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Abstract

The enormous time lag between fast atomic motion and complex pro-
tein folding events makes it almost impossible to compute molecular dy-
namics on a high resolution. A common way to tackle this problem is to
model the system dynamics as a Markov process. Yet for large molec-
ular systems the resulting Markov chains can hardly be handled due to
the curse of dimensionality. Coarse graining methods can be used to re-
duce the dimension of a Markov chain, but it is still unclear how far the
coarse grained Markov chain resembles the original system. In order to
answer this question, two different coarse-graining methods were analysed
and compared: a classical set-based reduction method and an alternative
subspace-based approach, which is based on membership vectors instead
of sets. On the basis of a small toy system, it could be shown, that in con-
trast to the subset-based approach, the subspace-based reduction method
preserves the Markov property as well as the essential dynamics of the
original system.

AMS MSC 2000: 62-07, 60J22, 65C40

Keywords: Markov chain, PCCA-+, Conformation dynamics



Contents

1 Introduction
1.1 Molecular dynamics as stochastic process . . . ... ... .. ..
1.2 Coarse graining . . . . . . . . ...

2 Reduction of the state space
2.1 Set-based reduction. . . . . . .. ... . ... . 0.
2.1.1 Identification of metastable sets . . . . . ... ... .. ..
2.1.2 Calculation of transition frequencies . . . . .. ... ...
2.2 Subspace-based reduction . . . . ... ..o
2.2.1 Identification of metastable sets . . . . . . ... ... ...
2.2.2 Galerkin discretization . . . . . . .. ... ... .. ...

3 Prove of the Markov property
3.1 Propagation of densities . . . . .. ... ... ... L.
3.2 Chapman-Kolmogorov equation . . . . . . . ... ... ......
3.3 Exponential decay of eigenvalues . . . ... ... ... ... ...
3.4 Time scales of relaxation processes . . . . . . . .. .. ... ...

4 Results and Discussion
4.1 Coarse grained transition matrices . . . . .. .. ... ... ...
4.2 Propagation of densities . . . . . ... ..o oL oL
4.3 Chapman-Kolmogorov equation . . . . . . . ... ... ... ...
4.4 Eigenvalue analysis . . . . . . .. ... ... .. oL

5 Conclusion and Summary
6 Acknowledgements

Literature

15

15

15



1 Introduction

Atomic motion is extremely fast. Thermal vibrations like rotation, oscillation
or fluctuation have a timescale of only a few femtoseconds. On the contrary,
most essential dynamics, like complex protein-folding or protein-ligand binding
processes, have a timescale of several seconds. The resulting time lag makes it
almost impossible to simulate molecular motion with high resolution. Therefore
a model is needed, which allows the simulation of molecular motion on a coarse
level without loosing the essential dynamics.

1.1 Molecular dynamics as stochastic process

Most molecules have metastable conformations, i.e. on large scales the molecule
has the same geometric structure, whereas on small scales the system may rotate,
oscillate or fluctuate. The essential dynamic of most molecules can therefore be
described as a jump process with the molecule staying in one conformation for
long periods of time and rare switches between these conformations. A physical
explanation for these conformations can be given by the free energy landscape,
which consists of deep wells, representing local minima. In general, each well
is surrounded by large barriers, which separate each well from another. Due to
these high energy barriers, transitions between different local minima are rare
events [2].

Consider now the dynamic of a molecular system in equilibrium, with the con-
formational space decomposed into a set of N disjoint but contiguous states. By
observing a trajectory of this system at discrete time steps ¢ = 0, 1, .., i the
trajectory can be seen as discrete stochastic process with the system having a
specific state ¢(©), ¢V, ..., ¢ € Q at each of these discrete timesteps [1; 6].
This stochastic process defines a Markov chain, if the probability of the current
state X; = ¢ only depends on its previous state X;_; = ¢(i=1:

P(X; =q9X;o1 = ¢V, ., Xo=¢) = P(X; = ¢V|X;1 = ¢'7V),

i.e. it fulfiles the Markov property. For a Markov chain with finite state space
|2 = N, the transition matrix P contains the conditional probabilities P(a,b)
for each pair of states ¢""Y = @ and ¢ = b. P is a stochastic matrix with
non-negative elements and row sum 1.

However, for large molecular systems this simplified model still suffers from the
curse of dimensionality, due to the enormous amount of local minima located
on the free energy landscape. Therefore one has to find a way to further reduce
the dimension of the Markov chain. This can be done by coarse graining.

1.2 Coarse graining

In order to reduce a given Markov chain, the easiest and most intuitive way
would be a set-based approach. The standard practice contains the following
steps:

e identify all metastable sets
e assign all states uniquely to one set

e calculate the transition frequencies between all pairs of different sets



e finally rescale the reduced transition matrix P. to row sum 1.

Unfortunately, the reduced transition matrix P. is not a Markov chain, since
the Markov property does not hold anymore. This can be demonstrated with
the following example:
A system with state space 2 containing N = 36 states is given. Assume the
system can be decomposed into 3 metastable regions A, B and C with large tran-
sition probabilities between states of the same metastable set and low transition
probabilities between states of different metastable sets. The system is shown in
figure 1 with lines indicating transition probabilites larger than zero. Further-
more consider some states in set C with only low transition probabilities from
their neighbors to these states, indicated by white circles. These states form a
barrier inside Legen Sie bitte den fertiggestellten Report ab in ein temporéres
Verzeichnis /zibtmp/bibliothek mit dem Namen des Reports. In dieses Verze-
ichnis kopieren Sie bitte unbedingt das pdf-file - falls vorhanden méglichst auch
das ps-file und das TeX-file - sowie die dazugehorigen Abbildungen. Achtung:
Der Ordner und die files miissen fiir die Welt lesbar sein (>=755). Danach
benachrichtigen Sie bitte die Bibliothek, die alles weitere {ibernimmt. set C,
such that the probability of the transitions C — A and C — B depends on the
previous step: if the previous transition was A — C then the probability of C
— A is much higher than it is for C — B. Therefore the set-based reduction of
the Markov chain does not preserve the Markov property.

In contrast to this method, a subspace-based reduction preserves the Markov

Figure 1: System of N=36 states and three metastable sets A, B and C. The Markov
property holds for single states (left) but can not be transferred to subsets of states
(right). The probability C — A depends on whether the system has been in B or in
A before it enters C [8].

property [8]. The subspace-based reduction method presented in the cited and
the present report is based on a Galerkin Discretization of the Markov chain
represented by P. For the Galerkin Discretization, a basis x of an invariant
subspace of P has to be determined, which represents the decomposition of the
state space 2 into metastable regions. As the number of metastable sets is equal
to the number of dominant eigenvalues 6 of P near the perron root § = 1, the
corresponding eigenvectors X span exactly the invariant subspace of P that we
were looking for. So we have to find a transformation matrix A that transforms
the eigenvector X to non-negativ membership functions x: x = XA, with a
regular matrix A € IR"*™. The transformation matrix A can be generated via
Robust Perron Cluster Analysis (PCCA+) [3; 7].



2 Reduction of the state space

In order to capture the main dynamics of a molecule in feasible time, one
has to reduce the complexity of the system or, in terms of Markov chains,
reduce the dimension of the transition probability matrix. A good way is to
find all metastable sets and measure the transition frequencies between these
sets. As a result, the number of states is reduced from N states to n metastable
states, where n < N, and thus the full Markov chain with its transition matrix
P e RV*N ig reduced to P. € R™*™.

2.1 Set-based reduction

The most intuitive and easiest way to reduce the dimension of P is a set-based
approach. By identifying the metastable sets, all states q of the state space Q2
will be uniquely assigned to one metastable set, i.e. one conformation. The
transition frequencies between two conformations can now be calculated by the
weighted sum of all transition frequencies between the states belonging to these
two conformations.

2.1.1 Identification of metastable sets

For a dynamic process with metastable sets, the transition matrix P can be
arranged to a nearly block-diagonal structure. Hence, the problem of identifying
metastable sets in Markov chains is similar to the problem of locating the hidden
block-diagonal structure in the transition matrix. Algorithms that reorder the
rows and columns of the transition matrix such that states belonging to the same
conformation appear in consecutive order already exist [3; 7]. Since each block
represents a metastable set, the block-diagonal structure of the transition matrix
can be used to define a membership matrix x € {0, 1}*" where x(i,5) = 1 if
and only if state i belongs to subset j.

2.1.2 Calculation of transition frequencies

In order to construct the reduced transition matrix P. € IR"*"™ based on t}E
given metastable sets, we first need to transform P into a symmetric matrix P
containing the relative transition frequencies,

P=DP,

where D is the diagonal matrix D = diag(w) with the stationary density w =
(w1, ws, ...,wy). For a given set of n clustern, i.e. metastable sets, one can now
identify the frequencies between each pair of clusters (k,1) with k,l =1...n by
simply summing up those rows and columns of the transition frequency matrix
P that belong to the same cluster:

1€Cr,j€C]



Having characterized all metastable sets by membership functions y, one can
also write:

P.=x"Px=x"DPx.
Finally we have to rescale P, to row sum 1:
P.=D'Xx"DPy (1)

with the diagonal matrix D = diag(w,), where w, = xTw is the reduced sta-
tionary density.

P, is a set-based transition matrix, with the conditional probability for the tran-
sition between each pair of subsets of the reduced system. However, P, does not
represent a Markov chain, since in a time series realization the Markov property
is not given anymore.

2.2 Subspace-based reduction

In contrast to the subset-based reduction, as explained above, the representa-
tion of metastable conformations in a subspace-based reduction is based on soft
membership functions. For each metastable set a weight is assigned to each
state, describing how much the particular state belongs to a certain conforma-
tion.

2.2.1 Identification of metastable sets

It has been shown that the number of metastable sets n corresponds to the
number of dominant eigenvalues of the matrix P near the Perron root A = 1
[2; 5]:

PX = XA, A =diag(\), \i~1, XTDX = Id.

Each dominant eigenvector therefore represents a metastable set. If the dom-
inant eigenvectors X could now be transformed to membership functions Y,
we had a fuzzy decomposition of the state space (2 that corresponds to the
metastable regions of the system. The transformation of the eigenvectors X
can be done by the cluster algorithm PCCA+, which has been developed by
Marcus Weber and Peter Deuflhard [3; 7]. By applying PCCA+, a nonsingular
matrix A will be constructed,

x = XA, A nonsingular

such that the transformed vectors x = [x1, X2, ---, Xn] are almost characteristic
functions, i.e.

x(i,4) € [0,1].

and sum to 1:

n

Yox(ij)=1,Vi=1,..,N

Jj=1

The construction of A is a constrained optimization problem. For further infor-
mation see [3].



2.2.2 Galerkin discretization

x represents a basis of the same invariant subspace of P as it is spanned by X.
Thus, the reduced propagator P. can now be obtained correctly by adapting

Eq. (1):
P. =D '\"DPy (2)

with D = xI'Dx. Eq. (2) is the Galerkin discretization to the set of basis
vectors x with restriction operator R,

R:= T
and interpolation operator I,
I:=Dx(x"Dx)™".

With the Galerkin discretization of P in Eq. (2) we have mapped the dynamic of
the system into an invariant subspace of €2 which is spanned by x. Consequently
the coarse system has the same properties as the original one [4]. Further the
reduced transition matrix PT can be interpreted as a Markov chain and can
be used for time series realizations with a correctly reduced stationary density

vector v = Dxa with arbitary vector a € IR" [8]-



3 Prove of the Markov property

In order to evaluate the consequences of the different reduction methods for the
simulation, a transition matrix of the system shown in Figure 1 was constructed
to perform different tests on the Markov chain. The Markov chain was con-
structed such that the subsets A, B and C are metastable and set C contains a
small barrier.

3.1 Propagation of densities

Markov chains cannot only be modeled as a time series of states, but also as a
density propagation. In contrast to the state-based time series, with the system
having a defined state ¢’ € Q at each timestep i, the density propagation
approach is based on an ensemble of states. Given an initial distribution of
states

o e RY, @] =1,
the system evolves in time by

v = pTypl=1),

Here v(!) contains the probabilities to reach any of the N states at time-step i
and only depends on the previous time step (i — 1).
If one applies coarse graining on a given Markov chain, the reduced propagator
PT can be used for a time series realization

pPT pr

o® L PG,

where v((f) are the reduced density vectors.
Instead of propagating an initial density vector v(®) in the high-dimensional
space and subsequently restricting the result v(¥) to a reduced density vector
vgi), the reduced propagator P can be used to directly propagate a reduced
initial density vgo), i.e. create a distribution time series in the low-dimensional
space.

However, for a correctly reduced propagator P. and a valid restriction oper-
ator R = 7, the two different approaches:

e propagation of v with P7 first, then reduction to v,
e reduction of v to v. first, then propagation of v, with PT

commute, i.e. lead to the same result [8; 4]. We can therefore use the two
approaches to evaluate the quality of the particular reduction methods presented
in Chapter 2 and check whether the Markov property is also given in the reduced
Markov chain P..
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Figure 2: For a correctly reduced propagator PT the propagation of the densities via
PT reduced to the subsets defined by x should be equal to the propagation of the
reduced densities via PZ.

3.2 Chapman-Kolmogorov equation

For time homogeneous Markov chains the Chapman-Kolmogorov equation
P(t+s) = P(t)P(s)
holds. The equation can be extended to
P(kt) = P(t)*.

Based on the idea of lag time sampling (see [1] and [6]) it is possible to prove
the validity of the Chapman-Kolmogorov equation for a given transition matrix
P(t).

A number of samplings with different lag time k ! will be performed. Based on
the resulting trajectories, the transition matrix P(kt) will be reconstructed.

If the underlying process is an homogeneous Markov process, the transition ma-
trix P(kt) reconstructed out of a trajectory with lag time k should be identical
to the original transition matrix raised to the power of k P(t)".

Concerning the sampling method, it is important to note that we need a special
density-based sampling method for a subspace-based reduced transition matrix,
as a standard state-based sampling approach would generate wrong results.

3.3 Exponential decay of eigenvalues

Another way to prove, if the Chapman-Kolmogorov property holds for the par-
ticular Markov chain, is to analyse the second largest eigenvalue of the recon-
structed matrices. If the previously tested equation P(kt) = P(t)* holds, then
the eigenvalues should be similarly related, i.e. if X is an eigenvalue of P(t),
then P(kt) is expected to have an eigenvalue § = \¥. If a process is Markov, the
eigenvalues of the reconstructed transition matrices thus have an exponential
decay.

ILag time is the number of time steps that are left out until the state is accepted.



However, the aim of coarse-graining is not only to preserve the Markov prop-
erty, but also to maintain the essential dynamics of the original system. In
order to evaluate this, we can also use the eigenvalues: While the largest eigen-
value of the transition matrix P(t) is always one, the second largest eigenvalue
determines the maximum timescale of the Markov process, i.e. the rate of con-
vergence. Thus for a good reduction method, the differences of the dominant
eigenvalues of the reduced and the original system should be as small as possible.

3.4 Time scales of relaxation processes

The eigenvalues can also be seen as time rates for relaxation processes of the
system. Therefore, the expected exponential decay of the eigenvalues can also
be illustrated as a timescale of the corresponding relaxation process. In the
case of a Markov chain, the time scales of the relaxation processes are in direct
proportion to the lag times. The relative decay time rate 7(k) = —k/In(0) as
a function of lag time n is thus expected to be constant for all eigenvalues of
P(kt),Vk=1,...,n.
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4 Results and Discussion

4.1 Coarse grained transition matrices

Based on the methods described in Chapter 2, coarse graining was applied to
the transition matrix P of the constructed Markov chain (see Figure 1). For the
set-based reduction according to Eq. (1) we get:

0.9917 0.0025 0.0058
P, =1 0.0016 0.9945 0.0039
0.0025 0.0025 0.9950

In contrast to that, the subspace-based reduction according to Eq. (2) leads
to a slightly different reduced transition matrix:

0.9924 0.0023 0.0053
P = 0.0017 0.9947 0.0036
0.0025 0.0023 0.9952

In the following, we will use P,; for the set-based reduced matrix and P,y
for the subspace-based reduced matrix.

4.2 Propagation of densities

As already stated in 3.1, with a correct reduced propagator there should be no
difference if the density is first propagated and then reduced or if a reduced
density is propagated by a reduced propagator:

RPTv = P.Rv

To test the preservation of the Markov property, the difference between the two
diversely propagated densities at the same time step was measured.

x 107"

0.03 . . . 12

0.02

0.01

Error e

-0.01

Error e

-0.02

-0.03

-0.04 . _2 . .
0 500 X 1000 1500 2000 (] 500 ) 1000 1500 2000
time steps n time steps n

(a) Error caused by subset-based reduction  (b) Error caused by subspace-based reduction

Figure 3: Propagation error caused by different reduction approaches. For each set
of the system the difference e = ||[RP"v — PI Ruv||2 is shown.
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The result for a trajectory with 2000 states is shown in figure 3 for the set-
based and the subspace-based reduction approach, respectively. The difference
e = ||RPTv — PTRu||, is shown for each set, i.e. each conformation of the
system.

Although it has been theoretically proven that PL is a correct propagator of
the coarse grained system, there is still a difference of 107!* between the two
diversely calculated reduced density v.. This difference is caused by an ampli-
fication of the initial error, which has the order of machine precision 10'6. For
the set-based reduction the error of each state has a size of 1072 and reaches
its maximum between 0 and 200 time steps. After that, the error for each state
decreases until it converges to zero at time step 1000.

This is not surprising, as the stationary density of the reduced transition matrix
P,; corresponds to the reduced stationary density of the original Markov chain
P. Hence, the density vectors approach the stationary density with increasing
time steps.

4.3 Chapman-Kolmogorov equation

The following tests focus on the dynamics of the reduced Markov chains. First,
the Chapman-Kolmogorov property was directly tested. For this purpose, the
transition matrices P(kt), reconstructed from time series with lagtime k, were
compared to the original transition matrix P raised to the power of k.

The error e = ||P(kt) — P(t)¥||2 as a function of lag time is shown in Figure 4
for the original Markov chain P and the two differently reduced Markov chains
P, and P.;. All three error curves are, except for small fluctuations, constant
after some initial time. The error for the original Markov chain has a value of
0.12 and for the reduced systems it has a value of 0.02.

0.9 T T T
J—
0.8H P (1) .|
—--te
. P (2)
0.7H c |
0.6 4

(0] 0.5 -

"

o

o]

0.4 .
0.3 .
0.2 ]
0.1 g

P 8 S S S S 0y FH S 58 P e S8 A TR S

0

0 50 150 200

100
lag time k

Figure 4: Error e = ||P(kt) — P(t)*||2 as a function of lag time. P(kt) is the transition
matrix, that is reconstructed out of the trajectory, that is based on the respective
propagator PT (red), P.1” (green) and P.o” (blue).
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The result seems surprising. As for a true homogeneous Markov chain the

Chapman Kolmogorov equation holds, the error e = ||P(kt) — P(t)¥||2 is ex-
pected to be zero. Yet the results show an error of about 0.12 for the original
Markov chain P(t).
The reason for this difference is most likely the statistical error that is generated
by the sampling method. A trajectory with 10.000 states does not sufficiently
cover the whole state space €2, and hence the reconstructed transition matrix
P(kt) contains minor variations, i.e. P(kt) does not completely represent the
dynamic. If it was possible to sample infinitely long, one could avoid this sta-
tistical error. Consequently, the statistical error increases with the size of the
system, which is the reason why the original Markov chain produces a higher
error, than the two reduced Markov chains. Unfortunately, the statistical error
is also most likely the reason why there’s not a significant difference between
the remaining two coarse transition matrices. With finer methods applied, we
can make the difference visible, as demonstrated in the following section.

4.4 Eigenvalue analysis

Instead of comparing the matrices directly, the second eigenvalues of the re-
constructed matrices were analysed. As already stated, the eigenvalues should
be similarly related, i.e. if X\ is an eigenvalue of the transition Matrix P(t),
the eigenvalue for the transition matrix P(kt) should be equal to the value of
0 =A\".

In figure 5 the eigenvalues of the two differently reduced transition matrices P,
and P, are plotted as functions of lag time.

— D

--Ptl)

‘Ptz)

-

eigenvalue A

1 1 1
Ol 50

I
100 150 200
lag time k

Figure 5: Second largest Eigenvalues 6 of the reconstructed transition matrices (P(kt)
(red), Pc1(kt)(green) and P.o(kt)(blue)) as function of lag times.

The eigenvalue curves are not identical. The eigenvalues of P.o(kt) have
higher values and are in general more similar to the second dominant eigenvalue
of the original transition matrix P(kt) than the eigenvalues of P.(kt). As
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the second largest eigenvalue shows the maximum relaxation rate of a Markov
process, we can state, that P, has almost the same essential dynamics as the
original process. To analyse the exponential decay, the decay time 7 is calculated
by

7(k) = —k/In(6).

Figure 6 shows the time scales 7 for each eigenvalue of the two reduced transition
matrices P,; and P,. If the process is Markov, the decay time is supposed to
be a constant function [6]. For the set-based reduced transition matrix P,.;, the
time scale of the second eigenvalue is not constant and shows a decreasing relax-
ation time with increasing lag-time k. Although the difference is rather small,
this indicates that the set-based reduced transition matrix P.; does not have
a constant exponential decay and therefore violates the Chapman-Kolmogorov
equation. In contrast to that, the time scale for the second eigenvalues of the

160ro T T T

P interp

15510 wuua P interp |

(2)

interp

relaxation time 7T(k)

v . a 2o\ ~ 48 L) o o 0
v v v S R @“ VY
125+ V.y % v v %7 vvvy ° o WVV §7
% v 0V v Y%
Vv
1201 1
1151 A
110 1 1 1
1 50 100 150 200

lag time k

Figure 6: Time scales for relaxation processes implied by the second largest eigen-
values of the reconstructed transition matrices (P(kt) (red), P.i(kt)(green) and
P.5(kt)(blue)). The exponential decay constants for the processes are related to the
eigenvalues by 7(k) = —k/In(0)

subspace-based reduced transition matrix P., is almost constant, indicating that
the (second) eigenvalue of the transition matrix follows the expected exponen-
tial decay.

Rather surprising is the fact that the eigenvalues corresponding to the original
transition matrix P have a decreasing time scale, too. Most likely the statistical
error that occurs due to finite sampling is the reason why the time-scale of P is
not perfectly constant and also has a small descent with increasing lag-time k.
Probably the same statistical error enforces the error that occurs in the set-based
reduction method.
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5 Conclusion and Summary

This research project focused on the accuracy of reduction methods for re-
versible Markov chains. The long-time behaviour of reduced Markov chains was
analysed as well as the preservation of the system’s dynamic on different time
scales.

In a first step it could be shown that the propagation in the coarse space is
only possible with a subspace-based reduced propagator (see Sec. 4.2). When
reduced density vectors are propagated directly by a set-based reduced propa-
gator we observe an error of size 1072.

Considering the rather small size of the original system (36 states), the esti-
mated propagation error indicates that the long-time behaviour of the reduced
system cannot be transferred to time-independent transition rates. In contrast
to that the subspace-based reduced transition matrix has exactly the same long-
time behaviour as the original system over the curse of time-steps and can thus
be generalized to arbitrary times t>0 [4]. However, the results of the lag time
samplings and the following eigenvalue analysis (see Sec. 4) did not show a sig-
nificant violation of the Chapman-Kolmogorov equation in any of the reduced
systems. Obviously, most of the deviation of the exponential decay constants of
the eigenvalues in Figure 6 were caused by the finit sampling method. Though,
the set-based approach showed particular variations beyond that statistical er-
ror, which might indicate a violation of Chapman-Kolmogorov. It would be of
further interest to perform additional tests on systems of different size and with
varying parameters, e.g. longer sampling periods.

The analysis of the eigenvalues showed another important fact. In contrast to
the subset-based approach, the subspace-based reduction preserves the essential
dynamics of the original system. This means that the reduced transition matrix
contains the correct transition probabilities between the three metastable sets.
For the application in conformation dynamics this is a very important fact. With
the subspace-based reduction approach, we have a new method, that preserves
the Markov property during reduction and maintains the essential dynamics of
the original system. In contrast to that we could show exemplary that a subset-
based coarse-graining method leads to an invalid reduced transition matrix, that
does neither fulfil the Markov property nor represent the essential dynamics of
the high-dimensional Markov chain.
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