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Abstract

Given a combinatorial optimization problem and a subset N of natural
numbers, we obtain a cardinality constrained version of this problem by
permitting only those feasible solutions whose cardinalities are elements
of N . In this paper we briefly touch on questions that addresses common
grounds and differences of the complexity of a combinatorial optimization
problem and its cardinality constrained version. Afterwards we focus on
polytopes associated with cardinality constrained combinatorial optimiza-
tion problems. Given an integer programming formulation for a combina-
torial optimization problem, by essentially adding Grötschel’s cardinality
forcing inequalities [11], we obtain an integer programming formulation
for its cardinality restricted version. Since the cardinality forcing inequal-
ities in their original form are mostly not facet defining for the associated
polyhedra, we discuss possibilities to strengthen them. In [13] a variation
of the cardinality forcing inequalities were successfully integrated in the
system of linear inequalities for the matroid polytope to provide a com-
plete linear description of the cardinality constrained matroid polytope.
We identify this polytope as a master polytope for our class of problems,
since many combinatorial optimization problems can be formulated over
the intersection of matroids.

1 Introduction, Basics, and Complexity

Given a combinatorial optimization problem and a subset N of natural numbers,
we obtain a cardinality constrained version of this problem by permitting only
those feasible solutions whose cardinalities are elements of N. Well-known ex-
amples of cardinality constrained combinatorial optimization problems are the
traveling salesman problem and the minimum odd cycle problem. Both prob-
lems are for itself combinatorial optimization problems, but in the line of sight
of the minimum cycle problem, they are cardinality restricted versions of the
latter problem. More formally, let E be a finite set, I a subset of the power set
2E of E, and w : E → R, e 7→ w(e) a weight function. For any F ⊆ E and any
y ∈ RE , we set y(F ) :=

∑
e∈F ye. The mathematical program

max{w(F ) : F ∈ I}

is called a combinatorial optimization problem (COP). We also refer to it as
the triple Π = (E, I, w). Elements of I are called feasible solutions. This
definition entails that no element of E is counted more than one time in a feasible
solution. By setting cardinality constraints on the set of feasible solutions,
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2 Rüdiger Stephan

the COP becomes a cardinality constrained combinatorial optimization problem
(CCCOP). Formally, for any finite set N ∈ N, the cardinality constrained version
ΠN of Π is the mathematical program

max{w(F ) : F ∈ I, |F | ∈ N},

also denoted by ΠN = (E, I, w,N). ΠN is, considered for itself, again a COP.
If N = {k} for some k, we speak of a k-COP and write Πk instead of Π{k}. An
overview on k-COP’s is given by Bruglieri et al. [4].

As usual we apprehend a combinatorial optimization problem also as the
collection of all its problem instances. But we do not distinguish between the
problem Π? and its instances Π = (E, I, w). Moreover, if we say that an al-
gorithm A solves the COP Π = (E, I, w) in polynomial time, then we mean,
strictly speaking, that A solves all problem instances Π ∈ Π? in polynomial
time.

If k is fixed, then any k-COP Πk can be solved in polynomial time by enu-
meration on all

(
n
k

)
subsets I of E of cardinality k. Consequently, if N is fixed,

then ΠN can be solved in polynomial time by enumeration.
Several polynomial time solvable COP’s of the form

min{w(F )|F ∈ I}

with a nonnegative weight function w : E → R+ become NP-hard if one imposes
cardinality constraints (cf. Bruglieri et al. [4]). For example, one can find in
polynomial time a shortest simple cycle, that is, a simple cycle of minimum
weight, if the weight function is nonnegative, but the TSP, which arises by takin
k as the number of nodes, is NP-hard. Or, in order to give another example,
the min-cut problem can be solved in polynomial time for a nonnegative weight
function, but most of the cardinality constrained cut problems are NP-hard (e.g.
the equicut problem).

We believe, however, that less the cardinality restriction itself is respons-
able for the NP-hardness of some k-COP, but rather the fact that the original
problem is also NP-hard as soon as one admits negative weights, or, in order
to formulate it more tentative, both ingredients “arbitrary weights” and “cardi-
nality restriction” for a COP seem to be equivalent in many cases with respect
to the complexity of a COP. One argument for this hypothesis is that the re-
striction to nonnegative weights is irrelevant for k-COP’s: For any M ∈ R and
any two feasible solutions F1, F2 of a k-COP Πk we have w(F1) ≤ w(F2) if and
only if w′(F1) ≤ w′(F2), where w′e := we + M . By taking M large enough the
weights w′e are nonnegative. and for appropriate M ≥ 0 the weights w′e are
nonnegative. That means, Πk is invariant under shifting of the weights by a
constant.

We would like to enrich our hypothesis by two examples. The above men-
tioned polynomial-time solvable shortest cycle problem becomes NP-hard if ar-
bitrary weights are admitted or the set of feasible solutions is limited to Hamilto-
nian cycles, see Garey and Johnson [9]. Denoting by CYCLE the shortest cycle
problem, the latter fact implies that CYCLEk is NP-hard for arbitrary k. For
instance, let G = (V,E) with n := |V | be an instance of the TSP. Adding to G a
set V ′ of n isolated nodes, we obtain a graph G′ = (V ∪V ′, E) of order m := 2n.
Every Hamiltonian cycle in G is obviously a cycle of cardinality |bm/2c| in G′,
and vice versa. Thus, the TSP can be polynomially reduced to the problem of
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finding in a graph on n nodes a shortest cycle of cardinality bn/2c. This implies
that CYCLEbn/2c is NP-hard. Even more, if CYCLEk is NP-hard for arbitrary
k, then it is very unlikely to find a polynomial time algorithm that solves the
general cardinality constrained shortest cycle problem CYCLEN for arbitrary
N .

Another example is the optimization problem over an independence system
of a matroid. We will give a short introduction to independence systems and
matroids, because they will play an important role in the next sections. Recall
that I ⊆ 2E is called an independence system if (i) ∅ ∈ I and (ii) I ∈ I implies
J ∈ I for each J ⊆ I. The subsets of E belonging to I are called independent,
otherwise dependent. The minimal dependent sets are called circuits of I and
the set C of all circuits is called the circuit system of I. For any F ⊆ E, B ⊆ F
is called a basis of F if B ∈ I and B ∪ {e} /∈ I for all e ∈ F \B. The rank and
the lower rank of any set F ⊂ E is defined by r(F ) := max{|B| : B basis of F}
and ru(F ) := min{|B| : B basis of F}, respectively. The independence system
I is called a matroid if (iii) for each F ⊆ E its bases have the same cardinality,
and consequently ru(F ) = r(F ) for all F ⊆ E. In order to indicate that I is a
matroid, we will write M = (E, I).

Let IND be the optimization problem over an independence system of a
matroid given by an independence oracle. This problem can be solved in poly-
nomial time with the greedy algorithm for arbitrary weights. In accordance with
our hypothesis, also the cardinality constrained version of this problem INDN

can be solved in polynomial time for any N , see [13].
To our knowledge there is no polynomial time solvable combinatorial op-

timization problem discussed in the literature for which the cardinality con-
strained version is NP-hard (supposed that arbitrary weights are admitted).
However, classes of polynomial time solvable combinatorial optimization prob-
lems that are completely irrelevant but whose cardinality constrained versions
are NP-hard, can be constructed quite easily. For instance, let G = (V,E, w)
be a weighted graph on n = |V | nodes and consider the embedded traveling
salesman problem (ETSP) defined as follows:

min{w(T ) : T ⊆ E, if |T | = n, then T is a tour}.

It can be obviously solved in polynomial time. To this end, let T ? := {e ∈ E :
we < 0}. If |T ?| 6= n or |T ?| = n and T ? is a Hamiltonian cycle, then T ? is
optimal. Otherwise, that is, in the case |T ?| = n and T ? is not a Hamiltonian
cycle, let e− ∈ T ?, e+ ∈ E\T ? (if E\T ? 6= ∅) be edges of maximal and minimal
weight, respectively. By construction, w(e−) < 0 and w(e+) ≥ 0. Now it follows
immediately that w(F ) ≥ min{w(T ? \ {e−}), w(T ? ∪{e+})} for all F ⊆ E with
|F | 6= n. Moreover, for any Hamiltonian cycle T we have w(T ) ≥ w(T ? \ {e−}).
Hence, T ? \{e−} or T ?∪{e+} is the optimal solution. So, the ETSP can indeed
be solved in polynomial time. However, the cardinality constrained version
ETSPn of ETSP is the TSP which is known to be NP-hard. Of course, such a
construction – namely the embedding of a NP-hard combinatorial optimization
problem into a trivial setting – can be done not only for the TSP but also for
other NP-hard COP’s as the linear ordering problem.

The previous paragraph shows that, in general, we are not able to extrapolate
from the polynomial time solvability of a COP to the polynomial time solvability
of its cardinality constrained version. We can only give a much weaker result.
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Let Π = (E, I, w) be a COP, let nmax = max{|I| : I ∈ I}, and nmin = min{|I| :
I ∈ I}. The maximum cardinality COP Πmax is the optimization problem

max{w(I) : I ∈ I, |I| = nmax}.

Similarly, the minimum cardinality COP Π[min is the optimization problem

max{w(I) : I ∈ I, |I| = nmin}.

Theorem 1.1. If a COP Π = (E, I, w) can be solved in polynomial time for
all weightings w : E → R, the same holds for Πmax and Πmin. Hence, if Πmin

or Πmax is NP-hard, then Π is too.

Proof. The optimal solutions of Πmax and Πmin are invariant under shifting of
the weights by a constant. For any instance Π = (E, I, w), set M := |E| ·W +1,
where W = max{|we| : e ∈ E}. Then, an optimal solution X1 of Π with weights
w1

e := we +M is of maximum cardinality and an optimal solution X2 of Π with
weights w2

e := we−M is of minimum cardinality. In particular, X1 and X2 are
optimal solutions for Πmax and Πmin, respectively. Since the transformations
are polynomial, the claim follows.

Perhaps better results are obtainable if one excludes such artificial COP’s as
the ETSP. This is maybe done by adding requirements on the homogeneity of the
feasible solutions. For instance, one could require that all feasible solutions of Π
have some common property P independent of the cardinality of the solutions.
The ETSP could be easily excluded by adding the constraint that each feasible
solution has to be a cycle.

The remainder of this paper is organized as follows. In Section 2 we present
a general framework for the polyhedral investigation of CCCOP’s. The central
subject of this investigation are Grötschel’s cardinality forcing inequalities [11].
These inequalities together with the constraint min N ≤ x(E) ≤ max N cut off
solutions that are feasible for Π, but forbidden for ΠN . This results into an
integer programming formulation for ΠN provided we have one for Π. Since
the cardinality forcing inequalities in their original form are mostly not facet
defining for the associated polyhedra, we discuss in Section 3 some possibilities
to strengthen them. It turns out that often matroidal relaxations of a COP
Π help to provide facet defining integer formulations of ΠN , if there are any.
This is based on the consideration that on the one hand many combinatorial
optimization problems can be described over the intersection of matroids, and
on the other hand we have a complete linear and tractable description of the
cardinality constrained matroid polytope, see [13]. In Section 4, we briefly touch
the problem to derive a complete linear description of the polyhedra associated
with ΠN provided we know a complete linear description of the polyhedron
associated with Π.

2 Polyhedral Investigation of CCCOP’s

The fundamental class of inequalities of this and the following section are
Grötschel’s cardinality forcing inequalities [11]. Given a finite set E, the se-
quence c = (c1, . . . , cm) of integers with 0 ≤ c1 < c2 < · · · < cm ≤ |E| is called
a cardinality sequence, and the set CHSc(E) := {F ⊆ E : |F | = cp for some p}
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is called a cardinality homogenous set system. The polytope associated with
CHSc(E), that is, the convex hull of the incidence vectors of I ∈ CHSc(E), is
completely described by the trivial inequalities 0 ≤ xe ≤ 1, e ∈ E, the cardinal-
ity bounds c1 ≤ x(E) ≤ cm, and the cardinality forcing inequalities

(cp+1 − |F |)x(F ) − (|F | − cp)x(E \ F ) ≤ cp(cp+1 − |F |)
for all F ⊆ E with cp < |F | < cp+1 for some p ∈ {1, . . . ,m− 1}, (1)

see Grötschel [11]. The cardinality bounds exclude all subsets of E whose cardi-
nalities are out of the bounds c1 and cm, while the cardinality forcing inequalities
do this for all subsets of E with forbidden cardinality between the two bounds.
To see this, let F ∈ E with cp < |F | < cp+1 for some p ∈ {1, . . . ,m− 1}. Then
the cardinality forcing inequality associated with F is violated by the incidence
vector χF of F :

(cp+1−|F |)χF (F ) − (|F |−cp)

=0︷ ︸︸ ︷
χF (E \ F ) = |F |(cp+1−|F |) > cp(cp+1−|F |).

However, every I ∈ CHSc(E) satisfies the inequality associated with F . If
|I| ≤ cp, then

(cp+1 − |F |)χI(F ) −
>0︷ ︸︸ ︷

(|F | − cp)

≥0︷ ︸︸ ︷
χI(E \ F )

≤ (cp+1 − |F |)χI(I ∩ F ) ≤ cp(cp+1 − |F |),

and equality holds if |I| = cp and I ⊆ F . If |I| ≥ cp+1, then

(cp+1 − |F |)χI(F )− (|F | − cp)χI(E \ F )
≤ (cp+1 − |F |)||F − (|F | − cp)(cp+1 − |F |) = cp(cp+1 − |F |),

and equality holds if |I| = cp+1 and I ∩ F = F .
Although the class of cardinality forcing inequalities consists of exponentially

many members, Grötschel [11] showed that the associated separation problem
is solvable in polynomial time by the greedy algorithm. Let x? ∈ RE be any
nonnegative vector. Sort the components of x? such that x?

e1
≥ x?

e2
≥ · · · ≥

x?
e|E|

. Then, for each integer q with cp < q < cp+1, x? satisfies the cardinality
forcing inequality associated with F ′ := {e1, . . . , eq} if and only if x? satisfies
all cardinality forcing inequalities associated with sets F ⊆ E of cardinality q,
see Grötschel [11].

For any COP Π and any cardinality sequence c = (c1, . . . , cm), we denote
ΠN , where N = {c1, . . . , cm} also by Πc. To each integer (linear) programming
formulation in binary variables for a COP we can add the cardinality bounds
and cardinality forcing inequalities to derive integer programming formulations
for the cardinality constrained versions of these optimization problems.

Theorem 2.1. Let

max wT x
s.t. Ax ≤ b

xe ∈ {0, 1} for all e ∈ E
(2)

be an integer programming formulation for a COP Π = (E, I, w) and c =
(c1, . . . , cm) a cardinality sequence. Then, system (2) together with the car-
dinality bounds c1 ≤ x(E) ≤ cm and the cardinality forcing inequalities (1)
provide an integer programming formulation for Πc. ¤
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Theorem 2.1 remains true even if Π incorporates cardinality restrictions a
priori as for perfect matchings, minimal spanning trees, or the TSP. Of course,
in this case the approach is nonsense.

Adding the cardinality forcing inequalities (1), however, does not necessarily
result in facet defining inequalities of the associated polytopes. For instance,
consider cardinality constrained matroids. The linear program

max
∑

e∈E

we xe

s.t. x(F ) ≤ r(F ) for all ∅ 6= F ⊆ E,
xe ≥ 0 for all e ∈ E

(3)

is a well-known formulation for finding a maximum weight independent set in
a matroid M = (E, I), see Edmonds [7]. Recall that for any F ⊆ E, r(F )
denotes the rank of F , that is, the maximum size of an independent set I ⊆ F .
Given a cardinality sequence c = (c1, . . . , cm) with 0 ≤ c1 < · · · < cm ≤ |E|, the
cardinality restricted version of this problem can be formulated as follows:

max
∑
e∈E

we xe

s.t. x(F ) ≤ r(F ) for all ∅ 6= F ⊆ E, (4)
(cp+1 − |F |)x(F )− (|F | − cp)x(E \ F ) ≤ cp(cp+1 − |F |) for all F ⊆ E (5)

with cp < |F | < cp+1 for some p,

x(E) ≥ c1, (6)
x(E) ≤ cm, (7)

xe ∈ {0, 1} for all e ∈ E. (8)

Clearly, the integer points of the associated cardinality constrained matroid poly-
tope

P c
M(E) := conv{χI ∈ RE : I ∈ I ∩ CHSc(E)}

are described by (4)-(8). However, the above IP-formulation for finding a max-
imum weight independent set I ∈ I ∩ CHSc(E) is quite weak, since in general
none of the cardinality forcing inequalities is facet defining for the cardinality
constrained matroid polytope.

To give another example, in [12] it was shown that the inequalities

(cp+1 − |F |)x(F ) − (|F | − cp)x(A \ F ) ≤ cp(cp+1 − |F |)
for all F ⊆ A with cp < |F | < cp+1 for some p ∈ {1, . . . ,m− 1},

induce very low dimensional faces of the cardinality constrained cycle polytope,

P c
C(D) := conv{χC ∈ RA : C simple directed cycle, C ∈ CHSc(A)},

defined on a directed graph D = (V,A).

3 Three Recommendations

In this section we will give three recommendations how to derive stronger in-
equalities than inequalities (1) to cut off solutions of forbidden cardinality.
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3.1 Rank Induced Cardinality Forcing Inequalities

The reason, why the cardinality forcing inequalities in their natural form are
quite weak, is quickly found when analyzing cardinality constrained matroids.
By Edmonds [7], a rank inequality x(F ) ≤ r(F ) is facet defining for the matroid
polytope if and only if F is closed and inseparable. Recall that any F ⊆ E is
said to be closed if r(F ∪ {e}) > r(F ) for all e ∈ E \ F . It is called inseparable
if r(F1) + r(F2) > r(F ) for all nonempty partitions F = F1 ∪̇ F2 of F .

When we renounce of these properties and, in addition, substitute the right
hand side of the inequality by |F |, then we obtain a valid inequality, and that
is already all. So, the first and most important reason, why the rank inequality
associated with a closed and inseparable subset F of E is facet defining, arises
from the fact that the bound r(F ) is tighter than |F | (unless r(F ) = |F |). The
second reason is connected to the exposed position of F among subsets F ′ of E
with the same rank as F .

The first observation (r(F ) instead of |F |) can be immediately incorporated
into cardinality forcing inequalities:

(cp+1 − r(F ))x(F )− (r(F )− cp)x(E \ F ) ≤ cp(cp+1 − r(F ))
for all F ⊆ E with cp < r(F ) < cp+1 for some p ∈ {0, . . . ,m− 1}.

From the second observation (F closed and inseparable) we can easily adapt
the closeness, since if F and F ′ := F ∪{e} for some e ∈ E\F have the same rank
k, where cp < k < cp+1, then the rank induced cardinality forcing inequality
associated with F is the sum of the rank induced cardinality forcing inequality
associated with F ′ and the inequality −(cp+1−cp)xe ≤ 0, which is a multiple of
the nonnegativity constraint −xe ≤ 0. In contrast, the separability seems not
to fit into the framework of cardinality constrained matroids.

Theorem 3.1 ([13]). Let F ⊆ E such that 0 < cp < r(F ) < cp+1 < r(E) for
some p ∈ {1, . . . ,m − 1}. Then, the cardinality forcing inequality CFF (x) ≤
cp(cp+1 − r(F )) defines a facet of P c

M(E) if and only if F is closed. ¤

The statement is obviously independent of the fact whether F is separable
or not.

The observations in the previous paragraphs yield the first of three rec-
ommendations made in this section to find valid inequalities that are specific
to cardinality restrictions. Let c = (c1, . . . , cm) be a cardinality sequence,
Π = (E, I, w) a COP, and Πc its cardinality constrained version. Moreover,
denote by PI(E) and P c

I(E) the polytope associated with Π and Πc, respec-
tively. In analogy to matroid theory, we define a rank function r by r(F ) :=
max{|I∩F | : I ∈ I} for all F ⊆ E. Moreover, any subset F of E is called closed
if r(F ∪ {e}) > r(F ) for all e ∈ E \ F .

Recommendation 1. Instead of investigating the original cardinality forcing
inequalities (1), analyze the rank induced cardinality forcing inequalities

(cp+1 − r(F ))x(F )− (r(F )− cp)x(E \ F ) ≤ cp(cp+1 − r(F )),
F ⊆ E closed with cp < r(F ) < cp+1 for some p. (9)

Evidently, inequalities (9) are valid. Moreover, they are stronger than in-
equalities (1). To see this, let F and G be subsets of E such that F ⊆ G and
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cp < |F | = r(G) < cp+1 for some p. Then, the cardinality forcing inequality
associated with F is the sum of the rank induced cardinality forcing inequal-
ity associated with G and the inequalities −(cp+1 − cp)xe ≤ 0 for e ∈ G \ F .
Moreover, it is not hard to see that the closeness of F is a necessary condi-
tion for inequality (9) to be facet defining. Namely, if F is not closed, that is,
there exists e ∈ E \ F such that r(F ∪ {e}) = r(F ), then (9) is the sum of
the inequalities CFF∪{e}(x) ≤ cp(cp+1 − r(F ∪ {e})) and −(cp+1 − cp)xe ≤ 0.
Indeed, our computational results with the convex hull codes polymake [10] and
PORTA [5] as well as our theoretical results confirm that the cardinality forcing
inequalities in the latter form frequently appear in the linear descriptions of
many polyhedra associated with CCCOP’s. Unfortunately, they are still not
necessarily facet defining, in general not separable in polynomial time unless
P = NP , and sometimes hard to identify.

3.2 Matroidal Relaxations

In case Π is the maximum independent set problem over a matroid, Πc can
be solved via the linear program (3) extended by the inequalities (9) and the
cardinality bounds c1 ≤ x(E) ≤ cm. Moreover, inequalities (9) are separable in
polynomial time, see [13].

The question, how we can benefit from the nice polyhedral structure of
cardinality constrained matroids, leads to the second recommendation.

Recommendation 2. Find a “good” combinatorial relaxation (or matroidal
relaxation) Π′ = (E,J , w) of the COP of consideration Π = (E, I, w), or even
better, directly of Πc = (E, I, w, c).

Here, a COP Π′ = (E,J , w) is called a combinatorial relaxation (matroidal
relaxation) of Π = (E, I, w) if J ⊇ I (and J is a matroid). Of course, J ⊇ I
or J ⊇ (I ∩ CHSc(E)) implies that (J ∩ CHSc(E)) ⊇ (I ∩ CHSc(E)). Hence,
valid inequalities for P c

J (E) are also valid for P c
I(E).

The hope behind Recommendation 2 is that “good” combinatorial relax-
ations yield strong inequalities for P c

I(E). In particular, we are interested in
rank induced cardinality forcing inequalities for P c

J (E) that are facet defining
for P c

I(E). In the best case “good” means that, firstly, P c
J (E) has a tractable

facial description, and secondly, the facet defining inequalities for P c
J (E) are

also facet defining for P c
I(E). If, for instance, J is a matroid, then P c

J (E) has
a tractable facial structure, but this alone says nothing about the tightness of
its facet defining inequalities for P c

I(E).
It is quite obvious that the tightness of a combinatorial (matroidal) relax-

ation influences the strength of the associated inequalities with respect to P c
I(E).

For instance, an independence system I defined on some ground set E is the
intersection of finitely many matroids defined on the same set E: The circuit
system C associated to I has only finitely many members. Each circuit C ∈ C
can be used to define a matroid IC by setting IC := {I ⊆ E : C 6⊆ I}. Then,
I = ∩C∈CIC . This is, however, usually not an efficient way to describe I, since
in general I is the intersection of less matroids. From a polyhedral point of view
a small description of I by matroids should usually lead to strong inequalities
for P c

I(E).
In Recommendation 2 we suggest to find directly combinatorial (matroidal)

8



Cardinality Constrained Combinatorial Optimization 9

relaxations of Πc instead of Π. Of course, the combinatorial relaxations of
Π and Πc are usually the same, but not necessarily. If J ⊇ I, then J ⊇
(I ∩ CHSc(E)). However, K ⊇ (I ∩ CHSc(E)) for some K ⊆ 2E does not
necessarily imply K ⊇ I. This fact also affects the facial structures of the
polytopes associated with Π and Πc. Consider again an artificial COP, for
instance, the embedded directed odd cycle problem (EDOCP)

min{w(C) : C ⊆ E, if |C| ≥ 3 is odd, then C is a simple directed cycle}

defined on a digraph D = (V,A). The associated polytope, namely the embedded
directed odd cycle polytope PEDOC(A), which is the convex hull of all incidence
vectors of the feasible solutions of the EDOCP, is fulldimensional, since 0 ∈
PEDOC(A) and ua ∈ PEDOC(A) for all a ∈ A. Here, 0 denotes the zero vector,
and ua denotes the ath unit vector. Moreover, a trivial inequality xa ≤ 1 defines
a facet of PEDOC(A), since the vectors ua and ua + ub for all b ∈ A \ {a} belong
to PEDOC(A), are linearly independent, and satisfy the inequality at equality.
The trivial inequalities xa ≤ 1 for a ∈ A can be interpreted as rank inequalities
for the trivial matroid I = 2A. As is easily seen, the singletons {a}, where
a ∈ A, are the closed and inseparable sets with respect to I. Now, restricting
the feasible solutions of the EDOC to odd cardinalities ≥ 3, we obtain the so
called directed odd cycle problem (DOCP). Of course, an inequality xij ≤ 1,
with (i, j) = a, is valid for the polytope associated with the DOCP, the so
called directed odd cycle polytope

PDOC(A) := conv{χC ∈ RA : C is a simple directed cycle with |C| odd},

but now the inequality is the consequence of the valid inequalities x(δout(i)) ≤ 1
and −xik ≤ 0 for all k ∈ δout \ {j}, and hence, definitely not facet defining
if |δout(i)| ≥ 2. Conversely, x(δout(i)) ≤ 1 is not valid for PEDOC(A) unless
|δout(i)| = 1.

We close the discussion with two examples for a favorable application of
Recommendation 2.

Example A: Cardinality Constrained Matchings.
A matching of a graph G = (V,E) is a set of mutually disjoint edges. Given

any edge weights we ∈ R, to find a maximum weight matching in G is one of
the hardest combinatorial optimization problems solvable in polynomial time.

The problem of finding a maximum weight matching of cardinality k ≤
b|V |/2c can be easily transformed into the perfect matching problem. Add
` := |V |−2k new nodes u1, . . . , u` and join each of them with every node v ∈ V
by a (zero-weight) edge. Denote the resulting graph by G′ = (V ′, E′). Then, the
restriction of any perfect matching M in G′ to G is a matching of cardinality k,
since the node set {u1, . . . , u`} is a stable set. Consequently, for any cardinality
sequence c, the associated cardinality constrained matching problem can be
solved in polynomial time.

Let M be the collection of all matchings of G. The matching polytope
PMATCH(E) of G = (V,E) is the convex hull of the incidence vectors of all
matchings M ∈ M. By Edmonds [6], the matching polytope is determined by

9
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the following inequalities:

xe ≥ 0 for all e ∈ E, (10)
x(δ(v)) ≤ 1 for all v ∈ V , (11)

x(E(W )) ≤ b1
2
|W |c for all W ⊆ V, |W | odd. (12)

The set of all matchings M of G form an independence system. Inequal-
ities (11) are the facet defining rank inequalities associated with the indepen-
dence system M of G. A natural translation of inequalities (11) to cardinality
constraints are the inequalities

(2cp+1 − |W |)
∑

v∈W

x(δ(v))− (|W | − 2cp)
∑

v∈V \W
x(δ(v)) ≤ 2cp(2cp+1 − |W |)

for all W ⊆ V with 2cp < |W | < 2cp+1, p = 1, . . . ,m,
(13)

which are easily seen to be valid for the cardinality constrained matching polytope
P c

MATCH(E) := conv{χM ∈ RE : M ∈M∩CHSc(E)}. It is not hard to see that
inequalities (13) do not belong to rank induced cardinality forcing inequalities in
the strict sense, since their coefficients have three different values: 4cp+1−2|W |,
4cp − 2|W |, and 2cp + 2cp+1 − 2|W |.

Turning to matroidal relaxations, Fekete, Firla, and Spille [8] discuss the
problem to describe M as intersection of a minimum number of matroids. Al-
though it is hard to determine the involved matroids, there is at least one
matroid that can be derived by studying inequalities (12). Let F ⊆ E and
G′ = (W, F ) the subgraph of G induced by F . Moreover, let Hi = (Wi, Fi), i =
1, . . . , k, be the connected components of G′, and define r(F ) :=

∑k
i=1b

1
2 |Wi|c.

Then, it is not hard to see that r is the rank function of a matroid, say
M1/2 = (E, I). This matroid is closely related to the graphical matroid. The
inseparable and closed sets with respect to M1/2 are just the edge sets E(W )
with |W | odd. Consequently, inequalities (12) are rank inequalities, and hence,
a cardinality constrained counterpart of inequalities (12) can be derived for
P c

MATCH(E). The next theorem indicates that those rank induced cardinality
forcing inequalities are part of a facial description of P c

MATCH(E).
For the next proofs we introduce an useful definition. Let ax ≤ α be a valid

inequality for the polyhedron PI(E) associated with a COP Π = (E, I, w). The
feasible solution I ∈ I is said to be tight if aχI = α.

Theorem 3.2. Let Kn = (V,E) be the complete graph on n nodes, c1 ≥ 1 and
cm ≤ bn

2 c − 1. Let W1∪̇W2∪̇ . . . ∪̇Wk be a disjoint union of odd subsets of V

such that cp < r :=
∑k

i=1
|Wi|−1

2 < cp+1 for some p ∈ {1, . . . ,m − 1}. Setting
F :=

∑k
i=1 E(Wi), the inequality

(cp+1 − r)x(F )− (r − cp)x(E \ F ) ≤ cp(cp+1 − r) (14)

defines a facet of P c
MATCH(E).

Proof. By definition, r = r(F ) and F is closed with respect to M1/2. Since
M ⊆ I, it is not hard to see that inequality (14) is valid. To show that (14)
defines a facet of P c

MATCH(E), we assume that there is an equation bx = b0 that
is satisfied by all points in P c

MATCH(E) which satisfy (14) at equality. If cp = 1,

10
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then it is easy to see that be = b0 = b0
cp

for all e ∈ F . Next, let cp ≥ 2 which
implies r ≥ 3. We will show that for any two edges e, f ∈ F , be = bf holds.
If e and f are non-adjacent, then there is a matching M of cardinality cp + 1
with e, f ∈ F due to ru(F ) = r ≥ 3. The matchings Me := M \ {e} and
Mf := M \ {f} are tight. Hence, b0 = bχMe = bχMf which implies immediately
be = bf . If e and f are adjacent, then there is some edge g ∈ F which is adjacent
neither to e nor to f . By the former argumentation, be = bg and bf = bg, and
thus, be = bf . Any tight matching M ⊆ F yields now be = b0

cp
for all e ∈ F .

Next, consider the coefficients be, e ∈ E \ F . If cp+1 = r + 1, then one can
easily deduce that be = −b0

r−cp

cp
= −b0

r−cp

cp(cp+1−r) . So, let cp+1 > r + 1 and
e? ∈ E \ F be any edge. No matter whether e? is incident with no, one, or
two nodes of W1∪̇W2∪̇ . . . ∪̇Wk, there is some matching M? ⊆ F with |M?| = r
such that M? ∪{e?} is also a matching. Moreover, M? ∪{e?} can be completed
to a matching M ′ with |M ′| = cp+1 + 1 even if cp+1 = cm, since cm ≤ bn

2 c − 1.
The matchings M ′

f := M ′ \ {f}, f ∈ M ′ \ M? are tight with respect to (14)
which implies bχM ′

f = b0 for all f ∈ M ′ \M?. Hence, it is not hard to see that
bf = −b0

r−cp

cp(cp+1−r(F )) for all f ∈ M ′\M?. In particular, be? = −b0
r−cp

cp(cp+1−r(F )) ,

and since e? were arbitrarily chosen, it follows that be = −b0
r−cp

cp(cp+1−r(F )) for
all e ∈ E \ F . Thus, bx = b0 is a multiple of (14), which finishes the proof.

Example B: Cardinality Constrained Paths.
Let D = (V,A) be a directed graph and c = (c1, . . . , cm) a cardinality

sequence. For any v ∈ V , we denote by δin(v) and δout(v) the set of arcs
entering and leaving node v, respectively. For any two disjoint nodes s, t ∈ V ,
let Ps,t(D) be the collection of simple directed (s, t)-paths of D. Then,

P c
s,t−path(D) := conv{χP ∈ RA : P ∈ Ps,t(D) ∩ CHSc(A)}

is called the cardinality constrained path polytope, and according to [12], the
integer points of P c

s,t−path(D) can be described by the system

xuv ∈ {0, 1} for all (u, v) ∈ A.

x(δout(s)) = x(δin(t)) = 1, (15)

x(δin(s)) = x(δout(t)) = 0, (16)

x(δout(v))− x(δin(v)) = 0 for all v ∈ V \ {s, t}, (17)

x(δout(v)) ≤ 1 for all v ∈ V \ {s, t}, (18)

x(δin(v))− x((S : V \ S)) ≤ 0 ∀S ⊂ V : s, t ∈ S, v ∈ V \ S, (19)
x(A) ≥ c1,

x(A) ≤ cm,

(cp+1 − |W |)
∑
v∈W

x(δout(v)) − (|W | − cp)
∑

v∈V \W

x(δout(v)) ≤ cp(cp+1 − |W |)

for all W ⊆ V : s ∈ W, t ∈ V \W with cp < |W | < cp+1 for some p. (20)

It is worthwile to have a closer look at the cardinality constrained path
polytop from a matroidal point of view, disclosing that the cardinality forcing

11
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inequalities (20) are originated from matroids. The collection of all simple (s, t)-
paths is contained in the intersection of the same three matroids that are used to
formulate the asymmetric traveling salesman problem (ATSP) by matroids. The
three matroids are the two partition matroids Mout = (A, Iout), M in = (A, I in)
whose independence systems are defined by

Iout := {B ⊆ A : |B ∩ δout(v)| ≤ 1 for all v ∈ V },
I in := {B ⊆ A : |B ∩ δin(v)| ≤ 1 for all v ∈ V },

respectively, and the graphic matroid MF = (A, IF ), where IF denotes the
collection of all forests of D. Consequently, the rank and cardinality inequalities
associated with these matroids are valid inequalities for P c

s,t−path(D).
The facet defining rank inequalities for P c

Mout(A) are exactly the inequalities
x(δout(v)) ≤ 1 for v ∈ V . Thus, inequalities (18) are originated from the
partition matroid Mout. The facet defining cardinality forcing inequalities for
P c

Mout(A) are of the form

(cp+1−|U |)
∑
v∈U

x(δout(v)) − (|U |−cp)
∑

v∈V \U

x(δout(v)) ≤ cp(cp+1−|U |), (21)

where U ⊆ V with cp < |U | < cp+1 for some p ∈ {1, . . . ,m − 1}. If s ∈ U and
t ∈ V \ U , then, with respect to P c

s,t−path(D), inequality (21) is equivalent to

(cp+1−|U |)
∑

v∈U∪{t}

x(δout(v)) − (|U |−cp)
∑

v∈V \(U∪{t})

x(δout(v)) ≤ cp(cp+1−|U |),

due to x(δout(t)) = 0. Setting W := U ∪ {t}, we see that this inequality is an
inequality among (20). Thus, inequalities (20) are originated from the cardi-
nality constrained version of Mout. By Theorem 3.2 of [12] these inequalities
define facets of P c

s,t−path(D).
Due to the flow conservation constraints (17), the inequalities that can be

derived from facet defining rank and cardinality forcing inequalities for P c
M in(A)

are equivalent to any of the inequalities (18) and (20).
The facet defining rank inequalities for P c

MF (A) are of the form x(A(U)) ≤
|U | − 1 for ∅ 6= U ⊆ V . Due to the equations (15), (16), the face induced
by the rank inequality associated with some U is contained in the face in-
duced by the rank inequality associated with U ′ := U \ {s, t} (with respect to
P c

s,t−path(D)). However, the inequality x(A(U ′)) ≤ |U ′| − 1 is still not facet
defining for P c

s,t−path(D). To this end, consider an inequality among (19) with
S := V \ U ′ and some u ∈ U ′:

x(δin(u))− x((S : V \ S)) ≤ 0.

Adding the inequalities x(δin(v)) ≤ 1 for v ∈ U ′ \ {u}, we obtain x(A(U ′)) ≤
|U ′| − 1. Also, none of the cardinality forcing inequalities

(cp+1 − rF (W ))x(W ) − (rF (W )− cp)x(A \W ) ≤ cp(cp+1 − rF (W ))

for closed sets W ⊆ A with respect to the graphic matroid is facet defining for
P c

s,t−path(D) regardless in which partion W, A \W are s and t.

12
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3.3 Iterated Inequality-Strengthening

A favorite method in order to obtain insights about the facial structure of a
polytope is to compute the H-representation of a polytope, given by its V-
representation, with convex-hull codes such as PORTA [5] or polymake [10].
However, since the used routines have exponential running time (indeed, a poly-
nomial algorithm for the convex hull problem is unknown), this approach works
only for small problem instances. Here might general lifting procedures come
into play, because we are perhaps not able to compute the H-representation
of a polytope, but able to determine quickly the affine space associated with
the face induced by a valid inequality. For example, PORTA returns a set of
linearly independent equations that are satisfied by all points in the face Fa

of a polyhedron P induced by a valid inequality ax ≤ α. In other words, the
set of equations determines the affine hull of Fa. However, P intersects usually
both half spaces induced by such an equation bx = β, which means that nei-
ther bx ≤ β nor bx ≥ β is a valid inequality for P . In this case the following
procedure can be applied.

Procedure 3.3. Inequality-Strengthening.
Input: A 0-1-polytope P ∈ Rd given by its vertex set V, a valid inequality
ax ≤ α, and an equation bx = β that is satisfied by all points v ∈ V that satisfy
ax ≤ α at equality.
Output: A valid inequality cx ≤ γ such that the face induced by this inequality
contains the face induced by ax ≤ α.

1. Set Ṽ = {v ∈ V : bv > β}.

2. If Ṽ = ∅, return “ax ≤ α”.

3. Set λv := α−av
bv−β for all v ∈ Ṽ.

4. Set λ? := min{λv : v ∈ Ṽ}.

5. Define a new inequality cx ≤ γ by c := a + λ? · b and γ := α + λ? · β.
Return “cx ≤ γ”.

Ṽ is the set of all vertices of P that violate the inequality bx ≤ β. Thus,
av < α and λv > 0 for all v ∈ Ṽ, which in turn implies λ? > 0. Now, for every
v ∈ V \ Ṽ we have: av ≤ α, bv ≤ β, and hence cv ≤ γ. Moreover, for each v ∈ Ṽ
we have: (a + λb) · v ≤ α + λβ for 0 ≤ λ ≤ λv. Hence, cx ≤ γ is satisfied by
every v ∈ Ṽ. Consequently, cx ≤ γ is a valid inequality for P . Furthermore, if
Ṽ 6= ∅, then by choice of λ?, the face induced by ax ≤ α is strictly contained
in the face induced by cx ≤ γ. So, applying Procedure 3.3 iteratively, results in
a facet defining inequality for P . Of course, the running time of the procedure
is linear in |V|, but in general not polynomial in the dimension d of the space.

Based on these observations, we give the following recommendation.

Recommendation 3. If the cardinality forcing inequalities are not facet defin-
ing for the polytope of consideration, then they are probably a good starting
point to derive stronger cardinality specific inequalities. Algorithmically this can
be done with Procedure 3.3.

13
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To give an application for Procedure 3.3, we consider cardinality constrained
cuts. Let G = (V,E) be a graph. For any S ⊆ V , we denote by δ(S) the set of
edges connecting S and V \ S. A subset C of E is called a cut if C = δ(S) for
some S ⊆ V . The sets S and V \S are the shores of C. The collection of all cuts
of G is denoted by C. The max cut problem max{w(C) : C ∈ C}, is NP-hard.
In the following, we install cardinality restrictions acting on the shores of the
cuts.

Let C ⊆ E be a cut with shores S and T . Then, |T | = |V | − |S|, that is, the
cardinality of S determines that of T and vice versa. Moreover, min{|S|, |T |} ≤
bn

2 c. Consequently, it is sufficient to force only the cardinality of the smaller
shore which can be done with cardinality sequences c = (c1, . . . , cm) with 1 ≤
cm < . . . < cm ≤ bn

2 c. These observations give reason to define the node
cardinality constrained cut polytope

P c
Cut(E) := conv{χδ(S) ∈ RE : S ∈ CHSc(V )}.

In the sequel, let P c
Cut(E) be defined on the complete graph Kn = (V,E)

on n nodes. Since the cardinality constraints in form of the cardinality se-
quence c are not setted on E but on V , it seems to be hard to incorporate
the cardinality forcing inequalities. However, requiring not only S ∈ CHSc(V )
for a shore S of a cut, but also s /∈ S for a fixed node s, opens the doors
to these inequalities. Denote by S the collection of all subsets of V not con-
taining s. Then, P̄ c

Cut(E) := conv{χδ(U) ∈ RE : U ∈ S ∩ CHSc(V )} is a
slight variation of P c

Cut(E). Both polytopes are connected as follows: Let
c = (c1, . . . , cm) be a cardinality sequence with 1 ≤ cm < . . . < cm ≤ bn

2 c
and c̄ = (c1, . . . , cm, n − cm, . . . , n − c1). Then, P c

Cut(E) = P c̄
Cut(E) and

P c̄
Cut(E) = P̄ c̄

Cut(E), but in general P c
Cut(E) 6= P̄ c

Cut(E). Thus, P̄ c
Cut(E) gen-

eralizes P c
Cut(E). The difference in the facial structure, however, is small. For

instance, if we restrict ourselves to c = (k), then P̄
(k)
Cut(E) is a face of P

(k)
Cut(E).

If k ≤ bn
2 c, then it is induced by x(δ(s)) ≥ k, if k > bn

2 c, then by x(δ(s)) ≤ k.
Since {s, v} ∈ E for all v ∈ V \ {s}, we have |δ(U) ∩ δ(s)| = |U | for all

U ∈ S ∩ CHSc(V ). Thus, the cardinality forcing inequality

(cp+1 − |W |) x(δ(s) ∩ δ(W ))− (|W | − cp) x(δ(s) ∩ δ(V \W )) ≤ cp(cp+1 − |W |)

is valid for all W ∈ S with cp < |W | < cp+1 for some p. The inequalities are
not facet defining, but by application of Procedure 3.3 and the right choice of
equations generated by PORTA they can be strengthened. With this approach
we identified a very simple class of n · (m− 1) inequalities

x(E)− (n− cp − cp+1)x(δ(s)) ≤ cpcp+1 ∀ s ∈ V, p ∈ {1, . . . ,m− 1}, (22)

which will be shown to be facet defining in Theorem 3.7.

Example. We consider the complete graph K13 = (V,E), the cardinality se-
quence c = (2, 6, 7, 11), and the cardinality forcing inequality

2
∑
v∈Y

xsv − 2
∑
v∈Z

xsv ≤ 4,

where s = 1, Y = {2, 3, 4, 5}, and Z = {6, . . . , 13}. All points in Q := P c
Cut(E)

satisfying the inequality at equality satisfy the equation

x(E(Z))− 6x((Z : {s})) = 0.

14
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The minimum value λ? in Procedure 3.3 will be attained by 4. This results in
the inequality

2
∑
v∈Y

xsv − 26
∑
v∈Z

xsv + 4x(E(Z)) ≤ 4.

Going so on, we obtain

8 x(E(Y )) + x((Y : Z)) + 2 x(E(Z)) = 48,
λ? = 2

3 , and after scaling
6
∑

v∈Y

xsv − 78
∑

v∈Z

xsv + 16 x(E(Y )) + 2 x((Y : Z)) + 16 x(E(Z)) ≤ 108.

Finally,

−6
∑

v∈Y

xsv + 6
∑

v∈Z

xsv − x(E(Y )) + x((Y : Z))− x(E(Z)) = 0,

λ? = 7,
−36x(δ(s)) + 9x(E(V \ {s})) ≤ 108.

The last inequality is a multiple of an inequality of the form (22).
The goal of the remainder of this section is to show that inequalities (22)

define facets of P c
Cut(E). An inequality among (22) is equivalent to x(δ(s)) ≥ cp

with respect to P
(cp)
Cut (E), since x(E) = cp(n− cp) for all x ∈ P

(cp)
Cut (E). An anal-

ogous observation holds for cp+1. Thus, in order to show that the inequalities
(22) are indeed facet defining, we first study the inequalities x(δ(s)) ≥ k with
respect to P

(k)
Cut(E).

To simplify the next proofs we recall some facts from Linear Algebra. De-
note the kernel and the image of a matrix A ∈ Rm×n by ker(A) and im(A),
respectively. Denote by Ai the ith column of A. Let v1, . . . , vk ∈ ker(A) and
vk+1, . . . , vr ∈ Rn be any vectors. In order to show that these vectors are
linearly independent, it is sufficient to do this for the vectors v1, . . . , vk and
Avk+1, . . . , Avr separately. Moreover, we need the following lemma.

Lemma 3.4. Let n ∈ N, n ≥ 2, and α, β ∈ R. The n× n matrix A defined by

aij =
{

α if i = j,
β otherwise

has full rank if and only if α 6= β and α + (n− 1)β 6= 0.

Proof. Clearly, if α = β, then rank(A) < n. If α+(n−1)β = 0, then
∑n

i=1 Ai =
0, which implies that rank(A) < n. To show the converse, define a new column
An+1 := β

α+(n−1)β

∑n
i=1 Ai. All entries of An+1 are equal to β. Thus, the

matrix B defined by Bi := Ai − An+1 for i = 1, . . . , n, and Bn+1 = An+1 has
entries α− β on the diagonal of the first n entries. Since α 6= β, it follows that
rank(B) = n. We conclude that rank(A) = rank(A, An+1) = rank(B) = n.

Denoting by 1n the n × n matrix of all ones and by In the n × n identity
matrix, the matrix defined in Lemma 3.4 is equal to β1n + (α− β)In.

Theorem 3.5. Let Kn = (V,E) be the complete graph on n nodes and 1 ≤ k ≤
bn

2 c be an integer. Then,

dim P
(k)
Cut(E) =

 n− 1, if k = 1,
|E| − n, if n is even and k = n/2,
|E| − 1, otherwise.

(23)

15
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Proof. In case k = 1 the statement is clear. When n is odd and k = bn
2 c,

P
(k)
Cut(E) is the face of PCut(E) induced by the inequality x(E) ≤ bn

2 cd
n
2 e, which

by Theorem 2.1 of Barahona and Mahjoub [3] defines a facet of PCut(E). Since
PCut(E) is fulldimensional, it follows dim P

(k)
Cut(E) = |E| − 1. Next, let n be

even and k = n/2. Then, for any s ∈ V , |V s| is odd and ` := k − 1 = b |V
s|

2 c.
Hence, dim P

(`)
Cut(E

s) = |Es| − 1 = (|E| − n + 1) − 1 = |E| − n. Since any
cut δs(W ) with |W | = ` in Ks

n can be augmented to a cut in Kn by adding
node s to W , it follows immediately that dim P

(k)
Cut(E) ≥ |E| − n. In order to

show equality, we remark that any cut δ(W ) of Kn with |W | = n
2 satisfies the

n linearly independent equations x(δ(v)) = n
2 , v ∈ V .

Finally, let 2 ≤ k < bn
2 c. Since all points in P

(k)
Cut(E) satisfy the equation

x(E) = k(n− k), (24)

it follows that dimP
(k)
Cut(E) ≤ |E| − 1. To show equality, let bx = β be an

equation that is satisfied by all x ∈ P
(k)
Cut(E). Our goal is to show that bx = β

is a multiple of (24).
Let V = S ∪̇T ∪̇U ∪̇ {v} ∪̇ {w} be a partition of V such that |S| = |T | = k−1

and |U | = n−2k. Similar as in the proof of Lemma 2.5 of Barahona, Grötschel,
and Mahjoub [2] one can show that b(s : U) = b(t : U) by considering the cuts

C1 := (S ∪ {s} ∪ U : T ∪ {t}), C2 := (S ∪ {s} : T ∪ {t} ∪ U)
C3 := (S ∪ {t} ∪ U : T ∪ {s}), C4 := (S ∪ {t} : T ∪ {s} ∪ U).

Here, for any y ∈ V and Z ⊆ V \ {y}, b(y : Z) denotes the sum
∑

v∈Z byv.
Now let W ⊆ V \ {s, t} be any node set of cardinality n− 2k + 1. Since U was
arbitrarily chosen, we have b(s : W \ {v}) = b(t : W \ {v}) for each v ∈ W .
Defining zv := bsv−btv for v ∈ W , we can write this set of equations as equation
system (1|W |− I|W |)z = 0. By Lemma 3.4, 1|W |− I|W | is a nonsingular matrix,
and thus z = 0 is the only solution implying bsv = btv for all v ∈ W . Since s, t,
and W were arbitrarily chosen, we can conclude that be = σ for all e ∈ E for
some σ ∈ R, and hence β = σk(n − k). Consequently, bx = β is a multiple of
(24).

Theorem 3.6. Let Kn = (V,E) be the complete graph on n nodes and 1 ≤ k ≤
bn

2 c integer. Then for any s ∈ V , the inequality

x(δ(s)) ≥ k (25)

is valid for P
(k)
Cut(E). It defines a facet of P

(k)
Cut(E) if and only if k = 1, otherwise

a face of dimension |E| − n.

Proof. Let F be the face induced by (25). In case k = 1, the cuts δ(w) for
w ∈ V \ {s} are tight with respect to (25). Since their incidence vectors are
linearly independent, we conclude that F has dimension n − 2, that is, (25)
defines a facet. When n is even and k = n

2 , then (25) is satisfied with equality
by all points x ∈ P

(k)
Cut(E). Consequently, F = P

(k)
Cut(E) which by Theorem 3.5

implies dim F = |E| − n.

16
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Next, let 2 ≤ k ≤ n
2 − 1. The incidence vector of a feasible tight cut satisfies

equation (24) and the n− 1 equations

xsv −
x(δ(v))− k

n− 2k
= 0, v ∈ V s. (26)

Since these equations are linearly independent, it follows that dim F ≤ |E| − n.
The inequality dimF ≥ |E| − n follows from the fact that dimP

(k)
Cut(E

s) =
|Es| − 1 = |E| − n and any cut δs(W ) with |W | = k in Ks

n corresponds to a
tight cut δ(W ) in Kn.

Finally, let n be odd and k = bn
2 c. Clearly, dimF ≤ |E| − n, since the inci-

dence vector of a tight cut satisfies the equations (24) and (26). To show equality,
consider the cut polytope P

(k)
Cut(E

s) which can be obtained by projecting F to
REs

. Its dimension is |Es| − |V s|. Consequently, there are r := |Es| − |V s|+ 1
linearly independent incidence vectors of cuts, say δs(W1), . . . , δs(Wr) of Ks

n

with |Wi| = k. Since the shores of a cut δs(Wi) have the same cardinality, we
may assume w.l.o.g. that for some t ∈ V s, t ∈ Wi for i = 1, . . . , r. Of course,
the cuts Ci := δ(Wi ∪{s}), i = 1, . . . , r are tight with respect to (25), and their
incidence vectors are linearly independent, too. In addition, beside (24) and
(26), these vectors satisfy the n− 2 equations

xsv − xtv + xst = 0 for all v ∈ Ṽ , (27)

where Ṽ := V s\{t}. Since r+(n−2) = |E|−n+1, it suffices to construct (n−2)
further tight cuts whose incidence vectors are linearly independent and linearly
independent of the former points. To this end, let w.l.o.g. V ′ = {1, . . . , n − 2}
and U = {s, 1, . . . , n − k}. For each v with 1 ≤ v ≤ n − k, C̃v := δ(U \ {v})
is a feasible tight cut. Moreover, for each v ∈ {n − k + 1, . . . , n − 2} and
any u, ũ ∈ {1, . . . , n − k}, the cut C̃v := δ((U ∪ {v}) \ {u, ũ}) is tight. Let A
be the matrix associated with the left hand side of the equations (27). Since
χCi ∈ ker(A), it remains to show that the matrix B := [AχC̃1 , . . . , AχC̃n−2 ] has
full rank. Indeed, B is of the form

B =
[
2In−k 0
∗ 2 (1k−2 − Ik−2)

]
,

which implies immediately rank(B) = n− 2.

Theorem 3.7. Let Kn = (V,E) be the complete graph on n nodes and c =
(c1, . . . , cm) a cardinality sequence with 1 ≤ c1 < . . . cm ≤ bn

2 c. Then, P c
Cut(E)

is fulldimensional. Moreover, the inequality

x(E)− (n− cp − cp+1)x(δ(s)) ≤ cpcp+1 (28)

defines a facet of P c
Cut(E) for all s ∈ V .

Proof. W.l.o.g let V s = {1, . . . , n − 1}. Let F be the face of P c
Cut(E) induced

by (28). We will show that dimF = |E| − 1, which implies that P c
Cut(E) is

fulldimensional due to the fact that not all feasible cuts are tight. Since m ≥ 2,
it follows that cp+1 ≥ 2. Inequality (28) is equivalent to x(δ(s)) ≥ cp+1 with
respect to P

(cp+1)
Cut (E). Hence, by Theorem 3.6, there are q := |E| − n + 1

17
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linearly independent incidence vectors of tight cuts Ci := δ(Wi) with s ∈ Wi

and |W | = n− cp+1. In the sequel, we distinguish three cases.
(1) Let cp+1 < bn

2 c. Then, the vectors χCi satisfy the n− 1 equations

xsv +
x(δ(s))− x(δs(v))

n− 2cp+1 − 1
= 0 ∀ v ∈ V s. (29)

Denote by A the matrix associated with the left hand side of (29). To construct
n− 1 further points, consider the set U = {s, 1, . . . , r} with r = n− cp − 2. For
each node v ∈ {r +1, . . . , n− 1}, the cut C̃v := δ(U ∪{v}) is tight, and for each
node v ∈ {1, . . . , r} and any two disjoint nodes t, u ∈ {r + 1, . . . , n− 1}, the cut
C̃v := δ((U ∪ {t, u}) \ {v}) is tight. Since χCi ∈ ker(A) for i = 1, . . . , q, it is
sufficient to prove that the matrix B :=

[
AχC̃1 , . . . , AχC̃n−1

]
has full rank. It

is not hard to see that B is of the form

B =
[

0 σ · Ir

σ(1r̄ − Ir̄) ∗

]
,

where r̄ = n − 1 − r and σ = 1 + 1+2cp−n
n−2cp+1−1 . Clearly, Ir and 1r̄ − Ir̄ have full

rank, and hence, also B.
(2) Let cp+1 = n

2 . This time the vectors χCi satisfy the equations

x(δ(v))− x(δ(s)) = 0 ∀ v ∈ V s. (30)

Let A be the matrix associated with the left hand side of (30). Of course,
χCi ∈ ker(A) for i = 1, . . . , q. Next, consider again the cuts C̃v, v = 1, . . . , n−1.
The matrix B :=

[
AχC̃1 , . . . , AχC̃n−1

]
is of the form

B =
[

0 (n− 2cp)Ir

(n− 2cp)(1r̄ − Ir̄) ∗

]
.

Since B has obviously full rank, (28) defines a facet if cp+1 = n
2 .

(3) Let cp+1 = n−1
2 . When cp > 1, reverse the roles of cp and cp+1 and apply

(1). So, in the sequel we may assume that cp = 1. The vectors χCi satisfy the
equations

x(δs(v))− x(δ(s)) = 0 ∀ v ∈ V s. (31)

Denote the left hand side of system (31) by the matrix A. Since χCi ∈ ker(A),
it remains to show that the images of the incidence vectors of the cuts δ(i),
i = 1, . . . , n− 1 are linearly independent. Now, for each i ∈ {1, . . . , n− 1},

x(δs(j))− x(δ(s)) =
{

n− 3 if j = i,
0 otherwise.

Thus, A ·
[
χδ(1), . . . , χδ(n−1)

]
= (n− 3)In−1.

Since the argumentation for showing that inequalities (22) are facet defining
uses the facial structure of the polytopes P

(k)
Cut(E), very similar results can be

obtained for P̄
(k)
Cut(E) where it does not matter whether k ≤ bn

2 c or k > bn
2 c.

18
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4 Extensions

The paper shows that the incorporation of the combinatorial structure of a
COP Π = (E, I, w) into cardinality forcing inequalities may result in strong
inequalities that cut off feasible solutions I ∈ I of forbidden cardinality. In
particular, well-known attributes of matroid theory (closeness) and matroidal
relaxations might play an important role in this context.

It is natural to search for complete linear descriptions of polyhedra P c
I(E)

associated with CCCOP’s at least for those problems for which a complete
linear description of the polyhedron PI(E) associated with the original COP is
known. For instance, the matching polytope PMATCH(E) is determined by the
inequalities (10)-(12). However, we do not know whether it is sufficient to add
inequalities (13), (14), and the cardinality bound c1 ≤ x(E) ≤ cm in order to
obtain a complete linear description of P c

MATCH(E).
If we have a complete linear description of P

(ci)
I (E) for i = 1, . . . ,m, then an

extended formulation for P c
I(E) can be obtained via disjunctive programming,

which is optimization over the union of polyhedra. Below we restate a well-
known result of Balas [1].

Theorem 4.1. Given r polyhedra P i = {x ∈ Rn : Aix ≥ bi} = conv(V i) +
cone(Ri), the following system:

y =
r∑

i=1

xi

Aixi≥λibi, i = 1, . . . , r
r∑

i=1

λi = 1

λi≥ 0, i = 1, . . . , r

(32)

provides an extended formulation for the polyhedron

P := conv

(
r⋃

i=1

V i

)
+ cone

(
r⋃

i=1

Ri

)
.

¤

In our context, r = m and P i = P
(ci)
I (E) for i = 1, . . . ,m. In addition, in

many cases the linear descriptions of the polyhedra P
(ci)
I (E) will only differ in

the cardinality constraints x(E) = ci, that is, there is some common constraint
system Ax ≥ b such that P

(ci)
I (E) = {x ∈ Rn : Ax ≥ b, x(E) = ci} for

i = 1, . . . ,m. This in turn simplifies system (32).
We currently formulate CCCOP’s as disjunctive programs and try to project

down the associated extended formulations to the original spaces in order to
derive complete linear descriptions, for instance, we do that for cardinality con-
strained matchings or the intersection of two cardinality constrained matroids
– but so far, without any success even for m = 2.
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