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Abstract

This survey concerns optimization problems arising in tesigh of survivable communica-
tion networks. It turns out that such problems can be modelednatural way as non-compact
linear programming formulations based on multicommodibyfihetwork models. These non-
compact formulations involve an exponential number of fflath variables, and therefore require
column generation to be solved to optimality. We consideess path-based survivability mech-
anisms and present results, both known and new, on the critypéthe corresponding column
generation problems (called the pricing problems). Weutisaesults for the case of the single
link (or node) failures scenarios, and extend the consimersto multiple link failures. Further,
we classify the design problems corresponding to diffesentivability mechanisms according
to the structure of their pricing problem. Finally, we shdvatt almost all encountered pricing
problems are hard to solve for scenarios admitting mulfgileres.

1 Introduction

In the literature on communication network design and wadfigineering, a variety of linear pro-
gramming (LP) formulations have been developed to incatgovarious protection and restoration
mechanisms against node and link failures into networknupétion models. Many of them em-
ploy non-compact link-path formulations where each flowialale represents end-to-end demand
flow routed on a path in the underlying communication netwdmksuch formulations the number of
routing paths, and thus the number of flow variables, grovp®eentially with the network size. To
solve link-path formulations with respect to all possibdeiting paths in networks of practical sizes,
a common approach is to use column (path) generation,d.statt with a small set of flow variables
corresponding to an initial set of routing paths, and to gaeefurther variables only when needed to
improve the current solution.

For a given optimal LP solution with respect to a restricteticf variables, thericing problem
or column generation problens to identify further columns that could improve the LP \@lor to
discover that no such columns exist. A column can improvectiteent optimal solution if it has a
negative reduced cost, i.e., if it violates a dual constraimew columns are found, the LP is resolved
with the new variables. This process is repeated until naawipg variables are found.

To be sure that in the end the LP is optimally solved with resfmeall variables, the pricing algo-
rithm has to be exact, i.e., if there exists an improvingalalg, the algorithm must be able to identify



it. With exponentially many variables, computing the restilicost for every potential variable indi-
vidually is not feasible. It is thus of interest whether thiging problem can be solved in polynomial
time with respect to the size of the underlying network.

The primary goal of this survey is to systematically sumaethe results (otherwise spread over
the literature) on the complexity of column generation farisus network survivability mechanisms
and failure scenarios. The survivability mechanisms ceden this paper include path diversity,
unrestricted reconfiguration, and several ways of enditbpath restoration. We distinguish between
single and multiple link failure scenarios, whether thestbn of backup paths for working paths is
failure state-dependerdr failure state-independenand whether the capacity of surviving links of a
failing path can be released and reused for backup flowsi§lkisown asstub releasgor not. Note
that in the latter casa$ stub releaseworking and backup link capacity are separated. In the chse
failure-independent restoration without stub releasedistnguish whether backup capacity is shared
between demands or dedicated to each demand individually.

It has been known that for survivability mechanisms withstutb release, under a single link or
single node failure scenario the pricing problem reduces(fmlynomial) shortest-path or a shortest-
pair of disjoint paths problem with respect to link weightxided from the dual LP solution. For
other mechanisms, the pricing problem has been shown fg’Benhard already under a single link
failure scenario. When it comes to multiple failures (alsterred to ashared risk link groups little
has been done so far for most of the considered survivalsitiicepts—this issue is discussed in the
balance of this survey.

It turns out that from the complexity viewpoint, the pricipgpblems for all the considered surviv-
ability concepts are composed of only few types of minimaaproblems: (a) a classical shortest-
path problem, (b) a classical shortest-cycle problem (rpogeisely, a shortest failure-disjoint pair of
paths problem), (c) a shortest path problem where the patiHeas the sum of given non-negative
prices of the failure states in which the path fails, (d) ar&st path problem with link weights de-
pending on the set of the failure states in which the pathigesyand (e) a shortest path pair problem
with link weights of the backup path depending on the set iiiria states in which the primary path
fails. In the single failure case, the complexity of the prgcproblem depends on these structural
classes; when multiple (even only double) link failurestaken into account, the pricing problem for
most of the survivability mechanisms turns out toAs@-hard. Furthermore, for most of the consid-
ered concepts, we are able to find a compact LP formulaticeni, only if, the pricing problem is
polynomial. Whether or not this is true in general is disedsis Section 9.4.

This report is organized as follows. In the next section, vileimiroduce the notation used in the
rest of the paper. Section 3 describes in detail an LP fortiounlats dualization, and the corresponding
pricing problem for a particular problem called PD (pathedsity); other survivability mechanisms
are discussed (deliberately in less detail) in Sections Affér summarizing the results in Section 8,
we discuss their consequences and possible extensionstiorge.

2 Notation

We will now introduce the notation needed to discuss thefiath formulations and pricing problems
for various survivability concepts and failures scenarios

Network. The considered network is modeled using a undirected gfaph (V, ) composed of
a setV of nodes and a set of link& between the nodes. For ease of exposition, we assume that the
graph does not contain loops nor parallel links, ifec; V12l whereV!?l is the set of all two-element



subsets of the set of nod®s The end nodes of link € £ are denoted by, andv,, soe = {u,, v }.
The cost of realizing one unit of demand flow on link £ is denoted by, and its capacity (which
will serve as a variable) by.. Finally, §(v) := {e € £ | e > v} denotes the set of all links incident to
nodev € V.

Demands. The setD C VI2l represents undirected point-to-point demands. For miaticonve-
nience, at most one demand between each pair of nodes isestlile source and target of demand
d € D are denoted by, andv,; and assumed to be different from each other (the choice ctthece
and the target out of the two end nodes of a demand is arbitrditye demand value (volume) of
demandi € D is given byhy > 0.

Network states. All survivability concepts discussed in this paper are defiwith respect to a given
failure scenario. For this, we introduce a SetC 2¢ of network stategach of which corresponds to
a subset of failing links. Se&f is called theailure scenario It is assumed that contains the normal,
failure-less stat@ in which all links are operational. The s8t := S\ {0} contains thdailure states

in which at least one link fails. The notatidh = {s € S | e ¢ s} will denote the set of all states
s € Sinwhich link e € £ is available, ands, = S\ S. will be the set of all failure states in which
it fails. Throughout the paper, we will assume that the nunabestates in sef is polynomial with
respect to the size of the network; otherwise the pricindpleras must be exponential. Node failures
are discussed in Subsection 9.3.

Routing paths. Each demand € D has a seP, of undirected candidate paths that can be used for
realizing the demand flow. Unless stated otherwiggis a subset of all the elementary paths fram
to vy, i.e., the candidate paths do not traverse any node moretiwn The set of all candidate paths
is denoted byP := J,cp P4. As we have assumed at most one demand per a pair of nodesfshe s
Pa,d € D are mutually disjoint; hence, each patle P can be simply identified with the set of the
links it traverses, so that C £. The flow realizing the volume of demaids D on pathp € P, will
usually be denoted by variabig,.

The setP; of candidate paths for demard= D available in state € S is defined as

P§:{p€Pd|pﬂ8:@}g73d;

similarly, P5 := P, \ P35 denotes the complementary set of all candidate pathsdditistates € S.
Furthermore,P. C P is the set of all paths containing link € &£, andP; := P. N (Uyep P3)
denotes the set of all paths containing link £ that are available in statec S. Observe that by the
definition of the normal state? = P, andP? = P,.
The notation
S,={seS|pns=0}

andS, := S\ S, refers to the sets of statesc S in which pathp € P is available or unavailable,
respectively. For the path protection/restoration meigmas considered in the sequel we will use
the following notation. The notatio@,, C P refers to all candidate backup paths for protecting a
particular pattp € P. These are paths with the same end nodes agythtit never fail together with

p (in other wordsp andq arefailure-disjoinf). Hence, ifg € Q, then for alls € S,

pNs#D = qgns=40.
Also, Q,. := {q € Q, | ¢ > e} denotes the set of all paths protecting pathat contain a particular

link e € £. The set of all (failure-disjoint) primary-backup pathngai = (p, ¢) for demandd € D
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will be denoted byC; := {¢ = (p,q) | p € P4, q € Qp}. Primary-backup path pairs will be denoted
by c € C := Uzep Ca- Also, for each linke € &, the set of all pairg: € C such thate € p will be
denoted by}, and the set of all pairssuch that € ¢ will be denoted by??. Variablex. denotes the
flow realizing the volume of demanéie D on path-pair € C,.

Assumptions. In practical applications, network features differentrtftescribed above could be
required. First of all, we could consider directed linksc&ror demands, and directed or bi-directed
link capacity, as this may be necessary for certain comnatioic network models. In the main body
of the report we assume undirected links and demands and ttiefeliscussion of other options to
Subsection 9.3.

Another important cases arise when modularity of link céjescor node hardware is taken into
account, as well as when demand flows are forced to be uagidit{non-bifurcated). Still, as this
paper focuses on column generation, we restrict oursetvdisidar programs and assume all the
primal variables (link capacity and flow variables) to betammous, nonnegative, and unbounded from
above. This assumption is satisfied in a natural way in thealrfLP) relaxations of most practical
network planning problems. Moreover, only the linear ratéeons are used in the branch-and-price
algorithms for exact resolution of the mixed-integer pevgs (MIP) resulting from link modularity
or unsplittable flows.

Notice that the dual LPs discussed in this paper are alwastie because the zero vector is a
feasible dual solution. To ensure that in the consideredngiproblems, all occurring dual LPs have
a bounded optimal solution, we assume that the initial seduting paths results in a feasible initial
primal LP. When it is not clear how to compute such a set of pdtmsibility of the primal LP can
always be achieved by introducing artificial slack varigblglternatively, column generation can also
be done using a dual ray instead of a dual optimal solutiodmeifarimal LP is infeasible.

3 Path diversity — PD

We start the main part of our considerations on the compleXitpricing problems with a network
design model related to the path diversity concept. Foghiticular model we will illustrate in detail
the basic ideas behind path-flow LP formulations, their du&l) problems and the related pricing
tasks. Other survivability concepts presented in theWahg sections will be discussed in less detail.
We assume that the reader has a basic knowledge of linearapnogng techniques; for details we
refer to the linear and integer programming books [Min86, 38]V

3.1 Primal problem

Conceptually, the simplest way of protecting traffic agafading network components is by over-
provisioning. Protection concepts based on path divefsitgw this approach by routing more than
the specified demand valug in the failure-less stat@, and ensuring that at least a specified fraction
of it survives each considered failure scenario withoutwéng any flow.

Several such concepts have been presented in the liter&aurexamplediversification[DS98]
and its generalizatiodemand-wise shared protection (DREZJH05, WOZM05, KZ07]. For the
purpose of this paper, we subsume both concepts under thepaimdiversity The related network
design problem is given by the following LP formulation. Issence, the formulation simply states



that for each demand enough flow must survive in every netsiate.

minimize > & (1a)
ecf
[AS > 0] > @, > by deD,seS (1b)
pEP]
Z ZTp < Ye eecé (1c)
pGPe
z,y > 0. (1d)

If any of the end-nodes of some demadid= D fails in states € S, we assume’ = 0 because
otherwise the above LP becomes infeasible du@jo= ). The symbol)\} in brackets to the left
of constraint (1b) denotes the corresponding dual variedblieh is used in the problem dual to PD
derived in the next section.

Notice that with fractional (i.e., continuous) capacityrighlesy., each inequality in (1c) could
be turned into an equation, and then the problem would decsenipto a set of separate problems for
each demand € D:

minimize > &y (2a)
PEPq
A5 > 0] >z, > hy seS (2b)
pEP]
x>0, (2¢)

whereg), := Eeep & Is the cost of sending one unit of flow along patk 7. Nevertheless, we keep
the problem in form (1) because this decomposition cannaipipdied to other survivability concepts
discussed in this paper, or if additional constraints, ¢ikding planes, are present.

3.2 Dual problem

We will now derive the dual formulation to problem PD (1) wgithe Lagrangean function. For the
other survivability concepts discussed in the followingtsms, we will formulate the dual without
showing its derivation. For ease of notation, we will use gle@eral concept of duality for convex
primal problems [Las70], which allows us to write down thesipaints in a “natural” way and have
non-negative dual variables nevertheless. This appraffeinsdrom the usual definition of LP duality
only in the sign of the dual variables. We thus assume primadlpms of the following form:

minimize F(z) (3a)
] fiw) =0 J=12,...,J (3b)

[ > 0] gr(x) <0 =1,2,.... K (3¢)
z € X. (3d)

The dual variables associated with equality constraints (3b) are unconsdain sign, while the dual
variablesr associated with inequality constraints (3c) are non-regatl hen the dual function, to be
maximized over\ andr > 0, is defined as:

W (A, ) :=min L(x;\, ), 4)
zeX
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where the Lagrangean functiofi(x; A\, 7), is given by:

J K
L(z; A\, )= F(z) + Z A fi(x) + Z Trgk (). (5)
j=1 k=1
Formally, by definition, the dual problem is given by:
Wrgax)\ WA ) = ﬂgax}\ min L(x; A\, 7). (6)

In fact, problem (6) can admit unbounded values of the duattfan W (A, 7) defined by (4).
Therefore, to make the dual a proper optimization probldhveators A andx for which W (A, 7) =
—oo have to be eliminated. This in general leads to an extra sgirtraints (on top of > 0) to be
added to the formulation of the dual problem (6).

Finally, we recall the so called strong duality theorem \tstates that when the primal problem
(3) has a bounded optimal solutidfi* then this solution is equal to the optimal objectié& of the
dual problem (6).

The problem dual to PD can be obtained by substituting thaayy. of link e € £ by its load
Epepe xp in (1a), and by relaxing the demand constraints (1b) intathective function. This leads
to the following Lagrangean function using the primal valész,, > 0 and the dual variables; > 0
of the demand constraints (1b):

Ll A) =) &) ap)+ D> Ahg— D ap)

eef PEPe deD seS PEP]
=D 2 kN D (=D Ny @
deD seS deD pePy ecp SESy

Then the dual problem is given by:

max W) = max min L(z,y; \). (8)

Problem (8) admits unbounded values of the dual functiéfh) so we have to get rid of all vectors
A for which W (\) = —oo. This leads to the following form of the dual:

max { DD BN | D A<D &, deD, pe Pyl ©)

deD seS SES) eEp

Notice that this dual problem always has the feasible smiuti= 0. By introducing auxiliary dual
variablesA,, d € D, we obtain a more handy form of the dual:

max W) =YY hiA; (10a)
deD seS
Ag=> X deD (10b)
seS
Ag<D &+ > N deD, pePy (10c)
ecp SESp
A>0. (10d)



Given an optimal dual solutiof\*, A*) with respect to the current set of candidate paths, the doal o
the pricing problem for demand € D is to find a new pathp € P, which violates its dual constraint

(10c), i.e., which satisfies
DL+ D AT <AL (11)

ecp €Sy

If added to the current LP relaxation, such a patimay improve the primal objective function. The
details of this pricing problem for single and multiple lifdilures are discussed in the following two
sections.

Notice that if the capacitieg. have to satisfy additional integrality restrictions, trEuesé, in
the dual constraints (10c) have to be replaced by the notinegiual values of the capacity con-
straints (1c) (similarly for all other survivability disssed in this paper). This does not affect the
complexity of the pricing problems.

3.3 Pricing problem for single failures

Under a single link failure scenari® C {{e} | e € £} U {0}, the pricing problem for PD can be
solved in polynomial time, as observed by Wessaly et al.0e WOZ 05]. To see this, note that
with single link failures only, condition (11) can be revieit as follows:

ST+ AT < A (12)

ecp

The right-hand side depends only on the demand, and the lgghts on the left-hand side are
nonnegative. Hence, for each demahd D, violation of dual constraint (10c) can be tested by
searching for a shortest path between the end-nodéswith respect to the demand-dependent link
weightsy§ = & + )\C{f}* using for example the Dijkstra algorithm, and comparindetgth to the
value of A. If a shortest pathy’ for demandd’ fulfils condition (12), then adding pathl to Py

(and thus the corresponding constralng < Eeep,(ée + AC{;}) to the dual formulation (10)) can
potentially improve the primal objective value. Otherwise path for this demand violates its dual
constraint for the current set of optimal dual variables.

3.4 Pricing problem for multiple failures

In a multiple failure state a group of links fails simultansty. Such a group of links that fail together
is sometimes called shared risk link grougdSRLG) [SCTO01]. In this section, we show by reduction
to the minimum-color shortest-path proble(MC-PATH) that path generation for PD is in general
difficult if multiple link failure scenarios are considered

In the MC-RATH problem, also known asinimum label shortest-path probleevery linke € £
is assigned a seft. of colors (labels) out of the set of coloéswith given weightsw,. > 0. The
length of a pattp in this colored network is defined as the total weight of thkisotraversed by
p. In contrast to the classical shortest path problem, thghteaif a used color is counted only once
even if the path contains several links with that color. Giwo nodesu,v € V, the goal of MC-
PATH is to find au-v-path with minimum length. This problem has been shown tgvifa-hard for
a general color setting [YVJO05, CDP6]. Also, various inapproximability results for MCAPH are
known [YVJO5, CDP 06, HMS07].



The pricing problem for PD, RICE-PD, is defined separately for each demdr& D and consists
of finding a pathp from u4 to v4 minimizing the generalized path length

Py =D &+ > A" (13)

ecp seS,

The second sum contains the dual values of those netwodsstat S in which the path fails, i.e.,
when the path contains at least one link fremNotice that if the path contains several failing links
from s, the weight)\’* is counted only once, as in the MCxR4 problem. By identifying failure
states with colors and assuming all cast$o be zero, it is easy to see that the pricing problem (13)
contains MC-RTH as a special case, which shows that@-PD is NP-hard in general.

If the considered set of multiple failures is exponentiathe number of network nodegyP-
hardness of RICE-PD is not surprising. Coudert et al. [CDP6] have shown, however, that MC-
PATH is N'P-hard already for the polynomially bounded set of all doubi& failures, i.e.,S =
ERlyY {0}. Some special cases, however, are known to be polynomig) liek failures induced by
single node failures. Such cases are discussed in Section 9.

The pricing problem can be formulated as a mixed-binary qammgning problem (MIP) using the
node-link notation. In this notation the link flows must beedied. In case of an undirected network,
for each linke € € (e = {v,w}) we must use two directed link flow variables; ,,,, denoting the
flow in direction fromv to w, andx. ., denoting the flow in the opposite direction.

min Z Eee + Z A YS (14a)
ecf SES
07 vey \ {ud7 Ud}
s.t. Z (Zeow — Tewv) = 1, V= Uy (14b)
e€s(v) —1, v =g
e={v,w}
1>Y° > Zepw + Tewn se8,ees, e={v,w} (14c)
Tepws Tewr € {0, 1} e€ &, e={v,w}. (14d)

Let (x,Y") be an optimal solution of (14). Then constraints (14b) tbgetvith the binary requirement
(14d) will ensure that the the flows. .., z ., €qual tol will specify a directed single-path flow of
value 1 fromuy to vg. Moreover, assuming positive link unit cogtsat most one of the variables
Zeww @NAT, 4, Will be nonzero for any linke € £, and the linkse € £ with z¢ ., OF 2, ., €qual to 1
will form a single path fromu, to v,. Finally, the variables™ (identifying the failure states in which
the so specified flow fails) will also be binary because theymainimized and restricted from below
by binary values.

Alternatively, the pricing problem can be converted intdrestance of theshortest-path problem
with resource constraint§SPPRC) [ID05]. For a given instance of the pricing probléhg corre-
sponding instance of SPPRC is constructed as in Figure 1ndtmeork graph of the original problem
is preserved and is presented as a cloud in the figure. Edcimlihis graph has a primal co&t, as in
the pricing problem. For the SPPRC problem instance wednotre|S| resources (corresponding to
the failure states), and assume that lin& £ consumes one unit of resourges S if e fails in s, and
nothing otherwise. The original network graph is extendgedd) additional nodes an? - |S| links
denoted by:* andb®, s € S, as shown in Figure 1.

Links a® have cost,s := 0; these links consume a large amoudt > > _. & of resource
s and nothing of all other resources. The linkshave costs := (\3)* and do not consume any
resources. Let/, denote the last node as depicted in Figure 1. The objectitreiresulting instance
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Figure 1: Transformation of the PD pricing problem to SPPRC

of SPPRC is to find a shortest path fram to v/, in the transformed network with respect to the
primal link costs which consumes at madst of any resource. This leads to a routing path with the
same cost as described in the MIP objective (14b): the dmtioin of the found path to the first sum
comes from the cloud, and the resource constraints of lifiksiake sure that if a path uses state
somewhere in the cloud, link’ must be used, which contributes a value(&f)* to the path cost.
Using this transformation, we can solve the pricing probiesimg algorithms developed for SPPRC,
for example based on dynamic programming (see [ID05]).

Tomaszewski et al. [TE08] have recently proved (by reduction to the fractionapgr coloring
problem RACTIONAL-COLORING [GLS81]) that for multiple failures problem PD (1) i§P-hard
itself. They showed that PD i&/P-hard already for the single-demand version (2a) for a terta
multiple link failure scenario containing/| failure states. This yields an alternative proof that the
pricing problem RICE-PD is N'P-hard for a polynomial number of failure states.

4 Unrestricted restoration of flows — UR

Contrary to PD where path flows are fixed and cannot be chatigednrestricted restoratiorfUR)
concept allows all flows to be freely rearranged in a failuteasion, so that in effect all the path
flows are established from scratch using link capacity thatiges the failure (i.e., stub release is
assumed). In other words, the flow patterns in differentifailstates are completely decoupled. UR
is also known aglobal rerouting Using variablesr;, to denote the flow on pathin states, UR can

be formulated as a non-compact linear program as follows:

min Z EeYe (15a)
ec&
(A5 > 0] > x> hy deD, se8 (15b)
PEP]
[75 > 0] Z 7y < Ye ecé, seSs, (15¢)
pePE
z,y 2 0. (15d)



The problem dual to UR, which can be easily derived as in 8)+% as follows:

max Z Z hgA5 (16a)

deD seS
Y om <& ceé (16b)
SESe
WEDIE deD,seS, peP; (16c)
ecp
A, > 0. (16d)

In any optimal solution(\*, 7*) of the dual, the value\)" is the length of a shortest pathe P;
with respect to link metricg’*, e € £. Hence, even with multiple link failures, the pricing pret
reduces to a shortest path problem for every dendaadD and every network statec S separately
with respect to the link metrics:* in the network surviving in state. The whole pricing problem is
thus solvable in polynomial time with respect to the numtaranles, links, and network states.

5 Situation-dependent restoration of affected flows — FD

From now on we assume that non-failing path flows must be predeso that only failing flows are
restored. This natural feature is referred taestricted reconfiguration In this section we assume
failure-dependent restoration, i.e., the backup routihng demand depends on the particular failure
state. The failure-independent case is discussed in thesaetion.

With stub release, the capacity on surviving parts (stubg)failing routing path can be reused
for backup paths; without stub release, it is reserved f@ntbrmal network state.

5.1 Situation-dependent restoration without stub release FD-nSR

We first consider the case without stub release, i.e., cgpeannot be reused for backup flow. The
primal problem FD-nSR can be stated in the following wayefalative formulations can be found in
[PMO04]).

min Z EelYe (17a)
ecé
Ag > 0] > x> hy deD (17b)
PEP4
(AS > 0] x> ap deD, seS* (17c)
pePs q€P;
(75 > 0] pr+2x2§ye ecf, seS, (17d)
PEPe qEPE
x,y > 0. (17e)
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The dual problem to FD-nSR derived according to (3)—(5) ilews:

max > halg (18a)
deD
d o=t ecé& (18b)
SESe
A<y deD, seS* qeP; (18c)
eeq
VRSP deD, pePy (18d)
ecp Segp
A7 >0. (18e)

Denote the optimal dual variables by*, 7*). Similarly to unrestricted reconfiguration, it is easy to
find improving protection pathg € P; for demandd € D in any failure situatiors € S* by solving
a shortest path problem between the end-nodes inofthe surviving network with respect to link
weights7:*, and comparing the path lengthX9*. To generate a primary path for demanhd D, on
the other hand, a path minimizing,., 5e+zs€5p A% has to be found. Thus, the pricing problem for
FD-nSR is essentially the same as for PD and is thereforenpotial for single link failures [Wes00,
Orl03, BNGKO07]) andNP-hard for multiple failures. As for PD, path generation fd-ASR in
the multiple link failure case can be approached by the SPRB€oach. An SPPRC algorithm
specialized for FD-nSR is discussed in [DZ8]. The algorithm shows very good effectiveness even
for large networks.

In fact, for multiple failures problem FD-nSR §P-hard itself already in the single-demand
version, as demonstrated in [£08] through a reduction toFACTIONAL-COLORING.

5.2 Situation-dependent restoration using stub release SR

In problem FD-SR, we consider situation-dependent restoraf failed flows with stub release, i.e.,
capacity can be reused for backup flow. The correspondingtRuiation FD-SR reads:

min Z Eele (192)
ecf

[Ag > 0] > 2, > hy deD (19b)
PEPq

[AS > 0] Y x> ap deD, seS* (19c)

pEP; q€P;

[ > 0] dap+ > w < cc& seES. (19d)
pEPE qEPE

z,y > 0. (19e)
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The problem dual to FD-SR is as follows:

max Y hakg (20a)
deD
d o=t ecé& (20b)
SESe
WD IE deD,s€S* qcP;  (20c)
eecq
VESNOIEANEDPPY deD, pePy (20d)
ecp seS, sgSp
A\ >0. (20e)

Denote the optimal dual variables py*, 7*). Similarly to the previous case FD-nSR, it is easy to
find improving protection pathg € P; for demandd € D in any failure situatiors € S* by solving
the shortest path problem between the end-nodekifthe surviving network with respect to link
weightsms*.

On the other hand, finding improving primary pathg\i$-hard already in the case of single link
failures, as suggested in [Wes00, pp. 44 and 113], and stetenih [Orl03] and [MV04]. To solve
the pricing problem for a fixed demamlde D we have to find a path from u4 to v, minimizing

NEDIO IR E PP (21)

eEp seS, sgSp

The difficulty in minimizing this sum stems from the tefy], ., ZSGSP m2*. It makes that the weight
of a path in the pricing problem is not merely the sum of inagelemt link weights; instead, the
contributionzsesp m2* of a link to the path weight depends on the set of failure sitaa in which

the path survives, and thus on the whole path. Under a figlesiimk failure scenario, this path weight

reduces to
()= (D_ml"+X5). (22)
eep  fép

Maurras and Vanier [MV04] and Orlowski [Orl03] showed by wetion to the Hamilton path prob-
lem and to the max-cut problem, respectively, that alreahimizing Zeep > Fép 71" is N'P-hard,
which immediately implies tha/P-hardness of minimizing (22).

To solve the pricing problem (21) exactly in practice, it daa formulated as a mixed-binary
problem. The binary flow variableX = (zcyw,Zewy : € € &) describe a path fromy,; to vg;
the capacity variable¥ = (Y* : s € §*) indicate in which states the path fails, and the coupling
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variablesZ = (Z: : s € S,e € &) indicate combinations of used edges with unused states.

min Z ng*zg + Z A Y? (23a)

ecf se§S seS*
07 vey \ {ud7 Ud}

s.t. Z (Zepw — Teww) = 1, V= 1uy (23b)

e€6(v) -1, v =y

e={v,w}
Y® < Z (me,vw + xe,wv)a ses (23C)
e:?[i‘,sw}

Y*> %epw + Tewn, SES, e€s, e={v,w} (23d)
Yo+ Z; > Zepw + Tewn, SES, e€é, e={v,w} (23e)
Xe{0,1}¥ 1>y >0,2>0 (23f)

AlthoughY andZ are binary indicator variables, their integrality conalits can be relaxed simi-
larly as in (14) because they are minimized and bounded frelowbby integer values.

Notice that the MIP formulation (23) may have optimal saus where the primary path deter-
mined by flow variablesX visits a node more than once. In fact, adding a loop to an el@anepath
may augment the second sum in the objective function (23ajedluice the first sum. This effect is
due to the special structure of the pricing problem for prymzaths with the considered mechanism
FD-SR. Elementary paths, i.e., paths visiting each nodeost wnce, can be enforced by additional
constraints

Z l’e,vw § 17 v E V \ {ud} (24)
e€d(v), e={v,w}
The authors of [BNGKO7] (where a similar problem is consgtBrmake a remark that already for
the failure scenario containing just one single link faglur.e., whenS = {0, {e}} for some link
e € &, the pricing problem limited to elementary paths, althopglynomial, is non-trivial and must
be solved by generating a shortest pair of node-disjoirttgat

Fadejeva [Fad03] investigated problem FD-SR with the &t restriction that every demand
should be routed on a single path (which does not affect tlwingrcomplexity). She showed that
already for single link failures, the pricing problem is AfP-hard shortest-path problem with neg-
ative weights if elementary paths are required, and solvesaictly using a quadratic shortest paths
algorithm. As an alternative, she proposes a slight relaxaif the problem where routing paths with
loops but with at mosfy| — 1 links are allowed. The pricing problem of this relaxatiom ¢ee solved
in polynomial time by searching for a shortest path in a legleauxiliary graph based dv| copies

of G.

6 Situation-independent restoration of affected flows — Fl

In this section we still assume that flows not affected by lfaisituation are not rearranged. This
time, however, the failed flows are restored in a failureepehdent fashion, i.e., the restoration flow
pattern is always the same and does not depend on the partigilire state.

6.1 Situation-independent restoration without stub releae — FI-nSR

We first consider the case without stub release, where $ngvbut unused working capacity cannot
be reused for backup flows. Using variablgs to denote the flow on backup pajtof working path
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p, problem FI-nSR can be formulated as follows:

min Z EeYe (25a)
ecé
A > 0] >y > hy deD (25b)
pEPq
Tp <Y g peEP (25c¢)
qEQp
(7S > 0] pr—i—zz Zzpque ecé&, se8.\ {0} (25d)
PEPe de€D pePs 4€Lpe
x,y,z > 0. (25€)

The problem dual to FI-nSR reads as follows:

max »  hakg (26a)
deD
Yo om=¢ eeé (26b)
s€8S\{0}
DA D YOI deD,pePy qge Q, (26¢)
e€p e€q se§,
A, > 0. (26d)

Note that dual variables corresponding to primal condtsaia5¢c) do not appear in the dual formu-
lation (26). The reason is that these constraints can béewréis equalities without changing the
optimal solution value; hence, they can be used to elimivat@blesz,, from the formulation, and
can be removed from the formulation themselves.

As will be explained in Section 7.2, the pricing problem f26) is always difficult, i.e., also in the
single link failure case. In fact, the pricing problem for&R consists in finding, for each demand
d € D, a pair of failure-disjoint paths = (p, ¢) from u4 to v minimizing

(@)=Y t+> (D ). (27)

ecp eecq segp

Note that the link metrics for calculating the length of therary pathp € P, are equal to the true
unit link costs¢,., while the link metrics for calculating the length of the kap pathg € Q,, are given
by the dual cosEseSP 5. If a pairc = (p, q) violates its dual constraint, then the corresponding
column generation adds either one variablg or two variablesr, and z,, to the primal problem,
depending on whether, is already included in the LP or not.

Again, the problem of minimizing (27) can be formulated asigett-binary problem. Alterna-
tively, the pricing problem can be solved using the SPPRGatktas proposed in [SPR7]. An
SPPRC algorithm specialized for FI-nSR is also describg®#P08]. According to the authors of
[DZP*08] their algorithm is more time-efficient than that of [SPI¥] and performs very well even
on large networks.

Recently,Zotkiewicz et al. ZPT08] have directly shown that problem FI-nSR\$P-hard, using
a reduction from 2Dv-PATH [FHW78]. The latter problem is a special case of M#-hard Disjoint
Connecting Paths problem [GJ79, problem ND40], and cangisfinding two link-disjoint paths

between two distinct pairs of nodes.
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6.2 Situation-independent restoration with stub-release- FI-SR

The next case assumes situation-independent flow restorasing stub release. This restoration
concept is perhaps not too practical — we discuss it heredimpteteness. The corresponding primal
problem is as follows.

min Z Eele (28a)
ecé

A > 0] > 1, > ha deD (28b)
pEPq

[772 > 0] Z zp < Ye e€é& (28c)
pGPe

Ty <Y g peP (28d)

q9€Qp

[r2 > 0] pr—i—zz Zzpque ecé& se8.\ {0} (28e)
pEPS deD pe'ﬁs qe Qpe

z,y,2 > 0. (28f)

The problem dual to FI-SR takes the following form (as for dhval to FI-nSR, dual variables corre-
sponding to primal constraints (28d) do not appear in thé fduaulation):

maximize »  hgAq (29a)
deD
dom=t ccé (29b)
SES.
VES I OIEASEDNOPEH deD,pePy qeQ, (29¢)
cep sES, c€q 5§,
A, > 0. (29d)

For each demand € D, the pricing problem consists of finding a pair of failursjdint paths
¢ = (p, q) from ugy to vy Minimizing

(=2 (> m)+Y (D =) (30)

ecp seS, ecq segp

As discussed in Section 5.2, already minimizing the first sunder a single link failure scenario is
NP-hard, and hence also solving the whole pricing problemll, 88 we already know, this is not
enough to be sure that the original problem FI-SRVi®-hard itself. This fact has been recently
proven in [PTZ09] by means of the construction usedZRT08] for FI-nSR. As before, the problem
of minimizing (30) can be formulated as a mixed-binary peoiol

7 Single backup path protection and restoration — SB

Single backup path protection further restricts the resgion flow pattern by assuming that the entire
primary flow is restored on one single backup path, used ifadllre situations when the primary
paths fails. In fact, this kind of restoration usually asssrthat for each demantic D, the entire
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demand volume is allocated to a single primary path. We r@kih contrast to the previous prob-
lems, which can be modeled by linear programs, the single-g&sumption requires a mixed-integer
programming formulation.

Recall that pairs of primary-backup path are denoted,byherec € C := J,cp Cq, andCy is
the set all candidate pairs for demadhd D. For each linke € £, the set of all pairg = (p, ¢) such
thate € p is written asC!, and the set of all pairs such thak € ¢ asC?. The flow allocated to pair
c € C will be denoted byr,..

7.1 SB with dedicated protection capacity — SB-D

In this section we consider the case with dedicated praotectpacity, i.e., we assume that the protec-
tion capacity is not shared between different demands fardifit failure situations (as in the previous
sections) but is reserved for each particular primary floisType of protection is commonly known
as1+1 protection The primal problem SB-D reads:

min Y &cye (312)
ec&
[Ag > 0] Y ae>1 deD (31b)
ceCy
[me > 0] D ha D we<wye = (31c)
deD  ceCyne,
Ye >0, 2, € {0,1} (31d)

As in problem PD discussed in Section 3, link capacities adicdted to each particular demand.
Therefore, the problem can be split and solved separatelyaich demand. Every such separate for-
mulation is strongly unimodular and will yield a binary aptl vertex solution even if the integrality
condition (31d) is relaxed t6 < z. < 1. It is a straightforward exercise to derive the dual problem
to the LP relaxation of SB-D, and to show that column genenationsists in finding, for each de-
mandd € D, a minimum cost cycle through its end-nodes with respedtéadual capacity cost..
This can be done by solving a min-cost-flow problem with c#jEscl and value 2 [Suu74]. This is
the survivable analogon of a simple multi-commodity flow,aendnthe pricing problem searches for
minimum-cost paths with respect to the dual capacity cost.

If the total capacityy. is replaced by working capacity! for the primary flows and backup
capacityy? for the backup flow with corresponding dual variabte€s~”, the pricing problem for
each demand is to find a disjoint path pai= (p, ¢) minimizing (c) = >, 7 + >, 7. This
problem isNVP-hard already for single link failures [XCX06]. If, however, the capacity of a link is
defined exactly by its flow, as in model (31), both dual values loe replaced by the original cast
of link e € &£, and both the pricing problem and the original problem redudinding a cycle: € C,4
minimizing ) .. &e.

For the general case of multiple resource failures, findingramum-cost disjoint pair of paths is
NP-hard [Hu03], and so is the primal problem SB-D.
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7.2 SB with shared protection capacity — SB-S

Now we assume that the pool of protection capacity is shaeddden the demands and situations,
and arrive at the following relaxation of the primal probl&B-S.

min Y & (vt +y?) (32a)
ecf

[Ag > 0] > we>hyg deD (32b)
reCq

[re > 0] > ae <yl cek (320)
ceCl

(78 > 0] Yo we <yl ecé& seS.\ {0} (32d)
ceC2, s€S)

z,y > 0. (32e)

Notice that the summation in constraint (32d) is taken ollgradh pairs whose backup path contains
the considered link and whose primary path fails in the considered state

Although looking quite different at first glance, the LP pad#ion (32) is equivalent to problem
FI-nSR of Section 6.1. The reason is that several paits (p,q) € C,; can have the same primary
pathp € Py; all the corresponding pathisare used to protect paghin a bifurcated way. Also, itis
not difficult to see that the dual problem of (32) is identittathe dual of FI-nSR.

NP-hardness of path generation for SB-S under a multiplerfadaenario follows from the result
of [HuO3] for problem SB-D (see the previous sectior).P-hardness of path generation for (32)
(and hence for FI-nSR) in the single-link failure case wanaiestrated in [SPRO7]. In fact, it was
shown there that for single-link failure scenarios theipggroblem for SB-S is pseudo-polynomial:
polynomial with respect to the size of the network graph, exgbnential with the number of failure
stategS|, see discussion about SPPRC at the end of Section 3.4.

In fact, in the literature the non-relaxed version of foratidn (32) is more common (see for
example the single backup path problem in [PM04]). In suclorelmifurcated version the entire
demand volume is allocated to one single primary-backup-pair. For this we have to use binary
variablesu,., ¢ € Cy4, d € D, to indicate whether cycleis used or not, constraints

> ue=1, deD (33)
ceCy
instead of (32b), and the substitution
Te = uchg, deD, ceCly. (34)

We finally note that this non-bifurcated version of SB-S imast always\P-hard (seeZPT08]; it
is polynomial only in the case of one single demand and assilivgt-failure scenario.

8 Summary of pricing problems

This section summarizes the essence of the pricing proldessibed in sections 3—7.
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PD — path diversity

Parameters:\; > 0 : dual cost of realizing demantic D in states € S.
Pricing problem:For each demand € D find aug-v4-pathp minimizing

)= &+ > A (35)

ecp s€S)

Remarks:The pricing problem isV/P-hard for multiple failures. For single link failures it i®fyno-
mially solvable by searching for a shortest path for demardD with respect to demand-dependent

link weightsy¢ = ¢, + AL,

UR — unrestricted reconfiguration

Parameters:z? > 0 : dual cost of linke € £ in states € S
Pricing problem:For each demand € D and each state € S find aug-v4-pathp minimizing

(p)=> . (36)

eecp

Remarks:The states are completely independent of each other. Hiem@ay set of failure situations,
improving paths for demand € D in states € S can be found in polynomial time by searching for a
shortest path with respect to demand-independent linkivieigf .

FD-nSR - situation-dependent restricted restoration witlout stub release

Parameters:z? > 0 : dual cost of protection capacity of linke £ in failure states € S*.
Pricing problem:

1. Foreach demandle D and for each failure statec S* find a shortest backup;-v,-path with
respect to demand-independent link weighfs. Denote the lengths of the resulting shortest
paths byr; (d € D, s € §*).

2. For each demand € D find a workingu,-v4-pathp minimizing

p)=> &+ > i (37)

ecp s€S,

Remarks:The pricing problem isVP-hard for multiple failures. For single link failures it neces to
a shortest-path problem path for each demamdD with respect to demand-dependent link weights

Ve =&+ Tc{ze}- Observe that the pricing problem for working paths in FD-ri8R the same structure

as problem (14) when is substituted withr;.
FD-SR — situation-dependent restricted restoration with tub release

Parameters:x; > 0 : dual cost of linke € £ in states € S.
Pricing problem:

1. For each demand € D and each failure state € S* find a shortest backup,-v4-path with
respect to demand-independent link weighis denote its length by;.
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2. For each demand € D find a workingu,-v4-pathp minimizing

py=>_ > w4+ > L (38)

eep SESp segp

Remarks:The pricing problem for working paths i§7P-hard even for single link failures.

FI-nSR - situation-independent restricted restoration wthout stub release

Parameters:rZ > 0 : dual cost of protection capacity of linke £ in states € S*.
Pricing problem:For each demand € D find a pair of failure-disjoint pathe = (p, ¢) from u, to vy

minimizing
(=D &t > m. (39)

ecp eeqsegb
Remarks:The pricing problem isV"P-hard even for single link failures.

FI-SR — situation-independent restricted restoration wih stub release

Parameters:zS > 0 : dual cost of linke € £ in states € S.
Pricing problem:For each demand € D find a pair of failure-disjoint pathe = (p, q) from u, to vy

minimizing
©=>> m+> > = (40)

eEp seSy e€q 58§,
Remarks:The pricing problem isV"P-hard even for single link failures.

SB-D - single backup path restoration with dedicated protetton capacity

Parameters:, > 0 : primal unit cost of linke € £.
Pricing problem:For each demand € D find a pair of failure-disjoint pathe = (p, q) from u, to vy

minimizing
(€= &+ & (41)
ecp ecq
Remarks:The pricing problem is polynomial for a any single link faiduscenario but/P-hard for a
general failure scenario, including the scenario comairihe failures of all pairs of links.

SB-S - single backup path restoration with shared separategdrotection capacity

Remarks:The pricing problem for the relaxation of SB-S is the sameoa$f-nSR, and henca/P-
hard already for single link failures.

Overview table

Table 1 summarizes the complexity of the considered pripimiplems in a single and multiple link

failure setting together with references where this comipéras been shown. The letters (a) to (e)
refer to the five classes of pricing problems defined in thedhiction. For some survivability con-

cepts, the\V’P-hardness for multiple failures follows from ttiéP-hardness for single failures. The
second column states whether non-failing but unused dgpadieleased in a failure situation (stub
release) or reserved for the normal network state, and whetipacity is dedicated to a particular
demand or shared between demands.
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0¢

problem release, restoration path/pair length dual caimstr failure type/complexity
sharing type minimize for eache D single multiple
PD release none ) =D&+ > X YA D& polynomial (a) NP-hard (c)
eep s€ESy SESp ecp
dedicated [Wes00, WOZ 05] Sec. 3.4
UR release unrestricted (py=> 7w, s€S oomi=¢ polynomial (a) polynomial (a)
eEp s€Se
shared (from scratch) Sec. 4 Sec. 4
FD-nSR no release restricted (¢®)y=>_ 75 se8* s =& polynomial (a) NP-hard (c)
e€q s€S\{0}
shared failure-dependent  (p) = >_ &+ > (¢f) [Orl03] Sec.5.1
€ep s€S,
FD-SR release restricted (¢°)y=> 75 se8* Soomi=¢ NP-hard (d) NP-hard (d)
e€q SESe
shared failure-dependent (p) = > > w2+ > (¢°) [Orl03, MV04]
eEp seS, segp
FI-nSR  no release restricted (ey=>&6+> > n =& NP-hard (e) NP-hard (e)
e€p e€q seS, s€S\{0}
shared failure-independent [SPR™07]
FI-SR release restricted (op=3 S m+> > = o =¢ N'P-hard (e) N'P-hard (e)
eep seSy ecq segp SES,e
shared failure-independent Sec. 6.2
SB-D  norelease single-path () => &+ > & — polynomial (b) NP-hard (b)
eecp ecq
dedicated failure-independent S,NS, =10 [Suu74] [Hu03]
SB-S  norelease single-path ey=>"&+> S =8 =& NP-hard (e) NP-hard (e)
ecp eeq seS, se€S\{0}
shared failure-independent [SPR™07]

Table 1: Complexity of pricing problems for different swability concepts



9 Concluding remarks

In the previous sections we have investigated the compleXithe path generation problem under
single and multiple link failure scenarios for various suability mechanisms. This section provides
a classification of the results and discusses some possgiiglestons.

9.1 Classification of pricing problems

It can be seen in Table 1 that the pricing problems of all thesered survivability mechanisms have
certain regularities. They are all composed of five types ioimization problems that determine the
complexity of the pricing problem:

1. classical shortest-path problem for each network spatiyriomial for both single and multiple
failure scenarios)

2. classical shortest failure-disjoint pair of paths peobl(polynomial for single failures\ P-
hard for multiple failures)

3. shortest path problem where the path length is the sumvehgirices of the failure states in
which the path fails (polynomial for single failure§;P-hard for multiple failures)

4. shortest path problem with link weights depending on tieofthe failure states in which the
path survives A/ P-hard already for single failures), and

5. shortest path pair problem with link weights of the backath depending on the set of failure
states in which the primary path fail&/(P-hard already for single failures).

Notice that some pricing problems contain two of these salipms; in this case, the overall com-
plexity is determined by more difficult subproblem. If therfaulation contains separate flow variables
for each failure state, the pricing problem for backup p&laways easy because a flow variable for
a particular failure state is affected only by the constsaof that state. The hard part, if any, is find-
ing improving working paths or disjoint pairs of working ahdckup paths because the variables for
working paths are coupled by conditions correspondingltthalnetwork states.

9.2 Flow cost

In the previous discussions, we have always assumed that ih@&o flow cost but only capacity
cost. The effect of adding flow cost depends on the cost siricif all routing paths for a specific
demand have the same cegter flow unit, the parameteronly appears as a constant in the pricing
problem and does not affect its complexity. If, on the otrendy the flow cost depends on the specific
routing path, even the pricing problem of a simple multi-coodity flow routing without survivability
restrictions is a weighted longest-path problem, which igéneral\"P-hard [GJ79, problem ND29].

9.3 Directed graphs, node failures, and connected componisn

Directed graphs Up to now we have assumed undirected graphs. In fact, in nassscswitching to
directed links or bi-directed links does not affect the ctaxripy of the pricing problems. The reader
is advised to consider each case one by one and confirm ttesnetat.
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Node failures In practical applications, node failures may have to be icemed in addition to link
failures. We have not discussed node failures in the maingdahis paper because they can be
simulated by link failures in an auxiliary gragh, which is constructed from the original graghas
follows.

First, each original undirected linke £ is replaced by a pair of antiparallel directed aztand
e’ with ¢, = ¢ = &.. In a second step, every node= V is split into two nodes’ andv” connected
by a single (dummy) directed aeg of costé., = 0, as shown in Figure 2.

el = eo—e(

Figure 2: Node splitting transformation

Any pathp = {ej,eq,...,e,} from nodes to nodet in the original graphg corresponds to
a directed pathp’ from s to nodet in the new graphy’ traversing arce’ or e/ (i = 1,2,...,n,
whichever is consistent with the direction of the path) dreldummy arcg, for those nodes € V
in G which belong tg (and vice versa). With this construction, the failure okl in G’ corresponds
precisely to the failure of node € V in G, and the failures of a single link with antiparallel courpiznt
in G’ correspond to the single link failures ¢h Thus, any failure state in the original graph involving
a certain number of linkand nodes can be modeled by means of a failure involving onlyslinkhe
transformed graph. Obviously, the transformation is poigial in the size of the graph. It follows
that pricing for single node failureand single link failures has the same complexity as pricing for
single link failures.

Alternatively, assuming only elementary paths, singldendailures can be directly taken into
account in the pricing problem by distributing half of theatinode weight among the incident edges,
as described for the path diversity problem in [Wes00, WO].

Certainly, when considering node failures we should beariid that the volumes of all demands
d € D incident with a given node € V' cannot be realized at all in a failure state= S involving
nodev. This can be reflected by settihgg = 0 for such pairgd, s) in PD and UR, and by skipping
the constraints that force restoring affected flows for stdemands and states. In the node-splitting
transformation described above, it can be reflected by mgppi-v-demand ing to au”’-v’-demand

ing'.

Failures of span 1 In Section 3.4, we have shown tbiéP-hardness of PD for general multi-
ple failures by reduction to MCA¥H, identifying colors with shared risk link groups. Coudett e
al. [CDP06] showed that MC-RrH is still polynomial if (1) every edge has only one color (such
a graph is calleadmonochromatiy; and (2) the edges of each color form a connected compotient o
the graph. By defining the span of a cotoas the number of connected components of the subgraph
induced by the edges of the second condition means that every color has span 1. pecéatcase,
this condition holds if all links with the same color are ighent to the same node. Recall that also
the pricing problem for PD can be solved in polynomial timedimgle node failures. This raises the
question whether it is also polynomial if the failing edgemi a connected component of the graph,
i.e., every shared risk link group is of span 1.

Unfortunately, this is not the case in general. The reasdhasin our setting, a link may be
affected by several failure situations, i.e., it has sevakors. Although such a multichromatic graph
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can be transformed into a monochromatic graph by replacicy enulti-colored edge by a series of
single-colored edges, this transformation does not nadgspreserve the span of a color because its
span in the resulting graph depends on the ordering of tlggesaolored links. Even if the edges of
each color form a connected component in the original griagln not always be transformed into a
monochromatic graph where each color still has span 1.

But even if every SRLG has span 1, i.e., every link is affettgét most one failure state, there
cannot be a polynomial algorithm which solves all pricinglgems (13) for PD. The reason is that if
such an algorithm existed, we could also use it to solve aigyngrproblem for PD in networks with
failures of larger span, which contradicts N&P-hardness in the general case [CTB]. In fact, any
network with colors of span larger than 1 can be transforméma span-1 network by connecting the
components of each color with additional links with cgst= co. Such an atrtificial link will never
be used by a shortest path unless the original graph is discted. With a polynomial number of
colors (e.g., corresponding to all dual link failures) sttransformation is polynomial, and the shortest
paths in the original and modified graphs are the same. Haobéng the pricing problem for PD
(as for FD-nSR and FD-SR) j§P-hard for general multiple link failure scenarios even ifcdlthem
correspond to connected components.

9.4 Complexity of the primal vs. complexity of the pricing problem

The NP-hardness of the pricing problem associated with a speafieaompact linear programming
formulation of a problenP does not necessarily mean tftais NP-hard itself. For example, there
may exist a compact LP formulation Bf What we only know for sure is that if the pricing problem
for some non-compact LP formulation Bfis polynomial, theri is polynomial. This follows from
the so calledseparation theorenfsee [GLS88]). It can be shown that for each non-compact LP
formulation considered in this report, an optimal solutadrthe pricing problem provides an optimal
solution of the separation problem for the dual problem, peovides the best (in the sense of the
separation theorem) inequality separating the currentngptdual solution from the polyhedron of
the dual problem corresponding to the full primal problencewersa, if we can show thitis NP-
hard, then any LP formulation for it must be non-compact vaithon-polynomial pricing problem
(unlessP = N'P).

However, for each problei considered in this report, except for FD-SR (whaé®-hardness
has not been proven as yet), a stronger result than the abt® B is A/P-hard if, and only if, the
pricing problem related to the considered non-compact ditation of P is A/P-hard. Let us recall
that, as discussed in the previous sections, the pricinglgmois \/P-hard for the following cases:

e PD, FD-nSR, SB-D for multiple-link failure scenarios

e FD-SR, FI-nSR, FI-SR (and linear relaxation of SB-S whickdsiivalent to FI-nSR) for both
single or multiple failure scenarios.

For the remaining cases, i.e., for
e PD, FD-nSR, SB-D for single-link failure scenarios
e UR for single or multiple failure scenarios

the pricing problem is polynomial.

Since N'P-hardness has been proved for PD and FD-nSRZPEP, SB-D [Hu03] (for multiple
failures), and for FI-nSR/SB-ZPT08] and FI-SR [PTZ09] (already for single link failureesarios),
the above statement is valid.
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We have also found that in all the cases of non-compact LPutations considered in this report
the pricing problem is polynomial if, and only if, we can alsstablish a compact node-link LP
formulation of the considered problem. The “only if” imgdition is easy to prove in general, since
a compact node-link LP formulation shows that the problerpdl/nomial (as discussed above).
However, the opposite implication is not that easy to pravgeneral. We have exhibited it for the
discussed problems by providing explicit compact nodk-formulations for all the relevant cases,
i.e., for PD, FD-nSR, and SB-D (single link failures), and R (all failure scenarios). Below we
present a selection of such formulations. For ease of ootatie will assume directed links and
demands; changing these formulations to undirected floasirightforward exercise.

For PD and a single link failure scenar® C {{e} | e € £} U {0}, the compact node-link
formulation is as follows.

minimize » &> eq (42a)
eeE deD
O, vey \ {ud, vd}

S.L Z LTed — Z Led = Xyq, V= Uq deD,vey (42b)

e€dt (v) e€d—(v) —Xg, v=14
Xy > hy deD (42¢)
Xy = Teq > Wi deD, {e} €S (42d)
z, X > 0. (42e)

Above, variabler.,; denotes the flow realizing demadds D on link e € £, and variableX, is
the total flow realized for demanéi€ D. Also, 61 (v) denotes the set of all links in € £ outgoing
from nodev € V, andd~ (v) the set of all linkse € € incoming to nodey € V.

If we wished to take single node failures directly into aaupu.e., without transforming the
network graph as described in Section 9.3, then we would addrtnulation (42) the following
constraint for each failing nodec V:

Xa— Y wea> b, deD, vé¢ {ugva}. (43)

Writing down compact node link formulations for UR (for arbérary failure scenario, using
state-dependent link-flow variablesy,) is a straightforward exercise. For FD-nSR and a single-lin
failure scenariaS C {{e} | e € £} U {0} the relevant formulation reads:

minimize > &y (44a)
ec&
0, v e V\{ug,vqa}
s.t. Z Ted — Z Teg = ha, v =uy deD,veY (44b)
ecédt(v) ecd(v) —hg, V= Uq
0, v e V\{ug,vqa}
Z Zeds — Z zeds{ Teds V= Uy deD,veV, se€S8S (44c)
ecdt(v)\s ecd—(v)\s —Zed, UV = Vg
Z(l’ed + Zedr) < Ye ecf, seS\{e} (44d)
deD
x,z > 0. (44e)
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For SB-D and the single-link failure scenadbC {{e} | e € £} U {0} the relevant node-link
formulation is as follows.

minimize > &> hateq (45a)
ecé deD
0, veV\{ug,vq}
St Y Teg— > Tea= 2, v=uy deD (45b)
e€dt(v) e€d—(v) -2, UV = Vg
1> >0. (45c)

Note that the above formulation is unimodular (see [AMOS3])l therefore its optimal vertex solu-
tions are integer, as required for SB-D. The above formutatcan be adapted to undirected links and
demands using the notation already applied in the pricinglpm formulations (14) and (23).

Finally, we note that all of the consider@dP-hard pricing problems (see Table 1) become poly-
nomial (and treatable for example by the Dijkstra shortesh glgorithm) when the lists of primary
paths are fixed, so that the primary paths are given and arsufgict to optimization/generation.
This is a quite common situation in practical telecommutiicanetwork design.
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