¢ys).

Here, we slightly modify the ansatz for the horizontal velocity by introducing a
constant background velocity ©*°. To avoid inconsistencies in the derivation, we also
need to add a second timescale 7/, corresponding to the timescale set by advection of
flows with u®-velocity over n-distances. The terms related to 7/ will eventually drop
out by sublinear growth conditions in the end and will not appear in the final model.
In terms of ¢ the timescale is

7 8_2tref (2.4)
and so the ansatz for horizontal velocity now is
u(z, 2, t;e) = e u™ +uO(x, 2, 7) + O(e) (2.5)

Note that as ¢ &~ 0.1 and wuys = 10m/s, a dimensional background flow of 10m/s
corresponds to a nondimensional value of ©* = 0.1 and this value will be used in
most of the numerical examples presented later. The expansions of the other dynam-
ical quantities as well as the moist variables are as described in [15] except that all
quantities depending on 7 now also depend on 7’.

All quantities are split up as

d=0+¢ (2.6)
with
_ . 1 7o
0= tm o . ¢(n)dn (2.7)

denoting the average over n while the tilde part are perturbations from this average.
We present the model derivation in a z-z-plane here. On the one hand, this simplifies
the notation, on the other hand the presented numerical examples will be of this type,
too.

The leading order equations for the averages resulting from this ansatz are
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(
5O 1y 1 7O g
0D + u>0® + 092 = — dus (qu c© 4 (H,, —1) CéS’) (2.8)
0

(590),+ (7). =

with 73) = p(3)/p(0) and 922) (z) being the moist adiabatic potential temperature
gradient of the background, Céo) the leading order sourceterm from vapor condensat-

ing to cloudwater or cloudwater evaporating and C‘gg) the leading order sourceterm
representing cooling by evaporating rain. The equations for the perturbations read

@ + w50 + u O, =63
0P +u=0D +u09D + 50 eR) =
Po

(2.9)

ev

0 0 0
(HQvC((i ) - HQUC((i ) + (qu - 1) C(O) - (qu - 1) CC(V))

The resulting leading order equations for the moist species split into the saturated
(Hg, = 1) and the undersaturated (Hy, = 0) case

Saturated.
- (@w) + U~j<0>) 0, =
g +u*q® +uq%) =0 (2.10)
Undersaturated.
Cii (9 = a®) /ol =
) +u=q®) +u®q?) =0 (2.11)
0 +uq +uql) =0

The keysteps of the derivation can be found in the appendix.

2.1. Computing the massflux closure. To obtain a closed set of equations,
an expression for the averaged moisture related sourceterm in the equation for ()
in (2.8) will be derived out of the perturbation equations (2.9) and the leading order
equations (2.10) and (2.11) obtained from the bulk microscale model. The derivation
will be purely analytically and does not require additional physical assumptions.

Multiply the equation for C’éo) in (2.10) by H,, and average over 7 to get

—Hy,w g, — Hy, o ¢, = H,,C\ (2.12)

Vi QVs,z

Looking at the transport equations for watervapor (2.11) and noting that in the

saturated region, q\(,o) = q\(,g) (z) trivially satisfies the same transport equation, it is

Q\(IO) (:I;a 2,1, T) = q\(/O) ((E - U‘OOT7 2, = / u(O) (:I;a 2, tl)dtl7 0) (213)
0
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Now define
o(z,z,7) = Hq, (z,2,m,T) (2.14)

As [ ul®(z, z,t')dt' is independent of 7, we get

U(Ia ZaT) = qu(ilf, 257777—)

= He, (& —uT, 2,1 — / u(®) (z, z,t')dt’, 0) (2.15)
0
= O'(.I - u007_7 Z, O)

It will turn out that the dynamics induced by the moisture in this model can all be
tied to this 0. Looking at the definition (2.3) of the switching function H,, we see
that
o

o(xz,z,7) = lim — H, (x,z,7,7)dy

(#.27) = Jim oo [ (o7
fi 7€ (=10 70) ¢ v (@, 2,1, 7) 2 qus(2)}]

m0—00 [ (=10, m0)]

(2.16)

So for a fixed point (x, z,7), o is the area fraction of saturated regions on the n-scale
belonging to this point. Using (2.14) and the moist adiabatic equation

(%) = _qug,)z = —ngg,)z (2.17)

we can write (2.12) as
L 'ew®6® + L~"H, 0©6> = H, C'" (2.18)

Now an expression for
w' = Hy o) (2.19)

is required. To obtain it, multiply both equations in (2.9) by H,, and average to get

wl +u™w!, =0’
. o _ 2.20
0. +u>0, + w0 =L |(1-0)H, C —0cC_ (2.20)
with
0 = H, 00 (2.21)

and, using (2.11) and Hg, (Hgq, —1) =0,

C_(2,2,7):= ﬁC:j(qu -1) (q\(g) — q\(,o)) \/ qﬁo) (2.22)

From (2.10) and (2.11) one can see, that the leading order mixing ratio of rain, s
only advected with the flow for th(_e chosen short timescale. The same holds for q\(,o) o)
that the evaporation sourceterm C_ is also only advected and can thus be computed

once in the beginning of a simulation and then just be moved around.
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2.2. Summary of the model. The full model now consists of (2.8) with the §(*)
sourceterms replaced according to (2.18) and (2.22) plus (2.20) with the 6" sourceterm
rewritten using (2.18). Summarized and dropping the superscripts 0 and 3 for simpler
notation, this reads

Uy + Uy + Ty = 0
Wy +uPw, + 7, =0
0, +uX0, +(1—0)0Pw=0Puw +C_
(pott), + (pow), =0
wl +u™wl, =0’
0 +u=0 + 0P =0 (1-0)0Pw—0cC_

(2.23)

Moisture effects the largescale dynamics given by the equations one to four in two
ways. First, it reduces the effective stability of the atmosphere by a factor of 1 — o,
representing the effect that if a parcel rises and starts condensating water, the release
of latent heat will effectively reduce the restoring force the parcel experiences. Because
of the short timescale in this model, the only conversion mechanism between the moist
quantities that has a leading order effect is the evaporation of cloudwater into vapor
and the condensation of vapor into cloudwater in fully saturated regions and so o
itself does not change with time in the model.

Second, the release and consumption of latent heat by the averaged smallscale
up- and downdrafts w’ in saturated areas is described by the sourceterm 922)11/ in the
equation for the largescale potential temperature plus the bulk microscale equations
(equation five and six). A positive microscale vertical velocity w’ results in a positive
contribution to #, modelling latent heat release while a negative w’ models latent heat
consumption.

For the scales used in the derivation, the effect that undersaturated regions in a
rising parcel will eventually become saturated if it rises high enough is not present.
An extension of the model to capture this effect will be a subject of future work, see
the comments in 3.5.

The microscale model not only provides the sourceterm for the largescale dynam-
ics but is also affected by them in return through the w sourceterm in the right hand
side of the last equation. At last, for the chosen time- and lengthscales, the mass con-
servation equation reduces to the anelastic divergence constraint given by equation
four, showing that acoustic waves have no significant effect in this regime.

Note that if all the moisture related terms vanish, i.e. ¢ = 0, C_ = 0 and
w'(r=0)=0'(r =0) =0, (2.23) reduces to the linear, anelastic equations

Ur + uPUy + 715 =0
Wy +uPWy + 7, =0
0, 4+ u>0, + 02w =0
(pott), + (pow), =0

(2.24)

See for example [4].

3. Properties of the model.
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3.1. Dispersion relation. The asymptotic analysis yields, that the leading or-
der density reads

p(z) = exp(—2) (3.1)
in nondimensional terms. Thus, the anelastic constraint in (2.23) can be rewritten as
Uy + W, —w =0 (3.2)

Applying a standard plane wave ansatz here would lead to a complex valued dispersion
relation, as in an atmosphere with decreasing density the amplitude of gravity waves
growth with height. To avoid this and obtain a real valued expression, we build this
feature of growing amplitude into our ansatz. Plug

d(x,2,7) = pexp(uz) exp(i(ke + mz — wr)) (3.3)

with ¢ € {@,w,0, 7, w’,0'} into (2.23) and assume C_ = 0, i.e. no source terms from
evaporation and that ¢ is uniform in z. By successive elimination of the ¢, we are
left with roots

(w— uook)2 = wizntr =0 (3.4)

and

k? —o(p? — p—m?) — oi(2um — m) M

(w—u™k)? = (3.5)

z

k2 — (p? = p—m?) —i(2pm — m)

The solution with win, = 0 corresponds to a vortical mode while the nonzero solutions
are gravity waves. Choosing

1
== 3.6
n=g (3.6)
results in the real valued dispersion relation
k* +o(m?+ 1)
0012 1) p(2)
(w—u®k)* = Pyl 0% (3.7)
For ¢ = 0, this is equal to the dispersion relation for the pseudo-incompressible
equation derived in [5]. Equation (3.7) can be rewritten as
00 00 k2+a(m2+%) (2)
w=1Uu k+UJintr:u ki\/mez (38)

Here, winty is the so called intrinsic frequency, that would be seen by an observer
moving with the background flow. Interestingly, for the incompressible case with
po = const. in which the 1/4 term vanishes, (3.8) is equal to the dispersion relation
for internal gravity waves in a rotating fluid (see e.g. [11]), but with the Coriolis
parameter f replaced by o/N.

For the incompressible case, the dispersion relation can also be written as a func-
tion of the angle o between the direction of the wavevector (k,m) of a wave and the
horizontal

Wintr = \/(6082 (a) + osin®(a)) 6L (3.9)
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Angle of group velocity depending on ¢ for N=1, U=0.1

£ — k=1
p ~ . - - -k=2
S NI e k=3
= Sooosee ] e k=4
@ \ S~ e
=) S o S e o
c < ~.o e
<C S o S~
1 ——i 1 1 I = 2= ol 1
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
o

Fic. 3.1. Angle between the direction of the group velocity and the horizontal for wavenumbers
k=1,...,4 depending on o in a steady state flow with N =1 and U = 0.1.

3.2. Group velocity. Taking the derivative of (3.8) with respect to k and m
yields the group velocity of the waves

¢ = (ug, wg) = (u™,0) £

/@)
(1 30') 9z . (k(mQ + 1)7 _ka)
(K2 +m? + 3)3 (K + o(m? + 1))7 4

(3.10)
The group velocity is the velocity at which a packet of waves travels and it can be
identified with the transportation of energy. In a dry (¢ = 0), incompressible (x = 0,
SO 1o % term) atmosphere, c, simplifies to the wellknown expression for the group

velocity of internal waves in a stratified fluid (see e.g. [17]):

m 9(2)
ry,inc = e O) + - (m —k) (311)
Ca.dry, (™, (k2 + mQ)% ’

One essential feature of these waves is that cg dry,inc L (k,m), i.e. the direction in
which these waves transport energy is perpendicular to their phase direction. Because
of the 1/4 term, this no longer holds for (3.10), but still it can be seen that waves with
upward directed phase (i. e. either positive m and positive branch in (3.8) and (3.10)
or negative m and negative branch in (3.8) and (3.10)) have a downward directed
group velocity and vice versa.

With increasing o, the coefficient in (3.10) decreases and eventually, for ¢ = 1,
becomes zero. Thus moisture reduces the transport of energy by waves and in fully
saturated regions there is no energy transport by waves left at all, only advection of
energy by the background flow u>°.

The ratio of the vertical and horizontal component of the group velocity deter-
mines the slope at which a wave packet propagates

Ag=—E (3.12)
Ug
Figure 3.1 shows the angle between a line with slope wg/u, and the horizontal de-
pending on ¢ for a flow with N = 1 and U = 0.1. For all modes, moisture does
decrease the angle of the group velocity, so we expect the angle at which a packet of
mountain waves travel to become shallower with increasing o. This is observed in the
example in 4.1.2.
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Vertical wavenumber depending on o for N=1, U=0.1

10 L L L L L L L
Lo |—k=1
Pt - - -k=2
B P k=3
< b -] k=4[]
E |____cceee--m>72?770 0 e

0
0 001 002 003 004 005 006 0.07 0.08 0.09 0.1
o

Fic. 3.2. Vertical wavenumber m for k =1,...,4 depending on o.

3.3. Taylor-Goldstein equation. A simplified but very illustrating class of
solutions are those with a height dependent profile but a planewave structure in x
and 7. We apply an ansatz

Oz, 2,7) = gb(k) (2) exp(pz) exp(ik(x — 7)) (3.13)

with ¢ = w/k being the horizontal phase speed observed at a fixed height z and
¢ € {u,w,0,7,w,0'}. The additional term with parameter y will, as in the derivation
of the dispersion relation, describe the amplitude growth caused by the decreasing
density in the anelastic model. Plugging this ansatz into (2.23) and eliminating all

(*) except for w® vields
¢ p y

922) _ kQ(uoo _ 0)2
k2(u> —¢)? — o

)kQ] o™ + p(p—1)o® + 2u -1 + o =0 (3.14)

As in 3.1 we choose p = 1/2 here so that the final equation reads

(2) 2(, 00 2
b ZKWR =0 po L) 4 g (3.15)
k2(u> —¢)? — o0'? 4
This equation is called Taylor-Goldstein equation and in the incompressible, dry case
(i. e. with 0 = 0 and without the 1/4 term) it becomes the wellknown equation
for internal gravity wave normal modes, see for example [10]. The coefficient in this
equation is the square of the local vertical wavenumber, so

99) — k2(u — )2 1
m(z,k) = + (v 022) 2_ - (3.16)
k2(u>® — ¢)? — o6 4
Figure 3.2 shows how the steady state vertical wavenumbers m(k = 1,...,4) depend

2 . . . .
on o for constant ei ) and u®°. Obviously, moisture increases the vertical wavenumber.

C'ritical layers. Note that if there is a height z. for which

6%

c(ze)? = (u™)? - U(ZC)? (3.17)
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then m(z, k) — oo as z — 2. indicating a critical layer. In the dry case without shear,
this can only happen if at some height the phase speed c is equal to the background
velocity 4®°. In the moist case critical layers can also arise from the vertical profile
of o so that a noncritical dry flow can develop a critical layer if moisture is added.
Also, the critical height z. does depend on the horizontal wavenumber & in the moist
case. A detailed investigation of the local structure of solutions in the presence of
such critical layers will not be presented here but will be subject of future work.

3.4. Cutoff wavenumbers. For steadystate solutions it is wiy; = 0 and the
dispersion relation (3.7) can be rewritten to express the vertical wavenumber m as a
function of the horizontal wavenumber k only

922) _ 00 2k2 1

mzz# 2 - (3.18)
(uo)2k2 — o6'? 4

We neglect the 1/4 term as this simplifies the following derivation without qualita-

tively affecting the result. From (3.18) one can see, that for

%)

k2 —
e

(3.19)
m becomes imaginary. Thus there is an upper limit up to which horizontal wavenum-
bers are actually propagated. Different from the dry case, moisture now also intro-
duces a lower cutoff, as for

) 9(2)
k — 2
<o )2 (3.20)

m also becomes imaginary. So only horizontal wavenumbers k& with

922) 922)
klow := V0 pe= <k< = =: kup (3.21)

are propagating while waves with horizontal wavenumbers outside this range are
evanescent. For increasing moisture, o gets closer to one and the range of propa-
gating wavenumbers narrows. In a completely saturated atmosphere with o = 1, the
only propagating mode left is k = \/ﬁ/uOO

A typical value for the stability frequency in dimensional terms is N = 0.01s~*

corresponding to \/922) = 1. Assume a typical backgroundflow of 10ms~! (i.e.
u®™ = 0.1) and a not very moist atmosphere with ¢ = 0.1. Then the upper cut-
off wavenumber is ky,, = 10 and the lower is kiow = /010 ~ 3.162. Expressed in
dimensional zonal wavelengths, this means that only wavelengths between roughly
6km and 20km propagate, while larger or smaller wavelengths are evanescent. The
maximum wavelength decreases like 1/4/0, so that small values of o corresponding to
small amounts of moisture can already filter a significant range of wavelengths: For
o = 0.2 the maximum wavelength is 14km and for ¢ = 0.5 the maximum wavelength
is further reduced to about 8km.

3.5. Release of condensate. An important quantity is the amount of conden-
sate that is released in a parcel of air due to condensation processes when the parcel
is lifted. To assess it, the vertical displacement of a parcel from its initial position



MOISTURE-GRAVITY WAVE INTERACTIONS IN A MULTISCALE ENVIRONMENT 11

has to be computed. Denote by &(z, z,7) the vertical displacement of the air parcel
at (x,z) at time 7. For a given verticel velocity field w it is

g—f =& (x,2,7) +u&(x, 2, 7) = w(x, 2, T) (3.22)
so that £ can be computed for a given @ by solving (3.22).

Consider now a parcel that is at height zg at time 7 = 0. To this parcel belongs a 7-
scale distribution of watervapor, given by ¢, (1, z, z,0). The air is saturated wherever
qv(n,,20,7) > gvs(20) and condensation will take place if the parcel is displaced
upward, so that the amount of watervapor in the parcel is reduced according to the
decrease of saturation watervapor mixing ratio. Denote by d¢y (£; x, 29) the condensate
that the parcel initially located at (x, zg) releases, if it is displaced upward from zg
to zo + £ For a parcel with ¢, (1, 2,20) > ¢vs(20) for every n, this amount can be
approximated by

dQVS 20
0qv (&5, 20) = qvs(20 + &) — qus(20) = %5 (3.23)
If the parcel is not saturated everywhere, according to (2.16), o(z,2) is the area

fraction of saturated areas and the condensate release can be approximated as

dQVS (20)

ot (3.24)

0qv(&;7,20) = qus(20 + &) — qus(20) = o(w, 2)
This approximation fails to account for the areas on the small scale which are ini-
tially undersaturated but reach saturation somewhere on the parcels ascend from zg
to zo+&, so that this definition of dg, is more like a lower bound for the condensate re-
lease. However, as our linear model is only valid for small displacements anyhow, this
will be a decent approximation for the actual condensate release except for peculiar
distributions of ¢,(n) with large undersaturated regions that are very close to satu-
ration. Note that (3.24) holds for positive displacements &, a parcel that is displaced
downward by a negative & does not release condensate.

There is also an interesting possible extension of the model emerging from this
derivation: If one assumes that the air is saturated at leading order, i.e. q\(,g) = q\(,o)
everywhere and then defines o according to the first order watervapor distribution
qf,l), o is no longer only advected by the background flow. Instead the equation for
o then also contains the vertical velocity w, making this modified model nonlinear.

The discussion of this extension is subject of future work.

4. Numerical results. To solve the system (2.23) numerically, a projection
method is used. The predictor step is solved by a third order Adams-Bashforth scheme
in time together with a fourth order central difference scheme for the advective terms.
The application of this scheme to advection problems was investigated in [6] and found
to be a viable alternative to the commonly used leapfrog scheme. Then a projection
is performed, computing a pressure field that ensures that the velocity satisfies the
anelastic constraint. To solve the Laplace problem occuring in the projection step,
we use the discretization described in [19] with slight modifications to account for the
varying density pg. Details of the discretization can be found in the appendix.

4.1. Steady state solutions for a uniform atmosphere. If 922), o and u®
are constant and periodic boundary conditions are assumed in horizontal direction,
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analytical solutions of the form

n=~Ng

w(x,z):exp(%z) > 0™ (z) exp (ikna) (4.1)
n=—Ngy

with k, = 2”7" , I equal to the length of the domain can be derived, whereas every
w™ is a solution of (3.15) with k = k,,. If all coefficients are constant, these solutions
simply read

w*n) = A®n) exp(im(ky)z) + B*) exp(—im(k,)z) (4.2)

To avoid energy propagating downward, i.e. a negative vertical component of cg,
we choose the negative branch in (3.16) and set B*») = 0. The coefficient A®*») is
determined according to the lower boundary condition

w(z,z =0,t) = u™h,(x) (4.3)

where h describes the topography.

4.1.1. Sine shaped topography. At first, we illustrate the change of the ver-
tical wavenumber as well as the lower cutoff for the case of a simple, sine shaped
topography

h(z) = H sin(2x) (4.4)

on a domain [0, 27] x [0, 1] that will only excite a single mode with horizontal wavenum-
ber k = 2. Values for ¢ are 0 = 0, ¢ = 0.02 and o = 0.05. The stratification is

A/ 9,(22) = 1 and the backgroundflow u*>° = 0.1, so the lower cutoff wavenumbers are

klow = v/0.02 - (1/0.1) = 1.41 and ki = v/0.05 - (1/0.1) = 2.24 respectively. The
height of the topography is set to H = 0.04, corresponding to a dimensional value of
400m. Figure 4.1 shows contour lines of the vertical velocity w for the three different
values of o. The first figure shows the dry solution. In the second figure with ¢ = 0.02
it is still klow < k so the wave excited by the hill is propagating. Compared to the
dry case, the direction of propagation is slightly tilted to the vertical, corresponding
to the increase of the vertical wavenumber m (k) with increasing o. In the third figure
with o = 0.05, the solution has completely changed. Now it is k < kjow so the excited
wave does no longer propagate but is now evanescent and its amplitude decays expo-
nentially with height. Only a very small response can be seen in the lower part of the
domain.

4.1.2. Witch of Agnesi. A more complex case is the so called Witch of Agnesi
topography which excites modes of all wavenumbers k:

HL?

Here, H is the height of the hill, L is a measure of its length and x. is the center
of the domain, so that the top of the hill is in the middle of it. Figure 4.2 shows

solutions with N, = 201 for ¢ = 0, ¢ = 0.1 and & = 0.5 for \/0' =1, 4> = 0.1. The
computational domain is [0, 8] x [0, 1] but the solution is plotted only on [2, 6] x [0, 1].
The hill has a height of H = 0.04 and a length of L = 0.1.
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Steady state vertical velocity. 0=0, N=1, U=0.1

Steady state vertical velocity.6=0.05, N=1, U=0.1
1 T T T T T T

FiG. 4.1. Contourlines of the steady state vertical velocity for a sine shaped topography with
horizontal wavenumber k = 2 for o =0, 0 = 0.02 and o = 0.05. The intervall between contours is
0.02 or 0.2m/s in dimensional terms. Dotted contours represent negative values.

With increasing o, the slope of the wave pattern is reduced, according the the
reduced slope of the group velocity pointed out in 3.2. The dashed lines visualize the
average over the slopes (3.12) of all propagating modes, where each mode is weighted
by its amplitude. The reduction of the angle of propagation is compatible with the
following consideration: As moisture does decrease the stability N of the atmosphere,
it does also decrease the nondimensional parameter

NL
uOO

(4.6)

which is a large for waves close to hydrostatic balance. As hydrostatic waves propagate
only in the vertical and the horizontal component does increase as waves become more
nonhydrostatic, it seems reasonable that a reduction of (4.6) by moisture leads to a
reduction of the propagation angle.

As o increases and more and more modes turn into evanescent, the amplitude of
the wave pattern is reduced.

An important mechanism caused by gravity waves is the vertical transfer of hor-
izontal momentum. While for propagating modes the horizontally averaged vertical
flux of momentum p(O#w is constant !, for evanescent modes it also decays expo-
nentially with height. Thus by turning propagating modes into evanescent modes,
moisture in this model inhibits the momentum transfer by gravity waves. Tabular 4.1

1For once here, the overbar denotes the horizontal average in z and not in 7.
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Steady state vertical velocity. =0, N=1, U=0.1

N 0.5F i
O L L L
2 2.5 3 3.5 4 4.5 5 5.5 6
X
1 T T T
N 0.5F
O L
2 2.5

1 o T T T T T T
LN =N SR

5 55 6

F1a. 4.2. Contourlines of the steady state vertical velocity for a Witch of Agnesi topography
with H = 0.04 and L = 0.1 for c = 0, 0 = 0.1 and 0 = 0.5. The intervall between contours is
0.025 or 0.25m/s in dimensional terms. Dotted contours represent negative values. The dashed lines
visualize the averaged slope of the group wvelocity of all propagating modes.

TABLE 4.1
Vertical flux of horizontal momentum for different values of o in the constant coefficient, steady
state solution.

| o | nondimensional momentum flux |

0 —5.68- 1073
0.1 —4.81-1073
0.5 -1.73-1073

lists the values of the horizontally averaged vertical flux of momentum at the top of
the domain for different values of o.

4.2. Mountain waves disturbed by a moving cloud. In this subsection,
we want to demonstrate the effects of a cloud being advected through an established
mountain wave pattern, so the fully timedependent problem (2.23) is now solved
numerically. The domain is [—2, 2] x [0, 1.5]. To realize a transparent upper boundary
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condition, a Rayleigh damping layer as described in [16] reaching from z = 1 to
z = 1.5 is used. The topography is a Witch-of-Agnesi hill as in 4.1.2 with H = 0.04
and L = 0.1 and the maximum located at z = 0 here. The background flow is linearly
increased from 7 = 0 to 7 = 0.25 up to its maximum value of u> = 0.1.

The simulation is run until 7, = 3 with ¢ = 0. Then, a cloud described by a
Gaussian distributed o is introduced which is subsequently advected with velocity
u™, crosses the domain and finally exits at the right boundary. For 7 > 7, it is

(z = xe —u™[r —75])* i (Z_ZC)T) (4.7)

2 2
Sk 5z

1
o(x,2,T) = Omax €Xp —3

with opmax = 0.5, sx = 1, s, = 0.05 and z. = 0.4. To avoid a sudden introduction of
moisture into the model at 7 = 7,, we set

Te = Tleft — 2+ Sx  With ey = —2 (4.8)

so that at 7, the maximum of ¢ is far outside the actual domain of computation at
x = —4. The cloud is then advected with velocity u* = 0.1 into the domain so that
its maximum enters at 7 = 7, + ;;o = 20 at the left boundary and leaves the domain
at T =17, + f; + u% = 60. The maximum is always located at a height of z = 0.4.

The simulation used 200 nodes in horizontal direction and 75 in the vertical,
resulting in a horizontal and vertical resolution of Az = Az = 0.02 or 200m. The
timestep is A7 = 0.05 or 5s.

The first four figures in 4.3 shows contourlines of the vertical velocity w at different
times. At 7 = 27.5 in the first figure, the cloud has entered the domain from the left.
Inside the cloud, some small up- and downdrafts exist, generated by the amplification
through latent heat release or consumption. Figures two, three and four show how the
clouds travels through the mountain waves. For comparison, the last figure shows a
dry reference solution also at 7 = 50. Comparing figure four and five, one can cleary
see how the cloud has damped the waves above it as well as how inside the cloud
existing up- and downdrafts are amplified, generating a sequence of new extrema of
vertical velocity.

4.3. Waves travelling through clouds. The domain is [0,20] x [0, 1] and there
is no backgroundflow here, i.e. ©u* = 0. In this example the stability frequency is

\/ 922) = 2.5. Between £ = 4 and z = 6 and x = 14 and =z = 16, two clouds are located
with their maximum at z = 0.5.

All initial values are zero, except for a concentrated gaussian peak of negative 6,
placed in the center of the domain with its maximum at (z,z) = (10,0.5). Figure 4.4
visualizes both the distribution of o as well as the initial #. The simulation used 200
nodes in horizontal direction, 40 nodes between z = 0 and z = 1 plus 10 more nodes
to realize the sponge layer above z = 1. The timestep is A7 = 0.1. For comparison,
a reference solution is computed with identical parameters but o = 0 everywhere.

The initial potential temperature perturbation starts to excite waves, which form
a typical X-shaped pattern (not shown). Figure 4.5 shows a crosssection through the
vertical velocity at z = 0.5 of the cloudy case (continous line) as well as the noncloudy
reference simulation (dashed line). In the first figure at 7 = 5, waves have formed
and started travelling outwards. Inside the cloud, the updraft due to the entering
wave is amplified by latent heat release. As the wave is also slowed inside the cloud,
there is some steepening of the wave at the beginning of the cloud. In the next figure
at 7 = 7, the steepening before the cloud as well as the amplification inside it are
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Vertical velocity at t = 27.5, Max(o) = 0.5, N =1, U=0.1

Vertical velocity at t = 50, Max(o) = 0.5, N =1, U=0.1

0001

Fic. 4.3. Contourlines of the vertical velocity at different times for a cloud being advected
through the waves excited by a Witch of Agnesi. Intervall between contours is 0.025 or 0.25m/s in
dimensional terms. Dotted contours represent negative values. The thin, ellipse shaped contour is
the o = 0.25 contourline. The last figure shows a reference solution without any moisture at T = 50
for comparison.

even more pronounced. In the last figure at 7 = 14 one can see the newly formed
extrema and a generally strongly distorted distribution of vertical velocity inside the
cloud. However, in the region far behind the cloud, the wave is clearly damped when
compared to the noncloudy case.
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o and initial 8

0.8

04l ©)

0.2F .

F1G. 4.4. ¢ modelling two clouds. The dashed line is the crosssection along which the vertical
velocity is plotted in figure 4.5. The continous lines are isolines of o with a difference between isolines
of 0.1 and the outer isoline corresponding to o = 0.1. The dotted line shows the initial distribution
of 0, the difference between the isolines is 0.025, the outer line corresponding to 6 = —0.025.

5. Conclusions. Starting from the results in [15], we derived a model for the
interaction of internal gravity waves with a timescale of 100s and a lengthscale of
10km and convective hot towers which vary on a horizontal 1km scale. The closing of
the model was achieved by the application of weighted averages over the small 1km
horizontal scale and did not require additional approximations. It turned out, that
the effects of moisture in the model are all related to a parameter ¢ which describes
the area fraction of saturated patches on the small scale.

The resulting equations were an extension of the linear, anelastic model. Moisture
did reduce the effective stability in the model and provided a condensation / evap-
oration sourceterm for potential temperature, defined by two additional equations
for weighted averages of the small scale perturbations of potential temperature and
vertical velocity. However, the equations for these small scale perturbations not only
provided the sourceterm for the largescale potential temperature but are themselves
affected by the largescale flow, so that the model sees an interaction between small
and largescale quantities.

The dispersion relation and group velocity of this extended model was computed.
It was found that moisture, occuring as the beforementioned ¢ in the model, does
introduce a lower cutoff horizontal wavenumber, turning modes below this threshold
from propagating into evanescent. This effect was demonstrated by showing steadys-
tate solutions excited by a sine shaped topography. It was also noted, that moisture
can cause critical layers for flows that would be noncritical in dry conditions.

Examination of the group velocity showed that moisture does decrease the energy
transport by waves, shutting it down completely if the atmosphere is fully saturated,
i.e. 0 = 1. Also, while moisture was found to increase the vertical wavenumber of
each individual mode, it was also found to reduce the slope of the group velocity,
so that the angle of propagation of a wave package is reduced. As an example, the
steadystate solutions for mountain waves excited from a Witch of Agnesi topography
for different values of o were shown.

Two examples of numerically computed, fully timedependent solutions were given.
First, a cloud represented as a Gaussian distributed o was advected through the
mountain waves excited by a Witch of Agnesi topography. A significant damping of
the waves above the cloud could be seen as well as the generation of new extrema of
vertical velocity inside the cloud. The second example placed a small perturbation
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x10°

Horizontal crossection throughwatz=0.5andt=5

— — —no cloud

clouds

14 16 18

— — —no clouds clouds

2 L L L L L L L L L

14 16 18

— — —no cloud clouds

14 16 18

clouds

— — —no clouds

14 16 18

Fic. 4.5. Cross section of the vertical velocity w at different times for the cloudy and noncloudy
case. The dotted line is the crosssection through o at the same height, but scaled down by a factor
of 0.002 so that the shape is reasonably visible in the given scaling of the y-axis.

of potential temperature between two clouds, so that the waves excited from the
perturbation travel through them. The amplification of up- and downdrafts inside
the cloud as well as the damping of the waves in the region behind the clouds was
observed.
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Appendix A. Vertical velocity, potential temperature, pressure and density are

expanded as described in [15], but are now also allowed to depend on the new, fast
timescale 7':

w(z, z,t;€) = w® (n,z,z,7,7") + O(e)
0(z,2,t;€) = 14+ 20D (2) + 03 (i, 2, 2, 7, 7') + O(?)
(), 2, t56) = (P, V) (2) + (™), pV) (2) + € (P, p)) (2)
+e(p®, PN, z, 2, 7,7 ) + O(eh)

(A.1)

The mixing ratios for watervapor, cloudwater and rainwater are expanded as

(Gv, e, @) = ( O EO),qEO)) (n,2,2,7,7') + € (qf,”, W, 51)) (n,2,2,7,7') + O(?)

(A.2)

The bulk moisture equations for the mixing ratio of watervapor, cloudwater and
rainwater read
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Qu,t +u- V||Qv + WQGy,z = _e_néd + CAvov
Get+u- v||(]c + Whe,> = e_néd - 6_10(:1" - Cac (A?))
qrt +u- VHQT + wqyr, » + /fl (V{E*Pi]r)z = 67161@ - CAvov + CAvac
The sourceterms on the righthand side represent condensation, evaporation, collection
of cloudwater by falling rain and autoconversion of cloudwater to precipitation.

Appendix B. The nondimensional conservation laws for mass, momentum, en-
ergy (expressed as potential temperature) in [15] read

pe+ V- (pu) + (pw), =0
u; +u- VHu—I—wuz + Gf (Q X V)H + 674p71vllp = 0

we +Uu- VH’LU + ww, + €f (Q X V)J_ + 674p71pz = ¢4 (B-l)
0+ V)0 + wo. = € (55 + 5§°)
where
€ Kk T okk **9 —n A i
837 =I'""L quz_j (6 C'd - Ocv) (B2)

is the sourceterm related to evaporation and condensation while 5’5 is a given external
source of energy like, for example, radiation. The doublestar quantities are constant
scaling factors that have been introduced in the nondimensionalisation. Inserting
(2.5), (A.1) and (A.2) into (B.1) and (A.3) yields the following leading order equations

Horizontal momentum.

O(e?) p%g) =0
o) : pOul® 4 p(o)us.l,) + pOy>u® 4 p(o)u‘x’usll) (B.3)
+p + i) =0

The second equation can be rewritten as
pOul0 4 p@y22y0) 4 p®) — 1 50),0) 4 pOuu) + pff)} (B.4)

By integrating this equation along a characteristic 7/ + u°°n = const. and employing
sublinear growth condition for the higher order quantities u(*) and p™®*, we conclude
that the right hand side must be zero and the equation simplifies to

P Oul® 4 0y, (0 4 ) — ¢ (B.5)

Note that as u> was assumed to be constant, there is no term w(o)ug" occuring here.

Vertical momentum.
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o) : p® =—p

O(e) = p =—pY

o) : pOuwS + pOuzw® 4 p@ = —p® (B.6)
O+ pOud 1 pOuou) 1 oM@ 4 sy )

+6Ou® 4 pOyou® 1 sy 1 p® = 43

We assume p(!) = 0 here and employ again the sublinear growth condition. The last
equation then becomes
p(O)wgo) + p(O)uoowg(CO) + P(O)U(O)wr(;o) +p£3) = —p® (B.7)

Under the assumption that the specific heats ¢, and ¢, are constants and by employing
the Newtonian limit, expanding the equation of state yields

P P
PG 2O

(B.8)

Using this and the hydrostatic balance for the leading order density and pressure, one
obtains

w(® + u®w® 4 u(o)wéo)wf’) =B (B.9)
with 73 := p(3) /p(0),
Mass.
pOuD 4 pOu® + (00 ) =0 (B.10)
Sublinear growth yields
p©q(0) ¢ (p<o>w<o>) -0 (B.11)

Potential temperature.

O(&) : 69 +ux6® =0
4\ . (3 (4) oo p(3 oo (4 0)p(3 0)p(2
O(e') + 09 + 0,7 +u>0® +u>0 +ul09D) + g
Po

(B.12)
(Ha C + (Hy, = 1))

assuming that there are no external sources of heat, i.e. 5’5 = 0. Again, the advective
derivative of ) along 7/ — 1 characteristics is eliminated by the sublinear growth
condition:

0 + w0 +u @9l +w©9P) =
Po

(Ha,CY + (Hy, = 1)CW)) (B.13)

Note that if > =0 (B.3) to (B.12) reduce to the equations (76) to (80) in [15].
From the equation for the transport of watervapor we get
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O™ + CF ~ O g Hog® =0
O(e ™) = Oy ~ €yl Hogl®) = 0 (B.14)
(€72) 2 7" ~ O 6 Hogl” = 0

so that we can distinguish the regimes of nearly saturated air with where the saturation
deficit dgys is nonzero only at high orders and the undersaturated regime in which
q§°) =0, i.e. the cloudwater mixing ratio is zero at leading order. The equations for
the two regimes are:

Saturated air.

02 +uq®, + w0, =~

ai +uall) =

02, +uq?) +q() + uql) + uq() = ¢V — (B.15)
g% +uq) =0

1
q,ET) +u qf})—FqEOT) +u q(o) +ul®q (0) =0
Again by using sublinear growth condition, the equations simplify to

w02, = o

(1) +u q(l) +u® (1) = C’C(1 ) c (B.16)
q,ET)—i-u q(o)—i—u() (0) -0

Undersaturated air.
\(,O) +u q(o) =0
q(ll +u q(l) + q(o) +u q(o) + U(O) (0) =0
qélT), +u q(l) 0

g1+ u*ql) +u®@gll) + qu) +ueg?) = —CO (B.17)
a) +uqlf) =0
a2 +uql) + 4% +ueg® +u®q) =0
The equation for the evaporation source term is
) = Czi (e (2) —a) Vol (B.18)

Sublinear growth condition yields
o0 +u=0) + i) =0
qélT) +u q(l) + u(o)q(l) =-Cc (B.19)
(OT) +u q(O) +u0yq (0) =0
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Appendix C. The Adams-Bashforth timestepping reads
ot

¢ = 9" + 5 (28F(¢") — 169" +5F(¢"%)) (C.1)
The advective derivative is discretized as
9¢(z;) 4 (b1 =01\ 1 [(djr2—dj 2
ettt PAPOUNE Y i (R RE Skt 1) I (e R S o ] C.2
“ ox Y3 26z 3 46z (C.2)
For a compact notation, we introduce the following abbreviations
Fl = —uul
Fl = —u™>wl + 0"
= 20" — " (1—0) 02 + 0@ ()" 4 C" (C.3)

= —u (W) + (6"
F} = —u™(0), — 0922) ()" +o(1 — o)™ — cC™

Using these, applying (C.1) to (2.23) yields the semidiscrete system

- 5—; (2377 — 16772 + 577 ?)

x

ot
ﬂn-i-l — ,an + E (23F£ - 16F§_1 + 5F§_2)

"t =" 4 % (23F) — 16F; ' +5F772) — f—; (2377 — 1677 + 570 2)

5 ~ ot
n-+1 n n n—1 n—2
gt =0" + - (28F5 — 16F7 ' +5F; %) (C.4)
ot
(w)" = (w')" + D (23F), — 16F " +5F" %)
ot
n+1 n n n—1 n—2
@)+ = (0")" + . (23Fy — 16F 1 + 5F572)

Now, an equation to compute the pressure 7" is needed. This equation is obtained
by using the anelastic constraint. Define predictor values of @ and w by

ot 5t
=t (23F) — 16F; ' +5F)?) — T (167" + 57 72) (C.5)
and
ot 5t

ot = a0 +

5 (23F) — 16F ' +5F)?) — T (1677t +5727%)  (C.6)

Now, by construction, it is

236t
—n+1l _ —xn n
T =a 3 "= (C.7)
and
236t
—n+1l _ —*xn _ n
" =w 3 (C.8)

Multiplying both equations by p(®), applying 9, to (C.7) and 9. to (C.8), summing
them and then using the anelastic constraint in (2.23) yields



24 D. RUPRECHT, R. KLEIN AND A. J. MAJDA

0— (p(O)ﬁn-i-l) 4 (p(O)wn-H)
_ 234t

= (pot™"), + (pow™") — == [(pom3), + (po?).]

So the pressure 7" is computed from the elliptic equation

%V . (p(O)Vﬂ'”) =V- (p(o) (a™", ﬁ)*’")T)

(C.9)

(C.10)



