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Abstract

We study the optimal control of a maximum-norm objective functional subjected
to an elliptic-type PDE and pointwise state constraints. The problem is transformed
into a problem where the non-di�erentiable L∞-norm in the functional will be re-
placed by a scalar variable and additional state constraints. This problem is solved
by barrier methods. We will show the existence and convergence of the central path
for a class of barrier functions. Numerical experiments complete the presentation.
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1 Introduction
In this work we study barrier methods for the solution of PDE constrained optimal control
problems with an L∞-functional. This type of functional is important, if a uniform
approximation on the whole computational domain is desired.

This class of problems is closely related to state constrained optimal control. On the
one hand, the topological structure is similar, on the other hand, these problems can be
reduced to state constrained problems by a simple transformation.

While state constrained optimal control problems have been studied since the early
80's, only recently e�cient numerical algorithms for their solution have become available,
which admit an analysis in function space. State constrained problems are hard to solve
directly. The main problem is to handle Lagrange multipliers which belong in general
to measure spaces. This is a consequence of the L∞- structure of these problems. To
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overcome these di�culties, various regularization and path-following methods have been
studied recently.

One way is to weaken the constraints in an L2-sense, which has a regularizing e�ect on
the Lagrange multipliers. Prominent examples are Lavrentiev regularization (cf. e.g. [7])
and exterior penalty methods (cf. e.g. [5]). The regularization comes at the price that
the L∞-structure of the problem is lost. In general, regularized solutions are infeasible
with respect to the original problem, but converge to the optimal solution of the original
problem. However, if the regularity of the underlying PDE is su�ciently high, then the
L∞ structure can be preserved up to a certain degree.

Under the same regularity assumptions, barrier methods can be used as an alternative
approach, which preserves the L∞-structure completely, and in particular the feasibility
of approximate solutions. They allow a quantitative convergence analysis of the homo-
topy path and explicit bounds on its Lipschitz constant [12]. Moreover, for a proper
choice of barrier functions it is possible to construct a Newton path-following method
in function space, which provably converges to the optimal solution of the original state
constrained problem [14].

The reduction of optimal control problems with L∞-functional to a state constrained
problem was studied by Grund and Rösch in [3] in the case of boundary control. In
their work, they accepted the lack of regularity and worked with measure valued La-
grange multipliers. For the numerical solution they used a �rst discretize, then optimize
approach. In this paper, we will apply barrier methods, studied in [12] to an optimal
control problem with L∞-norm functional. This can be done by reduction to a state
constrained problem and subsequent barrier regularization.

This paper is organized as follows. In Section 2, we set up the problem and explain the
transformation into a real valued, state constrained problem. In the following Section, we
con�rm that our problem �ts into the setting of the (abstract) framework from [12]. In
Section 4 we discuss optimality conditions for barrier regularizations of our problem class
and derive basic results concerning the associated homotopy path. Finally, in Section 5
we apply our method to some examples.

2 Problem setting

In this paper we consider the optimal control problem

min J(y, u) = ‖y − yd‖L∞(Ω) +
κ

2
‖u‖2

L2(Ω)
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subject to the elliptic PDE
∫

Ω

∑

ij

aij(x)∂iv ∂jy + a0(x)yv dx +
∫

Γ
α(s)yv ds =

∫

Ω
vu dx for all v ∈ H1(Ω) (1)

and the state constraints
ya ≤ y ≤ yb a.e. in Ω.

Here, Ω ⊂ RN , N = 1, 2, 3 is a bounded domain with C1,1-boundary Γ. As for the
coe�cients we assume aij ∈ C1,1(Ω), a0 ∈ L∞(Ω) satisfying aij(x) = aji(x) and the
condition of uniform ellipticity

N∑

i,j=1

aij(x)ξiξj ≥ δ|ξ|2 ∀ξ ∈ RN .

Moreover, we require a0(x) ≥ 0 and a0(x) > 0 on a non-zero subset of Ω. To render
our problem well de�ned and for the derivation of optimality conditions we assume that
ya, yb ∈ C(Ω) and a Slater condition: there are (û, ŷ) that satisfy the state equation and
δ > 0 such that

yb(x)− δ ≥ ŷ(x) ≥ ya(x) + δ. (2)

Remark 2.1. To avoid unnecessary e�ort of notation, in the following we write e.g.
〈·, ·〉(W 1,p′)∗×W 1,p instead of 〈·, ·〉(W 1,p′ (Ω))∗×W 1,p(Ω)

.

The left-hand-side of (1) de�nes the operator

A : H1(Ω) → (
H1(Ω)

)∗

y 7→ Ay : 〈Ay, v〉(H1)∗×H1 :=
∫

Ω

∑

ij

aij(x)∂iv ∂jy + a0(x)yv dx +
∫

Γ
α(s)yv ds.

(3)

For our purpose, however, we have to modify its de�nition slightly, by using Sobolev
spaces W 1,p(Ω) for appropriate∞ > p > max{2, N}, for which by the Sobolev embedding
Theorem W 1,p(Ω) ↪→ C(Ω) is continuous. In this case, A : W 1,p → (W 1,p′)∗ is still
continuous, if 1/p + 1/p′ = 1 cf. [1, Thm 9.2].
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For the action of the control, we de�ne the operator

B : L2(Ω) →
(
W 1,p′(Ω)

)∗

u 7→ Bu : 〈Bu, v〉(W 1,p′ )∗×W 1,p′ :=
∫

Ω

uv dx.
(4)

Then the state equation can be written as an equation in (W 1,p′)∗:

Ay −Bu = 0.

Theorem 2.2. Under our assumptions the equation Ay = r has a unique solution y ∈
W 1,p for all r ∈ (W 1,p′(Ω))∗. There is a constant c such that

‖y‖W 1,p(Ω) ≤ c ‖r‖(W 1,p′ (Ω))∗ . (5)

In particular for N ≤ 3 we have

‖y‖C(Ω) ≤ ‖y‖W 1,p(Ω) ≤ ‖Bu‖(W 1,p′ (Ω))∗ ≤ c ‖u‖L2(Ω). (6)

Proof. By the Lax-Milgram Theorem the operator A : H1 → (H1)∗ is an isomorphism,
which implies existence and uniqueness of y as a variational solution. Existence of y ∈
W 1,p follows then from [1, Theorem 9.2]. The estimate (5) can be found in [1, Remark 9.3
(d)], while (6) is a consequence of the Sobolev embedding theorems: W 1,p(Ω) ↪→ C(Ω) is
continuous for p > N and W 1,p′ → L2 is continuous for 1/p′ = N/(N − 1) > 1/N + 1/2.
Both requirements can be met by an appropriate choice of p = N + ε for N ≤ 3 and for
any su�ciently small ε > 0.

Remark 2.3. From the estimate (5) follows the boundedness ‖S‖L2(Ω)→H1(Ω)∩C(Ω) ≤ cΩ

of the solution operator S : L2(Ω) → H1(Ω) ∩ C(Ω), S : u 7→ y , cf. [9].

By a simple transformation, cf. e.g. [3], we can reduce the non-di�erentiable L∞-
norm problem to a di�erentiable problem by replacing the L∞-norm in the objective
functional by a real-valued unknown d and additional state constraints that depend on
d.

From the fact that

‖y − yd‖L∞(Ω ≤ d ⇔ −d ≤ y − yd ≤ d for a.a. x ∈ Ω,
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we arrive at the new problem

min j(d, y, u) = d +
κ

2
‖u‖2

L2(Ω) (P1)

subject to the state equation
Ay −Bu = 0 (P2)

as de�ned in (1), the state constraints

−d ≤ y − yd ≤ d a.e. in Ω, (P3)

and our original state constraints

ya ≤ y ≤ yb a.e. in Ω. (P4)

Observe that any feasible d is bounded from below by the following inequality

d ≥ max{max
x∈Ω

{ya(x)− yd(x), 0}, max
x∈Ω

{yd(x)− yb(x), 0}}. (7)

In particular, if yd is infeasible with respect to the state constraints ya and/or yb, d is
bounded from below by a positive number dmin > 0.

Throughout this paper, we refer to the constraints (P3) as the �L∞-constraints�, and
the (problem given) constraints (P4) as the �state constraints�. Obviously, j : Z :=
R×H1(Ω)× L2(Ω) → R is continuous. It is convex by convexity in u and linearity in d

and does not depend on y. Its coercivity on the feasible subset Zad ⊂ Z de�ned by the
equality and inequality constraints can be shown easily: let (dn, yn, un) be a sequence
with ‖(dn, yn, un)‖R×L∞(Ω)×L2(Ω)

n→∞−→ ∞. Because d ≥ 0 and ‖u‖L2(Ω) ≥ c‖y‖H1(Ω) we
see immediately j(dn, yn, un) n→∞−→ ∞.

Theorem 2.4. (Existence of an optimal solution ) For all κ > 0 problem (P1)�(P4) has
a unique solution (y∗, u∗, d∗)> with u∗ ∈ L2(Ω) and y∗ ∈ C(Ω) ∩H1(Ω).

Proof. Elimination of y = Su yields a minimization problem on the re�exive space U×R
with U = L2(Ω). On the admissible set Sad ⊂ U × R the functional j, which does
not depend on y explicitly, is convex, coercive (note that only d ≥ 0), and continuous.
It can easily be shown that Sad is convex and closed. Hence, by the main existence
theorem of convex optimization (cf. e.g. [2], Proposition II.1.2) there exists a minimizer
(u∗, d∗) ∈ U × R. By strict convexity of j in u and because j is non-constant and
linear in d this minimizer is unique. The optimal state is given by y∗ = Su∗ belongs to
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C(Ω) ∩H1(Ω) by Theorem 2.2.

3 L∞ optimization in the framework of barrier methods

To apply the results presented in [12], we have to prove that our problem �ts into the
given abstract framework. Important for the argumentation in [12] (and also in papers
related to logarithmic penalty term methods like [10]) is, that the state is considered in
an L∞-setting, which is provided by our estimate ‖y‖C(Ω) ≤ c‖u‖L2(Ω) in Theorem 2.2.

De�ne Z∞ = R× Y × U and z = (d, y, u)>. Here, Y is the space of states. Because
all admissible states are continuous we may choose Y = C(Ω). U = L2(Ω) is the space
of controls. Further, we de�ne by 〈z1, z2〉 := 〈d1, d2〉R + 〈y1, y2〉L2(Ω) + 〈u1, u2〉L2(Ω) the
inner product and by ‖z‖2 = ‖(dn, yn, un)‖2 := |d|2 +‖y‖2

L2(Ω)
+‖u‖2

L2(Ω) a norm on Z∞.

Objective Functionals. We have already noted that our modi�ed objective functional
j : Z∞ → R is continuous, coercive, and convex on Z and Z∞. Its subdi�erential

∂j(z) = (1, 0, κu)T (8)

is uniformly bounded in Z∗∞ on bounded subsets of Z∞.

Partial di�erential equations. Next we verify that our partial di�erential equation
�ts into the setting of closed, densely de�ned operators, established in [13]. An operator
A : Y ⊃ domA → R is called closed, if yk → y and Ayk → z implies y ∈ domA and
Ay = z. We start with a Lemma that gives us a general strategy for the choice of the
domain of A.

Lemma 3.1. For Banach spaces Y and R let A : Y ⊃ dom A → R be a linear operator.
A is closed and bijective, if and only if A possesses a continuous inverse A−1 : R → Y

in the sense that A−1A = iddom A and AA−1 = idR.

Proof. Assume that a continuous inverse A−1 exists. Then in particular A is bijective.
Let yk → y and rk = Ayk → r. By surjectivity of A there is a ỹ with Aỹ = r,
hence Ayk → Aỹ. We have to show y = ỹ. Because A−1 is continuous, we conclude
yk = A−1Ayk → A−1Aỹ = ỹ, hence y = ỹ. If in converse, A is closed and bijective, then
existence of a continuous inverse follows from the open mapping theorem, which not only
holds for continuous, but also for closed operators (cf. e.g. [17]).
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Lemma 3.2. The operator A, de�ned in (3) gives rise to a densely de�ned, closed,
bijective linear operator

A : C(Ω) ⊃ W 1,p(Ω) → (W 1,p′(Ω))∗

with domA = W 1,p(Ω). Its adjoint operator

A∗ : W 1,p′(Ω) ⊃ domA∗ → C(Ω)∗

is a di�erential operator in the weak form given by

〈A∗p, v〉C∗×C :=
∫

Ω

∑

ij

aij(x)∂ip ∂jv + a0(x)vp dx +
∫

Γ
α(s)vp ds ∀v ∈ W 1,p′ . (9)

Its domain is de�ned by all p ∈ W 1,p′(Ω) for which this expression has a unique contin-
uous extension to a functional in C(Ω)∗.

Proof. First of all A is densely de�ned, since W 1,p(Ω) is dense in C(Ω) . Theorem 2.2
shows existence of a continuous inverse A−1. Hence, the conditions of Lemma 3.1 are
ful�lled, and we can conclude closedness and bijectivity of A.

The representation (9) of the adjoint operator A∗ follows directly from the canoni-
cal abstract de�nition of the adjoint of a closed, densely de�ned operator: 〈v, A∗p〉 :=
〈Av, p〉∀v ∈ W 1,p. Here the linear functional 〈Ap, ·〉 is not necessarily continuous on the
subset W 1,p ⊂ C(Ω). The set of all p for which this is the case is called domA∗. By
density all p ∈ domA∗ can be extended uniquely and continuously to a linear functional
in C(Ω)∗.

Hence, A satis�es all assumptions imposed in [12] and its adjoint operator has a
straightforward representation as a di�erential operator via (9). For N < 4 the Sobolev
embedding theorems imply that B is continuous. Its adjoint is given canonically by

B∗ : W 1,p′ → L2(Ω)

〈B∗p, v〉 =
∫

Ω
pv dx.

Since A is surjective, also the operator T := (A,−B)Y × U → R is surjective. The
following lemma yields closedness of T .
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Lemma 3.3. Let Y, U,R be Banach spaces and assume that the linear operator A : Y ⊃
domA → R is closed and densely de�ned and that the linear operator B : U → R is
continuous. Then

T : U × Y ⊃ domT = domA× U → R

(u, y) 7→ Ay −Bu

is linear, closed and densely de�ned. In particular, V = kerT is closed.

Proof. Linearity and density of T are immediate, so let us show closedness of T . Consider
the convergent sequences (yk, uk) in domT and rk = Ayk−Buk in R. Let (yk, uk) → (y, u)
and rk → r. By continuity of B, Buk → Bu, and thus Ayk = rk + Buk converges
to r + Bu. By closedness of A we conclude y ∈ domA and Ay = r + Bu. Hence,
(y, u) ∈ domT and Ay −Bu = r + Bu−Bu = r, and T is closed.

Closedness of kerT is again immediate.

Inequality constraints. By assumption (2), there is a strictly feasible point (Slater
point) (ŷ, û) such that Aŷ = Bû and the condition

0 < δ := ess inf
x∈Ω

min{ŷ − ya, yb − ŷ}

holds. Thus, with d̂ := ‖yd − ŷ‖∞ + δ the following Slater condition in Z∞ is ful�lled:

0 < δ = ess inf
x∈Ω

min{ŷ − ya, yb − ŷ, d̂ + ŷ − yd, d̂− ŷ + yd}. (10)

Remark 3.4. The feasible set W = R+ ∪ {0} × Yad × Uad is non-empty and convex. By
the choice of topology ‖ · ‖Y = ‖ · ‖C(Ω), ‖ · ‖U = ‖ · ‖L2(Ω) and ‖ · ‖R = | · |, the interior
of Yad is non-empty.

Indicator functions. The indicator function χM (m) on a set M is de�ned by

χM (m) =





0 if m ∈ M

+∞ otherwise
.

Let E be the kernel of Ay−Bu. i.e. {(d, y, u)|Ay−Bu = 0} and Zad the feasible set, i.e.
z ∈ Z∞ which ful�lls the inequality constraints. We can combine the objective functional
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and the constraints to one functional:

F (z) = j(z) + χE(z) + χZad
(z). (11)

It is clear that (11) is equivalent to (P1)-(P4).

Barrier functionals. In the spirit of [12] we will use barrier functions de�ned by

φ(v;µ; q) :=





−µ
∑

I

ln(vi) : q = 1

µq
∑

I

1

(q−1)vq−1
i

: q > 1
.

Setting φ(vi; µ; q) = ∞ for gi(y) ≤ 0 we extend their domain to R. Here, I = [1, ..., n] is
a set of indices associated to a constraint and n is the number of constraints.

In the case q = 1, φ is the standard logarithmic barrier function used by interior
point methods considered in various works like [16] or [10]. Let g be a function that
implements the various constraints, e.g. g(z) = y − ya for the lower state constraint,
g(z) = y − yd + d for the �lower optimality bound�, and so on. In what follows we will
always assume this simple pointwise structure for g.

The theory of barrier methods depends more on the properties of the �rst order
derivatives of the barrier functions than on the functions themselves. We de�ne

Ξ(z) := φ(g(z);µ; q).

If g(z) > 0, then Ξ is di�erentiable and the derivatives of Ξ (w.r.t. z) can be computed
as

Ξ
′
(z; µ; q) = −µq

∑

I

τi

g(z)q
g
′
(z)

where g
′ is the derivative of g w.r.t.. z = (d, y, u)>.

Using these barrier functions, we construct barrier functionals by computing the sum
of integrals over φ on Ω. For �xed µ and q we de�ne

b(·; µ; q) : Z → R+ ∪ {+∞}

by
b : (z;µ; q) 7→

∑

I

∫

Ω

φ(gi(z(x));µ; q) dx
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and its formal derivative b′ by

b′(z; µ; q) : δz 7→
∑

I

∫

Ω

φ′(gi(z(x));µ; q)g
′
i(gi(z(x));µ; q)δz(x) dx,

if the right hand side is well de�ned.
To be able to distinguish the summands, we write bya , byb

for the barrier functionals
corresponding to the upper and lower state constraints, respectively, and bd, bd for the
barrier functionals which implement the upper and lower part of the L∞-functional.

We are going to analyze our problem in the framework of convex analysis, and thus
the notion of a derivative of b we will use is the sub-di�erential. Recall that the sub-
di�erential ∂f(z0) of a convex function f : Z → R at z0 ∈Z is de�ned by the set of
all linear functionals z∗ ∈ Z∗ that satisfy f(z) − f(z0) ≥ 〈z∗, z − z0〉. If f is Gâteaux
di�erentiable at z0 with derivative f ′(z0), then ∂f(z0) = {f ′(z0)}. In [12] sub-di�erentials
of barrier functionals were characterized in Lp(Ω) for 1 ≤ p < ∞ and C(Ω). We augment
these results for barrier functionals that implement L∞-bounds.

Lemma 3.5. Assume that (m∗, d∗) ∈ M(Ω) × R is an element of the sub-di�erential
∂bd(z; µ; q) at some point z = (y, d). Let SΩ := {x ∈ Ω : y(x) = yd(x) + d}. Then the
following assertions hold:

m∗ = b′(z) + m∗
SΩ

, (12)

where m∗
SΩ

is a non-positive measure on SΩ. In particular, m∗ = b′(z) if d+y(x)−yd > 0
everywhere in Ω. Further we have

d∗ = −‖m∗‖M(Ω). (13)

Proof. Let δz := (δy, δd) ∈ C(Ω) × R. Setting δd = 0 we conclude (12) from [12],
Proposition 3.5. Setting −δy ≡ 1 = δd we have b(z) = b(z + δz). It follows that
∂b(z)δz = 0, and hence (13) via non-positivity of m∗ and

0 = 〈m∗, δy〉M(Ω)×C(Ω) + d∗ · δd = ‖m∗‖M(Ω) + d∗.

An analogous assertion holds for bd, of course. Then m∗ is non-negative, while d∗ is
non-positive.
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Example. For our model-problem we have e.g. for q = 2

b(z, µ, 2) =
∫

Ω

(
µ2

y − ya
+

µ2

d + y − yd
+

µ2

yb − y
+

µ2

d− y + yd

)
dx.

The formal derivative w.r.t. y is given by

〈b′y(z, µ, 2), h〉 = −
∫

Ω

(
µ2

(y − ya)
2 +

µ2

(d + y − yd)
2 −

µ2

(yb − y)2
− µ2

(d− y + yd)
2

)
h dx.

Lemma 3.5 asserts that ∂b(y) is single valued with its formal derivative as the only
element, if y is strictly feasible. If not, then an additional measure may appear, which is
concentrated at those points, where y touches the bounds. The formal derivative w.r.t.
d is given by

〈b′d(z, µ, 2), h〉 = −
∫

Ω

(
µ2

(d + y − yd)
2 +

µ2

(d− y + yd)
2

)
h dx.

Lemma 3.5 asserts that the sub-di�erential coincides with b′d(z, µ, 2) if −d < y − yd < d

everywhere in Ω.

4 Optimality conditions

With the help of the indicator function considered in Section 3 and the barrier function
considered in Section 3, we de�ne the unconstrained problem as follows:

minFµ(z) := j(z) + b(z; µ; q) + χE(z) + χZad
(z) (14)

for a by q ≥ 1 given class of barrier functionals. Because b(z; µ; q) = ∞ for z 6∈ Zad we
can drop χZad

and conclude

Fµ(z) = j(z) + b(z; µ; q) + χE(z) for µ > 0.

The following theorem provides existence and uniqueness of the minimizer of (14).

Theorem 4.1. Let µ0 ∈ R. Problem (14) admits a unique minimizer zµ = (dµ, yµ, uµ)
for all µ ∈ (0, µ0]. Moreover, zµ is strictly feasible almost everywhere in Ω and bounded
in Z uniformly in µ ∈ [0, µ0].

Proof. The proof is the same as in [12]. For the convenience of the reader we recall the
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main ideas. By convexity and lower-semi-continuity of b all Fµ are convex and lower-
semi-continuous. By the identity

Fµ(z) = (1− µq/µq
0)F (z) + µq/µq

0Fµ0(z)

for every µ ∈ (0, µ0] we have

min{F (z), Fµ0(z)} ≤ Fµ(z) ≤ max{F (z), Fµ0(z)}. (15)

Since F and Fµ0 are coercive, by (15) all Fµ are coercive and all their level-sets are
uniformly bounded in Z. Thus we can apply the main existence theorem for minimizers
of convex optimization (cf. [2], Proposition I.1.2.) to obtain the existence and uniqueness
of a minimizer zµ.

Similar to Theorem 4.3 in [12], we obtain the �rst-order optimality conditions.

Theorem 4.2. Let the assumptions of Section 3 hold. For µ ≥ 0 let z = (d, y, u) be
the unique minimizer of jµ(z). Then there are mya ∈ ∂bya(y),myb

∈ ∂byb
(y), (md, dd) ∈

∂bd(z), (md, dd) ∈ ∂bd(z), and p ∈ dom A∗ such that

mya + myb
+ md + md −A∗p = 0

κu + B∗p = 0

1 + dd + dd = 0

Ay −Bu = 0

(16)

holds.

Proof. By the generalized Fermat principle in convex analysis it follows for the minimizer
z that 0 ∈ ∂Fµ(z). Now we apply the sum-rule of convex analysis (cf. e.g. [18, Theorem
47.B]) to the problem 14. By our choice of topology for Y and our Slater assumption,
there is ẑ = (d̂, û, ŷ) with Aŷ − Bû = 0 (which means χE(ẑ) = 0), such that j and all
Barrier terms are continuous at ẑ. Hence, the sum-rule of convex analysis, which holds,
if there is a point ẑ, where all summands are �nite and all but one are continuous there,
is applicable and yields

0 ∈ ∂Fµ(z) = ∂j(z) + ∂bya(z) + ∂byb
(z) + ∂bd(z) + ∂bd(z) + ∂χE(z).
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Now the �rst three equations of (16) follow immediately, taking into account the charac-
terization of ∂j(z) via (8) and the characterization ∂χE = ran(A,−B)∗ via Proposition
2.5 [13].

Note that the operators A∗ and B∗ have a concrete representation via (9) and (10),
respectively.

Lemma 4.3. Let the assumptions of Section 3 hold. Then mya ,myb
,md,md are uni-

formly bounded in M(Ω), independently of µ as µ → 0.

Proof. The fourth equation in (16) reads dd + dd = −1. Because both terms are non-
positive, it follows via (13) ‖md‖ ≤ 1 and ‖md‖ ≤ 1. The remaining system reads

mya + myb
−A∗p = −md −md

κu + B∗p = 0

Ay −Bu = 0

.

We have just shown that the the right hand side of this system is uniformly bounded in
M(Ω). Using this, uniform bounds for the elements of the left hand side follow just as
in the proof of Proposition 4.5 in [12].

Lemma 4.4. The functional j(z) is strongly uniformly convex, i.e. there is a constant
0 < α < κ

4 such for all z1, z2 ∈ Z holds

α‖u1 − u2‖2 ≤ j(z1) + j(z2)− 2j

(
1
2
z1 +

1
2
z2

)
.

Proof. We have

j(z1) + j(z2)− 2j

(
1
2
z1 +

1
2
z2

)

= d1 +
κ

2
‖u1‖2 + d2 +

κ

2
‖u2‖2 − 2

(
d1 + d2

2
+

κ

2
‖1
2
u1 +

1
2
u2‖2

)

=
κ

2

(
‖u1‖2 + ‖u2‖2 − 1

2
‖u1 + u2‖2

)
=

κ

4
‖u1 − u2‖2.

Choosing α < κ
4 we have found the constant.
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Lemma 4.5. (Growth condition) Let be z∗ the minimizer of F . Then F satis�es a growth
condition at its minimizer z∗:

α‖u− u∗‖2 ≤ F (z)− F (z∗) ∀z ∈ Zad. (17)

Proof. Let z ∈ Zad be feasible, hence χE(z) = 0 and χG(z) = 0. We can estimate

F (z) + F (z∗)− 2F

(
z + z∗

2

)
≤ F (z) + F (z∗)− 2F (z∗) = F (z)− F (z∗), (18)

where we used that z∗ is the unique minimizer of F . Now we use the result of Lemma
4.4 to observe

F (z) + F (z∗)− 2F

(
z + z∗

2

)
= j(z) + j(z∗)− 2j

(
z + z∗

2

)

≥ α‖u− u∗‖2

Together with (18) it shows the result (17).

Lemma 4.6. (cf. [12], Corollary 4.6) Let be b(z;µ; q) a barrier function of order q

corresponding to the constraints gi de�ned in Section 3. Then the following bound holds
independently of µ for a minimizer z of the barrier problem:

∥∥∥∥
(

µ

gi(z)

)r∥∥∥∥
L1(Ω)

≤ c ∀ 0 ≤ r ≤ q.

Lemma 4.7. Let 0 < µ0. Let zµ0 be the unique minimizer of Fµ0 and z∗ the unique
minimizer of F . Then it holds

F (zµ0)− F (z∗) ≤ Cµ0.

Proof. We modify the proof of Lemma 5.1, [12]. Let q ≥ 1 and µ0 > 0 be given. Then
∂b(z; µq

0; q) = µ0∂b(z; µq−1
0 ; q). By convexity of F we have

F (zµ0) ≤ F (z∗) + 〈v, zµ0 − z∗〉 (19)

for every v ∈ ∂F (zµ0). Because zµ0 is a minimizer of Fµ0 it holds by the sum-rule of
subdi�erential calculus 0 ∈ ∂Fµ0(zµ0) = ∂F (zµ0) + µ0m, hence −µ0m ∈ ∂F (zµ0) for all
m ∈ ∂b(zµ0 ;µ

q−1
0 ; q). Using again the sum-rule, m can be expressed as the sum m =(

mya + myb
+ md + md + dd + dd

)
, where md is a sub-gradient associated with the upper

14



L∞-constraint, md is associated with the lower L∞-constraint, etc. Further, all sub-
gradients associated with lower bounds are negative, and sub-gradients associated with
upper bounds are positive, hence −md,−myb

are negative, −md,−mya ,−dd, and − dd

are positive. Therefore, we get the estimate (note, that we consider −m,)

µ0〈−m, zµ0 − z∗〉 = µ0(〈−mya , yµ0 − y∗〉+ 〈−myb
, yµ0 − y∗〉

+〈−md, yµ0 − y∗〉+ 〈−md, yµ0 − y∗〉
+〈−dd, dµ0 − d∗〉+ 〈−dd, dµ0 − d∗〉)

≤ µ0(〈−mya , yµ0 − y∗〉|y∗<yµ0
+ 〈−myb

, yµ0 − y∗〉|y∗>yµ0

+(〈−md, yµ0 − y∗〉+ 〈−dd, dµ0 − d∗〉)|y∗+d∗<yµ0+dµ0

+(〈−md, yµ0 − y∗〉+ 〈−dd, dµ0 − d∗〉)|y∗−d∗>yµ0−dµ0
),

where we included only those regions that contribute positively to the integrals. On
those subregions the potential measure valued parts of the sub-gradients disappear. For
example, if y∗ − d∗ > yµ0 − dµ0 , then, since y∗ ≥ yd + d∗, it follows yµ0 < yd + dµ0 .
Thus, the subset of Ω, where this inequality holds, is the complement to the set SΩ in
Lemma 3.5. Hence, we can write in terms of integrals:

µ0〈−m,zµ0 − z∗〉

≤ µ0




∫

y∗<yµ0

µq−1
0

(yµ0 − ya)q
(yµ0 − y∗) dx +

∫

y∗>yµ0

µq−1
0

(yb − yµ0)q
(y∗ − yµ0) dx

+
∫

yµ0+dµ0>y∗−d∗

µq−1
0

(dµ0 + yµ0 − yd)q
((yµ0 + dµ0)− (y∗ + d∗)) dx

+
∫

y∗−d∗>yµ0−dµ0

µq−1
0

(dµ0 − yµ0 + yd)q
((y∗ − d∗)− (yµ0 − dµ0)) dx


 .

(20)

Now we estimate the integrals in (20), starting with the terms associated to the state
constraints ya ≤ y ≤ yb. First, we observe due to the feasibility of y∗ that yµ0−y∗

yµ0−ya
< 1

and y∗−yµ0
yb−yµ0

< 1 for all x ∈ Ω. Hence
∫

y∗<yµ0

µq−1
0

(yµ0−ya)q (yµ0 − y∗) dx <
∫

y∗<yµ0

µq−1
0

(yµ0−ya)q−1 dx

and
∫

y∗>yµ0

µq−1
0

(yb−yµ0 )q (y∗ − yµ0) dx <
∫

y∗>yµ0

µq−1
0

(yb−yµ0 )q−1 dx. By Lemma 4.6, both integrals

are �nite, and we obtain uniform bounds for these terms, say by a constant Ca,b.
Similarly we estimate the remaining two integrals. Since yd − d∗ ≤ y∗ we conclude
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(yµ0 + dµ0) − (y∗ + d∗) ≤ yµ0 + dµ0 + yd and since y∗ ≤ yd + d∗ it follows (y∗ − d∗) −
(yµ0 − dµ0) ≤ dµ0 − yµ0 + yd. Hence,

∫

Ω

µq−1
0

(dµ0 + yµ0 − yd)q
((yµ0 + dµ0)− (y∗ + d∗) dx

≤
∫

Ω

µq−1
0

(dµ0 + yµ0 − yd)q
(yµ0 + dµ0 − yd) dx =

∫

Ω

µq−1
0

(dµ0 + yµ0 − yd)q−1
dx

Again, from Lemma 4.6 we get the boundedness
∫
Ω

µq−1
0

(dµ0+yµ0−yd)q−1 dx ≤ Cd. Similarly,
we obtain the bound
∫

Ω

µq−1
0

(dµ0 − yµ0 + yd)q
((yµ0 − dµ0)− (y∗ − d∗)) dx ≤

∫

Ω

µq−1
0

(dµ0 − yµ0 + yd)q−1
dx ≤ Cd.

where we used again Lemma 4.6.
All in all we have shown µ0〈−m, zµ0 − z∗〉 ≤ µ0(Ca,b + Cd + Cd). Because −µ0m ∈

∂F (zµ0) we can insert this estimate into (19), which completes the proof.

Theorem 4.8. (Convergence of the central path) Denote by zµ the minimizer of jµ and
by z∗ the minimizer of j. Under the assumptions of Section 3 there are constant cu, cy > 0
such that holds

‖uµ − u∗‖ ≤ cu
√

µ

‖yµ − y∗‖C(Ω) ≤ cy
√

µ

for all µ > 0. In particular,
∣∣∣‖yµ − yd‖C(Ω) − d∗

∣∣∣ ≤ cy
√

µ

Proof. Combining Lemma 4.5 and Lemma 4.7, we can estimate

α‖uµ − u∗‖2 ≤ F (zµ)− F (z∗) ≤ Cµ,

where α is the constant from Lemma 4.5 and C is the constant from Lemma 4.7. Division
by α and applying the root yields

‖uµ − u∗‖ ≤ cu
√

µ.

where cu =

√
C

α
. By the convergence uµ → u∗ in L2(Ω), and by the linearity and
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boundedness of the solution operator S, we obtain

‖yµ − y∗‖C(Ω) = ‖Suµ − Su∗‖C(Ω) = ‖S(uµ − u∗)‖C(Ω)

≤ ‖S‖L2(Ω)→C(Ω)‖uµ − u∗‖ ≤ cu‖S‖L2(Ω)→C(Ω)

√
µ,

where cy = cu‖S‖L2(Ω)→C(Ω).
Our last assertion follows from the convergence of the states yµ, and d∗ = ‖y∗ −

yd‖C(Ω):

cy
√

µ ≥ ‖y∗ − yµ‖C(Ω) = ‖y∗ − yd + yd − yµ‖C(Ω) ≥ |‖y∗ − yd‖C(Ω) − ‖yµ − yd‖C(Ω)|.

5 Numerical realization

In this section we will discuss a numerical realization of our method and illustrate our
theory by some numerical experiments.

5.1 Discrete optimality conditions

In Section 4, Theorem 4.2, we gained the optimality conditions in abstract form. Now,
we will bring it in a form that is implementable as a coupled set of PDEs, algebraic-
and integral equations. In the following we assume that additional state constraints
ya ≤ y ≤ yb are given. In the case of a problem without state constraints, the related
terms disappear.

First, from Ay − Bu = 0 we obtain the state equation (1). The adjoint equation is
given by (9) and by the derivative of b as

∫

Ω

∑

ij

aij(x)∂iv ∂jp + a0(x)pv dx +
∫

Γ
α(s)pv ds

=
∫

Ω

(
µq

(yb − y)q
+

µq

(d− y + yd)q
− µq

(y − ya)q
− µq

(d + y − yd)q

)
v dx ∀v ∈ W 1,p(Ω).

(21)

Note, that in the case of problems without state constraints the �rst and the third
summand is absent. In our numerical experiments, the degree of the barrier function will
be chosen �xed as q = 2.
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By 〈u,B∗p〉 =
∫
Ω up dx we obtain via κ

∫
Ω uv + pv dx = 0 for all v ∈ H1 the gradient

equation
κu + p = 0 in Ω. (22)

The integral relation

1−
∫

Ω

µq

(d + y − yd)
q +

µq

(d− y + yd)
q dx = 0 (23)

follows directly from Theorem 4.2.

Remark 5.1. In the spirit of barrier approximation, the functions ηa(µ) := µq

(d+y−yd)q and
ηb(µ) := µq

(d−y+yd)q can be seen as approximations on the Lagrange multipliers to Problem
(P1) with the constraints (P3)�(P4). By Equation (23), the integral is equal to one for
optimal (d, y). Hence, in sloppy words: at least one multiplier is always active. For the
original problem we observe

∫
Ω d(ηa + ηb) = 1, cf. [3].

We aim now for a discrete formulation of these four equations. To discretize the PDEs
we use MATLABs PDE toolbox [15]. Let Vh ⊂ V the space of linear �nite elements over
the grid Ωh with base (φi)i∈I . Approximating y by yh(x) =

∑
i∈I yiφi(x) and testing

with φi for all i ∈ I we obtain the system of equations

∑

j∈I




∫

Ω

(A∇φj) · ∇φi + a0φjφi dx +
∫

Γ

αφjφi ds


 yj =

∫

Ω

ujφjφi dx i ∈ I.

Using the notion in [15, p. 4-6] for the matrices, we arrive at the discrete equation

(K + Ma0 + Q)y = Ay = Mu,

where bold letters as y denote the coe�cient vectors yi of discrete functions yh(x) =∑
i∈I

yiφi(x), y = (y1, ..., yn)>. The Matrix Ma0 is the mass matrix associated with the

function a0(x), while M is the mass matrix associated with the constant one. The matrix
A = K + Ma0 + Q can be seen as a discrete version of the operator A, while M can
be seen as discrete version of B. If r ∈ R, we also write r for the vector r = (r, ..., r)>.
Analogously, we get a discrete version of the adjoint equation. We reduce the dimension
of the problem by setting u = − 1

κp and eliminate the equation (22). The integral relation
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(23) can be simply written as

1− e · M̃
(

µq

(d + y − yd)q +
µq

(d− y + yd)q

)
= 0,

where e = (1, ..., 1). The matrix M̃ is a diagonal matrix resulting from the evaluation
of the integral in (21) and (23) by the trapezoidal-rule. This simpli�cation has been
justi�ed in [4] in the context of state constrained problems. In summary, we have to
solve the (control reduced) discrete optimality system H(d, y, p; µ) = 0 with

H(d, y, p; µ) =




A∗p + M̃
(

µq

(y−ya)q + µq

(d+y−yd)q − µq

(yb−y)q − µq

(d−y+yd)q

)

Ay + 1
κMp

1− e · M̃
(

µq

(d+y−yd)q + µq

(d−y+yd)q

)




. (24)

5.2 Algorithm and program

To solve problem (P1) numerically, we use a step-size controlled, damped Newton-step
method, cf. Algorithm 1.

Remark 5.2. For comparison with a standard solver we implemented a ��rst discretize,
then optimize solver� based on the MOSEK Optimization Software[8]. MOSEK pro-
vides an interface to MATLAB that replaces the quadprog function from MATLABs
optimization toolbox. It solves problems of the form

min
1
2
z′Hz + f ′z s.t. Cz ≤ c

Dz = d

lc ≤ z ≤ uc (25)

Here we discretized our problem by z = (y>, u>, d)>,

H =




0 0 0

0 M̃ 0

0 0 0




, f =




0

M̃

1




, D =
(

K + Ma0 + Q −M 0

)
, d = 0,
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Algorithm 1 Path following with damped Newton method as inner loop.
Set z =
(d, y, p)>. Let H(z;µ) be the discretized optimality system.
Choose µ0 > 0,0 < µterm < µ0, σ < 1.
Compute (d, y, p)0 feasible e.g. by solving the inverse problem

p0 = −κAy0 for y0 = 1
2 (ya + yb),

set z = (d, y, p)>0
while µ > µterm

solve H(z;µ) =
0 up to a sufficiently small tolerance, e.g. ε <
10−2µ by a damped Newton method:

δz = −DH−1(z; µ)H(z;µ)
z = z + sδz

if z is strictly feasible
accept the solution: (y, u, p) = z
if σ > σmin

decrease σ
end
decrease µ by µ = σµ

else
discard the step
increase σ

end
if σ > σmax

return (no further path reduction possible)
end

end

and

C =




−E 0 −e

E 0 −e

−E 0 0

E 0 0




, c =




−yd

yd

−ya

yb




,

where K, Ma0 , M , and Q are the matrices de�ned above, E is the identity matrix and
e is a column vector of ones of suitable length. The explicit inequality constraints (25)
unused in our case. Note, that H is not positive de�nite, but positive semi de�nite.
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The numerical realization of our method was done by object-oriented programming
in MATLAB, where we used some functionality of the PDE-toolbox. The advantage of
this approach is that the data is encapsulated and the functions are bound to the data.
For details see [6], Chapter 9, Classes and Objects and [11]. We implemented a class
ocp (optimal control problem) that contains all necessary data, and some additionally
subclasses like grid, pde etc. As methods of the class ocp, we implemented a class con-
structor, a set and a get method to manipulate the data, a de�ne method that assembles
all matrices etc, a solve method that calls the specialized solvers (depends on the value
of ocp.type, pde.type and ocp.method), and a plot method that overwrites the stan-
dard plot method. Listing 1 gives a impression of a program that de�nes, solves, and
post-processes the problem given in Example 5.5.

1 % mesh gene ra t i on by pde−too lbox :
2 [ b , g ] = unitsquare_robin ; [ p , e , t ] = in i tmesh (g , ' hmax ' , i n f ) ;
3 % c a l l o f c l a s s g r i d con s t ruc to r and i n i t i a l i s i n g the g r id
4 gt = gr id ; gt = s e t ( gt , ' p ' , p , ' e ' , e , ' t ' , t ) ;
5 % c l a s s ocp con s t ruc to r :
6 o = ocp ;
7 % s e t t i n g up the problem :
8 o = se t ( o , ' y_d ' , 0 , 'mu_e' , 1 e−5 , ' type ' , ' L8T ' , . . .
9 ' lambda ' , 1 e−8 , ' gr id ' , gt , ' b ' , b , ' g ' , g , ' r e f i n e ' , 6 , . . .
10 ' c ' , 1 , ' a ' , 0 . 0 , ' debug ' , true , 'mu_a' , 0 . 5 , . . .
11 'y_a' ,−20 , 'method ' , ' ba r r i e r ' ) ;
12 % de f i n i n g the problem , assembl ing e tc . :
13 o = de f i n e ( o ) ;
14 % de f i n e the upper c on s t r a i n t and r e d e f i n e ocp . bounds . y_b
15 y_b = 0.85− check_funct ion (@eta_6 , get ( get ( o , ' gr id ' ) , ' p ' ) ) ;
16 o = se t ( o , ' y_b ' , y_b ) ;
17 % so l v e the problem
18 o = so l v e ( o ) ;
19 % post−pro c e s s i ng
20 f i g u r e ( 1 ) ; p l o t ( o , ' y ' ) ; f i g u r e ( 2 ) ; p l o t ( o , ' u ' ) ;
21 f i g u r e ( 3 ) ; p l o t ( o , 'm_y_b' ) ; f i g u r e ( 4 ) ; p l o t ( o , 'm_ud' ) ;

The function check_function (line 15) is a so called friend function which is not a
method of the class ocp. Actually, it is an add-on to feval that accepts the point vector
of a pde-mesh as parameter.
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5.3 Examples

Example 5.3. A problem without (additional) state constraints.

We consider the unbounded optimal control problem

min
(y,u)∈H1(Ω)×L2(Ω)

j(y, u) = ‖y − yd‖L∞(Ω) +
κ

2
‖u‖2

L2(Ω) (26)

subject to
∫

Ω
〈A∇y,∇v〉+ a0yv dx +

∫

Γ
yv ds =

∫
Ω uv ∀v ∈ H1(Ω). (27)

with A = I and a0 = 1. The domain Ω is the unit square.
Further, we choose yd = max

{−20
(
(x1 − 0.5)2 + (x2 − 0.5)2

)
+ 1, 0

}
.

The grid is generated by using initmesh from the Matlab pdetool-box where the
initial mesh size is set to in�nity, what results after six re�nements in a Friedrichs-Keller
triangulation with inner-circle diameter 2.288 · 10−3, 16 641 grid points, 512 edges and
32 768 triangles.

By setting q = 2 we choose rational barrier functions of second order. In the de�nition
of an object of ocp, we set the method-switch to 'barrier', cf. Listing 1.

In Figure 1 we show the numerically computed optimal state yh a at κ = 10−3,
κ = 10−5, together with (for comparison) the given desired state yd .
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Figure 1: Desired function yd (a), the computed optimal state yh at κ = 10−3 (b) and at
κ = 10−5 (c). Of course, the quality of the approximation of yd increases by increasing
the �dedicated energy� by decreasing the Tikhonov parameter κ .

In this example we only have Lagrange multipliers associated with the L∞-constraints.
In Figure 2 we present the numerically computed approximation on the Lagrange multi-
pliers.
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Figure 2: Approximation on the Lagrange multipliers with respect to the lower (a) and
the upper (b) L∞-constraint at Tikhonov-parameter κ = 10−3.

The functions md and md are positive on regions where yh touches the bounds.
In Table 5.3 we present snapshots of the key-values jµ(d, u;µ), j(d, u), ‖u‖L2 , and

‖y−yd‖L∞ along the central path together with values computed by the quadprog(mosek)
solver.

µ jµ(d, u) j(d, u) ‖u‖L2(Ω) ‖y − yd‖L∞(Ω)

0.10006000 13.2581 0.34206 12.6950 0.24130

0.01001200 0.73639 0.30879 15.7525 0.18424

0.00100180 0.32857 0.30723 16.1689 0.17646

0.00010023 0.30850 0.30712 16.1985 0.17592

1.0029e-05 0.30723 0.30712 16.1992 0.17591

1.0035e-06 0.30713 0.30712 16.1992 0.17591

quadprog(mosek)

� � 0.30191∗ 16.2345 0.17820

Table 1: Example 5.3: Values of J(d, u; µ) and ‖y−yd‖L∞(Ω), depending on µ for κ = 10−3

computed by the rb-solver. For comparison, we present the values computed by quadprog.
∗Value returned by quadprog. quadprog solution status: NEAR_OPTIMAL.

Example 5.4. State constrained problem (i): ya < yd.

We consider the problem given in Example 5.3, but now with a given additional lower
state constraint ya ≡ −0.1. This choice of the state constraint gives us:
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• the constraint should be active, and

• ya < yd for all x ∈ Ω. This ensures that yd ∈ Yad.

We present in Figures 3 and 4 snapshots along the central path of the computed optimal
state and the Lagrange multipliers related to the state constraint ya at κ = 10−3.
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Figure 3: Optimal state y depending on µ. Snapshots at µi = 10−i i = {1, 2, 3}.
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Figure 4: Approximation on the Lagrange multiplier mya depending on µ. Snapshots at
µi = 10−i i = {1, ..., 4}. Note that the z-axes are di�erently scaled.

As in Example 5.3, we present in the following table the results of our computations.
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µ jµ(d, u) j(d, u) ‖u‖L2(Ω) ‖y − yd‖L∞(Ω)

0.10006 19.5633 0.36092 10.8617 0.28019

0.010012 0.90147 0.31064 15.2612 0.19371

0.0010018 0.3383 0.30844 15.6929 0.18526

0.00010023 0.31014 0.3083 15.7313 0.18456

1.0029e-05 0.30843 0.30829 15.7341 0.18451

1.0035e-06 0.3083 0.30829 15.7342 0.18451

quadprog(mosek)

� � 0.30307 15.8295 0.18583

Table 2: Example 5.4. Values of J(d, u;µ) and ‖y − yd‖L∞(Ω), depending on µ for
κ = 10−3 .

Example 5.5. State constrained problem (ii): yd > yb.

We consider now the problem

min J(y, u) = ‖y‖C(Ω) +
κ

2
‖u‖2

L2(Ω)

subject to the PDE (27) and the state constraints

y(x1, x2) ≤ 20
(
(x1 − 0.5)2 + (x2 − 0.5)2

)− 0.15 in Ω.

Figure 5 shows the computed optimal state and associated control, where Figures 6
present some snapshots along the central path. Note that the in�uence of the barrier
terms related to the constraints d + y− yd and d− y + yd, is decreasing by decreasing µ.
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Figure 5: Computed optimal state yh and control uh of Example 5.5 at κ = 10−3.
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Figure 6: Path following: Iterates yµ at µ = 10−2 (a), at µ = 10−3 (b) , and at µ = 10−4

(c), Tikhonov parameter was set to κ = 10−3.
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Figure 7: Approximations on the Lagrange multipliers md (a) and myb
(b), for κ = 10−3.

Figure 7 shows the approximation of the Lagrange multipliers md = µ
d−y+yd

and
myb

= µ
y−yb

.At x = (0.5, 0.5) the upper L∞-multiplier md and the lower state multiplier
mya both are active. The constraint yb almost touches the optimal state in this point,
too. Here the distance between the optimal state y and yd becomes minimal, cf. Figure 8.
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Figure 8: Cut through Ω at (0, 1)× 0.5 with κ = 10−3. Optimal state, y and upper state
constraint yb at µ ≈ 10−2 (a) and at µ ≈ 10−5 (b). In x = (0.5, 0.5) the upper state
constraint yb and the lower L∞-constraint (yd−d) are active. One can see that d is �xed
by max{yd − yb} = 0.15. The optimal solution is the one with the minimal control cost
measured in the L2-norm that ful�lls the PDE and the condition y ≤ yb.

µ jµ(d, u) j(d, u) ‖u‖L2(Ω) ‖y − yd‖L∞(Ω)

0.10006 16.5615 0.17661 3.1438 0.15818

0.010012 0.44810 0.15090 1.2118 0.15008

0.0010018 0.15874 0.15018 0.57969 0.15001

0.00010023 0.15038 0.15016 0.56264 0.15

1.0029e-05 0.15017 0.15016 0.56258 0.15

1.0035e-06 0.15016 0.15016 0.56258 0.15

quadprog(mosek)

� � 0.15016 0.56117 0.14938

Table 3: Example 5.5: Values of J(d, u; µ) and ‖y − yd‖L∞(Ω), depending on µ for
κ = 10−3 computed by the rb-solver. Reference-solution obtained by quadprog(mosek)
is NEAR_OPTIMAL. The solution returned by quadprog is slightly infeasible.

Conclusions and Outlook
We have analysed L∞-optimal control problems considered in the framework of [12].
Existence and convergence of the associated central path have been derived for a class
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of barrier functions. The optimality conditions can be implemented easily as a system
of coupled PDEs, algebraic, and integral equations. Our numerical investigations have
shown that the L∞-optimization works very well and yields results as expected. In the
case that yd > yb or yd < ya, a lower bound on d is given by max{yd−yb} or max{ya−yd}.
Then, only the L2-norm of the control will be minimized, what results in optimal controls
(and optimal states) independent of the Tikhonov parameter κ. In the case ya < yd < yb,
the problem setting is more accordant to real world applications. The bounds work now
as �safety bounds�, cf. Example 5.4.

While the main analytic structure of our method and a working algorithm have been
established, there are many re�nements and extensions conceivable. A straightforward
idea is to combine ideas of this work with those of [14]. In particular, a structure exploit-
ing pointwise damping step, which has been applied successfully in the state constrained
case, may be considered.

References

[1] H. Amann. Nonhomogeneous linear and quasilinear elliptic and parabolic boundary
value problems. In H. Schmeisser and H. Triebel, editors, Function Spaces, Di�er-
ential Operators and Nonlinear Analysis., pages 9�126. Teubner, Stuttgart, Leipzig,
1993.

[2] I. Ekeland and R. Témam. Convex Analysis and Variational Problems. Number 28
in Classics in Applied Mathematics. SIAM, 1999.

[3] T. Grund and A. Rösch. Optimal control of a linear elliptic equation with a
supremum-norm functional. Optimization Methods and Software, 15:299�329, 2001.

[4] M. Hinze and A. Schiela. Discretization of interior point methods for state con-
strained elliptic optimal control problems: Optimal error estimates and parameter
adjustment. Technical Report SPP1253-08-03, Priority Program 1253, German Re-
search Foundation, 2007.

[5] K. Ito and K. Kunisch. Semi-smooth Newton methods for state-constrained optimal
control problems. Systems and Control Letters, 50:221�228, 2003.

[6] The MathWorks Inc. MATLAB � The Language of Technical Computing. See
http://www.mathworks.de/products/matlab/ (13.08.2006).

28



[7] C. Meyer, A. Rösch, and F. Tröltzsch. Optimal control of PDEs with regularized
pointwise state constraints. Computational Optimization and Applications, 33(2003-
14):209�228, 2006.

[8] MOSEK ApS. The MOSEK optimization tools manual. Version 5.0 (Revision 60).
http://www.mosek.com, 2007.

[9] U. Prüfert, F. Tröltzsch, and M. Weiser. The convergence of an interior point method
for an elliptic control problem with mixed control-state constraints. Comput. Optim.
Appl., 2007. Accepted by Comput. Optim. and Appl.

[10] U. Prüfert, F. Tröltzsch, and M. Weiser. The convergence of an interior point method
for an elliptic control problem with mixed control-state constraints. Comput. Optim.
Appl., 39(2):183�218, March 2008.

[11] A. Register. A Guide to MATLAB Object-Oriented Programming. Taylor & Francis,
2007.

[12] A. Schiela. Barrier Methods for Optimal Control Problems with State Constraints.
Technical report, Konrad-Zuse-Zentrum für Informationstechnik Berlin, 2007.

[13] A. Schiela. An extended mathematical framework for barrier methods in function
space. ZIB Report 08-07, Zuse Institute Berlin, 2008.

[14] A. Schiela. An interior point method in function space for the e�cient solution of
state constrained optimal control problems. ZIB Report 07-44, Zuse Institute Berlin,
2008.

[15] The MathWorks. Partial Di�erential Equation Toolbox User's Guide. The Math
Works Inc., 1995.

[16] M. Weiser. Interior Point Methods in Function Space. SIAM J. Control Opt.,
44(5):1766�1786, 2005.

[17] D. Werner. Funktionalanalysis. Springer, Berlin, 1997.

[18] E. Zeidler. Nonlinear Functional Analysis and its Applications, volume III. Springer,
New York, 1985.

29


