
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

STEFAN HEINZ?

THOMAS SCHLECHTE
RÜDIGER STEPHAN

Solving Steel Mill Slab Problems
with Branch and Price

? Supported by the DFG Research Center MATHEON Mathematics for key technologies in Berlin.

ZIB-Report 09-14 (Mai 2010)

Solving Steel Mill Slab Problems
with Branch and Price

Stefan Heinz?, Thomas Schlechte, and Rüdiger Stephan

Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
{heinz,schlechte,stephan}@zib.de

Abstract. The steel mill slab design problem from the CSPLib is a
binpacking problem that is motivated by an application of the steel in-
dustry and that has been widely studied in the constraint programming
community. Recently, several people proposed new models and methods
to solve this problem. A steel mill slab library was created which con-
tains 380 instances. A closely related binpacking problem called multiple
knapsack problem with color constraints, originated from the same in-
dustrial problem, were discussed in the integer programming community.
In particular, a simple integer programming for this problem has been
given by Forrest et al. [3]. The aim of this paper is to bring these different
studies together. Moreover, we adopt the model of [3] for the steel mill
slab problem. Using a state of the art integer program solver, this model
is capable to solve all instances of the steel mill slab library, mostly in
less than one second, to optimality. We improved, thereby, the solution
value of 76 instances.

1 Introduction

The steel mill slab problem is motivated by a real world application from the
steel industry. The problem consists of a set of n orders, each order j coming
with a size sj ∈ N and color cj ∈ C, where C is a finite set. Furthermore, we are
given a set of m capacities K := {k1, . . . , km} ⊂ N. The task is to equip each
used slab with one capacity and assign each order to exactly one slab with the
requirements that the selected capacities are respected and that each slab only
processes orders of at most two different colors. The objective is to minimize the
leftover that is the total loss or equivalent the residual capacity.

The steel mill slab problem is problem number 38 of the CSPLib1. This li-
brary provides one instance which consists of 111 orders with 88 different colors,
and 20 possible capacities. We call this instance the original instance. Further-
more, there exists a steel mill slab library [11]. This library contains 380 instances
which are grouped into 19 classes each with 20 instances. These instances have
been created by changing the set of possible capacities of the original instance.
? Supported by the DFG Research Center Matheon Mathematics for key technologies
in Berlin.

1 http://www.csplib.org/

2 Stefan Heinz, Thomas Schlechte, and Rüdiger Stephan

This means, the orders are the same as the one of the original instance. The
capacities are generated uniformly and range between 10 and 50; class i contains
instances which have i+ 1 possible capacities.

In the following section, we give a brief overview on different approaches to
solve the steel mill slab problem and related binpacking problems. One of the
presented models is a column generation approach of Forrest et al. [3] to the so-
called multiple knapsack problem with color constraints which can be confessed
as a slight generalization of the steel mill slab problem. In this paper, we adapt
this approach to the steel mill slab problem, and using a state of the art integer
program solver, we solve all instances of the steel mill slab library and the original
instance to optimality. Thereby, we improved the solution of 76 instances and
proved for all instances, even those with a leftover greater than zero, that the
known solution values are optimality.

2 Related work

In the past, several different models have been proposed to solve the steel mill
slab problem. A first set of constraint programming models has been presented
by Frisch et al. [4] and first computational results for a (small) subset of orders
of the original instance were given by the same authors in [5]. Dawande et al. [2]
presented an asymptotic polynomial time approximation scheme and two 3-
approximation algorithms. Hnich et al. [8] introduced an integer programming
formulation, a constraint programming formulation, and a hybrid model and
solved also one instance which consists of a subset of orders of the original
instance. A first optimal solution of the original instance (total loss of zero) was
given by Gargani and Refalo [6] using a large neighborhood search heuristic. Van
Hentenryck and Michel [7] introduced a constraint programming model which
can be used to solve the original instance using a heuristic approach. All these
models, however, are not capable to solve all instances of the steel mill slab
library [11] which was created after the original instance was solved.

Kalagnanam et al. [9] and Forrest et al. [3] studied a closely related binpack-
ing problem called the multiple knapsack problem with color constraints. The
problem provides another view on the same industrial application as the steel
mill slab problem. The problem input consists of m slabs, each slab j coming
with a capacity kj ∈ R, and n items, each item i coming with a size si ∈ R,
a color ci ∈ N, and a specification in form of a subset of slabs indicating from
which slabs this item can be manufactured. We say that an item is feasible for
a slab if the item can be manufactured from it. The goal is to find an assign-
ment such that each slab contains feasible items of at most two different colors,
the capacities of the slabs are respected, and the unused capacity of the used
slabs is minimized. For this problem, Kalagnanam et al. [9] presented a compact
integer programming formulation, while Forrest et al. [3] designed a simple col-
umn generation approach. Their computational results indicate that the column
generation method is superior in practice.

Solving Steel Mill Slab Problems with Branch and Price 3

One main reason why these two binpacking problems are hard to solve in
practice is that the used models, excepted the column generation model of For-
rest et al. [3], are symmetric. In these models, orders are explicitly assigned
to slabs, and therefore, symmetry naturally arises by permutations of the used
slabs. It is well known, for instance, that symmetry causes branch-and-bound al-
gorithms to perform poorly, since the resulting problems change only marginally
after branching, see Barnhart et al. [1]. In principle, one can respond to this
difficulty by either adding symmetry breaking constraints to the given model or
by avoiding such a symmetric model in advance. The first strategy were pursued
by the most authors. Van Hentenryck and Michel [7] partly broke symmetry
using a customized search routine. Other symmetry breaking techniques are dis-
cussed in [5]. The column generation approach of Forrest et al. [3], however,
provides a model that avoids this kind of symmetry, which obviously explains
the performance of their column generation algorithm.

In the following section, we adopt the column generation approach of Forrest
et al. [3] for the steel mill slab problem.

3 Branch and price approach

Adapting the column generation approach of Forrest et al. [3], we obtain a similar
model to solve the steel mill slab problem. This model does not contain the kind
of symmetry mentioned in the previous section.

Let S be the set of all feasible packings of a slab. A packing s is an assignment
vector λs ∈ {0, 1}n. This vector defines which orders belong to packing s. This
means, order j ∈ {1, . . . , n} belongs to packing s if (λs)j is one. A packing is
feasible if the total size is not greater than the largest available capacity and if
s contains orders of at most two different color classes. Each packing s comes
with an unique leftover ls. Introducing for each feasible packing s ∈ S a binary
decision variable us which is one if s is used and zero otherwise, we can formulate
the steel mill slab problem as an integer program, i.e., a set partitioning problem,
as follows:

min
∑
s∈S

lsus

subject to
∑
s∈S

(λs)jus = 1 ∀j ∈ [n]

us ∈ {0, 1} ∀s ∈ S,

where [n] := {1, . . . , n}. The objective function, is to minimize the total leftover.
The equalities are set partitioning constraints to ensure that for each order j
exactly one packing s is chosen. Finally, the last conditions state that all variables
are binary. Note that, through the equalities all variables are implicitly binary.
Hence, the upper bound constraints for the variables us can be ignored in the

4 Stefan Heinz, Thomas Schlechte, and Rüdiger Stephan

linear programming (LP) relaxation. This has an advantageous for the dual
formulation for the LP-relaxation of the above integer program.

In contrast to the setting of Forrest et al. [3] we consider the case that all
orders must be covered. This is simply reflected by the transition from packing
to partitioning constraints. As a result we focus on pure minimizing of the total
leftover whereas Forrest et al. [3] additionally consider to maximize satisfied
orders, i.e., they combine both goals in one objective function. We propose,
however, the same solution methodology to cope with such formulations.

Since the number of columns can become quite large, an integer program like
the one above is usually solved with a branch-and-price algorithm. We assume the
reader to be familiar with this method. Clearly, the performance of this algorithm
heavily depends on the used branching rules and subroutines for solving the
pricing problem.

At the root node of the branch-and-bound tree, an optimal solution of the LP-
relaxation of the master problem has to be found. Using column generation, one
starts with a feasible basis solution. In our case a basis is obtained, for instance,
by setting us := 1 for all s ∈ S′ and us := 0 otherwise, where S′ ⊂ S is the set of
feasible packings which only contain one order. Then, one successively improves
the current solution of the restricted LP-relaxation. This is done by finding a
non-basis variable with negative reduced cost with respect to the current dual
solution to the LP-relaxation of restricted problem. Denoting by πj the value
of the dual variable associated with order j ∈ [n], this problem, usually called
pricing problem, can be modeled as follows:

min
m∑

i=1

yiki −
n∑

j=1

sjxj −
m∑

j=1

πjxj

subject to
n∑

j=1

sjxj ≤
m∑

i=1

yiki (1)

m∑
i=1

yi = 1 (2)∑
c∈C

vc ≤ 2 (3)

xj − vc ≤ 0 ∀c ∈ C, ∀j ∈ [m] : cj = c (4)
xj ∈ {0, 1} ∀j ∈ [n]
yi ∈ {0, 1} ∀i ∈ [m]
vc ∈ {0, 1} ∀c ∈ C.

Here, the binary decision variables x define which order belongs to the packing.
The binary decision variables y define the chosen capacity for this packing and
equality (2) make sure that exactly one capacity is selected. The artificial binary
variables v are used to ensure that at most two color classes are part of the
packing. This is handled via the constraint (3) and the coupling constraints (4).
Constraint (1) captures the fact that the chosen items do not exceed the selected

Solving Steel Mill Slab Problems with Branch and Price 5

capacity. Finally, the objective function is to minimize the reduced cost. Note
that in case that the objective value of an optimal solution to this pricing problem
is larger than zero the column generation is finished.

We want to point out explicitly that it is possible to decompose this pricing
problem formulation into smaller subproblems. That is 1

2m|C|(|C| − 1) knap-
sack problems, i.e., for each capacity and pair of colors one separate problem.
Although knapsack problems are NP-hard, they can be solved very efficiently by
dynamic programming in practice [10].

After solving the LP-relaxation of the master problem using column genera-
tion, we propose a branch-and-price routine to find and prove an optimal integer
solution. The computational results to this model for the instances of the steel
mill slab library, however, show that none of these sophisticated techniques is
required to solve these problems to optimality.

4 Computational results

The introduced formulation is usually solved with a branch-and-price algorithm,
since the number of variables can be huge. This, however, is not the case for the
instances of the steel mill slab library. These instances have a number of binary
variables between 7103 and 10011. Therefore, all variables can be generated, i.e.,
all feasible packings can be enumerated, in advance.

We used cplex 12.1.0 to solve the resulting integer programs. All computa-
tions were performed on computers with an Intel Core 2 Extreme CPU X9650
with 3GHz, 6MB cache, and 8GB of RAM. We used the deterministic parallel
mode with 4 threads of cplex. The remaining parameters a kept at their default
values.

We applied our model to the 380 instances of the steel mill slab library [11].
The results are summarized in Table 1. Each row represents one capacity class
which is indicated by the number of available capacities in this class which is
given in the first column. The other columns state for the 20 (ordered) instances,
which correspond to a capacity class, the optimal objective value. Values writ-
ten in italic font indicate an improvement to the previous best known solution.
Overall we improved 76 instances and proved for all instances optimality.

The running time for these instances were around one second except for four
instances of the capacity class 2. Instance 5 took 192.0 seconds, instance 6 run
317.0 seconds, instance 8 needed 11.1 seconds, and instance 15 required 22.6
seconds.

5 Conclusion

We introduced a very simple integer programming model which can be used to
solve the steel mill slab problem. The main feature of the proposed model is that
all the naturally arising symmetries are removed. As a result, we can solve all
instances of the steel mill slab library very efficiently. This approach is superior
to the previous techniques applied to this problem.

6 Stefan Heinz, Thomas Schlechte, and Rüdiger Stephan

Table 1. Results for the steel mill slab instances [11].
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2 22 54 100 34 15 36 40 42 531 76 66 64 19 78 44 296 56 155 36 36
3 5 15 10 14 7 35 11 39 63 155 39 14 6 19 15 45 35 8 22 17
4 32 18 10 7 8 6 6 3 1 12 13 8 1 19 1 11 15 0 5 12
5 0 21 5 1 9 8 0 0 1 2 7 5 17 7 2 10 5 11 15 0
6 0 19 0 0 0 1 0 0 0 1 0 7 0 12 2 3 0 0 0 0
7 0 0 1 0 1 2 0 1 0 0 7 0 2 4 0 0 0 1 0 1
8 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
11 0
12 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0
13 0
14 0
15 0
16 0
17 0
18 0
19 0
20 0

References

1. C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. Savelsbergh, and
P. H. Vance, Branch-and-price: Column generation for solving huge integer pro-
grams., Operations Research, 46 (1998), pp. 316–329.

2. M. Dawande, J. Kalagnanam, and J. Sethuraman, Variable sized bin packing
with color constraints, Electronic Notes in Discrete Mathematics, 7 (2001), pp. 154–
157.

3. J. J. H. Forrest, J. Kalagnanam, and L. Ladányi, A column-generation ap-
proach to the multiple knapsack problem with color constraints, INFORMS Journal
on Computing, 18 (2006), pp. 129–134.

4. A. M. Frisch, I. Miguel, and T. Walsh,Modelling a steel mill slab design prob-
lem, in Proceedings of the IJCAI-01 Workshop on Modelling and Solving Problems
with Constraints, 2001, pp. 39–45.

5. , Symmetry and implied constraints in the steel mill slab design problem, in
Proceedings of CP’01 Workshop on Modelling and Problem Formulation, 2001,
pp. 8–15.

6. A. Gargani and P. Refalo, An efficient model and strategy for the steel mill
slab design problem, in Principles and Practice of Constraint Programming - CP
2007, 13th International Conference, CP 2007, Providence, RI, USA, September
23-27, 2007, Proceedings, 2007, pp. 77–89.

7. P. V. Hentenryck and L. Michel, The steel mill slab design problem revisited,
in Integration of AI and OR Techniques in Constraint Programming for Combina-
torial Optimization Problems, 5th International Conference, CPAIOR 2008, Paris,
France, May 20-23, 2008, Proceedings, vol. 5015 of LNCS, 2008, pp. 377–381.

8. B. Hnich, Z. Kiziltan, I. Miguel, and T. Walsh, Hybrid modelling for robust
solving, Annals of Operations Research, 130 (2004), pp. 19–39.

9. J. R. Kalagnanam, M. W. Dawande, M. Trumbo, and H. S. Lee, The
surplus inventory matching problem in the process industry, Operations Research,
48 (2000), pp. 505–516.

10. S. Martello, D. Pisinger, and P. Toth, Dynamic programming and strong
bounds for the 0-1 knapsack problem, Management Science, 45 (1999), pp. 414–424.

11. Steel mill slab library. http://becool.info.ucl.ac.be/steelmillslab.

