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Abstract

One of the challenging problems in the design of electronic circuits is
the so-called routing problem. Roughly speaking, the task is to connect
so-called terminal sets via wires on a predefined area. In addition, certain
design rules are to be taken into account and an objective function such
as the wiring length must be minimized. The routing problem in general
is too complex to be solved in one step. Depending on the user’s choice
of decomposing the chip design problem into a hierarchy of stages, on the
underlying technology, and on the given design rules, various subproblems
arise. We discuss several variants of practically relevant routing problems
and give a short overview on the underlying technologies and design rules.
Many of the routing problems that come up this way can be formulated as
the problem of packing so-called Steiner trees in certain graphs. We con-
sider the Steiner tree packing problem from a polyhedral point of view and
present three possibilities to define an appropriate polyhedron. Weighing
their pros and cons we decide for one of these polytopes and sketch some
of our investigations.

� Introduction

Electronic circuits are – not least due to the incredible improvements in the last
decades – one of the backbones of today’s technology. For example, modern au-
tomatic control technology, manufacture or communication systems are simply
inconceivable without electronic control. An electronic circuit is a complex con-
nexion of semi-conductor elements (so-called transistors). This connexion is the
physical realization of a logic function. Today it is possible to integrate hundreds
of thousands or even millions of transistors on a few square centimeters (Very
Large Scale Integration). The complexity and the large scale of the problems aris-
ing in the design of such circuits provide a great challenge to those interested in
integrated system design. In fact, the involved problems touch the fields of com-
puter science, engineering and mathematics. A number of these problems can be
modelled as combinatorial optimization problems, and thus, solution methods of
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this field are applicable. Several versions of the so-called routing problem belong
hereto. Roughly speaking, the routing problem can be formulated as follows:

Let a certain area (typically a rectangle with some “forbidden zones”)
and a list of sets of points be given. The routing problem is to connect
each set of points by wires on the area such that certain technical side
constraints are met and some objective function is optimized.

Each set of points is called a net and every single point a terminal. The rout-
ing problem strongly depends on the chosen technology, the design rules and the
customer requirements. For example, the design rules restrict the routing area
(i. e. the area that is available for connecting the nets) or prescribe the distance
two different wires must stay apart. We will discuss these issues in more detail
in section 2. It turns out that the routing problem is enourmously complicated.
At least at present, it seems impossible to solve it in one step for realistic prob-
lem instances. In practice, the routing problem is usually decomposed into two
subproblems. In a first step, one determines how the wires of each net maneuver
around the obstacles in the routing area (global routing). Here, the design rules
are taken into account only to some extent. The second phase (detailed routing)
consists in finding the detailed routes for each net that comply with the global
routes and that obey the design rules exactly.

Many routing problems that arise in this decomposition can be formulated using
graph theory. One way of introducing a graph G = (V,E) is to define nodes for
subareas of the whole routing area, and to link nodes that represent adjacent
subareas by an edge. In addition, we assign capacities to the edges or nodes,
respectively. The nets are represented in this graph by subsets of the node set.
In graphtheoretic terms each route of a net is called a Steiner tree. The problem
of routing N nets reduces to the problem of finding (packing) N Steiner trees
in G that meet the capacity constraints. We call this problem the Steiner tree
packing problem. We will discuss various types of Steiner tree packing problems
that arise in VLSI-design in section 3.

Our approach to the Steiner tree packing problem is to consider it from a poly-
hedral point of view and to use linear programming techniques. We define a
polyhedron P whose vertices correspond uniquely to the solutions (Steiner tree
packings) in the graph. In section 4 we discuss several ways to define an ap-
propriate polyhedron P and weigh the pros and cons. What we need for the
application of linear programming techniques is a complete or at least “good”
description of the polyhedron P by means of inequalities. We will demonstrate
the inherent complexity of this task on some small examples. The inequalities
we found form the basis for the development of a cutting plane algorithm. We
have implemented a cutting plane algorithm for special instances of the routing
problem, so-called switchbox routing problems, and achieved quite good results
for many benchmark examples discussed in the literature.
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� The Layout of Electronic Circuits

The design of electronic circuits is typically a two-phase process. At the begin-
ning, a description of a task the circuit to be designed must perform is given.
Such a task is a complex logical function which consists of many elementary logic
operations (for example, the logic “and”-operation). Usually several of these ele-
mentary logic operations are combined into a logical unit (for example an adder).
In the logical design phase it is specified which of these predefined logical units
are to be used, and it is determined which of the chosen logical units must be con-
nected by wires so that the chip performs in the way it should. The logical units
are also called cells. Each cell is characterized by its width, its height, its contact
points (so-called terminals) and its electric properties. A net is a set of terminals
that must be connected by a wire (as specified in the logical design phase). The
list of cells and the list of nets are the input of the second phase, the physical
design. Here, the task is to assign the cells to a certain rectangular area (silicon)
and connect (route) the nets by wires. The rectangular area is usually subdivided
into an inner part (called master) and an outer part. The set of cells consists of
logic cells and input/output cells. Logic cells must be assigned to locations on
the master, whereas input/output cells are to be placed on the outer part. In
fact, the physical design problem is more complicated, since certain design rules
have to be taken into account and an objective function is to be minimized. The
design rules strongly depend on the given layout style and specify, for instance,
the distance two nets must stay apart, whether certain cells are preassigned to
certain locations and so on. This applies especially to the objective function. In
practice, the following layout styles are of particular interest.

1. General Cells
In this layout style the cells are of arbitrary rectangular shape with a few
exceptions such as L-shapes. A cell can be placed anywhere on the master
(see Figure 1). The goal here is to place the cells and route the nets such
that the resulting area is minimized.

Figure 1:
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2. Standard Cells
Here, the master is subdivided into a placement and routing area. The
placement area consists of a set of (parallel) rows of equal height. The cells
are rectangular of identical height, but they may differ in their width (see
Figure 2). The cells must be assigned to the rows such that the longest row
is minimized or the overall length of the wires is minimized. The nets are
routed in the channels lying between the rows.

Figure 2:

3. Gate Arrays
In contrast to the above layout styles the size of the master is fixed. Again,
a subdivision into a placement and routing area is given a priori. The
placement area consists of so-called base cells arranged in form of a matrix.
The cells are rectangular and the width (height) of a cell is a multiple of
the width (height) of a base cell. The routing takes place on the routing
area which is given in advance (see Figure 3).

Figure 3:

4. Sea-of-Cells
The only difference to the gate array layout style is that the master does
not contain a subdivision into a placement and routing area. The whole
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master is subdivided into base cells in form of a matrix (see Figure 4). The
routing area is composed of those base cells that are not occupied by the
placed cells.

Figure 4:

For the first two layout styles the primary goal is to minimize the whole area of
the master, whereas for the other two styles the routability, i. e., the problem of
placing the cells such that there exists a feasible solution to the routing problem, is
the center of interest. However, routability can hardly be measured and expressed
in form of an objective function. Thus, minimizing the total length of all routes
is very often used instead. Another heuristic reason for minimizing the routing
length (also in case of the first two layout styles) is that an electronic circuit with
small routing length usually needs little area on the whole. Thus, minimizing the
overall area is (somehow) implicitly taken into account by minimizing the routing
length.

Any reasonably precise version of the physical design problem is NP-hard, even
very simple ones. Moreover, most real world problem instances involve several
thousands of cells and nets, so that today’s algorithmic knowledge makes it very
improbable that they can be solved to optimality. Therefore, usually heuristic
decomposition into subproblems is applied. The first subproblem consists of
finding appropriate locations for the cells (placement problem). Subsequently,
the nets must be realized by wiring the appropriate terminals (routing problem)
and finally, a compaction step is performed if required. This process is iterated
with different parameters if the final result is not satisfactory.

For the remainder of this paper we will focus on the routing problem in more
detail.

� The Routing Problem

There is given a list of nets. Each net consists of a set of terminals. The terminals
specify the points at which wires have to contact the cells. The routing problem
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is to connect the nets by wires on the routing area subject to technical side
constraints which depend on the given layout style. Most frequently, the objective
is to minimize the overall wiring length or to minimize the length of the longest
wire.

We say a net is routed if its terminals are connected by (electric) wires. We speak
of a k-terminal net, if k is the number of terminals of the net. If k > 2, the term
multiterminal net is often used. In the following we will not distinguish between
a net and the route of a net, if this does not lead to confusions.

The routing itself takes place on so-called layers. If some net changes a layer, a
hole, called via, must be drilled. Usually, each layer is subdivided into horizontal
and vertical lines, so-called tracks to which the wires of the nets must be assigned.
If there does not exist such a division into tracks we speak of a free or grid-free
routing. Further side constraints include, for instance, the distance to nets must
stay apart from each other, how long two different nets may run on top of each
other on two different layers or that some wires must not exceed a certain length.

In practice, the routing problem itself is decomposed because of its inherent
complexity and large scale. In the global routing phase the homotopy of the
nets is determined, i. e., it is determined how the wires “maneuver around the
cells”. Thereafter, in the detailed routing phase the wires are assigned to the
layers and tracks according to the homotopy specified in the global routing step.
We consider both routing phases in more detail now. Before doing so, let us fix
some graphtheoretic notation.

We denote graphs by G = (V,E), where V is the node set and E the edge set.
All graphs we consider are undirected and finite. For a given edge set F ⊆ E, we
denote by V (F ) all nodes that are incident to an edge in F . We call a sequence of
nodes and edges K = (v0, e1, v1, e2, . . . , vl−1, el, vl), where each edge ei is incident
with the nodes vi−1 and vi for i = 1, . . . , l, and where the edges are pairwise
disjoint and the nodes distinct (except possibly v0 and vl), a path from v0 to vl, if
v0 �= vl, and a cycle, if v0 = vl and l ≥ 2. We call a graph G a complete rectangular
h × b grid graph, if it can be embedded in the plane by h horizontal lines and
b vertical lines such that the nodes of V are represented by the intersections of
the lines and the edges are represented by the connections of the intersections. A
grid graph is a graph that is obtained from a complete rectangular grid graph by
deleting some edges and removing isolated nodes (i. e. nodes that are not incident
to any edge).

Let G = (V,E) be a graph and T ⊆ V a node set of G. An edge set S is called
a Steiner tree for T in G, if the subgraph (V (S), S) contains a path from s to t
for all pairs of nodes s, t ∈ T, s �= t. Following the notation in VLSI-design we
call T a terminal set or a net and each t ∈ T a terminal. “Routing some net T in
a graph G” means in graphtheoretic terms, “finding a Steiner tree for T in G”.
We will use both manners of speaking in the following.
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Global Routing

The global routing problem is usually modelled as a graphtheoretic problem.
Hereto, the routing area is subdivided into subareas and these are represented
by nodes or edges in a graph. Of course, there are many ways to do this. One
possible way of subdividing the routing area is illustrated in Figure 5. The en-
closing rectangle represents the given area. The rectangular units with a diagonal
between their lower left and upper right corner denote the cells. The routing area
is subdivided into rectangular subareas (by means of the additional dotted lines
in Figure 5). This subdivision of the routing area is represented by a graph as
follows. We define a node for each subarea and introduce an edge between two
nodes, if the corresponding subareas are adjacent. Let G = (V,E) denote the
resulting graph. Additionally, a capacity cuv ∈ IN is assigned to an edge uv ∈ E
limiting the number of nets that may run between the subareas associated with
the two nodes u and v. The weight of an edge wuv corresponds to the distance
between the two midpoints of the according subareas. Every terminal of a net is
assigned to that node, whose corresponding subarea contains the terminal or is
as close as possible to the position of the terminal. The global routing problem
consists in routing all nets in G (or in graphtheoretic terms, finding a Steiner
tree for each terminal set) such that the capacity constraints are satisfied and
the total wiring length (that is the sum of the weights of the Steiner trees) is as
small as possible.

Figure 5:

After having solved the global routing problem every subarea that corresponds
to a node in the global routing graph must now be routed in detail. This is the
topic of the next subsection.
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Detailed Routing

The number of different detailed routing models which are studied in the litera-
ture or which are used in practice is tremendous. Usually, the problems coming
up are formulated in a grid graph. We restrict ourselves to this case, too. The
reader interested in grid-free routing models is refered to [L90] where an excellent
overview on all different kinds of models is given.

The detailed routing problems can be classified according to two criteria which
are independent from each other. We introduce these classifications now without
claiming to be complete. Again, for more details we refer to [L90].

1. The detailed routing problems are distinguished according to the shape of
the routing area and the locations of the terminals. As mentioned before the
nodes in the global routing graph represent subareas of the whole routing
area. Depending on the subdivision different shapes of detailed routing
areas arise. At the end of the global routing phase it is known which
nets go across which subareas. Suppose, some net crosses the border of
two adjacent subareas (depicted by dotted lines in Figure 5). Of course,
from the information of the global routing solution it is not clear at which
point the net meets the border. Each such crossing point is interpreted as
a “pseudo”-terminal. In order to solve the routing problems for each of
these subareas independently locations for the pseudo-terminals must be
determined. This usually is done by applying heuristics. Concerning the
shape of the routing area and the locations of the terminals the following
detailed routing models are of particular interest in practice.

(a) (Channel routing) Here, we are given a complete rectangular grid
graph. The terminals of the nets are exclusively located on the lower
and upper border (see Figure 6). It is possible to vary the height (=
number of horizontal tracks) of the channel. Hence, the size of the
routing area is not fixed in advance.

17 16 4 7 6 5 9 9 12 15 15

18151415138967
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Figure 6:
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(b) (Switchbox routing) Again, we are given a complete rectangular grid
graph. The terminals may be located on all four sides of the grid graph
(see Figure 7). Thus, the size of the routing area is fixed.
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Figure 7:

(c) (General routing) In this case, an arbitrary grid graph is considered.
The terminals are located at any hole of the grid (see Figure 8). In
contrast to the first two models, the homotopy of the nets is no longer
trivial and has to be taken into account.
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2. The detailed routing problems are distinguished to which extent the layers
are taken into account when the wires of the nets are assigned to the tracks.

(a) (Multiple layer model) Given a k-dimensional grid graph (that is a
graph obtained by stacking k copies of a grid graph on top of each
other and connecting related nodes by perpendicular lines), where k
denotes the number of layers. The nets have to be routed in a node
disjoint fashion. The multiple layer model is well suited to reflect
reality. The disadvantage is that in general the resulting graphs are
very large.
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(b) (Planar model) This is a special case of the multiple layer model where
k = 1, that is we are given a (planar) grid graph and we are looking for
node disjoint connections of the nets. This model is very restrictive,
since only one layer is available. Thus, only few practically relevant
routing problems can be modelled this way.

(c) (Manhattan model) Given some (planar) grid graph. The nets must be
routed in an edge disjoint fashion with the additional restriction that
nets that meet at some node are not allowed to bend at this node, i. e.,
so-called knock-knees (cf. Figure 9) are not allowed. This restriction
guarantees that the resulting routing can be laid out on two layers at
the possible expense of causing long detours.

Figure 9:

(d) (Knock-knee model) Again, some (planar) grid graph is given and the
task is to find an edge disjoint routing of the nets. In this model knock-
knees are possible. Very frequently, the wiring length of a solution in
this case is smaller than in the Manhattan model. The main drawback
is that the assignment to layers is neglected. Brady and Brown [BB84]
have designed an algorithm that guarantees that any solution in this
model can be routed on four layers. It was shown in [Li84] that it is
NP-complete to decide whether a realization on three layers is possible.

The models coming out of these two kinds of classifications can be combined in
all possible ways. For example, combining 1 (b) and 2 (d) we obtain a switchbox
routing problem in the knock-knee model, or in graphtheoretic terms, the problem
of finding edge disjoint Steiner trees in a complete rectangular grid graph, where
all terminals are located on the outer face. Moreover, depending on the model
different objective functions are considered. Possible objective functions are

• minimizing the routing area,

• minimizing the routing length,

• minimizing the number of vias.
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Minimizing the routing area is typically the objective in channel routing problems,
whereas the routing length is usually minimized, if the routing area is fixed in
advance. Optimizing the number of vias is rarely considered in detailed routing
algorithms, but most frequently addressed in a postprocessing step.

It is not surprising that most of these routing problems are NP-hard. Even the
problem of finding a (with respect to some weighting of the edges) minimum
Steiner tree in a graph G for some terminal set T is NP-hard (see [K72], [GJ77]).
These tremendous difficulties lead to further specializations of the routing prob-
lem. For example, routing problems are frequently studied with the additional
restriction that all terminal sets have cardinality two, i. e., multiterminal nets are
not allowed. In graphtheoretic terms, this means we are looking for disjoint paths
in a graph (possibly of minimal length). Though the problem remains NP-hard
in general, it is – at least in some special cases – tractable more easily. Investiga-
tions for the disjoint path problem have an impact on the solution of practically
relevant cases, because most of the nets (about up to 60%) are 2-terminal nets
in real world applications.

Summing up, our attention in this section was to give an impression on the huge
variety of routing problems that are worth being studied. We have indicated
that, at least at the present state of knowledge, it seems impossible to handle the
whole routing problem in one step. In the next section we present a model that
is applicable to the global routing problem and the switchbox routing problem in
the knock-knee model and attack it from a polyhedral point of view.

� A Polyhedral Approach

We are given an undirected graph G = (V,E) with edge capacities ce ∈ IN for
all e ∈ E and a net list N = {T1, . . . , TN}, N ∈ IN. The Steiner tree packing
problem consists in finding Steiner trees Sk for Tk, k = 1, . . . , N , such that each
edge e ∈ E is contained in at most ce of the edge sets S1, . . . , SN . Every collection
of Steiner trees S1, . . . , SN with this property is called a Steiner tree packing. If a
weighting of the edges is given in addition and a (with respect to this weighting)
minimal Steiner tree packing must be found, we call this the weighted Steiner
tree packing problem. We refer to an instance of the Steiner tree packing problem
by the tripel (G,N , c).

In this section we want to define an appropriate polyhedron for developing a
polyhedral approach to the (weighted) Steiner tree packing problem. Indeed,
there are many possible ways to define such a polyhedron. Here, we will present
three of these possiblities and discuss some of their properties. Before going into
detail, let us briefly introduce some notation that will be used throughout this
section.
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We denote by IRE the vector space where the components of each vector are
indexed by the elements of E, i. e., x = (xe)e∈E for x ∈ IRE . For an edge set
F ⊆ E, we define the incidence vector χF ∈ IRE by setting χF

e := 1, if e ∈ F , and
χF
e := 0, otherwise. Furthermore, we abbreviate

∑
e∈F xe by x(F ) for an edge set

F and a vector x ∈ IRE . We denote by IRN×E the N · |E| – dimensional vector
space IRE × . . .× IRE . The components of a vector x ∈ IRN×E are indexed by xk

e

for k ∈ {1, . . . , N}, e ∈ E. For a vector x ∈ IRN×E and k ∈ {1, . . . , N} we denote
by xk ∈ IRE the vector (xk

e)e∈E . If it is clear from the context we will abbreviate
a vector x = ((x1)T , . . . , (xN)T )T by (x1, . . . , xN). By the incidence vector of a
Steiner tree packing S1, . . . , SN we mean the vector (χS1 , . . . , χSN ).

A Canonical Formulation

A “natural” model for the (weighted) Steiner tree packing problem is obtained
by introducing a variable for every edge of the underlying graph and every net.
More precisely, we consider the N · |E| – dimensional vector space IRN×E and we
introduce a variable xk

e for every e ∈ E and k ∈ {1, . . . , N} with the interpretation

xk
e :=

{
1, if edge e is contained in the Steiner tree for Tk,
0, otherwise.

The Steiner tree packing polyhedron STP (G,N , c) is the convex hull of all inci-
dence vectors of Steiner tree packings. It is easy to see that the following holds.

(4.1)

STP (G,N , c) = conv {x ∈IRN×E |
(i)

∑
e∈δ(W )

xk
e ≥ 1, for all W ⊂ V, W ∩ Tk �= ∅,

(V \W ) ∩ Tk �= ∅, k = 1, . . . , N ;

(ii)
N∑

k=1

xk
e ≤ ce, for all e ∈ E;

(iii) 0 ≤ xk
e ≤ 1, for all e ∈ E, k = 1, . . . , N ;

(iv) xk
e ∈ {0, 1}, for all e ∈ E, k = 1, . . . , N};

where δ(W ) denotes the set of edges with exactly one endnode in W , for W ⊆
V, ∅ �= W �= V . Clearly, every incidence vector of a Steiner tree packing corre-
sponds to a vertex of the polyhedron STP (G,N , c). Conversely, every vertex of
(4.1) is the incidence vector of a Steiner tree packing.

The weighted Steiner tree packing problem can be solved via the following linear
programm

min
x∈STP(G,N ,c)

N∑
k=1

∑
e∈E

wex
k
e ,
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where we corresponds to the weight of edge e.

One “nice” property of this polyhedron is that under some mild assumptions
every facet-defining inequality of the polytope STP (G, {Tk}, c) defines a facet of
the polytope STP (G,N , c). This holds for all k = 1, . . . , N . In other words, the
facial structure of the single Steiner tree polyhedra is inherited by the packing
polytope. This property was shown in [GMW92a].

For real world instances as they appear for the design of electronic circuits the
number of variables N · |E| used in Formulation (4.1) tends to several millions.
This disadvantage made us think about an alternative model which we will discuss
now.

A �Packed� Formulation

Instead of using the N · |E| variables introduced before, we associate with every
edge e of the graph just one variable xe which counts the number of Steiner trees
that use edge e. We set

(4.2)

STPp(G,N , c) := conv{x ∈IRE |

(i) xe =
N∑
k=1

χSk
e , for all e ∈ E;

(ii) Sk is a Steiner tree for Tk in G
for all k = 1, . . . , N ;

(iii) 0 ≤ xe ≤ ce, for all e ∈ E;

(iv) xe ∈ ZZ, for all e ∈ E}.
Obviously, the vertices of (4.2) correspond to the feasible solutions of the Steiner
tree packing problem and vice versa. Hence, we can solve the weighted Steiner
tree packing problem via the following linear programm

min
x∈STPp(G,N ,c)

∑
e∈E

wexe,

where we corresponds to the weight of edge e. Now suppose, we know the optimal
solution, x∗ say, of the linear programm. In this case, we must still “unpack”
the vector x∗, i.e., we must find a Steiner tree packing S1, . . . , SN such that x∗ =∑N

k=1 χ
Sk holds. However, this task is NP-complete again, since it is equivalent

to solving the Steiner tree packing problem for the instance (G′,N , c′), where
G′ := (V,E ′ := {e ∈ E | x∗

e > 0}) and c′e := x∗
e for e ∈ E ′.

A study of the relationship between the polytopes (4.1) and (4.2) was addressed
by Martin [M92]. In particular, he showed that in case where the capacities on
the edges are neglected (c = ∞) a complete description of STP (G, N , ∞) is
given by the facets of the single Steiner tree polyhedra STP (G, {Tk}, ∞) for
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k = 1, . . . , N . This situation does not hold for STPp(G, N , ∞). Indeed, there
do exist facet-defining inequalities aTx ≥ α for STPp(G, N , ∞), but, for every
k = 1, . . . , N , the inequality aTx ≥ α is not even valid for STPp(G, {Tk},∞).

Taking all these observations into account, we expect nearly unsurmountable dif-
ficulties, if we try to solve the weighted Steiner tree packing problem by first
solving the linear programm minx∈STPp(G,N ,c)

∑
e∈E wexe, and, subsequently, un-

pack the optimal point x∗ of the linear program. A use of (4.1) seems to be
sensible only if, due to particular structures, unpacking is possible in polynomial
time.

An Explicit Formulation

A third possibility to define a polyhedron associated with the (weighted) Steiner
tree packing problem is based on the following ideas.

For every edge set that defines a Steiner tree for a set of terminals, we introduce
a variable. For k = 1, . . . , N , set Sk := {S ⊆ E | S is a Steiner tree for Tk in G}.
For ease of notation we number the elements of Sk such that Sk = {S1

k, . . . , S
sk
k }

where sk corresponds to the cardinality of Sk. Every variable xk,i, for k =
1, . . . , N, i = 1, . . . , sk, is interpreted as follows:

xk,i :=

{
1, if Steiner tree Si

k is chosen,
0, otherwise.

Under these assumptions, let us consider the following polyhedron.

(4.3)

STPe(G,N , c) := conv{x ∈IR
∑N

k=1
sk |

(i)
sk∑
i=1

xk,i = 1, for all k = 1, . . . , N ;

(ii)
N∑
k=1

∑
{i|e∈Si

k
}
xk,i ≤ ce, for all e ∈ E;

(iii) xk,i ∈ {0, 1}, for i = 1, . . . , sk, k = 1, . . . , N}.

Obviously, every vertex of STPe(G,N , c) corresponds to a Steiner tree packing
and vice versa. Hence, the weighted Steiner tree packing problem can be solved
via optimizing the linear objective function over the polyhedron (4.3).

The main drawback of this kind of formulation is – of course – the number of
variables involved. The numbers sk are in general exponential in the size of
the input (i. e. the encoding length of the graph, the netlist and the capacity
vector). Hence, even solving the linear relaxation will probably cause enormous
difficulties. In order to solve the linear relaxation column generation methods
must be applied. Here, the idea is to start with a small number of variables
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(i. e. columns) and solve the corresponding linear program. Subsequently, a
pricing step is performed and based on the reduced costs columns are added. This
scheme is iterated until the optimal solution of the linear relaxation is obtained.

Formulation (4.3) has been considered in several papers (see, for instance, [BP83],
[LL91], [NRT87]), but, to our knowledge, there have been no serious investigations
of the facial structure of this polytope.

Summing up our discussions, the canonical formulation seems – at least from our
point of view – best suited for applying a polyhedral approach, in order to solve
practical Steiner tree packing problems.

The Steiner Tree Packing Polyhedron

For the remainder of this paper we will restrict our attention to STP (G, N , c)
and give a rough overview on our investigations for this polytope.

A first question arising in this context aims at the dimension of the polytope.
Unfortunately, the problem to decide whether the Steiner tree packing polyhed-
ron is empty or not is already NP-complete (see, for instance, [KL84], [KPS90],
[S87]). Hence, there is little hope to study Steiner tree packing polyhedra for
general instances (G,N , c). Figure 10 shows some examples and the correspond-
ing dimensions. The affine hull of the polytope of Figure 10 (b) is given by
x1
34 = 0, x2

34 = 1; that of the polytope of Figure 10 (d) by x1
12 = 1, x2

12 = 0,
x1
23 = 0, x2

23 = 1, for instance. The dimension jumps appear rather erratic.

We have decided to study the Steiner tree packing polyhedron for special problem
instances for which the dimension can be determined easily and to look for facet-
defining inequalities for these special instances. Clearly, such an approach is
only sensible if the results can be carried over (at least partially) to practically
interesting cases.

It has turned out that an instance (G,N , c), where the graph G is complete, the
net list N = {T1, . . . , TN} is disjoint (i. e. Ti∩Tj = ∅ for all i, j ∈ {1, . . . , N}, i �=
j) and the capacities are equal to one (c = 1I), is an appropriate case. Under these
assumptions, the polytope STP (G, N , 1I) is fulldimensional (see [GMW92a]).

To illustrate the rich variety of facet-defining inequalities, a complete description
of the polytope associated with the example in Figure 10 (a) is shown in Table 1.
Many of the inequalities coming up in this example can be generalized to other
problem instances. These inequalities include, for instance, the Steiner partition
inequalities for single nets and the so-called alternating cycle inequalities which
involve two nets. The idea of the Steiner partition inequalities is the following:
Let a net T ∈ N be given. We partition the node set of the graph into p subsets
V1, . . . , Vp, p ≥ 2, such that Vi ∩ T �= ∅ for all i = 1, . . . , p. Obviously, each Stei-
ner tree for T must contain at least p− 1 edges whose endnodes are in different
elements of the partition. This is expressed in the Steiner partition inequality.
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1 2

1 2

(a)

1 2

dim(STP) = 12 dim(STP) = 8

(b)

1

3

434 3

34 2

dim(STP) = -1

(c)
dim(STP) = 2

(d)

Figures (a) to (d) show some examples and the dimension of the corresponding polyhedron. The two

terminal sets are drawn as rectangles or cycles respectively (T1={1,2},T2={3,4} or T2={2,3} resp.) and

STP abbreviates STP(G,N ,1I). The polyhedron in (a) is fulldimensional. Deleting edge {1,2} (Figure (b))

decreases the dimension by 4. If additionally edge {3,4} (Figure (c)) is deleted, there even does not exist

any feasible solution. Figure (d) shows an example in which the underlying graph is complete but the

corresponding polyhedron is not fulldimensional.

Figure 10:

In Table 1 the inequalities (11), (12), (15), (16), (18), (22), (35) and (36) are
Steiner partition inequalities. For the alternating cycle inequality we are given
the following situation. Let T1, T2 ∈ N be two different nets with |T1| = |T2| = k.
Moreover, we are given a cycle C where the terminals of the two nets appear in an
alternating sequence on that cycle (see Figure 11). One can convince oneself that
any Steiner tree packing S1, S2 such that S1 and S2 are edge-disjoint must use at
least k − 1 edges that are not contained in the cycle. In fact, this requirement
can be strenghened and leads to the alternating cycle inequalities. In Table 1 the
inequalities (13) and (14) are alternating cycle inequalities. Within the scope of
this paper we refrain from explaining the details, but refer the interested reader
to [GMW92a], [GMW93a].

Moreover, we developed exact algorithms and/or heuristics for solving the sepa-
ration problems for several classes of inequalities. The procedures were integrated
into a branch and cut framework and succesfully applied to solve switchbox rout-
ing problems discussed in the literature (see [GMW92b], [GMW93b]).

So far we just focused on the two (extreme) cases where c = 1I or c = ∞. In
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(1) x112 +x1
13 +x1

24 +x2
13 +x2

24 +x2
34 ≥ 2

(2) x112 +x1
14 +x1

23 +x2
14 +x2

23 +x2
34 ≥ 2

(3) 2x112+x1
13 +x1

24 +2x2
13 +x2

34 ≥ 2

(4) 2x112+x1
13 +x1

24 +2x2
24+x2

34 ≥ 2

(5) 2x112 +x1
14 +x1

23 +2x2
14 +x2

34 ≥ 2

(6) 2x112 +x1
14 +x1

23 +2x2
23 +x2

34 ≥ 2

(7) x112 +2x1
13 +x2

13 +x2
24 +2x2

34≥ 2

(8) x112 +2x1
14 +x2

14 +x2
23 +2x2

34≥ 2

(9) x112 +2x1
23 +x2

14 +x2
23 +2x2

34≥ 2

(10) x112 +2x1
24 +x2

13 +x2
24 +2x2

34≥ 2

(11) x112 +x1
13 +x1

14 ≥ 1

(12) x112 +x1
23 +x1

24 ≥ 1

(13) x112 +x1
34 +x2

34 ≥ 1

(14) x112 +x2
12 +x2

34 ≥ 1

(15) x213 +x2
23 +x2

34 ≥ 1

(16) x214 +x2
24 +x2

34 ≥ 1

(17) x112 +x1
13 +x1

23 +x2
34 ≥ 1

(18) x112 +x1
13 +x1

24 +x1
34 ≥ 1

(19) x112 +x1
13 +x1

24 +x2
12 ≥ 1

(20) x112 +x1
13 +x1

24 +x2
13 ≥ 1

(21) x112 +x1
13 +x1

24 +x2
24 ≥ 1

(22) x112 +x1
14 +x1

23 +x1
34 ≥ 1

(23) x112 +x1
14 +x1

23 +x2
12 ≥ 1

(24) x112 +x1
14 +x1

23 +x2
14 ≥ 1

(25) x112 +x1
14 +x1

23 +x2
23 ≥ 1

(26) x112 +x1
14 +x1

24 +x2
34 ≥ 1

(27) x112 +x2
13 +x2

14 +x2
34 ≥ 1

(28) x112 +x2
23 +x2

24 +x2
34 ≥ 1

(29) x113 +x2
13 +x2

24 +x2
34 ≥ 1

(30) x114 +x2
14 +x2

23 +x2
34 ≥ 1

(31) x123 +x2
14 +x2

23 +x2
34 ≥ 1

(32) x124 +x2
13 +x2

24 +x2
34 ≥ 1

(33) x134 +x2
13 +x2

24 +x2
34 ≥ 1

(34) x134 +x2
14 +x2

23 +x2
34 ≥ 1

(35) x212 +x2
13 +x2

24 +x2
34 ≥ 1

(36) x212 +x2
14 +x2

23 +x2
34 ≥ 1

(37) x113 ≥ 0

(38) x114 ≥ 0

(39) x123 ≥ 0

(40) x124 ≥ 0

(41) x134 ≥ 0

(42) x212 ≥ 0

(43) x213 ≥ 0

(44) x214 ≥ 0

(45) x223 ≥ 0

(46) x224 ≥ 0

(47) x134 +x2
34 ≤ 1

(48) x124 +x2
24 ≤ 1

(49) x123 +x2
23 ≤ 1

(50) x114 +x2
14 ≤ 1

(51) x113 +x2
13 ≤ 1

(52) x112 +x2
12 ≤ 1

Table 1: A complete inequality description of the example in Figure 10 (a)
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1

2

T

T

C

Figure 11:

order to give an impression what may happen if the capacities of the edges are
arbitrary integer numbers, consider the example depicted in Figure 12.

The instance is given by a complete graph on four nodes and consists of three
nets T1 = {1, 4}, T2 = {2, 4}, T3 = {2, 3}. In case c12 = c13 = c14 = c23 = c24 =
c34 = 1, a complete discription of the polytope is given by the trivial, the Steiner
partition and the so-called critical cut inequalities (cf. [GMW92a]). Besides the
trivial inequalities xk

uv ≥ 0, u, v = 1, . . . , 4, u �= v, k = 1, 2, 3, the right hand sides
of the inequalities are always equal to one and the coefficients in the inequalities
are either zero or one. Finally, this polytope is the intersection of 25 half spaces.

1 2

34

Figure 12:

If we now raise the capacity of the edge connecting nodes 2 and 4 from one to
two, the number of facet-defining inequalities increases from 25 to 548. More
drastically, in some of the facet-defining inequalities, whose coefficients are in
standard coprime form, the numbers 2, 3, 4, 5 or 6 appear and the right hand
sides are no longer restricted to be zero or one, but lie in the range between zero
and eleven. For instance, one such facet-defining inequality is the following:

6x1
14 + 2x1

23 + 4x1
24 + 3x2

12 + 3x2
14 + 5x2

23 + x2
24 + 2x3

12 + 6x3
14 + 2x3

24 ≥ 11.

This small example shows that we are still far from understanding the facial struc-
ture of arbitrary Steiner tree packing polyhedra. Indeed, a series of carefull in-
vestigations of such polyhedra is indespensable in order to apply a polyhedral ap-
proach to VLSI routing problems that are not characterized by all one-capacities.
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One such challenging example is and remains the global routing problem where,
for practically relevant examples, up to several thousands of nets must be wired
in a graph with arbitrary capacities.
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