
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

ANDREAS BLEY

An Integer Programming Algorithm for
Routing Optimization in IP Networks

ZIB-Report 08-30 (Extended Version, November 2009)

An Integer Programming Algorithm for Routing

Optimization in IP Networks⋆

Andreas Bley

TU Berlin, Institute of Mathematics
Straße des 17. Juni 136, D-10623 Berlin, Germany

bley@math.tu-berlin.de

Abstract Most data networks nowadays use shortest path protocols to
route the traffic. Given administrative routing lengths for the links of
the network, all data packets are sent along shortest paths with respect
to these lengths from their source to their destination.
In this paper, we present an integer programming algorithm for the mini-
mum congestion unsplittable shortest path routing problem, which arises
in the operational planning of such networks. Given a capacitated di-
rected graph and a set of communication demands, the goal is to find
routing lengths that define a unique shortest path for each demand and
minimize the maximum congestion over all links in the resulting routing.
We illustrate the general decomposition approach our algorithm is based
on, present the integer and linear programming models used to solve the
master and the client problem, and discuss the most important imple-
mentational aspects. Finally, we report computational results for various
benchmark problems, which demonstrate the efficiency of our algorithm.
Keywords: Shortest Path Routing, Integer Programming

1 Introduction

In this paper, we present an integer programming algorithm to optimize the
routing in communication networks based on shortest path routing protocols
such as OSPF [25] or IS-IS [17], which are widely used in the Internet. With
these routing protocols, all end-to-end traffic streams are routed along shortest
paths with respect to some administrative link lengths (or routing weights), that
form the so-called routing metric.

The simplicity of this routing policy offers many operational advantages in
practice. Shortest path routing permits the use of decentralized and distributed
routing algorithms, it has very good scaling properties with respect to the net-
work size, and it causes only little administrative overhead compared to connec-
tion oriented routing policies. From the planning perspective, however, shortest
path routing is extremely complicated. As all routing paths depend on the same
shortest path metric, it is not possible to configure the end-to-end routing paths

⋆ This work has been supported by the DFG Research Center Matheon “Mathematics
for key technologies” in Berlin.

for different communication demands individually. The routing can be controlled
only as a whole and only indirectly by changing the routing metric. Finding a
routing metric that induces a set of globally efficient end-to-end routing paths
is a major difficulty, as the shortest path routing paradigm enforces rather com-
plicated and subtle interdependencies among the paths that comprise a valid
routing.

In this paper, we consider the unsplittable shortest path routing variant,
where the lengths must be chosen such that the shortest paths are unique
and each traffic demand is sent unsplit via its single shortest path. This ad-
ditional requirement is imposed by several network operators, among them the
DFN Verein operating the German national research and education network.
Shortest multi-path routing protocols, such as the commonly used equal cost
multi-path (ECMP) extension of the open shortest path first protocol (OSPF),
permit the use of multiple routing paths for each traffic demand. The mech-
anisms used to distribute the traffic among these paths, however, in practice
either achieve only a rough approximation of the prescribed splitting ratios or
may lead to packet reordering and other undesired effects of sending the data
packets of a single communication session along different paths. Restricting to
the unsplittable shortest path routing variant avoids all these difficulties, permits
full traceability of all traffic streams, and sometimes even simplifies the network
management.

One of the most important operational planning tasks in communication
networks is traffic engineering. Its goal is to improve the service quality in the
existing network by (re-)optimizing the routing of the traffic, but leaving the
network topology and hardware configuration unchanged. Mathematically, this
task can be formulated as the minimum congestion unsplittable shortest path
routing problem (Min-Con-USPR). The problem input consists of a directed
graph D = (V,A) with arc capacities ca ∈ Z for all a ∈ A, and a set of directed
commodities K ⊆ V ×V with demand values dst ∈ Z for all (s, t) ∈ K. A feasible
solution is an unsplittable shortest path routing (USPR) of the commodities, i.e.,
a metric of link lengths λa ∈ Z, a ∈ A, that induce a unique shortest (s, t)-path
for each commodity (s, t) ∈ K. Each commodity’s demand is sent unsplit along
its shortest path. The objective is to minimize the maximum congestion, i.e.,
the maximum flow to capacity ratio over all arcs. The maximum congestion is a
good measure for the overall network service quality and typically used as a key
indicator in traffic engineering.

Due to their great practical relevance, shortest path routing problems have
been studied quite intensively in the last decade. Ben-Ameur and Gourdin [2],
Broström and Holmberg [14,15] studied the combinatorial properties of path sets
that correspond to shortest (multi-)path routings and devised linear program-
ming models to find lengths that induce a set of presumed shortest paths (or
prove that no such lengths exist). Bley [4,7], on the other hand, showed that find-
ing a smallest shortest-path conflict in a set of presumed shortest paths or the
smallest integer lengths inducing these paths is NP-hard. Furthermore, Bley [6]
proved that Min-Con-USPR is inapproximable within a factor of Ω(|V |1−ǫ) for

2

any ǫ > 0 and proposed polynomial time approximation algorithms for several
special cases of Min-Con-USPR and related network design problems. Further-
more, In the same paper, Bley also presented examples where the smallest link
congestion that can be obtained with unsplittable shortest path routing exceeds
the congestion that can be obtained with multi-commodity flow or unsplittable
flow routing by a factor of Ω(|V |2). The minimum congestion shortest multi-
path routing problem has been shown to be inapproximable within a factor less
than 3/2 by Fortz and Thorup [19].

Various approaches for the solution of network design and routing problems in
shortest path networks have been proposed. Algorithms using local search, simu-
lated annealing, or Lagrangian relaxation techniques with the routing lengths as
primary decision variables are presented in [3,9,16,18,19,34], for example. These
length-based methods work well for shortest multi-path routing problems, where
traffic may be split among several equally long shortest paths, but they often
produce only suboptimal solutions for hard unsplittable shortest path routing
problems. As they deliver no or only weak quality guarantees, they cannot guar-
antee to find provenly optimal solutions.

Using mixed integer programming formulations that contain variables for
the routing lengths as well as for the resulting shortest paths and traffic flows,
shortest path routing problems can – in principle – be solved to optimality.
Formulations of this type are discussed in [9,8,20,28,30,33], for example. Unfor-
tunately, the relation between the shortest paths and the routing length always
leads to quadratic or very large big-M models, which are computationally ex-
tremely hard and not suitable for practical problems.

In this paper, we present an integer programming algorithm that – similar
to Bender’s decomposition – decomposes the minimum congestion unsplittable
shortest path routing problem into the master problem of finding the optimal
end-to-end routing paths and the client problem of finding a routing metric
that induces these paths. The main advantage of this decomposition approach
is that it permits the use of advanced integer linear programming techniques
for unsplittable multi-commodity flow problems to compute provenly optimal
routings also for real-world scale problems. An implementation of this algorithm
is used successfully in the planning of the German national education and re-
search network for several years [10,11,5]. Modifications of this decomposition
approach for shortest multi-path and multicast routing problems are discussed
in [12,21,31,32,33].

The remainder of this paper is organized as follows. In Section 2, we formally
define the minimum congestion unsplittable shortest path routing problem and
introduce the notions and notations used throughout this paper. The overall de-
composition algorithm and the models and sub-algorithms used for the solution
of the master and the client problem are described in Section 3. In Section 4 we
discuss additional cutting planes, which proved to be essential for the practical
performance of the algorithm. The heuristics used to compute primal solutions
are discussed in Section 5, further important aspects of our implementation are
discussed in Section 6. In Section 7, we finally report on numerical results ob-

3

tained with this algorithm for numerous real-world and benchmark problems
and illustrate the relevance of optimizing the routing in practice.

2 Notation and Preliminaries

Let D = (V,A) be a directed graph with arc capacities ca ∈ Z for all a ∈ A and
let K ⊆ V ×V be a set of directed commodities with demand values dst ∈ Z for
all (s, t) ∈ K. For each commodity (s, t) ∈ K, let P(s, t) denote the set of all
(s, t)-paths in D. Furthermore, let P :=

⋃

(s,t)∈K P(s, t).

Definition 1. We say that a metric λ = (λa) ∈ R
A defines an unsplittable

shortest path routing (USPR) for the commodity set K, if the shortest (s, t)-
path with respect to λ is uniquely determined for each commodity (s, t) ∈ K.
We denote the shortest (s, t)-path with respect to λ by P ∗

st(λ).

The demand of each commodity is routed unsplit along the respective shortest
path. For a metric λ that defines such an USPR, the total flow through an arc
a ∈ A then is

fa(λ) :=
∑

(s,t)∈K: a∈P∗

st
(λ)

dst . (1)

The task in the minimum congestion unsplittable shortest path routing problem
Min-Con-USPR is to find a metric λ ∈ Z

A that defines an USPR for the given
commodity set K and minimizes the maximum congestion L := max{fa(λ)/ca :
a ∈ A}. Formally, this problem is defined as follows:

Problem: Min-Con-USPR

Instance: A digraph D = (V,A) with arc capacities ca ∈ Z, a ∈ A, and a
commodity set K ⊆ V × V with demands d(s,t) ∈ Z, (s, t) ∈ K.

Solution: A metric λ ∈ Z
A, such that the shortest (s, t)-path w.r.t λ is

uniquely determined for each commodity (s, t) ∈ K.

Objective: min (maxa∈A fa(λ)/ca), where fa(λ) is as defined in (1).

We may assume without loss of generality that D contains an (s, t)-path for
each commodity (s, t) ∈ K and that D is simple: Loops cannot be contained in a
uniquely determined shortest path and, if two parallel arcs were contained in two
commodities’ routing paths, then none of these paths would be a unique shortest
path. Furthermore, we may assume that there are no parallel commodities: If
there were two or more parallel commodities from s to t, these would have to use
the same (uniquely determined shortest) flow path in any unsplittable shortest
path routing and, therefore, could be aggregated into one commodity.

For any bijection idx : A ↔ {1, . . . , |A|}, the metric λa := 2idx(a) induces
unique shortest paths between all node pairs. Hence, any instance of Min-Con-

USPR has a feasible solution, provided that the underlying digraph D contains
at least one (s, t)-path for each (s, t) ∈ K. One easily observes that Min-Con-

USPR contains the classical disjoint paths problem as a special case. This im-
mediately implies that it is NP-hard to approximate Min-Con-USPR within

4

a factor strictly less than 2 even in the special case where all arc capacities are
1 and only two commodities with demand value 1 are given. For general arc
capacities and commodities, Min-Con-USPR is hard to approximate within a
factor Ω(|V |1−ǫ) for any ǫ > 0; see [6].

Note that the problem Min-Con-USPR defined above permits arbitrarily
large values for the routing lengths λa. The routing protocols used in practice,
however, can handle only small lengths. The most commonly used shortest path
routing protocol OSPF, for example, permits only lengths between 1 and 216−1.
Nevertheless, we can safely neglect the upper bounds on the lengths for the
purpose of routing planning. For the currently deployed routing protocols, they
impose no binding constraints for practically interesting network sizes. We may
assume that two routing metrics are equivalent for Min-Con-USPR if they
induce the same set of shortest paths.

The integer programming algorithm discussed in this paper is based on a spe-
cial representation of the shortest path routing, which describes the routing as a
set of node-arc pairs F ⊂ V ×A. For the USPR defined by a metric λ, the corre-
sponding node-arc set F (λ) is F (λ) := {(t, a) : a ∈ P ∗

st(λ) for some (s, t) ∈ K},
that is, F (λ) contains all those node-arc pairs (t, a), for which a is contained in a
(shortest) routing path towards destination t. In the Min-Con-USPR problem,
we are interested in all those sets F ⊂ V × A that correspond to a valid unique
shortest path routing.

Definition 2.

(i) A metric λ is said to be compatible with a set of node-arc pairs F ⊂ V ×A,
if, for each (t, a) ∈ F , arc a = (u, v) is contained in all shortest (u, t)-paths
with respect to λ.

(ii) A set F ⊂ V × A is a unique shortest path forwarding (USPF) if there
exists a compatible metric for F . Otherwise we call F an (USPF-) conflict.

Note that this definition of USPF is independent from the commodity set K. One
easily verifies that a set F is an USPF if and only if there exists a metric λ that
defines a unique shortest path between all node pairs in D and, for each given
pair (t, a) ∈ F , arc a = (u, v) is contained in the unique shortest path from
u to t. Note that a given USPF does not necessarily define the shortest path
for each commodity. Furthermore, a USPF does not necessarily define complete
end-to-end paths; it may as well prescribe only some arcs to be on the shortest
paths towards some destination, but still leave some choice about the complete
end-to-end shortest paths.

Clearly, any subset (including the empty set) of an USPF is an USPF as well.
Hence, the family of all USPF in the digraph D forms an independence system
I ⊂ 2V ×A. The circuits of this independence system are exactly the irreducible
(i.e., inclusion-wise minimal) USPF conflicts. In the following, we denote the
family of all irreducible conflicts by C ⊂ 2V ×A. Based on the independence
system of unique shortest path forwardings, we immediately get the following
completely characterization of all valid unsplittable shortest path routings for a
given set of commodities.

5

Lemma 3 ([5]). The path set Q ⊆ P is (the path set of) a valid unique shortest
path routing for the commodity set K if and only if

(i) |Q ∩ P(s, t)| = 1 for all (s, t) ∈ K, i.e., Q contains exactly one path for
each commodity, and

(ii) no irreducible conflict C ∈ C is fully contained in the set F :=
⋃

P∈Q{(t, a) :
t is destination of P , a ∈ P}.

The independence system I of all unique shortest path forwardings can be
extremely complex; see [5]. In general digraphs, the rank quotient of I may be
arbitrarily small and the size of irreducible conflicts may be arbitrarily large.
Given an arbitrary set F ⊂ V ×A, it is NP-hard to approximate the size (with
respect to the number of node-arc pairs) of the largest USPF contained in F by
a factor less than 8/7. It is also NP-hard to approximate the size of the smallest
conflict in F by a factor less than 7/6 [7]. However, as we will see in Section
3.2, one can decide in polynomial time whether or not a given set F ⊂ V ×A is
a valid USPF and, depending on that, either find a compatible metric or some
(not necessarily minimal) irreducible conflict in F . This is the foundation of the
algorithm described in the following section.

3 Integer Programming Algorithm

Similar to Benders’ decomposition, our algorithm decomposes the problem of
finding an optimal shortest path routing into the master problem of finding the
optimal end-to-end paths and the client problem of finding compatible routing
lengths for these paths.

The master problem is formulated as an integer linear program and solved
with a branch-and-cut algorithm. Instead of using routing weight variables, the
underlying formulation contains special inequalities based on USPF conflicts to
exclude routing path configurations that are no valid unsplittable shortest path
routings. These inequalities are generated dynamically as cutting planes by the
client problem during the execution or the branch-and-cut algorithm.

Given a set of routing paths computed by the master problem’s branch-and-
cut algorithm, the client problem then is to find a metric of routing lengths that
induce exactly these paths. As we will see in Section 3.2, this problem can be for-
mulated and solved as a linear program. If the given paths indeed form a valid
shortest path routing, the solution of this linear program yields a compatible
metric. If the given paths do not form a valid unsplittable shortest path routing,
the client linear program is infeasible. In this case, the given routing paths con-
tain a conflict that must not occur in any admissible shortest path routing. This
conflict, which can be derived from the dual solution of the infeasible client linear
program, then can be turned into an inequality for the master problem, which is
valid for all admissible shortest path routings, but violated by the current rout-
ing. Adding this inequality to the master problem, we then cut off the current
non-admissible routing and proceed with the master branch-and-cut algorithm
to compute another candidate routing.

6

3.1 Master Problem

There are several ways to formulate the master problem of Min-Con-USPR

as a mixed integer program. For notational simplicity, we present a variation of
the disaggregated arc-routing formulation used in our algorithm, which contains
additional artificial variables that describe the unique shortest path forwarding
defined by the routing.

The primary decision variables used in this formulation are the variables
xst

a ∈ {0, 1} for all (s, t) ∈ K and a ∈ A. These variables describe which arcs
are contained in the routing paths. Variable xst

a is supposed to be 1 if and only
if arc a is contained in the routing path for commodity (s, t). A single variable
L ∈ R represents the maximum congestion that is attained by the routing. The
additional artificial variables yt

a ∈ {0, 1} for all t ∈ V and a ∈ A describe the
forwarding defined by the routing paths. Variable yt

a is supposed to be 1 if there
is a routing path towards t that contains arc a. With these variables the master
problem of Min-Con-USPR can be formulated as follows:

min L (2a)

s.t.
∑

a∈δ+(v)

xst
a −

∑

a∈δ−(v)

xst
a =











−1 if v = s

1 if v = t

0 else

(s, t) ∈ K, v ∈ V (2b)

∑

(s,t)∈K

dstx
st
a ≤ ca L a ∈ A (2c)

xst
a ≤ yt

a (s, t) ∈ K, a ∈ A (2d)
∑

a∈δ+(v)

yt
a ≤ 1 t ∈ V, v ∈ V (2e)

∑

(a,t)∈C

yt
a ≤ |C| − 1 C ∈ C (2f)

xst
a ∈ {0, 1} (s, t) ∈ K, a ∈ A (2g)

L ≥ 0. (2h)

Subproblem (2a)–(2c) together with the integrality and non-negativity con-
straints (2g) and (2h) is a standard arc-routing formulation for the unsplittable
multi-commodity flow problem, whose objective is to minimize the congestion
L.

Inequalities (2d) force the artificial variables yt
a to be (at least) 1 for all arcs

a that are contained in some routing path towards destination t. Together with
the out-degree constraints (2e) this ensures that, for each destination t ∈ V , the
routing paths towards t form an anti-arborescence, which is clearly necessary for
the paths in any valid unsplittable shortest path routing.

Constraints (2f) finally ensure that no integer solution of (2) contains all
node-arc pairs of any (irreducible) USPF-conflict C ∈ C. As the irreducible con-
flicts are exactly the circuits of the independence system formed by all valid

7

unique shortest path forwardings, this implies that the artificial variables yt
a

describe a valid USPF. Consequently, the routing given by any integer feasi-
ble solution of (2) is a valid unsplittable shortest path routing. In general, the
number of these conflict constraints (2f) can be exponentially large. They are
separated via the client problem during the branch-and-cut solution process.

Note that the model contains no explicit constraints forcing the artificial
variables yt

a to attain only values 0 or 1. These constrains are not necessary. Any
solution (x,y, L) with xst

a ∈ {0, 1} for all (s, t) ∈ K and a ∈ A can be easily
turned into an equivalent solution with yt

a ∈ {0, 1} for all t ∈ V and a ∈ A by
setting yt

a := max{xst
a : s with (s, t) ∈ K} for all t and a.

3.2 Client Problem

Now suppose we are given an integer solution (x,y, L) of formulation (2) or, more
precisely, of a subsystem of (2) containing only some of the conflict constraints
(2f) so far.

Let F be the presumed unique shortest path forwarding given by this so-
lution, i.e., F = {(t, a) : yt

a = 1}. Our goal in the client problem is to find a
compatible metric λ for F . However, if the given solution (x,y, L) violates some
of the conflict constraints (2f) that have not yet been added to the master for-
mulation, such a metric does not exist. In this case, the task is to generate one
of these violated inequalities.

The first part of this problem can be solved with linear programming tech-
niques. A number of alternative formulations for this so-called inverse shortest
paths problem (ISP) have been proposed in the literature [2,29]. In the following,
we present the aggregated formulation used in our algorithm together with the
arc-routing formulation for the master problem.

Let F be the given presumed unique shortest path forwarding. For each
pair (t, a) ∈ F , arc a = (u, v) is assumed to be on a unique shortest path
from u to t. Hence, the arcs a′ ∈ δ+(u) \ {a} must not be on any shortest
(u, t)-path. The set of all these implied non shortest path node-arc pairs is F̄ =
⋃

(t,(u,v))∈F (δ+(u)\{(u, v)}). For each pair (t, a) ∈ F̄ , arc a = (u, v) must not be

on a shortest path from u to t. Note that we cannot simply assume F̄ = V ×A\F ,
because F does not necessarily prescribe shortest paths between all node pairs.
Arcs that are not relevant for the routing of the given commodities may or may
not be on shortest paths and, thus, the corresponding node-arc pairs may be
missing in both F and F̄ .

Our formulation of the inverse shortest paths problem uses a variable λa ∈ Z

for the length of each arc a ∈ A and a variable πt
v ∈ R for the so-called potential

of each node v ∈ V with respect to each destination t ∈ V and the metric λ.
(If πt

t = 0, the smallest possible potential πt
v of node v is exactly the distance

from v to t with respect to the arc lengths λa.) With these variables, the inverse
shortest paths problem for the given forwarding F , can be formulated as follows:

8

min λmax (3a)

s.t. λ(u,v) − πt
u + πt

v = 0 (t, (u, v)) ∈ F (3b)

λ(u,v) − πt
u + πt

v ≥ 1 (t, (u, v)) ∈ F̄ (3c)

λ(u,v) − πt
u + πt

v ≥ 0 (t, (u, v)) ∈ (V × A) \ {F ∪ F̄} (3d)

1 ≤ λa ≤ λmax a ∈ A (3e)

πt
v ∈ R t ∈ V, v ∈ V (3f)

λa ∈ Z a ∈ A . (3g)

Constraints (3b),(3d), and (3e) ensure that the lengths λa in any solution of (3)
form a compatible metric for the given forwarding F . The term λ(u,v) − πt

u + πt
v

is the difference between the length of the shortest path starting in node u,
passing through arc (u, v), and ending in node t, and the distance from node
v to node t. This difference must be 0 for all arcs (u, v) that are on a shortest
path and strictly greater than 0 for all arcs that must not be on a shortest
path, as expressed in constraints (3b) and (3c). For all remaining arcs it must
be non-negative.

It is easy to verify that formulation (3) has a solution if and only if there
exist a compatible metric for the given forwarding F . Furthermore, there is a
compatible metric with lengths in the range {1, 2, . . . ,M} if and only if the
optimal solution value λmax of formulation (3) is less or equal to M .

Note that formulation (3) is an integer program and may be computationally
hard. In fact, Bley [4] proved that it is already NP-hard to approximate its opti-
mum value within a factor less than 9/8 in general. In our application, however,
we only want to find some feasible solution of (3), or prove that none exists.
We do not really care about the size of the length values λa. Using Cramer’s
rule, one easily verifies that the integer program (3) has a solution if and only if
its linear relaxation has: Multiplying a solution of the linear relaxation with the
determinant of the corresponding linear programming basis, for example, always
yields a feasible integer solution of (3). As the linear relaxation of (3) can be
solved in polynomial time, we also can decide in polynomial time whether the
given set F is an USPF or not.

In our algorithm, we solve the linear relaxation of (3) in a first step and, if it
is feasible, scale and round its optimal fractional solution to an integer feasible
solution of (3) afterwards. Using the rounding scheme proposed by Ben-Ameur
and Gourdin [2], we obtain lengths that exceed the minimal possible ones by a
factor of at most min (|V |/2, |Pmax|), where Pmax is the longest prescribed short-
est path. For practically relevant network sizes, the lengths computed with this
approximate method easily fit into the admissible range of all modern routing
protocols. So, we can safely ignore the integrality constraint (3g) in practice.

If the linear relaxation of (3) is infeasible, then the given solution (x,y, L)
of the (incomplete) master formulation is not a valid routing. In this case, the
presumed forwarding F is not a valid unsplittable shortest path forwarding. It

9

contains at least one (irreducible) conflict C ∈ C, whose corresponding inequality
(2f) is violated by the given solution (x,y, L). To find one of these conflicts, we
iteratively try to remove each node-arc pair from F . In each iteration, we remove
one pair (t, a) from F , update the set F̄ of implied non-shortest path node-arc
pairs, and solve the corresponding linear relaxation of (3). If this linear program
remains infeasible, we remove the pair (t, a) permanently from F . Otherwise,
we reinsert it into F and keep it permanently. If no more node-arc pair can be
removed, the remaining set F defines an irreducible conflict, whose corresponding
conflict inequality (2f) for C = F is violated by the given solution (x,y, L). In
our implementation, we improved the practical performance of this procedure
significantly by removing initially all those pairs (t, (u, v)) from F , for which
the dual variables of the corresponding constraint (3b) and the dual variables
of all constraints (3c) implied by (t, (u, v)) ∈ F are 0. If these constraints are
not active in the infeasible subsystem of (3), there is at least one (irreducible)
conflict that is not related to the fact that (t, (u, v)) ∈ F .

Note that this iterative method finds an irreducible conflict inequality (2f),
but not necessarily the most violated one. Finding the most violated such in-
equality is NP-hard, even if the given solution of the master problem is inte-
ger [7]. Furthermore, note that this approach solves the separation problem over
the conflict inequalities (2f) only for integer solutions (x,y, L). For fractional
solutions (x,y, L), the presumed forwarding F is not well-defined, so we cannot
construct and solve the client problem’s linear program (3). In our application
we try to overcome this difficulty by constructing the presumed forwarding as
F := {(t, a) : yt

a ≥ 0.8}. This way, we can apply the simple and fast separation
algorithm described above also as a separation heuristic for fractional solutions
(x,y, L) of the master problem. Yet, the overall decomposition algorithm is an
exact algorithm for the Min-Con-USPR problem, because our iterative method
solves the separation problem for integer solutions (x,y, L) of the master prob-
lem exactly.

An alternative approach to solve the separation problem for the conflict in-
equalities (in a variant appropriate for shortest multi-path routing) was proposed
by Tomaszewski et al. [32,33]. Tomaszewski et al. formulate the separation prob-
lem over these inequalities as an integer linear program, which they then solve
heuristically. For fractional solutions of the master problem, Tomaszewski’s ap-
proach might find more violated conflict inequalities than our iterative approach,
as the latter one does not take the effect of the fractional variables correctly
into account. Broström and Holmberg [14,15] studied a special subclass of con-
flict constraints (again in a variant appropriate for shortest multi-path routing),
called valid cycle constraints, for which they derived a polynomial time sepa-
ration algorithm that also is applicable for fractional solutions of the master
problem. From a computational perspective, however, both the general separa-
tion algorithm proposed by Tomaszewski et al. and the polynomial time separa-
tion algorithm for the special valid cycle constraints proposed by Broström and
Holmberg are much more demanding that our simple iterative approach. As the
conflict inequalities are only necessary to ensure feasibility of the final solution

10

but have no substantial effect on the value of the linear programming relaxation
of the master problem, it is not clear, whether it is worth to spend more com-
putation time on a better separation for these inequalities. The computational
results reported in [32] and [5] indicate that this is not the case.

4 Valid Inequalities

The integrality gap of the integer programming formulation (2) for the master
problem can be very large. Even for the solution of small problem instances,
it is necessary to improve the linear relaxation of (2) with additional strong
inequalities. In this section, we describe the problem specific inequalities that
are used in our implementation of this algorithm.

4.1 Routing Inequalities

Numerous types of valid inequalities can be derived from the so-called Bellman
or subpath consistency condition [2,5]. Two paths P1 and P2 are said to satisfy
the subpath consistency condition if there are no nodes u and v, such that P1

and P2 both contain a subpath P1[u, v] and P2[u, v], respectively, and P1 6= P2.
A path set Q is said to satisfy the subpath consistency condition, if all pairs of
paths in Q satisfy this condition.

Clearly, any path set that comprises a unique shortest path routing satisfies
the subpath consistency condition. If two paths P1 and P2 would contain different
subpath P1[u, v] and P2[u, v], then none of the two paths P1 and P2 can be a
unique shortest path between its terminals. The subpath consistency is one of
the simplest conditions that must be satisfied by the paths of an unsplittable
shortest path routing. All USPF conflicts that may occur between two paths are
in fact violations of the subpath consistency; see [5].

The out-degree inequalities (2e) in the formulation of the master problem are
a special class of inequalities implied by the subpath consistency condition: As
there must be a unique (sub-)path from v to t for all nodes v and t, the routing
paths towards t must form an anti-arborescence with root t.

Analogous to the out-degree inequalities, we also add in-degree inequalities to
the master problem’s formulation. These ensure that the routing paths emanat-
ing from each source s form an arborescence. For notational simplicity, assume
that we have artificial variables zs

a := max{xst
a : t with (s, t) ∈ K} for all s ∈ V

and a ∈ A. With these artificial variables, the in-degree inequalities can be easily
formulated as

∑

a∈δ−(v)

zs
a ≤ 1 v, s ∈ V . (4)

These inequalities are clearly valid for any integer solution of (2e). As for the
out-degree inequalities, the separation problem over these inequalities can be
solved in a straightforward way with an enumerative algorithm.

11

It is not difficult to derive many types of valid inequalities from the subpath
consistency condition. In our algorithm, we add the following three types of
inequalities to the master problem formulation (2):

xs,v
a − xs,t

a +
∑

e∈δ−(v)

xs,t
e ≤ 1 (s, t), (s, v) ∈ K, a ∈ A , (5)

xv,t
a − xs,t

a +
∑

e∈δ−(v)

xs,t
e ≤ 1 (s, t), (v, t) ∈ K, a ∈ A , (6)

xs,v
a + xv,t

a − xs,t
a − 2(1 −

∑

e∈δ−(v)

xs,t
e) ≤ 0 (s, v), (v, t), (s, t) ∈ K, a ∈ A . (7)

One easily verifies that these inequalities are valid for each integer solution of
(2). Consider the inequalities of type (5) for the two commodities (s, t), (s, v) ∈
K. If x corresponds to a valid unsplittable shortest paths routing, the term
∑

e∈δ−(v) xs,t
e will be 1 if the routing path for commodity (s, t) passes through

node v and 0 otherwise. In the first case, the corresponding inequalities (5)
for (s, t) and (s, v) reduce to xs,v

a ≤ xs,t
a for all a ∈ A, which expresses the

condition that that the routing path of commodity (s, v) must be subpath of the
routing path of commodity (s, t). In the second case, these inequalities reduce
to xs,v

a ≤ xs,t
a + 1 for all a ∈ A, which is satisfied trivially.

Analogously, inequalities (6) express the condition that the routing path for
commodity (v, t) must be a subpath of the routing path for commodity (s, t), if
v is contained in the latter path. Inequalities (7) finally ensure that the routing
paths of the two commodities (s, v) and (v, t) are disjoint subpaths of the routing
path for commodity (s, t), if the latter path contains v.

Although in general none of these inequalities is facet-defining for the poly-
tope associated with (2), they all proved to be very useful in practice. In our
implementation, we solve the separation problem over these inequalities with a
straightforward enumerative algorithm.

4.2 Precedence Constrained Knapsack Inequalities

The inequalities discussed above have been derived by considering only the rout-
ing paths of valid unsplittable shortest paths routings. The traffic demands and
link capacities have been completely ignored so far. The inequalities discussed
in the following combine the combinatorial restrictions on the valid routing path
and the given link capacities and demand volumes.

For each arc a, the subproblem defined by its capacity constraint and the
arc routing variables on this arc can be regarded as a precedence constrained
knapsack. The items in this knapsack problem correspond to the commodities
(s, t) ∈ K, the weights of the items are the demand volumes d(s,t) of the com-
modities. The capacity of the knapsack is Lmax ca, where Lmax is some upper
bound for the optimal congestion value. The subpath consistency condition in
the original shortest path routing problem implies additional precedence rela-
tions among the commodities. Consider two commodities (s, t), (u, v) ∈ K and

12

v1

v2

v3

v4

v5

v6

v7

v8

k1 = (v3, v4)
k2 = (v3, v5)
k3 = (v2, v4)
k4 = (v3, v8)
k5 = (v2, v5)
k6 = (v6, v5)
k7 = (v1, v5)

(a) Possible routing of commodities
across arc (v3, v4).

k1

k2 k3 k4

k5 k6

k7

(b) Precedence relations among the
commodities.

Figure 1. Precedence relations in the routing optimization instances.

suppose that every (s, t)-path across arc a contains the two nodes u and v in
its subpaths from s to a and from a to t, respectively. Then commodity (u, v)
must be routed across arc a whenever commodity (s, t) is routed across arc a,
which leads to the so-called precedence (or order) relation xu,v

a ≥ xs,t
a . These

precedence relations define a partial order on the commodities. For each com-
modity (s, t) ∈ K, we denote by p(s, t) the set of commodities (u, v) which are
immediate predecessors of commodity (s, t) in this order. Figure 1 illustrates
this partial order for a small example.

Together with the capacity constraint (2c), these precedence relations define
the precedence constrained knapsack polytope

PCK(a, Lmax) := conv{ xs,t
a ∈ {0, 1}K :
∑

(s,t)∈K

dstx
st
a ≤ ca Lmax

xu,v
a ≥ xs,t

a (s, t) ∈ K, (u, v) ∈ p(s, t) }

associated with arc a and Lmax. Valid inequalities for the associated precedence
constrained knapsack polyhedra carry over in a straightforward way to valid
inequalities for the polyhedron associated with (2): An inequality that is valid
for PCK(a, Lmax) is valid for each solution (x,y, L) of (2) that satisfies L ≤
Lmax. Hence, all inequalities that are valid for PCK(a, Lmax) are also valid for
the optimal solution (x∗,y∗, L∗) of (2), provided that Lmax is a valid upper
bound on the optimal congestion value L∗. Of course, these inequalities are
valid only for the optimal solution of (2), not for all solutions. As not only
the capacity constraints but also the precedences among the routing variables
are respected, the inequalities derived from facets of the precedence constrained
knapsack polyhedron are typically much stronger than those derived from facets
of the knapsack polyhedron defined by the capacity constraint alone.

The polyhedral structure of the precedence constrained knapsack polytope
was first investigated by Boyd [13], who generalized cover and (1, k)-configuration

13

inequalities for the standard knapsack polytope to the precedence constrained
case. In our algorithm, we apply only the so-called induced cover inequalities
introduced by Boyd [13]. Let a ∈ A and Lmax be an upper bound for the optimal
congestion value derived from the best known feasible solution, for example. For
each commodity (s, t) ∈ K, we denote by P (s, t) the set of commodities (u, v) for
which the routing variable xu,v

a is a (not necessarily immediate) predecessor of the
routing variable xs,t

a in the precedence order, i.e., P (s, t) contains all predecessors
of xs,t

a . We also assume that (s, t) ∈ P (s, t). For a set of commodities C ⊆ K,
let P (C) :=

⋃

(s,t)∈C P ((s, t)) and d(P (C)) :=
∑

(s,t)∈P (C) dst .
According to Boyd we call a commodity set C ⊆ K an induced cover for

arc a and congestion Lmax, if d(P (C)) > ca Lmax, i.e., the total demand of
the commodities in and implied by C exceeds the capacity available on arc a for
solution with congestion Lmax or less. For any induced cover C ⊆ K, the induced
cover inequality [13]

∑

(s,t)∈C

xst
a ≤ |C| − 1 (8)

is valid for PCK(a, Lmax) and, consequently, for (2). If C is an induced cover,
not all commodities in C can be routed simultaneously across arc a in an optimal
solution of (2).

Boyd [13], Park and Park [27], and van de Leensel et al. [24] also derived con-
ditions under which these inequalities are facet-defining for lower dimensional
faces of the precedence constrained knapsack polytope and proposed sequential
lifting procedures to lift these inequalities into facets of the precedence con-
strained knapsack polytope. These lifting techniques, however, are computation-
ally too demanding to be applied effectively in a branch-and-bound algorithm.
Both the separation problem for the basic induced cover inequalities and the
problem of determining the right coefficients in the lifting process are NP-hard
in general.

In our algorithm, we apply a simple greedy heuristic to find violated induced
cover inequalities for each arc a and the currently best known upper bound Lmax.
In the first phase, we try to find an induced cover whose induced cover inequality
is violated. For this, we build a commodity set S that is closed under the prece-
dence order. Starting with some minimal commodity in the precedence order, we
iteratively add a commodity whose predecessors are all already contained in S. If
the total demand of the commodities in the set S exceeds the available capacity
ca Lmax, we consider the set C of maximal commodities w.r.t. the precedence
order in S. This commodity set C is an induced cover for a and Lmax. If the
corresponding induced cover inequality is violated, we keep this inequality and
go to the third phase of the heuristic. Otherwise we continue with the second
phase, where we keep on adding commodities to the set S, but from now on in
such a way that the size of the set C of maximal commodities decreases. For this,
we prefer in each iteration the addition of commodities that are predecessors of
several currently maximal commodities. Every time the size of C reduces, the
corresponding induced cover inequality is evaluated. The second phase stops if

14

no violated induced cover inequality can be generated by adding further items.
If some violated induced cover inequality was found, then, in the third phase, we
finally remove as many commodities as possible from the minimal induced cover
C such that C remains an induced cover. Further strengthening techniques, such
as lifting further commodities into the inequality, are computational expensive
and not performed.

In each cut generation step of the master problem’s branch-and-cut algo-
rithm, this greedy heuristic is applied three times with three different strategies
of adding the commodities in the first and in the second phase for each arc a
and the currently best known congestion value Lmax. When applied for the very
first time, we also have to compute the precedence order among the flow vari-
ables across arc a. For this, we check for each pair of commodities (s, t) and
(u, v) if u is contained in every path from s to the source node of a and if v is
contained in every path from the target node of a to t. This is done by comput-
ing the connected components in the digraphs obtained by removing u and v,
respectively.

Another simple and very effective type of constraints can be derived for
commodities whose terminals are directly connected. For any (s, t) ∈ K with
(s, t) ∈ A, the subpath property implies that either commodity (s, t) is routed
across arc (s, t), or none of the commodities in K is routed across arc (s, t).
Furthermore, it is always possible to turn a feasible routing where no routing path
contains arc (s, t) into another feasible routing by replacing the (s, t)-subpath of
all commodities that are routed via s and t by the arc (s, t) and leaving the rest
of the routing unchanged. Thus, if the capacity of arc (s, t) is at least as large
as the capacities of any other arc that may be contained in an (s, t)-path, the
solution not containing arc (s, t) cannot be optimal. Consequently, the equalities

xs,t

(s,t) = 1 (s, t) ∈ K ∩ A with c(s,t) ≥ ca for all a ∈ A \ {(s, t)} (9)

must hold for some optimal solution of (2). There are at most |A| equalities of
this type, so they can be generated in polynomial time. Adding these equalities
to the formulation of the master problem proved to be very useful in practice.
Note, however, that these equalities are not valid for all feasible solutions of (2);
they only hold for some optimal solutions.

5 Primal Heuristics

It is extremely important for the performance of our algorithm to quickly con-
struct good feasible solutions. The upper bound on the optimal solution value
derived from heuristic solutions is not only used to prune non-optimal branches
in the branch-and-bound tree based on the objective value, it is also used to
generate strong induced cover inequalities that cut-off non-optimal solutions.
Getting a tight upper bound for the minimal congestion in the beginning of the
branch-and-bound algorithm thus helps to strengthen the formulation and speed
up the search in the sequel.

15

In our implementation, we use four heuristics. Two heuristics are used to
compute initial solutions from scratch. The first initial heuristic simply generates
a set of random routing metrics, biased on the geographic link lengths and the
link capacities. For each of these candidate metrics, we then apply a perturbation
to ensure the uniqueness of all shortest paths. For the given integer-valued metric
λ, we consider the perturbed metric λ′ defined as λ′

a := 2|A|λa + 2idx(a) for
all a ∈ A, where idx is an arbitrary bijection idx : A ↔ {0, . . . , |A|}. One
easily verifies that all shortest paths with respect to λ′ are unique and that any
shortest paths with respect to λ′ is also a shortest path with respect to λ. For
the perturbed metrics, we finally compute the induced routing paths and traffic
flows.

Our second initial heuristic is the Lagrangian solution approach presented in
[3]. In this approach, we solve the linear relaxation of the corresponding minimum
congestion unsplittable flow problem via a Lagrangian relaxation, which relaxes
the capacity constraints (2c) and, thereby, decomposes the problem into |K|
shortest path problems. The dual variables of the capacity constraints can be
interpreted naturally as a routing metric. The Lagrangian algorithm iteratively
updates this candidate metric based on the violation of the (relaxed) capacity
constraints. Our initial ’heuristic’ simply takes the metric defined by the dual
variables after each iteration of the Lagrangian algorithm, perturbs these metrics
to ensure unique shortest paths, and computes the shortest paths and traffic flows
induced by the perturbed metrics. As a by-product, the Lagrangian algorithm
also computes a lower bound on the optimal solution value. A more detailed
description of this solution approach can be found in [3].

Two different heuristics are used within the branch-and-bound tree. Analo-
gous to the initial heuristics, both generate candidate routing metrics, perturb
them if necessary, and then compute a feasible solution from these metrics. The
first heuristic tries to construct solutions by combining the current dual variables
of the capacity constraints and of the induced cover constraints, which can be
interpreted as arc lengths quite naturally again, with several random metrics.

The second heuristic is closely related to and combined with the separation
routine for USPF-inequalities. In a first step, we determine the forwarding F that
is given by the arc routing variables that are integer or almost integer. In our
implementation, we let F := {(t, a) : yt

a ≥ 0.8}. Then we try to find a compatible
metric for this forwarding by solving the linear programming relaxation of (3).
If this linear program has a feasible solution, we use its optimal solution as a
candidate routing metric and then perturb and evaluate this metric as in the
other heuristics. If the linear program has no feasible solution, the near-integer
routing variables form a non-USPF. In this case, the heuristic proceeds like the
separation algorithm for the USPF-inequalities.

To avoid spending too much time in these heuristics, both are applied only
at branch-and-bound nodes whose depth is a power of two, or if the forwarding
defined by the almost-integer routing variables at the current branch-and-bound
node differs from the one at the parent node by more than two node-arc pairs.
Thus, the heuristics are applied more frequently at the top of the branch-and-

16

bound tree than in the lower parts of the tree, and they are applied after very
significant changes.

6 Implementation

The presented algorithm has been implemented as part of the network optimiza-
tion library Discnet [1]. The data structures and algorithms are based on the
standard c++ library and Leda [23], the linear programs arising in the solution
process are solved with Cplex 12.1 [22].

In the following, we describe our implementation for the problem version
where one seeks for a symmetric unsplittable shortest path routing. In this case,
the routing lengths of anti-parallel arcs must be equal and, consequently, the
routing path from s to t is the reverse path of the routing path from t to s for all
s, t ∈ V . Corresponding models for the master and client problems are obtained
by either adding the equalities

xs,t

(u,v) = xt,s

(v,u) (s, t), (t, s) ∈ K, (u, v), (v, u) ∈ A

to the master model (2) and the equalities

λ(u,v) = λ(v,u) (u, v), (v, u) ∈ A

to the client model (3). In our implementation, we perform the corresponding
variable substitutions in (2) and (3).

The initial formulation of the master problem contains all arc-routing vari-
ables xst

a , all tree variables yt
a, and the congestion variable L. Furthermore,

it contains the flow conservation equalities (2b), the capacity inequalities (2c),
and out-degree inequalities (2e). All other model constraints and additional in-
equalities are generated via separation subroutines during the execution of the
algorithm, together with the standard integer linear programming cuts generated
automatically by Cplex.

The indegree inequalities (4) are omitted in the case of symmetric unsplit-
table shortest path routing, because they are equivalent to the outdegree inequal-
ities (2e). Violated linking constraints (2d) and subpath consistency inequalities
(5), (6), and (7) are separated at all nodes of the branch-and-bound tree for
at most 5 rounds. The respective separation problems are solved exactly using
ad-hoc enumeration methods. Although there is only a polynomial number of
these inequalities, we add them via a cutting plane approach only if they are vi-
olated absolutely by more than a given threshold (by default 0.01 for the linking
constraints (2d) and 0.1 for the subpath consistency constraints). Adding all of
these inequalities to the initial formulation would increase the size of the master
problem too much and is practically prohibitive.

The general conflict constraints (2f) are separated via solving the client prob-
lem as described in Section 3.2. Whenever an integer solution candidate for the
(incomplete) master formulation is found, we solve the client problem to decide

17

whether or not it defines a valid unsplittable shortest path routing and to find
a compatible metric or a violated conflict inequality (2f).

In our implementation, we solve the client problem not only for the fully
integer solutions at the leaves of the master problem’s branch-and-bound tree,
but also for non-integer solutions arising within the branch-and-bound tree. At
each node of the master problem’s branch-and-bound tree, we consider the po-
tential forwarding F ⊆ V × A defined by the integer and near integer routing
variables. In our implementation, we let F := {(t, a) : yt

a ≥ 0.8}. We solve the
client problem whenever this presumed forwarding differs from the one at the
parent node in the branch-and-bound tree by more than two node-arc pairs, if
the depth of the current node in the branch-and-bound is a power of 2 or if all
arc-routing variables are integer. If the linear relaxation of the client problem (3)
is feasible for this forwarding F , the computed link lengths define a heuristic so-
lution for the Min-Con-USPR problem, which may improve on the best known
solution. Otherwise, if the linear relaxation of the client problem (3) is infeasi-
ble, we generate a conflict inequality (2f) using the greedy approach discussed in
Section 3.2. This inequality is violated at least by the rounded master problem’s
solution used to construct the potential forwarding F . If it is also violated by
the original fractional solution of the master problem, we add it to the mas-
ter formulation. Solving the client problem also for rounded fractional solutions
of the master problem at inner nodes of the branch-and-bound tree drastically
reduced the running time of the overall algorithm in practice, because good so-
lutions and inequalities excluding invalid routing patterns are found early in the
branch-and-bound tree.

The branch-and-bound tree for the master problem is constructed and ex-
plored in such a way, that we first perform the branching decisions that have
the biggest impact on the lower bound. These are the decisions that fix the
routing of the commodities with big demands on those arcs, where the maxi-
mum congestion is attained. Given the fractional linear programming solution at
the current node of the branch-and-bound tree, we first determine the set of all
arcs, for which the capacity constraint or one of the induced cover inequalities
is tight. Then we determine the maximum demand dmax of those commodities
that are routed fractionally across any of these arcs and, after that, restrict our
attention to only those fractional arc routing variables whose associated demand
value is at least 0.9 dmax. Among these variables, we finally choose the one whose
fractional value is closest to the target value of 0.8.

The next branch-and-bound node to explore is selected by the following strat-
egy. For a given number of iterations (32 by default), we choose the node with
the best lower bound. Then, we ‘dive’ for a good feasible solution deep into the
tree. The dive starts at an unexplored node with minimal lower bound and at
each step chooses the child node whose arc routing variable was fixed to 1 in the
previous branching decision. If a new feasible solution is found, we switch back
to the best lower bound strategy. If we reach a node that is infeasible or too
costly, we backtrack. If no feasible solution is found after 5 backtracking steps,
we switch back to the best bound strategy.

18

7 Results

Table 1 shows the computational results obtained by running the presented algo-
rithm for a collection of benchmark problems taken from the Survivable Network
Design Library SNDlib [26] and six real-world traffic engineering problems stem-
ming from the German national research and education network between 1999
and 2005. All computations were performed on a machine with an Intel Core2
Duo E8400 CPU at 3.00 GHz and 2 GB RAM running Linux 2.6. the linear
programs arising in the solution process are solved with Cplex 12.1 [22]. The
algorithm was run with a total CPU time limit of 5 hours on each instance.

The underlying networks are bidirectional and have the same capacity for
both directions of all links. The given traffic demands are asymmetric, i.e., the
commodities (s, t) and (t, s) may have are different demand values. The task is
to find a symmetric unsplittable shortest path routing. In the six real-world
problems, there are additional upper bounds on the lengths of the admissi-
ble routing paths for each commodity, which correspond to restrictions on the
transmission delay in the real networks. These constraints are incorporated into
the master model (2) in a straightforward way via linear constraints. In the
SNDlib instances and the two real-world instances Bwin and Gwin4, the goal is
to minimize the maximum link utilization over all links, as in the definition of
the Min-Con-USPR problem. The reported objective values are 100 times the
maximum congestion in these instances. In the four instances Gwin1, Gwin2,
Gwin3, and Xwin, we consider a generalized version of congestion minimization:
In these instances, some arcs of the digraph model interconnection links between
the German national research network and other networks. As these links are
known a priory to be highly loaded, they form a separate group of links. The
goal is to minimize a linear combination of the maximum congestion attained
on these special link and the maximum congestion attained on the normal links.
More details on these data sets and the extended model can be found in [5].

The numbers of nodes, bidirected links and non-zero traffic demands are
shown in the first columns of Table 1. The columns DE, PCK, SC, USPF, and
VUB show how many inequalities of types (9), (8), (5)–(7), (2f), and (2d) have
been generated in total during the execution of the algorithm. The best proven
lower bound and the best solution value found by our algorithm within 5 hours
are reported in columns LB and UB. The remaining columns show the residual
optimality gap, the number of explored branch-and-bound nodes, and the total
CPU time until either optimality was proven or the time limit was exceeded.

The results show that our algorithm can be used to solve traffic engineering
problems of realistic size. All real-world instances and most of the small and
medium size benchmark instances have been solved optimally within seconds or
minutes. For the large problem instances that could not be solved to optimal-
ity, our algorithm always found better solutions than the length-based heuristic
and Lagrangian approaches that have been used to compute initial feasible so-
lutions. Our algorithm also clearly outperforms all other integer programming
approaches presented in the literature so far, which typically even fail to achieve
gaps below 30% for networks larger than 10 nodes.

19

Table 1. Computational results with all additional inequalities enabled.

Problem Size Number of added cuts LB UB Gap B&B Time
|V | |A| |K| De Pck Sc Uspf Vub (%) Nodes (h:mm:ss)

Atlanta 15 22 210 10 46 831 15 853 861 861 0.0 12 0:00:02.7
Dfn-bwin 10 45 90 3 28 0 0 106 699 699 0.0 1 0:00:00.1
Dfn-gwin 11 21 110 9 28 96 13 347 510 510 0.0 54 0:00:01.4
Di-yuan 11 42 22 3 0 0 1 71 625 625 0.0 1 0:00:00.1
France 25 45 300 33 89 4874 13 5070 747 747 0.0 219 0:08:37.8
Germany50 50 88 662 58 219 12366 194 15221 648 655 1.2 754 5:01:30.0
NewYork 16 49 240 39 56 1214 12 2882 620 620 0.0 39 0:01:06.1
Nobel-Eu 28 41 378 26 82 9724 17 9571 444 446 0.3 178 5:00:08.1
Nobel-Ger 17 26 121 16 25 2391 11 1849 733 733 0.0 20 0:00:12.5
Nobel-Us 14 21 91 21 44 1521 125 2116 494 494 0.0 1930 0:02:56.7
Norway 27 51 702 51 126 12179 1 13731 546 616 12.7 1007 5:00:12.1
PDH 11 34 24 14 23 3 0 115 800 800 0.0 1 0:00:00.1
Polska 12 18 66 18 21 760 9 1191 938 938 0.0 373 0:00:33.6
TA1 24 55 396 7 58 161 6 636 933 994 0.0 1 0:00:01.6

Bwin 10 12 90 2 0 14 0 130 53 53 0.0 6 0:00:01.2
Gwin1 11 19 110 2 0 26 5 150 132 132 0.0 5 0:00:00.2
Gwin2 11 27 110 16 0 51 1 254 43 43 0.0 18 0:00:00.6
Gwin3 11 23 109 11 0 61 8 226 36 36 0.0 20 0:00:00.6
Gwin4 11 23 104 7 0 19 2 160 11 11 0.0 1 0:00:00.1
Xwin 43 58 222 17 0 1680 64 6253 52 52 0.0 1749 0:18:49.0

In order to evaluate the effectiveness of the additional inequalities discussed
in Section 4, we also run tests in which we selectively enabled and disabled the
separation subroutines of the different inequality types. The effect of adding the
different inequalities on the lower bound and on the best solution obtained after
exploring 20 branch-and-bound nodes is shown in Table 2. The column group
labeled ‘Without cuts’ report results for the runs where none of the inequalities
(5)–(9) has been added. The column group ‘With SC cuts’ contains the results
of the runs where only the inequalities (5)–(7) have been added, the columns
labeled ‘With PCK cuts’ report the results of the runs where only inequalities (8)
and (9) have been added, and the group ‘With all cuts’ corresponds to the runs
where all inequalities (5)–(9) have been enabled. For each group, the columns
LB, UB, and Gap show the best lower bound, the value of the best solution,
and the remaining optimality gap after exploring 20 branch-and-bound nodes,
respectively. Inf indicates cases where no solution was found and the resulting
gap is infinity.

It is evident from the results in Table 2 that both groups of inequalities
are extremely helpful in practice. Adding only the inequalities (5)–(7) derived
from the subpath consistency gave substantially improved lower bounds in 2
and improved solutions in 5 of the 20 cases, while adding only (in)equalities (8)
and (9) substantially improves the lower bounds in 5 cases and the solutions
in 5 cases. Of course, adding these inequalities to the model has side effects on
the exploration of the branch-and-bound tree and on the addition of other inte-

20

Table 2. Effect of additional inequalities after 20 branch-and-bound nodes.

Problem Without cuts With Sc cuts With Pck cuts With all cuts
LB UB Gap LB UB Gap LB UB Gap LB UB Gap

Atlanta 776 992 27.7 803 868 8.1 861 861 0.0 861 861 0.0
Dfn-bwin 678 699 3.1 383 699 82.4 699 699 0.0 699 699 0.0
Dfn-gwin 508 510 0.3 508 510 0.3 508 510 0.3 508 510 0.3
Di-yuan 625 625 0.0 625 625 0.0 625 625 0.0 625 625 0.0
France 602 Inf Inf 602 Inf Inf 711 Inf Inf 711 776 9.2
Germany50 648 755 16.6 648 680 5.0 648 800 23.6 648 730 12.7
NewYork 445 620 39.2 445 620 39.2 463 620 34.1 472 620 31.3
Nobel-Eu 444 483 8.8 444 479 7.8 444 496 11.6 444 483 8.8
Nobel-Ger 644 733 13.8 644 800 24.1 644 733 13.8 733 733 0.0
Nobel-Us 484 516 6.6 484 494 2.1 484 506 4.5 484 494 2.1
Norway 546 724 32.5 546 760 39.1 546 736 34.7 546 728 33.2
PDH 548 800 46.0 800 800 0.0 800 800 0.0 800 800 0.0
Polska 829 Inf Inf 829 953 14.9 829 953 15.0 829 950 14.6
TA1 933 933 0.0 841 947 12.5 933 933 0.0 933 933 0.0

Bwin 53 53 0.0 53 53 0.0 53 53 0.0 53 53 0.0
Gwin1 132 132 0.0 132 132 0.0 132 132 0.0 132 132 0.0
Gwin2 43 43 0.6 42 43 2.7 43 43 0.0 43 43 0.0
Gwin3 36 36 1.3 36 36 1.3 36 36 0.9 36 36 0.0
Gwin4 11 11 0.0 11 11 0.0 11 11 0.0 11 11 0.0
Xwin 50 54 8.2 50 54 8.2 54 54 8.2 50 54 8.2

ger programming cuts via Cplex’s build-in separation subroutines, so there are
also some cases where adding inequalities (5)–(7) slightly deteriorates the lower
bounds and solutions. In the runs where all types of inequalities are added, the
lower bound improves in 6 cases and better solutions are found in 7 cases, leading
to substantially smaller residual integrality gaps in 11 of the 20 cases. Further-
more, there is only one case with a slightly worse solution and no case with a
worse lower bound than in the corresponding run where none of the addition
inequalities is added. Comparing the results of the different runs, one also finds
that the vast majority of the improvement in the lower bound is due to adding
(in)equalities (8) and (9), which are derived from the dependencies between the
the link capacities and the subpath consistency property. Inequalities (5)–(7),
on the other hand, help to find better feasible solutions earlier in the search
tree, but they have only little effect on the lower bound of the linear relaxation.
Note, however, that the outdegree and linking constraints (2d) and (2e) already
enforce that the routing paths form in- and out-arborescences, which covers a
large and practically important subclass of the subpath consistency conditions.
Adding inequalities (5)–(7) thus only enforces those subpath consistency condi-
tions that involve two or three commodities and do not fall into the class of in-
or outdegree constraints.

Table 3 provides a more detailed report on the effect of the different inequal-
ities at the root node of the branch-and-bound tree and on their impact on the
overall branch-and-bound procedure. For each of the four strategies, the first

21

columns in group ‘Root’ show how many inequalities of the corresponding types
have been added at the root node of the branch-and-bound tree. The column
LP-Gap reports the integrality gap of the linear relaxation after all Cplex pre-
processing steps and 5 rounds of adding cuts. This gap is the relative error with
respect to the optimal integer solution value or, if marked by an asterix, to the
best lower bound obtained for this instance by our algorithm after 5 hours. The
second column group ‘Branch&Bound’ describes the impact of the additional in-
equalities on the overall branch-and-bound algorithm. These columns show the
residual optimality gap, the number of explored branch-and-bound nodes, and
the total CPU time until either optimality was proven or the time limit was
exceeded.

The results in Table 3 again show that both groups of inequalities are nec-
essary to solve large problem instances. In many cases, adding (in)equalities (8)
and (9) alone, already yields a much better linear programming bound at the
root node and leads a substantial improvement of the performance of the overall
branch-and-bound algorithm. In several cases, however, our approach achieves
its maximum performance only if all inequalities (5)–(9) are added. For the in-
stances Germany50 and Norway, for example, the best know solutions are found
only if all of these inequalities are used. For the instances Atanta, Dfn-gwin,
France, and NewYork, better solution were found more quickly and, thus, opti-
mality could by proved faster by using all inequalities.

The computational results also show that instances with dense networks and
lots of potential routing paths for most demand pairs are more difficult than
those where the underlying networks are fairly sparse. One of the reasons for this
behavior is that the induced cover inequalities (8) are much stronger for sparse
networks than for dense networks. In dense networks, the values of the flow
variables xst

a may become extremely small on all arcs in an optimal LP solution,
which makes these inequalities almost useless in these cases. Furthermore, lots
of violated subpath consistency constraints (5)–(7) and linking constraints (2d)
are found at all depths of the branch-and-bound tree for instances with dense
networks and many commodities. For the benchmark instance Germany50, for
example, 12,366 subpath consistency constraints and 15,221 linking constraints
have been added during the exploration of the 754 branch-and-bound nodes,
even though only inequalities with an absolute violation of more than 0.1 have
been generated. Adding all these inequalities to the formulation drastically slows
down the solution of the linear relaxations and reduces the number of branch-
and-bound nodes that can be explored, which can be seen in the number of
explored branch-and-bound nodes reported for this instance and for the different
strategies in Table 3. For the larger and more difficult instances Germany50,
Nobel-Eu, and Norway, more than 90% of the overall solution time was spent
in (re-)solving the linear programs in the branch-and-bound tree. Also in the
other problem instances, lots of violated subpath consistency constraints are
found, while only a moderate number of induced cover inequalities and very
few general conflict inequalities are generated. However, not adding the subpath

22

(a) Inverse link capacities (perturbed) (b) Unit lengths (perturbed)

(c) Geographic lengths (d) Optimized routing lengths

Figure 2. Link congestion values in G-WiN for several routing metrics.

consistency inequalities is not practically either, as it would lead to numerous
invalid branches in the branch-and-bound tree.

Figure 2 finally illustrates the importance of optimizing the routing weights
in practice. It shows the different link loads that would result with unsplittable
shortest path routing from three commonly used default weight settings and
those resulting from the optimized routing weights in the German national re-
search and education network G-WiN with capacities and traffic demands of
August 2001. Even without using the traffic splitting possibilities of the ECMP
routing version, the traffic is distributed much more evenly for the optimized
metric. The peak congestion is not even half of that for the default settings,
which significantly reduces packet delays and loss rates and improves the net-
work’s robustness against unforeseen traffic changes and failures.

Acknowledgments

This work was motivated by the problems arising in the planning of the German
national research and education network operated by the DFN Verein. I wish to
thank everyone at DFN and in particular Marcus Pattloch for fruitful discussions
and an excellent cooperation.

References

1. atesio GmbH, Sophie-Taeuber-Arp-Weg 27, D-12205 Berlin, Germany: discnet –
Network optimization software library (2000–2005). URL http://www.atesio.de

2. Ben-Ameur, W., Gourdin, E.: Internet routing and related topology issues. SIAM
Journal on Discrete Mathematics 17, 18–49 (2003)

3. Bley, A.: A Lagrangian approach for integrated network design and routing in IP
networks. In: Proceedings of the 1st International Network Optimization Confer-
ence (INOC 2003), Paris, France, pp. 107–113 (2003)

23

http://www.atesio.de

4. Bley, A.: Inapproximability results for the inverse shortest paths problem with
integer lengths and unique shortest paths. Networks 50, 29–36 (2007)

5. Bley, A.: Routing and capacity optimization for IP networks. PhD thesis, Tech-
nische Universität Berlin (2007)

6. Bley, A.: Approximability of unsplittable shortest path routing problems. Networks
54(1), 23–46 (2009)

7. Bley, A.: On the hardness of finding small shortest path routing conflicts. In:
Proceedings of the 4th International Network Optimization Conference (INOC
2009), Pisa, Italy (2009)

8. Bley, A., Fortz, B., Gourdin, E., Holmberg, K., Klopfenstein, O., Pióro, M.,
Tomaszewski, A., Ümit, H.: Optimization of OSPF routing in IP networks. In:
A. Koster, X. Muñoz (eds.) Graphs and Algorithms in Communication Networks:
Studies in Broadband, Optical, Wireless and Ad Hoc Networks, chap. 8, pp. 199–
240. Springer (2009)

9. Bley, A., Grötschel, M., Wessäly, R.: Design of broadband virtual private networks:
Model and heuristics for the B-WiN. In: N. Dean, D. Hsu, R. Ravi (eds.) Robust
Communication Networks: Interconnection and Survivability, DIMACS Series in

Discrete Mathematics and Theoretical Computer Science, vol. 53, pp. 1–16. Amer-
ican Mathematical Society (1998)

10. Bley, A., Koch, T.: Integer programming approaches to access and backbone IP-
network planning. In: Modeling, Simulation and Optimization of Complex Pro-
cesses: Proceedings of the 3rd International Conference on High Performance Sci-
entific Computing, pp. 87–110. Hanoi, Vietnam (2006)

11. Bley, A., Pattloch, M.: Modellierung und Optimierung der X-WiN Plattform. DFN-
Mitteilungen 67, 4–7 (2005)

12. Bourquia, N., Ben-Ameur, W., Gourdin, E., Tolla, P.: Optimal shortest path rout-
ing for Internet networks. In: Proceedings of the 1st International Network Opti-
mization Conference (INOC 2003), Paris, France, pp. 119–125 (2003)

13. Boyd, E.: Polyhedral results for the precedence-constrained knapsack problem.
Discrete Applied Mathematics 41, 185–2001 (1993)

14. Broström, P., Holmberg, K.: Determining the non-existence of compatible OSPF
weights. In: D. Yuan (ed.) Nordic MPS 2004, no. 14 in Linköping Electronic
Conference Proceedings, pp. 7–21. Linköping University Electronic Press (2004)

15. Broström, P., Holmberg, K.: Valid cycles: A source of infeasibility in OSPF routing.
Networks 52, 206–215 (2008)

16. Buriol, L., Resende, M., Ribeiro, C., Thorup, M.: A hybrid genetic algorithm for
the weight setting problem in OSPF/IS-IS routing. Networks 46, 36–56 (2005)

17. Callon, R.: Use of OSI IS-IS for routing in TCP/IP and dual environments. IETF
Internet RFC 1195 (1990)

18. Ericsson, M., Resende, M., Pardalos, P.: A genetic algorithm for the weight setting
problem in OSPF routing. Journal of Combinatorial Optimization 6, 299–333
(2002)

19. Fortz, B., Thorup, M.: Increasing Internet capacity using local search. Computa-
tional Optimization and Applications 29, 13–48 (2004)

20. de Giovanni, L., Fortz, B., Labbé, M.: A lower bound for the Internet protocol
network design problem. In: Proceedings of the 2nd International Network Opti-
mization Conference (INOC 2005), Lisbon, Portugal, pp. 402–408 (2005)

21. Holmberg, K., Yuan, D.: Optimization of Internet protocol network design and
routing. Networks 43, 39–53 (2004)

22. ILOG CPLEX 12.1 (2009). URL http://ilog.com/products/cplex/

24

http://ilog.com/products/cplex/

23. LEDA: Library of Efficient Data types and Algorithms (1998–2003). URL
http://www.algorithmic-solutions.com

24. van de Leensel, R., van Hoesel, C., van de Klundert, J.: Lifting valid inequalities
for the precedence constrained knapsack problem. Mathematical Programming 86,
161–186 (1999)

25. Moy, J.: OSPF version 2. IETF Internet RFC 2328 (1998)
26. Orlowski, S., Pióro, M., Tomaszewski, A., Wessäly, R.: SNDlib 1.0–Survivable

Network Design Library. Networks (2009). DOI 10.1002/net.20371. To appear.
Preprint version available as ZIB report ZR-07-15

27. Park, K., Park, S.: Lifting cover inequalities for the precedence-constrained knap-
sack problem. Discrete Applied Mathematics 72, 219–241 (1997)

28. Parmar, A., Ahmed, S., Sokol, J.: An integer programming approach to the OSPF
weight setting problem. Optimization Online (2006)

29. Pioro, M., Medhi, D.: Routing, flow, and capacity design in communication and
computer networks. Morgan Kaufmann (2004)

30. Pióro, M., Szentesi, A., Harmatos, J., Jüttner, A.: On OSPF related network op-
timization problems. In: 8th IFIP Workshop on Performance Modelling and Eval-
uation of ATM & IP Networks, pp. 70/1–70/14. Ilkley, UK (2000)

31. Prytz, M.: On optimization in design of telecommunications networks with multi-
cast and unicast traffic. Ph.D. thesis, Royal Institute of Technology, Stockholm,
Sweden (2002)

32. Tomaszewski, A., Pióro, M., Dzida, M., Mycek, M., Zagożdżon, M.: Valid inequal-
ities for a shortest-path routing optimization problem. In: Proceedings of the 3rd
International Network Optimization Conference (INOC 2007), Spa, Belgium (2007)

33. Tomaszewski, A., Pióro, M., Dzida, M., Zagożdżon, M.: Optimization of adminis-
trative weights in IP networks using the branch-and-cut approach. In: Proceedings
of the 2nd International Network Optimization Conference (INOC 2005), Lisbon,
Portugal, pp. 393–400 (2005)

34. Ümit, H., Fortz, B.: Fast heuristic techniques for intra-domain routing metric op-
timization. In: Proceedings of the 3rd International Network Optimization Con-
ference (INOC 2007), Spa, Belgium (2007)

25

http://www.algorithmic-solutions.com

Table 3. Effect of additional inequalities on the root node and on the overall branch-and-bound algorithm.

Problem Without Sc and Pck cuts With Sc cuts With Pck cuts With all cuts
Root Branch&Bound Root B&B Root B&B Root B&B
LP
Gap
(%)

Fin.
Gap
(%)

B&B
Nodes

Time
(h:m:s)

Sc

cuts
LP
Gap
(%)

Fin.
Gap
(%)

B&B
Nodes

Time
(h:m:s)

De

cuts
Pck

cuts
LP
Gap
(%)

Fin.
Gap
(%)

B&B
Nodes

Time
(h:m:s)

De

cuts
Pck

cuts
Sc

cuts
LP
Gap
(%)

Fin.
Gap
(%)

B&B
Nodes

Time
(h:m:s)

Atlanta 23.6 0.0 44 0:00:06 118 23.6 0.0 17 0:00:02 4 34 5.1 0.0 13 0:00:02 6 40 566 5.1 0.0 12 0:00:03
Dfn-bwin 0.3 0.0 24 0:00:02 50 0.3 0.0 0 0:00:00 3 28 0.3 0.0 0 0:00:00 3 28 0 0.3 0.0 0 0:00:00
Dfn-gwin 53.3 0.0 142 0:00:04 0 53.3 0.0 82 0:00:01 0 16 0.0 0.0 96 0:00:03 0 16 0 0.0 0.0 54 0:00:01
Di-yuan 19.4 0.0 23 0:00:02 46 19.4 0.0 0 0:00:00 3 0 4.8 0.0 0 0:00:00 3 0 0 4.8 0.0 0 0:00:00
France 0.0 0.0 806 2:15:59 914 0.0 0.0 342 0:12:44 6 48 0.0 0.0 257 0:10:32 7 46 1592 0.0 0.0 219 0:08:38
Germany50 *28.2 16.6 965 5:00:13 2546 *28.2 5.0 190 6:03:17 1 76 *28.2 23.6 278 5:24:30 0 25 2686 *28.2 1.2 754 5:01:31
NewYork 48.6 34.6 982 5:00:08 136 48.1 0.0 79 0:01:19 12 60 0.0 0.0 54 0:01:58 10 56 180 0.0 0.0 39 0:01:06
Nobel-Eu *11.6 0.3 1768 5:00:13 2174 *11.6 3.1 72 5:00:08 0 19 *11.6 0.3 2211 5:00:18 0 29 2216 *11.6 0.3 178 5:00:08
Nobel-Ger 66.8 0.0 72 0:00:24 567 62.2 0.0 17 0:00:11 0 15 0.0 0.0 25 0:00:10 0 20 576 0.0 0.0 20 0:00:13
Nobel-Us 3.3 0.0 739 0:01:51 15 3.3 0.0 963 0:01:17 0 24 3.3 0.0 620 0:00:54 0 25 15 3.3 0.0 1930 0:02:57
Norway *6.1 32.5 1029 5:00:07 2221 *3.8 39.1 488 5:00:10 1 90 *7.5 13.1 1111 5:01:04 4 90 2350 *3.8 12.7 1007 5:00:43
PDH 7.0 0.0 31 0:00:01 21 7.7 0.0 0 0:00:00 14 23 4.1 0.0 0 0:00:00 14 23 3 4.1 0.0 0 0:00:00
Polska 13.8 0.0 567 0:00:48 134 14.5 0.0 363 0:00:29 2 18 10.0 0.0 304 0:00:21 2 21 113 8.2 0.0 373 0:00:34
TA1 0.0 0.0 10 0:00:10 902 0.0 0.0 0 0:00:01 1 0 0.0 0.0 0 0:00:02 7 58 149 0.0 0.0 0 0:00:02
Bwin 48.6 0.0 8 0:00:01 1 48.6 0.0 6 0:00:01 1 0 0.0 0.0 6 0:00:01 1 0 2 0.0 0.0 6 0:00:01
Gwin1 0.0 0.0 5 0:00:00 11 0.0 0.0 5 0:00:00 3 0 0.0 0.0 4 0:00:00 1 0 16 0.0 0.0 5 0:00:00
Gwin2 12.1 0.0 26 0:00:01 78 12.1 0.0 18 0:00:00 12 0 12.1 0.0 19 0:00:01 12 0 31 12.1 0.0 18 0:00:01
Gwin3 2.0 0.0 21 0:00:01 39 2.0 0.0 20 0:00:00 8 0 2.0 0.0 21 0:00:01 9 0 49 2.0 0.0 20 0:00:01
Gwin4 0.0 0.0 0 0:00:00 18 0.0 0.0 0 0:00:00 7 0 0.0 0.0 6 0:00:00 7 0 19 0.0 0.0 0 0:00:00
Xwin 4.2 0.0 4600 0:37:37 40 4.2 0.0 1749 0:16:02 0 0 4.2 0.0 1484 0:11:55 0 0 40 4.2 0.0 1749 0:18:49

26

	An Integer Programming Algorithm for Routing Optimization in IP Networks
	Andreas Bley

