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Abstract

Technical restrictions and challenging details let rayvraffic become
one of the most complex transportation systems. Routimgstia a conflict-
free way through a track network is one of the basic schedylinblems for
any railway company, also known as the train timetablingofgnm (TTP).
This article focuses on a robust extension of the TTP, whipically con-
sists in finding a conflict free set of train routes of maximuatue for a given
railway network.

Timetables are, however, not only required to be profitabifailway
companies are also interested in reliable and robust sakiti Intuitively,
we expect a more robust track allocation to be one where tisns aris-
ing from delays are less likely to propagate and cause détaysbsequent
trains. This trade-off between an efficient use of railwdyastructure and
the prospects of recovery leads us to a bi-criteria optitiinapproach. On
the one hand, we want to maximize the profit of a schedule jghtae num-
ber of routed trains. On the other hand, if two trains are dulesl with a
minimum gap the delay of the first one will affect the subsentrain.

We present extensions of the standard integer programmimguation
for solving the TTP. These models incorporate both aspethsasditional
track configuration variables. We discuss how these varsat#flect a cer-
tain robustness measure. These models can be solved byrcgkmeration
techniques. We propose scalarization techniques to deterefficient, i.e.
the decisions Pareto optimal, solutions. We prove that fhedlaxation of
the TTP including an additionalconstraint remains solvable in polynomial
time. Finally, we present some preliminary computatioealifts on macro-
scopic real-world data of a part of the German long distaaiteay network.

*This work was funded by the Federal Ministry of Economics &adhnology (BMWi), project
Trassenborsegrant 19M4031A.
**Konrad-Zuse-Zentrum fur Informationstechnik Berlin BJJ Takustr. 7, 14195 Berlin-Dahlem,
Germany, Emai{borndoerfer, schlechte}@zib.de



1 Introduction

Constructing a maximum number of train routes in a conflieefway through a
track network is one of the major scheduling problems a ejlwompany faces.
From a complexity point of view, this problem turns out to b€Z-hard, see
Caprareet al. (2002), but nevertheless in the literature several opttion models
were discussed which are able to solve real-life instancewar-optimality, see
Brannlundet al. (1998), Caprarat al. (2002), Borndorfeet al. (2006), Cacchiani
et al. (2008), Cacchiani (2007) and Fischatral. (2008) for more details. All of
these articles model the track allocation problem in terfa multi-commodity

flow of trains in an appropriate time expanded digraph. Fdagiis ensured by
additional packing constraints, which rule out conflictsAmeen the routes.

In Borndorfer and Schlechte (2007), a different approaah itroduced, which
handles conflicts not in terms of constraints, but in termedofitional variables. Its
path formulation is amenable to standard column gener&ticdmiques and there-
fore suited for large-scale computation. The major couatitim of this paper is that
these additional variables can be used to measure robgstnesrms of implicit
available buffer times of a timetable. We refrain from supipg this by recent
statistics to punctuality and reliability of any railwayropany. But obviously, de-
cision makers are more and more sensitive to the importahfieding a good
compromise between profitable and reliable timetables.

Robust optimization, that means the incorporation of datsttainties through
mathematical models in its original definition as proposg&byster (1973), is not
applicable to large scale optimization problems. Moredkese models produce
too conservative solutions, which are resistant agaihsbakidered eventualities,
but far away from implementable in real world. Robust optiation, however, has
become a fruitful field recently because more and more opétian problems can
be solved in adequate time. This opens the door to additjodehl with stochastic
assumptions instead of only nominal given data. In Ben-fidIdemirovski (1998)
and El-Ghaoukt al. (1998), less conservative models were introduced, whieh ad
just the robustness of the solution by some protection lezeimeters. Bertsimas
and Sim (2003) survey robust optimization theory and itsvoet flow applica-
tions. Kroonet al. (2006), Liebcheret al. (2007) and Fischettt al. (2007) apply
these robust considerations to the world of railways. Thgstigate a cyclic
version of the timetabling problem, modelled as Periodieri\scheduling Prob-
lem and introduce a stochastic methodology of Light Rolesstn For the detailed
routing through stations or junctions, Caietial. (2004) and Delormet al. (2009)
proposed approaches to find delay resistant and stablegsutirhe aim of these
considerations is to gain more insights into the trade-effrMeen efficiency and
robustness of solutions and find the ‘price of robustness’.

We focus on a pure combinatorial optimization approachciviis somehow
related to Ehrgott and Ryan (2002) and Ehrggittal. (2007), broaching the is-
sue of robustness in airline crew scheduling. We consideustmess (available
buffer times, quality of day-to-day operations) and efficie (used track kilome-



ters, planned capacity utilization) to be incomparabldtiestand consequently
favor a bi-criteria optimization approach.

The organization of this article is as follows: In Sectionw& briefly recall
a version of the train timetabling or track allocation pmhl In Section 3, we
introduce the corresponding linear programming formatathCP using arc vari-
ables and PCP using path variables, respectively. Thenxteadthese models
to measure robustness, which leads directly to an bi-@itgtimization approach
of the problem. To determine efficient solutions of the liiecia models we pro-
pose so-called scalarization techniques, see Ehrgot6j20Bection 4 discusses
details on a straight-forward column generation approacsotve the scalarized
optimization problem. We prove that the LP-relaxation a& ®#CP including an
additional e-constraint remains solvable in polynomial time. Finalle present
some preliminary computational results for the model ACPagrart of the Ger-
man Railway Network in Section 5. Let us point out explicithat we do not claim
these results are already practically significant; we ordytto show the potential
of our approach on real-world-data as a proof of concept.

2 The Track Allocation Problem

The track allocation problem in its single objective venstan be formally defined
in terms of several digrapt3 = (V,A). By &n(v) we denote the set of incoming
arcsac AforveV, by dui(v) the set of outgoing arcs, respectively. Arrivals and
departures of trains at a sBiof stations at discrete timés C N are represented
by the nodess € V, arcs model activities like runs of trains between stations
turnovers and dwelling inside a station. An explicit rurmitme supplement is
usually included to assure operational feasibility. Farheac V, we denote by
o(v) € Sthe station associated with departure or arrival and(y € T the time

of this event; we assumg(u) < 1(v) for each arauv € A such thatD is acyclic;
denote by = {o(u)o(v) : uve A} the set of all railway tracks.

We are further given a sétof requests to route trains throufh More pre-
cisely, traini € | can be routed on a path through some suitably defined digraph
Di = (Vi,A)) from a source nods € V; to a sink nodg; € V;; let B be the set of all
routes for train € |, andP = (Ji¢, P the set of all train routes (taking the disjoint
union). An arcuv € A blocksthe underlying traclo(u)o(v) during the time in-
terval [T (u), 7(v) — 1]. Two arcsa,b € A arein conflictif their respective blocking
intervals overlap, and two routgsq € P are in conflict if any of their arcs are in
conflict*

A track allocation or timetableis a set of conflict-free routes, at most one
for each train. Given arc weights,, a € A, the weight of routep € P is wy =
Y acpWa, and the weight of a track allocation C P is W(X) = ¥ jex Wp. Thetrain

*In reality, train conflicts are more complex. For simpleratwmin, though, we avoid the intro-
duction of headway matrices and train types.



timetabling problen(TTP) in its single objective version is to find a conflictdre
track allocation of maximum weight.

TTP can be seen as a multi-commodity flow problem with adaditigpack-
ing constraints usually ensured by inequalities in the nsodim Borndorfer and
Schlechte (2007), we have proposed an alternative forionlahat is based on
valid ‘configurations’. These are sets of arcs on the samenlyidg track that are
mutually conflict-free. Formally, lefst = {uve A: o(u)o(v) = st} be the set of
all arcs associated with some tragtike J; a configurationfor this trackst is a set
of arcsq C A that are mutually not in conflict, i.e. in our simplified case aver-
lapping. LetQ; denote the set of all configuration associated with tripek], and
Q= Ujes Qj the set of all configurations. B4 r = Usic; Ast, We denote the set of
all ‘forward’ arcs.

For the construction of configurations, we introdtreek digraphs § = (Vj,A))
on each track € J. Consider the forward aro&,, = {uve A: g(u)a(v) = xy}
on a trackj = xy € J. Denote byl := {u:uve Ay} andRyy = {v:uve Ay}
the associated set of departure and arrival nodes. Cohstvamew, additional
nodess,y andtyy by settingo(syy) =V, T(Sy) := minT(Ryy) — 1, ando(tyy) = X,
T(txy) := maxt(Ry) + 1, i.e., s,y marks an artificial source node at statipte-
fore the departure of the earliest trip &y andt,, marks an artificial sink node
at stationx after the arrival of the latest trip oRy. Let Lyy := LxyU {tx,} and
Ry := RyU{sy}; note that all arcs iy go fromLyy to Ryy. Now letAg := {vu:
T(v) < 1(u),v € Ry, U € Lgt} be a set of ‘backward’ arcs that go in the opposite
direction; they connect the arrival of a trip oay (or nodes,y) with all possible
follow-on trips (or nodeiy) on that track. Table 1 summarizes the notation. Fig-
ure 1 illustrates the construction. On the left, a completekt digraph withous,y
andtyy is shown. The three subgraphs on the right correspond tibfeamnfigu-
rations on that track digraph. They are, from left to rigtadyrally more robust.



Finally, it is easy to observe, that per definition:

e each train digraplb; is acyclic
e each track digrapDj is acyclic and bipartite

e each ar@a e A Rris part of exactly one train digrafg and one track digraph
Dj

e there is an isomorphism betwe€p and the set of altyy-paths inDj.
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Figure 1: Routing digrapib; and from fragileq; andag, to robust configuration
gs.

3 Towards a Bi-criteria Optimization Approach

Introducing O/1-variableg, p € P, andyg, q € Q, the single objective TTP can be
stated as the following integer program:



Table 1: Notation for the Train Timetabling Problem.

symbol meaning
S stations
J tracks
G=(SJ) infrastructure digraph
I train requests
w arc weights (profit)
r arc weights (robustness)
o.:V—S mapping of nodes to stations
T:V—N mapping of nodes to time
S.t source, sink of traim € |
Di = (\,A) train digraph ofi € |
Sxy txy source, sink of track = xye J
Dj = (Vj,A)) track digraph ofj € J
P set ofs, tj -paths inD;
Qj set ofsyy, tyy -paths inD;
AR coupling arcs
ArL backward arcs
A=AUA; all arcs
(PCP
max 3 WpXp (i)
peP
s.t. S Xp <1, Viel (i)
peR
S Yq <1, Vied (i)
geQ;
Xp— Y Yq <0, VacARr (iv)
pePacp geQ,acq
Xp, Yq >0, VpeP geQ (v)
Xp,Yq €{0,1}, VpeP,qeQ. (vi)

The objective PCP (i) maximizes the weight of the track atmm. Con-
straints (ii) state that a train can run on one route only, Stramts (iii) allow at
most one configuration for each track. Inequalities (iv)meurain routes and track
configurations to guarantee a conflict-free allocation andd (vi) are the non-
negativity and integrality constraints. Note that the uppaundsx, <1, p € P,
andyq < 1,9 € Q, hold implicitly.

An arc based version can be formulated as well. Variakles € A, 1 €1



control the use of trigin D; andya,, ac Aj, j € Jin Dj, respectively,

(ACP)
max S WaXa (i)
acA
s.t. S Xa— Y Xa =0, Viel,veVi\{s,ti} (i)
acdl (V) acs) (v)
Xa <1 Viel (iii )
acdou(s) _ _
Y Ya— Y Ya =0, ViedveV\{s;t} (iv)
acdou(V) acg,(v)
> Xa <1, Vijied (V)
a€5(i)ut(sj)
Xa—Ya <0, VacAr (Vi)
Xa;Ya >0, VaeA (vii)
Xa, Ya € {0,1}, VaeA. (vii)

As before, the objective, denoted in ACP (i), is to maximike tveight of
the track allocation. Equalities (ii) and (iii) are well-dwwn flow conservation
constraintsfor all trainsi € 1, (iv) and (v) for all tracksj € J, respectively. In-
equalities (vi) link arcs used by train routes and track cpmfitions to ensure a
conflict-free allocation, (vii) and (viii) are the non-neiyity and the integrality
constraints.

Let us explain the incorporation of robustness on a simpdengte. Byrq we
denote a robustness value for each configuraj@nQ. We assume that a high
robustness value; means configuratiom is robust and a smaller the contrary.
As a simplificiation, we expeaty = Yacqlar i.e. the robustness of a track can be
expressed as the sum of the robustness.

Figure 1 should illustrate the idea on an a single track. @enimng the track
digraphD; on the left induced by three train requests. Straight forlyamaxi-
mizing the number of scheduled trains in our setting willavlead to a schedule
with profit value 3, but as you can see this can result in a leofing schedules,
in fact all LR-paths of length 5, i.e. the three shown in Figure 1. We arergi
desired implicit buffetb € N, i.e. 5 minutes, which we maximally want to hedge
against. Then the following robustness functiarR'"' — R with

VDb (u,v) € AgL andt(v) —t(u) > b,
r((u,v)) := t(v) —t(u) (u,v) € AgLandt(v)—t(u) <b,
0 otherwise

will measure the available buffers appropriately. The sthess functiom benefits
values near td and balances the partition of the available implicit butieres
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by its concaveness. Assunte= 2 in our example in Figure 1. Then the first
configurationg; has valuerq, = 0, for the second configuratian, is v/2 and the
third one hasq, = 2. (For the sake of completeness wergdb a sufficiently big
M for an empty configuration.)
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Figure 2: Functiorr(a) of a single Figure 3: Robustness function of two
buffer arca € Ar. buffer arcs.

We can easily extend ACP and PCP to bi-criteria models bytgtkiis second,
obviously contradictory, objective into account:

PCP (i) max Zbrqu or analogously ACP (i") maxXAraya.
ge S

a

To find all efficient solutions, we propose a straight-fodvaombined weighted
sum anck-constraint hybrid method, see Ehrgott (2005). Considemitodel PCP,
this leads to the following objective function with a scatae [0, 1]:

1—
maxa(pgpwpxp)Jr( a)(q;;rqu)

and to an additional constraint on one of the objectives, i.e

wapxp >e or Z}rqu > €.
pe ge

In practice, we could choose an allowed deviation from a pnadiximizing sched-
ule. Letvypt be the optimal value derived by solving ACP or PCP.\Bye denote
a given percentage of decrease in the profit function. Cerisigle = (1 — V)Vopt
and adding am-constraint for the first objective, we receive:



((a,e)—PCP

max a( 3y WpXp)+(1—a)( ¥ rqyq) (i)
peP geQ
s.t. S Xp <1, Viel (i)
p<R
> Yq <1, Vied (i)
geQ
> Xp— 3 Yq <0, vacARr (iv)
acpeP acgeQ
> WpXp > €, (v)
DEP
Xp;Yq >0, VpeP qeQ (vi)
Xp, Yq €{0,1}, VpeP qeQ. (vii)

4 Details on Column Generation

The LP-relaxation PLP of PCP, i.e., PLP = PCP (i)—(v) can Iheesbefficiently
by column generation. The addeeconstraint changes the structure, only slightly,
as we will show. Fortunately, it will turn out that the prigirproblems remain
solvable in polynomial time (by computing longest pathsdypdic digraph<D; and
Dj). To see this, consider the dual DLP of the LP-relaxatiori(af,£) — PCP),
i.e. neglecting constrain{ga, &) — PCP) (vii):

(DLP)
min SM+YY—¢&p (i)
jed i€l
s.t. Y+ 3 Aa—Wpp > aw, VpeR,iel (i)
acp
m— 3 Aa > (1-a)rq vaeQj, jed (i)
acq
VI77Tj7Aa7p 20 v|€|7 jEJ,aGALR. (IV)

Here,y,icl, m, j € J, Aa, a€ A g andp, are the dual variables associated
with constraints((a, &) — PCP (ii), (iii),(iv) and (v), respectively. The pricing
problem for a route € R, for traini € | is then:

dpeR:y+ Z Aa—Wpp < OWp < Z((a+p)wa—)\a) > W
acp acp
This is the same as finding a longestt-path inD; w.r.t. arc weights(a +
P)Wa— Ag; asD; is acyclic, this problem can be solved in polynomial time.
The pricing problem for a configuratiane Q; for track j € J (w.r.t. the addi-
tional e-constraint (v)) is:

EIquj:nj—z/\a<(1—a)rq = Z(/\a+(1—a)ra)>rtj.

acqy agqy



Using arc weightgA, + (1— a)ra), a € ALr, and 0 otherwise, pricing config-
urationsQj is equivalent to finding a longest;-path inD;. As D; is acyclic, this
is polynomial. By the polynomial equivalence of separatiml optimization, see
Grotschelet al. (1988), here applied to the DLP, we obtain:

Theorem 1 The LP-relaxation of(a,&) — PCP is solvable in polynomial time.

5 Preliminary Computational Results

We consider the Hanover-Kassel-Fulda area of the Germajadimtance railway
network. All instances are based on the macroscopic iméretsire network pro-
vided by our project partners from departments for railwagh and operations.
The data was produced by suited aggregation to minutes loasdeltailed micro-
scopic simulation results (with a precision of secondsk métwork consists of 37
stations, 120 tracks and 6 different train types (ICE, IC, RB, S, ICG). Because
of various possible turnover and driving times for eachnttgpe, this produces an
infrastructure digraph with 198 nodes and 1140 arcs. Focdmstruction of cor-
rect track digraphs, we stick to 4320 realistic headway $infWe present here the
results for one scenario with 285 requested trai&ased on the 2002 timetable
of Deutsche Bahn AG, we considered all trains in a time irateo¥ about 6 hours
at a regular weekday from 9:00 to 15:00. This leads to a reptable mix of long
distance trains (IC, ICE), synchronized regional and sudnuipassenger trains (S,
RE, RB), and freight trains (ICG). The flexibility to rerouiins is set to depar-
ture and arrival time windows of 6 minutes length. Maximgitne total number
of trains in the schedule is our first objecfiyéhe second goal is to maximize our
defined robustness measure, choosirg6 minutes.

Table 2: Sizes of the digraph for the ACP instance.
I J| Vi| A V3| A
285 111 14147 20125 16014 59467

Table 2 lists the key numbers for the instance after someltgwvaph prepro-
cessing. We only present results for the linear relaxatfonadel ACP, i.e. an LP
with 79592 columns and 38057 rows. We computed the solutibiise LP relax-
ation with the barrier method of CPLEX 11.0, see CPLEX (20€3%) 21 different
values ofa, takinga = 2‘—0 fori =0...20.; each run takes about 30 second4ll

TThis scenario can be downloaded as part of the TTPlib 20@8Esalet al. (2008), atttplib.
zib.de, i.e HAKAFU_SIMPLE_37-120.6_REQ02.028503316.XML.

*Furthermore, we slightly penalize deviations from certigsired departure and arrival times at
visiting stations.

8In addition CPLEX MIPSolve needs only some minutes and a femdhed branch and bound
nodes to find an IP solution with an optimality gap of at most.2 %
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computations were made single threaded on a Dell Preci&orP€ with 2GB of
main memory and a dual Intel Xeon 3.8 GHz CPU running SUSEX.inu

The right part of Figure 4 shows both objectives depending ofihe extreme
cases are as expected: Foe= 0, only the robustness measure contributes to the
objective and is therefore maximized as much as possibhe &xpense of schedul-
ing only some trains. Far = 1, the robustness measure does not contribute to the
objective and is therefore low, while the total profit is nmagl. With increasingy,
the total robustness monotonically decreases, while ttad poofit increases. On
the left part of Figure 4 the Pareto frontier can be seen. Kakteach computed
pair of total robustness and profit constitutes a Paretar@btpoint, i.e., is not
dominated by any other attainable combination. Conversely Pareto optimal
solution of the LP relaxation can be obtained as the soldtlorsomea € [0, 1],
see, e.g., Ehrgott (2005).

Some extensive computational studies, especially for Bhealse, are needed
to decide whether the results presented in this paper afel usgractice. Nev-
ertheless, we are confident that our contribution helps tanbe efficiency and
robustness in the near railway future.

490 550 ——— = 550
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Figure 4: Total profit objective (blue, left axis) and totabustness objective
(green, right axis) in dependence gn
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