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Abstract

Line planning is an important step in the strategic planning process of a
public transportation system. In this paper, we discuss an optimization
model for this problem in order to minimize operation costs while guaran-
teeing a certain level of quality of service, in terms of available transport
capacity. We analyze the problem for path and tree network topologies
as well as several categories of line operation that are important for the
Quito Trolebis system. It turns out that, from a computational com-
plexity worst case point of view, the problem is hard in all but the most
simple variants. In practice, however, instances based on real data from
the Trolebis System in Quito can be solved quite well, and significant
optimization potentials can be demonstrated.

1 Introduction

The major cities of South America are facing an enormous and constantly in-
creasing demand for transportation and, unfortunately, also an increase in vehic-
ular congestion, with all its negative effects. In Quito, the elongated topography
of the city with its 1.8 millions inhabitants (the urban area being 60 km long
and 8 km wide) aggravates vehicular congestion even more, such that traffic
almost completely breaks down during rush hours. As a consequence, the local
government faces the necessity to improve the public mass transit system.

A low-cost option that has produced satisfactory results in recent years is the
implementation of major corridors of transportation. These corridors consist of
street tracks that are reserved exclusively for high-capacity bus units, which,
in this way, can operate independently of the rest of the traffic. Even though
the topology of a corridor is extremely simple (just a path), bus operation
on it is non-trivial. In fact, it is usually organized in a complex system of
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Figure 1: Trolebus system and feeder line system in Quito.

several dozen lines, which cover, in an overlapping way, different parts of the
corridor, and which can operate in different ways, e.g., as “normal lines” or as
“express lines” (stopping only at distinguished express stations), as “open lines”
(unidirectional) or “closed lines” (bidirectional lines), and in any combination of
these categories. The corridor lines are often complemented by feeding lines that
transport passengers between special transshipment terminals of the corridor
and the nearby neighborhoods.

In Quito, the most important of such corridors is the so-called Trolebis Sys-
tem (TS), see Figure 1. TS is currently the largest public transportation system
in Quito, carrying around 250, 000 passengers daily. However, the dramatic in-
crease in transportation demand has had a negative impact on the quality of
service, with overcrowded buses and long waiting times being commonly experi-
enced by passengers. At the same time, operation costs have been continuously
increasing. With the aim of contributing to the improvement of this situation,
we have been working on optimization models that can be applied to improve
the operation of the T'S and similar corridor transportation systems. The ques-
tion that we investigate is whether the design of the corridor line system can
be optimized using mathematical methods in order to improve the quality of
service and/or lower operation costs by a better vehicle utilization.

Mathematical optimization approaches to line planning have received grow-
ing attention in the operations research and the mathematical programming
community in the last two decades, see Odoni, Rousseau, and Wilson [13] and
Bussieck, Winter, and Zimmermann [8] for an overview. In particular, inte-
ger programming approaches to line planning have been considered since the
late nineties. Bussieck, Kreuzer, and Zimmermann [6] (see also Bussieck [5])
and Claessens, van Dijk, and Zwaneveld [9] both propose cut-and-branch ap-
proaches to select lines from a previously generated pool of potential lines. Both
articles are based on a “system-split” of the demand, i.e., an a priori distribution



of the passenger flow on the arcs of the transportation network; these “aggre-
gated demands” are then covered by lines of sufficient capacity. Bussieck, Lind-
ner, and Liibbecke [7] extend this work by incorporating nonlinear components.
Goossens, van Hoesel, and Kroon [10, 11] improve the models and algorithms
and show that real-world railway problems can be solved within reasonable time
and quality. Approaches that integrate line planning and passenger routing have
recently been proposed by Borndorfer, Grotschel, and Pletsch [2, 3], Schobel and
Scholl [14, 15], and Nachtigall and Jerosch [12]. The latter two groups consider
approaches that allow to minimize the number of transfers or the transfer time.

All of these articles consider general network topologies, but they do not
analyze line operation categories such as express lines, or open lines, probably
because the line planning problem on general graphs is already hard without
them. The corridor topology, however, opens up a chance to investigate complex
line operation categories in a practically relevant setting. It also brings up the
question whether perhaps some cases associated with different line operation
categories can be solved in polynomial time. It will turn out in Section 3 that
this is indeed the case of path topologies if only closed lines and a homogeneous
vehicle fleet are used; in all other cases, however, the problem is hard. These
results are extended to trees in Section 4. Here, the computational complexity
depends on the number of terminals and how often a terminal node is visited by
a line; again, some simple cases can be solved in polynomial time, the others are
hard. From a practical point of view, however, T'S instances can be solved quite
well. Indeed, our results show significant optimization potentials in comparison
to the currently operated solution, see Section 5.

2 The Line Planning Problem

We consider a bus transportation network as a digraph D = (V, A), where each
bus station is represented by a node v € V and arcs represent direct links
between stations, i.e., (i,7) € A if and only if some bus may visit station j
directly after station i¢. The fleet of buses is often heterogeneous; for instance,
in Quito it contains trolley-buses and several other types of buses used for the
feeding lines. We call a specific type of bus a transportation mode and define M
to be the set of all transportation modes in the system. Each transportation
mode m € M has a specific capacity x,, € Z*. For each m € M, certain
stations referred to as terminals are identified, where buses of mode m may
start or end a service route. An open line for a mode m is a directed path
whose first and last nodes are different terminals. Similarly, a closed line for m
is a circuit containing at least one terminal. We assume in this paper that a
closed line is symmetric in the sense that it contains pairs of anti-parallel arcs,
i.e., if a closed line contains an arc a = (4,7), it also contains the reverse arc
a = (j,7). We consider for each m € M a line pool L™, i.e., a set of a priori
selected (open or closed) lines that can potentially be established. We denote
by £ := Upem L™ the set of all possible lines and by L] the set of lines of
mode m using arc a. For a line £ € L, ¢, € Ry is the cost of a single trip via .



Transportation demand is usually expressed in terms of an origin-destination
matrix (dy,) € ZKXV, where each entry d,, indicates the number of passengers
traveling from station u to station v within a certain time horizon T'. In the
following, we assume that each passenger has been routed along some specific di-
rected (u,v)-path in a preprocessing step, such that an aggregated transportation
demand g, on each arc a of the network has been computed, i.e., a system-split
is given.

The line planning problem is to choose a set of lines L C £ and frequencies
for the lines in L in such a way that there is enough transportation capacity to
cover the aggregated demand on each arc of the network.

Throughout the article, we write [n] := {1,...,n}, for n € Z.

2.1 A Flow-Based Model for Line Planning

The line planning problem can be formulated as an integer programming prob-
lem, which we denote by Demand Covering Model with Fized Costs (DCM-FC):

min Z(Cz fg—l—Kg yz) (1)
teL

s.t. Z Z Em fo > Ga, Vae A (2)
meMLeLm
0< fo < fi™ ye vVeie Ll (3)
feeZy VieLl (4)
ye € {0,1} VieL. (5)

Here, f; is an integer variable representing the frequency assigned to line £ € L,
and y, is a 0/1-variable that indicates whether a line is chosen in the solution
(ye = 1) or not (y¢ = 0). The cost of line £ € £ involves a fixed cost K, € Ry
as well as an operating cost ¢y f; that depends on the frequency. The objective
function (1) aims at minimizing the total cost. Constraints (2) ensure that the
aggregated transportation demand is covered. Constraints (3) couple the line
selection variables y, and the frequency variables f,. They also impose upper
bounds f;"* on line frequencies, for all £ € £. Finally, (4) and (5) are integrality
constraints for the frequencies.

When fixed costs are zero (K, = 0 for all £ € £), the model simplifies to the
following form, which we denote by Demand Covering Model (DCM):

min ZCZ fe (6)

teL

s.t. Z Z Em fo > Ga, Vae A (7)
meMLeL™
0< fo < fo vier (8)
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Figure 2: Constructing the undirected version of DCM on a Quito graph. The closed lines
(v1,v2,v3,v2,v1) and (v2, v3,v4,v3,v2) in D are substituted by simple undirected paths in G.

DCM is a simplified version of the model of Bussieck, Kreuzer, and Zimmer-
mann [6], who additionally consider non-trivial lower bounds on line frequencies
and a different objective function. Claessens, van Dijk, and Zwaneveld [9] prove
that DCM (the “simplified cost optimal line planning problem” according to [9])
is NP-hard. Another proof of NP-hardness appears in Schébel and Scholl [14],
who show that the set covering problem is a special case of the line planning
problem (k =1, g =1, fm* =1).

Observe that if the line pool contains only closed lines, then, because of the
symmetry assumption for closed lines, each line using an arc a = (u,v) must
also use the reverse arc @ = (v, u), on which the bus is traveling in the opposite
direction. Hence, both the arc set of the network and the arc set of each line
can be partitioned into pairs of anti-parallel arcs. Substituting these pairs by
undirected edges, any instance of DCM with closed lines can be reduced to an
equivalent undirected instance on an undirected graph G = (V, E), where new
aggregated demands on the edges are computed as follows:

G{uw} = Max{G(u,v)s G(v,u)}> for all (u,v) € A.

In this version of the problem, the lines correspond to simple undirected
paths in G, having the same costs as their directed counterparts. The task
is to assign frequencies to these paths in order to cover the edge demands at
minimum cost. Figure 2 gives an example of this problem transformation.

2.2 Graph Topologies

Motivated by the structure of the Quito Trolebus system, we will investigate
the computational complexity of the line planning problem on three different
graph topologies.

In the main corridor of the transportation system in Quito, trolley-buses
move on a single path and are usually not allowed to overtake. This suggests
to define a transportation network with node set V- = {wy,...,v,} and arcs
(vi,it1), (Vig1,v;) for i = 1,...,n — 1. Thus, the network consists of two
directed paths (one for each direction). We call such a network topology a
Quito Graph (QG). Note that any line moving along some direction of a QG
must visit all intermediate stations along the way.

Transport authorities are currently considering the possibility of allowing
trolley-buses to overtake at certain segments of the main corridor. This would



make it possible to introduce express lines that stop only at certain stations
Vx C V. Writing Vx = {viy,..., v} with 1 < i3 < ig < -+ < i < n, we
add arcs (vy;,vi,;,,) and (v, ,,v;;) to a Quito graph as defined above. We call
a network of this type a Quito-Hopping-Graph (QHG). Note that a QHG is
planar.

Finally, when considering both feeding lines and the main corridor together,
we observe that the undirected graph underlying the T'S network is a tree, since
feeding lines are simple paths that start at transshipment stations along the
main corridor. See Figure 1 for a picture of the Quito system.

The graphs that are used in the NP-hardness proofs mentioned in the liter-
ature review in Section 2.1 do not belong to these three classes. In particular,
they are, in general, not planar.

3 Computational Complexity on Paths

We now investigate how a restriction of the network topology to Quito graphs
affects the computational complexity of the model.

3.1 Fixed Costs are Hard

We first observe that fixed costs make the problem difficult, even for the simple
case of two nodes joined by an arc.

Proposition 1. DCM-FC is (weakly) NP-hard, even if the underlying trans-
portation network is a Quito Graph with two nodes, only closed lines are allowed,
and there is only one transportation mode. The same holds for the undirected
version of the problem.

Proof. This problem can be reduced from the NP-hard 0/1 minimization knap-
sack problem (0/1-MKP). An instance of the 0/1-MKP is given by a set of n
items with costs ¢1,...,¢, € Zy and weights wy,...,w, € Z. The task con-
sists in finding a subset of items such that the sum of their weights is at least a
given constant W and the sum of their costs is minimized.

Given a 0/1-MKP instance, we consider a directed graph D = (V, A) where
V ={1,2} and A ={(1,2),(2,1)}, with both nodes being terminals. We define
one transportation mode with s := 1 and the transportation demand of both
arcs equal to W. For each item ¢ € [n], we construct a line ¢; = (1,2,1) with
leax := w; and fixed cost Ky, := ¢;. Moreover, we define the operating costs as
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Figure 3: Example for the reduction from 3-dimensional matching in the proof of Propo-
sition 2. The two lines {z1,y3} with capacity r2 and {y?,z2} with k1 are defined by y3.
Moreover, lines {:(:g,yg} with capacity <2 and {yg,zl} with k1 are defined by y%. Both
together form a solution for DCM.

cp; = 0 for each line ¢; € L. This yields the following integer program:

n
min E Ci Yo,
i=1

s.t. Zle >W
1=1
ng& Saiy@m VZE[TL]
ye, € {0,1}, Vi € [n].

Since operating costs are not considered, any feasible solution to this pro-
gram can be transformed into a feasible solution of the same cost satisfying
fe, = aiye,, for all ¢ € [n]. Thus, we obtain an equivalent formulation by substi-
tuting fe, with a,;ye,. This directly yields an integer programming formulation
for 0/1-MKP, showing the claim. The undirected version follows directly. O

3.2 Multiple Modes are Hard

It will turn out in Section 3.4 that the homogenous fleet case (|M| = 1) allows a
further simplification of the model DCM that leads to special complexity results.
We therefore first discuss the case of multiple modes (|JM| > 2).

Proposition 2. If |M| > 2, then DCM is NP-hard even for undirected Quito
graphs and if fized costs are zero.

Proof. We polynomially transform the NP-complete 3-Dimensional Matching
Problem (3DMP) to DCM with two transportation modes (]JM| = 2). Consider
an instance of the 3DMP given by a set M C X xY x Z, where X, Y, and
Z are disjoint sets and |X| = |Y| = |Z] =: n. In the following we assume
X =A{z1,29,..., 2}, Y ={y1,...,yn} and Z = {z1,...,2,}. The task is to
decide whether there is a subset @ C M that partitions X UY U Z.



As a first step, we will label the elements of M in a specific way. Assume the
ordered triples of M are sorted in increasing order of the indices of their second
components. Moreover, denote by m; the number of triples having the second
component equal to y;, for i € [n], such that mq+---+m,, = |M|. Let y denote
the j-th occurrence of y; in a triple of M and observe that any ordered triple of
M can be uniquely identified as (xy,y], zp), with k,4,p € [n] and j € [m;].

We will construct a Quito Graph instance with two transportation modes.
Let G = (V, E) be an undirected graph whose set of nodes is defined by:

Vi=XUZU{yl :je[mi ien}uo},

i.e., we add one node for each element of X U Z, one node yf for each ordered
triple of M, and one additional node 0. We define sets of edges

E, = {{zi,zita} : i € [n—1]} U{x,, 0}

E. = {{zit1,z} i€ [n— 1 U{yp", zn}

Ey:={{yl,yl"} riclm —1], i€} u{{y/ ul} s iem-1]}

with the following aggregated demands:

2i if e = {x;, 11} for some i € [n — 1],
2n if e = {x,,0},
2n if e = {0,y1},

Ge:=1{2n—i ife={y,y/ ™"} for some i € [n],
2n—i if e = {y;"", y}} for some i € [n — 1],
noife= (g o),

i if e = {#41, %} for some i € [n — 1].

The line pool consists only of closed lines with two kinds of modes having
transportation capacities equal to k1 = 1 and k2 = 2, respectively. For each
triple (zk,y], zp), we define two closed lines: one line with ko = 2 having the
end nodes at x;, and y/ with cost equal to (n — k + 1)B + 2K (i — 1) + j, and
one line with transportation capacity k1 = 1 from yf to 2, having cost equal to
(n—p+1)B+ K(n—1i)+m; —j. Here, K and B are sufficiently large numbers
with K > [M| and B > 3Kn(n—1) + [M|. Note that each y/, j € [m], i € [n],
is the end node of exactly one line of each transportation mode. The upper
bound for the frequency is set to 1 for all lines in the line pool. See Figure 3 for
an example of this construction.

Now any 3-dimensional matching Q C M defines a solution for our DCM
instance which consists in choosing for each (zx, y, z,) € Q the two lines ending
at node yf . Thus, the solution contains n lines with transportation capacities
ko = 2 and n lines having k1 = 1. Observe that such a solution covers the edges
{zi,xix1} € FEy and {z;41,2;} € E, for all i € [n] by exactly ¢ lines. Moreover,
one can work out that due to the way in which the aggregated demand has been



defined on the arcs of GG, such a set of lines is a feasible solution for DCM, and
its total cost is:

i
M:

(n—i+1) B+2K(z—1)—|—z)

i=1

M:

+
1

=2BY i+2K» (n—i)+ K> (i—1)+|M]|
=1 =1 =1

3
:n(n+1)B+§Kn(n—1)+|M|.

-
Il

(
(n—z—l—l B—I—K(n—z)—i-ml—z)

Now we prove that any feasible solution having cost less than or equal to C*
defines a 3-dimensional matching on M. Note at first that transportation de-
mand on the arcs from FE, can only be covered by lines of mode 2 at a cost of
at least %B for each unit of transportation capacity provided on an arc. Simi-
larly, transportation demand on the arcs from E, can only be covered by lines
at mode 1, at a cost larger than or equal to B for each unit of transportation
capacity provided on an arc.

Hence, if a solution provides more transportation capacity than the required
demand on any arc from E, U E,, then its cost will be too large:

B 1 1
221—4—223—!—2B>n(n+1)B+2B>C*

=1

The first two terms account for the cost covering the required demand on
the arcs from E, U E,, while the third term is the minimum possible cost of
providing one additional unit of transportation capacity on some arc. It follows
that any feasible solution of cost at most C* must cover the demand on each arc
from F, U E, tightly. But this is only possible if the solution contains exactly
n lines of each transportation mode, with each node from the set X U Z being
the end node of exactly one line.

Now consider the set E* = {ej,ea,...,e,41} of edges defined by

{091} ifi=1,
e =y Yty ifie{2,...,n},
{ymn, z,}  fi=n+1.

For all 1 < j < n, denote by a; the number of lines of mode 2 in the solution
that contain edge e; but not edge e;1, and denote by 3; the number of lines
of mode 1 containing edge e; 41 but not edge e;. Then, edge e; is contained in
> i—; aj lines of mode 2 and Z ! 3; lines of mode 1, for all 1 <4 < n + 1.
Due to the transportation demand on the edges of E* and the observations
made above, the values of a;; and (; satisfy the following system (P) of linear



constraints:

i—1

2Za]+2ﬁj>gel—2n—z+1 Vi € [n+ 1], (10)
Jj=t j=1

ZOZjZZﬁj:n, (11)
j=1 j=1

aj, B € Zg, Vj € [n]. (12)

Observe that a; = 8; = 1, j € [n], is a feasible solution for (P) which
satisfies all inequalities (10) with equality. Moreover, one can work out that it
is the only solution having this property. In fact, it can be shown by induction
that for any such solution,

ﬁj = 20&j — 1,

holds for every j € [n]. But then constraints (12) imply that no a; can be equal
to zero as [3; cannot be negative. Since the sum of all a;’s is equal to n, each
one has to be equal to 1.

Now observe that the cost C of a solution to our instance of DCM, when
expressed in terms of «;’s and the f;’s, is at least

C>nn+1)B+2K» (j— Do + K> (n—3)8;.
j=1 j=1

Adding up all inequalities from (10), we obtain

n+l n n+1i1—1 n+1
2ZZQJ+ZZ@>Z (2n—i+1),
11]1 =1 5=1

< QZ]a]—I—Zn—i-l—j g(n—i-l),

& 22]—1a]+2n—j g(n—l),

with equality if and only if o; = 8; = 1, for all j € [n]. The second inequality
was obtained after exchanging sums, while for the third inequality, the fact that
>y aj =35 B; =n was used. It follows that, if a; # 1 or 8; # 1 holds for
some j, then

CZn(n+1)B+gKn(n—1)+K>C’*.

Hence, in any solution with cost at most C*, exactly two lines, one of each

mode, must end at {y},...,y"} for each 4. This means that there is exactly
one line of mode 2 endlng at some node yZ , and one line of mode 1 ending at
some other node y!', where y/* ,yl € {y},...,y™}. Due to the demand on

10



the edges {{y},y?},.... {y/" ",/ }}, j1 < j» must hold. Moreover, one can
see that if j1 < jo, the lines overlap. This gives rise to excess transportation
capacity on the edges {{y/",y/'"'},..., {¥7> "', y/*}}, such that the cost will be
strictly larger than C*, contradicting the assumption. This implies j; = jo, i.e.,
exactly one node is chosen to be a common end node for a line of mode 2 and
mode 1. Hence, lines in a solution of cost at most C* come in pairs that reveal
triples from M which constitute a 3-dimensional matching. O

The next section investigates the complexity concerning the main corridor
with express lines.

3.3 Hopping is Hard

In this section we consider the Quito Hopping Graph topology. Recall that the
corresponding directed graph D = (V, A) contains a subset of express stations
Vx C V. Similarly, there are express terminals, where express buses are allowed
to start or end their routes. Ezxpress lines are allowed to stop only at nodes
from Vx, while normal (i.e., non-express) lines have to visit every node along
their path. Hence, the set of arcs is partitioned into three classes: a subset Ay
containing arcs that may only be used by normal lines, a set Ax of arcs that
may only be used by express lines, and a set Ag of “shared arcs”. We assume
that a transportation demand has been previously assigned to each arc of the
network using some system-split method. Using a reduction from 3-dimensional
matching similar as for Proposition 2, one can prove:

Proposition 3. DCM is NP-hard on Quito Hopping Graphs, even if only closed
lines are considered and fixed costs are zero.

Proof. We again transform the 3-Dimensional Matching Problem (3DMP) to
the undirected version of the DCM in Quito Hopping Graphs. The proof uses
the notation introduced in the proof of Proposition 2.

Let G = (V, E) be an the undirected graph on 3n + |[M| — 1 nodes defined
as follows. The set of nodes is given by V := X UZUY UW, U---UW,,, where

Yi={y; :ie{2,...,n}} and W;:={w :je[mi},

for all i € [n]. The set of (potential) terminals is X UZUW; U---UW,, and the
nodes in V' \ (X UY) are express stations.
The set F of edges in G is defined as the union of the following sets:

EX = {{z;, zip1) i€ n—1]}U{x,, wi},

E? = {{zip1, zi} i€ n—1}Uu{w™, z,},
EY = {{w], w]T'} s j € [mi — 1]}, Vi€ [n],
EF = {{w]™, wi,} i€ n—1]}

EN = {{w]™, yirr}s {yirr, wipa} i€ n—1]},

11



where the edges in EF are express edges, the edges in EX U EN are normal
edges, and all other edges are shared edges.
For each edge e € F, the aggregated demand is defined as follows:

i if e € {{@i, zip1}, {zit1, 2}, {w™, wi 1}, for some i € [n — 1],
ge:=n—i ifee {{w™, yip1}, {yis1, wi,}}, for some i€ [n—1],
n otherwise.

For each triple (xr,yf ,2s) € M, we introduce two closed lines with trans-
portation capacity x = 1: one normal line having its end nodes at z, and w{ and
an express line starting at w{ and ending at z; using only express and shared
edges, i.e., skipping all stations in Y. The lines use the unique path between
their terminals along normal or express edges, respectively.

The cost ¢; of a line £ € L is set to be equal to the number of edges (express,
normal, or shared) visited by ¢. Finally, we set the frequency upper bound for
all lines to 1, i.e., f;"® =1, for all £ € L. Note that the cost of any solution is
equal to the sum of the total transportation capacity on all edges of G.

Assume that Q C M is a solution for 3DMP. Then for each (z,, yZ ,25) € Q
we take the normal line from z, to w] and the express line from w] to zs. By
construction, each node in X U Z is the terminal of exactly one hne, and every
set W; contains exactly one node which is the common terminal of a normal
line and a express line. Furthermore, each node y;, i € {2,...,n} is visited by
exactly n — ¢ + 1 normal lines. One can work out that such a solution satisfies
the demand on every edge in G tightly and, since its cost C* is equal to the
transportation capacity provided, we have:

cr= > §e+zn: DoGet D Get Y G

ecEXUEZ =1 ecEW ecEE ecEN
=23 i+ n(m;—1) +Zz+z (n—1i) (3n+2|M|—1)

Conversely, assume there is a feasible solution to this instance of DCM with
cost equal to C*. Such a solution has to cover the demand on each edge of G
exactly (i.e., there can not be a solution with cost less than C*).

Letie{2,...,n— 1} Due to the demands of ¢ and ¢ —1 on the express edges
{w™, w},} and {w ‘' w}}, respectively, the solution must contain exactly i
express lines that pass through station w;" and exactly ¢ — 1 express lines that
pass through station w; | *. This means that there is exactly one express line
in the solution with an end node w! € W;. Similarly, due to the demands of
n—i+1 and n — i on the edges {yl, w}} and {w™ yi11}, respectively, there
is exactly one normal line having a terminal w¥ € W;. In order to cover the
demand on the edges of E}V, we must have j < k. If j < k, the transportation
capacity on the edges {w{,wljﬂ}, ceey {wf_l,wf} will be equal to n + 1 and
hence strictly larger than the demand, contradicting our assumption.

12



Figure 4: Closed and Open lines in a Quito graph. Two closed lines (v1,v2,v3,v2,v1) and
(v4,v3,v2,v3,v4), and two open lines (v1,v2,v3) and (v, vs,v2) are depicted as an example.

It follows that there is exactly one node from W;, i € {2,...,n — 1}, which
is a common terminal for a normal and an express line in the solution. It is
straightforward to extend this observation to the sets W7 and W,. Finally,
considering the demands on EX and EZ, each node from X has to be the
terminal of exactly one normal line and each node from Z has to be the terminal
of exactly one express line from the solution.

Let @ be the set of triples (z,,y!, zs) for which there exists a normal line
with terminals x, and wf and an express line with terminals wf and z,. Then
Q is a 3-dimensional matching in M. O

3.4 Open and Closed Lines in Quito Graphs

In this section, we investigate the demand covering model on Quito graphs
for a homogeneous transportation fleet (]JM| = 1), no express lines, and fixed
costs of zero. We call the corresponding model Demand Covering Model with
Homogeneous Fleet (DCM-HF):

min ¢ f

st.Df > g
f S fmail)
fezt.

Here, §, := [92] for all a € A, are the transformed aggregated demands, ¢ € R*
is the vector of line (operating) costs, f™* € Z£ denotes the vector of upper
bounds on the frequencies, and D € {0,1}4*£ is the arc-line incidence matrix.

3.4.1 Open Lines are Hard

If both open and closed lines are present in the line pool, then the reduction to
undirected graphs as in Section 2.1 is no longer applicable. Figure 4 shows an
example.

To prove the hardness of this problem, we consider a reduction from the
3-Dimensional Matching Problem using ideas described in Proposition 2.

Proposition 4. DCM-HF with open and closed lines is NP-Hard even for di-
rected Quito graphs.

13



Proof. DCM-HF in directed Quito graphs can be polynomially transformed
from the 3-dimensional matching problem. Consider any instance of the 3-
dimensional matching problem and the notation as in the proof of Proposition 3.

We define an instance of DCM-HF on a Quito graph as follows: Let D =
(V, A) be a digraph, where the set of nodes consists of one node for each element
of X U Z, one node y; for each ordered triple of M, and one additional node 0.
That is, the set of nodes is given by:

Vi=XUZU{yl : jemi, ien]}u{o}).

We let all nodes except 0 be terminals.
We define sets of forward and backward arcs as follows:

By = {(quwl),(fml,xz)} i€ [n =1} U{(zn,0), (0,2n)}

Ej = {(yl,y]") : j€lmi—1], i e [} U{(y™ i) s i€ n—1]}
Ey={(y/"y]) s jelmi—1], i€ M} U{(yi,y™) i€ n—1]}
Ef = {(zis1,2)} + i€ [n =1} U{(yn", 20)},

EL = {(zi, 2i41)} = i € [n =1} U {(2n,50)}-

The aggregated demands are defined as follows:

.

if a € {(zi, zit1), (i1, )}, for some i € [n — 1],

»2n);
wr)

)

(

n if a € {(zn,0),(0,2,)},

n if a € {(0, yl) (yl, 0)},

n—i ifae{(yl, £ .4 € [mi — 1]}, for some i € [n],

n if a e {(y)™",y7),7 € [m; —1]}, for some i € [n],
ga:=n—i ifa=(y", y,), for somei € [n—1],

n if a = (y},1,y""), for some i € [n — 1],

0 ifa= y,’f

n

0

ifa=

.

(3"
(y
(
if a = (zn,
(zz+1, i), for some i € [n—1],
if @ = (24, 2i41), for some i € [n — 1].

The line pool consists of closed and open lines. For each triple (x,, yf ) Zs)s
we define two lines: one closed line having terminals z, and yf with cost equal
to (n—k+1)B+2K (i—1)+j, and one backward open line from z, to y] having
cost equal to (n —p+1)B+ K(n —1i) +m; — j. Here, K and B are sufficiently
large numbers with K > [M| and B > 3Kn(n — 1) + |M|. Note that each !,
for j € [m;], ¢ € [n], is the terminal of exactly one closed line and one backward
open line. Finally, the upper bound for the frequency is set to 1 for all lines in
the line pool.

Using the same arguments as in Proposition 2, it is straightforward to verify
that there exists a 3-dimensional matching if and only if there exist a feasible

14
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Figure 5: Transforming undirected DCM-HF on Quito graphs to a minimum cost flow
problem.

solution to DCM-HF with cost equal to:

n

C* = 2an:i+2Kzn:(n—i) +KY (i—1)+|M]|
=1 =1

=1

3
zn(n+1)B+§Kn(n—1)+|M|.

Each optimal solution of value C* provides exactly two lines, one open and

one closed, terminating at one of {y;,...,y;""} for all i € [n]. Hence, lines
in the solution come in pairs that reveal triples from M, which constitute a
3-dimensional matching. O

3.4.2 A Polynomial Case

The undirected version of DCM-HF on Quito Graphs can be reduced to a mini-
mum cost flow problem as follows. Let G = (V, E) be an undirected Quito Graph
with n nodes vy, ...,v,. We define B := max.cp{J.} and define D= (v, /1) to
be a directed network on the node set of G, whose arc set is the disjoint union of
three subsets: a set A; containing all “backward arcs” of the form (v;, v;_1), for
all i € {2,3,...,n}; a set Aj that contains one “line arc” (vs,v5), with ¢ < j for
every line having its ends points at v; and v;; and a set A containing one “slack
arc” (v;, vi41) for each edge {v;, v;41} in G with B — g. > 0. Flow demands are
defined as follows (negative demands meaning that the node is a source of flow):

—-B ifi=1,
by, = B ifi=n,

0 otherwise.

Arc costs are equal to zero and capacities are set to infinity on the arcs belonging
to A;. For each arc in A, representing a line ¢ € L, the cost is equal to ¢, and
the capacity is set to f;***. Finally, each slack arc in A associated with an
edge e from G has capacity equal to B — g. and cost equal to zero. Figure 5
shows an example.

Consider a feasible flow X in D, interpreting the values on the line arcs

as transportation capacities. Let AT (i) (resp. A7 (7)) be the set of arcs from
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Ay U As that start (resp. end) at node v;. Moreover, denote by S(i) the set of
arcs that start no later than v; and end not before v;41, i.e.,

S(i) == {(vj,vp) € AgU Az : j <iAk>i}.

Since S(i) = Uj<iAT(j) \ Uj<iA™(j), it follows that

> X=X - X x)

a€S (i) J<i aext(4) a€X~(j)
(Y K ¥ X)+ Xaam
J<i a€dt(j) a€d=(j)
= val + X(vi+1,vi)'
j<i

As the flow demands b, are equal to zero for all j < i except for b,, = B and
the flow X, , ;) is non-negative for 1 <4 <n — 1, we obtain

ZX>B Vi<i<n-—l1.
aeS(i)

Now observe that the arcs in S(i) do all correspond to lines which cover the
edge {(vi,vi+1)}, plus possibly the “slack” arc (v;,v;11) € As, whose flow value
is not larger than B — g, v,,,)- As the sum of the flow values on the other arcs
is at least gy, this proves that a feasible solution for DCM-HF (of the same
cost) on G’ can be obtained by just taking the flow values from the arcs in A,
as frequency values for the corresponding lines.

Conversely, it is straightforward to show that any feasible frequency assign-
ment in G’ can be “extended” to a feasible flow in D by assigning the arcs of
Ay a flow value equal to the frequency of the related line in £, and by defining
appropriate flow values for the arcs in Ay and Ajz. This proves:

sVit19

Proposition 5. DCM-HF can be solved in polynomial time on undirected Quito
Graphs.

4 Computational Complexity on Trees

Feeding line systems (FLS) transport passengers from the main corridor to the
suburbs/neighborhoods of the city. Each feeding line starts at a transshipment
terminal, visits a set of consecutive stations up to certain turn-over station, and
returns back to the terminal stopping at the same stations on the way. The
FLS in Quito consists of three independent subsystems. In fact, the underlying
graph is a tree and the system does not include express lines.

Moreover, only closed lines are admissible. Hence, there is again an undi-
rected version of the DCM involving feeder lines; see Section 2.1 for a description.

16



Figure 6: Example of feeder lines in a (subdivided) star topology.

Thus, each line is represented by an undirected path linking one terminal with
a certain node where the turn-over takes place.

The following results show that the complexity of the DCM depends on the
network structure.

4.1 Stars

The network topology currently used by TS is even more simple than a tree,
since the terminal is the only node with degree greater than two. We call such a
graph a subdivided star. Figure 6 depicts an example. If every line is a path that
has the terminal on one of its ends, we call such a line structure a 1-NB-path,
since it covers only one neighborhood of the city. The Quito system operator is
evaluating the possibility of allowing lines to cover multiple neighborhoods. This
is the motivation for considering two additional line structures: 2-NB-paths,
which are paths having the terminal as an intermediate node (i.e., covering
two neighborhoods) and subtrees containing the terminal more than one time
(corresponding to lines that cover more than two neighborhoods).

Because the different neighborhoods are mostly served by a homogeneous
bus fleet, the following result is interesting for the practical application.

Proposition 6. DCM-HF for 1-NB-paths is solvable in polynomial time on
subdivided stars, if fized costs are zero.

Proof. If only 1-NB-paths are present, we proceed by a simple greedy algorithm
for each branch of the star (i.e., each neighborhood) separately. Note that the
algorithm described in Section 3.4.2 also solves the problem considered here,
but has a higher running time.

Because the graph is a subdivided star, the lines for the current branch can
be ordered as

biy =liy41 ==Ly, 1 DAy =Dl ==Ly,

where 1 =41 <y <---<ip<randcy, <cp, forallr=ij;, ... ;041 —1.
The frequency for ¢; can be computed as follows:

1
: ~ ax
fe zmln{— max e, fi }
! K, e€li\l2 @b
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We recompute the demand on each edge e € /7 as:

ge = max{ge — Ry, f@l ) O}

Then remove ¢; from the set of lines for the current branch and iterate. Note
that f; = 0 might occur for some ¢ € £, in particular, if £; = £;; for some j.
If at the end g. > 0 for some e € E, the instance is infeasible. O

Note. The proof of Proposition 6 actually shows that DCM can be solved in
polynomial time if the lines are homogenous for each different branch, i.e., there
might be different modes for each neighborhood.

If the lines have the 2-NB-path structure, one can construct counterexamples
for which the greedy scheme in the proof of Proposition 6 does not find an
optimal solution. Nevertheless, this case can be efficiently solved as well.

Proposition 7. DCM-HF for 2-NB-paths is solvable in polynomial time on the
subdivided star, if fixed costs are zero.

Proof. We will show that any instance of the undirected version of DCM-HF
on a subdivided star can be polynomially reduced to an equivalent instance
on a complete bipartite graph of the form K ,, with the lines still visiting the
terminal at most once. Bussieck [5] observed that such an instance can be solved
in polynomial time by solving a b-matching problem.

Let G = (V, E) be the subdivided star with node set

. 1 1 2 2 s s
Vo= {t vy, 05,07, Vhys o5 VT, U}

and edge set E := {{v},v},} : j €{0,...,k}, i € [s]}. Here, for simplicity,
we define v :=t, for all i € [s].

Moreover, let g. be the transportation demand on edge e € E. The line
pool L consists of simple paths containing the terminal ¢, either 1-NB-paths
or 2-NB-paths. As usual, ¢, and f;*** represent the cost and frequency upper
bound on a line £ € L.

Note that any line containing an edge e := {v;, ”;‘+1}’ for some j € {0,...,k;},
i € [s], will contain all edges in

D(e) :=={{vj,vi 1} : k€ {0,...,5—1}}

We call D(e) the set of edges dominated by e. Hence, in any feasible line plan,
the transportation capacity on e cannot be smaller than the transportation
capacity of any edge from D(e). As a consequence, it follows that any edge € €
D(e) with gz < ge induces a redundant inequality in the integer programming
formulation from DCM-HF and may therefore be contracted in G and in all lines
in £ without changing the solution set. We therefore assume in the following
that gz > g. holds for every e € E, € € D(e).

We define a complete bipartite graph G = (v, E’) on the same node set and
edge set given by

E={{t,vl} 1 je{l,... .k}, i€ [s]}

18



The demand § on an edge é = {t, v;} € E is determined by
N g(vi. ol 1f] = kiu
gt,vi. = ~ I ~ op - (13)
( ]) {g(v;vv;)—g(v;yv;Jﬂ) 1f] E{l,,k]_l}

Consider a line ¢ € £ and assume ¢ visits two branches with indices T
and i~ . Define

o= {v;-+ cjedl,. ... ki+}, € visits ’U;»+},
={v) rje{l,.. ki), €visits o)}

If ¢ visits only one branch, define /* analogously and let £~ := @.

Algorithm 1 Line-Splitting Algorithm

Input: Line £ € £ with f;"** > 0.

Output: Set of lines S(¢) in G, fg’wm, and c;, for all (e S
K(vh) == I(wi_, i) for all v € IT UI™, K(t) := oo,
S =@,

W={veltul},
z:=b:= fr*
while W # @ and b > 0 do
if WN{+ # @ then
Uy = vf € W N+ having largest index.
else
Uy = t
end if
if WN{~ # o then
up == vi € WN{ having largest index.
else
ug =1
end if
7 := (u1,t,us), ignoring repeated nodes
féna;ﬂ =y

le =

W= {vj e f Ul : k(v}) >0}
end while

Algorithm 1 defines a set S(¢) of lines in G associated with ¢ together with
costs and upper bounds for their frequencies.

We claim that the undirected version of DCM-HF on ( with line pool L=
UrerS(£) is equivalent to the original problem on G. To see this, consider a
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feasible solution f in G and define a solution in G by

for=>_ fp  forallleL. (14)

10

It is straightforward to verify that both solutions have the same cost and
that 0 < f, < f;**" holds for every ¢ € £. Now consider an arbitrary edge
e:={vt_,,vi} on G, with j € {1,...,k;}, i € [s]. From (13) we have

Zgw <Z > f (15)

r=J {t,07}el

j—1> Y5

But any line ¢ covering an edge {t,vi} in G, with r > i must belong to a
set S(£) obtained from a line in G that visits station v and traverses edge
{v] 1 ]} along the way. Hence, it follows that the right-most quality in (15)
is upper-bounded by »° .., fe, and (14) defines a feasible solution in G.
Conversely, assume we are given an optimal solution f* € Z* for DCM-
HF on G, and let #1,¢s,...,¢xN be the lines having positive frequencies in the
solution. Applying Algorithm 1 on ¢, but using f7 instead of f;"** as input,

we obtain a set {f; { € S(¢,)} of frequencies for the lines in S(f1). Since the
start value for variable b in the algorithm is at most f;7*,

0< f, < f

must hold for every ¢ € S(f;). Moreover, there must be at least one edge e
covered by ¢y for which ge = f7,, as otherwise f* is not optimal. This implies

that b = 0 must hold at the end of the algorithm. Hence, des o) fé I
Now let us alter the instance on GG by dropping ¢; from L and changlng the
transportation demand on the edges as follows:

_ Jmax{0,g. — f7,} if e is covered by ¢,
Je = Je otherwise.

It is straightforward to verify that by dropping coordinate ¢; from f* an
optimal solution for this modified instance is obtained. Due to the construction
of Algorithm 1, if an edge {v}_,,v}} has 9(wi 0ty = 0 after modifying the
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demand, then the demand on the edge {¢,v}} from G must have been covered
by the lines in S(¢;).

Now the same process is repeated for {o, ..., {y, defining frequencies for the
lines in the set S(¢3),...,S({n), and “updating” the demand on G after each
step. Since in the end g, = 0 must hold for every edge in G (as otherwise f* is
not feasible), the demand for all edges in G is covered by the lines in UY ; S(¢;).
Finally, from the optimality of f*, it follows that ), S(6:) fz = f;, holds for

every i = 1,...,N. Thus, f defines a feasible solution in & having the same
cost as f*. This completes the proof. O
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In last section, we have proved that DCM is HP-hard for |[M]| > 2 even
for undirected Quito graphs, where the number of terminals is unrestricted.
Unfortunately, Proposition 2 is not applicable in this case where the number of

terminals is limited to one. We therefore give a new complexity proof, based
again on the 3SDMP.

Proposition 8. DCM is NP-hard on the subdivided star, if |M| > 2 and 2-
NB-paths are considered in the line pool.

Proof. We reduce the 3-Dimensional Matching Problem to our line planning
problem on the subdivided star, using again the notation from the proof of
Proposition 2.

We define an instance of DCM on the subdivided star with 2 transportation
modes as follows: Let T = (V, E) be an undirected graph where the set of nodes
is defined as follows:

V:i=XUYUZU{yl :jemil icn]}u{o},

with node 0 being the unique terminal and V' \ {0} representing stations where
a turn-over is possible. Thus, we add one node for each element of X UY U Z,
one node y] for each triple of M, and one terminal 0.

The set of edges E consists of a union of three different sets:

E, = {{z;,ziy1} 1 1 € [n— 1]} U {x,,0}
E.:={{zit1,2:} : i € n—1]} U{0, 2z, }
Ey:={{y],0} : j € [mi], i € [n]} U{{y:, 0} : i € [n]}

with aggregated demands

i if e € {{xs, xit1}, {zit1, zi}} for some i € [n — 1],
- if e € {{zn,0},{0,2n}},
979 if e € {{y/,0},7 € [my]} for some i € [n],

2m; —2 if e = {0,y;} for some i € [n].

The line pool £ consists only of 2-NB-paths with two transportation modes:
mode 1 with transportation capacity x; = 1 and mode 2 with capacity k2 = 2,
respectively. For each triple (zx,y],2p) € M, we define three lines with the
terminal as an intermediate node. We construct two 2-NB-paths with trans-
portation capacity r1: the first line having its end nodes at xj and y!, with
cost n — k + 2, and the second line from yf to z, with cost n — p + 2. Finally,
a 2-NB-path served by transportation mode 2 is added from yf to y; with fixed
cost equal to 4. Note that the cost ¢, is equal to the number of edges covered
by a line ¢ € £ with x; = 1. Lines served by mode 2 only cover 2 edges. Finally,
we set the frequency upper bound for all lines to one, f;"** =1, for all £ € L.

Assume that () € M is a solution for 3DMP. A solution for DCM can be
obtained as follows: If the triple (z,y!, 2p) belongs to @, then we choose the
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corresponding lines (xy,3) and (y7, z,) of mode 1. Moreover, all lines (y;, y?),
with ¢ € [m;]\ {j}, get frequencies equal to one. Proceeding in the same way for
the remaining elements of M, we choose 2n lines of mode 1 and |M| — n lines of
mode 2, all of them being 2-NB-paths. Due to the way in which transportation
demands have been defined on the edges of T', such a set of lines is a feasible
solution for DCM with total cost equal to:

n n m;—1

C*=2) (n—i+2)+> Y 4=n’—n+4|M|.

i=1 i=1 j=1

On the other hand, the cost of any feasible solution of DCM on the sub-
divided star is larger than or equal to n? — n + 4|M|. (Note that the edges
of the form {0,y;} must be covered by a least m; — 1 different lines with cost
4(|M| — n).) But then, a feasible solution with cost C* must be tight in the
sense that the selected lines provide on each edge e € E exactly g. units of
transportation capacity. Thus, such a solution must have the property that
every node in X U Z appears exactly once as an end node of a line and exactly
one edge of the form {0,y/}, j € [m;] must be covered by exactly 2 lines with
transportation capacity 1. Furthermore, a solution having exactly this cost
must cover the demand on all edges tightly, and in this case the selected set of
lines with positive frequencies reveals a 3-dimensional matching in M. O

Finally, any instance of Exact Cover by 3-sets can be transformed in polyno-
mial time into an equivalent instance of DCM on the star, where the line pool
contains subtrees that cover three branches even for homogeneous fleet.

Proposition 9. DCM-HF for subtrees is NP-hard on the star.

Proof. We reduce an instance of DCM-HF in the setting of the undirected star
from an instance of the 3-exact cover problem (3ECP). A 3ECP is given by a
family F = {S1, 52, ..., S, } of subsets from a ground set S = {u1,ua,...,usm},
each S; € F having cardinality equal to 3. The task is to determine a subfamily
of m subsets covering S, i.e., each element of S is contained in exactly one
subset.

We consider the complete bipartite graph K 3, which is a special case of
a star. Let V := {¢,1,2,...,3m} and E := {{t,1},{¢,2},...,{t,3m}} be the
node and edge sets, respectively. Moreover, we associate with each edge e €
a transformed transportation demand g. equal to one.

Now for every S; = (uj, ug, up) we define a line containing the corresponding
edges {t,j},{t,k},{t, h}, with cost and frequency upper bound both equal to
one. It is straightforward to see that any feasible line plan with cost equal to m
covers each edge of K 3,, exactly once and it is hence associated with a feasible
3ECP solution. Conversely, any solution to 3ECP may be used to define a line
plan of cost m. Since no feasible line plan can contain less than m lines, solving
DCM-HF provides us with a solution for 3ECP. O
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4.2 General Trees

Since the transshipment terminals are currently located at strategic positions
in the street network and the FLS covers a relatively small area of the city,
lines assigned to different neighborhoods split away very soon after leaving the
terminal. Thus, assuming a star topology is justified. It may, however, very well
happen that when introducing new lines the system will change from a subdi-
vided star to a general tree. This has motivated us to consider the complexity
of DCM-HF on trees with only one terminal and the natural generalization with
many terminals.

If the line structure is restricted to 1-NB-paths, DCM-HF on trees with
only one terminal can be solved in polynomial time using ideas introduced in
Section 3.4.2.

DCM on undirected trees can be reduced to a minimum cost flow prob-
lem as follows. Let T' = (V, E) be an undirected tree with n + 1 nodes V' =
{v1,...,vUn,0}, where 0 is the unique terminal. Let U C V be the set of leaves of
the tree, i.e., each u; € U has degree one. Moreover, we define B := maxec g{Je}
and define D = (V, A) to be a directed network with node set V. The arc set is
the disjoint union of three subsets: a set A, containing “backward arcs” of the
form (v, v;), for all {v;,v;} € E and d(v;) > d(v;), where d(v;) is the number of
edges in the path from 0 to v;; a set Ay that contains one “line arc” (0,v;), for
every line having its turn-over node at v;; and a set As containing one “slack arc”
(vs,v;) for each edge {v;,v;} in T and d(v;) < d(vj), with p,B > ge, where p, is
the number of paths P, that use arc a, and lead from a leaf u € U to terminal 0.

Flow demands are defined as follows (negative demands meaning that the
node is a source of flow):

— |U| B if V; = O,
by, = B if v; € U,
0 otherwise.

Arc costs are equal to zero and capacities are set to infinity on the arcs belonging
to A;. For each arc in A, representing a line ¢ € L, the cost is equal to ¢¢, and the
capacity is set to f;***. Finally, each slack arc in Ay associated with an edge e
in G has capacity equal to p,B—g. and cost equal to zero. As above, interpreting
the values of a feasible flow on the line arcs as transportation capacities of the
respective lines is the key to proving.

Proposition 10. DCM-HF for 1-NB-paths is solvable in polynomial time on
trees.

Note that Proposition 10 generalizes Proposition 6.

In contrast, Proposition 9 trivially implies that DCM on trees is NP-hard
if the line pool contains subtrees. We have not yet been able to determine the
complexity of the problem for the 2-NB-path line structure.

Finally, we determinded the complexity of the problem on trees for the nat-
ural generalization where the number of terminals is greater than one. The
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following result shows that if the number of terminals is unlimited, DCM is
NP-hard, even DCM-HF.

Proposition 11. DCM-HF for 1-NB-paths on trees with an unrestricted num-
ber of terminals is NP-hard.

Proof. We reduce an instance of our line planning problem on trees from an
instance of 3-dimensional matching.

We define an instance of an undirected DCM on a tree as follows. Let m; be
the number of occurrences of y; in M, then Y"1, m; := |M|. We assume that
the tree has a node r as root. Moreover, for each element of X UY U Z one node
w and one edge {r,w} are defined. If y; is a node associated with an element
of Y, we add 2m, additional nodes y7,, y7 and 2m; edges {v:, y5. }, {¥i U5 }s
with k € [m;], for some i € [i]. Each of the nodes y7,,y7, is a terminal. The
aggregated demand on all edges is equal to one, except for the edges of the form
{r,yi}, whose demand is two.

The line pool contains the following lines: If (z;,y;,2,) € M corresponds
to the k-th occurrence of y;, we add three lines with costs and frequency upper
bounds equal to one, defined in the following way:

o Uy 1 = (Y Yir 7 75)
© ll;i,Q = (yzzk’ Yi, T, Z;D)
© lzi,3 = (yfkayiayfk)-

Now suppose that @ C M is a 3-dimensional matching. A solution for our
instance of DCM can be obtained as follows: If y; € Y is covered by the k-th
triple (z;, i, 2p), we choose lines l’;ﬁl, l’;ﬁz, and all lines [ 5, m # k, to be in
the solution, with frequencies all equal to one. The edges incident to z;, y;, and
zp are thus all covered at a cost of m; + 1. Proceeding in the same way for the
remaining elements from Y, a solution covering the demand on all edges of the
graph is obtained whose cost is Y . (m; + 1) = |[M| +|Y].

Conversely, observe that any feasible line plan has cost larger than or equal
to |[M|+ |Y|: At first, there are 2 |Y| edges of the form {r,w} with w € X U Z,
and each one has to be covered by a different line. Then, there are 2 |M| edges
of the form {y;,y7.}, {vi, ¥}, k € [m;] and y; € Y. In the best case, 2|Y|
of these edges have been covered by the lines chosen in the first step and the
remaining edges can all be covered pairwise by lines of the form l’;iyg. Hence,
the total solution cost is at least

1
2[¥1+52IM| =2Y]) = [M]+]Y].
Furthermore, a solution having exactly this cost must cover the demand on

all edges tightly, and in this case the lines of the form l’;iyl, l’;ﬁz with positive
frequencies reveal a 3-dimensional matching in M. O
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5 Optimizing the Trolebis System

We have carried out a computational study with various DCM models for the
three network topologies considered in the previous section, based on data pro-
vided by the Trolebtus System operator. The models were solved using the
IP-solver SCIP [1] in its standard configuration, which was sufficient to obtain
optimal solutions within a few seconds. All experiments were performed on a
3.0 GHz Pentium 4 PC with 512 MB RAM running Suse Linux 10.0.

The total fleet of the TS consists of 113 trolley-buses for the main corridor
and 89 normal buses for two different types of feeding lines. The transportation
network has 528 nodes, 52 of them located along the main corridor.

Table 1 reports some operational parameters for the line plan currently im-
plemented by the TS operator in the main corridor (QG) and in the feeder line
system (FLS): cost, average number of transfers per passenger, average travel
times, the accumulated frequency, and the number of transported passengers.
We refer to this line plan as the reference plan. The statistics are given for time
slices of one hour during a day. For the time interval 06:00-07:00, the reference
plan does not provide enough capacity to cover the transportation demand with
the nominal maximum capacity of a trolley bus (x = 180); in fact, the solution
requires 210 passengers to be transported by each bus unit on average, i.e., the
buses are overcrowded. Passenger transfers were computed using the method
described in Bouma and Oltrogge [4] (the frequency variables were fixed to the
values given by the reference plan). Traveling times between stations were taken
from historical data for QG and FLS and estimated for express arcs in QHG.
The transfer time for a change from line ¢; to line ¢ was estimated as i

As a first experiment, we solved DCM-HF for the main corridor. We con-
sidered each one-hour time slice as an independent instance and ran two tests
on it. In the first, the line pool £ consists of 66 closed lines and in the second
one L contains 66 closed lines and 132 open lines. Table 2 reports the results
obtained for this setting. Significant cost savings were obtained even in the case
when only closed lines are allowed. The cost of our solution is smaller than
that of the reference plan, with an average decrease of $ 2,119.31 per hour and
a global decrease of $ 40,267. The total number of transfers increased in the
morning time intervals, but decreased dramatically during midday and in the
afternoon. The total number of transfers is 125, the average travel time is 25.56
minutes, compared to 26.4 minutes in the reference plan. If both open and
closed lines are considered, solution costs are reduced even more. This can be
explained by an asymmetry in the demand data. In fact, most passengers move
in the S-N direction in the morning and return to their homes traveling in the
N-S direction in the afternoon. The number of transfers is about the same as
for the closed line scenario, except for time slices 15:00-16:00 and 18:00-19:00,
where substantial increases are registered; the total number of transfers is 453.
Nevertheless, average travel time is only 25.38 minutes.

Table 3 shows the results for the QHG instances, i.e., if express lines are
considered. For this purpose, we identified 17 express stations along the main
corridor. We considered a line pool with 84 closed lines and 168 open lines, of
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Table 1: The current operation of the Quito Trolebus System (main corridor and feeding lines).

Quito Graph Feeding Lines
T Cost  # Tr. Travel Time >, . fr > duw Cost  # Tr. Travel Time >, . fc > duw
06:00-07:00* 5379 - - 57 15660 3806.8  0.478 49.66 59 7190
07:00-08:00 7271 0 30.7 79 19026 4144.6  0.457 46.32 65 8317
08:00-09:00 7246 0 28.1 83 16946 3330.4  0.456 44.94 53 7337
09:00-10:00 5991 0 24.3 75 14977 3251.0 0.506 44.74 52 7130
12:00-13:00 4858 0.0140 21.1 62 15878 2873.6  0.452 41.16 46 6698
13:00-14:00 4941 0.0322 21.8 63 15651 3323.6  0.504 45.18 52 7358
16:00-17:00 4945 0.0150 28.3 62 14891 3473.6  0.500 46.77 54 6919
17:00-18:00 7188 0 30.9 81 15966 3455.8  0.415 42.89 53 6318
18:00-19:00 7457 0 30.1 85 15902 3050.0 0.394 43.29 48 5966
19:00-20:00 6044 0 28.3 79 11712 3050.2  0.548 52.47 49 5934
20:00-21:00 5343 0 30.6 72 8510 2597.6  0.661 56.09 41 5118
Table 2: Optimizing the Quito Trolebiis System using model DCM-HF on QG.
Closed Lines Closed+Open Lines
T Cost # Tr. Travel Time 3}, .f¢ [L] Cost # Tr  Travel Time >, . fr |L]
06:00-07:00 6275 0 30.02 79 19 4560.3 0 29.30 79 25
07:00-08:00 6911 0.00226 31.19 88 20 5232.7 0.00226 30.09 88 28
08:00-09:00 4792 0.00023 25.68 65 18 3785.8 0.00023 25.99 65 28
09:00-10:00 2992 0.00119 24.39 38 16 2522.2  0.00113 23.14 38 20
12:00-13:00 2230 0 20.05 26 10 2195.7 0 20.51 26 11
13:00-14:00 2342 0 21.54 28 11 2289.1 0 21.44 30 14
16:00-17:00 3234 0 26.33 39 13 2942.8 0 26.24 39 19
17:00-18:00 4847 0 29.02 58 16 4108.6 0 28.64 58 18
18:00-19:00 4625 0 27.08 58 17 3922.7  0.0116 26.79 60 20
19:00-20:00 3062 0 26.46 40 16 2667.2 0 26.50 41 17
20:00-21:00 1843 0 25.70 23 9 17114 0 26.10 24 10




which 18 closed and 36 open lines were express lines.

In both scenarios (closed lines and closed+open lines) the cost increased com-
pared with the results obtained for QG. The global cost for the transportation
plan with only closed lines was $ 60,825, which still represents savings of 36%,
when compared to the current plan. The total number of transfers increased
in comparison to QG, mainly for time slices 11:00-12:00 (from 7 to 458 trans-
fers) and 21:00-22:00 (from 0 to 288 transfers) in the scenario with open+closed
lines. The increases in cost and number of transfers are, however, compensated
by better service for passengers, in terms that average travel time was reduced
to 23.66 minutes if only closed lines are considered and 23.35 if closed and open
lines are included in L.

Our last experiment consisted in computing a line plan for the feeder line
system. The TS has three independent systems of feeder lines that intersect
the main corridor at three different transshipment terminals and contain 12,
17, and 13 turn-over stations, respectively. Currently, the vehicle fleet used for
serving the feeder lines is heterogeneous and contains two types of buses with
transportation capacities k1 = 90 and ko = 110.

We solved DCM in two scenarios which differ in the line structure considered:
only 1-NB-paths or allowing 2-NB-paths. In the first scenario, a total of 84
lines were considered in the line pool (for all three feeder subsystems), while
in the second scenario 470 new lines were added. Table 4 reports the results
(aggregated for all three feeder subsystems). Besides the operational parameters
described above, we report the number |L| of lines used in the solution, the
required CPU time, and the integrality gap (only for the second scenario). In
both scenarios, the cost was reduced in comparison to the currently implemented
solution by about 18% (only 1-NB-paths) and 32% (with 2-NB-paths). On the
other hand, these savings are tied to larger travel times for the passengers, which
slightly increased in all instances. Finally, observing the CPU times and gap
values, it seems that DCM is considerably harder to solve if 2-NB-paths are
included in L.

The dramatic cost decrease in our solutions over the reference solution can
be explained by two factors. First, our DCM model does not impose a limit on
the number of lines in a solution. In practice, however, it is not desirable to have
too many lines, since the whole system becomes too complicated for the user
and the operator. Adding new binary variables to DCM that indicate whether a
line is chosen in the solution or not, we carried out new experiments for the QG
network topology limiting the allowed numbers of lines to a maximum between
five (the number of lines currently used by the TS operator) and 30. Figure 7
summarizes the results for the whole day. As expected, the optimal solution
cost increases as the number of allowed lines decrease, but the increase is less
than 10% from 30 to 5 lines. A reason can be found in the planning policies
that the TS operator is currently using. Up to now, line planning has been
carried out in a single step together with duty scheduling for the bus drivers
by pre-assigning bus drivers to buses. It might be that this scheme is just
too inflexible, since hard laboral constraints might discard some good solutions
for the line planning problem. It would certainly be worthwhile to compute a
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Table 3: Optimizing the Quito Trolebis System using express lines.

Closed Lines Closed+Open Lines
T Cost # Tr. Travel T. >, . fi |L] Cost  # Tr. Travel T > .. fi |L]
06:00-07:00 6284 0 27.42 79 24 4892.2  0.0028 25.09 80 30
07:00-08:00 7092 0 27.66 87 21 5924.0 0 26.07 94 27
08:00-09:00 5167 0.00176 22.91 65 18 4556.6 0 22.91 74 25
09:00-10:00 3207 0.00251 21.82 39 19 2898.5 0.0102 21.58 42 21
12:00-13:00 2431 0 18.75 29 12 2407.6 0 18.60 29 13
13:00-14:00 2462 0.00365 20.10 28 12 2433.2 0 20.16 29 15
16:00-17:00 3772 0 23.48 44 16 3297.9 0.0017 23.44 44 23
17:00-18:00 5255 0.00214 25.75 61 16 4429.5 0.0067 25.70 61 22
18:00-19:00 5125 0 24.25 62 20 4257.9 0.0187 24.18 62 26
19:00-20:00 3446 0 24.22 43 18 2939.5 0.0092 24.49 44 24
20:00-21:00 2083 0.00702 24.45 26 14 1899.7 0.0136 24.29 26 15

Table 4: Optimizing the Quito Trolebuis System including the feeder line systems.

only 1-NB-Path 2-NB-Paths allowed
T Cost # Tr. > ,..fi |L] T.Time CPU Cost #Tr. > ,..fi |L| T.Time CPU Gap
06:00-07:00 3142.4 0.501 59 44 53.08 0.01 2562.4  0.496 30 28 56.03 10000 6.96
07:00-08:00 3434.0 0.454 65 43 49.23  0.04 2794.0 0.454 33 32 54.31 10000 7.03
08:00-09:00 2740.8 0.481 53 42 48.60  0.02 2220.8 0.449 27 26 51.24 10000 6.21
09:00-10:00 2698.8  0.501 52 39 49.04 0.01 2198.8  0.499 27 24 51.76 0.23 3.25
12:00-13:00 2341.2 0.444 46 37 44.78 0.03 1881.2 0.425 23 22 47.80 0.66 4.68
13:00-14:00 2707.6 0.496 52 35 46.81 0.01 2207.6  0.494 27 24 49.80 10000 8.29
16:00-17:00 2804.6 0.496 53 37 48.88  0.01 2289.0 0.473 27 24 51.40 1.564 4.75
17:00-18:00 2837.8 0.409 54 41 46.20  0.01 2309.0 0.405 28 28 49.29 10000 7.42
18:00-19:00 2464.6 0.386 47 39 4583 0.01 2002.4  0.383 24 24 48.37 1.38 4.33
19:00-20:00 2579.4 0.531 49 38 55.79  0.02 2110.6  0.521 26 24 58.02 1.38 4.33
20:00-21:00 2279.0 0.631 43 35 63.84  0.04 1872.2  0.622 22 22 68.34 0.23 3.01

Average 2443.6  0.549 46.2 36.1 55.42 0.020 1997.5 0.532 23.8 228 58.43 3692.0 4.99
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Figure 7: Tradeoff cost vs. maximum number of lines.

vehicle and a duty schedule based on our line plans, in order to get a better
assessment of the operational consequences of such an optimization.
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