
Algebraic Algorithms for Sampling from Conditional Distributions

Persi Diaconis Bernd Sturmfels
Department of Mathematics Department of Mathematics
Harvard University Cornell University
Cambridge, Massachusetts 02138 Ithaca, New York 14853

Abstract

We construct Markov chain algorithms for sampling from discrete exponential families

conditional on a sufficient statistic. Examples include generating tables with fixed row and

column sums and higher dimensional analogs. The algorithms involve finding bases for

associated polynomial ideals and so an excursion into computational algebraic geometry.

1



1. Introduction. As a simple example of the problem under study consider generating a

random contingency table with fixed row and column sums. Thus, fix positive integers I

and J and a set of row sums r1, r2, · · · , rI and column sums c1, c2, · · · , cJ . Let X = X r∼� c∼
be the set of I × J arrays X = (xij ) of non-negative integers with the given row sums and

column sums. Let U be the uniform distribution on X and let H be the hypergeometric

distribution on X ( so H(x) =
∏
i�j

(
cj
xij

)/( N
r1, r2, · · · , rI

)
with N =

∑
ci =

∑
rj ).

Classical tasks such as tests for independence involve approximating the distributions of

a statistic S such as the chi-squared under H. Martin Löf (1974), Diaconis-Efron (1986),

Good (1976) and others have asked for the distribution of S under U . In both cases,

asymptotic theory is suspect and a variety of other approaches have been considered. The

literature on these approaches is reviewed in Section 2.

We develop a Monte-Carlo approach along the following lines. Let X be a table which

satisfies the constraints. Modify X by picking a pair of rows and a pair of columns at

random. These intersect in 4 entries and X is modified as

+ −
− +

or
− +

+ −
with probability 1/2 each. This modification adds and subtracts 1 from each of the 4

entries as indicated. This doesn’t change the row or column sums. If the modification

forces negative entries, discard it and continue by choosing a new pair of rows and columns.

This describes a Markov chain on X r∼�
c∼. By construction the chain is symmetric. It can be

shown that the chain is connected. It follows that its stationary distribution equals U . This

gives us the ability to sample (approximately) from U . A slight modification, weighting

the moves above, allow us to sample from H. For 2-dimensional arrays, sampling from H

can be done more easily by different methods; we know of no other way to sample from U .

As an example, Table 1 gives a 4×4 contingency table (data of Snee (1974)). The chi-

square test of independence for this table is χ2 = 138.29 on 9-degrees of freedom, strongly

rejecting the hypothesis of independence. Diaconis and Efron (1985) labored long and

hard to determine the proportion of tables with the same row and column sums as table

1 having χ2 ≤ 138.29. Their best estimate was “about 10%”. Figure 1 shows a histogram

from a Monte Carlo run. In the run, 16.3% of all tables had χ2 ≤ 138.29. The Monte
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Carlo was considerably more accurate than the best that asymptotic theory can provide.

It was also trivial to run. Figure 1 is based on a variant of the algorithm described above.

Section 2-B gives more details.

Eye color versus hair color for n = 592 subjects, Snee (1974)

Table 1

Eye Color Hair Color

Black Brunette Red Blonde Total
Brown 68 119 26 7 220
Blue 20 84 17 94 215
Hazel 15 54 14 10 93
Green 5 29 14 16 64

Total 108 286 71 127 592

Figure 1

Histogram of 106 sample values of a Monte Carlo sample of chi-square values from tables

with the same row and column sums as Table 1.

Figure 1 is not available as postscriptfile.To get a paper-copy send an e-mail to

bibliothek@sc.zib-berlin.de.

This papers extend these algorithms to more general settings, including three and

higher dimensional arrays, for which our approach seems to be the only available route,

even for H. To define this general class of problems, let X be a finite set and T : X →Z
d

any function. Data with values in X can be summarized as a function f : X → N, where

f(x) is the number of observations taking value x. This fixes the vector t = Σf(x)T (x) in
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Z
d. Let

(1.1) Xt =
{
g : X → N such that Σg(x)T (x) = t

}
.

Our algorithms give a way of sampling from the uniform and an appropriate hypergeometric

distribution on Xt. They are based on finding functions f1, f2, · · · , fL : X → Zsuch that

(a)
∑
x

fi(x)T (x) = 0 for 1 ≤ i ≤ L.

(1.2) (b) For any t, and any g, g′ ∈ Xt there exists (ε1, fij ) · · · (εA, fiA) with εi = ±1,

g′ = g +
A∑
j=1

εjfij and g +
�∑

j=1

εjfij ≥ 0, for 1 ≤ α ≤ A.

The set {f1, . . . , fL} allows a Markov chain to be constructed on Xt, for each t ∈ Zd, by
choosing I at random and adding ±fI . If this gives negative entries, the chain stays fixed.

Condition (a) says such moves keep the chain in Xt. Condition (b) implies that the chain

is connected. By construction the chain is symmetric and so has a uniform stationary

distribution.

Section 2 lays out the stochastic underpinnings. It describes how the problems con-

sidered above arise when sampling from exponential families through T . Finding bases

(as in (1.2)) can be computationally prohibitive and a computationally feasible approach

called the fiber algorithm is presented.

The main new contribution is a method for finding basic moves using tools from com-

putational algebraic geometry. Section 3 shows how finding {f1, . . . , fL} is equivalent to

finding generators for a certain polynomial ideal. We describe an effective set of techniques

for computing such generators. The key word here is Gröbner bases.

Sections 4, 5, 6 contain detailed treatments of special cases: contingency tables, logistic

regression and ranked data sets. In each case, a practical example appears along with

theoretical development. These may be read now as motivation.

This paper does not address questions of running times for these Markov chains. We

are in the process of developing rigorous bounds and comparing these with the results of

simulation and exact computation.
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2. Basic Stochastics.

A. Sample spaces. Let X be a finite set. Let T : X → Z
d be a function. A statistical

problem begins with N observed values x1, x2, · · · , xN from X . The summary value t =
N∑
i=1

T (xi) leads to consideration of the big fiber

(2.1) Yt =
{
(x1, x2, · · · , xN ) ∈ XN : T (x1) + · · ·+ T (xN ) = t

}
.

To assure that Yt is finite, we will assume the following condition throughout:

(2.2) there exists ω ∈ Zd such that T (x) · ω > 0 for all x ∈ X .

For example, all T (x) might have the same sum of coordinates or first coordinate equal to

1. One motivation for considering Yt comes from exponential family theory. If the xi are

a realization of N independent and identically distributed choices from

P�(x) = c(θ)e�·T (x) , θ ∈ Rd, c(θ) a normalizing constant,

then t is a sufficient statistic for θ: the conditional distribution of the sample given t is

uniform over Yt. This conditional uniform distribution is a basic ingredient for classical

tests of the goodness of fit of this exponential family.

If N is large and |X | is small, it is natural to consider f : X → N given by f(x) =

#{i : xi = x}. This is a sufficient statistic for any independent identically distributed

data. Let the little fiber be

(2.3) Xt =
{
g : X → N :

∑
x

g(x)T (x) = t
}
.

There is a natural map from Yt to Xt. The image of the uniform distribution on Yt will

be called the hypergeometric distribution Ht on Xt. Thus,

(2.4) Ht(g) =
N !

|Yt|
∏
x

(g(x)!)−1.

In many problems there is no effective way to enumerate Yt or sample directly from Ht.
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The uniform distribution Ut on Xt is a second probability which is useful for work-

ing with Ht and also of direct interest. One motivation comes from Bayesian considera-

tions: Let θ∼ = {θx}x∈X be chosen from the uniform distribution on the |X | simplex. Let

X1,X2, · · · ,XN be chosen from a multinomial distribution on X with parameter θ∼. By

Bayes’ classical argument, this two stage process induces a Bose-Einstein distribution on

{g : X → N :
∑
x

g(x) = N} with g(x) = #{i : Xi = x}.

Thus for any T and t the conditional distribution given t is uniform on Xt. Good (1979)

or Diaconis and Efron (1987) give modern versions of Bayes’ original argument.

Diaconis and Efron (1986) motivated the uniform distribution as an easily inter-

pretable antagonistic alternative to the hypergeometric. Testing with respect to Ut counts

the number of data sets with more extreme test statistics. For example, in Table 1, a

chi-square statistic of 138.29 strongly rejects the hypothesis of independence. One may

ask if the underlying generating mechanism was close to independence, perhaps “blown

up” by a large sample size. Our computations reject this; the table appears the same as a

randomly chosen table, most likely far from independent.

B. Markov chains on Xt. With Xt as in (2.3), suppose that {f1, f2 · · · , fL} is a

generating set as in (1.2).

Lemma 2.1. Generate a Markov chain on Xt by choosing I uniformly in {1, 2, . . . , L} and

ε = ±1 with probability 1/2 independent of I. If the chain is currently at g ∈ Xt the chain

moves to g + εfI , provided this is non-negative, and stays at g otherwise. This gives a

connected, symmetric, aperiodic Markov chain on Xt with the uniform distribution as its

stationary distribution.

Proof: Write P (g, g̃) for the chance of going from g to g̃ in one step. If this is not zero

and g �= g̃ there is an εfi such that g̃ = g+εfi and P (g, g̃) = 1/(2L). Then g = g̃−εfi gives

the unique step taking g̃ to g. Thus the chain is symmetric. Condition (1.2b) says it is

connected and it clearly has some holding probability (just take any g ∈ Xt and repeatedly

subtract a fixed fi until the boundary of Xt is reached). This implies that the chain has

the uniform distribution as its unique stationary distribution.
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To generate from the hypergeometric or other distributions on Xt we introduce the

following variant of the Metropolis algorithm.

Lemma 2.2. Let σ be a positive function on Xt of (2.3). Generate a Markov chain on Xt

by choosing I uniformly in {1, 2, . . . , L} and ε = ±1 with probability 1/2 independent of

I. If the chain is currently at g it moves to g̃ = g+ εfI (provided g̃ ∈ Xt) with probability

min(σ(g̃)/σ(g), 1). In all other cases the chain stays at g. This is a connected, reversible

Markov chain on Xt with stationary distribution proportional to σ(g).

Proof: It is easy to check that σ(g)P (g, g̃) = σ(g̃)P (g̃, g) for all g, g̃ ∈ Xt. Since the

moves connect Xt and there is some holding probability the chain has a unique stationary

distribution proportional to σ(g).

Remarks: 1. A useful class of measures on Xt is specified by choosing a function ωx : N→
R

+ for each x ∈ X . For g ∈ Xt define σ(g) =
∏

x ωx(g(x)). As examples, if ωx(a) = θax/a!

with 0 < θx ≤ 1, then σ becomes the multiple hypergeometric distribution which arises

when carrying out power calculations or using the random walks to generate confidence

regions. Taking θx = 1 gives the hypergeometric distribution. For this class of measures

the ratios σ(g̃)/σ(g) reduce to very few terms if g and g̃ only differ in a few coordinates.

We have found this method and effective in the applications of Sections 4,5,6.

2. The chain of Lemma 2.2 is different from the classical Metropolis algorithm described

by Hammersly and Handscomb (1964, Chapter 9). It weights the steps slightly differ-

ently. It might converge in less steps, but each step requires a considerably more detailed

computation. In our experience this extra computing slows things down very much.

The algorithms in this paper are closely related to the popular Gibbs sampler. This

generates a given distribution on random vectors by changing coordinates one at a time

according to the conditional distribution given the complement of the coordinate. We

explain the connection and offer some speed ups of Lemma 2.2. Let Z =
∏d

i=1Zi, with

each Zi a finite set. Let π(z) be a probability on Z. Let C be a class of subsets of

{1, 2, · · · , d}. For c ∈ C and z ∈ Z, let zc (resp. zc) be the coordinates inside (resp.

outside) of c. Let π(zc|zc) = π(z)/π(zc). Let P zc

c (•, •) be a Markov chain on
∏

i∈cZi

which is reversible with respect to π(zc|zc). Define a Markov chain on Z by specifying
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positive weights wc for each c ∈ C and then defining

(2.5) P (z, y) =
∑
c∈C

wcP
zc

c (zc, yc).

This chain proceeds by picking a subset c and modifying those coordinates by the transition

mechanism P zc

c (•, •).

Lemma 2.3. The chain defined by (2.5) is reversible with respect to π(z).

Proof: For z �= y, P (z, y) = P (y, z) = 0 unless zc = yc for some c ∈ C . Let S = S(z, y)

be the set of c ∈ C such that this occurs. Then

π(z)P (z, y) =
∑
c∈S

wcπ(z)P
zc

c (zc, yc) =
∑
c∈S

wcπ(zc|zc)π(zc)P zc

c (zc, yc)

=
∑
c∈S

wcπ(yc|yc)π(yc)P yc

c (yc, zc) = π(y)P (y, z).

As an application, consider generating from the hypergeometric distribution (2.4)

given a set of moves as in (1.2). Here Z may be taken as Z = [0, N ]|X | with z ∈ Z

identified with the function {g(x)}x∈X . The stationary distribution π may be taken as

the hypergeometric (2.4). This is supported on Xt ⊆ Z. Each move fi in (1.2) defines

a support set ci = {x : fi(x) �= 0}. Take uniform weights on i. If the chain is currently

at g, it moves to g̃ = g + jfi. Here j varies in an interval of values −N ≤ j ≤ N such

that g + jfi ∈ Xt. The weights for choosing j are taken proportional to the stationary

probability of g + jfi. Using the notation above,

(2.6) P gi

i (gi, (g + jfi)i) ∝
∏
x∈ci

[(g(x) + jfi(x))!]
−1.

To use this, given g and c, one would have to run through an interval of j values, keeping

track of both which j values are possible and the relative weight (2.6). Of course, if this

last step can be done in closed form, things will go faster.

For two-way tables this algorithm is simple: pick a pair of rows and columns at random.

This fixes a 2× 2 table. Replace it by a second 2× 2 table with the same margins, chosen

from the hypergeometric distribution. This procedure, adapted for uniform generation,

produced Figure 1. Here the 2× 2 array was replaced by a uniformly chosen 2 × 2 array
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with the same row and column sums. Figure 1 is based on 106 trials with 500 steps between

each trial. It agrees in every regard with results in Gangolli (1991) who ran an extensive

Monte Carlo trial on the same 4× 4 table using the original “move one” algorithm.

C. Fiber Walks. This section uses previous ideas on small parts of a larger problem. Let

f1, f2, · · · , fL be a generating set as in (1.2). Write f+
i = max{fi, 0}, f−

i = max{−fi, 0}
so fi = f+

i − f−
i . Let deg fi = max{∑x f

+
i (x),

∑
x f

−
i (x)}. Let D = max {deg fi : i =

1, . . . , L}. For contingency tables the basic ±,∓ moves have degree 2. In generating a

fiber walk we pick a multi-set h∗ of degree D from some sampling distribution, often just

by sampling at random from X with replacement. We calculate t∗ =
∑

x h
∗(x)T (x), thus

fixing the subfiber Xt∗ = {h :
∑

h(x)T (x) = t∗}. The next step is to choose an element

of Xt∗ at random (from the uniform distribution on Xt∗). For D small this may be done

by enumerating Xt∗ . If enumeration is not feasible it may be done by running a Markov

chain with respect to h∗. This random choice is then swapped for h∗ within the original

data set. This gives a connected Markov chain. In what follows we explain how to use this

construction to sample from the hypergeometric and uniform distributions.

Lemma 2.4 (Hypergeometric Generation). Suppose we are given a generating set

as in (1.2) having degree ≤ D. Generate a Markov chain on Xt of (2.3) as follows. If the

chain is currently at g ∈ Xt, then choose h∗ of degree D with probability

(2.7)
∏
x

(
g(x)

h∗(x)

)/(
N

D

)
.

Choose an element h from the uniform distribution on the subfiber Xt∗ . The chain moves

to g(x) − h∗(x) + h(x). This generates a connected symmetric Markov chain with the

hypergeometric (2.4) as its stationary distribution.

Proof: The argument is best pictured as a process on the big fiber Yt of (2.1). Let

x1, x2, · · · , xN be N elements of X consistent with g. The chain on Yt proceeds by choosing

D elements from x1, · · · , xN without replacement. Let h∗(x) be the number of chosen

elements equal to x. Then h∗ has the distribution (2.7). Choose h from the uniform

distribution on the little subfiber Xt∗ . Replace the subset corresponding to h∗ by elements

corresponding to h in random order. This generates a symmetric chain on Yt: a move is
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specified by a subset and a unique point in its subfiber. This gives a 1-1 correspondence

between moves forward and backward. This chain is connected by our assumptions on

the moves f1, . . . , fL. Since the order in the big fiber Yt does not enter the considerations

(one could always add gratuitous random permutations of size N at each stage), this

chain has the uniform distribution as its stationary distribution on Yt, and so induces a

hypergeometric stationary distribution on Xt.

Remarks: Examples of these fiber walks are given in Section 4. Of course, it is possible

to iterate, using the same idea for the problem of choosing a point in the subfiber Xt∗ .

A crucial ingredient for fiber walks is a bound on the degree D. These can sometimes

be quite sharp (see e.g. Theorem 6.1). A discussion of general bounds for D is given in

Section 3D.

D. Literature Review for Conditional and Exact Analysis. The work presented

here has numerous links to inferential and algorithmic problems. In this section we give

pointers to the most closely related literature.

As with so many topics of inferential interest, conditional testing was first studied

by R.A. Fisher. He systematically used the conditional distribution of the data given a

sufficient statistic as a base for tests of a model in statistical methods for research workers

(Fisher (1925)). He suggested and defended the use of conditional tests in regression,

contingency tables, and elsewhere. Savage (1976) contains an overview and Yates (1984)

gives a careful history of the controversy over conditional testing for 2 × 2 tables. Cox

(1958), Kiefer (1977), Efron and Hinkly (1978) and Brown (1990) have been influential

papers which have extensive literature reviews. Lehmann (1986, Chapter 10) gives a

splendid overview of the issues. Barndorff-Nielsen (1978) gives fresh perspectives and

subtleties.

One side of the argument is a feeling that the margins of a table (or other ancillaries)

contain “no information” about independence. Plackett (1977) presents this view forcefully.

Our own view is that there are clear differences between the conclusions that can be

stated following a conditional versus an unconditional test. Once this is understood, the

appeal of conditional tests is largely one of convenience. In the contingency table setting,
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conditioning gets us out of having to fuss with the margins. One has a clean, exact

statement. This also holds for regression and Mantel-Henzel type methods of combining

many test statistics.

On the computational side, there has become a growing awareness that the usual

asymptotic approximations of mathematical statistics can be poor for moderate sample

sizes. Clear examples in a contingency table setting one given by Yarnold (1970), Odoroff

(1970), Larntz (1978), and many later writers. This has led recent investigators to pursue

an intensive program of exact computation or better approximation. The Monte Carlo

approach described here seems to be “in the air” currently. Versions for 2-way tables are

explicitly described by Aldous (1987), Gangolli (1991), and Glonek (1987). It is easy to

generate an I×J table with fixed margins from the hypergeometric distribution: generate a

random permutation of n items. Look in the first r1 places; the number of entries between

c1 + · · ·+ cj−1 + 1 and c1 + · · ·+ cj is n1j , 1 ≤ j ≤ J . The number of such entries in the

next r2 places is n2j, and so on.

Marcello Pagano, working with a variety of co-authors, has suggested methods for ex-

act computations using the fast Fourier transform. Papers by Baglivio, Olivier, and Pagano

(1988, 1992, 1993) contain refined versions of these ideas and pointers to earlier literature.

Exact computational procedures are given for contingency tables, logistic regression, and

a variety of standard discrete data problems.

Mehta and Patel (1983) proposed a novel network approach which achieves exact

enumeration by using dynamic programming ideas. This has been refined and extended

into the program STATEXACT (Mehta and Patel (1991)) which carries out tests for

contingency tables and other problems.

A third approach uses the representation of the hypergeometric distribution as the

conditional distribution for an exponential family (2.3) given t. Choosing an appropriate

value of θ (e.g., θ̂ the maximum likelihood estimator) Edgeworth approximations to the

probability P�̂(t) and P�̂(x, t) are computed. Their ratio gives an approximation to Ht.

These seem quite accurate for a variety of applications with moderate sample sizes. Levin

(1983, 1992) sets out the general theme which is developed in Levin and Kong (1993) and

in Kong (1993). McCullogh (1985, 1986), Diaconis and Freedman (1987), Jensen (1991)
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and Skovgaard (1987) give further relevant results for such conditional approximations.

Kolassa and Tanner (1993) is a recent contribution in this direction. Agresti (1992) gives a

survey of recent work on exact conditional inference for contingency tables with discussion

by the major contributors to the field.

The material in this paper is closely related to a classical problem of combinatorics:

enumerating the number of arrays with given row and column sum. See Good (1977) for a

review. Results of Jerrum, Valiant and Vazerani (1986), see also Sinclair (1993), show that

there is a provably close connection between enumeration and random generation. While

no one has proved that table enumeration is intractable (#-p complete), it seems likely

to be so. Indeed, if structural zeros are prescribed, then intractability can be shown as

follows: Take X to be the edges of a bipartite graph G on 2n vertices. Let T : X → N
2n be

the indicator function of the vertices in x. Let t = 1∼ be the vector of all ones in Z2n. The

little fiber Xt consists precisely of the perfect matchings in G. It is known that counting

Xt for general G is #-p complete. Jerrum and Sinclair (1986) have given random walk

algorithms for generating elements of Xt and proved that they are rapidly mixing. See also

Diaconis and Stroock (1991) and Sinclair (1993).

Of course, examples may still be computed: David des Jardins has computed that

there are 1, 225, 914, 276, 768, 514 tables with the same row and column sums as Table 1.
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3. Algebraic basics.

A. Toric Ideals and Their Generators. In this section we set up the relation between

generating sets as in (1.2) and a certain class of polynomial ideals. Throughout, X is a

finite set and T : X → Z
d is given. For each x ∈ X we introduce an indeterminate also

denoted x. Consider the ring K[X ] of polynomials in these indeterminates, where K is

any field. For computational purposes it is convenient to use K = GF (2), the field of

two elements. A function g : X → N will be represented by a monomial
∏

x∈X xg(x). We

denote this monomial as X g. Likewise, we identify lattice points (i1, i2, · · · , id) in Zd with

monomials ti11 ti22 · · · tidd in the ring of Laurent polynomials K[t1, · · · , td, t−1
1 , · · · , t−1

d ]. The

function T : X → Z
d is represented by the K-algebra homomorphism

ϕT : K[X ] → K[ t1, · · · , td, t−1
1 · · · t−1

d ]

x �→ t
T (x)1
1 t

T (x)2
2 · · · tT (x)d

d .

Here T (x)i denotes the i-th coordinate of T (x) ∈ Z
d and the map ϕT is K-linear and

multiplicative on products. Writing T (g) =
∑

x∈X g(x)T (x), we thus have ϕT (X g) =

t
T (g)1
1 t

T (g)2
2 · · · tT (g)d

d . Our basic object of study is IT , the kernel of ϕT . The prime ideal

IT is called the toric ideal associated with T . This terminology stems from the fact that

the zero set of IT is an affine toric variety (see e.g. (Fulton 1993)).

The fundamental relationship to the problems of Section 1 is a correspondence be-

tween generating sets as in (1.2) with generating set for the toric ideal IT . This will

be established in Theorem 3.2. To state this correspondence and resulting algorithms,

we need the following notation. Any function f : X → Z can be written as the differ-

ence of two functions f+, f− : X → N having disjoint support; f+(x) := max(f(x), 0)

and f−(x) := max(−f(x), 0). A function f satisfies
∑

x f(x)T (x) = 0 if and only if the

monomial difference X f+ − X f−
is in IT .

Lemma 3.1. The ideal IT is generated by the monomial differences X f+ −X f−
, where f

runs over all functions f : X → Zwith
∑

x f(x)T (x) = 0.

Proof: Let I ′ be the ideal generated by all monomial differences X f+ − X f−
with

Σf(x)T (x) = 0. Clearly I ′ ⊆ IT . We fix a total order on the set of all monomials as
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follows. First linearly order the variables X . One monomial is larger than a second if

either the degree of the first is larger, or the degrees are equal and on the first variable

where they disagree, the first has a higher power.

Suppose the inclusion I ′ ⊂ IT is strict. Let p ∈ IT \ I ′ have its largest monomial, say

X�, a minimum. Since ϕT (p) = 0 there must be a second monomial X � in p such that

ϕT (X �) = ϕT (X�). Factor out common variables, writing X�−X � = X �(X�′−X �′
) with

α′ and β′ having disjoint support. Clearly ϕT (X�′
)−ϕT (X �′

) = 0. Setting h(x) := α′
x−β′

x,

we have Σh(x)T (x) = 0 and hence X �(X h+ −X h−
) ∈ I ′. Subtracting this expression from

p, we get a polynomial in IT \ I whose leading monomial is smaller than p.

We remark that, by Hilbert’s Basis Theorem, there exists a finite subset of functions

f which generate the toric ideal IT in the sense of Lemma 3.1. The question of how to

find such a finite set will be addressed in Section 3.B. We next first show that any such

set solves the problem stated in Section 1. Given X and T : X → Z
d, our problem was to

find functions f1, f2, · · · , fL : X → Zsatisfying (1.2), repeated here for ease of reference:

(a)
∑

x fi(x)T (x) = 0, 1 ≤ i ≤ L

(3.1) (b) For g, g′ : X → N with
∑

(g(x)−g′(x))T (x) = 0, there exist εj , fij , 1 ≤ j ≤ A

with εj = ±1, g +
∑A

j=1 εjfij = g′ and g +Σ�
j=1εjfij non-negative, for 1 ≤ α ≤ A.

As was demonstrated in Section 2, such functions give rise to random walks for sampling

fromXt. For readers interested in optimization we mention the related integer programming

problem of minimizing a linear functional over Xt. Algebraic techniques for this problem

along the same lines were developed by Conti and Traverso (1991) and Thomas (1993).

Theorem 3.2. A collection of functions f1, f2, · · · , fL : X → Z satisfies (3.1a,b) if and

only if the set
{X f+

i − X f−
i : 1 ≤ i ≤ L

}
generates the toric ideal IT .

Proof: Let F = {X f+
i −X f−

i : i = 1, . . . , L}. Property (a) is equivalent to F ⊂ IT . Thus
we must show (b) holds if and only if F generates IT . Assume (b) holds. By Lemma 3.1 it

is enough to show that, for any f : X →Zwith
∑

x f(x)T (x) = 0, the monomial difference

X f+ −X f−
is in the ideal generated by F . Apply (b) to g = f+ and g′ = f−. If A = 1 and

say ε1 = 1, then f− = f+ + fi1 or f− − f+ = f+
i1

− f−
i1
. This implies f− = f+

i1
, f+ = f−

i1

so X f+ − X f−
= −(X f+

i − X f−
i ) ∈ IT . A similar argument works if A = 1 and ε1 = −1.
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In the general case A > 1. By induction on A, the monomial differences X f+ −X f++�1fi1

and X f+�1f
+
i1 − X f−

lie in the ideal generated by F . So does their sum.

In the other direction, suppose that F generates IT . For g, g′ : X → N such that∑
x(g(x) − g′(x))T (x) = 0, there exists a representation

(3.2) X g − X g′ =
A∑
j=1

X hr(X f+
ir − X f−

ir ).

Here hr : X → N and the polynomial on the right has no coefficients, since the proof of

Lemma 3.1 works over the integers (hence is field independent). If A = 1, the identity

(3.2) translates directly into property (b). For A > 1, we proceed by induction. From

(3.2), X g = X hrX f±
ir for some r, say X g = X hrX f−

ir . Then g − f−
ir

is non-negative and so

g + fir is non-negative. Subtracting X hr (X f+
ir − X f−

ir ) from both sides of (3.2) and using

hr+f+
ir = g+fir we get an expression for X g+fir −X g′ having length A−1. By induction,

g + fir can be connected to g′ by allowable steps, and so (b) holds for all g, g′.

Example: We illustrate Theorem 3.2 for contingency tables. Here K[X ] is the ring of

polynomial functions on a generic I by J matrix (Xij). The toric ideal IT is the ideal

generated by the 2×2 minors xijxk�−xi�xkj . The local changes induced by these binomials

are precisely the ±∓ or ∓± moves described in Section 1. These determinantal ideals have

been the object of intense study by algebraists and geometers. Sturmfels (1991, 1992)

gives further discussion and references.

Two other sets of moves are worth mentioning for this example. Let KIJ be the

complete bipartite graph on I and J nodes, so K23 appears as

•
•

•
•

•
Any cycle in KIJ gives a possible move for the contingency table problem in an obvious

way by adding and subtracting alternately along the cell entries determined by the edges

in the cycle. Longer cycles move things further, so there might be a possibility for a speed

up. As will emerge, these longer cycles have a natural algebraic interpretation; they are a
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universal Gröbner basis for IT . In integer programming (cf. (Thomas 1993)) these moves

constitute a universal test set for the transportation problem.

A second set of moves consists of using only pairwise adjacent squares as xijxi+1�j+1−
xi�j+1xi+1�j. These moves fail to connect the set X r∼� c∼ in general. For example, the

following pair of 2×3 tables have the same row and column sums but cannot be connected:

1 0 0
0 0 1

0 0 1
1 0 0

It can be proved that adjacent switches connect X r∼� c∼ provided min{ri, cj} ≥ 2.

B. Gröbner Bases.

Any present day discussion of computing generating sets for a polynomial ideal is steeped

in the language of Gröbner bases. This subsection presents the definitions, tailored to

the present applications, and it explains how the ideas of Section 3.A can be put in this

framework (so small problems can be routinely solved using computer algebra packages

such as MAPLE or MACAULAY). The literature on these topics is vast. Fortunately, the

undergraduate text book by Cox, Little, and O’Shea (1992) has just appeared.

B.1 Term orders: A term order is a linear order ≺ on Nn which satisfies 0 � α and

α � β implies (γ + α) � (γ + β). A familiar example is lexicographic order (lex). This

requires choosing an ordering of the variables. Graded lexicographic order (grlex) declares

α ≺ β if either Σβi > Σαi or Σβi = Σαi and the first non vanishing difference has

βi − αi > 0. (This was used in our proof of Lemma 3.1). An important variant is graded

reverse lexicographic order (grevlex) which has α ≺ β if either Σβi > Σαi or Σβi = Σαi

and the first non-vanishing difference, working from the right, has βi − αi < 0. Thus

(0, 2, 0) ≺ (1, 0, 1) in grlex but (1, 0, 1) ≺ (0, 2, 0) in grevlex.

A large class of partial orders is given by choosing a weight vector u ∈ Nn and declaring

α ≺ β if α ·u < β ·u. This can be made into a linear order by breaking ties using a second

linear order or by a second (and third · · ·) weight order. It is known that any term order

is the intersection of at most n weight orders (cf. (Weispfenning 1987)).

If X is a finite set, say X = {x1, x2, . . . .xn}, then the functions f : X → N can be

linearly ordered using a term order on the vectors (f(x1), f(x2), · · · , f(xn)). We write
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f ≺ g for this order. This gives a linear order for the monomials in K[X ] via X f ≺ X g :

⇐⇒ f ≺ g. Every non-zero polynomial p ∈ K[X ] contains a unique highest monomial

with respect to ≺. This is called the initial monomial and denoted in(p).

B.2 Gröbner bases: Let X be a finite set. Linearly order the elements of X and choose

a term order ≺ on functions from X to N. Let T : X → Z
d be given. A Gröbner basis for

T with respect to ≺ is a finite collection of functions fi : X → Z, 1 ≤ i ≤ L such that

(3.3)

(a)
∑
x

fi(x)T (x) = 0

(b) For any two functions f, g : X → N with
∑

f(x)T (x) =
∑

g(x)T (x)

there exist two sequences fir , 1 ≤ r ≤ A, fjµ , 1 ≤ μ ≤ B such that

f +
�+1∑
r=1

fir � f +
�∑

r=1

fir , g +

�+1∑
	=1

fir � f +

�∑
	=1

fjµ for 0 ≤ α ≤ A−1, 0 ≤ β,≤ B−1

and f +
A∑
r=1

fir = g +
B∑

	=1

fjµ ,

with all of the above functions non-negative X → N.

Remarks: 1. Clearly, a Gröbner basis satisfies (1.2). Indeed, we get from f and g to

a common function by strictly decreasing moves. It follows that algorithms for finding

Gröbner bases will solve our problem in Section 1.

2. The definition above has been tailored to the present application. Gröbner bases

are usually defined for ideals I ⊂ K[X ] as a finite set of polynomials {p1, . . . , pL} ⊂ I such

that the ideal 〈in(p1), . . . , in(PL)〉 generated by its initial terms equals 〈in(p) : p ∈ I〉. For
the toric ideal IT defined in Section 3.A, it not hard to show that a collection of functions

fi : X → Zforms a Gröbner basis in the sense of (3.3) if and only if the monomial differences

X f+
i − X f−

i form a Gröbner basis for IT . See (Sturmfels 1991), (Conti & Traverso 1991)

or (Thomas 1993) for details.

A collection of functions {fi : X → Z is called a universal Gröbner basis if it is a

Gröbner basis for all term orders simultaneously. The fact that a finite universal Gröbner

basis exists is not obvious; a combinatorial proof can be found in (Thomas 1993).
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Given a fixed term order, then a Gröbner basis is called reduced if it is minimal with

respect to inclusion and all paths in (3.3b) have minimal length. Cox, Little, and O’Shea

(1992, p. 91) show that a reduced Gröbner basis exists and is unique.

Example: Take X = {x, y, z} and T (x) = T (y) = T (z) = 1. The little fiber Xt is just the

set of compositions of t into three non-negative parts. Take x > y > z and lex order. The

set {x− y, y − z} is a Gröbner basis for IT . It is not reduced because the resulting path

from x to z has length two, which is not minimal. The set {x− z, y − z} is the reduced

Gröbner basis. The set {x− y, x− z, y − z} is a universal Gröbner basis.

Example (2-way tables): The basic
+ −
− +

moves in all possible row and column po-

sitions form a reduced Gröbner basis for the following order: linear order pairs (i, j) row

wise (1, 1) � (1, 2) � · · · � (1, J) � (2, 1) � · · · � (I, J). Then use lexicographic order

on functions. Sturmfels (1991, p. 260) gives an example of a term order for which these

basic moves do not form a Gröbner basis (so they are not universal). It is known that the

circuits described at the end of 3.A form a universal Gröbner basis for the 2-way tables.

One important and well-known fact about Gröbner bases is the elimination property

of lexicographic term orders. Let X ′ be subset of X , and let K[X ′] be the correspond-

ing polynomial subring of K[X ]. We write T ′ for the restriction of the map T to X ′.

Algebraically, this corresponds to forming the elimination ideal

(3.4) IT ′ = IT ∩ K[X ′].

The following is a direct translation of Theorem 2 in (Cox, Little, O’Shea, 1992, p. 114):

Proposition 3.4. Order the set X such that each element of X ′ comes before each element

of X \ X ′, and let G be a Gröbner basis for T with respect to the resulting lexicographic

term order. Then {g ∈ G : supp(g) ⊆ X ′} is a Gröbner basis for T ′.

The following corollary will be useful for constructing our Markov chains in those

cases where structural zeros may be present (see Section 4.E)

Corollary 3.5. If U is a universal Gröbner basis for T , then, for every subset X ′ of X ,

the restriction of U to X ′ is a Gröbner basis for T ′ = T |X ′ .
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C. How to compute a Gröbner Basis for a Toric Ideal. In his 1965 dissertation

Bruno Buchberger found an algorithm for computing the reduced Gröbner basis of an

ideal from any generating set. This algorithm is of striking elegance and simplicity. We

refer to (Cox, Little, O’Shea, 1992) for a general introduction and (Thomas 1993) for a

self-contained combinatorial treatment of the toric case. For our purposes the Buchberger

algorithm can be treated as a black box. Implementations are readily available in computer

algebra systems such as AXIOM, MAPLE, MACSYMA, MATHEMATICA. All serious

examples in this paper were computed using the program MACAULAY of Bayer and

Stillman (1989). MACAULAY is fast, and available at no cost (via anonymous ftp from

zariski.harvard.edu), but its interface requires a certain expertise and patience.

Let X be a finite set and T : X → Z
d. The toric ideal IT was defined in Section

3A, and in Lemma 3.1 we presented an infinite generating set. The following proposition

shows how to compute a reduced Gröbner basis for IT .

Proposition 3.6. Let Y = {y1, · · · , yd},Y− = {y−1 , · · · , y−d } be indeterminates. Given a

term order for X , extend it to a term order on X ∪ Y ∪ Y− such that z � x for all x ∈ X ,

z ∈ Y ∪ Y−. In K[X ,Y,Y−] define JT = 〈x − YT (x), x ∈ X ; yiy
−
i − 1, 1 ≤ i ≤ d〉. Then

IT = JT ∩ K[X ], and the reduced Gröbner basis for IT can be found by computing a

reduced Gröbner basis for JT and taking those output polynomials which only involve X .

Here YT (x) abbreviates the monomial
∏{yT (x)i

i : T (x)i > 0} ·∏{(y−j )−T (x)j : T (x)j < 0}.
The variables y−i are needed to cope with the possibility of negative exponents. In all our

stochastic applications, the image of the map T lies in Nd, in which case it suffices to work

with JT = 〈x−YT (x), x ∈ X〉 ⊂ K[X ,Y. The proof of Proposition 3.6 is straightforward

from the Elimination Theorem (Proposition 2.4). The method we propose is a special case

of the Implicitization Algorithm given in (Cox, Little, and O’Shea, 1992, p. 128)

To illustrate Proposition 3.6 in a simple example, let us pretend we wish to find a

Gröbner basis for the case of 3× 3 contingency tables. Using the computer algebra system

MAPLE, the following explicit sequence of commands will do the job:

> with(grobner);

> ideal := [ x11-y1*z1, x12-y1*z2, x13-y1*z3, x21-y2*z1, x22-y2*z2,

19



x23-y2*z3, x31-y3*z1, x32-y3*z2, x33-y3*z3 ];

> varlist := [y1,y2,y3,z1,z2,z3,x11,x12,x13,x21,x22,x23,x31,x32,x33];

> G := gbasis(ideal, varlist,plex);

After about one minute we see the output of 36 monomial differences on the screen.

Deleting all expressions which contain y1,y2,y3,z1,z2 or z3, we are left with our nine

basic moves of type ±∓. We remark that MACAULAY does the same computation in less

than one second. (But it takes somewhat longer to get used to MACAULAY’s interface).

We recommend trying the same MAPLE computation using the variable ordering

> varlist := [y1,y2,y3,z1,z2,z3,x11,x22,x33,x12,x13,x21,x23,x31,x32];

Among the output polynomials we see x12 x23 x31 - x13 x21 x32, witnessing the fact

that the nine basic ±∓ moves are not a universal Gröbner basis: they fail to connect if

structural zeros for x11,x22,x33 are prescribed.

D. Degree bounds. An general problem in computational commutative algebra is to

find bounds for the degrees of the polynomials that appear in Gröbner bases and minimal

generating sets of ideals. Such bounds are important also for our applications: for instance,

the fiber walk of Section 2D is based on the knowledge of an explicit degree bound. It is

known that the degree can depend critically on the term order. For homogeneous ideals in

generic coordinates, Bayer and Stillman (1987) have shown that grevlex order produces a

Gröbner basis of smallest degree. Our toric ideals, however, are not in generic coordinates,

so the conclusion of the Bayer-Stillman Theorem is sometimes false (but it’s a good rule

of thumb nevertheless, cf. Theorem 6.1).

Mayr and Meyer (1982) produced an ideal generated by monomial differences in n vari-

ables of degree at most d such that each Gröbner basis contains polyomials of degree d2
n

.

This lower bound matches the known upper bounds, which are also doubly-exponential in

n. The Mayr-Meyer example is not a prime ideal, so it is not toric. For Gröbner bases of

toric ideals IT we will see below that the degree bounds are not doubly-exponential but

singly-exponential in n.

Many naturally occurring examples have degrees which are quite small: for 2-way

tables of size I×J the degree is 2 for generators and max {I, J} for the universal Gröbner

basis. In Theorem 6.1 we show that for permutation data on Sn there are Gröbner bases
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of degree n. Sharp bounds are also available for binary logistic regression (cf. Section 5).

We now summarize the best known general degree bounds for Gröbner bases of toric

ideals. In a subsequent paper (Diaconis & Sturmfels 1993) we show that the same problem

for minimal generators is equivalent. Therefore we may here restrict ourselves to Gröbner

bases. Let X be a finite set with |X | = n. Let T : X → Z
d be given and suppose that the

d × n-matrix
(
T (x) : x ∈ X

)
has rank r. Let D(T ) be the maximum absolute value of

any r × r-subdeterminant of this matrix.

Theorem 3.7.

(a) The total degree of any polynomial in a reduced Gröbner basis for IT is bounded

above by n · (n− d) ·D(T ).

(b) For fixed d, this degree is bounded by γd ·D(T ), for a constant γd depending on d.

The bound in (a) is polynomial in the coordinates of T (x) and singly-exponential in n.

It is proved in (Sturmfels 1991). The bound in (b) does not depend in any explicit fashion

on n, the number of variables. It is proved in (Diaconis, Graham & Sturmfels 1993).

Concluding Section 3 we remark that our presentation does not do justice to the

richness and utility of Gröbner bases. Yet, it does suffice for what we need; for more we

refer to (Cox, Little, and O’Shea 1992) and the references given there.
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4. Contingency Tables.

Two-way contingency tables have been a running example in the previous sections. In this

section we treat three-way and higher tables. Section 4A develops Monte Carlo algorithms

for exact tests of classical models of independence and conditional independence. Section

4B develops tests for the model of “no three-way interaction”. Theory for sampling from

a three-dimensional table with given line sums is developed in Section 4C. Finally, Section

4D discusses general hierarchical, graphical, and decomposable models.

There is a vast modern literature on contingency tables. Agresti (1990), Bishop,

Fineberg, and Holland (1975), Christensen (1990), and Haberman (1978) all treat the

topics presented here and give surveys of the literature.

A. Three-way tables. A population ofN people classified into three categories of I, J,K

levels, respectively, leads to data nijk, 1 ≤ i ≤ I, 1 ≤ j ≤ J , 1 ≤ k ≤ K. Under the

multinomial sampling model the chance of falling into cell (i, j, k) is pijk. A variety of

models for pijk are in wide use.

model description sufficient statistic

pijk = pi··p·j·p··k

pijk = pi··p·jk

pijk = pi·kp·jk/p··k

complete independence

independence of one variable

conditional independence

ni··, n·j· , n··k

ni··, n·jk

ni·k , n·jk

The final widely used model, no three-way interaction, is discussed in Section 4B below.

In each of the cases above, a test of adequacy of the model can be based on a chi-square

or likelihood ratio test statistic S. Under the model the distribution of the data given

the sufficient statistic is an appropriate hypergeometric. All of these cases fall into the

framework of Sections 2 and 3. These cases also fall into the class of decomposable models

discussed in section D below. It is known that decomposable models admit a simple

sampling algorithm for the hypergeometric distribution. This is described in Lauritzen

(1993) and implemented in the program CoCo. We give the basic moves for a Markov

chain as a means of generating from the relevant uniform distribution.

Example. Complete independence: In this model we fix all face sums ni··, n·j· , n··k ,

1 ≤ i ≤ I, 1 ≤ i ≤ J , 1 ≤ k ≤ K. There are two classes of moves which are depicted as
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class 1

+ −
− + and

class 2

+ −
− +

The moves are described algebraically, up to permutation of indices, as

x111x122 − x112x121 and x111x222 − x112x221.

These generate an irreducible Markov chain. The ring map ϕT of Section 3 takes xijk to

uivjwk. The associated ideal IT is studied in algebraic geometry as the Segre embedding

of the product of three projective spaces of dimension I−1, J−1,K−1. See Harris (1992).

Example. Independence of one variable: There are three choices here. For definite-

ness say that the variable i is independent of (j, k). Then we fix ni·· and n·jk , 1 ≤ i ≤ I,

1 ≤ j ≤ J , 1 ≤ k ≤ K. An easy to implement Markov chain identifies the pairs (j, k) with

a new variable �, for 1 ≤ � ≤ L = JK. Now consider the table as an I by L array and use

the 2-dimensional moves as in the introduction.

Example. Conditional independence: Again there are three choices. For definiteness,

say variables i and j are conditionally independent given k. Then, we fix ni·k and n·jk .

Here, for each fixed value of k, one has a two-dimensional face with k fixed. The walk

proceeds independently as k walks in each of these tables.

These three walks were straightforward variations of the two-dimensional case. The

following two subsections treat a model which is more difficult.

B. A 3 × 3 × 3 example. Let N objects be classified into three categories with I, J,K

levels respectively. The chance of an object falling into category (i, j, k) is pijk. A clas-

sical statistical hypothesis, called no 3-way interaction, gives rise to a test which can be

carried out by generating a table from the hypergeometric distribution conditional on all

two-dimensional faces. If the table entries are denoted nijk, the faces may be denoted

n·jk , ni·k, nij·, where n·jk =
∑

i nijk. Tests for no 3-way interaction are described by Birch

(1963) or Bishop, Fineberg, and Holland (1975). We first treat the case I = J = K = 3.
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It is natural to consider basic 2× 2× 2 moves like

(4.1)
0 0 0
0 0 0
0 0 0

0 0 0
0 + −
0 − +

0 0 0
0 − +
0 + −

There are 27 such moves; alas the chain they generate is not connected. Using the program

MACAULAY, we ran the basic algorithm of Proposition 3.6. This involved computations in

a polynomial ring with 54 variables (27 variables xijk for the table entries and 27 variables

y
(1)
ij , y

(2)
ik , y

(3)
jk for the three 3 × 3 margins). We found that a minimal set of generators

consists of the 27 moves as in (4.1) and 54 moves of degree 6 like

(4.2)
0 0 0
0 0 0
0 0 0

0 − +
+ 0 −
− + 0

0 + −
− 0 +
+ − 0

.

The pattern in the last two layers can be permuted in 6 ways and the two layers can be

placed in 9 ways. This gives rise to 54 moves.

In carrying out this computation, we ordered the cells (i, j, k) lexicographically and

used the induced degrevlex term order on the monomials in the yijk . The reduced Gröbner

basis for this order contains 110 basic moves: the 27 + 54 minimal generators above plus

(4.3)
28 relations of
degree 7 like

0 0 0
0 − +
0 + −

+ 0 −
− + 0
0 − +

− 0 +
+ 0 −
0 0 0

.

(4.4)
one relation of
degree 9 like

−2 + +
+ 0 −
+ − 0

+ 0 −
0 0 0
− 0 +

+ − 0
− 0 +
0 + −

.

This computation required 52 hours and used 23 megabytes of memory on a SPARC 1.

We emphasize that we used off-the-shelf software with no attempt to write fast code.

Example: Haberman (1978) reports data drawn from the 1972 national opinion research

center on attitudes toward abortions among white Christian subjects. The part of the data

to be analyzed here is a 3× 3 × 3 table. The first variable is type of Christian (Northern

Protestant, Southern Protestant, Catholic). The second variable is education (low (less

than nine years), medium (nine through twelve years), high (more than 12 years)). The

third variable is attitude to nontherapeutic abortion (positive, mixed, negative).
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The data appear as

P M N
L 9 16 41
M 85 52 105
H 77 30 38

8 8 46
35 29 54
37 15 22

11 14 38
47 35 115
25 21 42

Northern Southern Catholic
Protestant Protestant

The rows index level of education, the columns index attitude. The data are here treated

as a simple random sample of size 1,055 from the U.S. population in 1972. Let the chance

of falling into cell (i, j, k) be pijk. We carry out a test of the “no three factor interaction”

model. This specifies constant log odds:

p111pij1
pi11p1j1

=
p11kpijk
pi1kp1jk

for all 2 ≤ i ≤ I, 2 ≤ j ≤ J, 2 ≤ k ≤ K.

The maximum likelihood estimates of the cell entries under the model are found by iterative

proportional fitting to be

12.01 14.43 39.58
85.75 52.51 103.8
73.24 31.06 40.66

9.436 12.25 40.27
36.55 24.17 57.27
34.01 15.58 24.45

6.552 11.32 45.13
44.68 39.32 113.0
31.77 19.36 36.87

The chi-square statistic for goodness of fit is 10.37. The usual asymptotics refer this to a

chi-square distribution with (I − 1)(J − 1)(K − 1) = 8 degrees of freedom. To calibrate

the asymptotics, we ran the random walk described in Lemma 2.2 using the 110 moves

described above to get the hypergeometric distribution. Every 500 steps a chi-square value

was computed. One million chi-square values were accumulated. The resulting data are

in remarkably good agreement with the chi-square distribution. Figure 2 shows a p − p

plot of the million chi-square values versus the chi-square (8) distribution. We conclude

that the algorithm seems to work well, that the chi-square approximation seems very good

(there is a small, systematic bias upward in Figure 2), and that the no-three factor model

fits this data. Haberman (1978, Section 4.2) presents a serious analysis of this data along

with data from subsequent years.
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Figure 2

C. a× b× c tables. For higher way tables there are an ever growing collection of models.

We present a general discussion in Section 4D. Here we treat three way tables of format

a × b × c, fixing all line sums n·jk , ni·k, nij·. No neat description of the moves for general

a, b, c is known to us. What we can give is a neat description for 2×a× b tables. We begin

with this and then show that things get very complicated if a, b, c are large.

For a 2× n× n-table consider the following move:

(4.5)

+ − 0 0 · · · 0
0 + − 0 · · · 0
0 0 + − · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · 0 + −
− 0 0 · · · 0 +

+ + 0 0 · · · 0
0 − + 0 · · · 0
0 0 − + · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · 0 − +
+ 0 0 · · · 0 −

The product of symmetric groups Sn × Sn acts on the rows and columns. This gives

(n − 1)!n!/2 distinct permutations of (4.5). We call them the basic moves of degree 2n.

For n ≤ b ≤ c, any of these basic moves can be placed in a 2 × b × c array. There are(
b
n

)(
c
n

)
distinct ways to do this, so altogether we get

∑b
n=2

(n−1)!n!
2

(
b
n

)(
c
n

)
basic moves for

the 2× b× c array. In (Diaconis and Sturmfels, 1993) we show that these basic moves form

a minimal generating set which is at the same time a universal Gröbner basis.

The discussion above gives satisfactory results for 2×b×c tables. We next present the

little we know about a×b×c tables. We write Iabc for the toric ideal, which is the kernel of
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the ring map xijk �→ y
(1)
ij y

(2)
ik y

(3)
jk . Let Tabc denote the (ab+ac+bc)×abc-matrix with entries

in {0, 1} which represents this map. The columns of Tabc are indexed by the variables xijk;

each column has precisely three entries 1, namely, in the rows indexed by y
(1)
ij , y

(2)
ik and

y
(3)
jk . In other words, Tabc represents the linear map Za×b×c → Z

a×b⊕Za×c ⊕Zb×c, which

takes 3-way tables to their 2-way margins. It is easy to see that the kernel of Tabc has rank

(a − 1)(b − 1)(c − 1). Therefore rank of the matrix Tabc equals

(4.6) r = rank(Tabc) = ab + ac+ bc− a− b− c− 1

Let D(a, b, c) denote the largest absolute value of any r × r-minor of the matrix Tabc.

Theorem 4.1. Let a, b, c be positive integers with 3 ≤ a ≤ b ≤ c.

(a) A universal Gröbner basis for Iabc is given by all binomialsXm+−Xm−, m ∈ ker(Tabc),

of degree at most a(a − 1)b(b − 1)c(c− 1) ·D(a, b, c).

(b) We have the inequalities min(a, b, c) − 1 ≤ D(a, b, c) ≤ 3r
2.

Proof: Part (a) follows from Theorem 3.7 (a). To prove the upper bound in (b), we

note that the integer D(a, b, c) is the determinant of an r × r-matrix which has at most

three ones and otherwise zeros in each column. Hadamard’s inequality implies that such

a determinant has absolute value at most 3r
2. For the lower bound in part (b) we use

the fact that D(a, b, c) is an upper bound for the degree of any variable in a circuit of

Iabc. A circuit of Iabc is a binomial whose support is minimal with respect to inclusion

(cf. (Sturmfels 1991, 1992)). It can be shown that the following binomial is a circuit for

the a× a× a-table:

(4.7)

a∏
i=1

x1�i�i ·
a−1∏
j=2

(xj�1�1 xj�j�j+1) ·
a∏

k=2

(xa�1�k xa�k�1)

− xa−1
a�1�1 · x1�a�1 ·

a−1∏
i=1

x1�i�i+1 ·
a−1∏
j=2

(xj�1�j+1 xj�j�1) ·
a∏

k=2

xa�k�k

The variable xa�1�1 appears with degree a− 1 in the circuit (4.7), and so we are done.

Based on the special cases 2× b× c and 3× 3× 3 we wishfully conjecture:
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Conjecture 4.2. D(a, b, c) = min(a, b, c) − 1.

A relation in Iabc is called critical if it cannot be written as a polynomial linear

combination of relations of lower degree. Thus the critical relations are needed for a

generating set of Iabc. The type of a critical relation is the size of the smallest three-way-

table which supports it. We now present two non-trivial examples of critical relations.

These show that basic moves for 2× b× c-tables do not generate Iabc for large a, b, c.

(4.8) A critical relation of type 4× 4× 6 is

x131x241x142x322x123x433x214x344x235x415x316x426

−x141x231x122x342x133x423x244x314x215x435x416x326.

(4.9) A critical relation of type 3× 6× 9 is

x111x361x132x342x153x323x124x214x225x335x356x266x147x257x318x248x169x239

−x161x311x142x332x123x353x114x224x325x235x256x366x157x247x218x348x139x269.

We briefly explain the derivation of (4.8), (4.9). First note that we get zero after deleting

the third subscript. This amounts to a non-trivial identity among six (resp. nine) carefully

chosen 2 × 2 minors of a 4 × 4 matrix (resp. 3 × 6 matrix). Identities of this type are

called biquadratic final polynomials in oriented matroid theory; see e.g. (Björner et.al.,

1993, Section 8.5). They encode projective incidence theorems or non-realizability proofs

of oriented matroids. The relation (4.8) encodes the biquadratic final polynomial for the

Vamos matroid (Bokowski and Richter (1990)). The relation (4.7) encodes the biquadratic

final polynomial for the Non-Pappus matroid (Bokowski and Richter-Gebert (1991)).

It was shown by Bokowski and Richter-Gebert (1991, Remark 3.6) that there exist

arbitrarily large biquadratic final polynomials. ¿From this we can infer the following result.

Proposition 4.3. Given any triple of interges c ≥ b ≥ a − geq2, there exists a critical

relation of type a′ × b′ × c′ for some integers a′ ≥ a, b′ ≥ b, c′ ≥ c.

None of this says that is impossible to find some “nice” set of generators for Iabc; it

only says that the simple moves we found so far do not suffice.
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D. Higher way tables. Let Γ be a finite set. For each γ ∈ Γ, let I� be a finite set. Take

X =
∏

�∈Γ I�. This is the base space for data classified into |Γ| categories with |I� | levels
of the γth category. Let p(x) be the probability of falling into cell x ∈ X . A log linear

model can be specified by assuming

log p(x) =
∑
a⊆Γ

ϕa(x).

Here the sum ranges over subsets a ⊆ Γ and the notation ϕa(x) means that the function ϕa

only depends on x through coordinates in a. Thus ϕ∅ is a constant and ϕΓ is a completely

general function. Specifying ϕa ≡ 0 for various classes of sets a determines various models.

Goodman’s hierarchical models (Goodman (1970), Haberman (1978), Darroch, Lau-

ritzen and Speed (1980)) begin with a class C of subsets ci ⊂ Γ with the assumption that

no ci contains another cj. A hierarchical model is defined by specifying ϕa ≡ 0 unless a ⊆ c

for some c ∈ C. For example, with Γ = {α, β, γ}, the class C = {{α, β}, {α, γ}, {β, γ}}
defines the no-three way interaction model of Sections 4B and 4C.

The sufficient statistics for a hierarchical model are {n(ic)}, where c ranges over C,
ic ∈

∏
�∈C I� and n(ic) is the sum over all x that agree with ic in the coordinates determined

by c. This can be expressed in the general form required in Section 2.

Hierarchical models have unique maximum likelihood estimates, which can be com-

puted efficiently using Newton-Raphson or the iterated proportional fitting method. These

lead to estimates p̂c(x). If C ⊂ D are two generating classes, an exact test for adequacy of

model C within D may be based on the conditional distribution (under C) of the chi-square
statistic

∑
x

(Np̂C(x) −Np̂D(x))2

Np̂C
.

Graphical models are a subclass of hierarchical models obtained from a graph with

vertex set Γ and edge set E. One specifies that the cliques of the graph (maximal complete

subgraphs) are the generating class. These models can be characterized by conditional

independence properties: for a, b, c ⊂ Γ, variables a and b are conditionally independent

given c if and only if any path in the graph from a point in a to a point in b must pass
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through c. The models of Section 4A are graphical:

complete independence

3•
•
1

•
2

1 variable independent

•
1

•
2

•
3

conditional independence

•
1

•
3

•
2

The no three way interaction model is the simplest hierarchical model that is not graphical.

A particularly nice subclass of graphical models are the decomposable models. They

arise from those graphs for which any cycle of length 4 or more contains a chord. Decom-

posable models allow closed form maximum likelihood estimates and simple algorithms for

generating from the hypergeometric distribution. Glonek (1987) has conjectured that the

moves determined by the generalized cross product ratio of Darroch and Speed (1983) lead

to an irreducible Markov chain. Our results in Section 3 translate this conjecture into a

question of combinatorial commutative algebra.
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E. Structural Zeros and Incomplete Tables. Contingency tables sometimes have

forced zero entries. For example, one of the categories may be pregnant males, or counts

along the diagonal of a square table may be forced to be zero. See Bishop, Fineberg,

and Holland (1975) or Haberman (1978, Chapter 7) for discussion and examples. It is

straightforward to adopt our algebraic approach to deal with structural zeros.

The problem of structural zeros has the following formulation in the general setting

of Sections 1-3. Let X ′ be a subset of X such that all observable functions f : X → N

satisfy f(x) = 0 for x ∈ X \ X ′. The question is to how to maintain this property during

the random walks in Section 2. In other words, how to find a connecting set f1, . . . , fL

in (1.2) which remains connecting when restricted to functions f : X ′ → N. Corollary 3.5

tells us the answer:

Corollary 4.2. Suppose that the set of moves f1, . . . , fL is a universal Gröbner basis.

Then the Markov chains in Section 2 remain irreducible if structural zeros are prescribed.

A general algorithm for computing universal Gröbner bases of toric ideals is presented

in (Diaconis & Sturmfels 1993). To illustrate Corollary 4.2 in a simple example, we consider

two-way tables with structural zeros. For an I × J -table this is modelled by a bipartite

graph on I and J points. There is an edge from i to j if and only if the (i, j) entry of the

table is allowed to be non-zero. There is a simple description of a basic set of moves:

Proposition 4.3. The circuits in a bipartite graph form a universal Gröbner basis.

The same result holds for arbitrary graphs and, more generally, for unimodular ma-

troids. This result was proved in (Sturmfels 1992, Section 5).

Remark: An amusing consequence of Proposition 4.3 is this: if there are no circuits in

the bipartite graph, then any table is uniquely determined by its margins.
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5. Logistic Regression.

Logistic regression is a standard technique for dealing with discrete data regression prob-

lems. Christensen (1990) or Haberman (1978) give background and details. We begin

with binary data, then treat an example with equally spaced regressors. In Section 5C we

treat multiple response models. A detailed algebraic study of the class of toric ideals aris-

ing from logistic regression is carried out in our subsequent papers (Diaconis & Sturmfels

1993), (Diaconis, Graham & Sturmfels 1993). These ideals have the remarkable property

that each minimal generating set is automatically a universal Gröbner bases.

A. Binary Data. For each of N subjects a binary indicator Y and a vector of covariates

z is observed. We assume that the covariates z are taken from a fixed finite subset A of

Z
d. A logistic model specifies a log-linear relation of form

P (Y = 1 | z ) = ez·�/(1 + ez·�)

where the parameter vector β ∈ Rd is to be estimated. With N subjects the likelihood

function is
N∏
i=1

eYi(zi·�)/(1 + ezi·�).

Let n(z) be the number of indices i ∈ {1, . . . , N} with zi = z, and let n1(z) be the number

of i ∈ {1, . . . , N} with zi = z and Yi = 1. The collection {n(z)}z∈A and the sum
∑

z zn1(z)

together are sufficient statistics (they determine the likelihood function). Our objective is

to give random walk algorithms for generating data sets with these sufficient statistics.

To put the problem into the notation of the previous sections, let X = {(0, z), (1, z), z ∈
A}, and let T : X → Z

d+|A| be defined by

(5.1)
T (0, z) = ( 0 ; 0, · · · , 0, 1, 0, . . . , 0)
T (1, z) = ( z ; 0, · · · , 0, 1, 0, . . . , 0)

where there is a single 1 in the last |Z| coordinates at the zth position. Then for a given

data f : X → N, the sum t =
∑

x∈X f(x)T (x) fixes the sufficient statistics.

This general problem can be solved using the techniques of Sections 2-4. In what

follows we restrict ourselves to developing tools for widely applicable special cases.
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B. Equally spaced covariates. Haberman (1978, Chapter 7) gives data from the 1974

social science survey on men’s response to the question “Women should run their homes

and leave men to run the country.” Let Y = 1 if the respondent “approves” and Y = 0

otherwise. For each respondent the number i of years in school is reported, 1 ≤ i ≤ 12.

The data are

Table 2. Men’s response to “Women should run their homes and leave
men to run the country” (1974/75). With years of education i.

i 0 1 2 3 4 5 6 7 8 9 10 11 12

n1(i) 4 2 4 6 5 13 25 27 75 29 32 36 115
n(i) 6 2 4 9 10 20 34 42 124 58 77 95 360

p(i) .66 1 1 .66 .5 .65 .74 .64 .60 .50 .42 .38 .32

Here n1(i) is the number “approving” and n(i) is the total number in the sample with i

years of education. Also shown are p(i) = n1(i)/n(i), the proportion approving. These

proportions seem to decrease with years of education. It is natural to fit a logistic model

of form

(5.2) P (Y = 1 | i ) = e�+i�/(1 + e�+i�).

This falls into the framework above with d = 2, A = {(1, 1), (1, 2), · · · , (1, 12)}. The

sufficient statistics to be preserved are

(5.3) {n(i)}12i=0,
12∑
i=1

n1(i),
12∑
i=1

n1(i) · i.

A randomization test with these statistics fixed would be appropriate in testing the linear

logistic model (5.2) against the non-parametric alternative P (Y = 1 | i) = θi.

For the data of Table 2, the maximum likelihood estimates of α and β in the model

(5.2) are α̂ = 2.1959, β̂ = −.2440271. The chi-squared statistic for goodness of fit is∑12
i=1(np̂(i) − n1(i))

2/np̂(i) = 8.91. The classical asymptotics for this problem calibrate

this value with the chi-square (10) distribution. The uneven nature of the counts with

some counts small gives cause for worry about the classical approximation. We ran the
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basic random walk to check this approximation. A minimal ideal basis for this problem

involves 8,569 basis elements. The walk was run, tilted to the hypergeometric distribution

as in Lemma 2.2. A chi-square value was computed why 50 steps with 1000 values recorded

in total. The observed value falls essentially at the median of the recorded values (their

mean is 10.3). The values show good agreement with a chi-square (10) distribution as

shown in Figure 4 below.

Figure 4

P − P plot of 1000 random walk values of χ2 versus a chi-square (10)

We conclude that the chi-square approximation is in good agreement with the conditional

distribution and that the model (5.2) fits the data in Table 2.

In the remainder of Section 5B we give a combinatorial description of the basic moves

to generate random data with fixed values of the statistics (5.3). We replace “12” by a

parameter n, and assume without loss of generality that i ranges over 1 ≤ i ≤ n.

Definition. A graded partition identity with parameter n consists of a1, · · · , ar , b1, · · · , br
with ai, bj ∈ N, 1 ≤ ai, bj ≤ n, and a1 + · · · + ar = b1 + · · · + br. The identity is called

primitive if no proper subset sum of the ai equals a subset sum of the bj . The degree of

such an identity is 2r.

For instance, for n = 3 it is easy to see that 1+3 = 2+2 is the only primitive identity.

When n = 4, the primitive identities are

3 + 3 = 2 + 4, 2 + 3 = 1 + 4, 1 + 3 = 2 + 2, 1 + 1 + 4 = 2 + 2 + 2, 3 + 3 + 3 = 1 + 4+ 4.
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When n = 5 there are 16 primitive identities with two having maximal degree 8. When

n = 6 there are 51 primitive identities, four having maximal degree 10. When n = 7,

there are 127 primitive identities, two having maximal degree 12. Diaconis, Graham and

Sturmfels (1993) prove that the maximal degree is 2(n − 1), and that there are ϕ(n − 1)

(Euler’s function) primitive identities of maximal degree.

A graded partition identity corresponds to a “move” by removing an item from the

Y = 1 row of columns a1, a2, · · · , ar and adding an item to the Y = 1 row of columns

b1, b2, · · · , br (or doing the opposite).

Example: For n = 4, the move 3 + 3 + 3 = 1 + 4 + 4 changes

1 2 3 4
n1(i) 10 20 30 40
n(i) 100 100 100 100

to
1 2 3 4

n1(i) 11 20 27 42
n(i) 100 100 100 100

Diaconis and Sturmfels (1993) show that the moves corresponding to the primitive

graded partition form a minimal ideal basis which is also a universal Gröbner basis. The

bounds above allow the fiber walks of Section 2C to be carried out for relatively large n.

C. Multinomial response models. The following class of models does not fit under the

umbrella of Section 5A. Let Y take values in {1, 2, · · · , J} with

P (Y = j | z) = C(z)e�j ·z, C−1(z) =
J∑

j=1

e�jz.

Here z = (z1, . . . , zd) is a covariate vector from a fixed finite subset A ⊂ Z
d, and αj ∈

R
d, 1 ≤ j ≤ J . Data from a sample of size N can be presented as a J × n matrix

u, whose entry u(j, z) is the number of observed values j with covariate vector z. Let

U(z) =
∑

j u(j, z). The sufficient statistics are the column sums {U(z)}z∈A and the J × d

entries
∑

z∈A u(j, zk)zk.

Example: For the model P (Y = j | i) = C(i)e�j+�ji, j = 1, 2, 3, i = 1, 2, · · · , n,
the data would be a 3 × n array with entries u(j, (1, i)). The sufficient statistics are

{U(1, 1), U(1, 2), · · · , U(1, n)} and∑
i u(1, (1, i)),

∑
i i · u(1, (1, i)),∑

i u(2, (1, i)),
∑

i i · u(2, (1, i)),∑
i u(3, (1, i)),

∑
i i · u(3, (1, i)).
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We found that the full algebraic machinery of Section 3 is needed to deal with multiple

logistic regression. There seems to be no set of “obvious” generators which connect the

little fibers. As an example, for trivariate logistic regression with n = 5 a minimal set of

generators has 96 elements:

21 of degree 4 such as

⎛
⎝ 0 0 1 −2 1

0 0 −1 2 1
0 0 0 0 0

⎞
⎠,

51 of degree 6 such as

⎛
⎝ 0 1 0 −3 2

0 −1 0 3 −2
0 0 0 0 0

⎞
⎠,

18 of degree 8 such as

⎛
⎝−1 −2 0 −2 1

2 −3 0 1 0
−1 1 0 1 −1

⎞
⎠,

6 of degree 10 such as

⎛
⎝ 0 −1 0 3 −2

2 −2 0 −2 2
−2 3 0 −1 0

⎞
⎠.
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6. Spectral Analysis.

A version of spectral analysis suitable for permutation data was introduced in (Diaconis

1989). This generalizes the usual discrete Fourier transform analysis of time series. An

introduction by example is given in Section 6A. In Section 6B we prove that appropriate

Markov chains can be found with Gröbner bases having small degree. This uses a result

of Stanley (1980), and the connection between Gröbner bases and triangulations of the

convex polytope conv {T (x) : x ∈ X} developed in (Sturmfels 1991).

A. Spectral analysis of permutation data. Let Sn denote the group of permutations

of n items. A data set consists of a function f : Sn → N, where f(π) is the number

of people choosing the permutation π. One natural summary of f is the n × n-matrix

t = (tij), where tij is the number of people ranking item i in position j. This is only a

partial summary, since n! numbers are compressed into n2 numbers. A sequence of further

summaries was described in Diaconis (1989). These arise from a decomposition

L(Sn) = V0 ⊕ V1 ⊕ V2 ⊕ · · · ⊕ Vk.

On the left is L(Sn), the vector space of all real-valued functions on Sn. On the right is an

orthogonal direct sum of subspaces of functions. The summary t amounts to the projection

onto V0 ⊕ V1. It is natural to look at the squared length of the projection of the original

data set f into the other pieces to help decide if further projections need be considered.

As an example, Croon (1989) reports responses of 2,262 German citizens who were

asked to rank order the desirability of four political goals:

1. maintain order 3. fight rising prices

2. give people more say in government 4. protect freedom of speech.

The data appear as

1234 137 2134 48 3124 330 4123 21
1243 29 2143 23 3142 294 4132 30
1324 309 2314 61 3214 117 4213 29
1342 255 2341 55 3241 69 4231 52
1423 52 2413 33 3412 70 4312 35
1432 93 2431 59 3421 34 4321 27

875 279 914 194 2262
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Thus 137 people ranked item 1 first, 2 second, 3 third and 4 fourth. The marginal totals

show people thought item 3 most important (914 ranked it first). The first order summary

t = (tij ) is the 4× 4-matrix

item

875 279 914 194

746 433 742 341
Position

345 773 419 725

296 777 187 1002

The first row shows the number of people ranking a given item first. The last row shows

the number of people ranking a given item last. Here we see what appears to be some

“hate vote” for items 2 and 4, an indication that people vote against these items.

The data was collected in part to study if the population could be usefully broken into

“liberals” who might favor items 2 and 4, and “conservatives” who might favor items 1

and 3. To investigate further we give the decomposition of the space of all functions L(S4)

into an orthogonal direct sum

L(S4) = V0 ⊕ V1 ⊕ V2 ⊕ V3 ⊕ V4

dim 24 1 9 4 9 1
length2 462 381 268 48 4

Here, V0 is the 1-dimensional space of constant functions, V1 is a 9-dimensional space of

“first order functions” spanned by π �−→ δi�(j) and orthogonal to V0. The projection of f

onto V0⊕V1 is equivalent to the first order summary given above. The space V2 is a space of

“unordered second order functions” spanned by π �−→ δ{i�i′}�{�(j)��(j′)} and orthogonal to

V0⊕V1. The space V3 contains “ordered second order functions” and V4 is a 1-dimensional

space recording the differences between even and odd permutations. Further details are in

Diaconis (1988, 1989).

Below each subspace is shown the squared length of the projection of the original

data f . The first two subspaces V0 and V1 pick up much of the total sum of squares. The

projection onto V2 has norm 268 which seems moderately large. To investigate if this 268
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is forced by the first order statistics or an indication of interesting structure, we performed

the following experiment: Using a random walk detailed below, 100 independent data sets

f : S4 → N
4 with the same first order summary t = (tij) were chosen from the uniform

distribution. For each data set, the squared length of its projection onto V2 was calculated.

The median squared length was 244 with upper and lower quantiles 268 and 214. We see

that the moderately large value 268 is typical of data sets with first order statistics t and

nothing to get excited about. For further analysis of this data see Bökenholt (1993).

The random walk was based on a Gröbner basis formed in the following way. Let

X = S4, and let T (π) be the 4 × 4 permutation matrix with (i, j)-entry δi�(j); this is one

if item j is ranked in position i and zero otherwise. Given a function f : X → N, then the

4× 4-matrix

t =
∑
�∈Sn

f(π)T (π)

is the first order summary reported above. We identify f with the monomial
∏

� x
f(�)
�

in the variables x� = [π1π2π3π4], π ∈ X . The permutation group was ordered using

lex order (1234 > 1243 > · · · > 4321). Then grevlex order was used on monomials in

K[X ]. The computer program MACAULAY found a Gröbner basis containing 199 bino-

mials. There were 18 quadratic relations (example [3421][4312] - [3412][4321]); 176 cubic

relations (example, [4123][4231][4312] - [4132][4213][4321]) and five quartic relations (exam-

ple, [1342][2314][2431][3241] - [1234][2341]2[3412]). The walk was performed by repeatedly

choosing a relation at random and adding and subtracting from the current function ac-

cording to the relation or its negative. The walk was sampled every thousand steps until

100 functions had accumulated.

It is worth recording that a similar undertaking for S5 led to a huge number of Gröbner

basis elements (1,050 relations of degree 2 and 56,860 of degree 3). This is why the fiber

walks of Section 2C were developed. These walks work for permutation data sets up to S10

or beyond. Their feasibility is guaranteed by the bound to be derived in Threorem 6.1.

B. Toric ideals for permutation data. We write x� for the indeterminate associated

with π ∈ X = Sn and ti�j for the indeterminate associated with the entries in the permu-
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tation matrix. The ring homomorphism ϕT of Section 3 here becomes

(6.1)
ϕ : K[X ] −→ K[ tij , 1 ≤ i, j ≤ n]

x� �−→ ∏n
i=1 ti��(i)

We are interested in (Gröbner) bases for the ideal I = ker(ϕ). The main result is

Theorem 6.1. Let � be any of the (n!)! graded reverse lexicographic term orders on

K[X ]. The reduced Gröbner bases consists of homogeneous monomial differences of degree

≤ n.

Proof: We fix one of the (n!)! linear orders on Sn and let � denote the resulting graded

reverse lexicographic term order. Let Ω be the convex polytope of n×n doubly stochastic

matrices (the Birkhoff polytope). This is the convex hull of the vectors T (π) in Rn
2

. There

is a close relation between triangulations of the convex hull of T (x) and Gröbner bases.

This is developed by Sturmfels (1991). It allows us to use results of Stanley (1980) on

triangulations of Ω. The first step is to show that

(6.2) the initial ideal init (I) is generated by square-free monomials.

Stanley (1980, Example 2.11(b)) has shown that the Birkhoff polytope Ω is compressed.

This means that the pulling triangulation of Ω, which is determined by sequentially coning

over vertices of Ω in the specified linear order, results in a decomposition into simplices

of unit volume. Sturmfels (1991, Corollary 5.2) has shown that pulling triangulations

correspond to grevlex initial ideals. Under this correspondence, triangulations into unit

simplicies are identified with square-free initial ideals. This completes the proof of (6.2).

To prove the theorem, let X f =
∏

� x
f(�)
� be one of the minimal square-free generators

of the initial monomial ideal init(I). Such a monomial is called minimally non-standard.

(A monomial is standard if it does not lie in init(I), it is non-standard otherwise and

minimally non-standard if no proper divisor lies in init(I)). Let X f −X g ∈ I be a relation

having leading monomial X f . The monomials X f and X g must be relatively prime. For,

if x� were a common factor then n(X f −X g)/x� ∈ I, because I = ker(φ) is a prime ideal,

and then X f/x� ∈ init(I) which contradicts our choice.
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Let x� be the smallest variable which divides the trailing term X g. Then x� does not

divide the leading term X f . On the other hand,

ϕ(x�) =
n∏
i=1

ti��(i) divides ϕ(X g) = ϕ(X f ) =
∏
�∈Sn

n∏
i=1

t
f(�)
i��(i).

Hence, for each i ∈ {1, . . . , n} there exists a permutation σ with σ(i) = π(i) and f(σ) ≥ 1.

Let X f ′
denote the product (without repetitions) of the corresponding n variables x� . By

construction, X f ′
is a monomial of degree ≤ n which divides X f . Moreover, in the chosen

ordering, the variable x� is smaller than any of the variables appearing in X f ′
.

We claim that X f ′
is not standard. Consider the monomial ϕ(X f ′

)/ϕ(x�) in the

variables tij . Its exponent matrix is non-negative with all row and column sums equal.

Birkhoff’s theorem implies it is a non-negative integer linear combination of permutation

matrices. Hence, ϕ(X f ′
)/ϕ(x�) is a monomial which lies in the image of the ring map ϕ.

Let X h be any preimage. Then X f ′ − x� · X h lies in In. Here X f ′
is the grevlex leading

term since all of its variables are higher than x�.

We conclude that X f ′
is standard and is a factor of the minimally non-standard

monomial X f . Therefore X f = X f ′
is a monomial of degree ≤ n. This shows that init(I)

is generated by square-free monomials of degree ≤ n. The reduced Gröbner basis for I is

given by X fi −X gi , where the X fi are the minimal generators of init(I) and the X gi are

standard (cf. Cox, Little, O’Shea (1992, Section 2.5)).

Remarks: 1. The conclusion of Theorem (6.1) and fact (6.2) only hold for graded reverse

lexicographic order. Other term orders can require much larger Gröbner bases.

2. Stanley’s result, used to prove (6.2), has the following direct combinatorial inter-

pretation: let t be any n × n matrix with non-negative integer entries and constant row

and column sums. Order the permutation group Sn and repeatedly subtract the associ-

ated permutation matrices until this leads to negative entries. Any order will end in the

zero matrix without getting stuck. In fact, this combinatorial process is equivalent to the

normal form reduction with respect to the above reduced Gröbner basis {X fi −X gi}.

Final Remark: The random walk was used above to quantify a small part of the data

analysis. A similar walk would be used to give an indication of the variability of the 2nd

41



order effects determined by the projection onto V2 (see the example in Diaconis (1989, Sec-

tion 2). Similar analysis could be carried out for analyses conditional on the projection on

other pieces. Finally, there are other settings where these ideas can be used: homogeneous

spaces (such as partially ranked data) and other groups (such as Zd2 used for panel studies

or item analysis), see Diaconis (1988, Chapter 7).
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