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Abstract

Technical restrictions and challenging details let railway traffic become
one of the most complex transportation systems. Routing trains in a conflict-
free way through a track network is one of the basic scheduling problems for
any railway company, also known as the train timetabling problem (TTP).
This article focuses on a robust extension of the TTP, which typically con-
sists in finding a conflict free set of train routes of maximum value for a given
railway network.

Timetables are, however, not only required to be profitable.Railway
companies are also interested in reliable and robust solutions. Intuitively,
we expect a more robust track allocation to be one where disruptions aris-
ing from delays are less likely to propagate and cause delaysto subsequent
trains. This trade-off between an efficient use of railway infrastructure and
the prospects of recovery leads us to a bi-criteria optimization approach. On
the one hand, we want to maximize the profit of a schedule, thatis the num-
ber of routed trains. On the other hand, if two trains are scheduled with a
minimum gap the delay of the first one will affect the subsequent train.

We present extensions of the standard integer programming formulation
for solving the TTP. These models incorporate both aspects with additional
track configuration variables. We discuss how these variables reflect a cer-
tain robustness measure. These models can be solved by column generation
techniques. We propose scalarization techniques to determine efficient, i.e.
the decisions Pareto optimal, solutions. We prove that the LP-relaxation of
the TTP including an additionalε-constraint remains solvable in polynomial
time. Finally, we present some preliminary computational results on macro-
scopic real-world data of a part of the German long distance railway network.

∗This work was funded by the Federal Ministry of Economics andTechnology (BMWi), project
Trassenbörse, grant 19M4031A.

∗∗Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), Takustr. 7, 14195 Berlin-Dahlem,
Germany, Email{borndoerfer, schlechte}@zib.de
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1 Introduction

Constructing a maximum number of train routes in a conflict-free way through a
track network is one of the major scheduling problems a railway company faces.
From a complexity point of view, this problem turns out to beN P-hard, see
Capraraet al. (2002), but nevertheless in the literature several optimization models
were discussed which are able to solve real-life instances to near-optimality, see
Brannlundet al. (1998), Capraraet al. (2002), Borndörferet al. (2006), Cacchiani
et al. (2008), Cacchiani (2007) and Fischeret al. (2008) for more details. All of
these articles model the track allocation problem in terms of a multi-commodity
flow of trains in an appropriate time expanded digraph. Feasibility is ensured by
additional packing constraints, which rule out conflicts between the routes.

In Borndörfer and Schlechte (2007), a different approach was introduced, which
handles conflicts not in terms of constraints, but in terms ofadditional variables. Its
path formulation is amenable to standard column generationtechniques and there-
fore suited for large-scale computation. The major contribution of this paper is that
these additional variables can be used to measure robustness in terms of implicit
available buffer times of a timetable. We refrain from supporting this by recent
statistics to punctuality and reliability of any railway company. But obviously, de-
cision makers are more and more sensitive to the importance of finding a good
compromise between profitable and reliable timetables.

Robust optimization, that means the incorporation of data uncertainties through
mathematical models in its original definition as proposed by Soyster (1973), is not
applicable to large scale optimization problems. Moreoverthese models produce
too conservative solutions, which are resistant against all considered eventualities,
but far away from implementable in real world. Robust optimization, however, has
become a fruitful field recently because more and more optimization problems can
be solved in adequate time. This opens the door to additionally deal with stochastic
assumptions instead of only nominal given data. In Ben-Tal and Nemirovski (1998)
and El-Ghaouiet al. (1998), less conservative models were introduced, which ad-
just the robustness of the solution by some protection levelparameters. Bertsimas
and Sim (2003) survey robust optimization theory and its network flow applica-
tions. Kroonet al. (2006), Liebchenet al. (2007) and Fischettiet al. (2007) apply
these robust considerations to the world of railways. They investigate a cyclic
version of the timetabling problem, modelled as Periodic Event Scheduling Prob-
lem and introduce a stochastic methodology of Light Robustness. For the detailed
routing through stations or junctions, Caimiet al.(2004) and Delormeet al.(2009)
proposed approaches to find delay resistant and stable routings. The aim of these
considerations is to gain more insights into the trade-off between efficiency and
robustness of solutions and find the ‘price of robustness’.

We focus on a pure combinatorial optimization approach, which is somehow
related to Ehrgott and Ryan (2002) and Ehrgottet al. (2007), broaching the is-
sue of robustness in airline crew scheduling. We consider robustness (available
buffer times, quality of day-to-day operations) and efficiency (used track kilome-
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ters, planned capacity utilization) to be incomparable entities and consequently
favor a bi-criteria optimization approach.

The organization of this article is as follows: In Section 2,we briefly recall
a version of the train timetabling or track allocation problem. In Section 3, we
introduce the corresponding linear programming formulation ACP using arc vari-
ables and PCP using path variables, respectively. Then, we extend these models
to measure robustness, which leads directly to an bi-criteria optimization approach
of the problem. To determine efficient solutions of the bi-criteria models we pro-
pose so-called scalarization techniques, see Ehrgott (2005). Section 4 discusses
details on a straight-forward column generation approach to solve the scalarized
optimization problem. We prove that the LP-relaxation of the PCP including an
additionalε-constraint remains solvable in polynomial time. Finally,we present
some preliminary computational results for the model ACP ona part of the Ger-
man Railway Network in Section 5. Let us point out explicitlythat we do not claim
these results are already practically significant; we only want to show the potential
of our approach on real-world-data as a proof of concept.

2 The Track Allocation Problem

The track allocation problem in its single objective version can be formally defined
in terms of several digraphsD = (V,A). By δin(v) we denote the set of incoming
arcsa∈ A for v∈V, by δout(v) the set of outgoing arcs, respectively. Arrivals and
departures of trains at a setS of stations at discrete timesT ⊆ N are represented
by the nodesv ∈ V, arcs model activities like runs of trains between stationsor
turnovers and dwelling inside a station. An explicit running time supplement is
usually included to assure operational feasibility. For each v ∈ V, we denote by
σ(v) ∈ S the station associated with departure or arrival and byτ(v) ∈ T the time
of this event; we assumeτ(u) < τ(v) for each arcuv∈ A such thatD is acyclic;
denote byJ = {σ(u)σ(v) : uv∈ A} the set of all railway tracks.

We are further given a setI of requests to route trains throughD. More pre-
cisely, traini ∈ I can be routed on a path through some suitably defined digraph
Di = (Vi ,Ai) from a source nodesi ∈Vi to a sink nodeti ∈Vi ; let Pi be the set of all
routes for traini ∈ I , andP =

⋃

i∈I Pi the set of all train routes (taking the disjoint
union). An arcuv∈ A blocksthe underlying trackσ(u)σ(v) during the time in-
terval [τ(u),τ(v)−1]. Two arcsa,b∈ A arein conflict if their respective blocking
intervals overlap, and two routesp,q∈ P are in conflict if any of their arcs are in
conflict.∗

A track allocation or timetable is a set of conflict-free routes, at most one
for each train. Given arc weightswa, a ∈ A, the weight of routep ∈ P is wp =

∑a∈p wa, and the weight of a track allocationX ⊆ P is w(X) = ∑p∈X wp. Thetrain

∗In reality, train conflicts are more complex. For simpler notation, though, we avoid the intro-
duction of headway matrices and train types.
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timetabling problem(TTP) in its single objective version is to find a conflict-free
track allocation of maximum weight.

TTP can be seen as a multi-commodity flow problem with additional pack-
ing constraints usually ensured by inequalities in the models. In Borndörfer and
Schlechte (2007), we have proposed an alternative formulation that is based on
valid ‘configurations’. These are sets of arcs on the same underlying track that are
mutually conflict-free. Formally, letAst = {uv∈ A : σ(u)σ(v) = st} be the set of
all arcs associated with some trackst ∈ J; a configurationfor this trackst is a set
of arcsq⊆ Ast that are mutually not in conflict, i.e. in our simplified case not over-
lapping. LetQ j denote the set of all configuration associated with trackj ∈ J, and
Q =

⋃

j∈J Q j the set of all configurations. ByALR =
⋃

st∈J Ast, we denote the set of
all ‘forward’ arcs.

For the construction of configurations, we introducetrack digraphs Dj = (Vj ,A j)
on each trackj ∈ J. Consider the forward arcsAxy = {uv∈ A : σ(u)σ(v) = xy}
on a track j = xy∈ J. Denote byLxy := {u : uv∈ Axy} andRxy := {v : uv∈ Axy}
the associated set of departure and arrival nodes. Construct two new, additional
nodessxy andtxy by settingσ(sxy) = y, τ(sxy) := minτ(Rxy)− 1, andσ(txy) = x,
τ(txy) := maxτ(Rxy) + 1, i.e., sxy marks an artificial source node at stationy be-
fore the departure of the earliest trip onxy, andtxy marks an artificial sink node
at stationx after the arrival of the latest trip onxy. Let Lxy := Lxy∪ {txy} and
Rxy := Rxy∪{sxy}; note that all arcs inAxy go fromLxy to Rxy. Now letARL := {vu :
τ(v) ≤ τ(u),v ∈ Rst,u ∈ Lst} be a set of ‘backward’ arcs that go in the opposite
direction; they connect the arrival of a trip onxy (or nodesxy) with all possible
follow-on trips (or nodetxy) on that track. Table 1 summarizes the notation. Fig-
ure 1 illustrates the construction. On the left, a complete track digraph withoutsxy

andtxy is shown. The three subgraphs on the right correspond to feasible configu-
rations on that track digraph. They are, from left to right gradually more robust.
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Finally, it is easy to observe, that per definition:

• each train digraphDi is acyclic

• each track digraphD j is acyclic and bipartite

• each arca∈ALR is part of exactly one train digraphDi and one track digraph
D j

• there is an isomorphism betweenQ j and the set of allsxytxy-paths inD j .

Figure 1: Routing digraphD j and from fragileq1 andq2 to robust configuration
q3.

3 Towards a Bi-criteria Optimization Approach

Introducing 0/1-variablesxp, p∈ P, andyq, q∈ Q, the single objective TTP can be
stated as the following integer program:
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Table 1: Notation for the Train Timetabling Problem.

symbol meaning

S stations
J tracks
G = (S,J) infrastructure digraph
I train requests
w arc weights (profit)
r arc weights (robustness)
σ : V 7→ S mapping of nodes to stations
τ : V 7→ N mapping of nodes to time
si , ti source, sink of traini ∈ I
Di = (Vi ,Ai) train digraph of i ∈ I
sxy, txy source, sink of trackj = xy∈ J
D j = (Vj ,A j) track digraph ofj ∈ J
Pi set ofsi , ti -paths inDi

Q j set ofsxy, txy -paths inD j

ALR coupling arcs
ARL backward arcs
A := AI ∪AJ all arcs

(PCP)
max ∑

p∈P
wpxp (i)

s.t. ∑
p∈Pi

xp ≤ 1, ∀ i ∈ I (ii)

∑
q∈Q j

yq ≤ 1, ∀ j ∈ J (iii )

∑
p∈P,a∈p

xp− ∑
q∈Q,a∈q

yq ≤ 0, ∀a∈ ALR (iv)

xp,yq ≥ 0, ∀ p∈ P, q∈ Q (v)

xp,yq ∈ {0,1}, ∀ p∈ P, q∈ Q. (vi)

The objective PCP (i) maximizes the weight of the track allocation. Con-
straints (ii) state that a train can run on one route only, Constraints (iii) allow at
most one configuration for each track. Inequalities (iv) couple train routes and track
configurations to guarantee a conflict-free allocation and (v) and (vi) are the non-
negativity and integrality constraints. Note that the upper boundsxp ≤ 1, p ∈ P,
andyq ≤ 1, q∈ Q, hold implicitly.

An arc based version can be formulated as well. Variablesxa, a ∈ Ai, i ∈ I
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control the use of tripa in Di andya, a∈ A j , j ∈ J in D j , respectively;

(ACP)
max ∑

a∈A
waxa (i)

s.t. ∑
a∈δ i

out(v)
xa− ∑

a∈δ i
in(v)

xa = 0, ∀ i ∈ I ,v∈Vi\{si , ti} (ii)

∑
a∈δ i

out(si)

xa ≤ 1, ∀ i ∈ I (iii )

∑
a∈δ i

out(v)
ya− ∑

a∈δ i
in(v)

ya = 0, ∀ j ∈ J,v∈Vj\{sj , t j} (iv)

∑
a∈δ i

out(sj )

xa ≤ 1, ∀ j ∈ J (v)

xa−ya ≤ 0, ∀a∈ ALR (vi)

xa,ya ≥ 0, ∀a∈ A (vii)

xa,ya ∈ {0,1}, ∀a∈ A. (viii )

As before, the objective, denoted in ACP (i), is to maximize the weight of
the track allocation. Equalities (ii) and (iii) are well-known flow conservation
constraintsfor all trains i ∈ I , (iv) and (v) for all tracksj ∈ J, respectively. In-
equalities (vi) link arcs used by train routes and track configurations to ensure a
conflict-free allocation, (vii) and (viii) are the non-negativity and the integrality
constraints.

Let us explain the incorporation of robustness on a simple example. Byrq we
denote a robustness value for each configurationq ∈ Q. We assume that a high
robustness valuerq means configurationq is robust and a smaller the contrary.
As a simplificiation, we expectrq = ∑a∈q ra, i.e. the robustness of a track can be
expressed as the sum of the robustness.

Figure 1 should illustrate the idea on an a single track. Considering the track
digraphD j on the left induced by three train requests. Straight forwardly maxi-
mizing the number of scheduled trains in our setting will always lead to a schedule
with profit value 3, but as you can see this can result in a lot ofvarying schedules,
in fact all LR-paths of length 5, i.e. the three shown in Figure 1. We are given a
desired implicit bufferb∈ N, i.e. 5 minutes, which we maximally want to hedge
against. Then the following robustness functionr : R|A| → R with

r((u,v)) :=











√
b (u,v) ∈ ARL andt(v)− t(u) > b,

√

t(v)− t(u) (u,v) ∈ ARL andt(v)− t(u) ≤ b,

0 otherwise

will measure the available buffers appropriately. The robustness functionr benefits
values near tob and balances the partition of the available implicit buffertimes
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by its concaveness. Assumeb = 2 in our example in Figure 1. Then the first
configurationq1 has valuerq1 = 0, for the second configurationrq2 is

√
2 and the

third one hasrq3 = 2. (For the sake of completeness we setrq to a sufficiently big
M for an empty configurationq.)
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Figure 2: Functionr(a) of a single
buffer arca∈ ARL.
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Figure 3: Robustness function of two
buffer arcs.

We can easily extend ACP and PCP to bi-criteria models by taking this second,
obviously contradictory, objective into account:

PCP (i’) max ∑
q∈Q

rqyq or analogously ACP (i’) max∑
a∈A

raya.

To find all efficient solutions, we propose a straight-forward combined weighted
sum andε-constraint hybrid method, see Ehrgott (2005). Considering model PCP,
this leads to the following objective function with a scalarα ∈ [0,1]:

max α(∑
p∈P

wpxp)+ (1−α)(∑
q∈Q

rqyq)

and to an additional constraint on one of the objectives, i.e.

∑
p∈P

wpxp ≥ ε or ∑
q∈Q

rqyq ≥ ε .

In practice, we could choose an allowed deviation from a profit maximizing sched-
ule. Letvopt be the optimal value derived by solving ACP or PCP. Byν we denote
a given percentage of decrease in the profit function. Considering ε = (1−ν)vopt

and adding anε-constraint for the first objective, we receive:
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((α,ε)−PCP)
max α( ∑

p∈P
wpxp)+ (1−α)( ∑

q∈Q
rqyq) (i)

s.t. ∑
p∈Pi

xp ≤ 1, ∀ i ∈ I (ii)

∑
q∈Qj

yq ≤ 1, ∀ j ∈ J (iii )

∑
a∈p∈P

xp− ∑
a∈q∈Q

yq ≤ 0, ∀a∈ ALR (iv)

∑
p∈P

wpxp ≥ ε, (v)

xp,yq ≥ 0, ∀ p∈ P, q∈ Q (vi)
xp,yq ∈ {0,1}, ∀ p∈ P, q∈ Q. (vii)

4 Details on Column Generation

The LP-relaxation PLP of PCP, i.e., PLP = PCP (i)–(v) can be solved efficiently
by column generation. The addedε-constraint changes the structure, only slightly,
as we will show. Fortunately, it will turn out that the pricing problems remain
solvable in polynomial time (by computing longest paths in acyclic digraphsDi and
D j ). To see this, consider the dual DLP of the LP-relaxation of((α ,ε)−PCP),
i.e. neglecting constraints((α ,ε)−PCP) (vii):

(DLP)
min ∑

j∈J
π j + ∑

i∈I
γi − ερ (i)

s.t. γi + ∑
a∈p

λa−wpρ ≥ αwp ∀ p∈ Pi, i ∈ I (ii)

π j − ∑
a∈q

λa ≥ (1−α)rq ∀q∈ Q j , j ∈ J (iii )

γi ,π j ,λa,ρ ≥ 0 ∀ i ∈ I , j ∈ J, a∈ ALR. (iv)

Here,γi , i ∈ I , π j , j ∈ J, λa, a∈ ALR andρ , are the dual variables associated
with constraints((α ,ε)− PCP) (ii), (iii),(iv) and (v), respectively. The pricing
problem for a routep∈ Pi for train i ∈ I is then:

∃ p∈ Pi : γi + ∑
a∈p

λa−wpρ < αwp ⇐⇒ ∑
a∈p

((α + ρ)wa−λa) > γi .

This is the same as finding a longestsiti-path inDi w.r.t. arc weights(α +
ρ)wa−λa; asDi is acyclic, this problem can be solved in polynomial time.

The pricing problem for a configurationq∈ Q j for track j ∈ J (w.r.t. the addi-
tional ε-constraint (v)) is:

∃ q∈ Q j : π j − ∑
a∈q

λa < (1−α)rq ⇐⇒ ∑
a∈q

(λa +(1−α)ra) > π j .
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Using arc weights(λa +(1−α)ra), a∈ ALR, and 0 otherwise, pricing config-
urationsQ j is equivalent to finding a longestsj t j -path inD j . As D j is acyclic, this
is polynomial. By the polynomial equivalence of separationand optimization, see
Grötschelet al. (1988), here applied to the DLP, we obtain:

Theorem 1 The LP-relaxation of((α ,ε)−PCP) is solvable in polynomial time.

5 Preliminary Computational Results

We consider the Hanover-Kassel-Fulda area of the German long-distance railway
network. All instances are based on the macroscopic infrastructure network pro-
vided by our project partners from departments for railway track and operations.
The data was produced by suited aggregation to minutes basedon detailed micro-
scopic simulation results (with a precision of seconds). The network consists of 37
stations, 120 tracks and 6 different train types (ICE, IC, RE, RB, S, ICG). Because
of various possible turnover and driving times for each train type, this produces an
infrastructure digraph with 198 nodes and 1140 arcs. For theconstruction of cor-
rect track digraphs, we stick to 4320 realistic headway times. We present here the
results for one scenario with 285 requested trains.† Based on the 2002 timetable
of Deutsche Bahn AG, we considered all trains in a time interval of about 6 hours
at a regular weekday from 9:00 to 15:00. This leads to a representable mix of long
distance trains (IC, ICE), synchronized regional and suburban passenger trains (S,
RE, RB), and freight trains (ICG). The flexibility to reroutetrains is set to depar-
ture and arrival time windows of 6 minutes length. Maximizing the total number
of trains in the schedule is our first objective‡; the second goal is to maximize our
defined robustness measure, choosingb = 6 minutes.

Table 2: Sizes of the digraph for the ACP instance.

|I | |J| |VI | |AI | |VJ| |AJ|
285 111 14147 20125 16014 59467

Table 2 lists the key numbers for the instance after some trivial graph prepro-
cessing. We only present results for the linear relaxation of model ACP, i.e. an LP
with 79592 columns and 38057 rows. We computed the solutionsof the LP relax-
ation with the barrier method of CPLEX 11.0, see CPLEX (2007), for 21 different
values ofα , takingα = i

20 for i = 0. . .20.; each run takes about 30 seconds.§ All

†This scenario can be downloaded as part of the TTPlib 2008, see Erolet al.(2008), atttplib.
zib.de, i.e HAKAFU SIMPLE 37 120 6 REQ02 0285 0331 6.XML .

‡Furthermore, we slightly penalize deviations from certaindesired departure and arrival times at
visiting stations.

§In addition CPLEX MIPSolve needs only some minutes and a few hundred branch and bound
nodes to find an IP solution with an optimality gap of at most 2 %.
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computations were made single threaded on a Dell Precision 650 PC with 2GB of
main memory and a dual Intel Xeon 3.8 GHz CPU running SUSE Linux.

The right part of Figure 4 shows both objectives depending onα . The extreme
cases are as expected: Forα = 0, only the robustness measure contributes to the
objective and is therefore maximized as much as possible at the expense of schedul-
ing only some trains. Forα = 1, the robustness measure does not contribute to the
objective and is therefore low, while the total profit is maximal. With increasingα ,
the total robustness monotonically decreases, while the total profit increases. On
the left part of Figure 4 the Pareto frontier can be seen. Notethat each computed
pair of total robustness and profit constitutes a Pareto optimal point, i.e., is not
dominated by any other attainable combination. Conversely, any Pareto optimal
solution of the LP relaxation can be obtained as the solutionfor someα ∈ [0,1],
see, e.g., Ehrgott (2005).

Some extensive computational studies, especially for the IP case, are needed
to decide whether the results presented in this paper are useful in practice. Nev-
ertheless, we are confident that our contribution helps to balance efficiency and
robustness in the near railway future.
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