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Abstract

This survey concerns optimization problems arising in the design of survivable communica-
tion networks. It turns out that such problems can be modeledin a natural way as non-compact
linear programming formulations based on multicommodity flow network models. These non-
compact formulations involve an exponential number of pathflow variables, and therefore require
column generation to be solved to optimality. We consider several path-based survivability mech-
anisms and present results, both known and new, on the complexity of the corresponding column
generation problems (called the pricing problems). We discuss results for the case of the single
link (or node) failures scenarios, and extend the considerations to multiple link failures. Further,
we classify the design problems corresponding to differentsurvivability mechanisms according
to the structure of their pricing problem. Finally, we show that almost all encountered pricing
problems are hard to solve for scenarios admitting multiplefailures.

1 Introduction

In the literature on communication network design and traffic engineering, a variety of linear pro-
gramming (LP) formulations have been developed to incorporate various protection and restoration
mechanisms against node and link failures into network optimization models. Many of them em-
ploy non-compact link-path formulations where each flow variable represents end-to-end demand
flow routed on a path in the underlying communication network. In such formulations the number of
routing paths, and thus the number of flow variables, grows exponentially with the network size. To
solve link-path formulations with respect to all possible routing paths in networks of practical sizes,
a common approach is to use column (path) generation, i.e., to start with a small set of flow variables
corresponding to an initial set of routing paths, and to generate further variables only when needed to
improve the current solution.

For a given optimal LP solution with respect to a restricted set of variables, thepricing problem
or column generation problemis to identify further columns that could improve the LP value, or to
discover that no such columns exist. A column can improve thecurrent optimal solution if it has a
negative reduced cost, i.e., if it violates a dual constraint. If new columns are found, the LP is resolved
with the new variables. This process is repeated until no improving variables are found.

To be sure that in the end the LP is optimally solved with respect toall variables, the pricing algo-
rithm has to be exact, i.e., if there exists an improving variable, the algorithm must be able to identify
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it. With exponentially many variables, computing the reduced cost for every potential variable indi-
vidually is not feasible. It is thus of interest whether the pricing problem can be solved in polynomial
time with respect to the size of the underlying network.

The primary goal of this survey is to systematically summarize the results (otherwise spread over
the literature) on the complexity of column generation for various network survivability mechanisms
and failure scenarios. The survivability mechanisms covered in this paper include path diversity,
unrestricted reconfiguration, and several ways of end-to-end path restoration. We distinguish between
single and multiple link failure scenarios, whether the selection of backup paths for working paths is
failure state-dependentor failure state-independent, and whether the capacity of surviving links of a
failing path can be released and reused for backup flows (thisis known asstub release) or not. Note
that in the latter case (no stub release) working and backup link capacity are separated. In the caseof
failure-independent restoration without stub release, wedistinguish whether backup capacity is shared
between demands or dedicated to each demand individually.

It has been known that for survivability mechanisms withoutstub release, under a single link or
single node failure scenario the pricing problem reduces toa (polynomial) shortest-path or a shortest-
pair of disjoint paths problem with respect to link weights derived from the dual LP solution. For
other mechanisms, the pricing problem has been shown to beNP-hard already under a single link
failure scenario. When it comes to multiple failures (also referred to asshared risk link groups), little
has been done so far for most of the considered survivabilityconcepts—this issue is discussed in the
balance of this survey.

It turns out that from the complexity viewpoint, the pricingproblems for all the considered surviv-
ability concepts are composed of only few types of minimization problems: (a) a classical shortest-
path problem, (b) a classical shortest-cycle problem (moreprecisely, a shortest failure-disjoint pair of
paths problem), (c) a shortest path problem where the path length is the sum of given non-negative
prices of the failure states in which the path fails, (d) a shortest path problem with link weights de-
pending on the set of the failure states in which the path survives, and (e) a shortest path pair problem
with link weights of the backup path depending on the set of failure states in which the primary path
fails. In the single failure case, the complexity of the pricing problem depends on these structural
classes; when multiple (even only double) link failures aretaken into account, the pricing problem for
most of the survivability mechanisms turns out to beNP-hard. Furthermore, for most of the consid-
ered concepts, we are able to find a compact LP formulation if,and only if, the pricing problem is
polynomial. Whether or not this is true in general is discussed in Section 9.4.

This report is organized as follows. In the next section, we will introduce the notation used in the
rest of the paper. Section 3 describes in detail an LP formulation, its dualization, and the corresponding
pricing problem for a particular problem called PD (path diversity); other survivability mechanisms
are discussed (deliberately in less detail) in Sections 4–7. After summarizing the results in Section 8,
we discuss their consequences and possible extensions in Section 9.

2 Notation

We will now introduce the notation needed to discuss the link-path formulations and pricing problems
for various survivability concepts and failures scenarios.

Network. The considered network is modeled using a undirected graphG = (V, E) composed of
a setV of nodes and a set of linksE between the nodes. For ease of exposition, we assume that the
graph does not contain loops nor parallel links, i.e.,E ⊆ V |2| whereV |2| is the set of all two-element
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subsets of the set of nodesV. The end nodes of linke ∈ E are denoted byue andve, soe = {ue, ve}.
The cost of realizing one unit of demand flow on linke ∈ E is denoted byξe, and its capacity (which
will serve as a variable) byye. Finally, δ(v) := {e ∈ E | e ∋ v} denotes the set of all links incident to
nodev ∈ V.

Demands. The setD ⊆ V |2| represents undirected point-to-point demands. For notational conve-
nience, at most one demand between each pair of nodes is assumed. The source and target of demand
d ∈ D are denoted byud andvd and assumed to be different from each other (the choice of thesource
and the target out of the two end nodes of a demand is arbitrary). The demand value (volume) of
demandd ∈ D is given byhd > 0.

Network states. All survivability concepts discussed in this paper are defined with respect to a given
failure scenario. For this, we introduce a setS ⊆ 2E of network stateseach of which corresponds to
a subset of failing links. SetS is called thefailure scenario. It is assumed thatS contains the normal,
failure-less state∅ in which all links are operational. The setS∗ := S\{∅} contains thefailure states
in which at least one link fails. The notationSe = {s ∈ S | e /∈ s} will denote the set of all states
s ∈ S in which link e ∈ E is available, and̄Se = S\Se will be the set of all failure states in which
it fails. Throughout the paper, we will assume that the number of states in setS is polynomial with
respect to the size of the network; otherwise the pricing problems must be exponential. Node failures
are discussed in Subsection 9.3.

Routing paths. Each demandd ∈ D has a setPd of undirected candidate paths that can be used for
realizing the demand flow. Unless stated otherwise,Pd is a subset of all the elementary paths fromud

to vd, i.e., the candidate paths do not traverse any node more thanonce. The set of all candidate paths
is denoted byP :=

⋃

d∈D Pd. As we have assumed at most one demand per a pair of nodes, the sets
Pd, d ∈ D are mutually disjoint; hence, each pathp ∈ P can be simply identified with the set of the
links it traverses, so thatp ⊆ E . The flow realizing the volume of demandd ∈ D on pathp ∈ Pd will
usually be denoted by variablexp.

The setPs
d of candidate paths for demandd ∈ D available in states ∈ S is defined as

Ps
d = {p ∈ Pd | p ∩ s = ∅} ⊆ Pd;

similarly, P̄s
d := Pd\P

s
d denotes the complementary set of all candidate paths failing in states ∈ S.

Furthermore,Pe ⊆ P is the set of all paths containing linke ∈ E , andPs
e := Pe ∩

(
⋃

d∈D Ps
d

)

denotes the set of all paths containing linke ∈ E that are available in states ∈ S. Observe that by the
definition of the normal state,P∅

d = Pd andP∅
e = Pe.

The notation
Sp = {s ∈ S | p ∩ s = ∅}

andS̄p := S\Sp refers to the sets of statess ∈ S in which pathp ∈ P is available or unavailable,
respectively. For the path protection/restoration mechanisms considered in the sequel we will use
the following notation. The notationQp ⊆ P refers to all candidate backup paths for protecting a
particular pathp ∈ P. These are paths with the same end nodes as pathp that never fail together with
p (in other words,p andq arefailure-disjoint). Hence, ifq ∈ Qp then for alls ∈ S,

p ∩ s 6= ∅ ⇒ q ∩ s = ∅.

Also,Qpe := {q ∈ Qp | q ∋ e} denotes the set of all paths protecting pathp that contain a particular
link e ∈ E . The set of all (failure-disjoint) primary-backup path pairs c = (p, q) for demandd ∈ D
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will be denoted byCd := {c = (p, q) | p ∈ Pd, q ∈ Qp}. Primary-backup path pairs will be denoted
by c ∈ C :=

⋃

d∈D Cd. Also, for each linke ∈ E , the set of all pairsc ∈ C such thate ∈ p will be
denoted byC1

e , and the set of all pairsc such thate ∈ q will be denoted byC2
e . Variablexc denotes the

flow realizing the volume of demandd ∈ D on path-pairc ∈ Cd.

Assumptions. In practical applications, network features different than described above could be
required. First of all, we could consider directed links (arcs) or demands, and directed or bi-directed
link capacity, as this may be necessary for certain communication network models. In the main body
of the report we assume undirected links and demands and defer the discussion of other options to
Subsection 9.3.

Another important cases arise when modularity of link capacities or node hardware is taken into
account, as well as when demand flows are forced to be unsplittable (non-bifurcated). Still, as this
paper focuses on column generation, we restrict ourselves to linear programs and assume all the
primal variables (link capacity and flow variables) to be continuous, nonnegative, and unbounded from
above. This assumption is satisfied in a natural way in the linear (LP) relaxations of most practical
network planning problems. Moreover, only the linear relaxations are used in the branch-and-price
algorithms for exact resolution of the mixed-integer programs (MIP) resulting from link modularity
or unsplittable flows.

Notice that the dual LPs discussed in this paper are always feasible because the zero vector is a
feasible dual solution. To ensure that in the considered pricing problems, all occurring dual LPs have
a bounded optimal solution, we assume that the initial set ofrouting paths results in a feasible initial
primal LP. When it is not clear how to compute such a set of paths, feasibility of the primal LP can
always be achieved by introducing artificial slack variables. Alternatively, column generation can also
be done using a dual ray instead of a dual optimal solution if the primal LP is infeasible.

3 Path diversity – PD

We start the main part of our considerations on the complexity of pricing problems with a network
design model related to the path diversity concept. For thisparticular model we will illustrate in detail
the basic ideas behind path-flow LP formulations, their dual(LP) problems and the related pricing
tasks. Other survivability concepts presented in the following sections will be discussed in less detail.
We assume that the reader has a basic knowledge of linear programming techniques; for details we
refer to the linear and integer programming books [Min86, NW88].

3.1 Primal problem

Conceptually, the simplest way of protecting traffic against failing network components is by over-
provisioning. Protection concepts based on path diversityfollow this approach by routing more than
the specified demand valuehd in the failure-less state∅, and ensuring that at least a specified fraction
of it survives each considered failure scenario without rerouting any flow.

Several such concepts have been presented in the literature, for examplediversification[DS98]
and its generalizationdemand-wise shared protection (DSP)[KZJH05, WOZ+05, KZ07]. For the
purpose of this paper, we subsume both concepts under the name path diversity. The related network
design problem is given by the following LP formulation. In essence, the formulation simply states
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that for each demand enough flow must survive in every networkstate.

minimize
∑

e∈E

ξeye (1a)

[λs
d ≥ 0]

∑

p∈Ps
d

xp ≥ hs
d d ∈ D, s ∈ S (1b)

∑

p∈Pe

xp ≤ ye e ∈ E (1c)

x, y ≥ 0. (1d)

If any of the end-nodes of some demandd ∈ D fails in states ∈ S, we assumehs
d = 0 because

otherwise the above LP becomes infeasible due toPs
d = ∅. The symbolλs

d in brackets to the left
of constraint (1b) denotes the corresponding dual variablewhich is used in the problem dual to PD
derived in the next section.

Notice that with fractional (i.e., continuous) capacity variablesye, each inequality in (1c) could
be turned into an equation, and then the problem would decompose into a set of separate problems for
each demandd ∈ D:

minimize
∑

p∈Pd

ξpxp (2a)

[λs
d ≥ 0]

∑

p∈Ps
d

xp ≥ hs
d s ∈ S (2b)

x ≥ 0, (2c)

whereξp :=
∑

e∈p ξe is the cost of sending one unit of flow along pathp ∈ P. Nevertheless, we keep
the problem in form (1) because this decomposition cannot beapplied to other survivability concepts
discussed in this paper, or if additional constraints, likecutting planes, are present.

3.2 Dual problem

We will now derive the dual formulation to problem PD (1) using the Lagrangean function. For the
other survivability concepts discussed in the following sections, we will formulate the dual without
showing its derivation. For ease of notation, we will use thegeneral concept of duality for convex
primal problems [Las70], which allows us to write down the constraints in a “natural” way and have
non-negative dual variables nevertheless. This approach differs from the usual definition of LP duality
only in the sign of the dual variables. We thus assume primal problems of the following form:

minimize F (x) (3a)

[λj ] fj(x) = 0 j = 1, 2, . . . , J (3b)

[πk ≥ 0] gk(x) ≤ 0 k = 1, 2, . . . ,K (3c)

x ∈ X. (3d)

The dual variablesλ associated with equality constraints (3b) are unconstrained in sign, while the dual
variablesπ associated with inequality constraints (3c) are non-negative. Then the dual function, to be
maximized overλ andπ ≥ 0, is defined as:

W (λ, π) := min
x∈X

L(x;λ, π), (4)
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where the Lagrangean function,L(x;λ, π), is given by:

L(x;λ, π) := F (x) +

J
∑

j=1

λjfj(x) +

K
∑

k=1

πkgk(x). (5)

Formally, by definition, the dual problem is given by:

max
π≥0, λ

W (λ, π) = max
π≥0, λ

min
x∈X

L(x;λ, π). (6)

In fact, problem (6) can admit unbounded values of the dual function W (λ, π) defined by (4).
Therefore, to make the dual a proper optimization problem, all vectorsλ andπ for whichW (λ, π) =
−∞ have to be eliminated. This in general leads to an extra set ofconstraints (on top ofπ ≥ 0) to be
added to the formulation of the dual problem (6).

Finally, we recall the so called strong duality theorem which states that when the primal problem
(3) has a bounded optimal solutionF ∗ then this solution is equal to the optimal objectiveW ∗ of the
dual problem (6).

The problem dual to PD can be obtained by substituting the capacity ye of link e ∈ E by its load
∑

p∈Pe
xp in (1a), and by relaxing the demand constraints (1b) into theobjective function. This leads

to the following Lagrangean function using the primal variablesxp ≥ 0 and the dual variablesλs
d ≥ 0

of the demand constraints (1b):

L(x;λ) :=
∑

e∈E

ξe(
∑

p∈Pe

xp) +
∑

d∈D

∑

s∈S

λs
d(h

s
d −

∑

p∈Ps
d

xp)

=
∑

d∈D

∑

s∈S

hs
dλ

s
d +

∑

d∈D

∑

p∈Pd

(
∑

e∈p

ξe −
∑

s∈Sp

λs
d)xp. (7)

Then the dual problem is given by:

max
λ≥0

W (λ) = max
λ≥0

min
x,y≥0

L(x, y;λ). (8)

Problem (8) admits unbounded values of the dual functionW (λ) so we have to get rid of all vectors
λ for whichW (λ) = −∞. This leads to the following form of the dual:

max
λ≥0

{

∑

d∈D

∑

s∈S

hs
dλ

s
d |

∑

s∈Sp

λs
d ≤

∑

e∈p

ξe, d ∈ D, p ∈ Pd

}

. (9)

Notice that this dual problem always has the feasible solution λ = 0. By introducing auxiliary dual
variablesΛd, d ∈ D, we obtain a more handy form of the dual:

max W (λ) =
∑

d∈D

∑

s∈S

hs
dλ

s
d (10a)

Λd =
∑

s∈S

λs
d d ∈ D (10b)

Λd ≤
∑

e∈p

ξe +
∑

s∈S̄p

λs
d d ∈ D, p ∈ Pd (10c)

λ ≥ 0. (10d)
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Given an optimal dual solution(λ∗,Λ∗) with respect to the current set of candidate paths, the goal of
the pricing problem for demandd ∈ D is to find a new pathp ∈ Pd which violates its dual constraint
(10c), i.e., which satisfies

∑

e∈p

ξe +
∑

s∈S̄p

λs
d
∗ < Λ∗

d. (11)

If added to the current LP relaxation, such a pathp may improve the primal objective function. The
details of this pricing problem for single and multiple linkfailures are discussed in the following two
sections.

Notice that if the capacitiesye have to satisfy additional integrality restrictions, the valuesξe in
the dual constraints (10c) have to be replaced by the nonnegative dual values of the capacity con-
straints (1c) (similarly for all other survivability discussed in this paper). This does not affect the
complexity of the pricing problems.

3.3 Pricing problem for single failures

Under a single link failure scenarioS ⊆ {{e} | e ∈ E} ∪ {∅}, the pricing problem for PD can be
solved in polynomial time, as observed by Wessäly et al. [Wes00, WOZ+05]. To see this, note that
with single link failures only, condition (11) can be rewritten as follows:

∑

e∈p

(ξe + λ
{e}
d

∗
) < Λ∗

d. (12)

The right-hand side depends only on the demand, and the link weights on the left-hand side are
nonnegative. Hence, for each demandd ∈ D, violation of dual constraint (10c) can be tested by
searching for a shortest path between the end-nodes ofd with respect to the demand-dependent link

weightsγe
d := ξe + λ

{e}
d

∗
using for example the Dijkstra algorithm, and comparing itslength to the

value ofΛ∗
d. If a shortest pathp′ for demandd′ fulfils condition (12), then adding pathp′ to Pd′

(and thus the corresponding constraintΛd′ ≤
∑

e∈p′(ξe + λ
{e}
d′ ) to the dual formulation (10)) can

potentially improve the primal objective value. Otherwise, no path for this demand violates its dual
constraint for the current set of optimal dual variables.

3.4 Pricing problem for multiple failures

In a multiple failure state a group of links fails simultaneously. Such a group of links that fail together
is sometimes called ashared risk link group(SRLG) [SCT01]. In this section, we show by reduction
to theminimum-color shortest-path problem(MC-PATH) that path generation for PD is in general
difficult if multiple link failure scenarios are considered.

In the MC-PATH problem, also known asminimum label shortest-path problem, every linke ∈ E
is assigned a setCe of colors (labels) out of the set of colorsC with given weightswc > 0. The
length of a pathp in this colored network is defined as the total weight of the colors traversed by
p. In contrast to the classical shortest path problem, the weight of a used color is counted only once
even if the path contains several links with that color. Given two nodesu, v ∈ V, the goal of MC-
PATH is to find au-v-path with minimum length. This problem has been shown to beNP-hard for
a general color setting [YVJ05, CDP+06]. Also, various inapproximability results for MC-PATH are
known [YVJ05, CDP+06, HMS07].
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The pricing problem for PD, PRICE-PD, is defined separately for each demandd ∈ D and consists
of finding a pathp from ud to vd minimizing the generalized path length

〈p〉 =
∑

e∈p

ξe +
∑

s∈S̄p

λs
d
∗. (13)

The second sum contains the dual values of those network statess ∈ S in which the path fails, i.e.,
when the path contains at least one link froms. Notice that if the path contains several failing links
from s, the weightλs

d
∗ is counted only once, as in the MC-PATH problem. By identifying failure

states with colors and assuming all costsξe to be zero, it is easy to see that the pricing problem (13)
contains MC-PATH as a special case, which shows that PRICE-PD isNP-hard in general.

If the considered set of multiple failures is exponential inthe number of network nodes,NP-
hardness of PRICE-PD is not surprising. Coudert et al. [CDP+06] have shown, however, that MC-
PATH is NP-hard already for the polynomially bounded set of all doublelink failures, i.e.,S =
E |2| ∪ {∅}. Some special cases, however, are known to be polynomial, e.g., link failures induced by
single node failures. Such cases are discussed in Section 9.

The pricing problem can be formulated as a mixed-binary programming problem (MIP) using the
node-link notation. In this notation the link flows must be directed. In case of an undirected network,
for each linke ∈ E (e = {v,w}) we must use two directed link flow variables:xe,vw denoting the
flow in direction fromv to w, andxe,wv denoting the flow in the opposite direction.

min
∑

e∈E

ξexe +
∑

s∈S

λs
d
∗Y s (14a)

s.t.
∑

e∈δ(v)
e={v,w}

(xe,vw − xe,wv) =







0, v ∈ V \ {ud, vd}
1, v = ud

−1, v = vd

(14b)

1 ≥ Y s ≥ xe,vw + xe,wv s ∈ S, e ∈ s, e = {v,w} (14c)

xe,vw, xe,wv ∈ {0, 1} e ∈ E , e = {v,w}. (14d)

Let (x, Y ) be an optimal solution of (14). Then constraints (14b) together with the binary requirement
(14d) will ensure that the the flowsxe,vw, xe,wv equal to1 will specify a directed single-path flow of
value 1 fromud to vd. Moreover, assuming positive link unit costsξ, at most one of the variables
xe,vw andxe,wv will be nonzero for any linke ∈ E , and the linkse ∈ E with xe,vw or xe,wv equal to 1
will form a single path fromud to vd. Finally, the variablesY s (identifying the failure states in which
the so specified flow fails) will also be binary because they are minimized and restricted from below
by binary values.

Alternatively, the pricing problem can be converted into aninstance of theshortest-path problem
with resource constraints(SPPRC) [ID05]. For a given instance of the pricing problem,the corre-
sponding instance of SPPRC is constructed as in Figure 1. Thenetwork graph of the original problem
is preserved and is presented as a cloud in the figure. Each link in this graph has a primal costξe, as in
the pricing problem. For the SPPRC problem instance we introduce|S| resources (corresponding to
the failure states), and assume that linke ∈ E consumes one unit of resources ∈ S if e fails in s, and
nothing otherwise. The original network graph is extended by |S| additional nodes and2 · |S| links
denoted byas andbs, s ∈ S, as shown in Figure 1.

Links as have costξas := 0; these links consume a large amountM >
∑

e∈E ξe of resource
s and nothing of all other resources. The linksbs have costξbs := (λs

d)
∗ and do not consume any

resources. Letv′d denote the last node as depicted in Figure 1. The objective inthe resulting instance
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Figure 1: Transformation of the PD pricing problem to SPPRC

of SPPRC is to find a shortest path fromud to v′d in the transformed network with respect to the
primal link costs which consumes at mostM of any resource. This leads to a routing path with the
same cost as described in the MIP objective (14b): the contribution of the found path to the first sum
comes from the cloud, and the resource constraints of linksas make sure that if a path uses states
somewhere in the cloud, linkbs must be used, which contributes a value of(λs

d)
∗ to the path cost.

Using this transformation, we can solve the pricing problemusing algorithms developed for SPPRC,
for example based on dynamic programming (see [ID05]).

Tomaszewski et al. [TṖZ08] have recently proved (by reduction to the fractional graph coloring
problem FRACTIONAL-COLORING [GLS81]) that for multiple failures problem PD (1) isNP-hard
itself. They showed that PD isNP-hard already for the single-demand version (2a) for a certain
multiple link failure scenario containing|V| failure states. This yields an alternative proof that the
pricing problem PRICE-PD isNP-hard for a polynomial number of failure states.

4 Unrestricted restoration of flows – UR

Contrary to PD where path flows are fixed and cannot be changed,theunrestricted restoration(UR)
concept allows all flows to be freely rearranged in a failure situation, so that in effect all the path
flows are established from scratch using link capacity that survives the failure (i.e., stub release is
assumed). In other words, the flow patterns in different failure states are completely decoupled. UR
is also known asglobal rerouting. Using variablesxs

p to denote the flow on pathp in states, UR can
be formulated as a non-compact linear program as follows:

min
∑

e∈E

ξeye (15a)

[λs
d ≥ 0]

∑

p∈Ps
d

xs
p ≥ hs

d d ∈ D, s ∈ S (15b)

[πs
e ≥ 0]

∑

p∈Ps
e

xs
p ≤ ye e ∈ E , s ∈ Se (15c)

x, y ≥ 0. (15d)
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The problem dual to UR, which can be easily derived as in (3)–(5), is as follows:

max
∑

d∈D

∑

s∈S

hs
dλ

s
d (16a)

∑

s∈Se

πs
e ≤ ξe e ∈ E (16b)

λs
d ≤

∑

e∈p

πs
e d ∈ D, s ∈ S, p ∈ Ps

d (16c)

λ, π ≥ 0. (16d)

In any optimal solution(λ∗, π∗) of the dual, the valueλs
d
∗ is the length of a shortest pathp ∈ Ps

d

with respect to link metricsπs
e
∗, e ∈ E . Hence, even with multiple link failures, the pricing problem

reduces to a shortest path problem for every demandd ∈ D and every network states ∈ S separately
with respect to the link metricsπs

e
∗ in the network surviving in states. The whole pricing problem is

thus solvable in polynomial time with respect to the number of nodes, links, and network states.

5 Situation-dependent restoration of affected flows – FD

From now on we assume that non-failing path flows must be preserved so that only failing flows are
restored. This natural feature is referred to asrestricted reconfiguration. In this section we assume
failure-dependent restoration, i.e., the backup routing of a demand depends on the particular failure
state. The failure-independent case is discussed in the next section.

With stub release, the capacity on surviving parts (stubs) of a failing routing path can be reused
for backup paths; without stub release, it is reserved for the normal network state.

5.1 Situation-dependent restoration without stub release– FD-nSR

We first consider the case without stub release, i.e., capacity cannot be reused for backup flow. The
primal problem FD-nSR can be stated in the following way (alternative formulations can be found in
[PM04]).

min
∑

e∈E

ξeye (17a)

[λd ≥ 0]
∑

p∈Pd

xp ≥ hd d ∈ D (17b)

[λs
d ≥ 0]

∑

p∈P̄s
d

xp ≤
∑

q∈Ps
d

xs
q d ∈ D, s ∈ S∗ (17c)

[πs
e ≥ 0]

∑

p∈Pe

xp +
∑

q∈Ps
e

xs
q ≤ ye e ∈ E , s ∈ Se (17d)

x, y ≥ 0. (17e)

10



The dual problem to FD-nSR derived according to (3)–(5) is asfollows:

max
∑

d∈D

hdλd (18a)

∑

s∈Se

πs
e = ξe e ∈ E (18b)

λs
d ≤

∑

e∈q

πs
e d ∈ D, s ∈ S∗, q ∈ Ps

d (18c)

λd ≤
∑

e∈p

ξe +
∑

s∈S̄p

λs
d d ∈ D, p ∈ Pd (18d)

λ, π ≥ 0. (18e)

Denote the optimal dual variables by(λ∗, π∗). Similarly to unrestricted reconfiguration, it is easy to
find improving protection pathsq ∈ Ps

d for demandd ∈ D in any failure situations ∈ S∗ by solving
a shortest path problem between the end-nodes ofd in the surviving network with respect to link
weightsπs

e
∗, and comparing the path length toλs

d
∗. To generate a primary path for demandd ∈ D, on

the other hand, a path minimizing
∑

e∈p ξe+
∑

s∈S̄p
λs

d has to be found. Thus, the pricing problem for
FD-nSR is essentially the same as for PD and is therefore polynomial for single link failures [Wes00,
Orl03, BNGK07]) andNP-hard for multiple failures. As for PD, path generation for FD-nSR in
the multiple link failure case can be approached by the SPPRCapproach. An SPPRC algorithm
specialized for FD-nSR is discussed in [DZP+08]. The algorithm shows very good effectiveness even
for large networks.

In fact, for multiple failures problem FD-nSR isNP-hard itself already in the single-demand
version, as demonstrated in [TPŻ08] through a reduction to FRACTIONAL-COLORING.

5.2 Situation-dependent restoration using stub release – FD-SR

In problem FD-SR, we consider situation-dependent restoration of failed flows with stub release, i.e.,
capacity can be reused for backup flow. The corresponding LP formulation FD-SR reads:

min
∑

e∈E

ξeye (19a)

[λd ≥ 0]
∑

p∈Pd

xp ≥ hd d ∈ D (19b)

[λs
d ≥ 0]

∑

p∈P̄s
d

xp ≤
∑

q∈Ps
d

xs
q d ∈ D, s ∈ S∗ (19c)

[πs
e ≥ 0]

∑

p∈Ps
e

xp +
∑

q∈Ps
e

xs
q ≤ ye e ∈ E , s ∈ Se (19d)

x, y ≥ 0. (19e)

11



The problem dual to FD-SR is as follows:

max
∑

d∈D

hdλd (20a)

∑

s∈Se

πs
e = ξe e ∈ E (20b)

λs
d ≤

∑

e∈q

πs
e d ∈ D, s ∈ S∗, q ∈ Ps

d (20c)

λd ≤
∑

e∈p

(
∑

s∈Sp

πs
e) +

∑

s∈S̄p

λs
d d ∈ D, p ∈ Pd (20d)

λ, π ≥ 0. (20e)

Denote the optimal dual variables by(λ∗, π∗). Similarly to the previous case FD-nSR, it is easy to
find improving protection pathsq ∈ Ps

d for demandd ∈ D in any failure situations ∈ S∗ by solving
the shortest path problem between the end-nodes ofd in the surviving network with respect to link
weightsπs

e
∗.

On the other hand, finding improving primary paths isNP-hard already in the case of single link
failures, as suggested in [Wes00, pp. 44 and 113], and shown later in [Orl03] and [MV04]. To solve
the pricing problem for a fixed demandd ∈ D we have to find a pathp from ud to vd minimizing

〈p〉 =
∑

e∈p

(
∑

s∈Sp

πs
e
∗) +

∑

s∈S̄p

λs
d
∗. (21)

The difficulty in minimizing this sum stems from the term
∑

e∈p

∑

s∈Sp
πs

e
∗. It makes that the weight

of a path in the pricing problem is not merely the sum of independent link weights; instead, the
contribution

∑

s∈Sp
πs

e
∗ of a link to the path weight depends on the set of failure situations in which

the path survives, and thus on the whole path. Under a full single link failure scenario, this path weight
reduces to

〈p〉 =
∑

e∈p

(

∑

f /∈p

πf
e
∗
+ λe

d
∗
)

. (22)

Maurras and Vanier [MV04] and Orlowski [Orl03] showed by reduction to the Hamilton path prob-
lem and to the max-cut problem, respectively, that already minimizing

∑

e∈p

∑

f /∈p πf
e
∗

is NP-hard,
which immediately implies theNP-hardness of minimizing (22).

To solve the pricing problem (21) exactly in practice, it canbe formulated as a mixed-binary
problem. The binary flow variablesX = (xe,vw, xe,wv : e ∈ E) describe a path fromud to vd;
the capacity variablesY = (Y s : s ∈ S∗) indicate in which states the path fails, and the coupling

12



variablesZ = (Zs
e : s ∈ S, e ∈ E) indicate combinations of used edges with unused states.

min
∑

e∈E

∑

s∈S

πs
e
∗Zs

e +
∑

s∈S∗

λs
d
∗Y s (23a)

s.t.
∑

e∈δ(v)
e={v,w}

(xe,vw − xe,wv) =







0, v ∈ V \ {ud, vd}
1, v = ud

−1, v = vd

(23b)

Y s ≤
∑

e∈s
e={v,w}

(xe,vw + xe,wv), s ∈ S (23c)

Y s ≥ xe,vw + xe,wv, s ∈ S, e ∈ s, e = {v,w} (23d)

Y s + Zs
e ≥ xe,vw + xe,wv, s ∈ S, e ∈ E , e = {v,w} (23e)

X ∈ {0, 1}2|E|, 1 ≥ Y ≥ 0, Z ≥ 0 (23f)

AlthoughY andZ are binary indicator variables, their integrality conditions can be relaxed simi-
larly as in (14) because they are minimized and bounded from below by integer values.

Notice that the MIP formulation (23) may have optimal solutions where the primary path deter-
mined by flow variablesX visits a node more than once. In fact, adding a loop to an elementary path
may augment the second sum in the objective function (23a) but reduce the first sum. This effect is
due to the special structure of the pricing problem for primary paths with the considered mechanism
FD-SR. Elementary paths, i.e., paths visiting each node at most once, can be enforced by additional
constraints

∑

e∈δ(v), e={v,w}

xe,vw ≤ 1, v ∈ V \ {ud}. (24)

The authors of [BNGK07] (where a similar problem is considered) make a remark that already for
the failure scenario containing just one single link failure, i.e., whenS = {∅, {e}} for some link
e ∈ E , the pricing problem limited to elementary paths, althoughpolynomial, is non-trivial and must
be solved by generating a shortest pair of node-disjoint paths.

Fadejeva [Fad03] investigated problem FD-SR with the additional restriction that every demand
should be routed on a single path (which does not affect the pricing complexity). She showed that
already for single link failures, the pricing problem is anNP-hard shortest-path problem with neg-
ative weights if elementary paths are required, and solves it exactly using a quadratic shortest paths
algorithm. As an alternative, she proposes a slight relaxation of the problem where routing paths with
loops but with at most|V| − 1 links are allowed. The pricing problem of this relaxation can be solved
in polynomial time by searching for a shortest path in a layered auxiliary graph based on|V| copies
of G.

6 Situation-independent restoration of affected flows – FI

In this section we still assume that flows not affected by a failure situation are not rearranged. This
time, however, the failed flows are restored in a failure-independent fashion, i.e., the restoration flow
pattern is always the same and does not depend on the particular failure state.

6.1 Situation-independent restoration without stub release – FI-nSR

We first consider the case without stub release, where surviving but unused working capacity cannot
be reused for backup flows. Using variableszpq to denote the flow on backup pathq of working path
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p, problem FI-nSR can be formulated as follows:

min
∑

e∈E

ξeye (25a)

[λd ≥ 0]
∑

p∈Pd

xp ≥ hd d ∈ D (25b)

xp ≤
∑

q∈Qp

zpq p ∈ P (25c)

[πs
e ≥ 0]

∑

p∈Pe

xp +
∑

d∈D

∑

p∈P̄s
d

∑

q∈Qpe

zpq ≤ ye e ∈ E , s ∈ Se \ {∅} (25d)

x, y, z ≥ 0. (25e)

The problem dual to FI-nSR reads as follows:

max
∑

d∈D

hdλd (26a)

∑

s∈Se\{∅}

πs
e = ξe e ∈ E (26b)

λd ≤
∑

e∈p

ξe +
∑

e∈q

(
∑

s∈S̄p

πs
e) d ∈ D, p ∈ Pd, q ∈ Qp (26c)

λ, π ≥ 0. (26d)

Note that dual variables corresponding to primal constraints (25c) do not appear in the dual formu-
lation (26). The reason is that these constraints can be written as equalities without changing the
optimal solution value; hence, they can be used to eliminatevariablesxp from the formulation, and
can be removed from the formulation themselves.

As will be explained in Section 7.2, the pricing problem for (26) is always difficult, i.e., also in the
single link failure case. In fact, the pricing problem for FI-nSR consists in finding, for each demand
d ∈ D, a pair of failure-disjoint pathsc = (p, q) from ud to vd minimizing

〈c〉 =
∑

e∈p

ξe +
∑

e∈q

(
∑

s∈S̄p

πs
e
∗). (27)

Note that the link metrics for calculating the length of the primary pathp ∈ Pd are equal to the true
unit link costsξe, while the link metrics for calculating the length of the backup pathq ∈ Qp are given
by the dual cost

∑

s∈S̄p
πs

e
∗. If a pair c = (p, q) violates its dual constraint, then the corresponding

column generation adds either one variablezpq or two variablesxp andzpq to the primal problem,
depending on whetherxp is already included in the LP or not.

Again, the problem of minimizing (27) can be formulated as a mixed-binary problem. Alterna-
tively, the pricing problem can be solved using the SPPRC method, as proposed in [SPR+07]. An
SPPRC algorithm specialized for FI-nSR is also described in[DZP+08]. According to the authors of
[DZP+08] their algorithm is more time-efficient than that of [SPR+07] and performs very well even
on large networks.

Recently,Żotkiewicz et al. [̇ZPT08] have directly shown that problem FI-nSR isNP-hard, using
a reduction from 2DIV-PATH [FHW78]. The latter problem is a special case of theNP-hard Disjoint
Connecting Paths problem [GJ79, problem ND40], and consists in finding two link-disjoint paths
between two distinct pairs of nodes.
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6.2 Situation-independent restoration with stub-release– FI-SR

The next case assumes situation-independent flow restoration using stub release. This restoration
concept is perhaps not too practical — we discuss it here for completeness. The corresponding primal
problem is as follows.

min
∑

e∈E

ξeye (28a)

[λ ≥ 0]
∑

p∈Pd

xp ≥ hd d ∈ D (28b)

[π∅
e ≥ 0]

∑

p∈Pe

xp ≤ ye e ∈ E (28c)

xp ≤
∑

q∈Qp

zpq p ∈ P (28d)

[πs
e ≥ 0]

∑

p∈Ps
e

xp +
∑

d∈D

∑

p∈P̄s
d

∑

q∈Qpe

zpq ≤ ye e ∈ E , s ∈ Se \ {∅} (28e)

x, y, z ≥ 0. (28f)

The problem dual to FI-SR takes the following form (as for thedual to FI-nSR, dual variables corre-
sponding to primal constraints (28d) do not appear in the dual formulation):

maximize
∑

d∈D

hdλd (29a)

∑

s∈Se

πs
e = ξe e ∈ E (29b)

λd ≤
∑

e∈p

(
∑

s∈Sp

πs
e) +

∑

e∈q

(
∑

s∈S̄p

πs
e) d ∈ D, p ∈ Pd, q ∈ Qp (29c)

λ, π ≥ 0. (29d)

For each demandd ∈ D, the pricing problem consists of finding a pair of failure-disjoint paths
c = (p, q) from ud to vd minimizing

〈c〉 =
∑

e∈p

(
∑

s∈Sp

πs
e
∗) +

∑

e∈q

(
∑

s∈S̄p

πs
e
∗). (30)

As discussed in Section 5.2, already minimizing the first sumunder a single link failure scenario is
NP-hard, and hence also solving the whole pricing problem. Still, as we already know, this is not
enough to be sure that the original problem FI-SR isNP-hard itself. This fact has been recently
proven in [PTZ09] by means of the construction used in [ŻPT08] for FI-nSR. As before, the problem
of minimizing (30) can be formulated as a mixed-binary problem.

7 Single backup path protection and restoration – SB

Single backup path protection further restricts the restoration flow pattern by assuming that the entire
primary flow is restored on one single backup path, used in allfailure situations when the primary
paths fails. In fact, this kind of restoration usually assumes that for each demandd ∈ D, the entire
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demand volume is allocated to a single primary path. We note that in contrast to the previous prob-
lems, which can be modeled by linear programs, the single-path assumption requires a mixed-integer
programming formulation.

Recall that pairs of primary-backup path are denoted byc, wherec ∈ C :=
⋃

d∈D Cd, andCd is
the set all candidate pairs for demandd ∈ D. For each linke ∈ E , the set of all pairsc = (p, q) such
thate ∈ p is written asC1

e , and the set of all pairsc such thate ∈ q asC2
e . The flow allocated to pair

c ∈ C will be denoted byxc.

7.1 SB with dedicated protection capacity – SB-D

In this section we consider the case with dedicated protection capacity, i.e., we assume that the protec-
tion capacity is not shared between different demands in different failure situations (as in the previous
sections) but is reserved for each particular primary flow. This type of protection is commonly known
as1+1 protection. The primal problem SB-D reads:

min
∑

e∈E

ξeye (31a)

[λd ≥ 0]
∑

c∈Cd

xc ≥ 1 d ∈ D (31b)

[πe ≥ 0]
∑

d∈D

hd

∑

c∈Cd∩Ce

xc ≤ ye e ∈ E (31c)

ye ≥ 0, xc ∈ {0, 1} (31d)

As in problem PD discussed in Section 3, link capacities are dedicated to each particular demand.
Therefore, the problem can be split and solved separately for each demand. Every such separate for-
mulation is strongly unimodular and will yield a binary optimal vertex solution even if the integrality
condition (31d) is relaxed to0 ≤ xc ≤ 1. It is a straightforward exercise to derive the dual problem
to the LP relaxation of SB-D, and to show that column generation consists in finding, for each de-
mandd ∈ D, a minimum cost cycle through its end-nodes with respect to the dual capacity costπe.
This can be done by solving a min-cost-flow problem with capacities 1 and value 2 [Suu74]. This is
the survivable analogon of a simple multi-commodity flow, where the pricing problem searches for
minimum-cost paths with respect to the dual capacity cost.

If the total capacityye is replaced by working capacityy1
e for the primary flows and backup

capacityy2
e for the backup flow with corresponding dual variablesπ′

e, π
′′
e , the pricing problem for

each demand is to find a disjoint path pairc = (p, q) minimizing 〈c〉 =
∑

e∈p π′
e +

∑

e∈q π′′
e . This

problem isNP-hard already for single link failures [XCX+06]. If, however, the capacity of a link is
defined exactly by its flow, as in model (31), both dual values can be replaced by the original costξe

of link e ∈ E , and both the pricing problem and the original problem reduce to finding a cyclec ∈ Cd

minimizing
∑

e∈c ξe.
For the general case of multiple resource failures, finding aminimum-cost disjoint pair of paths is

NP-hard [Hu03], and so is the primal problem SB-D.
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7.2 SB with shared protection capacity – SB-S

Now we assume that the pool of protection capacity is shared between the demands and situations,
and arrive at the following relaxation of the primal problemSB-S.

min
∑

e∈E

ξe(y
1
e + y2

e) (32a)

[λd ≥ 0]
∑

r∈Cd

xr ≥ hd d ∈ D (32b)

[πe ≥ 0]
∑

c∈C1
e

xc ≤ y1
e e ∈ E (32c)

[πs
e ≥ 0]

∑

c∈C2
e , s∈S̄p

xc ≤ y2
e e ∈ E , s ∈ Se \ {∅} (32d)

x, y ≥ 0. (32e)

Notice that the summation in constraint (32d) is taken over all path pairs whose backup path contains
the considered linke and whose primary path fails in the considered states.

Although looking quite different at first glance, the LP relaxation (32) is equivalent to problem
FI-nSR of Section 6.1. The reason is that several pairsc = (p, q) ∈ Cd can have the same primary
pathp ∈ Pd; all the corresponding pathsq are used to protect pathp in a bifurcated way. Also, it is
not difficult to see that the dual problem of (32) is identicalto the dual of FI-nSR.

NP-hardness of path generation for SB-S under a multiple failure scenario follows from the result
of [Hu03] for problem SB-D (see the previous section).NP-hardness of path generation for (32)
(and hence for FI-nSR) in the single-link failure case was demonstrated in [SPR+07]. In fact, it was
shown there that for single-link failure scenarios the pricing problem for SB-S is pseudo-polynomial:
polynomial with respect to the size of the network graph, andexponential with the number of failure
states|S|, see discussion about SPPRC at the end of Section 3.4.

In fact, in the literature the non-relaxed version of formulation (32) is more common (see for
example the single backup path problem in [PM04]). In such a non-bifurcated version the entire
demand volume is allocated to one single primary-backup path-pair. For this we have to use binary
variablesuc, c ∈ Cd, d ∈ D, to indicate whether cyclec is used or not, constraints

∑

c∈Cd

uc = 1, d ∈ D (33)

instead of (32b), and the substitution

xc = uchd, d ∈ D, c ∈ Cd. (34)

We finally note that this non-bifurcated version of SB-S is almost alwaysNP-hard (see [̇ZPT08]; it
is polynomial only in the case of one single demand and a single link-failure scenario.

8 Summary of pricing problems

This section summarizes the essence of the pricing problemsdescribed in sections 3–7.
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PD – path diversity

Parameters:λs
d ≥ 0 : dual cost of realizing demandd ∈ D in states ∈ S.

Pricing problem:For each demandd ∈ D find aud-vd-pathp minimizing

〈p〉 =
∑

e∈p

ξe +
∑

s∈S̄p

λs
d. (35)

Remarks:The pricing problem isNP-hard for multiple failures. For single link failures it is polyno-
mially solvable by searching for a shortest path for demandd ∈ D with respect to demand-dependent
link weightsγe

d = ξe + λ
{e}
d .

UR – unrestricted reconfiguration

Parameters:πs
e ≥ 0 : dual cost of linke ∈ E in states ∈ S

Pricing problem:For each demandd ∈ D and each states ∈ S find aud-vd-pathp minimizing

〈p〉 =
∑

e∈p

πs
e. (36)

Remarks:The states are completely independent of each other. Hence,for any set of failure situations,
improving paths for demandd ∈ D in states ∈ S can be found in polynomial time by searching for a
shortest path with respect to demand-independent link weightsπs

e .

FD-nSR – situation-dependent restricted restoration without stub release

Parameters:πs
e ≥ 0 : dual cost of protection capacity of linke ∈ E in failure states ∈ S∗.

Pricing problem:

1. For each demandd ∈ D and for each failure states ∈ S∗ find a shortest backupud-vd-path with
respect to demand-independent link weightsπs

e . Denote the lengths of the resulting shortest
paths byrs

d (d ∈ D, s ∈ S∗).

2. For each demandd ∈ D find a workingud-vd-pathp minimizing

〈p〉 =
∑

e∈p

ξe +
∑

s∈S̄p

rs
d. (37)

Remarks:The pricing problem isNP-hard for multiple failures. For single link failures it reduces to
a shortest-path problem path for each demandd ∈ D with respect to demand-dependent link weights
γe

d = ξe + r
{e}
d . Observe that the pricing problem for working paths in FD-nSRhas the same structure

as problem (14) whenλs
d is substituted withrs

d.

FD-SR – situation-dependent restricted restoration with stub release

Parameters:πs
e ≥ 0 : dual cost of linke ∈ E in states ∈ S.

Pricing problem:

1. For each demandd ∈ D and each failure states ∈ S∗ find a shortest backupud-vd-path with
respect to demand-independent link weightsπs

e ; denote its length byrs
d.
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2. For each demandd ∈ D find a workingud-vd-pathp minimizing

〈p〉 =
∑

e∈p

∑

s∈Sp

πs
e +

∑

s∈S̄p

rd
s . (38)

Remarks:The pricing problem for working paths isNP-hard even for single link failures.

FI-nSR – situation-independent restricted restoration without stub release

Parameters:πs
e ≥ 0 : dual cost of protection capacity of linke ∈ E in states ∈ S∗.

Pricing problem:For each demandd ∈ D find a pair of failure-disjoint pathsc = (p, q) from ud to vd

minimizing
〈c〉 =

∑

e∈p

ξe +
∑

e∈q

∑

s∈S̄p

πs
e. (39)

Remarks:The pricing problem isNP-hard even for single link failures.

FI-SR – situation-independent restricted restoration with stub release

Parameters:πs
e ≥ 0 : dual cost of linke ∈ E in states ∈ S.

Pricing problem:For each demandd ∈ D find a pair of failure-disjoint pathsc = (p, q) from ud to vd

minimizing
〈c〉 =

∑

e∈p

∑

s∈Sp

πs
e +

∑

e∈q

∑

s∈S̄p

πs
e. (40)

Remarks:The pricing problem isNP-hard even for single link failures.

SB-D - single backup path restoration with dedicated protection capacity

Parameters:ξe ≥ 0 : primal unit cost of linke ∈ E .
Pricing problem:For each demandd ∈ D find a pair of failure-disjoint pathsc = (p, q) from ud to vd

minimizing
〈c〉 =

∑

e∈p

ξe +
∑

e∈q

ξe. (41)

Remarks:The pricing problem is polynomial for a any single link failure scenario butNP-hard for a
general failure scenario, including the scenario containing the failures of all pairs of links.

SB-S - single backup path restoration with shared separatedprotection capacity

Remarks:The pricing problem for the relaxation of SB-S is the same as for FI-nSR, and henceNP-
hard already for single link failures.

Overview table

Table 1 summarizes the complexity of the considered pricingproblems in a single and multiple link
failure setting together with references where this complexity has been shown. The letters (a) to (e)
refer to the five classes of pricing problems defined in the introduction. For some survivability con-
cepts, theNP-hardness for multiple failures follows from theNP-hardness for single failures. The
second column states whether non-failing but unused capacity is released in a failure situation (stub
release) or reserved for the normal network state, and whether capacity is dedicated to a particular
demand or shared between demands.
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problem release, restoration path/pair length dual constraint failure type/complexity
sharing type minimize for eachd ∈ D single multiple

PD release none 〈p〉 =
∑

e∈p
ξe +

∑

s∈S̄p

λs
d

∑

s∈Sp

λs
d ≤

∑

e∈p
ξe polynomial (a) NP-hard (c)

dedicated [Wes00, WOZ+05] Sec. 3.4

UR release unrestricted 〈p〉 =
∑

e∈p
πs

e, s ∈ S
∑

s∈Se

πs
e = ξe polynomial (a) polynomial (a)

shared (from scratch) Sec. 4 Sec. 4

FD-nSR no release restricted 〈qs〉 =
∑

e∈q
πs

e, s ∈ S∗
∑

s∈Se\{∅}

πs
e = ξe polynomial (a) NP-hard (c)

shared failure-dependent 〈p〉 =
∑

e∈p
ξe +

∑

s∈S̄p

〈qs〉 [Orl03] Sec. 5.1

FD-SR release restricted 〈qs〉 =
∑

e∈q
πs

e, s ∈ S∗
∑

s∈Se

πs
e = ξe NP-hard (d) NP-hard (d)

shared failure-dependent 〈p〉 =
∑

e∈p

∑

s∈Sp

πs
e +

∑

s∈S̄p

〈qs〉 [Orl03, MV04]

FI-nSR no release restricted 〈c〉 =
∑

e∈p
ξe +

∑

e∈q

∑

s∈S̄p

πs
e

∑

s∈Se\{∅}

πs
e = ξe NP-hard (e) NP-hard (e)

shared failure-independent [SPR+07]

FI-SR release restricted 〈c〉 =
∑

e∈p

∑

s∈Sp

πs
e +

∑

e∈q

∑

s∈S̄p

πs
e

∑

s∈Se

πs
e = ξe NP-hard (e) NP-hard (e)

shared failure-independent Sec. 6.2

SB-D no release single-path 〈c〉 =
∑

e∈p
ξe +

∑

e∈q
ξe — polynomial (b) NP-hard (b)

dedicated failure-independent S̄p ∩ S̄q = ∅ [Suu74] [Hu03]

SB-S no release single-path 〈c〉 =
∑

e∈p
ξe +

∑

e∈q

∑

s∈S̄p

πs
e

∑

s∈Se\{∅}

πs
e = ξe NP-hard (e) NP-hard (e)

shared failure-independent [SPR+07]

Table 1: Complexity of pricing problems for different survivability concepts
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9 Concluding remarks

In the previous sections we have investigated the complexity of the path generation problem under
single and multiple link failure scenarios for various survivability mechanisms. This section provides
a classification of the results and discusses some possible extensions.

9.1 Classification of pricing problems

It can be seen in Table 1 that the pricing problems of all the considered survivability mechanisms have
certain regularities. They are all composed of five types of minimization problems that determine the
complexity of the pricing problem:

1. classical shortest-path problem for each network state (polynomial for both single and multiple
failure scenarios)

2. classical shortest failure-disjoint pair of paths problem (polynomial for single failures,NP-
hard for multiple failures)

3. shortest path problem where the path length is the sum of given prices of the failure states in
which the path fails (polynomial for single failures,NP-hard for multiple failures)

4. shortest path problem with link weights depending on the set of the failure states in which the
path survives (NP-hard already for single failures), and

5. shortest path pair problem with link weights of the backuppath depending on the set of failure
states in which the primary path fails (NP-hard already for single failures).

Notice that some pricing problems contain two of these subproblems; in this case, the overall com-
plexity is determined by more difficult subproblem. If the formulation contains separate flow variables
for each failure state, the pricing problem for backup pathsis always easy because a flow variable for
a particular failure state is affected only by the constraints of that state. The hard part, if any, is find-
ing improving working paths or disjoint pairs of working andbackup paths because the variables for
working paths are coupled by conditions corresponding to all the network states.

9.2 Flow cost

In the previous discussions, we have always assumed that there is no flow cost but only capacity
cost. The effect of adding flow cost depends on the cost structure: if all routing paths for a specific
demand have the same costc per flow unit, the parameterc only appears as a constant in the pricing
problem and does not affect its complexity. If, on the other hand, the flow cost depends on the specific
routing path, even the pricing problem of a simple multi-commodity flow routing without survivability
restrictions is a weighted longest-path problem, which is in generalNP-hard [GJ79, problem ND29].

9.3 Directed graphs, node failures, and connected components

Directed graphs Up to now we have assumed undirected graphs. In fact, in most cases switching to
directed links or bi-directed links does not affect the complexity of the pricing problems. The reader
is advised to consider each case one by one and confirm this statement.
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Node failures In practical applications, node failures may have to be considered in addition to link
failures. We have not discussed node failures in the main part of this paper because they can be
simulated by link failures in an auxiliary graphG′, which is constructed from the original graphG as
follows.

First, each original undirected linke ∈ E is replaced by a pair of antiparallel directed arcse′ and
e′′ with ξ′e = ξ′′e = ξe. In a second step, every nodev ∈ V is split into two nodesv′ andv′′ connected
by a single (dummy) directed arcev of costξev = 0, as shown in Figure 2.

v v′ v′′
e1

e2

e3

e4

e1

e2

e3

e4

ev

Figure 2: Node splitting transformation

Any path p = {e1, e2, . . . , en} from nodes to nodet in the original graphG corresponds to
a directed pathp′ from s to nodet in the new graphG′ traversing arcse′i or e′′i (i = 1, 2, . . . , n,
whichever is consistent with the direction of the path) and the dummy arcsev for those nodesv ∈ V
in G which belong top (and vice versa). With this construction, the failure of link ev in G′ corresponds
precisely to the failure of nodev ∈ V in G, and the failures of a single link with antiparallel counterpart
in G′ correspond to the single link failures inG. Thus, any failure state in the original graph involving
a certain number of linksandnodes can be modeled by means of a failure involving only links in the
transformed graph. Obviously, the transformation is polynomial in the size of the graph. It follows
that pricing for single node failuresand single link failures has the same complexity as pricing for
single link failures.

Alternatively, assuming only elementary paths, single-node failures can be directly taken into
account in the pricing problem by distributing half of the dual node weight among the incident edges,
as described for the path diversity problem in [Wes00, WOZ+05].

Certainly, when considering node failures we should bear inmind that the volumes of all demands
d ∈ D incident with a given nodev ∈ V cannot be realized at all in a failure states ∈ S involving
nodev. This can be reflected by settinghs

d = 0 for such pairs(d, s) in PD and UR, and by skipping
the constraints that force restoring affected flows for suchdemands and states. In the node-splitting
transformation described above, it can be reflected by mapping au-v-demand inG to au′′-v′-demand
in G′.

Failures of span 1 In Section 3.4, we have shown theNP-hardness of PD for general multi-
ple failures by reduction to MC-PATH, identifying colors with shared risk link groups. Coudert et
al. [CDP+06] showed that MC-PATH is still polynomial if (1) every edge has only one color (such
a graph is calledmonochromatic), and (2) the edges of each color form a connected component of
the graph. By defining the span of a colorc as the number of connected components of the subgraph
induced by the edges ofc, the second condition means that every color has span 1. As a special case,
this condition holds if all links with the same color are incident to the same node. Recall that also
the pricing problem for PD can be solved in polynomial time for single node failures. This raises the
question whether it is also polynomial if the failing edges form a connected component of the graph,
i.e., every shared risk link group is of span 1.

Unfortunately, this is not the case in general. The reason isthat in our setting, a link may be
affected by several failure situations, i.e., it has several colors. Although such a multichromatic graph
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can be transformed into a monochromatic graph by replacing each multi-colored edge by a series of
single-colored edges, this transformation does not necessarily preserve the span of a color because its
span in the resulting graph depends on the ordering of the single-colored links. Even if the edges of
each color form a connected component in the original graph,it can not always be transformed into a
monochromatic graph where each color still has span 1.

But even if every SRLG has span 1, i.e., every link is affectedby at most one failure state, there
cannot be a polynomial algorithm which solves all pricing problems (13) for PD. The reason is that if
such an algorithm existed, we could also use it to solve any pricing problem for PD in networks with
failures of larger span, which contradicts itsNP-hardness in the general case [CDP+06]. In fact, any
network with colors of span larger than 1 can be transformed into a span-1 network by connecting the
components of each color with additional links with costξe = ∞. Such an artificial link will never
be used by a shortest path unless the original graph is disconnected. With a polynomial number of
colors (e.g., corresponding to all dual link failures), this transformation is polynomial, and the shortest
paths in the original and modified graphs are the same. Hence,solving the pricing problem for PD
(as for FD-nSR and FD-SR) isNP-hard for general multiple link failure scenarios even if all of them
correspond to connected components.

9.4 Complexity of the primal vs. complexity of the pricing problem

TheNP-hardness of the pricing problem associated with a specific non-compact linear programming
formulation of a problemP does not necessarily mean thatP is NP-hard itself. For example, there
may exist a compact LP formulation ofP. What we only know for sure is that if the pricing problem
for some non-compact LP formulation ofP is polynomial, thenP is polynomial. This follows from
the so calledseparation theorem(see [GLS88]). It can be shown that for each non-compact LP
formulation considered in this report, an optimal solutionof the pricing problem provides an optimal
solution of the separation problem for the dual problem, i.e., provides the best (in the sense of the
separation theorem) inequality separating the current optimal dual solution from the polyhedron of
the dual problem corresponding to the full primal problem. Vice versa, if we can show thatP isNP-
hard, then any LP formulation for it must be non-compact witha non-polynomial pricing problem
(unlessP = NP).

However, for each problemP considered in this report, except for FD-SR (whoseNP-hardness
has not been proven as yet), a stronger result than the above holds: P is NP-hard if, and only if, the
pricing problem related to the considered non-compact formulation of P is NP-hard. Let us recall
that, as discussed in the previous sections, the pricing problem isNP-hard for the following cases:

• PD, FD-nSR, SB-D for multiple-link failure scenarios

• FD-SR, FI-nSR, FI-SR (and linear relaxation of SB-S which isequivalent to FI-nSR) for both
single or multiple failure scenarios.

For the remaining cases, i.e., for

• PD, FD-nSR, SB-D for single-link failure scenarios

• UR for single or multiple failure scenarios

the pricing problem is polynomial.
SinceNP-hardness has been proved for PD and FD-nSR [TPŻ08], SB-D [Hu03] (for multiple

failures), and for FI-nSR/SB-S [ŻPT08] and FI-SR [PTZ09] (already for single link failure scenarios),
the above statement is valid.
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We have also found that in all the cases of non-compact LP formulations considered in this report
the pricing problem is polynomial if, and only if, we can alsoestablish a compact node-link LP
formulation of the considered problem. The “only if” implication is easy to prove in general, since
a compact node-link LP formulation shows that the problem ispolynomial (as discussed above).
However, the opposite implication is not that easy to prove in general. We have exhibited it for the
discussed problems by providing explicit compact node-link formulations for all the relevant cases,
i.e., for PD, FD-nSR, and SB-D (single link failures), and for UR (all failure scenarios). Below we
present a selection of such formulations. For ease of notation we will assume directed links and
demands; changing these formulations to undirected flows isa straightforward exercise.

For PD and a single link failure scenarioS ⊆ {{e} | e ∈ E} ∪ {∅}, the compact node-link
formulation is as follows.

minimize
∑

e∈E

ξe

∑

d∈D

xed (42a)

s.t.
∑

e∈δ+(v)

xed −
∑

e∈δ−(v)

xed =







0, v ∈ V \ {ud, vd}
Xd, v = ud

−Xd, v = vd

d ∈ D, v ∈ V (42b)

Xd ≥ hd d ∈ D (42c)

Xd − xed ≥ h
{e}
d d ∈ D, {e} ∈ S (42d)

x,X ≥ 0. (42e)

Above, variablexed denotes the flow realizing demandd ∈ D on link e ∈ E , and variableXd is
the total flow realized for demandd ∈ D. Also, δ+(v) denotes the set of all links ine ∈ E outgoing
from nodev ∈ V, andδ−(v) the set of all linkse ∈ E incoming to nodev ∈ V.

If we wished to take single node failures directly into account, i.e., without transforming the
network graph as described in Section 9.3, then we would add to formulation (42) the following
constraint for each failing nodev ∈ V:

Xd −
∑

e∈δ+(v)

xed ≥ h
{v}
d , d ∈ D, v /∈ {ud, vd}. (43)

Writing down compact node link formulations for UR (for an arbitrary failure scenario, using
state-dependent link-flow variablesxeds) is a straightforward exercise. For FD-nSR and a single-link
failure scenarioS ⊆ {{e} | e ∈ E} ∪ {∅} the relevant formulation reads:

minimize
∑

e∈E

ξeye (44a)

s.t.
∑

e∈δ+(v)

xed −
∑

e∈δ−(v)

xed =







0, v ∈ V \ {ud, vd}
hd, v = ud

−hd, v = vd

d ∈ D, v ∈ V (44b)

∑

e∈δ+(v)\s

zeds −
∑

e∈δ−(v)\s

zeds =







0, v ∈ V \ {ud, vd}
xed, v = ud

−xed, v = vd

d ∈ D, v ∈ V, s ∈ S (44c)

∑

d∈D

(xed + zedf ) ≤ ye e ∈ E , s ∈ S \ {e} (44d)

x, z ≥ 0. (44e)
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For SB-D and the single-link failure scenarioS ⊆ {{e} | e ∈ E} ∪ {∅} the relevant node-link
formulation is as follows.

minimize
∑

e∈E

ξe

∑

d∈D

hdxed (45a)

s.t.
∑

e∈δ+(v)

xed −
∑

e∈δ−(v)

xed =







0, v ∈ V \ {ud, vd}
2, v = ud

−2, v = vd

d ∈ D (45b)

1 ≥ x ≥ 0. (45c)

Note that the above formulation is unimodular (see [AMO93])and therefore its optimal vertex solu-
tions are integer, as required for SB-D. The above formulations can be adapted to undirected links and
demands using the notation already applied in the pricing problem formulations (14) and (23).

Finally, we note that all of the consideredNP-hard pricing problems (see Table 1) become poly-
nomial (and treatable for example by the Dijkstra shortest path algorithm) when the lists of primary
paths are fixed, so that the primary paths are given and are notsubject to optimization/generation.
This is a quite common situation in practical telecommunication network design.
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[PTZ09] M. Pióro, A. Tomaszewski, and M.Żotkiewicz. Computational complexity of optimiza-
tion problems related to resilient networks with flow restoration.Submitted to INFOCOM
2009, 2009.

[SCT01] J. Strand, A. L. Chiu, and R. Tkach. Issues for routing in the optical layer.IEEE Com-
munications Magazine, pages 81–87, 2001.

[SPR+07] T. Stidsen, B. Petersen, K.B. Rasmussen, S. Spoorendonk, M. Zachariasen, F. Rambach,
and M. Kiese. Optimal routing with single backup path protection. In Proceedings of the
3rd International Network Optimization Conference (INOC 2007), Spa, Belgium, 2007.

[Suu74] J. W. Suurballe. Disjoint paths in a network.Networks, 4:125–145, 1974.
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