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Models for Fare Planning in Public Transport§

Ralf Borndörfer
∗

Marika Karbstein
∗

Marc E. Pfetsch
∗∗

Abstract

The optimization of fare systems in public transit allows to pur-
sue objectives such as the maximization of demand, revenue, profit,
or social welfare. We propose a nonlinear optimization approach to
fare planning that is based on a detailed discrete choice model of user
behavior. The approach allows to analyze different fare structures,
optimization objectives, and operational scenarios involving, e.g., sub-
sidies. We use the resulting models to compute optimized fare systems
for the city of Potsdam, Germany.

1 Introduction

Fares are a direct and flexible instrument to influence passenger behavior
and cost recovery of a public transport system. Setting fares is therefore
a fundamental problem for any mass transit company or authority. The
importance of this task is further increased by technological progress such
as the introduction of electronic ticketing systems, which offer opportunities
to implement versatile fare structures.

Public transport fares are well investigated in the economic literature.
They are often studied from a macroscopic point of view in terms of elastic-
ities, equilibrium conditions, and marginal cost analyses in order to derive
qualitative insights, see, e.g., Samuelson [1], Oum, Waters, and Yong [2],
Curtin and Simpson [3], Goodwin [4], and Pedersen [5]. The articles by
Nash [6] and Glaister and Collings [7] proposed to treat the setting of fares
as an optimization problem, namely, to maximize objectives such as revenue,
passenger miles, or social welfare subject to a budget constraint. Nash [6]
uses an elasticity based demand function to compute peak and off-peak
prices. Glaister and Collings [7] set up a linear demand function (whose
slope is derived from typical elasticity values) in order to calculate fares for
different modes (e.g., bus and rail traffic), solve the first order conditions of
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their model numerically for different elasticities and levels of the budget con-
straint, and report on implementations of the results at London Transport.
More details were added in the approaches of Kocur and Hendrickson [8]
and De Borger, Mayeres, Proost, and Wouters [9]. The first authors pro-
pose a “local area analysis” on an infinitely fine rectangular street grid in
order to “make more explicit trade offs among productivity increases, ser-
vice changes, and fare policy”. The second authors address the problem to
compute “all relevant marginal social costs”.

With regard to demand models, the theory of discrete choice has emerged
as a viable approach to predict the behavior of passengers of a public trans-
port system, see Ben-Akiva and Lerman [10] and McFadden [11]. Empirical
studies give evidence that travel choice is governed by a number of factors,
most notably travel time, availability of a car and of discounted long term
tickets, and fares, see Albers [12] and Vrtic and Axhausen [13]. Many of these
factors depend on the network structure. It therefore makes sense to com-
bine detailed models of passenger behavior and network fare optimization.
We proposed a basic approach of this type in the articles [14, 15], maximiz-
ing the revenue subject to a constant service level. Advanced bilevel logit
models based on a similar idea have been introduced by Lam and Zhou [16].

Going one step further, we show in this paper how a number of objectives
and constraints of practical relevance, in particular with respect to costs, can
be formulated and that the resulting models can be solved by nonlinear op-
timization techniques. We apply these methods to optimize fares for the city
of Potsdam in Germany. Our results show that the structure of the network
does indeed influence the behavior of the passengers, i.e., we demonstrate
a “network effect” in fare planning. For example, passengers with identical
travel times make different choices according to the relative attractiveness
of the car.

Problems that are related to, but are different from, public transit fare
optimization include toll optimization resp. road and congestion pricing, see,
e.g., Labbé, Marcotte, and Savard [17], Verhoef [18], Buriol et al. [19], van
Woensel and Cruz [20], and van Dender [21]. Nagurney and Qiang [22] dis-
cuss (car) travel behavior in the presence of degradable network links. Public
transport tariff zone design is investigated by Hamacher and Schöbel [23].

The article is organized as follows. Section 2 introduces the fare planning
problem. We propose a discrete choice demand model in Subsection 2.1 and
a family of five fare optimization models in Subsection 2.2. The models
address the following objectives and constraints:

◦ Max-R is a basic model; it assumes a fixed level of service and maximizes
revenue.

◦ Max-P includes costs that depend on line operation frequencies and
subsidies; the objective is to maximize the profit.

◦ Max-D maximizes the demand, i.e., the number of public transport
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passengers, subject to budget and capacity constraints.
◦ Max-B maximizes the user benefit subject to budget and capacity con-
straints.

◦ Max-S maximizes social welfare subject to capacity constraints.

The models are calibrated in Subsection 2.3 and used to compute and ana-
lyze fare systems for the city of Potsdam in Section 3. Solving the models
numerically, we show that different fare systems can be compared and eval-
uated in a quantitative way and that fare systems can be designed and
optimized in order to achieve the goals specified above. As far as we know,
an optimization and an analysis at this level of detail has not been done
before in the context of public transit fares.

2 Fare Planing

The fare planning problem involves a public transportation network, i.e., a
directed graph G = (V,E), where the nodes V represent stations and the
arcs E connections that can be used for traveling. There is a set D ⊆ V × V
of origin-destination pairs (OD-pairs or traffic relations) between which pas-
sengers want to travel. We assume fixed passenger routes, i.e., for every OD-
pair (s, t) there is a unique directed path Pst through the network that the
passengers will take when using public transport, and we further assume that
this path is a time-minimal path. In the upcoming models, time-minimal
paths are also cost-minimal, since travel time, distance, and price correlate.
We remark that the model complexity is unchanged if the travel path de-
pends on the alternative, and that considering several paths (e.g., to model
different user groups) leads to a linear increase in size.

Furthermore, we are given a finite set A of travel alternatives that the
passengers can choose for individual trips. Examples of travel alternatives
that we have in mind are using public transport with a particular (single,
monthly, distance dependent, etc.) ticket or traveling by a privately owned
car (non-public transport). We assume an upper bound N on the maximum
number of trips during some time horizon T of interest (e.g., at most N = 60
trips during T = 30 days), and denote by C = A×{1, . . . , N} a set of possible
travel choices for all trips during T. A travel choice is a travel alternative
combined with the actual number of trips during the time horizon, e.g., 30
trips with a monthly ticket during a month. We assume in our definition
of travel choices that passengers do not mix alternatives for their trips, i.e.,
the same travel alternative is chosen for all trips in the time horizon T . We
denote by A′ ⊂ A and by C′ ⊂ C the travel alternatives and travel choices
associated with public transport.

We consider price functions pist : Rn
+ → R+ and demand functions

dist : R
n
+ → R+ for each OD-pair (s, t) ∈ D and each travel choice i ∈ C.

Price and demand functions depend on nonnegative fare variables x1, . . . , xn,
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Figure 1: Cheapest prices (2004) for a single trip (left) in the Dutch intercity network
(right).

which we call fares. A fare vector is a vector x ∈ Rn
+ of fares.

A price function pist(x) determines the price for traveling with travel
choice i from s to t depending on the fare vector x. Examples of prices and
fares are: a distance tariff depending on a price per kilometer of travel, a
zone tariff depending on a price for crossing a zone, etc. All pist appearing in
this paper are affine functions and hence differentiable. The price functions
for travel choices not using public transport do not depend on fares and are
therefore constant for every fixed OD-pair.

For a real-world illustration consider the Dutch intercity railway system
of Nederland Spoorwegen Reizigers (NSR). The left side of Figure 1 shows
the price for a single trip as a function of trip distance. The trip price is
given by a piece-wise linear function, consisting of three pieces. Piece j, j =
1, . . . , 3, can be described in terms of two parameters: a slope xd,j and an in-
tercept xB,j . These parameters form the vector (xd,1, xB,1, xd,2, xB,2, xd,3, xB,3)
of fare variables. Variable xd,j can be interpreted as a distance dependent
price component, while xB,j plays the role of a base price. These are the
parameters that we want to optimize. For every OD-pair (s, t), we consider
a travel choice (T, k) for k trips a month, say, using a single ticket T . De-
pending on the length ℓst of the travel path Pst, the price for a single ticket
is calculated according to piece j = jst, and the price function for k trips is

pT,kst (x) := k · (xB,j + xd,j · ℓst).

With respect to the fare variables, this price function is affine for every OD-
pair and hence differentiable. Note that this is not a contradiction to the
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piece-wise linearity of the price function with respect to distance, see Figure 1.
As a second example, we mention the public transport prices for the city of
Potsdam; they are linear or constant and therefore also differentiable, see
Section 3 for detailed examples.

A demand function dist(x) measures the number of passengers that travel
from s to t with travel choice i, depending on the fare vector x. The total
demand for serving OD-pair (s, t) ∈ D with public transport is

d C′

st (x) :=
∑

i∈C′

dist(x).

As a sum, the function d C′

st (x) is non-increasing. For a single specific travel
choice i, however, the demand dist(x) does not necessarily have this prop-
erty because of substitution effects between different travel choices. In our
application, the demand functions are differentiable.

The remainder of this section is organized as follows. In Subsection 2.1
we specify a concrete demand function. Fare planning models based on these
definitions are proposed in Subsection 2.2. The models are calibrated with
respect to data for the city of Potsdam in Subsection 2.3.

2.1 Demand Functions

A key feature of our fare planning models are the demand functions dist. In
this section we present demand functions based on a discrete choice logit
approach, see Ben-Akiva and Lerman [10]. A logit type demand function
constitutes an acceptable compromise between model accuracy and com-
putability, namely, it allows to include several characteristics (e.g., travel
time or convenience of the alternative) that are relevant when choosing a
transportation mode while (using the Gumbel distribution to model passen-
ger behavior) producing a closed formula expression for the demand function.

Assume that a passenger traveling from s to t performs a random number
Xst ∈ Z+ of (s, t)-trips during the time horizon T , i.e., Xst is a discrete
random variable. We assume thatXst is upper bounded by N , the maximum
number of trips during T . Associate with each travel choice (a, k) ∈ C, i.e.,
k travels using alternative a, a utility

Ua,k
st (x) = V a,k

st (x) + νast,

which depends on the fare vector x. Here, V a,k
st is a deterministic or ob-

servable utility, and νast is a random utility or disturbance term, which we
assume G(η, µ) Gumbel distributed with η = 0. In our models, the deter-
ministic utility is measured in monetary units and always includes the price
function for public transport, i.e.,

V a,k
st (x) = W a,k

st − pa,kst (x). (1)
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Here, W a,k
st is a constant that subsumes all deterministic utilities that do

not depend on fares such as travel time. Since passengers would prefer to
pay less for traveling, we consider the price function as a “disutility” and
subtract the term in the utility function. Note also that the utilities W a,k

st

and the prices pa,kst depend on the route that the passengers use to travel
from s to t by alternative a, and that this route is different for every OD-
pair and travel alternative. To simplify notation, we write da,kst (x) for the
number of passengers traveling k times during T with alternative a from s
to t and similarly pa,kst (x) for the price of these trips.

In logit models one assumes that each passenger takes the alternative of
maximal utility. Using standard logit techniques, see Ben-Akiva and Lerman
[10], it follows that the expected demand can be computed via an explicit
formula as

da,kst (x) = ρst ·
eµV

a,k
st (x)

∑

b∈A

eµV
b,k
st (x)

·P[Xst = k], (2)

where ρst is the total number of passengers that want to travel from s to t.
The last term computes the probability that passengers from s to t make
k trips, while the middle term corresponds to the probability that they
use alternative a. The formula expresses the expected demand over the
probability spaces for Xst and the disturbance terms νast.

Note that da,kst (x) is continuous and even differentiable if the determin-

istic utilities V a,k
st (x) have this property. This is, for instance, the case for

affine deterministic utilities, see Subsection 2.3 and Section 3.

2.2 Fare Planning Models

We now propose five fare planning models that capture different aspects and
objectives, reflecting the respective planning goals.

2.2.1 Maximizing Revenue

The first and most simple model maximizes revenue:

(Max-R) max
∑

(s,t)∈D

∑

i∈C′

pist(x) · d
i
st(x)

s.t. x ∈ P.

Here, we assume that the fare vector x lies within a polyhedron P ⊆ Rn
+ in

the nonnegative orthant; P can be used to specify certain passenger interests
or political goals, e.g., by stipulating upper bounds on the fare-variables;
see also Subsection 2.3.1 for an application. Note that the model does not
consider costs, that is, it assumes a fixed level of service. This is of course a
simplification, however, not a completely unreasonable one if the expected
or intended changes in demand and/or fares are small.
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Max-R is similar to the revenue maximization model of Nash [6]; our
model, however, also includes different ticket types, and it captures substitu-
tion effects between public transport and car travel, see the definition of the
demand function in Subsection 2.1. Therefore the “monopolistic exploita-
tion” (as mentioned by Nash in case of revenue maximization) is limited. In
fact, as the model includes a non-public transport alternative with constant
utility, all passengers will choose this alternative when prices become suf-
ficiently large. In Equation (2), this alternative produces a constant term
in the denominator, whereas the terms for the public transport alternatives
become zero for rising fares. Therefore, the demand for public transport
tends to zero.

2.2.2 Maximizing Profit

The second model, Max-P includes operating costs for lines. In principle,
one would like to include a complete line planning model, see, e.g., Borndör-
fer, Grötschel, and Pfetsch [24]. Due to the complexity of line planning,
however, we can at present only deal with a simplified version that plans
frequencies of fixed lines. More precisely, we consider a pool L of lines, i.e.,
paths in the network, and associated continuous frequencies fℓ ≥ 0 for each
line ℓ ∈ L. We assume that the lines are symmetric and fℓ is the frequency
for the back and forth direction. We denote by f the vector of all frequen-
cies. The operating costs for a line ℓ ∈ L are cℓ ·fℓ, where cℓ ≥ 0 is a constant
that depends on the length of the line. The transport capacity of line ℓ ∈ L
is κℓ · fℓ, where κℓ > 0 is a given vehicle capacity.

Under these assumptions, we can express the maximization of profit,
i.e., revenue minus costs. It is not unusual that the costs for transporting
passengers in public transport are higher than the revenue from ticket sales.
We therefore include a fixed subsidy S in the model, that covers a part of
the line operation costs:

(Max-P) max
∑

(s,t)∈D

∑

i∈C′

pist(x) · d
i
st(x)− z

s.t.
∑

ℓ∈L

cℓ · fℓ − S ≤ z
∑

(s,t)∈D
e∈Pst

d C′

st (x) ≤
∑

ℓ:e∈ℓ

fℓ · κℓ ∀e ∈ E

x ≥ 0
z ≥ 0
f ≥ 0.

Since the objective maximizes −z, the first constraint, together with the
inequality z ≥ 0, guarantees that z is the maximum of cost minus subsidy
and zero. Therefore, the subsidy can only be used for compensating costs. If
the subsidy is zero, then z is equal to the cost. Hence, the model maximizes
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profit. The second set of constraints guarantees that sufficient transporta-
tion capacity on each arc is provided. That is, the line frequencies will be
enlarged until all passengers that are attracted by a certain fare can travel
on a shortest path. This is what passengers expect.

Glaister and Collings [7] consider a similar model for profit maximization
with a constraint that imposes a lower bound on the passenger-miles. They
mention that this is dual to a model that maximizes passenger-miles subject
to a budget constraint, which we will consider next. Instead of considering
a detailed network with lines and OD-pairs, Glaister and Collings’s model
works on a coarser level of transport modes and can be solved analytically.
Their demand functions are formulated in terms of constant elasticities in-
stead of using a logit model.

2.2.3 Maximizing Demand

Models Max-R and Max-P aim at improving the profitability of a public
transport system. We now consider three models that also cover social ob-
jectives. The goal of the first model is to maximize the number of passengers
using public transport subject to a budget constraint.

(Max-D) max
∑

(s,t)∈D

d C′

st (x)

s.t.
∑

(s,t)∈D

∑

i∈C′

pist(x) · d
i
st(x) + S ≥

∑

ℓ∈L

cℓ fℓ

∑

(s,t)∈D
e∈Pst

d C′

st (x) ≤
∑

ℓ:e∈ℓ

fℓ · κℓ ∀e ∈ E

x ≥ 0
f ≥ 0.

In case of zero subsidies S, the objective is to maximize the number of
transported passengers such that the costs are not larger than the revenue;
in case of positive subsidies, the costs should not be larger than revenue plus
subsidy. The subsidies could also be negative. In that case, public transport
has to yield a surplus.

The literature (e.g. Nash [6], Glaister and Collings [7]) usually maxi-
mizes demand in terms of passenger miles. In contrast to this objective, our
approach maximizes the number of passenger that use public transport.

2.2.4 Maximizing Welfare

Fare planning models in the literature often consider the maximization of a
social welfare function. In general, the social welfare is the sum of a producer
benefit and a user benefit. We consider the producer benefit as the profit,
i.e., revenue minus cost. In the economic literature, the user benefit is the
difference between the generalized price the user is willing to pay, i.e., his
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maximal utility, and the actual generalized price, i.e., the utility of the given
price. More precisely, we define the user benefit for our setting according
to Definition 1 below. Note that the generalized price includes parts that
do not arise from fares, but that are measured in (scaled) monetary units
and hence change the willingness to pay. In case of a single fare variable
and an invertible demand function, the user benefit can be easily derived by
computing an integral.

Definition 1. The total user benefit for given fares x is

B(x) :=
∑

(s,t)∈D

N
∑

k=1

ρst·P[Xst = k]·E
[

max{max
a∈A′

Ua,k
st (x)− max

b∈A\A′
U b,k
st (x), 0 }

]

.

We sum the benefit for one user multiplied by the number of users for
all OD-pairs and the number of trips. The difference between the utilities
of the best public transport alternative (with maximal utility) and the best
non-public transport alternative gives the largest generalized price (utility)
that a passenger is willing to pay for any public transport alternative, before
switching to a non-public transport alternative. The maximum with 0 ex-
cludes passengers that choose a non-public transport alternative (i.e., when
the difference of the utilities is negative). Since the utilities are random
variables, we take the expectation.

The definition of the user benefit B(x) looks difficult at first sight, but
we will show now that it can be computed efficiently. This result is the basis
for the numerical solution of the welfare models.

Lemma 2. Let I be a finite nonempty set and Ui, i ∈ I, be Gumbel dis-

tributed random variables with parameters (ηi, µ) for i ∈ I. Let ∅ 6= I ′ ( I.
Then

E
[

max{max
i∈I′

Ui − max
i∈I\I′

Ui, 0 }
]

=















∞
∑

n=1

(−1)n−1

n2 · e
n·

α
β if − α

β
≥ 0

π2

4 +
(
α
β
)2

2 −
∞
∑

n=1

(−1)n−1

n2 · e
−n·

α
β otherwise,

where α = 1
µ
ln
∑

i∈I′ e
µηi − 1

µ
ln
∑

i∈I\I′ e
µηi and β = 1

µ
.

Proof. Let
U := max

i∈I′
Ui − max

i∈I\I′
Ui.

Due to the properties of the Gumbel distribution, we know that U is lo-
gistically distributed with parameters (α, β). For g(x) = max{x, 0} and a
random variable X with density function f(x) it holds

E[g(X)] =

∞
∫

−∞

g(x)f(x) dx =

∞
∫

0

x f(x) dx.
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Inserting the density function for the logistic distribution we obtain

E[max{U, 0}] =

∞
∫

0

x ·
e
−x−α

β

β · (1 + e
−x−α

β )
dx.

The substitution x = α+ βξ and partial integration yields

∞
∫

0

x ·
e
−x−α

β

β · (1 + e
−x−α

β )
dx = β

∞
∫

−α
β

ln(1 + e−ξ) dξ.

For −α
β
≥ 0, the last integral can be expressed in terms of the Epstein zeta

function
∞
∫

−α
β

ln(1 + e−ξ) dξ =
∞
∑

n=1

(−1)n−1

n2
· e

n·
α
β .

For −α
β
< 0, we get

∞
∫

−α
β

ln(1 + e−ξ) dξ =
π2

4
+

(α
β
)2

2
−

∞
∑

n=1

(−1)n−1

n2
· e

−n·
α
β .

Note. The expressions in Lemma 2 can be used to evaluate the user ben-
efit to any desired precision; we used 20 terms in our computations. The
derivatives can be calculated directly by differentiating the integral.

We now consider two models that optimize welfare objectives. In model
Max-B, which is similar to Max-D, we maximize the user benefit for public
transport, subject to a budget constraint.

(Max-B) max B(x)

s.t.
∑

(s,t)∈D

∑

i∈C′

pist(x) · d
i
st(x) + S ≥

∑

ℓ∈L

cℓ fℓ

∑

(s,t)∈D
e∈Pst

d C′

st (x) ≤
∑

ℓ:e∈ℓ

fℓ · κℓ ∀e ∈ E

x ≥ 0
f ≥ 0.

Note that, without the budget constraint, the user benefit would be max-
imal for zero fares, since the utilities for non-public transport alternatives
are independent of the fare variables and the utilities for public transport
alternatives are non-increasing for increasing fares.
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In model Max-S, we maximize the social welfare as a sum of the user
benefit and the profit of the public transport company.

(Max-S) max B(x) +
∑

(s,t)∈D

∑

i∈C′

pist(x) · d
i
st(x)−

∑

ℓ∈L

cℓ · fℓ

s.t.
∑

(s,t)∈D
e∈Pst

d C′

st (x) ≤
∑

ℓ:e∈ℓ

fℓ · κℓ ∀e ∈ E

x ≥ 0
f ≥ 0.

2.2.5 Solving the Models

All of the above models are nonlinear programs involving |D|·N ·|A′| demand
functions, up to |E| capacity constraints, and up to n+ |L| variables; recall
N as the maximum number of trips during T and n as the number of fares.
In our application, there will be up to 6 830× 60× 3 (≥ 1 million!) demand
functions, 775 capacity constraints, and up to 42 variables. The models
are therefore not large scale with respect to the number of variables or
constraints. However, they include a very large number of complex demand
functions that encode the entire information on passenger behavior. In fact,
these demand functions are a source of numerical trouble: comparing with
Equation (2), we see that large (negative valued) disutilities lead to small
terms in the nominator and the denominator. To stabilize the computation
of these fractions, we shifted the ranges of all utilities by +300.

Using this trick, the state-of-the-art nonlinear programming package
GAMS 2.50/Distribution 22.2, and the NLP-solver snopt [25] we were able
to solve all our instances on an Intel Quad Core 2.93 GHz computer with
16 GB of main memory. It turns out that Max-R is easy, while the others
have computation times of up to three days, see Table 3 for detailed com-
putation times. The most challenging instances arose from models Max-B

and Max-S: they are numerically not well behaved, but we were able to
compute locally optimal solutions using Lemma 2.

2.3 Data and Parameter Specification

The data that we use in our computations has been collected in 2005 for
the city of Potsdam, Germany. It was provided to us in a joint project
by the local public transport company ViP Verkehrsgesellschaft GmbH and
the software company IVU Traffic Technologies AG. The data consists of the
public transport network of Potsdam, which contains 36 lines and 775 edges,
and a demand matrix for one day, which contains 6 830 origin-destination
pairs with positive demand.

Of the 209 315 trips in this matrix, 66 503 were done using public trans-
port and 142 812 using a car. Figure 2 illustrates the distribution of these
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Figure 2: Passenger trips classified according to travel times (left) and travel distances
(right) for car (x-axis) and public transport (y-axis). The darker the color of a point, the
more passengers travel with the corresponding travel time and distance.

trips according to travel time and distance, for public transport and car.
On average, trip distances for public transport are similar to those for car
travel, whereas the travel time for public transport is nearly three times as
high as the average travel time for the car (travel time for cars does not
include additional times for parking etc.). Another observation is that most
passengers travel on connections with short distances, between 0.5 and 10
kilometers, for both public transport and car.

2.3.1 Fare System and Utility Function

The public transport network of Potsdam is divided into three zones A, B,
and C. Zones A, B and zones B, C, respectively, form tariff zone 1. All three
zones together constitute tariff zone 2. Let us denote by Zj , j ∈ {1, 2} the
set of all OD pairs (s, t) ∈ D within tariff zone j. We consider the following
three travel alternatives for each tariff zone: “single ticket” (S), “monthly
ticket” (M), and “car” (C), i.e., we have A = {S,M,C} and A′ = {S,M}.
Since we want to compare single and monthly tickets, we consider a time
horizon of 30 days.

For each tariff zone j ∈ {1, 2}, the prices for public transport involve two
fares: xSj is a single ticket fare and xMj the monthly ticket fare (that has to
be paid once a month and authorizes to use all public transportation modes
such as bus, tram, city railroad, regional traffic, ferry; cf. Table 2). We write
x = (xS1 , x

M
1 , xS2 , x

M
2 ) and set the prices for alternatives single and monthly

ticket to

pS,kst (x) = xSj · k and pM,k
st (x) = xMj , ∀ (s, t) ∈ Zj , j = {1, 2},

respectively. In 2005, the prices for single ticket and monthly ticket were
1.45e and 32.50e for tariff zone 1 and 2.20e and 49.50e for tariff zone 2.
For alternative “car”, the price is the sum of a fixed cost Q and distance
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dependent operating costs q, i.e.,

pC,k
st (x) = Q+ q · ℓcst · k;

here, ℓcst denotes the shortest distance between s and t in kilometers for a car.
We set Q = 100 e and q = 0.1 e. Note that pC,k

st (x) ≡ pC,k
st is independent

of x.
The construction of the tariff zones allows the following: to travel in

tariff zone 2, one can either buy a ticket for tariff zone 2 or two tickets for
tariff zone 1 (one ticket for zones A, B and one ticket for zones B, C). To
avoid unrealistic fares, we impose the following conditions on fares:

xS1 ≤ xS2 ≤ 2 · xS1 and xM1 ≤ xM2 ≤ 2 · xM1 .

The utilities for the travel alternatives are set up using affine functions
for prices and travel times. They depend on the number of trips k. Let tcst
be the time for traveling from s to t with alternative car in minutes and tst
the time for traveling with public transport. We set j = {1, 2}:

US,k
st (xS1 , x

M
1 , xS2 , x

M
2 ) = −xSj · k − δ · tst · k + νSst, (s, t) ∈ Zj

UM,k
st (xS1 , x

M
1 , xS2 , x

M
2 )= −xMj − δ · tst · k + νMst , (s, t) ∈ Zj

UC,k
st (xS1 , x

M
1 , xS2 , x

M
2 ) = −(Q+ q · ℓcst · k)− δ · tcst · k + yst + νCst .

Here, δ is a parameter to express the travel time in monetary units; we use
δ = 0.1, i.e., 10 minutes of travel time are worth 1e. In our first computa-
tions, we noticed that the behavior of the car users could not be explained
solely in terms of travel time and costs. We therefore introduced an extra
utility yst for each OD-pair that is supposed to indicate a “convenience” of
using a car. We computed yst such that the 2005 fares, inserted in our de-
mand function, resulted in the 2005 demand for public transport and car,
respectively. This convenience utility yst takes an average value of 83e per
month.

As usual in logit models, we use disturbance terms νast that are Gumbel
distributed. We set the parameters of the Gumbel distribution G(η, µ) to
η = 0 and µ = 1/30. The (discrete) probabilities for the number of trips Xst

are defined by the function 1 − 1
1500 · (k − 30)2 and then normalized. The

resulting probabilities do not depend on a particular OD-pair (s, t) ∈ D and
are centered around 30 in an interval from 1 to N := 60; see the left of
Figure 3.

2.3.2 Elasticities and Costs

As a consistency check, we approximated price elasticities of the resulting
demand functions as follows. Taking the 2005 fares, we increased the fare

13



Table 1: Price and cross-price elasticity values for the Potsdam demand functions. Each
entry in the table gives the demand elasticity for the travel alternative represented by the
column if the fare of the alternative represented by the row is raised by 5%.

single ticket monthly ticket car

single ticket −0.72 0.21 0.12
monthly ticket 0.25 −0.93 0.15

Table 2: Transportation capacities and costs (in e/km).

modes bus tram city railroad regional traffic ferry

cℓ - capacity (in pass.) 57 114 536 600 39
κℓ - costs (in e/km) 4.5 7.5 50 100 30

for one ticket type by 5%, while keeping the fare of the other ticket type and
the price for the car fixed. Table 1 shows the resulting price and cross-price
elasticities. A study of the Verkehrsverbund Berlin-Brandenburg (VBB)
of December 2006 [26] reports price elasticities for single tickets between
−0.43 and −0.76, which is similar to our results. For monthly and other
long-term tickets, price elasticities between −0.03 and −0.34 are reported.
In our model, the price elasticity for the single ticket is higher than the price
elasticity for the monthly ticket. This means that the users of the monthly
ticket are more price sensitive than the users of the single ticket. This is
due to the fact that we assume that every passenger has access to a car,
resulting in a higher competition between car and monthly ticket than in
reality. Actually, many passengers who buy long-term tickets do not own a
car and are therefore less price sensitive. We do, however, not consider this
aspect, because no appropriate data was available.

We finally set line operation costs, depending on the modes bus, tram,
city railroad, regional traffic, and ferry, and the transportation capacity of
a line as listed in Table 2.

With the stated data, parameters, and assumptions we computed the
revenue and the cost by fixing the fares in model Max-P to the 2005 fares.
The revenue is around 2 086 317e in total, the costs are 1 914 519e. This
would mean that no subsidies are needed. Note, however, that our model
considers only operating costs, i.e., the overall costs can be (much) higher
in reality.

3 Analyzing Fare Systems

In this section we discuss and analyze a number of fare planning scenarios for
the public transportation system of Potsdam, using the proposed five fare
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Figure 3: Left: Probability distribution for the number of trips Xst. Right: Demand
function for single/monthly ticket fare system for Potsdam (tariff zone 2).
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Figure 4: Left: Revenue function for the single/monthly ticket fare system for Potsdam
(tariff zone 2). Right: Contour plot of the revenue function. The optimal fares for tariff
zone 2 are xS = 1.98e and xM = 51.06e for model Max-R.

planning models. We first investigate fare changes in the existing system,
i.e., the influence of fares on different objectives such as demand, revenue,
cost, and social welfare, see Subsections 3.1 and 3.2. Models Max-P and
Max-D allow us to analyze subsidies in Subsection 3.3. Going one step
further, we address extensions of the existing fare system and entirely new
fare systems. Computing optimal fares, we investigate the advantages of
different fare systems with respect to various objectives.

3.1 Basic Example – Maximizing Revenue

We start by illustrating our approach with a detailed discussion of the basic
revenue maximization model Max-R, applied to the existing fare system of
Potsdam. The analyses for the following scenarios are similar, such that,
hereafter, we will only state the results.

Inserting the demand function and the existing fare system, modelMax-R
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Figure 5: Results for optimizing the current fare system with single/monthly ticket using
model Max-R. Potsdam is subdivided into 86 districts; the size of the circle in each district
is proportional to the number of passengers which arrive at the district by car (Left) and
public transport (Right).

takes the following explicit form:

max
N
∑

k=1

2
∑

j=1

∑

s,t∈Zj

ρst ·
xSj · k · eV

S,k
st (x) + xMj · eV

M,k
st (x)

∑

b∈{S,M,C}

eV
b,k
st (x)

·P[Xst = k]

s.t. xS1 ≤ xS2 ≤ 2 · xS1

xM1 ≤ xM2 ≤ 2 · xM1

x ≥ 0.

Note that the objective function is differentiable.
The model produces the demand function shown on the right of Figure 3

and the revenue function shown in Figure 4. The optimal single ticket fare
for tariff zone 1 is 1.75e (up from 1.45e) and 1.98e for tariff zone 2 (down
from 2.20e). The optimal monthly ticket fare is 45.01e (currently 32.50e)
for tariff zone 1 and 51.06e (currently 49.50e) for tariff zone 2. Comparing
the resulting revenue with the revenue for the current situation (which we
also computed with our model, see the end of Subsection 2.3), the revenue
increases by around 4% to 2 165 282e, and the demand decreases by around
14% to 57 021 passengers. Hence, the improvement in revenue is relatively
small compared with the loss in the number of passengers.

Figure 5 shows Potsdam divided into 86 districts. The circles in the
districts represent the number of passengers traveling to this district from
the other districts by car (left) and by public transport (right of Figure 5),
respectively. The figure illustrates the importance of the car as a travel
alternative, which amounts to 73% of the total traffic.
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Table 3: Results for Potsdam providing a single ticket (xS) and a monthly ticket (xM ).
The computations are for the case of zero subsidies. (The costs for model Max-R are
computed ex post. They are not part of the computation process.)

xS xM revenue demand cost CPU secs

1.45 32.50 1 831 499 60 627.0
2005

2.20 49.50 254 818 5876.0
1 914 519 —

1.75 45.01 1 909 843 51 038.8
Max-R

1.98 51.06 255 439 5 982.3
1 662 187 40

3.96 64.66 1 613 537 29 819.2
Max-P 7.93 87.59 170 892 2 310.8

912 876 450

1.09 32.42 1 771 871 64 988.3
Max-D 2.09 53.03 255 154 5 783.7

2 027 026 2 700

1.11 32.14 1 775 660 64 788.5
Max-B

1.92 52.62 255 271 5 970.8
2 030 931 285 600

0.00 0.00 0 100 625.6
Max-S

0.00 0.00 0 11 286.3
3 266 290 4 300

3.2 Comparing Different Models

This subsection is devoted to an analysis of the current fare system. We
compute optimal fares for all five proposed models. For this comparison, we
consider the case of zero subsidies, i.e., we set S = 0 in those models that
include subsidies. The results are listed in Table 3. The first row of the
table represents the 2005 solution. We can make the following observations:

◦ Compared to the current situation, the fares that maximize profit double
– the increase in the single ticket fares is even higher – and the demand
is halved. Doubled fares lead to a five-fold increase in profit. In fact,
revenue decreases slightly while costs decrease dramatically. From an
economical point of view, this is an appealing result; it might, however,
not be possible nor desirable to implement it in practice.

◦ The fares that maximize the demand are on a similar level as the 2005
fares. The demand can increase by around 6% only. With respect to
this objective, the current fares of Potsdam are quite well chosen.

◦ The fares of model Max-B are similar to the fares of model Max-D.
There is only a slight difference between the two tariff zones. Model
Max-B attracts more passengers for tariff zone 2.

◦ The revenue that results from demand maximization (Max-D) is higher
than the revenue from profit maximization (Max-P), i.e., the effect of
model Max-P is achieved by minimizing costs.

◦ For model Max-S we get zero fares. Obviously, the user benefit for
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Figure 6: Comparing models Max-R and Max-P: The lighter the edge/point is colored
the smaller the quotient of demand for model Max-P and demand for model Max-R is,
i.e., the less passengers travel on the arc or OD-pairs with the related travel time for car
and public transport with fares of model Max-P compared with fares of model Max-R.

zero fares is higher than the costs that are needed to establish a free
public transport system (with the current weighting of the objective).
We discuss zero fares in more detail in the next subsection.

Models Max-R and Max-P cover the efficiency of public transport from a
purely economical point of view. Model Max-S adds interests of passen-
gers in terms of user benefit. Models Max-D and Max-B focus solely on
the passenger’s point of view by optimizing the modal split and the user
benefit, respectively. Which model is adequate for a particular application
depends on political, social, operational, and technical side-constraints. In
this unclear situation, optimization can bring quantitative arguments into
the discussion and help to make a well-founded decision.

We finally take a more detailed look at our results by not only consid-
ering aggregate objectives, but by investigating changes in travel behavior.
For this purpose, we compare a low fare and a high fare scenario, namely,
the solutions of models Max-R and Max-P. Their only difference is that
Max-P includes costs. The left of Figure 6 illustrates the resulting passen-
ger distributions. An edge is colored dark if the flows for model Max-P

and model Max-R are similar. The bigger the relative difference between
the flows, the lighter the edge is colored. We can see that the changes in
the demand are quite similar for all edges. The right of Figure 6, however,
shows that there is no simple pattern that explains the relative changes in
demand for different OD-pairs. To predict how the passengers behave if the
fares are doubled, all aspects that pertain to the utilities of car and public
transport have to be considered, that is, in our case, travel time, lengths,
and the extra utility for the car. This is an example of the “network effect”
that was mentioned in the introduction. We have no simple explanation
for it, it just reflects the complexity of the network. And it suggests that
simplistic approaches to fare planning are not appropriate.
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Table 4: Effects of 1 000 000e of subsidies: Maximizing the profit for the current fare

system of single ticket (xS) and monthly ticket (xM ).

xS xM revenue demand cost

1.45 32.50 1 831 499 60 627.0
2005

2.20 49.50 254 818 5876.0
1 914 519

3.46 62.23 1 683 464 32 560.5
Max-P

6.93 83.25 183 202 2 597.7
1 000 000

0.57 18.98 1 293 622 80 034.0
Max-D

1.13 37.95 233 809 7 651.9
2 527 431

3.3 Including Subsidies

We now study the effect of subsidies by computing optimal fares for models
Max-P and Max-D, setting subsidies to S = 1000 000e. The results are
shown in Table 4.

For the profit maximization model Max-P, the subsidies are used to
establish a level of service with a cost of exactly 1 000 000e, which is a bit
more than the cost of Max-P in the 0-subsidy case. Actually, the subsidized
variant of model Max-P amounts to a revenue maximization under the
restriction that the costs are equal to the amount of subsidies. In the current
situation, where public transport can be operated without extra money, it
does not seem to be reasonable to consider subsidies in combination with
the aim of maximizing a profit.

In the demand maximization case, the fare for the single ticket for tariff
zone 1 is more than halved, and all other fares are reduced by around 25%
to 45%. The demand increases by around 21 183 passengers, which is 32%
more than the 2005 demand and around 24% more than for the zero-subsidy
case. This gives rise to the question whether there is a certain“best”amount
of subsidies. We therefore investigate how different subsidies influence the
modal split.

We computed the solutions for model Max-D for 20 different values of
subsidies between zero and 5 000 000e. The results are plotted on the left
of Figure 7. They show the dependency between subsidy and total demand.
One can see that indeed the demand increases for rising subsidies. The
marginal increase gets smaller and smaller and becomes zero for a subsidy
higher than 3 200 000 e. In fact, this amount of subsidy is needed to estab-
lish a service with zero fares. This would result in around 112 000 passengers
using public transport. In total, there are 209 315 passengers (by car or pub-
lic transport). Around 97 000 passengers do not change to public transport
even in case of zero fares. For these passengers the convenience of the car
or its shorter travel time are more important than costs.
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Figure 7: Single/monthly ticket fare system: Left: The dependency between subsidy
and total demand for the model maximizing the demand (Max-D). Right: Dependency
between global subsidy and subsidy for an additional passenger.

The literature on zero fares in public transport, e.g., Baum [27] and
Storchmann [28], is ambiguous. In some cases the demand for public trans-
port increased by extremely large amounts when switching to zero fares.
Often, this increase is due to additional traffic by passengers that used a
bike or went by foot before. Because such substitution effects are not con-
sidered in our computations, the subsidies needed for zero fares could be to
small. Our results agree with some outcomes of the mentioned studies in
the fact that only 55% of all passengers would use public transport instead
of the car in case of zero fares.

The right of Figure 7 shows the ratio of subsidies and passengers for
different subsidies in an attempt to estimate “the value of an additional
passenger”. According to this criterion, there is no best amount of subsidies,
because the ratio of rising subsidies and rising demand is nearly constant. In
this case, one would therefore have to find a compromise between the number
of passengers using public transport and the amount of subsidies needed to
induce this demand. If one wants to have around 88 000 passengers using
public transport, one needs subsidies of around 1 000 000e. In this scenario,
each additional passenger costs about 60e per month.

3.4 Including a New Ticket Type

We are now going one step further and expand the current fare system by
a third alternative for public transport. To this purpose, we introduce a
new travel alternative, in which the passengers have the opportunity to buy
single tickets at a 50% discount, if they pay a certain amount for one month.
The resulting travel alternatives for each tariff zone are “single ticket” (S),
“monthly ticket” (M), “reduced single ticket” (R), and “car” (C).

The prices for public transport involve three fares for each tariff zone
j ∈ {1, 2}, the two fares xSj and xMj for single and monthly tickets as in the
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Table 5: Results for optimizing a fare system including a single ticket, a monthly ticket,

and a reduced single ticket (xS is the single ticket fare, xM the monthly ticket fare, and xR

is a basic fare for one month in order to buy 50%-reduced single tickets). The computations
are for zero subsidies.

xS xM xR revenue demand cost

1.45 32.50 1 831 499 60 627.0
2005

2.20 49,50 254 818 5876.0
1 914 519

1.73 48.71 28.60 2 477 350 59 298.0
Max-R

1.98 55.43 31.12 321 249 6 751.4
1 746 496

3.09 67.15 36.15 2 205 178 39 262.7
Max-P

5.86 89.15 42.34 225 743 3019.1
1 197 794

0.92 31.30 19.88 2 175 001 79 646.2
Max-D

1.76 51.40 29.07 319 532 7222.0
2 494 532

current fare system, and a basic fare xRj that has to be paid once a month in

order to buy reduced single tickets. We write x = (xS1 , x
M
1 , xR1 , x

S
2 , x

M
2 , xR2 )

and set the prices for alternative “reduced single ticket” to

pR,k
st (x) = xRj + 1

2 x
S
j · k if (s, t) ∈ Zj .

The results for the corresponding revenue, profit, and demand maxi-
mizations are listed in Table 5. Compared with the previous computations
without the new ticket type (see Table 3), demand and revenue increase:
The revenues for the models Max-R and Max-P increase by around 30%,
and the demand for model Max-D increases by around 23% as well. The
corresponding changes in passenger behavior can be classified according to
the number of trips. Single ticket, reduced single ticket, and monthly ticket
are tickets for infrequent, frequent, and heavy users of the public transport,
respectively.

Complex fare systems with many ticket types may alienate passengers.
On the other hand, the computations clearly show that demand is covered
better. Therefore, more detailed fare systems can lead to an improvement
in the profitability as well as in the attractiveness of public transport.

3.5 Designing a New Fare System

We now design an alternative system with distance dependent fares and
compare it with the current fare system. We consider the travel alternatives
“standard ticket” (D), “reduced ticket” (B), and “car” (C).

In the new fare system, the prices for public transport involve two fares:
xd, a distance fare per kilometer for standard tickets, and xB, a basic fare
that has to be paid once a month in order to buy reduced tickets with a 50%
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discount on standard tickets. We write x = (xB, xd) and set the prices for
alternatives standard and reduced ticket to

pD,k
st (x) = xd · ℓst · k and pB,k

st (x) = xB + 1
2 x

d · ℓst · k,

where ℓst denotes the shortest distance in the public transport network be-
tween s and t in kilometers. Table 6 shows the optimal fares for the five
models. We leave a comparison of the results for the new system to the
reader and focus on comparing the new fare system with the current one.

Table 7 compares revenue, demand, and costs. In all cases, the revenue
produced by the fare system with single/monthly ticket is more than 10%
higher than for distance dependent fares. For costs the opposite holds. In
all models the number of passengers using public transport is higher for the
distance dependent fare system than for the fare system with single/monthly
tickets. It increases by around 5% for models Max-R and Max-P, but only
slightly for models Max-D and Max-B.

Therefore, the single/monthly ticket fare system seems to be more oper-
ator friendly, whereas the distance dependent fare system seems to be more
customer oriented. This interpretation is corroborated by considering the
results for user benefit maximization. In fact, the user benefit for the sin-
gle/monthly ticket fare system is 6 390 682e and for the distance dependent
fare system 6 784 373e, which is an increase of 6.2%. The social welfare is
equal for both fare systems, because it is optimal for zero fares.

The left of Figure 8 illustrates travel behavior for both fare systems
according to model Max-D. An edge is colored gray if the number of pas-
sengers using this edge in the fare system with single/monthly tickets is at
least 5% larger than the number of passengers in the system with distance
dependent fares. It is colored black if more than 5% passengers travel on this
arc with distance dependent tickets. The arc is colored light gray if the dif-
ference is smaller than 5%. The figure shows that, on most arcs, the current
fare system with single and monthly tickets induces a higher load. However,
the overall number of passengers traveling with the distance dependent fare
system is slightly larger than the number of passengers traveling with the

Table 6: Results for the distance dependent fare system for Potsdam; xd is the distance

fare per kilometer, xB is the basic fare per month to buy a reduced ticket.

xB xd revenue demand cost

Max-R 27.34 0.26 1 901 102 59 673.9 1 456 154
Max-P 33.30 0.65 1 568 256 33 989.0 728 189
Max-D 20.68 0.18 1 822 608 71 253.3 1 822 608
Max-B 15.44 0.21 1 797 885 70 949.2 1 797 885
Max-S 0.00 0.00 0 111 911.9 3 266 291
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Table 7: Comparison of two fares systems single/monthly and distance dependent. The
row “2005” shows the results of the current situation.

demand revenue costs

2005 66 503.0 2 072 106 3 597 604

single/monthly 57 021.1 2 165 282 1 662 187
Max-R

distance dependent 59 673.9 1 901 102 1 456 154

single/monthly 32 130.0 1 784 429 912 876
Max-P

distance dependent 33 989.0 1 568 256 728 189

single/monthly 70 772.0 2 027 026 2 027 026
Max-D

distance dependent 71 253.3 1 822 608 1 822 608

single/monthly 70 772.0 2 030 931 2 030 931
Max-B

distance dependent 70 949.2 1 797 885 1 797 885

single/monthly 111 911.9 3 266 291 3 266 291
Max-S

distance dependent 111 911.9 3 266 291 3 266 291
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Figure 8: Comparing optimized single/monthly ticket fare system (SM) with the opti-
mized distance dependent fare system (DD) for model Max-D. Left: The thickness of the
arcs corresponds to the number of passengers traveling on this arc with single/monthly
ticket. The arc is colored gray if more than 5% passengers would use single/monthly ticket
fare system compared to the distance dependent one; the arc is colored black if the relation
is the other way round and light-gray if the difference is smaller than 5%. Right: Dark
colored points imply that more passengers travel with the distance dependent fare system.
Light colored points imply higher usage of the single/monthly ticket fare system.

single/monthly ticket fare system. This at first sight contradictory result is
due the fact that distance dependent fares are more attractive for passengers
traveling on short distances, whereas the single/monthly ticket fare system
is more attractive for passengers traveling long distances, compare with Ta-
ble 8. The right of Figure 8 also shows that passengers with short travel
times are more attracted by the distance dependent fare system. This is not
surprising, because short travel times are often related with short distances.
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Table 8: Number of passengers using single/monthly ticket and a distance dependent
ticket, respectively, depending on the distances of the OD-pairs.

distance passengers for single/monthly ticket distance dependent tickets

0 to 5 km 33 794.1 38 762.4
5 to 10 km 26 702.9 24 814.6
≥10 km 10 275.0 7 676.2

4 Conclusion

Fare planning with its interdependencies between passenger behavior and
costs is a complex optimization problem. The analyses conducted in this
paper show that setting fares can have a significant impact on passenger
behavior and, in particular, travel choice. Objectives ranging from cost
recovery to welfare maximization can be handled in this way. Important
quantities such as elasticities are predicted correctly. We therefore believe
that mathematical fare optimization can be a valuable decision support tool
for planners.

It seems that further progress in fare optimization requires the inclusion
of combinatorial aspects of network planning, e.g., to obtain a better model
of the real cost structure, the choice of travel routes, transfer times, etc.
This is, of course, computationally difficult. A more direct impact can be
achieved by improving the quality and the breadth of the data basis and by
improving the demand forecast models.
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