Chapter 28

Combinatorial Optimization

M. Grotschel

Konrad-Zuse-Zentrum L. Lovéasz
fiir Informationstechnik Department of Computer Science,
Heilbronner Str. 10 Eotvos University,
D-1000 Berlin 31, Germany, and Budapest, H-1088, Hungary, and
Technische Universitat Berlin Princeton University,
Strasse des 17. Juni 136 Princeton, NJ 08544, USA

D-1000 Berlin 12, Germany

(July 6, 1993)

1. Introduction

2. The greedy algorithm

Kruskal’s algorithm and matroids — Greedy heuristic — Rank quotients
— Greedy blocking sets — Greedy travelling salesman tours — Bin packing
— The knapsack problem
3. Local improvement

Exchange heuristics for the Traveling Salesman Problem — Maximum
cuts — Running time of exchange heuristics — Quality of the approximation
— Aiming at local optima — Randomized exchange — The Metropolis filter
— Simulated annealing

4. Enumeration and branch-and-bound

5. Dynamic programming
The subset-sum problem — Minimal triangulation of a convex polygon
— Steiner trees in planar graphs — Optimization on tree-like graphs

6. Augmenting paths
7. Uncrossing

8. Linear programming approaches

The cut polytope — Separation — Outline of a standard cutting plane
algorithm — The initial linear program — Initial variables — Cutting plane
generation — Pricing variables — Branch-and-Cut — Linear programming in
heuristics — A polynomial approximation scheme for bin packing — Blocking
sets in hypergraphs with small Vapnik-Cervonenkis dimension — Approxi-
mating a cost-minimal schedule of parallel machines

9. Changing the objective function

Kruskal’s algorithm revisited — Minimum weight perfect matching in a
bipartite graph — Optimum arborescences — Scaling I: From pseudopoly-
nomial to polynomial — Scaling II: From polynomial to strongly polynomial
— Scaling I1I: Heuristics — Lagrangean relaxation

10. Matrix methods
Determinants and matchings — Determinants and connectivity —
Semidefinite optimization

References

1 Introduction

Optimizing means finding the maximum or minimum of a certain function,
defined on some domain. Classical theories of optimization (differential cal-
culus, variational calculus, optimal control theory) deal with the case when
this domain is infinite. From this angle, the subject of combinatorial opti-
mization, where the domain is typically finite, might seem trivial: it is easy
to say that “we choose the best from this finite number of possibilities”. But,
of course, these possibilities may include all trees on n nodes, or all Hamilton
circuits of a complete graph, and then listing all possibilities to find the best
among them is practically hopeless even for instances of very moderate size.
In the framework of complexity theory (Chapter 29), we want to find the
optimum in polynomial time. For this (or indeed, to do better than listing
all solutions) the special structure of the domain must be exploited.

Often, when the objective function is too wild, the constraints too com-
plicated, or the problem size too large, it is impossible to find an optimum

solution. This is quite frequently not just a practical experience; mathemat-
ics and computer science have developed theories to make intuitive assertions
about the difficulty of certain problems precise. Foremost of these is the the-
ory of NP-completeness (see Chapter 29).

In cases when optimum solutions are too hard to find, algorithms (so-
called heuristics) can often be designed that produce approximately optimal
solutions. It is important that these suboptimal solutions have a guaranteed
quality; e.g., for a given maximization problem, the value of the heuristic
solution is at least 90% of the optimum value for every input.

While not so apparent on the surface, of equal importance are algorithms,
called dual heuristics, that provide (say for a maximization problem again)
upper bounds on the optimum value. Dual heuristics typically solve so-
called relaxations of the original problem, i.e., optimization problems that are
obtained by dropping or relaxing the constraints so as to make the problem
easier to solve. Bounds computed this way are important in the analysis of
heuristics, since (both theoretically and in practice) one compares the value
obtained by a heuristic with the value obtained by the dual heuristic (instead
of the true optimum, which is unknown). Relaxations also play an important
role in general solution schemes for hard problems like branch-and-bound.

The historical roots of combinatorial optimization lie in problems in eco-
nomics: the planning and management of operations and the efficient use
of resources. Soon more technical applications came into focus and were
modelled as combinatorial optimization problems, such as sequencing of ma-
chines, scheduling of production, design and layout of production facilities.
Today we see that discrete optimization problems abound everywhere. Prob-
lems such as portfolio selection, capital budgeting, design of marketing cam-
paigns, investment planning and facility location, political districting, gene
sequencing, classification of plants and animals, the design of new molecules,
the determination of ground states, layout of survivable and cost-efficient
communication networks, positioning of satellites, the design and produc-
tion of VLSI circuits and printed circuit boards, the sizing of truck fleets
and transportation planning, the layout of mass transportation systems and
the scheduling of buses and trains, the assignment of workers to jobs such
as drivers to buses and airline crew scheduling, the design of unbreakable
codes, etc. The list of applications seems endless; even in areas like sports,
archeology or psychology, combinatorial optimization is used to answer im-

portant questions. We refer to Chapter 35 for detailed descriptions of several
real-world examples.

There are basically two ways of presenting “combinatorial optimization”:
by problems or by methods. Since combinatorial optimization problems
abound in this Handbook and many chapters deal with particular problems,
discuss their practical applications and algorithmic solvability, we organize
our material according to the second approach. We will describe the funda-
mental algorithmic techniques in detail and illustrate them on problems to
which these methods have been applied successfully.

Some important aspects of combinatorial optimization algorithms we can
only touch in this chapter. One such aspect is parallelism. There is no doubt
that the computers of the future will be parallel machines. A systematic
treatment of parallel algorithms is difficult since there are many computer
architectures, based on different principles, and each architecture leads to
a different model of parallel computational complexity. One very general
model of parallel computation is described in Chapter 29.

Another important aspect is the on-line solution of combinatorial prob-
lems. We treat here “static” problems, where all data are known before the
optimization algorithm is called. In many practical situations, however, data
come in one by one, and decisions must be made before the next piece of
data arrives. The theoretical modelling of such situations is difficult, and we
refrain from discussing the many possibilities.

A third disclaimer of this type is that we focus on the worst-case analysis
of algorithms. From a practical point of view, average-case analysis, i.e., the
analysis of algorithms on random input, would be more important; but for
a mathematical treatment of this, one has to make assumptions about the
input distribution, and except for very simple cases, such assumptions are
extremely difficult to justify and lead to unresolvable controversies.

Finally, we should mention the increasing significance of randomization.
It is pointed out in Chapter 29 that randomization should not be confused
with the average case analysis of algorithms. It is often used in conjunction
with determinant methods, and it is an important tool in avoiding “traps”
(degeneracies), in reaching tricky “corners” of the domain, and in many other
situations. We do discuss several of these methods; other issues like deran-
domization (transforming randomized algorithms into deterministic ones),
or the reliability of random number generators will, however, be not treated

here.

Combinatorial optimization problems typically have as inputs both num-
bers and combinatorial structures (e.g., a graph with weights on the edges).
In the Turing machine model, both are encoded as 0-1 strings; but in the
RAM machine model it is natural to consider the input as a sequence of
integers. If the input also involves a combinatorial structure, then the com-
binatorial structure can be considered as a set of 0’s and 1’s. We denote by
(a) the number of bits in the binary representation of the integer a; for a
matrix A = (a;;) of integers, we define (A) = > (a;;).

An algorithm (with input integers ai,...,a,) runs in polynomial time
(short: is polynomial) if it can be implemented on the RAM machine so that
the number of bit-operations performed is bounded by a polynomial in the
number of input bits (a1) + ... + (a,). Considering the input as a set of
numbers allows two important versions of this notion.

An algorithm (with input integers aq, . . . , a,,) is pseudopolynomial, if it can
be implemented on the RAM machine so that the number of bit-operations
performed is bounded by a polynomial in |a1| + ...+ |a,|. (This can also be
defined on the Turing machine model: it corresponds to polynomial running
time where the encoding of an integer a by a string of a 1’s is used. Thus a
pseudopolynomial algorithm is also called polynomial in the unary encoding.)
Clearly every polynomial algorithm is pseudopolynomial, but not the other
way around: testing primality in the trivial way by searching through all
smaller integers is pseudopolynomial but not polynomial.

An algorithm (with input integers a1, ..., a,) is strongly polynomial if it
can be implemented on the RAM machine in O(n°¢) steps with numbers of
O(({a1)+. . .4+(an))°) digits for some ¢ > 0. Clearly every strongly polynomial
algorithm is polynomial, but not the other way around: e.g., the Euclidean
algorithm is polynomial but not strongly polynomial. On the other hand,
Kruskal’s algorithm for shortest spanning tree is strongly polynomial.

Further reading: Bachem, Grotschel and Korte (1983), Ford and Fulkerson
(1962), Gondran and Minoux (1979), Grétschel, Lovasz and Schrijver (1988),
Lawler, Lenstra, Rinnooy Kan and Shmoys (1985), Nemhauser, Rinnooy Kan
and Todd (1989), Nemhauser and Wolsey (1988), Schrijver (1986).

2 The greedy algorithm

Kruskal’s algorithm and matroids. The most natural principle we can
try to build an optimization algorithm on is greediness: building up the
solution by making the best choice locally. As the most important example of
an optimization problem where this simple idea works, let us recall Kruskal’s
Algorithm for a shortest spanning tree from Chapters 2, 9 and 40.

Given a connected graph G with n nodes, and a length function ¢ :
E(G) — Z, we want to find a shortest spanning tree (where the length of
a subgraph of G is defined as the sum of the lengths of its edges). The
algorithm constructs the tree by finding its edges eq, es,...e,_1 one by one:

— e7 is an edge of minimum length;

— eg is an edge such that eg ¢ {e1,...,ex—1}, {e1,...,ex} is a forest and
c(er) =min{c(e) | e ¢ {e1,...,ex_1} and {eq,...ex_1,€} is a forest } .

Each step of the algorithm makes locally the best choice: this is why
it is called a greedy algorithm. Kruskal’s Theorem (going back actually to
Boruvka in 1926; see Graham and Hell (1985) for an account of its history)
asserts that {e; : 1 < i < n — 1} is a shortest spanning tree of G, i.e., the
spanning tree constructed by the greedy algorithm is optimal.

The graph structure plays little role in the algorithm; the only information
about the graph used is that “{ei,...,ex_1,e} is a forest”. In fact, this
observation is one of the possible routes to the notion of matroids.

Let S be a finite set, ¢ : S — Z,, a cost function on S, and F C
25 a hereditary family (independence system) of subsets of S, i.e., a set of
subsets such that X € F and Y C X implies Y € F. The goal is to find
max{c(X) = Y.cxcle) | X € F}. In this more general setting, the greedy
algorithm can still be easily formulated. It constructs a maximal set X by
finding its elements ey, es, . .. one by one, as follows:

— e1 is the element of maximum cost in UxerX,
— ey, is defined such that ey, ¢ {e1,...,ex—1}, {€1,...,ex} € F and

cler) = max{c(e) | e ¢ {e1,...,ex—1}, and {ey,...ex_1,e} € F}.

The algorithm terminates when no such element exists. We call the set
Xgr = {e1,...,e,} obtained by this algorithm a greedy solution, and let

6

Xopt denote an optimum solution to our problem. In Chapter 9 it is shown
that the greedy solution is optimal for every objective function if and only if
(E,F) is a matroid.

There are other problems where the greedy algorithm (with an appropri-
ate interpretation) gives an optimum solution. The notion of greedoids (see
Chapter 9, or Korte, Lovasz and Schrader (1991) is an attempt to describe
a general class of such problems. Further examples are polymatroids (see
Chapter 11), coloring of various classes of perfect graphs (see Chapter 4)
etc. In fact, an optimization model where the greedy solution is optimal was
described by Monge in the 18th century!

Greedy heuristic. But in most optimization problems, greed does not pay:
the greedy solution is not optimal in general. We may still use, however, a
greedy algorithm as a heuristic, to obtain a “reasonable” solution (and in
practice it is very often used indeed).

We measure the quality of the heuristic by comparing the value of the
objective function at the heuristic solution with its value at the optimum
solution. To be precise, consider, say, a minimization problem. For conve-
nience, let us assume that every instance has a positive optimum objective
function value vop, say. For a given instance, let vpeyr denote the objective
value achieved by a given heuristic (if the heuristic includes free choices at
certain points, we define vpey as the value achieved by the worst possible
choices). We define the performance ratio of a heuristic as the supremum
Of Upeur/Vopt OVer all problem instances. The asymptotic performance ratio
is the lim sup of this ratio, assuming that vep, — 0o. For a maximization
problem, we replace this quotient by vept/Uheur-

Rank quotients. Consider a hereditary family F C 2 and a weight func-
tion c: E — Z, on E again. We want to find a maximum weight member
of F. Let the greedy algorithm, just as above, give a set X,,, and let X
denote an optimum solution.

Since we are maximizing, trivially

(Xgr) < (Xopt)-
Define, for X C FE, the upper rank of X by

r(X)=max{|Y]: Y CX, Y eF}

We also define the lower rank of X by
p(X)=min{]Y|: Y CX, YeF, AU e FwithY CcU C X}.

Note that matroids are just those hereditary families with » = p. In general,
define the rank quotient of (E, F) by

- p(X)
= —: XCE, r(X)>0,.
Note that v is just the worst ratio between ¢(Xg,) and ¢(Xqpt) for 0-1 valued
weight functions c. The following theorem of Jenkyns (1976) and Korte and
Hausmann (1978) gives a performance guarantee for the greedy algorithm by
showing that 0-1 weightings are the worst case.

Theorem 2.1 For every hereditary family (E, F) and every weight function
c: E— Z,, we have

C(Xgr) > ”YJ-‘C(XOPt)-

|
As an application, consider the greedy heuristic for the matching problem.

Here G is a graph, F = F(G), and F consists of all matchings, i.e., sets of
edges with no common endnode. We claim that vz > 1/2. In fact, if X C E
and M is a smallest non-extendible matching in X then the 2| | endpoints
of the edges in M cover all edges in X, and hence a maximum matching in X
cannot have more that 2| M| edges. Thus we obtain that for every weighting,
the greedy algorithm for the matching problem has performance ratio at most
2.

Greedy blocking sets. We discuss a greedy heuristic with a somewhat
more involved analysis. Let (V,H) be a hypergraph. A blocking set or cover
of the hypergraph is a subset S C V' that meets (blocks) every member of
H. Let Sope denote a blocking set with a minimum number of elements, and
define the covering (or blocking) number by 7(H) = |Sopt|. (To compute
7(#H) is NP-hard in general; cf. also chapters 7 and 24.)

A greedy blocking set Sy, is constructed as follows. Choose a vertex v; of
maximum degree. If vy,... vx have been selected, choose vi; to block as
many members of H not blocked by vy, ..., v; as possible. We stop when all
members of H are blocked.

Concerning the performance of this algorithm, we have the following
bound (Johnson (1974), Stein (1974), Lovasz (1975)).

Theorem 2.2 Let H be a hypergraph with mazimum degree A. Then for the
size of any greedy blocking set Sy,

1 1
Sgr| < (1+§+...+E>T(H).
(The “error factor” on the right hand side is less than 1+ InA. It is easy to
see that the ratio 1 4+1/2 4 ...+ 1/A cannot be improved.)

Proof. Let k; denote the number of vertices in S, selected in the phase
when we were able to block exactly ¢ new edges at a time. Let H; denote the
set of edges first blocked in this phase. So |H;| = ik;, and

S| = ka + ka1 + ...+ ki

Now consider the optimum blocking set Sopi. Every vertex in Sypy (in fact,

every vertex of #H), blocks at most i edges from H; UH;_1 U...Hy, since a

vertex blocking more from this set should have been included in the greedy
blocking set before phase ¢. Hence

1. :

’S()pt’ > ;(Zkz—i-(l—l)kz_l—i——i—kl) (1)

Multiplying this inequality by 1/(i + 1) for i = 1,...,A — 1, and by 1 for

1= A, and then adding up the resulting inequalities, we obtain that

1 1
(Lt 5+t) Sopel 2 ka o+ ki = | S,

Note that in this proof, we do not directly compare |Sg| with [Sopt;
the latter is not available. Rather, we use a family (1) of lower bounds on
| Sopt|. For each 4, (1/i)(H1U...UH,;) can be viewed as a fractional matching
(see Chapters 7, 24), and so the theorem can be sharpened by using the
fractional matching (or cover) number 7* on the right hand side. In fact, the
fractional cover number 7* is a relaxation of the cover number 7, obtained

9

Figure 1: A nearest neighbor tour of a 52-city-problem

by formulating it as the optimum value of an integer linear program and
dropping the integrality constraints.

Greedy travelling salesman tours. Recall the travelling salesman prob-
lem: given a graph G = (V| FE)) on n > 3 nodes, and “distances” ¢: F — Z .,
find a Hamilton circuit with minimum length. Usually it is not an essential
restriction of generality to assume that G is a complete graph. Moreover,
in many important applications, the distance function c satisfies the trian-
gle inequality: ¢;; + cjz > ci for any three distinct nodes ¢, j, and k. We
shall always restrict ourselves to the special case of the complete graph with
lengths satisfying the triangle inequality (called the metric case).

The travelling salesman problem is NP-hard. Linear programming pro-
vides a practically quite efficient method to solve it (cf. section 8). Here we
discuss two greedy heuristics.

The first one, called NEAREST NEIGHBOR heuristic, is an obvious idea:
Choose some arbitrary node and visit it; from the last node visited go to the
closest not yet visited node; if all nodes have been visited, return to the first
node. This heuristic does make locally good choices, but it may run into

10

traps. Figure 1 shows the result of a NEAREST NEIGHBOR run for a TSP
consisting of 52 points of interest in Berlin, starting at point 1, the Konrad-
Zuse-Zentrum. It is clear that this is far from being optimal. In fact, series of
metric n-city TSP instances can be constructed where the tour built by the
NEAREST NEIGHBOR heuristic is about 1 4 logn as long as the optimum
tour length.

The second greedy heuristic, called NEAREST INSERTION, will never
show such a poor performance. It works as follows. We build up a circuit
going through more and more nodes.

— Start with any node v; (viewed as a circuit with one node).

— Let Ty be a circuit of length £ already constructed. Choose a node
v not on T and a node wug on T} such that the distance ¢,,,, is minimal.
Delete one of the edges of T} incident with ug, and connect its endpoints to
vk, to get a circuit Ty.

— After n steps we get a Hamilton circuit Thys.

Another way to describe this heuristic is the following. The tree F' formed
by the edges viuy is constructed by Prim’s algorithm, and so it is a shortest
spanning tree of G. We double each edge of it to obtain an Eulerian graph.
An Euler tour of this visits every vertex at least once; making shortcuts, we
obtain a tour that visits all nodes exactly once.

Theorem 2.3 T, is at most twice as long as the optimum tour.

Proof. Let T, denote an optimum tour. We make two observations. First,
deleting any edge from T, we get a spanning tree. Hence

(Topt) = ¢(F). (2)

Second, inserting vy, into T}, we increase T}’s length by at most 2¢,, ,, ; adding
up these increments, we get

(Thins) < 2¢(F).

Note that this argument (implicitly) uses a dual heuristic also: inequality
(2) makes use of the fact that the length of the shortest spanning tree is a

11

lower bound on the length of the shortest tour. The value of this dual heuris-
tic is easily found by the greedy algorithm. In fact, a somewhat better lower
bound could be obtained by considering unicyclic subgraphs, i.e., those sub-
graphs containing at most one circuit. The edge-sets of such subgraphs also
form a matroid. The bases of this matroid are connected spanning subgraphs
containing exactly one circuit; for this chapter, we call such subgraphs 7-trees.
A 1-tree with minimum length can be found easily by the greedy algorithm,
and since every tour is a l-tree, this gives a lower bound on the minimum
tour. We'll see in section 9 how to further improve this lower bound.

There are several other greedy-like heuristics for TSP, such as farthest
insertion, cheapest insertion, sweep, savings etc. Many of them do not have,
however, a proven constant performance ratio, although some of them work
better in practice than the nearest insertion heuristic (see Reinelt (1993)).

The heuristic for the Traveling Salesman Problem with the best known
performance ratio is due to Christofides (1976). It uses the shortest spanning
tree F', but instead of doubling its edges to make it Eulerian, it adds a
matching M with minimum length on the set of nodes with odd degree in
F. (Such a matching can be found in polynomial time, see Chapter 3.) It
is easy to see that 2¢(M) < ¢(Topt), and hence the Christofides heuristic has
performance ratio of at most 3/2.

Bin packing. Let ay,...,a, < 1 be positive real numbers (“weights”). We
would like to partition them into classes (“bins”) By, ..., By so that the total
weight of every bin is at most 1. Our aim is to minimize the number k of
bins. Let kope be this minimum. To compute kqp is NP-hard.

A trivial lower bound on how well we can do is the roundup of the total
weight w := > ;a;. The following simple (greedy) heuristic already gets
asymptotically within a factor of 2 to this lower bound.

NEXT-FIT HEURISTIC. We process a1, as, ... one by one. We put them
into one bin until putting the next a; into the bin would increase its weight
over 1. Then we close the bin and start a new one. We denote by &, the
number of bins used by this heuristic.

Theorem 2.4 kyr < 2w + 1; kne < 2kopt.

Proof. Let k := k¢, and denote by w; the weight put in bin B; by the NEXT-
FIT heuristic (1 < i < k). Then clearly w; + w;+1 > 1 (since otherwise the

12

first weight in B, 41 should have been put in B;). If k is even, this implies
w = (w1 +ws2) + ...+ (Wr—1 +wg) > k/2,

and hence
k< 2w S Qkopt'

If k is odd,we obtain

1 1 k—1
w=g (w14 (w1 +w2) +. . .+ (w1 +wyg) +wy) > 3 (k—1+wi+wy) > 5
whence
kE<2w41 <2k + 1,
and hence, k < 2kgp — 1 < 2kopt. 1

The following better heuristic is still very “greedy”.

FIRST-FIT HEURISTIC. We process a1, as, ... one by one, putting each a;
into the first bin into which it fits. We denote by kg the number of bins used
by this heuristic.

The following bound on the performance of FIRST FIT, due to Garey,

Graham, Johnson and Yao (1976), is substantially more difficult to prove
than the previous one.

Theorem 2.5 kg < [17/10ko, |. There exist lists with arbitrarily large total
weight for which kg > 17/10kop, — 1.

A natural (still “greedy”) improvement on the FIRST-FIT heuristic is
to preprocess the weights by ordering them decreasingly, and then apply
FIRST-FIT. We call this the FIRST-FIT DECREASING heuristic, and de-
note the number of bins it uses by kgq. This preprocessing does improve the
performance, as shown by the following theorem of Johnson (1973):

Theorem 2.6 kgq < 11/9%kop + 4. There exist lists with arbitrarily large
total weight for which kga = 11/9%kops.

13

There are other greedy-like heuristics for bin-packing, e.g., best fit, whose
performance ratio is similar; the heuristic called harmonic fit is slightly bet-
ter. (See Coffman, Garey and Johnson (1984) for a survey.) More involved
heuristic algorithms for the bin packing problem use linear programming and
achieve an asymptotic performance ratio arbitrarily close to 1; see section 8.

The first two heuristics above are special in the sense that they are on-
line: each weight is placed in a bin without knowing those that follow, and
once a weight is placed in a bin, it is never touched again. On-line heuristics
cannot achieve as good a performance ratio as general heuristics; it is easy to
show that for any on-line heuristic for the bin packing problem there exists
a sequence of weights (with arbitrarily large total weight) for which it uses
at least (3/2)kopt bins. This lower bound can be improved to 1.54, see van
Vliet (1992).

The knapsack problem. Given a knapsack with total capacity b, and n
objects with weights a4, ..., a, of value ¢, ..., c,, we want to pack as much
value into the knapsack as possible. In other words, given positive integers
b,ay,...an,c1,...c,, we want to maximize > ; ¢;x; subject to the constraints
Siaiw; < band x; € {0,1},¢ = 1,...n. To exclude trivial cases, we may
assume that ay,...,a, < b. We denote by Cop the optimum value of the
objective function.

The knapsack problem is NP-hard; we’ll see in section 9, however, that
one can get arbitrarily close to the optimum in polynomial time. Here we
describe a greedy algorithm that has performance ratio at most 2.

It is clear that we want to select objects with small weight and large value;
so it is natural to put in the knapsack an object with largest “weight density”
¢i/a;. Assume that the objects are labelled so that ¢1/a1 > co/as > ... >
Cn/an. Then the greedy algorithm consists of selecting x4, zo, ..., x, € {0,1}
recursively as follows:

oo P ifa <b -3 g
’ 0, otherwise.

Theorem 2.7 For the solution x1,...,x, obtained by the (weight density)
greedy algorithm, we have

n

Z cixi > Copy — Maxc;.
3

i=1

14

It follows that comparing the greedy solution with the best of the trivial
solutions (select one object), we get a heuristic with performance ratio at
most 2.

Proof. Let x be the solution found by the greedy algorithm, and y be an
optimum solution. If z is not optimal, there must be an index j such that
xz; = 0 and y; = 1; consider the least such j. Then we have for the greedy
solution,

n J J J
Cor = Z T > Z CiT; = Z CiY; + Z ci(xi — i) (3)
i=1 i=1 i=1 i=1
J J Ca J Ca J J
> >yt Y, ﬁai(xi —yi) =Y ciyi+ a—J(Z @iz — Y aiyi)-
i=1 i1 i=1

i=1 4j Ji=1
Since j was not chosen by the greedy algorithm, we have here
J
Z a;x; 2 b— Qj.
i=1
Furthermore, the feasibility of y implies that
J n
daw; <b— Y awy;
i=1 i=j+1
Substituting in (3), we obtain:

J . n
Cor > ciyi + C—j(> ay — aj) >3 ciyi — ¢ = Copt — ¢4
=1 =1

J i=j+1

3 Local improvement

The greedy algorithm and its problem specific versions belong to a class of
algorithms sometimes called (one-pass) construction heuristics. A myopic
rule is applied and former decisions are not reconsidered. The purpose of

15

Figure 2: A 2-OPT tour of a 52-city-problem

these heuristics is to find a “reasonable” feasible solution very fast. But, of
course, a locally good choice may lead to a globally poor solution.

Exchange heuristics for the travelling salesman problem. We have
seen such unpleasant behaviour in Figure 1: initially, short connections are
chosen but, in the end, very long steps have to be made to connect the
“forgotten” nodes. This picture obviously calls for a “repair” of the solution.
For instance, replacing the edges from 12 to 28 and from 11 to 29 by the
edges from 11 to 12 and 28 to 29 results in considerable saving. Obviously,
further improvements of this kind are possible.

The 2-OPT heuristic formalizes this idea. It starts with some tour T,
for instance a random tour or a tour obtained by a construction heuristic.
Then it checks, for all pairs of nonadjacent edges uv, xy of T, whether the
unique tour S formed by deleting these two edges and adding two edges, say
S := T\{uv,zy} U {uz,vy} is shorter than T' (this is the case, e.g., when
the segments wv and zy cross). If so, T is replaced by S and the exchange
tests are repeated. Otherwise the heuristic stops. Figure 2 shows the result
of 2-OPT sarted with the tour in Figure 1.

16

There is an obvious generalization of this method: instead of removing
two edges, we delete r nonadjacent edges from T'. Then we enumerate all
possible ways of adding r other edges such that these r edges together with
the remaining r paths form a tour. If the shortest of these tours is shorter
than the present tour 7" we replace T' by this shorter tour and repeat. This
method is called the r-OPT heuristic.

These heuristics are prototypical local improvement techniques that, in
general, work as follows. We have some feasible solution of the given com-
binatorial optimization problem. Then we do some little operations on this
solution, such as removing some elements and adding other elements, to ob-
tain one or several new solutions. If one of the new solutions is better than
the present one, we replace the present one by the new best solution and
repeat.

The basic ingredient of such improvement or exchange heuristics is a
rule that describes the possible manipulations that are allowed. This rule
implicitly defines, for every feasible solution, a set of other feasible solutions
that can be obtained by such a manipulation. Using this interpretation, we
can define a digraph D whose vertex set is the set 2 of feasible solutions
of our combinatorial optimization problem (this is typically exponentially
large) and where an arc (5,7 is present if 7' can be obtained from S by the
manipulation rule.

Now, local improvement heuristics can be viewed as algorithms that start
at some node of this digraph and search, for a current node, the successors of
the node. If they find a better successor they go to this successor and repeat.
The term local search algorithms that is also used for these techniques derives
from this interpretation.

There are many important algorithms that fit in this scheme: the simplex
method (see Chapter 30), basis reduction algorithms (Chapter 20), etc. The
simplex method is somewhat special in the sense that it only gets stuck when
we have reached the optimum. Usually, local improvement algorithms may
run into local optima, i.e., solutions from which the given local manipulations
do not lead to any better solution.

Maximum Cuts. Let us look at another example. Suppose we are given a
graph G = (V, E) and we want to find a cut §(W), W C V| of maximum size.
(This is the cardinality maz-cut problem for G.) The problem has a natural
weighted version, where each edge has a (say, rational) weight, and we want

17

to find a cut with maximum weight.

We start with an arbitrary subset W C V. We check whether W (or
VAW) contains a node w such that less than half of its neighbors are in
VAW (or W). If such a node exists we move it from W to V\W (or from
VAW to W). Otherwise we stop.

Termination of this single exchange heuristic in O(n?) time is guaranteed,
since the size of the cut increases in every step. The cut produced by this
procedure obviously has a size that is at least one half of the maximum
cardinality of a cut in GG, and in fact, it can be as bad as this, as the complete
bipartite graph shows.

The single exchange heuristic has an obvious weighted version: we push a
node w to the other side if the sum of the weights of edges linking w to nodes
on the other side is smaller than the sum of the weights of the edges linking
w to nodes on side of w. This version, of course, also terminates in finite
time, but the number of steps may be exponential (Haken and Luby (1988))
even for 4-regular graphs. On the other hand, Poljak (1993) proved that
the single exchange heuristic for the weighted max-cut problem terminates
in polynomial time for cubic graphs (see section 9).

For a typical combinatorial optimization problem, it is easy to find many
local manipulation techniques. For instance, for the max-cut problem we
could try to move several nodes from one side to the other or exchange nodes
between sides; for the TSP we could perform node exchanges instead of edge
exchanges, we could exchange whole sections of a tour, and we could combine
these techniques, or we could vary the number of edges and/or nodes that
we exchange based on some criteria. In fact, most people working on the
TSP view the well known heuristic of Lin and Kernighan (1973) and its
variants as the best local improvement heuristics for the TSP known to date
(based on the practical performance of heuristics on large numbers of TSP
test instances). This heuristic is a dynamic version of the 7-OPT heuristic
with varying 7.

The last statement may suggest that improvement heuristics are the way
to solve (large scale) TSP instances approximately. However, there are some
practical and theoretical difficulties with respect to running times, traps and
worst-case behaviour.

Running time of exchange heuristics. A straightforward implementa-
tion of the r-OPT heuristic, for example, is hopelessly slow. It takes (") tests

18

to check whether a tour can be improved by an r-exchange. Even for r = 3,
the heuristic runs almost forever on medium size instances of a few thousand
nodes. To make this approach practical, a number of modifications limiting
the exchanges considered are necessary. They are usually based on insights
about the probability of success of certain exchanges, or on knowledge about
special structures (an instance might be geometrical, e.g., given by points
in the plane and a distance function). Well-designed fast data structures
play an important role. The issue of speeding up TSP heuristics is treated in
depth, e.g., in Johnson (1990), Bentley (1992) and Reinelt (1993), With these
techniques TSP instances of up to a million cities have been solved approx-
imately. Such observations apply to many other combinatorial optimization
problems analogously.

It may sound strange, but for many exchange heuristics there is no proof
that these heuristics terminate in polynomial time. This is the case even
with such a basic and classical algorithm as the simplex method! For certain
natural pivoting rules we know that they may lead to exponentially many
iterations, while for others, it is not known whether or not they terminate in
polynomial time; no pivoting rule is known to termiante in polynomial time.
As another, simpler example, we mention that although we could prove an
O(n?) running time for the cardinality version of the max-cut heuristic, its
weighted version is not polynomial, as mentioned above.

A single pass through the loop of the »-OPT heuristic for the TSP takes
O(n") time but it is not clear how to bound the number of tours that have
to be processed before the algorithm terminates with an r-OPT tour, i.e., a
tour that cannot be improved by an r-exchange. Computational experience,
however, shows that exchange heuristics usually do not have to inspect too
many tours until a “local optimum” is found.

Quality of the approximation. Although the solution quality of local
improvement heuristics is often quite good, these heuristics may run into
traps, for instance r-OPT tours, whose value is not even close to the optimum.
It is, in general, rather difficult to prove worst-case bounds on the quality of
exchange heuristics. For an example where a performance ratio is established,
see the basis reduction algorithm in Chapter 19.

It is probably fair to say that, for the solution of combinatorial optimiza-
tion problems appearing in practice, fast construction heuristics combined
with local improvement techniques particularly designed for the special struc-

19

tures of the application are the real workhorses of combinatorial optimiza-
tion. That is why this machinery receives so much attention in the literature
and why new little tricks or clever combinations of old tricks are discussed
intensively. Better solution qualities or faster solution times may result in
significant cost savings, in particular for complicated problems of large scale.

Aiming at local optima. There are several examples when we are only in-
terested in finding a local optimum: it is the structure of the local optimum,
and not the value of the objective function, that concerns us. A theoret-
ical framework for such “polynomial local search problems” was developed
by Johnson, Papadimitriou and Yannakakis (1988). Analogously to NP, this
class also has complete (hardest) problems; the weighted local max-cut prob-
lem is one of these (Schéffer and Yannakakis (1991)).

Consider an optimum solution W of the max-cut problem for a graph
G = (V, E). Clearly, every node is connected to at least as many points on
the opposite side of the cut than on its own side. If we only want a cut with
this property, any locally optimal cut (with respect to the single exchange
heuristic) would do.

Assume now that we want to solve the following more general problem:
given two functions f,g: V — Z, such that f(v)+ g(v) = de(v) — 1 for all
v €V, find a subset W C V such that for each node v, the number of nodes
adjacent to v on its own side of the cut is at most

f(v), ifvew

g(v), ifve V\W.

It is not difficult to guess an objective function (over cuts) for which such
cuts are exactly local optima:

PW) := [6(W)]+ f(W) + g(V\ W).

Once this is found, it follows that a cut with the desired property exists,
and also that it can be found in polynomial time by local improvement.
A much more difficult, but in principle similar, application of this idea is
the proof of Szemerédi’s Regularity Lemma (see Chapter 23). Here again a
tricky (quadratic) objective function is set up, which is locally improved until
a locally almost optimal solution is found; the structure of such a solution
is what is needed in the numerous applications of the Regularity Lemma

20

(see also Alon, Duke, Lefmann, Rodl and Yuster (1992) for the algorithmic
aspects of this procedure).

A beautiful example of turning a structural question into an optimiza-
tion problem is Tutte’s proof (1963) of the fact that every 3-connected planar
graph has a planar embedding with straight edges and convex faces. He con-
siders the edges as rubber bands, fixes the vertices of one face at the vertices
of a convex polygon, and lets the remaining vertices find their equilibrium.
This means minimizing a certain quadratic objective function (the energy),
and the optimality criteria can be used to prove that this equilibrium state
defines a planar embedding with the right properties. The algorithm can
be used to actually compute nice embeddings of planar graphs. A similar
method for connectivity testing was given by Linial, Lovasz and Wigderson
(1988).

Randomized exchange. A very helpful idea to overcome the problem of
falling into a trap is to randomize. In a randomized version of local search,
a random neighbor of the current feasible solution is selected. If this im-
proves the objective function, the current feasible solution is replaced by this
neighbor. If not, it may still be replaced, but only with some probability less
than 1, depending on how much worse the objective value at the neighbor is.
This relaxation of the strict descent rule may help to jump out of traps and
eventually reach a significantly better solution.

A more general way of looking at this method is to consider it as gener-
ating a random element in the set () of feasible solutions, from some given
probability distribution . Let f : € — IR, be the objective function;
then maximizing f over €2 is just the extreme case when we want to generate
a random element from a distribution concentrated on the set of optimum
solutions. If, instead, we generate a random point w from the distibution
() in which Q(v) is proportional to exp(f(v)/T), where T is a very small
positive number, then with large probability w will maximize f. In fact, a
randomized algorithm that finds a solution that is (nearly) optimal with large
probability is equivalent to a procedure of generating a random element from
a distribution that is heavily concentrated on the (nearly) optimal solutions.

To generate a random element from a distribution over a (large and com-
plicated) set is of course a much more general question, and is a major ingre-
dient in various algorithms for enumeration, integration, volume computa-
tion, simulation, statistical sampling, etc. (see Jerrum, Valiant and Vazirani

21

(1986), Dyer and Frieze (1992), Sinclair and Jerrum (1988), Dyer, Frieze and
Kannan (1991), Lovasz and Simonovits (1992) for some of the applications
with combinatorial flavor). An efficient general technique here is random
walks or Markov chains. Let G = (2, E) be a connected graph on {2, and
assume, for simplicity of presentation, that GG is non-bipartite and d-regular.
If we start a random walk on G and follow it long enough, then the current
point will be almost uniformly distributed over 2. How many steps does
“long enough” mean depends on the spectrum, or in combinatorial terms on
global connectivity properties called expansion rate or conductance, of the
graph (see also Chapter 31).

The Metropolis filter. In optimization, we are interested in very non-
uniform, rather than uniform, distributions. Fortunately, there is an elegant
way, called the Metropolis filter (Metropolis, Rosenbluth, Rosenbluth, Teller
and Teller (1953)), to modify the random walk, so that it gives any arbitrary
prescribed probability distribution. Let F': € — IR,. Assume that we are
at node v. We choose a random neighbor u. If F'(u) > F(v) then we move to
u; else, we flip a biased coin and move to u only with probability F'(u)/F(v),
and stay at v with probability 1 — F(u)/F(v).

Let Qr denote the probability distribution on €2 defined by the prop-
erty that Qp(v) is proportional to F'(v). The miraculous property of the
Metropolis filter is the following:

Theorem 3.1 The stationary distribution of the Metropolis-filtered random
walk is Qp.

So choosing F'(v) = exp(f(v)/T), we get a randomized optimization al-
gorithm.

Unfortunately, the issue of how long one has to walk gets rather messy.
The techniques to estimate the conductance of a Metropolis-filtered walk are
not general enough, although Applegate and Kannan (1990) have been able
to apply this technique to volume computation.

Simulated annealing. Coming back to optimization, let us follow Kirck-
patrick, Gelatt and Vecchi (1983), and call the elements of Q states (of some
physical system), 1/F(v) the energy of the state, and T the temperature. In
this language, we want to find a state with minimum (or almost minimum)
energy. A random walk means letting the system get into a stationary state
at the given temperature.

22

The main, and not quite understood, issue is the choice of the temper-
ature. If we choose T large, the quality of the solution is poor, i.e., the
probability that it is close to being optimal is small. If we choose T small,
then there will be barriers of very small probability (or, equivalently, with
very large energy) between local optima, and it will take extremely long to
get away from a local, but not global optimum.

The technique of simulated annealing suggests to start with the tempera-
ture T sufficiently large, so that the random walk with this parameter mixes
fast. Then we decrease T' gradually. In each phase, the random walk starts
from a distribution which is already close to the limiting distribution, so
there is hope that the walk will mix fast. (A similar trick works quite well
in integration and volume computation; see Lovész and Simonovits (1992).)
Theoretical and practical experiments have revealed that it matters a lot how
long we walk in a given phase (cooling schedule).

There are many empirical studies with this method; see Johnson, Aragon,
McGeoch and Schevon (1989, 1991) or Johnson (1990). There are also some
general estimates on its performance (Holley and Stroock (1988), Holley,
Kusuoka and Stroock (1989)). Examples of problems, in particular of the
matching problem, are known where simulated annealing performs badly
(Sasaki and Hajek (1988), Sasaki (1991), Jerrum (1992)), and some positive
results in the case of the matching problem are also known (Jerrum and
Sinclair (1989)). The conclusion that can be drawn at the moment is that
simulated annealing is a potentially valuable tool (if one can find good cooling
schedules and other parameters), but it is in no ways a panacea as was
claimed in some papers pioneering this topic.

Approaches named taboo search, threshold accept, evolution or genetic
algorithms and others are further variants and enhancements of randomized
local search. The above judgement of simulated annealing applies to them
as well, see Johnson (1990).

4 Enumeration and branch-and-bound

There is a number of interesting combinatorial optimization problems for
which beautiful polynomial time algorithms exist. We will explain some
of them in subsequent sections. We now address the issue of finding an
optimum solution for an NP-hard problem. In the previous two sections

23

we have outlined heuristics that produce some feasible and hopefully good
solution. Such a solution may even be optimal right away. But how does one
verify that?

The basic trouble with integer programming and combinatorial optimiza-
tion is the nonexistence of a sensible duality theory. The duality theorem
of linear programming (see Chapter 30), for instance, can be used to prove
that some given feasible solution is optimal. In the (rare) cases where duality
theorems in integral solutions like the max-flow min-cut theorem (see Chap-
ter 2 or 30) or the Lucchesi-Younger Theorem (see Chapter 2) exist, one can
usually derive a polynomial time solution algorithm. For NP-hard problems
one should not expect to find such theorems. Unfortunately, nothing better
is known than replacing such a theory by brute force.

Trivial running time estimates reveal that the obvious idea of simply enu-
merating the finitely many solutions of a combinatorial optimization problem
is completely impractical in general. For instance, computing the length of
all (1/2)15! (~ 0.6 % 10?) tours of a 16 city TSP instance takes about 92
hours on a 28 MIPS workstation. Even a teraflop computer will be unable to
enumerate all solutions of a ridiculously small 30 city TSP instance within
its lifetime.

Unless P=NP, there is no hope that we will be able to design algorithms
for NP-hard problems that are asymptotically much better than enumeration.
However, we can try to bring problem instances of reasonable sizes (appear-
ing in practice, say) into the realm of practical computability by enhancing
enumeration with a few helpful ideas.

The idea of the branch-and-bound approach is to compute tight upper
and lower bounds on the optimum value in order to significantly reduce the
number of enumerative steps. To be more specific, let us assume that we have
an instance of a minimization problem. Let 2 be its set of feasible solutions.

To implement branch-and-bound, we need a dual heuristic (relaxation),
i.e., an efficiently computable lower bound on the optimum value. This dual
heuristic will also be called for certain subproblems.

We first run some construction and improvement heuristics to obtain a
good feasible solution, say T, with value ¢(T"), which is an upper bound for
the optimum value cqpt.

Now we resort to enumeration. We split the problem into two (or more)
subproblems. Recursively solving these subproblems would mean straight-

24

forward enumeration. We can gain by maintaining the best solution found
so far and computing, whenever we have a subproblem, a lower bound for
the optimum value of this subproblem, using the dual heuristic. If this value
is larger than the value of the best solution found so far, we do not have to
solve this subproblem.

To be more specific, let us discuss a bit the two main ingredients, branch-
ing and bounding.

We assume that the splitting into subproblems (the branching) is such
that the set) of feasible solutions is partitioned into the sets €' and " of
feasible solutions of the subproblems. We also assume that the subproblems
are of the same type (e.g., the dual heuristic applies to them). It is also
important that the branching step requires little bookkeeping and is compu-
tationally cheap. If €2 consists of subsets of a set S, then a typical split is to
choose an element e € S and to set

O ={IeQlecl},Q ={IcQ|edI}

The bounding is usually provided by a relazation: by problem specific
investigations we introduce a new problem, whose set of feasible solutions
is I', say, such that €2 C I' and the objective function for €2 extends to I'.
Suppose X minimizes the objective function over I', then the value ¢(X)
provides a lower bound for ¢, since all elements of €2 participated in the
minimization process. If X is, in fact, an element of €2 we clearly have found
an optimum solution of . (If X ¢ Q, we may still be able to make use of
it by applying a construction and/or improvement heuristic that starts with
X and ends with a solution Y, say, in Q. If ¢(Y) < ¢(T') we set T :=Y to
keep track of our current best solution.)

To give some examples, useful relaxations for the symmetric TSP are
perfect 2-matchings (unions of disjoint circuits that cover all nodes) or 1-
trees (cf. sections 2 and 9). For the assymmetric TSP a standard relaxation
is obtained by considering unions of directed circuits that cover all nodes
(which can be easily reduced to a bipartite perfect matching problem), or
the r-arborescence problem.

A particularly powerful method is based on LP-relaxations. This is cov-
ered in depth in section 8. There are some general methods to improve relax-
ations; one technique is called Lagrangian relaxation and will be discussed
in section 9.

25

Returning to the algorithm, we maintain a list of unsolved subproblems,
and a solution 7' that is the current best. In the general step, we choose
an unsolved subproblem, say ¢, from the list and remove it. We optimize
the objective function over the relaxation I'? of '. Let X be an optimum
solution. There are several possibilities.

- First, X may be feasible for Q2¢. In this case we have found an opti-
mum over)’ and can completely eliminate all elements of Q° from the

enumeration process. One often says that this branch is fathomed. If
c(X) < ¢e(T), we reset T := X also.

- Second, if ¢(X) > ¢(T) then no solution in I'" and hence no solution in
) has a value that is smaller than the current champion. Hence this
branch is also fathomed and we can eliminate all solutions in °.

- Third, if ¢(X) < ¢(T) (and X is not feasible for Q°), we have done the
computation in vain. (We may still try to make use of X to obtain a
solution better than T as above.) We split Q¢ into two or more pieces,
and put these on our list of unsolved subproblems.

The branch-and-bound method terminates when the list of subproblems
is empty. The iteratively updated solution 7' is the optimum solution. Ter-
mination is, of course, guaranteed if the set) of feasible solutions is finite.

Although the global procedure is mathematically trivial, it is a consider-
able piece of work to make it computationally effective. The efficiency mainly
depends on the quality of the lower bound used. Most of the mathematics
that is developed for the solution of hard problems is concerned with the
invention of better and better relaxations, with their structural properties
and with fast algorithms for their solution.

5 Dynamic Programming

The origin of dynamic programming is the modelling of discrete-time sequen-
tial decision processes. The process starts at a given initial state. At any
time of the process we are in some state and there is a set of states that are
reachable from the present state. We have to choose one of these. Every state

26

has a value and our objective is to maximize the value of the terminating
state. Such an optimization problem is called a dynamic program.

Virtually any optimization problem can be modeled by a dynamic pro-
gram. There is a recursive solution for dynamic programs which, however,
is not efficient in general. But the dynamic programming model and this
recursion can be used to design fast algorithms in cases where the number of
states can be controlled. We illustrate this by means of a few examples.

The subset-sum problem. Given positive integers aq, as, ..., a,, b, decide
whether there exist indices 1 < iy < iy < ... < i < n for some k such that
ai, +...+a;, =0b. This problem, called subset-sum problem, is NP-complete;
however, there is a pseudopolynomial algorithm to solve it.

First, consider an obvious algorithm using enumeration. Clearly the
subset-sum problem has a solution, for a given input (ay,...,a,,b), if and
only if it has a solution either for (a1, ...,an—1,b—ay) or for (a1,...,an-1,b).
So an instance of the subset sum problem for n numbers can be reduced to
two subproblems with n — 1 numbers each. Building up a search tree based
on this observation yields an O(2") algorithm (which basically enumerates
all subsets of the a;).

But looking at this tree more carefully, we see that, at least if b is small
compared with 2", it has a crucial property: the same subproblem occurs on
many branches! In fact, there are only nb distinct subproblems altogether: for
each ¢ < b and each m < n, the subset-sum problem with input aq, ..., a,,,c.
Imagine that the branches of the search tree “grow together” if the same
subproblem occurs: we get a “search digraph” D. The nodes of this acyclic
digraph are labelled with pairs (¢,m), and there is an edge from (¢, m) to
(¢;m—1) if either ¢ = ¢ or ¢ = ¢ — a,,. The subset-sum problem is solvable
if and only if there is a dipath from (b,n) to (0,0). Such a dipath can be
found (if it exists) in O(bn) time by searching D either from (0,0) or from
(b,n).

Along the same lines, one can devise an algorithm for the knapsack prob-
lem with running time polynomial in b+ Y;(c;).

Minimal triangulation of a convex polygon. Given a convex polygon
P with n vertices in the plane, we want to find a triangulation with minimal
total edge length. (The length ¢;; of each edge ij is known.)

If the vertices of P are numbered consecutively 1 through n, take edge 1n
and consider the vertex ¢ with which it forms a triangle in the triangulation.

27

n 1

Figure 3: Optimum triangulation of a convex polygon

For a given i, it suffices to find optimal triangulations of the two polygons
with vertices 1...7 and 7 ...n, respectively, which can be done independently,
see Figure 3. So we have produced 2(n — 2) subproblems.

If we are not careful, repeating this process could lead to exponentially
many distinct subproblems. But note that if we choose the triangle con-
taining the edge 17 to cut the polygon 1...47, then we get two subproblems
corresponding to convex polygons having only one edge that is not an edge
of P.

In general, given two vertices i and j with i < j—2, let f(4,7) denote the
minimum total length of diagonals triangulating the polygon with vertices
(t,2+1,...7). Then clearly f(i,i+2) =0 and

f(i,5) = min{ min {f(i, k) + f(k,7) + cix + ¢},

i+2<k<j—2

Fi+1,9) + g fG 5= 1)+ e} (4)

The answer to the original question is f(1,n).

We can represent the computation by a “search digraph” whose nodes
correspond to all the polygons with vertex set (i,7 + 1,...,7), where 1 <
i,7<n,i<j—2. Weset f(i,j) =01if j =i+ 2, and can use (4) recursively
if j >4 + 2. There are O(n?) subproblems to solve, and each recursive step
takes O(n) time. So we get an O(n?) algorithm.

28

@ terminals —— Steinertree

Figure 4: Steiner tree in planar graphs

Steiner trees in planar graphs. Let G = (V, E) be a graph with edge
lengths ¢, > 0, and let T" C V be a set of “terminals”. A Steiner tree in
GG is a subtree of GG that contains all nodes of T". The Steiner tree problem
is the task of finding a shortest Steiner tree. This problem is NP-hard in
general, even for planar graphs. But in the case of a planar graph when all
the terminal nodes are on one, say, on the outer face C', a shortest Steiner
tree can be found by dynamic programming as follows.

Let us first look at a minimum Steiner tree B. Pick any node v of B
and let B’ be the union of some branches of B that are rooted at v and that
are, in addition, consecutive in the natural cyclic order of the edges leaving
v. Let T" := T NV(B'). We observe the following (see Figure 4, where v is
represented by a black circle):

- There is a path P C C whose endnodes are terminals such that 7" =
V(P)NT.

29

- B’ is a minimum length Steiner tree with respect to the terminal set
T'"U{v}.

- v is on the outer face of the subgraph B’ U P.

These observations motivate the following dynamic program for the so-
lution of our Steiner tree problem. For every path P C C' whose end nodes
are terminals and every node v € V| we determine a shortest Steiner tree B’
with respect to the set of terminal nodes (V (P)NT)U{v} with the additional
requirement that v is on the outer face of B’ U P.

If P consists of just one terminal then such a Steiner tree can be found
by a shortest path calculation.

Suppose that we have solved this subproblem for all nodes v € V' and all
paths P C C containing at most k terminal nodes. To solve the subproblem
for some node v € V and a path P C C' containing k& + 1 terminal nodes,
we do the following. Let t1,...,tx41 be the terminals contained in P in the
natural order. For every node w € V and every two subpaths P, P, of P,
where P, connects ¢; to t; and P, connects ;41 to tp1, 1 < j <k, we solve
the subproblems for w and P; and for w and P, to get two trees B; and
By;. We also compute a shortest path) from w to v. Among all the sets
By U By U @ computed this way we choose the one with minimum length.
This is an optimum solution of our subproblem for v and P.

To get a minimum length Steiner tree, consider a path P C (' that
contains all terminal nodes and choose the shortest among all solutions of
subproblems for v and P with v € V.

This algorithm is due to Erickson, Monma and Veinott (1987) and is
based on ideas of Dreyfus and Wagner. It can be extended to the case when
all terminals are on a fixed number of faces.

There are many other non-trivial applications of the idea of dynamic
programming; for example, Chvatal and Klincsek (1980) use it to design a
polynomial time algorithm that finds a maximum cardinality subset of a set
of n points in the plane that forms the vertices of a convex polygon (cf.
Chapter 17, section 7.2).

Optimization on tree-like graphs. There are many NP-hard problems
that are easy if the underlying graph is a tree. Consider the stable set problem
in a tree T'. We fix a root r and, for every node x, we consider the subtree T},

30

consisting of x and its descendants. Starting with the leaves, we compute,
for each node x, two numbers: the maximum number of independent nodes
in T, and in T, — z. If these numbers are available for every son of z, then it
takes only O(d(x)) time to find them for x. Once we know them for 7T}, we
are done. So a maximum stable set can be found in linear time.

Similar algorithms can be designed for more general “tree-like” graphs,
e.g., series-parallel graphs. A general framework for “tree-like” decomposi-
tions was developed by Robertson and Seymour in their “Graph Minors” the-
ory, which leads to very general dynamic programming algorithms on graphs
with bounded tree-width. See Chapter 5 for the definition of tree-width and
for examples of such algorithms.

6 Augmenting paths

In local search algorithms, we try to find very simple “local” improvements on
the current solution. There are more sophisticated improvement techniques
that change the current solution globally, usually along paths or systems of
paths. These methods are often called augmenting path techniques. Since
they occur throughout this handbook, we refrain from describing any of
them here; let it suffice to quote the most important applications of the
method of alternating paths: maximum flows and packing of paths, Chapter
2; maximum matchings (weighted and unweighted), maximum stable sets in
claw-free graphs, Chapter 3; edge-coloring, Chapter 4; matroid intersection,
matroid matching, and submodular flows, Chapter 11.

7 Uncrossing

One can find many applications of the uncrossing procedure in this handbook
as a proof technique; it is applied in the theory of graph connectivity and
flows (Chapter 2), matchings (Chapter 3, or Lovdsz and Plummer (1986)),
and matroids (Chapters 11, 30). It is worth pointing out, however, that
uncrossing can be viewed as an algorithmic tool, that constructs, from a
complicated dual solution, a dual solution with a tree-like structure. This
way it is sometimes possible to derive an optimum integral dual solution from
an optimum fractional dual solution.

31

As an illustration, consider the problem of finding a maximum family
of rooted cuts in a digraph G = (V, A) with root r such that every arc a
occurs in at most ¢, of these cuts, where the ¢, > 0 are given integer values
(“lenghts”). (A rooted cut, or r-cut, is the set of arcs entering S, i.e., with
tail in V'\S and head in S for some nonempty S C V, r ¢ S; cf. Chapter
30.) Assume that we have a fractional packing, i.e., a family F of r-cuts and
a weight wp > 0 for every D € F such that > p5. wp < ¢, for every arc a
(ellipsoidal or interior point methods, as well as averaging procedures, may
yield such “fractional solutions”). As a consequence of Fulkerson’s Optimum
Arborescence Theorem (Chapter 30, Thm. 5.7), we know that there exists an
integer solution with the same value, i.e., a family of at least >, wp r-cuts
with the prescribed property. But how to find this?

For each r-cut D in the digraph G, we denote by S(D) aset S C V' \ {r}
such that D is the set of edges entering S. Let H = {S(D) : D € F}. Call
two r-cuts Dy and D, intersecting if all three sets S(Dy) N S(Ds), S(D1) \
S(Ds) and S(D2) \ S(D;) are non-empty. Assume that F contains two
intersecting cuts Dy and Dy, and let D" and D" denote the r-cuts defined by
S(D1) N S(Ds2) and S(D1) U S(Ds), respectively.

Decrease wp, and wp, by € and increase wp, and wp~ by €, where € :=
min{wp,, wp,} (if, say, D' does not belong to F, then we add it to F with
wp = 0). It is easy to check that this yields a new fractional packing
with the same total weight. The family F lost one member (one of D; and
D,), and gained at most two new members (D’ and D"). If the new family
contains two intersecting cuts, then we “uncross” them as above. It can be
shown that the procedure terminates in a polynomial number of steps (see
Hurkens, Lovész, Schrijver and Tardos (1988) for a discussion of this).

When the uncrossing procedure terminates, the family H is nested, i.e.,
there are no intersecting pairs of cuts in F. Such a family has a tree structure;
H can be obtained by selecting disjoint subsets of V' \ {r}, then disjoint
subsets in these subsets etc. It is not difficult to see that the number of
members of H is at most 2|V| — 3.

Choose D € F such that wp is not an integer and S(D) is minimal.
There is a unique cut D" € F such that S(D’) D S(D) and S(D’) is minimal.
Add € to wp and subtract ¢ from wp, , where € := min{[wp]| — wp, wp}.
It is easy to check (using the integrality of £) that this results in a fractional
packing with the same value, and now either wp is an integer or wp = 0.
After at most 2n — 3 repetitions of this shift, we get a fractional packing with

32

all weights integral, which trivially gives the family as required.

8 Linear programming

A very successful way to solve combinatorial optimization problems is to
translate them into optimization problems for polyhedra and utilize linear
programming techniques. The theoretical background of this approach is
surveyed in Chapter 30 where also many examples of the application of this
method are provided. We will concentrate here on the implementation of the
linear programming approach to practical problem solving, and on the use
of linear programming in heuristics.

We will assume that we have a combinatorial optimization problem with
linear objective function like the travelling salesman, the max-cut, the stable
set, or the matching problem. Let us also assume that we want to find
a feasible solution of maximum weight. Typically, an instance of such a
problem is given by a ground set E, an objective function ¢: £ — IR and a
set Z C 2% of feasible solutions such as the set of tours, of cuts, of stable sets,
or matchings of a graph. We transform 7 into a set of geometric objects by
defining, for each I € Z, a vector x! € R” with xI=1lifee land x! =0
if e ¢ I. The vector x! is called the incidence (or characteristic) vector of I.

Now we set s
P(T) :=conv{x' € R" | I € T},

i.e., we consider a polytope whose vertices are precisely the incidence vectors
of the feasible solutions of our problem instance. Solving our combinato-
rial optimization problem is thus equivalent to finding an optimum vertex
solution for the following linear program

max ¢’z (5)
x € P(Z).

However, (5) is only a linear program “in principle” since the usual LP-
codes require the polyhedra to be given by a system of linear equations and
inequalities. Classical results of Weyl and Minkowski ensure that a set given
as the convex hull of finitely many points has a representation by means of
linear equations and inequalities (and vice versa). But it is by no means
simple to find, for a polyhedron given in one of these representations, a

33

complete description in the other way. By problem specific investigations
one can often find classes of valid and even facet-defining inequalities that
partially describe the polyhedra of interest. (Many of the known examples
are described in Chapter 30.)

What does “finding” a class mean? The typical situation in polyhedral
combinatorics is the following. A class of inequalities contains a number of
inqualities that is exponential in |E|. It is well-described in the sense that
we can (at least) decide in polynomial time whether a given inequality, for a
given instance, belongs to the class. This is a minimal requirement; we need
more for a class to be really useful (see separation below). Also, the class
should contain strong inequalities; best is when most of the inequalities define
facets of P(Z). Except for special cases, one such class (or even a bounded
number of such classes) will not provide a complete description, i.e., P(Z) is
strictly contained in the set of solutions satisfied by all these inequalities.

The cut polytope. To give an example, let us discuss the max-cut problem.
In this case a graph G = (V, F) is given (for convenience we will assume that
G is simple), and we are interested in the convex hull of all incidence vectors
of cuts in G| i.e.,

CUT(G) := conv{x’™ e R” | W C V}.

This polytope has dimension |E|. For any edge e € E, the two trivial
inequalities 0 < z. < 1 define a facet of CUT (G) if and only if e is not
contained in a triangle. About some other classes of facets, we quote the
following result of Barahona and Mahjoub (1986):

Theorem 8.1 Let G = (V, E) be a graph.
(a) For every cycle C' C E and every set F C C, |F| odd, the odd cycle

inequality
2(F)—z(C\F):=> x.— > z.< |F]—1

eEF eeC\F

is valid for CUT(G); it defines a facet of CUT(G) if and only if C' has no
chord.

(b) For every complete subgraph K, = (W, F) of G, the K,-inequality

) <[] |3]
2112
is valid for CUT(G); it defines a facet of CUT(G) if and only if p is odd.

34

Applications of the max-cut problem arise in statistical mechanics (find-
ing ground states of spin glasses, see Chapter 37) and VLSI design (via
minimization). Both applications are covered in Barahona et al. (1988). But
the max-cut problem comes up also in many other fields. Structural insights
from different angles resulted in the discovery of many further (and very
large) classes of valid and facet-defining inequalities. Studies on the em-
beddability of finite metric spaces (in functional analysis), for instance, lead
to the class of hypermetric inequalities; there are the classes of clique-web,
suspended tree, circulant, path-block-cycle, and other inequalities. A com-
prehensive survey of this line of research can be found in Deza and Laurent
(1991); cf. also Chapter 41, section 2.

There are a few special cases where it is known that some of the classes
of inequalities suffice for a characterization of CUT(G). For example, setting

Po(G)={zeR’| 0<a.<1 for all e € E,
z(F)—x(C\F) < |F|—1 forall cycles C C E (6)
and all F' C C,
|F'| odd},

Barahona and Mahjoub showed that CUT(G) = Po(G) holds if and only if
(G is not contractible to the complete graph K5. But for a general graph G,
the union of all the known classes of inequalities does not provide a complete
description of CUT(G) at all.

Separation. Let us review at this point what has been achieved by this
polyhedral approach. We started out with a polytope P(Z) and found classes
of inequalities A1z < by, Asx < bo,..., Axx < bg, say, such that all
inequalities are valid and many facet-defining for P(Z). The classes are huge
and thus we are unable to use linear programming in the conventional way
by inputting all constraints. Moreover, even if we could solve the LP’s; it
is not clear whether the results provide helpful information for the solution
of our combinatorial problem. Although the situation looks rather bad at
this point we have done a significant step towards solving hard combinatorial
optimization problems in practice. We will now outline why.

A major issue is to figure out how one can solve linear programs of the

35

form
maximize c’x
subject to Az < by

(7)

where some of the matrices A; have a number of rows that is exponential
in |F|, and are only implicitly given to us. To formulate the answer to this
question we introduce the following problem.

SEPARATION PROBLEM. Let Ax < b be an inequality system and y a
vector, determine whether y satisfies all inequalities, and if not, find an in-
equality violated by y.

Suppose now that we have a class A of inequality systems Az < b. (Ex-
ample: Consider the class consisting of all odd cycle inequalities for CUT(G),
for each graph G.) For each system Az <b, let ¢ := min((a;) + (5;)), where
the minimum is taken over all rows a; x < (; of the system. We say that the
optimization problem for A can be solved in polynomial time if, for any sys-
tem Az < b of A and any vector ¢, the linear program max{c” z | Az < b}
can be solved in time polynomial in ¢ + (¢), and we say that the separation
problem for A can be solved in polynomial time if, for any system Ax < b of
A and any vector y, the separation problem for Ax < b and y can be solved
in time polynomial in ¢ and (y).

Theorem 8.2 Let A be a class of inequality systems, then the optimization
problem for A is solvable in polynomial time if and only if the separation
problem for A is solvable in polynomial time.

For a proof and extensions of this result, see Grotschel, Lovész, Schrijver
(1988).

The idea now is to develop polynomial time separation algorithms for the
inequality systems A1z < by, ..., Agx < by in (7). It turns out that this task
often gives rise to new and interesting combinatorial problems and that, for
many hard combinatorial optimization problems, there are large systems of
valid inequalities that can be separated in polynomial time.

We use the max-cut problem again to show how separation algorithms,
i.e., algorithms that solve the separation problem can be designed. We thus

36

assume that a graph G = (V| E) is given and that we have a vector y €

R” , 0<y. <1foralle e E. We want to check whether y satisfies the
inequalities described in Theorem &.1.

To solve the separation problem for the odd cycle inequalities (8.1)(a) in
polynomial time, we define a new graph H = (V' U V" E'U E" U E") that
consists of two copies of G, say G' = (V' E') and G"” = (V”,E") and the
following additional edges E"’. For each edge uv € E we create the two edges
u'v"” and u”v'. The edges u/v" € E' and u"v"” € E” are assigned the weight
Yuv, While the edges u'v”, u"v' € E" are assigned the weight 1 — 1,,. For
each pair of nodes u', u” € W, we calculate a shortest (with respect to the
weights just defined) path in H. Such a path contains an odd number of
edges of £ and corresponds to a closed walk in G containing u. Clearly, if
the shortest of these (u/, u”)-paths in H has length less than 1, there exists
a cycle C C E and an edge set F' C C,|F| odd, such that y violates the
corresponding odd cycle inequality. (C' and F are easily constructed from a
shortest path.) If the shortest of these (u’, u”)-paths has length at least 1,
then y satisfies all these inequalities (see Barahona and Mahjoub (1986)).

Trivially, for p fixed, one can check all K,-inequalities in polynomial time
by enumeration, but it is not known whether there is a polynomial time algo-
rithm to solve the separation problem for all complete subgraph inequalities
of Theorem (8.1)(b). In this case one has to resort to separation heuristics,
i.e., algorithms that try to produce violated inequalities but that are not
guaranteed to find one if one exists.

It is a simple matter to show that the integral vectors in the polytope
Pc(G), see (7), are exactly the incidence vectors of the cuts of G. This shows
that every integral solution of the linear program

maximize ¢!z

(i) 0<z<1 ®)
(ii) x satisfies all odd cycle inequalities (8.1)(a)
(iii) x satisfies all K,-inequalities (8.1)(b)

is the incidence vector of a cut of G. In particular, the optimum value of
(8) (or any subsystem thereof) provides an upper bound for the maximum
weight of a cut.

Theorem 8.2 and the exact separation routine for odd cycle inequalities
outlined above show that the linear program (8) (without system (iii)) can be

37

solved in polynomial time. So an LP-relaxation of the max-cut problem can
be solved in polynomial time that contains (in general) exponentially many
inequalities facet-defining for the cut polytope CUT(G). The question now
is whether this technique is practical and whether it will help solve max-cut
and other hard combinatorial optimization problems.

Outline of a Standard Cutting Plane Algorithm. Theorem 8.2 is
based on the ellipsoid method. Although the algorithm that proves 8.2 is
polynomial, it is not fast enough for practical problem solving. To make this
approach usable in practice one replaces the ellipsoid method by the simplex
method and enhances it with a number of additional devices. We will sketch
the issues coming up here. We assume that, by theoretical analysis, we
have found an LP-relaxation such as (7) of our combinatorial optimization
problem.

The Initial Linear Program. We group the inequalities of (7) such that
the system A; x < by is not too large and contains those inequalities that we
feel should be part of our LP initially.

This selection is a matter of choice. In the max-cut problem, for instance,
one would clearly select the trivial inequalities 0 < z < 1. For the large
classes of the other inequalities, the choice is not apparent. One may select
some inequalities based on heuristic procedures. In the case of the travelling
salesman problem, see (9.10) of Chapter 30 and section 2 of this chapter, in
addition to the trivial inequalities, the degree constraints x (§ (v)) = 2 for
all v € V are self-suggesting. For the packing problem of Steiner trees (a
problem coming up in VLSI routing), for example, a structural analysis of
the nets to be routed on the chip was used in Grotschel, Martin, Weismantel
(1992) to generate “reasonable” initial inequalities. This selection helped to
increase the lower bound significantly in the early iterations and to speed up
the overall running time.

Initial Variables. For large combinatorial optimization problems the num-
ber of variables of the LP-relaxation may be tremendous. A helpful trick is
to restrict the LP’s to “promising” variables that are chosen heuristically.
Of course in the end, this planned error has to be repaired. We will show
later how this is done. For the travelling salesman problem, for instance, a
typical choice are the 2 to 10 nearest neighbors of any node and the edges
of several heuristically generated tours. For a 3000 city TSP instance, the
number of variables of the initial LP can be restricted from about 4.5 million

38

to less than 10 thousand this way; see Applegate, Bixby, Chvatal and Cook
(1993), Grotschel and Holland (1991), and Padberg and Rinaldi (1991) for
descriptions of variable reduction strategies for the TSP.

There are further preprocessing techniques that, depending on the type
of problem and the special structure of the instances, can be applied. These
techniques are vital in many cases to achieve satisfactory running times in
practice. Particularly important are techniques for structurally reducing in-
stance sizes by decomposition, for detecting logical dependencies, implicit
relations, and bounds that can be used to eliminate variables or forget cer-
tain constraints forever. For space reasons we are unable to outline all this
here.

Cutting Plane Generation. The core of a cutting plane procedure is of
course the identification of violated inequalities. Assume that we have made
our choice of initial constraints and have solved the initial linear program
max{c’x | Ayx <b;}. In further iterations we may have added additional
constraints so that the current linear program has the form

maximize ¢! x
subject to Az <b.

We solve this LP and suppose that y is an optimum solution. If y is the
incidence vector of a feasible solution of our combinatorial problem we are
done. Otherwise we want to check whether y satisfies all the constraints in
Agx < by, ..., Apx < br. We may check certain small classes by substituting
y into all inequalities. But, in general, we will run all the separation routines
(exact and heuristic) that we have, to find as many inequalities violated by
y as possible. It is a very good idea to use several different heuristics even
for classes of inequalities for which exact separation algorithms are available.
The reason is that exact routines typically find only a few violated constraints
(the most violated ones), while separation heuristics often come up with many
more and differently structured constraints.

To keep the linear programs small one does also remove constraints, for
instance those that are not tight at the present solution. It is sometimes
helpful to keep these in a “pool” since an optimum solution of a later itera-
tion might violate it again, and scanning the pool might be computationally
cheaper than running elaborate separation routines (see Padberg and Rinaldi
(1991)).

39

In the initial phase of a cutting plane procedure the separation routines
may actually produce thousands of violated constraints. It is then necessary
to select “good ones” heuristically, again, to keep the LP’s at a manageable
size, see Grotschel, Jiinger, Reinelt (1984) for this issue.

Another interesting issue is the order in which exact separation routines
and heuristics are called. Although that may not seem to be important,
running time factors of 10 or more may be saved by choosing a suitable
order for these and strategies to give up calling certain separation heuristics.
An account of this matter is given in Barahona, Grotschel, Jinger, Reinelt
(1988).

There are more aspects that have to be considered, but we are unable
to cover all these topics here. It is important to note that, at the present
state of the art, there are still no clear rules as to which of these issues are
important or almost irrelevant for a combinatorial optimization problem and
its LP relaxation considered. Many computational experiments with data
from practical instances of realistic sizes are necessary to obtain the right
combination of methods and “tricks”.

Pricing Variables. In the cutting plane procedure we have now iteratively
called the cutting plane generation methods, added violated inequalities,
dropped a few constraints and repeated this process until we either found an
optimum integral solution or stopped with an optimum fractional solution y
for which no violated constraint could be found by our separation routines.
Now we have to consider the “forgotten variables”. This is easy. For every
intitially discarded variable we generate the column corresponding to the
present linear constraint system and compute its reduced costs by standard
LP techniques. If all reduced costs come out with the correct sign we have
shown that the present solution is also optimum for the system consisting of
all variables. If this is not the case we add all (or some, if there are too many)
of the variables with the wrong sign to our current LP and repeat the cutting
plane procedure. In fact, using reduced cost criteria one can also show that
some variables can be dropped because they can provably never appear in
any optimum solution or that some variables can be fixed to a certain value.

Branch-and-Cut. This process of iteratively adding and dropping con-
straints and variables may have to be repeated several times before an op-
timum solution y of the full LP is found. However, for large instances this
technique is by far superior to the straightforward method of considering

40

everything at once. If the final solution y is integral, our combinatorial
optimization problem is solved. If it is not integral, we have to resort to
branch-and-bound, see section 4. There are various ways to mix cutting
plane generation with branching, to use fractional LP-solutions for generat-
ing integral solutions heuristically etc. It has thus become popular to call
the whole approach described here branch-and-cut.

Clearly, this tremendous theoretical and implementational effort only
pays if the bounds for the optimum solution value obtained this way are
very good. Computational experience has shown that, in many cases, this
is indeed the case. We refer the interested readers to more in-depth surveys
on this topic such as Grétschel and Padberg (1985), Padberg and Grotschel
(1985), and Jiinger, Reinelt and Rinaldi (1994) for the TSP, or to papers
describing the design and implementation of a cutting plane algorithm for a
certain practically relevant, hard combinatorial optimization problem. These
papers treat many of the issues and little details we were unable to cover
here. Among these papers are: Applegate, Bixby, Cook and Chvatal (1993),
Grotschel and Holland (1991), Padberg and Rinaldi (1991) for the TSP (the
most spectacular success of the cutting plane technique has certainly been
obtained here); Barahona, Grotschel, Jiinger, Reinelt (1988) for the max-cut
problem with applications to ground states in spin glasses and via mini-
mization in VLSI design; Grotschel, Jinger and Reinelt (1984) for the linear
ordering problem with applications to triangulation of input-output matri-
ces and ranking in sports; Hoffman and Padberg (1992) for the set parti-
tioning problem with applications to airline crew scheduling; Grotschel and
Wakabayashi (1989) for the clique partitioning problem with applications to
clustering in biology and the social sciences; Grotschel, Monma and Stoer
(1992) for certain connectivity problems with applications to the design of
survivable telecommunication networks; Grotschel, Martin and Weismantel
(1992) for the Steiner tree packing problem with applications to routing in
VLSI design.

The LP-solver used in most of these cases are advanced implementations
of the simplex algorithm such as Bixby’s CPLEX or IBM’s OSL. Inves-
tigations of the use of interior point methods in such a framework are on
the way. A number of important issues like addition of rows and columns
and postoptimality analysis, warm starts etc. are not satisfactorily solved
yet. But combinations of the two approaches may yield the LP solver of the

41

future for this approach.

Linear programming in heuristics. So far, we have used linear program-
ming as a dual heuristic, to obtain upper bounds on (say) the maximum value
of an integer program. But solving the linear relaxation of an optimization
problem also provides primal information, in the sense that it can be used to
obtain a (primal) heuristic solution.

Of course, solving the linear relaxation of an integer linear program, we
may be lucky and get an integer solution right away. Even if this does not
happen, we may find that some of the variables are integral in the optimum
solution of the linear relaxation, and we may try to fix these variables at
these integral values. This is in general not justified; a notable special case
when this can be done was found by Nemhauser and Trotter (1974), who
proved the following. Consider a graph G = (V, F) and the usual integer
linear programming formulation of the stable set problem:

maximize > ey T

subject to x; >0 (ieV) ()
x integral.

Let x* be an optimum solution of the linear relaxation of this problem. Then
there exists an optimum solution z** of the integer program such that z} =
x;* for all ¢ for which z7 is an integer.

In general, we can obtain a heuristic primal solution by fixing those vari-
ables that are integral in the optimum solution of the linear relaxation, and
rounding the remaining variables “appropriately”. It seems that this natural
and widely used scheme for a heuristic is not sufficiently analyzed, but we
mention some results where linear programming combined with appropriate
rounding procedures gives a provably good primal heuristic.

A polynomial approximation scheme for bin packing. The following
polynomial time bin packing heuristic, due to Fernandez de la Vega and
Lueker (1981), has asymptotic performance ratio 1 + ¢, where € > 0 is any
fixed number. A more refined application of this idea gives a heuristic that
packs the weights into kop; +O(log? (kops) bins (Karmarkar and Karp (1982)).

First, we solve the following restricted version. We are given integers
k,m > 0, weights 1/k < a1 < ... < an,, < 1 and a multiplicity n; for each
weight a;. Let kope be the minimum number of bins into which n; copies of

42

a; (j =1,...,m) can be packed. Then we can pack the weights into kep, +m
bins, in time polynomial in n and m:k .

To obtain such a packing, let us first generate all possible combinations
(with repetition) of the given weights that fit into a single bin. Since each
weight is at least 1/k, such a combination has at most k elements, and hence
the number of different combinations is at most (m;’k), and they can be
found by brute force. Let Ti,...,Tx be these combinations. Each T} can
be described by an integer vector (ti,t5,...,t},), where ¢} is the number of
times weight a; appears in combination ¢.

Consider the following linear program:

minimize Zfil Yi
subject to y; >0 (10)
Zfilt;yZsz (jzl,,m)

Let Y denote the optimum value. Every packing of the given weights into
bins gives rise to an (integral) solution of this linear program (y; is the number
of times combination 7} is used), hence

kopt 2 Y.

On the other hand, let y* be an optimum basic solution of (10), and consider
[y¥] bins packed with combination 7;. Since at most m of the y; are non-zero,
we get a total of ; [y] <Y +m < kopt +m bins, which clearly accomodate
the whole list.

Nowlet 0 < 21 < 29 < ... <1z, <1be an arbitrary list L of weights, and
let 0 < € < 1 be also given. Set w := Y, x;, and define [by z; < /2 < x4
(set [:=0if 21 > ¢/2). Set a; := x4 (1 = 1,...,m), where h := [ew]| and
m := [(n —[1)/h]. Consider a list L' consisting of h copies of each a; and
n — 1 — hm copies of 1. Let k;, be the minimum number of bins into which
L' can be packed; by the solution of the restricted problem described above,
we can pack L' into kg, +m bins in polynomial time. Trivially, we get from
this a packing of the weights z;;1,...,z, into kj ; +m bins. The remaining
(small) weights z1, ..., x; are packed by FIRST-FIT into the slacks of these
bins and, if necessary, into new bins.

To compare the number ke, of bins used this way with kgpe, we distin-
guish two cases. If, in the last step of FIRST-FIT, we had to open a new

43

bin, then every bin (except possibly the last one) is filled up to 1 — /2, and
hence

Fhour < 1 .
hewr = T

Since w is a trivial lower bound on kope, this shows that
kheur S (1 + 8)kopt + 1.

So assume that we do not open a new bin in the last phase, and hence
we use at most kg, +m bins. To compare this with kop, consider an opti-
mum packing of L. Then from the list L', the h copies of a; can be put in
the place of x;1p41,..., T on, the h copies of as can be put in the place of
Titont1,-- -, Tiran etc. At the end we are left with A weights, which we can

accomodate using h new bins. Hence

k(l)pt S kopt + h,
and so
kheur S k(l)pt +m S kopt + h + m.
Since
h<ew-+1< ek +1,
and l 5
— w
< — < — =—=0(1
m — h 8/2 (8/11]) 82 ()7

this proves that the asymptotic performance ratio is at most 1+¢ as claimed.

Blocking sets in hypergraphs with small Vapnik—éervonenkis di-
mension. The following discussion is based on ideas of Vapnik and
Cervonenkis, which have become very essential in a number of areas in math-
ematics (statistics, learning theory, computational geometry). Here we use
these ideas to design a randomized heuristic for finding a blocking set in a
hypergraph.

Let (V,#) be a hypergraph and consider an optimum fractional blocking
set of H, i.e., an optimum solution x* of the linear program

minimize) oy
subject to z; > 0 (ieV) (11)

44

The optimum value of program (11) is the fractional blocking number 7* :=
7*(H), which can serve as a lower bound on the covering (or blocking) number
7(H). Now we use this linear program to obtain a heuristic solution.

Consider an optimum solution z, and define p; = x;/7*. Then (p; : i € V)
can be viewed as a probability distribution on V', in which every edge £ € ‘H
has probability at least 1/7*. Let us generate nodes vy, v, ... independently
from this distribution, and stop when all edges are covered. It is easy to see
that with very large probability we stop in a polynomial number of steps, so
this procedure is indeed a (randomized) blocking set heuristic, which we call
the random node heuristic. Let tyeu be the size of the blocking set produced
(this is a random variable). What is the expected performance ratio of the
random node heuristic, i.e., the ratio F(theur)/7(H)?

It is clear that if we consider a particular edge E, then it will be hit by one
of the first k7* nodes with probability about 1 — 1/e*. Hence if k > In|H]|,
then the probability that every edge is hit is more than 1/2. Hence we get
the inequality

thew < (In|H[)7T" < (In|H|)T,

i.e., we obtain the bound In |#| for the performance ratio of the random node
heuristic. This is not interesting, however, since the greedy heuristic does
better (see Theorem 2.2).

Adopting a result of Haussler and Welzl (1987) from computational geom-
etry (which in turn is an adoptation of the work of Vapnik and Cervonenkis
in statistics, see Vapnik (1982)), we get a better analysis of the procedure.
The Vapnik-Cervonenkis dimension of a hypergraph (V,H) is the size of the
largest set S C V such that for every T' C S there is an F € H such that
T=SNE.

Theorem 8.3 Let H be a hypergraph with Vapnik-Cervonenkis dimension
d and fractional blocking number 7. The expected size of the blocking set
returned by the random node heuristic is at most 16d7* log(dr*).

Proof. We prove that if we select N := [8d7*log(d7*)]| nodes from the
distribution p, then with probability more than 1/2, every edge of H is met.
Hence it follows easily that F(theunr) < 2N.

The proof is not long but tricky. Choose N further nodes vyi1,...,van
(independently, from the same distribution). Set s = N/(27*). Assume that

45

there exists a set £ € H such that £ N {vy,...,on} = 0. Chebychev’s
Inequality gives that for any such edge F € H,

| —

Prob(]E N{vNt1, ..., van}| > s) >

Hence we obtain

Prob(3E: ENfvr,...,on} =0, [EN{oni1,...,van}] > s)

1
> 5Pmb(aE C EN{vr,..un} =0).

We estimate the probability on the left hand side from above as follows. We
can generate a (2N)-tuple from the same distribution if we first generate a
set S of 2N nodes as before, and then randomly permute them. For a given
E € H that meets S in at least s elements, the probability that after this
permutation E avoids the first half of S is at most

(2]\1[\/_8) < (1_i>N < 52,

CH

We do not have to add up this bound for all E, only for all different inter-
sections £ N S. The number of sets of the form £ NS is at most

(2;\[) + (;ﬁg) +...+1<(2N)Y

by the Sauer-Shelah Theorem (see Chapter 24, section 4). Hence the prob-

ability that there is an edge E' € H that meets S in at least s elements but
avoids the first half is at most (2V)%e™*/2 < 1/4.
Hence

Prob (3E: EN{vy,...,uon}=0) <

N | —

With some care, the upper bound can be improved to O(d7* log 7*), which
is best possible in terms of these parameters, see Komlos, Pach and Woeg-
inger (1992). Raghavan (1988) studies other applications of the idea to use

46

a fractional solution as a starting distribution for randomized rounding. He
shows how to transform such algorithms into deterministic procedures under
quite general conditions and points out the connections of this problem with
discrepancy theory (see Chapter 26).

Approximating a cost-minimal schedule of parallel machines. Ma-
chine scheduling problems arise in hundreds of versions and are a particular
“playground” for approximation techniques. We outline here an LP-based
heuristic for the following problem of scheduling parallel machines with costs
(this problem is also called generalized assignment problem). Suppose that
we have a set J of n independent jobs, a set M of m unrelated machines,
and we want to assign each job to one of the machines. Assigning job j to
machine ¢ has a certain cost ¢;; and takes a certain time p;;. Our task is to
find an assignment of jobs to machines such that no machine gets more load
than a total of T" time, and the total cost does not exceed a given bound C,
i.e., we look for a job assignment with maximum time load (makespan) at
most 7" and cost at most C.

If all the p;; are the same, then this is a weighted bipartite matching
problem, and so can be solved in polynomial time. However, for general p;;,
the problem is NP-hard. Since there are two parameters (7" and C), there
are several ways to formulate what an approximate solution means, and
there are various algorithms known to find them. Each of these is based on
solving a linear relaxation of the problem and then “rounding” the solution
appropriately; this technique was introduced by Lenstra, Shmoys and Tardos
(1990). A combinatorially very interesting “rounding” of the solution of the
linear relaxation was used by Shmoys and Tardos (1993), which we now
sketch.

Consider the following linear program:

: T, .__ m n
minc'x =", Zj:1 CijTij,

Yitapigriy < T, fori=1,...,m,
Sy =1, forj=1,...,n, (12)
xi; >0, fori=1,....m, 7=1,....n
i =0, ifp; >T,i=1,...,m, j=1,...,n.

Clearly, every integral solution y of (12) with cost ¢’y < C provides a
feasible solution of the generalized assignment problem, and thus, (12) is a

47

natural LP-relaxation of the generalized assignment problem. (The explicit
inclusion of the last condition plays an important role in the approximation
algorithm.) Let us replace the right hand side 7" of the first m inequalities of
(12) by 2T and let us denote this new LP by (12’). Now Shmoys and Tardos
prove the following. If (12) has a (possibly fractional) solution x* with cost
c* = cl'z* then (12°) has a 0/1-solution with cost c¢*. In other words, if the
LP (12) has a solution with cost at most C, then there is an assignment of
jobs to machines with the same cost (at most C') and makespan at most 27"

The trick is, of course, in “rounding” the real solution z*. This is done
by using z* to construct an auxiliary bipartite graph and then finding a
minimum cost matching in this graph (cf. section 9), which then translates
back to an assignment of cost at most C' and makespan at most 27". These
details must be omitted here, but note that the “rounding” involves a non-
trivial graph-theoretic algorithm.

9 Changing the objective function

Consider an optimization problem in which the objective function involves
some “weights”. One expects that if we change the weights “a little”, the
optimum solutions do not change, or at least do not change “too much”. It
is surprising how far this simple idea takes us: it leads to efficient algorithms,
motivates linear programming, and is the basis of fundamental general tech-
niques (scaling, Lagrangean relaxation, strong polynomiality).

Kruskal’s algorithm revisited. Let G = (V| E) be a connected graph and
c: V — Z, the length function of its edges. We want to find a shortest
spanning tree. Clearly, adding a constant to all edges does not change the
problem in the sense that the set of optimum solutions remains the same.
Thus, we may assume that the lengths are non-negative.

Now let us push this idea just a bit further: we may assume that the
shortest edge has length 0. Then it is easy to see that shrinking this edge to
a single node does not alter the length of the shortest spanning tree. We can
shift the edge-weights again so that the minimum length of the remaining
edges is 0; hence, we may contract another edge etc.

It is easy to see that this algorithm to construct a shortest spanning tree
is actually Kruskal’s algorithm in disguise: the first edge contracted is the

48

shortest edge; the second, the shortest edge not parallel to the first, etc. (Or
is greediness a disguise of this argument?)

Minimum weight perfect matching in a bipartite graph. Given a
complete bipartite graph G = (V, E) with bipartition (U, W), where |U| =
|[W|, and a cost function w : E — Z, we want to find a perfect matching M
of minimum weight.

The idea is similar to the one mentioned in the previous section. By
adding the same constant to each weight, we assume that all the weights are
non-negative. But now we have more freedom: if we add the same constant
to the weights of all edges incident with a given node, then the weight of
every perfect matching is also shifted by the same constant, and so the set
of optimum solutions does not change. Our aim is to use this transformation
until a perfect matching with total weight 0 is obtained; this is then trivially
optimal.

Let Gy denote the graph formed by edges with weight 0. Using the un-
weighted bipartite matching algorithm, we can test whether GGy has a perfect
matching. If this is the case, we are done; else, the algorithm returns a set
X C U such that the set of neighbors Ng, (X) of X is smaller than X. If ¢
is the minimum weight of any edge from X to W\ N¢,, we add ¢ to all the
edges out of Ng,(X) and —¢ to all the edges out of X. This transformation
preserves the values of the edges between X and Ng,(X), and creates at least
one new node connected to X by a 0-edge. Any perfect matching changes
its weight by the same value —e|X| + ¢|Ng, (X)] < 0.

It remains to show that this procedure terminates, and to estimate the
number of iterations it takes. One way to show this is to remark that at
each iteration, either the maximum size of an all-0 matching increases, or it
remains the same, but then the set X returned by the unweighted bipartite
matching algorithm (as described in Chapter 3) increases. This gives an
O(n?) bound on the number of iterations.

One can read off from this algorithm Egervary’s min-max theorem on
weighted bipartite matchings (see Chapter 3 for extensions of the algorithm
and the theorem to non-bipartite graphs).

Theorem 9.1 If G = (V, FE) is a bipartite graph with bipartition (U, W),

where |U| = |W|, and w : E — Z is a cost function, then the minimum
weight of a perfect matching is the maximum of > oy mi, where m :V — Z

49

is a weighting of the nodes such that m; + 7; < ¢;; for all ij € E. 1

Optimum arborescences. Given a digraph G = (V, A) and a root r € V|
an arborescence is a spanning tree whose edges are oriented away from r.
Let us assume that G contains an arborescence with root 7. (This is easily
checked.) Let ¢ : A — Z be an assignment of “lengths” to the arcs. The
Optimum Arborescence Problem is to find an arborescence of minimum length
(see also Chapter 30). An optimum arborescence can be found efficiently by
the following algorithm due to Edmonds (1967a).

Again, we may assume that the lengths are non-negative, since this can
be achieved by adding a constant to every arc length.

Consider all the arcs of G going into some node v # r. Any arborescence
will contain exactly one of these arcs. Hence we may add a constant to
the length of all the arcs going into v without changing the set of optimum
arborescences.

For every v # r, we add a constant to the arcs going into v so that the
minimum length of arcs entering any given vertex is 0. Consider the subgraph
of all the arcs of length 0. If there exists an arborescence contained in this
subgraph, we are done. Otherwise, there must be a cycle of 0-arcs (Figure
5).

We contract this 0-cycle, to get the graph G’. It is easy to check that the
minimum length of an arborescence in G’ is equal to the minimum length of
an arborescence in G. Thus we can reduce the problem to a smaller problem,
and then proceed recursively. One reduction requires O(m) time, so this leads
to an O(mn) algorithm.

Similarly as in the case of the weighted bipartite matching algorithm, we
can use this algorithm to derive Fulkerson’s Optimum Arborescence Theorem
(Chapter 2, Theorem 6.4).

More involved applications of the idea of shifting the objective function
without changing the optimum solutions include the Out-of-Kilter Method
(see Chapter 2, section 5).

Scaling I: From pseudopolynomial to polynomial. Consider a finite
set £/ and a collection F of subsets of E. (In the cases of interest here, F
is implicitly given and may have size exponentially large in |E|, e.g., the set
of all Eulerian subgraphs of a digraph). Let a weight function w : E — Q

50

H

length=0 length>0

Figure 5: The Optimum Arborescence Algorithm

be also given. Our task is to find a member X € F with maximum weight
W(X) = Teex wle).

Let us round each weight w(e) (e € FE) to the nearest integer. Does
this change the set of optimum solutions? Of course, it may; but in several
situations, connections between the original and the rounded problem can be
established so that solving the rounded (and, sometimes, simpler) problem
helps in the solution of the original. Before rounding, we may of course
multiply each w(e) by the same positive scalar; combined with rounding,
this becomes a powerful technique. It was introduced by Edmonds and Karp
(1972) to show the polynomial time solvability of the minimum cost flow
problem. Since then, scaling has become one of the most fundamental tools
in combinatorial optimization, in particular in flow theory (see e.g., Goldberg,
Tardos, Tarjan (1990)).

We illustrate the method on a simple, yet quite general example.

Theorem 9.2 Let V be a family of hypergraphs and consider the optimiza-
tion problem max{w(X) : X € F} for members (E,F) € ¥ and objective
functions w : E — Z.. Assume that there exists an “augmentation”, i.e.,

51

an algorithm that checks whether X € F s optimal and if not, returns an
X' € F with w(X') > w(X); also assume that the augmentation algorithm
runs in time polynomial in (w). Then the optimization problem can be solved
in time polynomial in (w).

Proof. Note that a pseudopolynomial algorithm for this problem is obvious:
start with any X € F and augment until optimality is achieved. The number
of augmentations is trivially bounded by w(F). (Another obvious bound is
211} Tt is easy to construct examples where this trivial algorithm is not
polynomial.

To achieve this in polynomial time, let k£ := max.|log w(e)|, and define
new objective functions w; := [w/2%77]. We solve the optimization problem
for the objective function wy, then for ws,..., finally for wy = w. Since
wp is 0/1-valued, we can apply the pseudopolynomial algorithm to find the
optimizing set.

Assume that we have an optimizing set X; for w;. This is of course also
optimal for 2w;, which is very close to wj;i: we have, for each e € F,

2wj(e) < wjti(e) < 2w;(e) + 1.
Hence, we have for any set X € F,
wjt1(X) < 2w;(X) +n < 2w;(X;) +n < wjn (X;) +n.

Thus, the set X is almost optimal for the objective function w;;, and the
trivial algorithm starting with X; will maximize w;; in at most n iterations.
Therefore, w will be maximized in a total of O(nk) iterations.]

As an example, consider the problem of finding an Eulerian subdigraph
of maximum weight in a directed graph D = (V, A) with arc weights w,.
Then (A, F), where F := {C C A: C Eulerian}, is a hypergraph. To apply
Theorem (9.2) we have to design an augmentation subroutine. Given some
Eulerian subdigraph C' we construct an auxiliary digraph D¢ by reversing
the arcs in A\C and changing the signs of the weights on these edges. C' is
not a maximum weight Fulerian digraph if and only if D¢ contains a directed
circuit of negative total weight. Such a circuit can be found in polynomial
time by shortest path techniques.

52

For more involved applications of these scaling techniques see Chapter 2,
section 5.

Scaling II: From polynomial to strongly polynomial. Strong polyno-
mial solvability of a problem is often much more difficult than polynomial
solvability; for example, it is not known whether linear programs can be
solved in strongly polynomial time. It is therefore remarkable that Frank
and Tardos (1987) showed that, for a large class of combinatorial optimiza-
tion problems, polynomial solvability implies strong polynomial solvability
(see also Chapter 30).

Theorem 9.3 Let VU be a family of hypergraphs and assume that there exists
an algorithm to find max{> cx w(e): X € F} for every (E,F) € ¥ and w :
E — Z in time polynomial in (w). Then there exists a strongly polynomial
algorithm for this mazimization problem.

Proof. The goal is to find an algorithm in which the number of arithmetic
operations is bounded by a polynomial in n = |E|, and does not depend on
(w) (we also need that the numbers involved do not grow too wild, but this
is easy to check). So the bad case is when the entries of w are very large.
Frank and Tardos give an algorithm that replaces w by an integer vector
w’ such that every entry of w’ has at most O(n?) digits, and w and w' are
maximized by the same members of F.

The key step is the construction of the following diophantine expansion
of the vector w:

w =)\1U1 +)\QUQ + ...+)\nun,

where w1, ..., u, are integral vectors with 1 < |Ju]je < 4™, and the coeffi-
cients \; are rational numbers that decrease very fast:
1

i < —
Al < T

| Al (t=1,...,n—1).
Such an expansion can be constructed using the simultaneous diophantine

approximation algorithm (see Chapter 19). This expansion has the property
that for any two sets X, Y C E|

wX)<wly) <= w(X)<wY)fori=1,...,n.

53

Now letting
/ n3 n3—n? n3—2n? n?
w =8 u; +8 Uy + 8 us + ...+ 8" uy,,
we have for any two sets X, Y C F,
wX) <w}) = w(X)<uw(Y).

Thus w and w’ are optimized by the same sets, and we can apply our poly-
nomial time algorithm to maximize w’. Since (w') = O(n?), this algorithm
will be strongly polynomial. 1

Applying the result to our previous example, we obtain a strongly polyno-
mial algorithm for the maximum weight Eulerian subdigraph problem. More
generally, this technique yields strongly polynomial algorithms, among oth-
ers, for linear programs with {—1,0, 1}-matrices (e.g., for the minimum cost
flow problem).

Poljak (1993) applied an even more general version of scaling to show that
the single exchange heuristic of the max-cut problem is strongly polynomial
for cubic graphs (while exponential for 4-regular graphs). Let G = (V| E) be
a graph and ¢ : E — Z, a weighting of its edges. The idea is that the run
of the heuristic is determined if we know, for each node v and each partition
of the edges incident with v into two classes, which class has larger weight.
So we consider a family of inequalities, each of which is of the type

Ti+x; > T or ri+x;+ 1<z (13)

(where i, j and k are three edges adjacent to a node). We know that this
system has a solution (the original weights). Poljak proves that then the
system has an integral solution with 1 < |z;| < 2|V| —1 for all i. Replacing
the original weights with these new weights, the single exchange heuristic
runs as before, but now it clearly terminates in O(|V|?) time.

Scaling III: Heuristics. Recall from section 5 that the 0/1-knapsack prob-
lem is NP-hard, but it is polynomially solvable if the weight coefficients a; are
given in unary notation. This fact was combined with a scaling technique by
Ibarra and Kim (1975) to design a fully polynomial approximation scheme
for the knapsack problem.

54

Fix any € > 0. We may assume that ¢c; > ¢y > ... > ¢,. Let Cop denote
the optimum value of the knapsack, and let C' be an upper bound on Copt; a
good value for C' can, e.g., be found by running the greedy heuristic for the
knapsack problem, for which Theorem 2.7 gives

% S Copt S C

Let 0 < m < n be the largest index such that ¢,, > ¢C/4, and define

_ 8¢
C; = I'SQCJ‘

Clearly ¢; < 6%, and so these numbers are bounded.

The idea is to solve a knapsack problem omitting the “small” weights
and replacing the “big” weights cq,..., ¢, by their unary approximations
C1,-.-,Cm. Then we use the “small” weights to fill up greedily as much of
the remaining space as possible.

For every integral value d with 0 < d < 8/52, we determine a solution
x4 of the knapsack problem, by solving the following auxiliary optimization
problem:

m
minimize Z a;T;
i=1

7 14
subject to Z cri =d, (14)

=1
x; € {0,1},22 1,...,m.

This is basically a subset-sum problem with a linear objective function and
can be solved, by the same dynamic programming argument, in polynomial
time. (In fact, we get the optimum solution for all values of d in a single
run, which takes O(n/e?) time for the execution of all problems (14).) Let
zf, ..., 2% be the solution found (if any exists).

Now we choose the remaining variables. These variables x,,11,..., 2,

must satisfy the following constraints:

o am <b=Y ad, (15)
i=1

i=m+1

x; € {0, 1},

95

and we want to maximize .
Z C; ;.
i=m+1
If the right hand side in (15) is non-negative, then this is just another (aux-
iliary) knapsack problem, which we solve by the greedy algorithm in O(n)
time for each d (thus using O(n/e?) time in total). Let 2 _,..., z¢ be the

solution of the knapsack obtained (if it exists, i.e., if (15) has non-negative
right-hand side).

Theorem 9.4 For at least one d with 0 < d < 8/¢2, the solution (z$. .., z%)

n

exists, and
>l > (1 —€)Cops.
i=1
Proof. Let yi,...,y, be a (true) optimum solution of the original knapsack

problem, and consider the value

= Gy
i=1
Clearly
d< —
- 520 Z

Fix this choice of d. Then trivially z¢, ..., 2% exists, and by their optimality
for the auxiliary subset-sum problem (14), we have

m m n
i=1 i=1 i=1

Thus for this d, (15) has non-negative right-hand side and the solution

(z¢,...,2%) exists. Moreover,
m 20 m 20 m
Seat > 57 et =55 San
i=1
20 m

> Z CiYi — Z Yi- (16)

56

Here
Zyz S — Zczyz S 0pt>
m =1
and so

Z sz > Z CilYi — opt

Furthermore, observe that (ym+1, o ,yn) is a solution of (15), and hence by
Theorem (2.7),

Z sz > Z Czyz_cm+1> Z Czyz_Q opt-

i=m+1 i=m+1 i=m+1
Thus
n m
d _
S it 2 3" i — Copt = (1= £)Cone
i=1 i=1

Lagrangean relaxation. Consider the (symmetric) Travelling Salesman
Problem again. For any vertex v, every tour uses two edges adjacent to v.
Hence if we add the same constant to the length of every edge incident with v,
we shift the value of every tour by the same number, and hence the problem
remains essentially unchanged. By doing so for every vertex, we may bring
the problem to a nicer form.

So far, this is the same idea as in the weighted bipartite matching algo-
rithm above. Unfortunately, this does not lead to a complete solution; we
cannot in general obtain an all-0 tour by shifting edge-weights like this. But
we may use this method to improve dual heuristics. We have seen that a
minimum length of a 1-tree is an easily computable lower bound; let us shift
lengths so that this lower bound is maximized. This way we obtain a very
good dual heuristic due to Held and Karp (1970).

It is not immediate how this new optimization problem can be solved. To
describe a method, recall from matroid theory (Chapter 11) that the convex
hull of 1-trees with vertex set V is described by the constraints

re = 0,
z(A) < r(A), ACFE (17)
z(E) = n,

o7

Here r(A) is the rank in the matroid whose bases are the 1-trees: if ¢(A) is
the number of connected components in (V, A), then

r(A) = {n —c(A) +1, if A contains a circuit,
~ ln—c(A) =|A|, if A contains no circuits.
If we want to restrict the feasible solutions to allow only tours, a natural step
is to write up the degree constraints:

o xy=2 (ieV). (18)
FeV\{i}
The objective function is
minimize » _ c(e)we.
The integral solutions of (17) and (18) are exactly the tours; if we drop the
integrality constraints, we obtain a relaxation.

While it is trivial to minimize any objective function subject to constraints
(17) using the greedy algorithm, constraints (18) spoil this nice structure.
So let us get rid of the constraints (18) by multiplying them by appropriate
multipliers)\;, adding their left hand sides to the objective function, and
omitting them from the constraint set. Note that this leads to shifting the
lengths of edges at nodes, as described above.

For any fixed choice of the multipliers, adding the left hand sides of an
equality constraint to the objective function does not change the problem (the
objective function is shifted by the right hand side); but then, dropping the
constraint may decrease the optimum value. Can we choose the multipliers
so that the optimum does not change? The answer is yes, and it is worth
formulating the generalization of the Duality Theorem in linear programming
that guarantees this:

Theorem 9.5 Consider a linear program with constraints split into two
classes:
minimize clx
subject to Az > a (19)
Bx >b
Then the optimum value of this program is the same as the optimum of the
following min-max problem:

myax{rrgn{(c —y"'B)z | Ax > a} +y'b, y >0} (20)

58

Similarly as in the Duality Theorem, one can allow equations among the
constraints, and then the corresponding multipliers y are unconstrained.
For any particular choice of the vector y, the minimum

o(y) == mwin{(c —y'B)x | Az > a} +y"b

is a lower bound on the optimum value of (19). It is not difficult to see that
the function ¢, called the Lagrange function of (19), is a concave function,
and hence various methods (subgradient, ellipsoid) are available to compute
its maximum. Note that as long as we are only using this as a dual heuristic,
we do not have to solve this problem to optimality: any reasonable y provides
a lower bound.

Applying this technique to the travelling salesman problem, often rather
good lower bounds are obtained. For example, the optimum value of the
Lagrange function of the 52-city T'SP of Figure 1 is equal to the length of
the shortest tour.

It is worth mentioning that the Lagrangian relaxation method gives a
result about exact solutions too:

Theorem 9.6 Let P C IR be a polytope and assume that every linear ob-
jective function c'x (c € Z") can be minimized over P in time polynomial
in (c). Then for every matrizx A € Z™ ", and vectors a € Z™ and c € Z",
the minimum

mgn{ch | x € P, Az <a}

can be computed in time polynomial in (A) + (a) + (c).

In other words, adding a few constraints to a nice problem does not spoil
it completely. While this result could also be derived by other means (e.g.,
by the ellipsoid method), the Lagrangean approach is computationally much
better if the number m of additional constraints is small.

10 Matrix methods

Determinants and matchings. Let G be a graph with n nodes. In Chapter
3, a randomized algorithm (cf. Edmonds (1967b) and Lovész (1979)) is
described that decides if a graph G has a perfect matching. The method is

59

based on the fact, proved by Tutte (1947), that det A(G,) is identically 0 if
and only if G has no perfect matching, where A(G, x) is the skew symmetric
n X n matrix defined by

Tij, ifij € E(G) and i < j,
A(G,x)ij = { —xiy, ifij € E(G) and i > j,
0, otherwise.

Generating random values for z;;, and computing the determinant, we
obtain a randomized matching algorithm. The following simple lemma, due
to Schwartz (1980), can be used to estimate the probability of error:

Lemma 10.1 Let f(x1,...,x,) be a polynomial, not identically 0, in which
each variable has degree at most k. Choose the x; independently from the
uniform distribution on {0,1,..., N —1}. Then

Prob (f(z1,...,2p) =0) < %

Since an n X n determinant can be evaluated in O(n?3%) time (Copper-

smith and Winograd (1982)), this randomized algorithm has a better running
time than the best deterministic one, whose time complexity is O(n°/?) (Even
and Kariv (1975)).

We recall two variants of the determinant-based matching algorithm from
Chapter 3. The algorithm above determines whether a given graph has a
perfect matching; but it does not give a perfect matching. To actually find
a perfect matching, we can delete edges until we get a graph G, with a
perfect matching such that deleting any further edge results in a graph with
no perfect matching. Clearly, Gy is a perfect matching itself.

Instead of this pedestrian procedure, Mulmuley, U. Vazirani and V. Vazi-
rani (1987) found an elegant randomized algorithm that finds a perfect
matching at the cost of a single matrix inversion. The method is based
on the following nice probabilistic lemma:

Lemma 10.2 Let (E,H) be a hypergraph and assign to each e € E a ran-
dom weight w, from the uniform distribution over {1,...,2|E|}. Then with
probability at least 1/2, the edge with minimum weight is unique.

60

This lemma implies that if we substitute x;; = 2¥% in A(G,x) (where each
vij is uniformly chosen from {0, ..., 2n?}) and then invert the resulting matrix
A then, with probability at least 1/2, those entries in the Schur product
A~! o A having an odd numerator form a perfect matching. (The Schur
product C'= Ao B of two n x n matrices is defined by C;; = A;;B;;.)

A special value of this method is that it is parallelizable, using polynomi-
ally many processors and polylog time. This depends on Cséanky’s Theorem
(see Chapter 29, section 5) that gives an NC-algorithm for determinant com-
putation and matrix inversion. Every known NC-algorithm for the perfect
matching problem is randomized and uses determinant computation.

Given a graph G = (V| E), an integer k, and F' C FE, the exzact matching
problem is to determine if there exists a perfect matching M in G such that
|M N F| = k. This problem is not known to be in P, but it is easily solved
in randomized polynomial time by the determinant method. Consider the
matrix A(G,x), and substitute yz;; for x;; if ij € F, where y is a new
variable. This way we obtain a matrix A(G, z,y). Then Tutte’s theorem on
determinants and matchings can be extended as follows:

Theorem 10.1 The coefficient of y* in the pfaffian pf(A(G,z,y)) is not
tdentically 0 in the variables z iff there exists a perfect matching M such that
M N F|=k.

This theorem suggests the following algorithm: Substitute random in-
tegers z;; € {0,...,N — 1} in A(G,y,2). The value of det A(G,y,2) is a
polynomial in y, and all its coefficients can be computed in polynomial time.
Compute Pf(A(G,y,z2)) = y/det A(G,y, z), which is also a polynomial in y
by definition. The coefficient of y* gives the answer. (See Chapter 3, section
7 for other applications of this idea.)

Determinants and connectivity. The method of reducing a combinato-
rial optimization problem to checking a polynomial (usually determinantal)
identity and then solving this in randomized polynomial time via Schwartz’s
Lemma is not restricted to matching theory. Chapter 36 contains examples
where this method is used in electrical engineering and statics. The papers
Linial, Lovasz and Wigderson (1988) and Lovasz, Saks and Schrijver (1989)
contain various algorithms to determine the connectivity of a graph along
these lines. Let us formulate one of these. Let GG be a graph and consider,

61

for each (unordered) pair ij with ¢ = j or ij € E(G), a variable z;;. Let
B(G, z) be the matrix

) T, le:jOI' Z]GE(G),
B(G,z); = {O, otherwise.

Theorem 10.2 The graph G is k-connected iff
(¥) no (n — k) x (n — k) subdeterminant of B(G,x) is identically 0.

This theorem suggests the following randomized k-connectivity test: sub-
stitute in B(G, z) independent random integers from, say, {0,...,2"}, and
check condition (). Unfortunately, there is no polynomial time algorithm
known to check () for a general matrix; however, due to the very special
structure of B(G, z), it suffices to check only a “few” subdeterminants. Let
us select, for each vertex i, a set A; of k — 1 neighbors (if a node has degree
less than k& — 1 then the graph is clearly not k-connected). Then the follow-
ing can be shown: if GG is not k-connected, then one of the subdeterminants
of B(x), obtained by deleting the rows belonging to some A; U {i} and the
columns belonging to some A; U {j}, is identically 0.

This leads to the evaluation of O(n?) determinants of size (n—k) x (n—k).
With a little care, one can reduce this number to O(nk). For k < n/2, it is
worth inverting the matrix B(G,z) and then check O(nk) subdeterminants
of size k x k using Jacobi’s Theorem (see Chapter 31).

Semidefinite optimization. Polyhedral combinatorics can be viewed as
a theory of linear inequalities valid for the incidence vectors of various set-
systems. It is quite natural to ask for quadratic inequalities (and, of course
higher degree inequalities) valid for these incidence vectors. This idea leads
to real algebraic geometry and its study has just begun.

At first sight it seems that we are getting too much too easily. Let G =
(V,E) be a graph, V = {1,...,n}, and consider the following system of
equations:

x7 = x; for every node i € V, (21)

x;x; = 0 for every edge ij € E. (22)

Trivially, the solutions of (21) are precisely the 0-1 vectors, and so the so-
lutions of (21)-(22) are precisely the incidence vectors of stable sets. Un-
fortunately, there is little known about the solutions of systems of quadratic

62

equations. In fact, this shows that even the solvability of such a simple sys-
tem of quadratic equations (together with a linear equation Y ; z; = «) is
NP-hard.

However, we can use this system to derive some other constraints. (21)
implies that for every node ¢,

ri=22>0, 1—a;=(1-x)*>0. (23)
using this, (22) implies that for every edge ij,
l—z;,—z;=1—z,—x;+xx; = (1 —x;)(1 — ;) > 0. (24)

So we can derive the edge constraints from (21)-(22) formally. We can also
derive the clique constraints. Assume that nodes 1,..., % induce a complete
subgraph. We start with the trivial inequality

(1—zy—...—a)* > 0.

Expanding, we get

k k
L+ a7 —2> 2+ 2) x> 0.
i=1 i=1 i#j
Here the first sum is just >_; z; by (21) and the third sum is 0 by (22), so we
get
l—zy—...—2, >0 (25)

In the special case when the graph is perfect, we obtain all constraints for
the stable set polytope STAB(G) in a single step. (STAB(G) is the convex
hull of all incidence vectors of stable sets of G.)

The algorithmic significance of this observation is that it leads to a poly-
nomial time algorithm to compute the stability number of a perfect graph.
By general consequences of the ellipsoid method (see Chapter 30), it suffices
to design a polynomial time algorithm that checks whether a given inequality

is valid for STAB(G). By the above arguments, it suffices to check whether
(26) can be derived from (21) and (22) as above. Formalizing, this leads to

63

the question: do there exist real multipliers p; (¢ € V) and \;; (ij € E), and

linear polynomials /1, ..., ¢, such that
DG e —x) + Y Ny =y — Y G
k=1 =1 IS i=1

This is equivalent to saying that there exist \’s and p’s such that the (n +
1) x (n+ 1) matrix P = (p + ij) defined by
7, ifi=j=0,

(1 —c)f2, ifi=0,5>0,
Pij =

)\ij/2> ifij e F,
0, otherwise,

is positive semidefinite.
More generally, we can consider optimization problems of the type

{ maximize >; ¢y; (27)

subject to P(y) is positive definite,

where P(y) is a matrix in which every entry is a linear function of the y;.
Grotschel, Lovész and Schrijver (1981) describe a way, using the ellipsoid
method, to solve such problems to arbitrary precision in polynomial time.
(The key facts are that the feasible domain is convex and to check whether
a given x satisfies the constraints can be done using Gaussian elimination;
we ignore numerical difficulties here that are non-trivial.) Recently Alizadeh
(1992) showed that Karmarkar’s interior point method can also be extended
to such semidefinite programs in a very natural way, which is much more
promising from a practical point of view.

The method sketched here can be used to generate other classes of in-
equalities for STAB(G) and to show their polynomial time solvability. It is
not restricted to the stable set problem either; in fact, it can be applied to
any 0-1 optimization problem. Interesting applications of a related method
to the max-cut problem were given by Delorme and Poljak (1990) (see also
Mohar and Poljak (1990)).

These methods can be extended from quadratic to higher-order inequal-
ities. For these extensions, see Lovasz and Schrijver (1990) and Sherali and
Adams (1990).

64

O

F.

References

. Alizadeh (1992): Combinatorial optimization with semi-definite matrices,

in: Integer Programming and Combinatorial Optimization (Proceedings
of IPCO ’92), (eds. E. Balas, G. Cornuéjols and R. Kannan), Carnegie
Mellon University Printing, 385-405.

. Alon, R. A. Duke, H. Lefmann, V. R6dl and R. Yuster (1992): The

algorithmic aspects of the Regularity Lemma, Proc. 33rd Annual Symp.
on Found. of Computer Science, IEEE Computer Society Press, 473-481.

. Applegate and R. Kannan (1990): Sampling and integration of near log-

concave functions, Proc. 23th ACM STOC, 156-163.

. Applegate, R. Bixby, W. Cook and V. Chvétal (1993) (to appear).
. Bachem, M. Grétschel and B. Korte (1983): Mathematical Programming:

the State of the Art, Springer-Verlag, Heidelberg.

. Barahona, M. Grotschel, M. Jiinger and G. Reinelt (1988), An applica-

tion of combinatorial optimization to statistical physics and circuit layout
design, Operations Research 36, 493-513.

Barahona, A. R. Mahjoub (1986), On the cut polytope, Mathematical
Programming 36 (1986), 157 - 173.

J. L. Bentley (1992), Fast algorithms for geometric traveling salesman prob-

N.

lems, ORSA J. on Computing 4, 387-411.

Christofides (1976): Worst-case analysis of a new heuristic for the trav-
elling salesman problem, Technical Report of the Graduate School of In-
dustrial Adminstration, Carnegie-Mellon Univ., Pittsburgh.

. Chvétal and G. Klincsek (1980): Finding largest convex subsets, Congr.

Numerantium 29, 453-460.

. G. Coffman, Jr., M. R. Garey and D. S. Johnson (1984): Approximation

algorithms for bin-packing — and updated survey, in: Algorithm Design
for Computer System Design (eds. G. Ausiello, M. Lucertini, P. Serafini),
Springer Verlag, New York, 49-106.

. Coppersmith and S.Winograd (1982): On the asymptotic complexity of

matrix multiplication, SIAM J. Computing, 472-492.

65

C. Delorme and S. Poljak (1990): Laplacian eigenvalues and the maximum
cut problem, Tech. Rep. 559, Univ. de Paris-Sud.

M. Deza and M. Laurent (1991): A survey of the known facets of the cut
cone, Report No. 91722-OR, Forschungsinstitut fiir Diskrete Mathematik,
Universitat Bonn, 1991.

P. Diaconis (1988): Group representations in probability and statistics, Inst.
for Math. Statistics, Hayward, California.

P. Diaconis and D. Stroock (1991): Geometric bounds for eigenvalues of
Markov chains, Annals of Appl. Probability 1, 36-61.

M. Dyer, A. Frieze and R. Kannan (1991): A Random Polynomial Time
Algorithm for Approximating the Volume of Convex Bodies, Journal of
the ACM 38, 1-17.

M. Dyer and A. Frieze (1992): Computing the volume of convex bodies: a
case where randomness provably helps, in: Probabilistic Combinatorics
and Its Applications (ed. Béla Bollobas), Proceedings of Symposia in
Applied Mathematics, Vol. 44, 123-170.

J. Edmonds (1967a): Optimum branchings: J. Res. Nat. Bur. Standards,
Sect. B 71B, 233-240.

J. Edmonds (1967b): Systems of distinct representatives and linear algebra,
J. Res. Nat. Bur. Standards, Sect. B 7T1B, 241-247.

J. Edmonds and R. M. Karp (1972): Theoretical improvements in algorithmic
efficiency for network flow problems, J. Assoc. Comput. Mach. 19, 248
264.

R.E. Erickson, C.L. Monma and A.F. Veinott (1987): Send-and-split method
for minimum concave-cost network flows, Mathematics of Operations Re-
search 12, 634-664.

S. Even and O. Kariv (1975): An O(n*/?) algorithm for maximum matching
in general graphs, 16th Ann. Symp. on Found. Comput. Science, IEEE
Computer Soc. Press, New York, 100-112.

W. Fernandez de la Vega and G. S. Lueker (1981): Bin packing solved within
1 + ¢ in linear time, Combinatorica 1, 349-355.

L.R. Ford, Jr. and D.R. Fulkerson (1962): Flows in Networks, Princeton

66

University Press, Princeton, N.J.

A. Frank and E. Tardos (1987), An application of simultaneous Diophantine
approximation in combinatorial optimization, Combinatorica 7, 49-65.

M. R. Garey, R. L. Graham, D. S. Johnson and A. Yao (1976): Resource
constrained scheduling as generalized bin packing, J. Comb. Theory A
21, 257-298.

M. V. Goldberg, E. Tardos and R. E. Tarjan (1990): Network flow algo-
rithms, in: Paths, Flows, and VLSI-Layout, (eds. B. Korte, L. Lovéasz, H.
J. Promel, A. Schrijver), Springer, Heidelberg, 101-164.

M. Gondran and M. Minoux (1979): Graphes et Algorithmes, Editions Ey-
rolles, Paris.

R. L. Graham and P. Hell (1985): On the history of the minimum spanning
tree problem, Ann. Hist. of Computing 7, 43-57.

M. Grétschel and O. Holland (1991): Solution of large-scale symmetric trav-
elling salesman problems, Mathematical Programming 51 141-202.

M. Grotschel, M. Jinger and G. Reinelt (1984): A cutting plane algorithm
for the linear ordering problem, Operations Research 32, 1195-1220.

M. Grétschel, L. Lovasz and A. Schrijver (1981): The ellipsoid method and
its consequences in combinatorial optimization, Combinatorica 1, 169-197.

M. Grétschel, L. Lovasz and A. Schrijver (1988): Geometric Algorithms and
Combinatorial Optimization, Springer, Heidelberg.

M. Grotschel, A. Martin and R. Weismantel (1992): Packing Steiner trees: a
cutting plane algorithm and computational results, Konrad-Zuse-Zentrum
fiir Informationstechnik Berlin, Preprint SC 92-9.

M. Grotschel, C. Monma and M. Stoer (1992): Computational results with
a cutting plane algorithm for designing communication networks with low
connectivity constraints, Operations Research 40, 309-330.

M. Grotschel and M.W. Padberg (1985): Polyhedral Theory, in: E. Lawler,
J. K. Lenstra, A. Rinnooy Kan and D. Shmoys, eds., The Travelling Sales-

man Problem: a Guided Tour through Combinatorial Optimization, Wiley,
Chichester, 251-305.

67

M. Grotschel and Y. Wakabayashi (1989): A cutting plane algorithm for a
clustering problem, Mathematical Programming B 45, 59-96.

A. Haken and M. Luby (1988): Steepest descent can take exponential time
for symmetric connection networks, Complex Systems 2, 191-196.

D. Haussler and E. Welzl (1987): e-nets and simplex range queries, Discrete
and Computational Geometry 2, 127-151.

M. Held and R. M. Karp (1970): The travelling salesman problem and min-
imum spanning trees, Oper. Res. 18, 1138-1162.

K. L. Hoffman and M. Padberg (1992): Solving airline crew-scheduling prob-
lems by branch-and-cut, preprint, George Mason University.

R. Holley and D. Stroock (1988): Simulated annealing via Sobolev inequali-
ties, Comm. Math. Phys. 115, 553-569.

R. Holley, S. Kusuoka and D. Stroock (1989): Asymptotics of the spectral gap
with applications to the theory of simulated annealing, J. Func. Analysis
83, 333-347.

C. A. J. Hurkens, L. Lovész, A. Schrijver and E. Tardos (1988): How to
tidy up your set-system? in: Combinatorics, Proc. Coll. Eger 1987, Coll.
Math. Soc. J. Bolyai 52, North-Holland, 309-314.

O. H. Ibarra and C. E. Kim (1975): Fast approximation algorithms for the
knapsack and sum of subset problems, J. of the Assoc. for Comp. Mach.
22, 463-468.

T. Jenkyns (1976): The efficacy of the “greedy” algorithm, in: Proc. 7th
Southeastern Conf. on Combinatorics, Graph Theory and Computing,
341-350.

M. R. Jerrum (1992): Large cliques elude the Metropolis process, Random
Structures and Algorithms 3, 347-359.

M. R. Jerrum and A. J. Sinclair (1989), Approximating the permanent, STAM
Journal on Computing 18, 1149-1178.

M. R. Jerrum, L. G. Valiant and V. V. Vazirani (1986): Random genera-
tion of combinatorial structures from a uniform distribution, Theoretical
Computer Science 43, 169—-188.

68

D. S. Johnson (1973): Near-optimal allocation algorithms, Ph.D. disserta-
tion, MIT, Cambridge, MA.

D. S. Johnson (1974): Approximation algorithms for combinatorial problems,
J. Comput. System. Sci. 9, 256-298.

D. S. Johnson (1990): Local optimization and the travelling salesman prob-
lem, in: Proc. 17th Coll. on Automata, Languages and Programmaing,
Springer, Heidelberg, 446-461.

D. S. Johnson, C. R. Aragon, L. A. McGeoch and C. Schevon (1989): Op-
timization by simulated annealing: an experimental evaluation; Part I,
graph partitioning, Operations Research 37, 865-892.

D. S. Johnson, C. R. Aragon, L. A. McGeoch and C. Schevon (1991): Op-
timization by simulated annealing: an experimental evaluation; Part II,
graph coloring and number partitioning, Operations Research 39, 378-406.

D. S. Johnson, C. H. Papadimitriou and M. Yannakakis (1988): How easy is
local search?, J. Comp. Syst. Sciences 37, 79-100.

M. Jiinger, G. Reinelt and G. Rinaldi (1994): The Travelling Salesman Prob-
lem, to appear in Networks (eds. M. Ball, T.L. Magnanti, C.L. Monma
and G.L. Neuhauser), Handbooks in Operations Research and Manage-
ment Science, North-Holland, Amsterdam.

N. Karmarkar and R. M. Karp (1982): An efficient approximation scheme for
the one-dimensional bin-packing problem, 23rd Ann. Symp. on Found. of
Comp. Sci., IEEE, New York, 312-320.

S. Kirckpatrick, C. D. Gelatt and M. P. Vecchi (1983): Optimization by
simulated annealing, Science 230, 671-680.

J. Komlés, J. Pach and G. Woeginger (1992): Almost tight bounds on
epsilon-nets, Discrete and Computational Geometry 7, 163-173.

B. Korte and D. Hausmann (1978): An analysis for the greedy algorithm for
independence systems, Ann. Discr. Math. 2, 65-74.

B. Korte, L. Lovasz and R. Schrader (1991): Greedoids, Springer, Heidelberg.

E. Lawler, J. K. Lenstra, A. Rinnooy Kan and D. Shmoys, eds. (1985):
The Travelling Salesman Problem: a Guided Tour through Combinatorial
Optimization, Wiley, Chichester.

69

J.

K.

K. Lenstra, D. B. Shmoys and E. Tardos (1990): Approximation algo-
rithms for scheduling unrelated parallel machines, Math. Programming A
46, 259-271.

. Lin and B. W. Kernigham (1973): An Effective Heuristic Algorithm for

the Traveling Salesman Problem, Operations Research 21, 498 - 516.

. Linial, L. Lovasz and A. Wigderson (1988): Rubber bands, convex em-

beddings, and graph connectivity, Combinatorica 8, 91-102.

. Lovész (1975): On the ratio of optimal fractional and integral covers,

Discrete Math. 13, 383-390.

. Lovasz (1979): Determinants, matchings, and random algorithms, in: Fun-

damentals of Computation Theory, FCT79 (ed. L. Budach), Akademie-
Verlag Berlin, 565-574.

. Lovész and M. D. Plummer (1986): Matching Theory, Akadémiai Kiadé

- North Holland, Budapest.

. Lovéasz, M. Saks and A. Schrijver (1989): Orthogonal representations and

connectivity of graphs, Linear Alg. Appl. 114/115, 439-454.

. Lovész and A. Schrijver (1990): Cones of matrices and setfunctions, and

0-1 optimization, SIAM J. Optim. 1, 166-190.

. Lovasz and M. Simonovits (1992): On the randomized complexity of vol-

ume and diameter, Proc. 33rd IEEE FOCS, 482-491.

. Mohar and S. Poljak (1990): Eigenvalues and the max-cut problem,

Czechoslovak Mathematical Journal 40, 343-352.

. Metropolis, A. Rosenblut, M. Rosenbluth, A. Teller and E. Teller (1953):

Equation of state calculation by fast computing machines, J. Chem.
Physics 21, 1087-1092.

Mulmuley, U. V. Vazirani and V. V. Vazirani (1987): Matching is as easy
as matrix inversion, Combinatorica 7, 105-114.

G.L. Nemhauser, A.H.G. Rinnooy Kan and M.J. Todd (1989): Optimization,

Handbooks in Operations Research and Management Science, Vol. 1,
North-Holland, Amsterdam.

G.L. Nemhauser and L.E. Trotter, Jr., (1974): Properties of vertex packing

and independence system polyhedra, Math. Programming 6, 48-61.

70

G. L. Nemhauser and L. A. Wolsey (1988): Integer and Combinatorial Opti-
mization, Wiley, Chichester.

M.W. Padberg and M. Grotschel (1985): Polyhedral computations, in: E.
Lawler, J. K. Lenstra, A. Rinnooy Kan and D. Shmoys, eds., The Travelling
Salesman Problem: a Guided Tour through Combinatorial Optimization,
Wiley, Chichester, 307-360.

M. Padberg and G. Rinaldi (1991), A branch-and-cut algorithm for the so-
lution of large-scale traveling salesman problems, SIAM Review 33, 1-41.

S. Poljak (1993): Integer linear programs for local maximum cuts (preprint).

P. Raghavan (1988): Probabilistic construction of deterministic algorithms:
Approximating packing integer programs, J. Comput. Sys. Sci. 37, 130—
143.

G. Reinelt (1993), Contributions to Practical Traveling Salesman Problem
Solving, Springer, Heidelberg, 1993.

G. Sasaki (1991), The effect of the density of states on the Metropolis algo-
rithm, Information Processing Letters 37, 159-163.

G. H. Sasaki and B. Hajek (1988), The time complexity of maximum match-
ing by simulated annealing, Journal of the ACM 35, 387-403.

A. Schéffer and M. Yannakakis (1991): Simple local search problems that
are hard to solve, SIAM J. Comput. 20, 56-87.

A. Schrijver (1986): Theory of Integer and Linear Programming, Wiley,
Chichester.

J. T. Schwartz (1980): Fast probabilistic algorithms for verification of poly-
nomial identities, J. Assoc. Comput. Mach., 27, 701-717.

H. D. Sherali and W. P. Adams (1990): A hierarchy of relaxations between
the continuous and convex hull representations for zero-one programming
problems, SIAM J. on Discrete Math. bf 3, 411-430.

D. B. Shmoys and E. Tardos (1993): An approximation algorithm for the
generalized assignment problem (preprint).

A. Sinclair and M. Jerrum (1988): Conductance and the rapid mixing prop-
erty for Markov chains: the approximation of the permanent resolved,
Proc. 20th ACM STOC, pp. 235-244.

71

S. K. Stein (1974): Two combinatorial covering theorems, J. Comb. Theory
A 16, 391-397.

W. T. Tutte (1947): The factorisation of linear graphs, J. London Math.
Soc., 22, 107-111.

W.T. Tutte (1963): How to draw a graph, Proc. London Math. Soc. 13,
743-T768.

V. N. Vapnik (1982): Estimation of Dependences Based on Empirical Data,
Springer, New York.

A. van Vliet (1992): An improved lower bound for on-line bin-packing algo-
rithms, Inf. Proc. Letters 43, 277-284.

72

