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Abstract

The Vehicle Positioning Problem (VPP) is a classical com-
binatorial optimization problem that has a natural formulation as a
Mixed Integer Quadratically Constrained Program. This
MIQCP is closely related to the Quadratic Assignment Problem

and, as far as we know, has not received any attention yet. We show
in this article that such a formulation has interesting theoretical prop-
erties. Its QP relaxation produces, in particular, the first known non-
trivial lower bound on the number of shuntings. In our experiments,
it also outperformed alternative integer linear models computationally.
The strengthening technique that raises the lower bound might also be
useful for other combinatorial optimization problems.

1 Introduction

The Vehicle Positioning Problem (VPP) is about the assignment of
vehicles (buses, trams, or trains) to parking positions in a depot and to
timetabled trips. The parking positions are organized in tracks, which work
as one- or two-sided stacks or queues. If at some point in time a required type
of vehicle is not available in the front of any track, shunting movements must
be performed in order to change the vehicle positions. This is undesirable
and should be avoided.

The VPP and its variants, such as the Bus Dispatching Problem

([5]), the Tram Dispatching Problem ([13]), and the Train Unit Dis-

patching Problem ([10]), are well-investigated in the combinatorial opti-
mization literature, see Hansmann and Zimmermann [7]. The problem was
introduced by Winter [13] and Winter and Zimmermann [14], who modeled
the VPP as a Quadratic Assignment Problem and used linearization
techniques to solve it as an integer linear program. This approach was ex-
tended by Gallo and Di Miele [4] to deal with vehicles of different lengths
and interlaced sequences of arrivals and departures. Similarly, Hamdouni
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et al. [5] explored robustness and the idea of uniform tracks (tracks which
receive just one type of vehicle) to solve larger problems. Recently, Freling,
Kroon, Lentink, and Huisman [3] and Kroon, Lentink, and Schrijver [10] pro-
posed an integer linear program to consider decomposable vehicles (trains)
and different types of tracks; they assume that the number of uniform tracks
is known in advance.

Although the VPP was originally modeled as a binary quadratic pro-
gram, this formulation was not explored theoretically and it was not used
for computations. All research efforts that we are aware of concentrated on
integer linear models, that used more and more indices in order to produce
tighter linearizations. Recent progress in mixed integer nonlinear program-
ming (MINLP) and, in particular, in mixed integer quadratically constrained
programming (MIQCP) methods [11], however, has increased the attractiv-
ity of the original quadratic model. Besides the compactness of this formu-
lation, quadratic programming models also yield potentially superior lower
bounds from fractional quadratic programming relaxations. In fact, the LP
relaxations of all known integer linear models yield only the trivial lower
bound zero.

We investigate in this article two binary quadratic programming formu-
lations for the VPP. Our main result is that the QP relaxation of one
of these models yields a nontrivial lower bound on the number of shunt-
ing movements, that is, the fractional QP lower bound is nonzero whenever
shunting is required. This model also gave the best computational perfor-
mance in our tests, even though it is not convex. We also tried to apply
convexification techniques [6], but the results were mixed. Convexification
helped, but only when the smallest eigenvalue of the objective function was
not too negative.

The article is organized as follows. The VPP is described in Section 2.
Section 3 discusses integer linear and integer quadratic 2-index models, i.e.,
we revisit the original approach of Winter. In Section 4 we present integer
linear and integer quadratic 3-index models. One of them produces the
already mentioned QP bound.

All our computational experiments were done on an Intel(R) Core 2
Quad 2660 MHz with 4Gb RAM, running under openSUSE 11.1 (64 bits).
We used CPLEX 11.2 [8] to solve linear programs, SCIP 1.0 for integer pro-
grams [1], and SNIP 1.0 for integer non-linear programs [12].

2 The Vehicle Positioning Problem

The Vehicle Positioning Problem (VPP) is a 3-dimensional matching
problem, where vehicles that arrive in a sequence A = {a1, a2, . . . , an} must
be assigned to parking positions P = {p1, p2, . . . , pn} in a depot and depart
to service a sequence of timetabled trips D = {d1, d2, . . . , dn}. We assume
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that the first departure trip starts after the last incoming vehicle arrived.
Each vehicle ai has a type t(ai) and each trip di can be serviced only by
vehicles of type t(di). The parking positions are located in tracks S, and
we assume that positions in the tracks are numbered consecutively. Each
track s ∈ S has size β, and we assume that β|S| ≥ n. Each track is operated
as a FIFO queue, that is, vehicles enter the track at one end and leave at
the other. Consider a matching with assignments (i, p, k) and (j, q, l), that
is, the i-th arriving vehicle is assigned to parking position p in order to
service the k-th departing trip and the j-th arriving vehicle is assigned to
parking position q in order to service the l-th departing trip. Assume that p
and q are located in the same stack; then a shunting movement is required
if either i < j and p > q or p < q and k > l. In this case, we say that
these assignments are in conflict and denote the associated crossings by
(i, p) † (j, q) or (p, k) † (q, l). Given A,P,D,S, t, and β, the VPP is to
find a 3-dimensional matching that minimizes the number of crossings. The
number of crossings is related to the number of required shuntings.

We remark that there are more complex versions of this problem involv-
ing different sizes of vehicles and parking positions, multiple periods, etc.
However, we do not consider them here.

We use the following notation. V (M) denotes the optimal objective value
of a model M . If M is an ILP, VLP (M) is the optimal objective value of
its LP relaxation, and if M is an MIQCP, VQP (M) is the optimal objective
value of its fractional quadratic programming relaxation. Finally, we say
that two models M and M ′ are equivalent if, for every solution of M , there
is a solution of M ′ with the same objective value and vice-versa.

3 Two-Index Models

Winter [14] gave the following integer quadratic programming formulation
for the VPP:

(W)

min
∑

(a,p)†(a′,q)

xa,pxa′,q +
∑

(d,p)†(d′,q)

yd,pyd′,q (1)

∑
a∈A xa,p = 1 p ∈ P (2)

∑
p∈P xa,p = 1 a ∈ A (3)

∑
d∈D yd,p = 1 p ∈ P (4)

∑
p∈P yd,p = 1 d ∈ D (5)

xa,p + yd,p ≤ 1 (a,p,d)∈A×P×D
t(a) 6=t(d) (6)

xa,p, yd,p ∈ {0, 1}.

The model uses binary variables xa,p, with a ∈ A and p ∈ P, and yd,p, with
d ∈ D and p ∈ P. If xa,p = 1 (yd,p = 1), vehicle a (trip d) is assigned to park-
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ing position p. Constraints (2)-(5) define the assignments, the constraint (6)
enforces the coherence of these assignments by allowing only vehicles and
trips of the same type to be assigned to a given parking position. Finally,
the quadratic cost function calculates the number of crossings.

In his work, Winter did not solve the quadratic program directly. In-
stead, he applied the linearization method of Kaufman and Broeckx [9],
obtaining the following integer linear model:

(LW)

min
∑

a∈A,p∈P wa,p +
∑

d∈D,p∈P ud,p (7)
∑

a∈A xa,p = 1 p ∈ P (8)
∑

p∈P xa,p = 1 a ∈ A (9)
∑

d∈D yd,p = 1 p ∈ P (10)
∑

p∈P yd,p = 1 d ∈ D (11)

xa,p + yd,p ≤ 1 (a,p,d)∈A×P×D
t(a) 6=t(d) (12)

dx
a,pxa,p − wa,p +

∑
(a,p)†(a′,q) xa′,q ≤ dx

a,p ∀p ∈ P, a ∈ A (13)

dy
d,pyd,p − ud,p +

∑
(d,p)†(d′,q) yd′,q ≤ dy

d,p ∀p ∈ P, d ∈ D (14)

xa,p, yd,p ∈ {0, 1}

wd,p, ud,p ∈ N.

In this model, the integer variables wa,p and ud,p count the number of cross-
ings involving the assignments (a, p) and (d, p), respectively. dx

a,p and dy
d,p are

upper bounds on these variables, respectively, that are computed a priori.
The following is known about these models:

Remark 1 The model W has 2n2 variables and n3 + 4n constraints.

Remark 2 The model LW has 4n2 variables and n3 +2n2 +4n constraints.

Theorem 1 (WZ00) The models W and LW are equivalent.

Theorem 2 (WZ00) VLP (LW) = 0.

It is not difficult to modify Winter’s proof of Theorem 2 in order to get a
similar result for the QP relaxation of his quadratic model:

Theorem 3 VQP (W ) = 0 if |S| > 1.

Proof 1 Let M be a matching where each ai is assigned to di (i.e., first
vehicle to first trip, second vehicle to second trip, and so on) and the assign-
ment of the pairs (ai, di) to the parking positions is made according to the
following scheme, where each column represents a track:
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(an−|S|, dn−|S|) (an−|S|+1, dn−|S|+1) . . . (an, dn)
...

...
...

...
(a|S|+1, d|S|+1) (a|S|+2, d|S|+2) . . . (a2|S|, d2|S|)

(a1, d1) (a2, d2) . . . (a|S|, d|S|)

Such a matching has no crossings. However, it is not always feasible for W

because of type mismatches (cf. the coherence Equations 6). If the integral-
ity of the variables is relaxed, assigning each pair (ai, di) to the same relative
position in each track avoids the restrictions given by the coherence equa-
tions. More precisely, if a pair (ai, di) is assigned to the second position of
some track (in other words, if ⌊(i − 1)/|S|⌋ = 1), we fix xai,p = ydi,p = 1/|S|
for each position p ∈ P which is the second position in some track (in other
words, if ⌊(p − 1)/|S|⌋ = 1). If |S| > 1, Equations 6 are satisfied. Since
there are no crossings, the objective value is zero.

A problem with model W is that the objective is not convex. This ob-
stacle can be overcome using the following eigenvalue technique of Hammer
and Rubin [6]. Initially, we observe that

∑
(a,p)†(a′,q) xa,pxa′,q can be written

as xT Ax, where A ∈ {0, 1}n2

× {0, 1}n2

is the symmetric incidence matrix
of all arrival crossings. If α is the minimum eigenvalue of A, we have

xT Ax = xT (A − αI)x + αxT x. (15)

As x is binary, this equation can be rewritten as

xT Ax = xT (A − αI)x + α
∑

i

xi. (16)

Finally, in our case, we have
∑

i xi = n for every feasible solution, that is,

xT Ax = xT (A − αI)x + αn. (17)

As A− αI is positive semidefinite, the function on the right is convex. The
same ideas yield

∑
(d,p)†(d,q′) yd,pyd,q′ = yT A′y. Moreover, A′ = A. Then,

the objective can be written as

xT A′x − α
∑

(a,p)

(x2
a,p − xa,p) + yT A′y − α

∑

(d,p)

(y2
d,p − yd,p). (18)
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LW W/CW W CW

Name Row Col NZ Nod T/s Row Col NZ Nod T/s NZ Nod T/s

3-6-4 10465 2305 43741 1343 58 9325 1165 21889 215 142 21913 1543 116
4-6-4 11617 2305 46045 12849 265 10477 1165 24193 816 214 29977 24217 690
5-6-4 12289 2305 47389 32870 654 11149 1165 25537 1010 237 25561 586 96
3-7-3 7141 1765 25257 234 18 6273 897 14995 590 58 15023 245 29
4-7-3 7897 1765 26769 17220 15 7029 897 16507 523 52 16535 324 32
5-7-3 8359 1765 27693 114 19 7491 897 17431 651 64 17459 858 42
3-7-4 16297 3137 68391 17220 124 14743 1583 33937 480 121 33965 2122 176
4-7-4 18145 3137 72087 7393 574 16591 1583 37633 1609 251 37661 1526 242
5-7-4 19209 3137 74215 60590 2171 17655 1583 39761 113997 11845 39789 1320 1544
3-7-5 31151 4901 152125 59992 3251 28715 2465 64471 6612 76685 64499 627 40145

Table 1: Comparing models LW, W, and CW.

Applying this substitution to the model W, we obtain:

min xT A′x − α
∑

(a,p)

(x2
a,p − xa,p)+ yT A′y − α

∑

(d,p)

(y2
d,p − yd,p)

∑
a∈A xa,p = 1 p ∈ P (19)

∑
p∈P xa,p = 1 a ∈ A (20)

∑
d∈D yd,p = 1 p ∈ P (21)

∑
p∈P yd,p = 1 d ∈ D (22)

xa,p + yd,p ≤ 1 (a,p,d)∈A×P×D
t(a) 6=t(d) (23)

xa,p, yd,p ∈ {0, 1}.

Tables 1 give the results of a computational comparison of models W
and LW, and W and CW, respectively, on a test set of ten instances of
small and medium sizes. The first column in these tables give the name x-y-
z of the problem. Here, x is the number of vehicle types, y is the number of
tracks, and z = β is the number of parking positions per track. The arrival
sequences A were built randomly (i.e., the type of each vehicle was uniformly
chosen among the x possibilities), while sequences D were obtained by ap-
plying 1000 uniformly chosen random swaps to A. The columns labeled
Row, Col, and NZ give the number of constraints, variables, and non-zeros
of the respective model. The numbers of rows and columns for the problems
of model CW are the same as the ones for model W. Columns Nod give the
number of nodes in the search tree generated by the respective solver (SCIP
with LP solver CPLEX for LW and SNIP for W) and T/s the computation
time in seconds.

Comparing the results for models CW and W shows that convexifica-
tion led to an improvement, but not enough to outperform the linearized
model LW, in particular not on the larger instances. We remark that more
sophisticated convexification techniques might improve the results [2].
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4 Three-Index Models

Gallo and Di Miele [4] improved Winter’s model by noting that assign-
ments (a, s) and (d, s) of arrivals and departures to stacks implicitly deter-
mine the parking positions uniquely; this produces a substantially smaller
model. Kroon, Lentink and Schrijver [10] took this idea in order to create a
3-index model with a stronger LP relaxation (although the lower bound is
still equal to zero):

(LU)

min
∑

(a,s,d)∈A×S×D(a,s,d)

ra,s,d (24)

∑
(s,d)∈S×D xa,s,d = 1 a ∈ A (25)

∑
(a,s)∈A×S xa,s,d = 1 d ∈ D (26)

∑
(a,d)∈A×D xa,s,d ≤ β s ∈ S (27)

∑
a′<a

xa′,s,d +
∑

d′≤d

xa,s,d′ − ra,s,d ≤ 1 (a, s, d) ∈ A× S ×D (28)

xa,s,d, ra,s,d ∈ {0, 1}.

This model uses binary variables xa,s,d, with s ∈ S a ∈ A, d ∈ D, and
t(a) = t(d) (modeling type-coherence directly, as assignments with type-
mismatches are not represented), where xa,s,d = 1 if and only if vehicle
a is assigned to the trip d and is parked on the track s. Equations (25)
and (26) are assignment constraints for vehicles and trips, Equations (27)
are capacity restrictions for each track in S. Inequalities (28) count crossings
using binary variables ra,s,d.

We propose the following integer quadratic 3-index formulation for the
problem:

(U)

min
∑

s,(a,d)†(a′,d′)

xa,s,dxa′,s,d′ (29)

∑
(s,d)∈S×D xa,s,d = 1 a ∈ A (30)

∑
(a,s)∈A×S xa,s,d = 1 d ∈ D (31)

∑
(a,d)∈A×D xa,s,d ≤ β s ∈ S (32)

xa,s,d ∈ {0, 1}.

Equations (30), (31), and (32) are equal to (25), (26), and (27), respectively.
Crossings are counted directly by the quadratic cost function (29).

The models U and LU have the following properties:

Remark 3 Model LU has 2sn2 variables and 2n + s + sn2 constraints.

Remark 4 Model U has sn2 variables and 2n + s constraints.
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Theorem 4 VLP (LU) = 0 if |S| > 1.

Proof 2 Let M be a matching where each ai is assigned to di (i.e., first
vehicle to first trip, second vehicle to second trip, and so on). Assign 1

|S|

to each variable xa,s,d such that (a, d) ∈ M . In this case, Constraints (25)
and (26) clearly hold, as

∑

s

xa,s,d =
∑

s

1

|S|
= 1

for each a ∈ A and d ∈ D. Moreover, as |M | = n,

∑

(a,d)

xa,s,d = n
1

|S|
≤ β

for each s ∈ S, satisfying (27). Finally, because each arrival is assigned to
only one departure, we have

∑

a′<a

xa′,s,d +
∑

d′≤d

xa,s,d′ ≤
2

|S|
,

and consequently Constraints (28) hold with ra,s,d = 0 for each (a, s, d),
yielding a solution of cost zero.

Our key observation is that model U can be strengthened by penalizing
not only crossings but also inconsistent assignments:

(UI)

min
∑

s,(a,d)†(a′,d′)

xa,s,dxa′,s,d′ +
∑

a,(s,d) 6=(s′,d′)

xa,s,dxa,s′,d′ (33)

∑
(s,d)∈S×D xa,s,d = 1 a ∈ A (34)

∑
(a,s)∈A×S xa,s,d = 1 d ∈ D (35)

∑
(a,d)∈A×D xa,s,d ≤ β s ∈ S (36)

xa,s,d ∈ {0, 1}

The objective function of UI contains an additional penalty term

∑

a,(s,d) 6=(s′,d′)

xa,s,dxa,s′,d′

for inconsistent assignments of vehicles (i.e., if a vehicle is assigned to more
than one track and/or more than one trip, the value of the product of
the variables representing such an inconsistent assignment is added). The
penalty term is zero for every feasible integer solution, but it increases the
objective value of the QP relaxation.
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Theorem 5 The models U, UI, and LU are equivalent.

Theorem 6 VQP (UI ) > 0 if V (UI ) > 0.

Proof 3 If V (UI) > 0, there is a crossing for each possible assignment
of vehicles to trips and tracks. Let x∗ be an optimal solution of the QP
relaxation of UI. Consider the vector ⌈x∗⌉. If ⌈x∗⌉ contains an integer
solution, there is a crossing and

∑

s,(a,d)†(a′,d′)

⌈x∗
a,s,d⌉⌈x

∗
a′,s,d′⌉ > 0.

Then

∑

s,(a,d)†(a′,d′)

x∗
a,s,dx

∗
a′,s,d′ > 0.

If ⌈x∗⌉ does not contain an integer solution, there is an inconsistent assign-
ment and therefore

∑

a,(s,d) 6=(s′,d′)

x∗
a,s,dx

∗
a,s′,d′ > 0.

¤

As far as we know, VQP (UI) is the first nontrivial lower bound for the
VPP. We remark that the same idea can also be used to strengthen some
of the linear models such that they sometimes also produce nonzero lower
bounds. We have, however, not been able to prove a result similar to The-
orem 6, that is, that the lower bound is always nonzero if shuntings are
required.

Table 2 gives the results of a computational comparison of models U
and LU on the same set of test problems as in Section 3 plus one additional
model that could not be solved there. Model UI could not be tested yet
due to numerical problems.

The comparison of the results for models CW and W from Section 3 and
those for LU and U shows a clear superiority of the U models over the W
models. Among the U models, the integer quadratic model U outperformed
the integer linear model LU. The next instance 7-8-7, however, could not
be solved using any of our formulations.

We have also tried to apply the convexification technique of Hammer and
Rubin [6] to model U, but this time it did not bring any performance gain.
A possible explanation for this behavior is that the spectra of the objectives
of the U instances have negative eigenvalues of much larger magnitude than
those in the W instances. Again, more sophisticated convexification could
be tried [2].
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LU U

Name Row Col NZ Nod T/s Row Col NZ Nod T/s

3-6-4 3511 4609 38017 1 1 61 1159 4621 28 4
4-6-4 3511 4321 30241 1 0 61 871 3463 69 3
5-6-4 3511 4153 25675 59 15 61 703 2797 16 2
3-7-3 3137 4117 30871 12 8 57 1037 4124 16 3
4-7-3 3137 3865 24816 1 1 57 785 3123 20 2
5-7-3 3137 3711 21274 54 6 57 631 2507 27 28
3-7-4 5552 7323 67803 1 1 71 1842 7351 22 10
4-7-4 5552 6861 53509 41 29 71 1380 5503 33 7
5-7-4 5552 6595 45389 1 1 71 1114 4432 21 4
3-7-5 8653 11439 126099 1 4 85 2871 11467 17 34
4-7-5 8653 10725 98582 59 44 85 2157 8604 22 21
5-7-5 8653 10291 82321 26 38 85 1723 6875 31 12
6-7-6 12440 14407 117307 227 200 99 2066 8240 27 32

Table 2: Comparing models LU and U.
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