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Abstract

Reasons for the failure of adaptive methods to deliver improved efficiency
when integrating monodomain models for myocardiac excitation are discussed.
Two closely related techniques for reducing the computational complexity of
linearly implicit integrators, deliberate sparsing and splitting, are investigated
with respect to their impact on computing time and accuracy.
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1 Introduction

The excitation of myocardial cells is the basis for heart contraction and thus has
attracted research in modelling as well as simulation. The propagation of a depolar-
ization front of the transmembrane potential through the myocardium ultimately
leads to the release of Ca?t and thus a contraction of the muscle fibers. The evo-
lution of the transmembrane potential is described by a set of reaction-diffusion
equations modeling the ion transport by anisotropic diffusion between cells as well
as between intra- and extracellular space (cf. [10, 11, 12]).

Under the simplifying assumption of identical intra- and extracellular diffusion ten-
sor, myocardial excitation is described by the monodomain equation linking the
transmembrane potential v to gating variables w and ion concentrations c:

cmOw = div(Dp Vo) + Tion (v, w, ¢) (1)
Jiw = R(v,w) (2)
Oc = S(v,w, c) (3)

The reactions [ion, R, and S are specified by membrane models. Here we restrict
our attention to a very small phenomenological model by Aliev and Panfilov [1] and
a physiological model by Luo and Rudy [7] of moderate complexity.



Figure 1: Typical front of potential in ventricular fibrillation and the corresponding
adaptive mesh.

2 Adaptive Integration of Reaction-Diffusion Equations

The most common approach to spatial discretization of (1)—(3) is to use finite
element methods on a fixed, quasi-uniform mesh. Due to the small width of the
depolarization front relative to the heart geometry, rather fine meshes are needed
in order to obtain sufficiently accurate solutions. Recently, adaptive FE methods
have been proposed for simulating the myocardiac excitation [3, 13, 2, 5].

The results reported e.g. in [5] using the fully adaptive, linearly implicit FE code
KARDOS [6] are mixed. On one hand, error control works just as expected and the
number of vertices encountered in adaptive mesh refinement is a factor 150 below
the number of vertices in a uniform mesh achieving the same local resolution (see
Fig. 1 for illustration). On the other hand, the reduction in the number of degrees
of freedom is not translated into savings of computing time, which is unacceptably
high.

There seem to be several reasons for this effect. First of all, as long as a depolar-
ization front is traversing the domain, the time step is limited by front speed and
width. Only when the whole domain is covered by the plateau phase, the time step
increases significantly. In the fibrillation example computed in [5], at any point in
time there is a depolarization front somewhere in the domain, such that the time
step remains small. Second, error control and mesh adaptation require the com-
putation of an error estimator, which takes a significant part of the computational
work. Third, mesh modifications require the frequent assembly of stiffness and mass
matrices, up to a few times each time step. Finally, mesh modifications themselves
and the resulting non-locality of data structures take their toll.



3 Deliberate Sparsing

Rosenbrock methods, which are linearly implicit Runge-Kutta methods, are used in
KARDOS for time stepping. The lowest order method is the linearly implicit Euler
scheme

(1= 7(J + V- DV))urr = wy +7(f () — Jug) with J = u) ()
for solving Oyu = div(DVu) + f(u).

When applied to the monodomain equations (1)—(3), the linear system (4) has to
be solved with a nonsymmetric block matrix
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for the Aliev-Panfilov and Luo-Rudy membrane models, respectively. A denotes
the stiffness matrix whereas M stands for the mass matrix. * denotes a non-zero
matrix with the sparsity structure of M. One problem with Rosenbrock methods
is that their convergence order is reduced if the linear systems corresponding to (4)
is not solved exactly.

A subset of linearly implicit methods, so-called W-methods (cf. [4]), allows to use
arbitrary matrices J # f’ without affecting the order of convergence. This enables
deliberate sparsing [9], a technique to drop certain parts of f’ in order to decrease
the computational complexity in computing J and solving the system. Even though
in principle the error constant is affected by the approximation error J — f’, in
practice the step sizes depend mostly on how well the large negative eigenvalues
are captured. This is because stability limits the step size for explicit methods.
Numerical experiments indicate that for normal heart beat cycle and both models,
the system’s stiffness is dominated by the diagonal blocks, such that dropping all
off-diagonal blocks is possible without decreasing step size. The remaining block
diagonal B is not only smaller, but also symmetric, which allows to use more efficient
methods for symmetric matrices. Nevertheless, time savings given in Tab. 1 are
disappointing. The reason for this is not yet clear and under investigation.

4 Splitting and Mass Lumping

Another sparsing opportunity on the element level comes from the fact that no
spatial derivatives are involved in the reactions R and S. Instead of using the FE



framework for propagating the gating variables and ion concentrations, their values
can be computed spatially decoupled by solving the ODE at each mesh vertex. This
is known as splitting [8], leaving just a 1 x 1 FE "block” system to be solved.

From a different point of view, mass lumping by using quadrature rules with nodes
only at the element vertices when assembling the mass matrices is an established
method to obtain diagonal mass matrices. Of course, diagonal mass matrices are
easily stored and trivially inverted. A closer inspection reveals that splitting leads
to diagonal blocks in the notation of Section 3 as well. Moreover, splitting and mass
lumping are mathematically equivalent, which permits a seamless interpretation of
splitting in the framework of FE. Due to the lower accuracy of the vertex-based
quadrature, the a-priori error estimates are worse for mass lumping than for Gaus-
sian quadrature with nodes in the interior of the elements. While the FE conver-
gence order is the same, the discretization error may be increased by a constant
factor. In different contexts, factors of 4-6 are usually observed. Since an L?-error
reduction of 4 requires one additional level of uniform refinement, splitting may be
expected to require an 8 times larger discretization than using a full FE approach
with more accurate quadrature.

A closer look at the spatial discretization errors of the gating variables and ion
concentration reveals a more subtle influence of splitting on the total accuracy.
Variables with slow dynamics are spatially smooth, whereas fast variables follow
the depolarization front quickly and exhibit strong local features. On the same
spatial grid, the discretization error in the slow variables is therefore very small,
and an error increase by a factor of four has little effect on the overall solution.
In contrast, for fast variables the effect is clearly visible (see Fig. 2). Comparable
results are obtained with adaptive computations on 3D domains. Unfortunately,
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Figure 2: Depolarization front positions 0.1s after ignition at the right hand side
boundary of the 1D domain for splitting of different groups of gating variables in
the Luo-Rudy model. Left: whole domain. Right: zoom. The full FE solution
travels faster than the exact solution. Mass lumping for the fastest gating variable
wy has the largest effect and slows down the front even behind the exact solution.



alg. feature Aliev-Panfilov  Luo-Rudy

deliberate block sparsing 1.05 1.25
splitting w—wy 2 30
splitting wo—wy 15
splitting ws—wy 4

Table 1: Wall-clock runtime reduction factors due to algorithmic improvements in
KARDOS.

when mass lumping is only done for a subset of the gating variables, the runtime
improvements are less pronounced (see Tab. 1).

Surprisingly, the integration of gating variables without any spatial discretization
error is actually possible — at least on fixed grids. The key observation is that with
a given quadrature rule for assembling the reaction terms in (1), the gating variables
are only evaluated at a finite set of points in the domain 2. Propagating the gating
variables just at these spatial positions yields exact values, up to time discretization,
as far as the transmembrane potential is affected. Even more surprisingly, the overall
accuracy of the front speed obtained with quasi-exact gating values can be worse
than a full FE approach using the same quadrature rule, see Fig. 3 left. Increasing
the accuracy of the quadrature rule gives results which are quite similar to the full
FE approach, see Fig. 3 right, which indicates that the dominating discretization
error is due to the transmembrane potential.
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Figure 3: Depolarization front position error on a 1D domain after 0.1s of simulating
the Luo-Rudy model with different mesh sizes. Left: full FE, mass lumping, and
propagating at Gaufl quadrature nodes. The errors, closely related to the front
speed errors, span a range of about factor 3. Right: Effect of different quadrature
rules.
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Conclusions

Adaptive discretization of cardioelectric excitation yields reliable results with a
relatively small number of degrees of freedom, but the overhead of error estimation,
mesh adaptation and frequent assembly on modified grids outweighs the efficiency
gains. Deliberate sparsing and splitting techniques can improve the situation to
some extent, but their effect on accuracy needs to be investigated in more detail.
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