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Abstract

Recently M. M. Kapranov [Kap] defined a poset KPAn−1, called the permuto-
associahedron, which is a hybrid between the face poset of the permutahedron and
the associahedron. Its faces correspond to the partially parenthesized, ordered,
partitions of the set {1, 2, . . . , n}, with a natural partial order.

Kapranov showed that KPAn−1 is the face poset of a CW-ball, and explored
its connection with a category-theoretic result of MacLane, Drinfeld’s work on the
Knizhnik-Zamolodchikov equations, and a certain moduli space of curves. He also
asked the question of whether this CW-ball can be realized as a convex polytope.

We show that this permuto-associahedron corresponds to the type An−1 in a
family of convex polytopes KPW associated to each of the classical Coxeter groups,
W = An−1,Bn,Dn. The embedding of these polytopes relies on the secondary poly-
tope construction of the associahedron due to Gel’fand, Kapranov, and Zelevinsky.
Our proofs yield integral coordinates, with all vertices on a sphere, and include a
complete description of the facet-defining inequalities.

Also we show that for each W, the dual polytope KPW∗ is a refinement (as
a CW-complex) of the Coxeter complex associated to W, and a coarsening of the
barycentric subdivision of the Coxeter complex. In the case W = An−1, this gives
an elementary proof of Kapranov’s original sphericity result.
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�� Introduction�

This paper is concerned with the construction of polytopes with prescribed combinatorial
structure. In fact, there is a three-part problem associated with combinatorial objects
like permutahedra, associahedra, . . . :

1. the first part is the combinatorial description of a finite poset (Definition),

2. the second part asks to prove that the poset under consideration is the face poset
of a regular CW-ball (Sphericity), and

3. the third part is the construction of a convex polytope whose face lattice is isomor-
phic to the poset (Realization).

Note that realization gives a proof of sphericity, since every convex polytope is a
regular CW-ball. (cf. [Bj2], [BLSWZ, Sect. 4.7]).

For the permutahedron, the definition and realization are classical. For the as-
sociahedron, the definition is due to Stasheff [Stas] (and later independently to Perles
[Per]). Sphericity was proved by Stasheff, realization was achieved by Haiman [Hai]
and Lee [Lee]. A “systematic” construction method for the associahedra was achieved by
Gel’fand, Zelevinsky & Kapranov [GZK1,GZK2] with their formula for secondary poly-
topes, and then generalized and explained by the construction of fiber polytopes by Billera
& Sturmfels [BS1].

For the permuto-associahedron KPAn−1, we owe definition and sphericity to Kapra-
nov [Kap], who denotes the object by “KPn”. Here we contribute an elementary proof
for sphericity (Section 2) which gives some extra information about the relation be-
tween the permutahedron and permuto-associahedron, and a construction that solves the
realization problem (Sections 4 and 5). Furthermore, we also define and realize Coxeter-
associahedra KPW for Coxeter groups of types B and D. The two main theorems of the
paper are:
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Theorem 1 (Sphericity). For W = An−1,Bn,Dn the dual KPW∗ of the Coxeter-
associahedron poset KPW is the face poset of a regular CW-ball whose boundary refines
the Coxeter complex ∂PW∗ and is refined by its barycentric subdivision sd(∂PW∗), i.e.

sd(∂PW∗) ≺ ∂KPW∗ ≺ ∂PW∗.

Theorem 2 (Realization). There exists a realization of the associahedron Kn−2 inside
the fundamental chambers of the Weyl groups W = An−1,Bn,Dn such that the polytope
given by the convex hull of the orbit W · Kn−2 of Kn−2 under the action of W has face
lattice isomorphic to the Coxeter-associahedron poset KPW.

We note that the two proofs can be followed independently: the proof of Theorem 1
is completed in Section 2. The proof of Theorem 2 in Sections 4 and 5 does not rely on
this, and proceeds directly from the definitions of Section 1.

�� Combinatorics�

In this section, we review the combinatorial description of the face posets for the Cox-
eterhedra PAn−1, PBn and PDn, and define analogously the face posets for the Coxeter-
associahedra KPAn−1, KPBn and KPDn. Our convention is (as in [Zie]) that the subscript
on the name of a ranked poset indicates its length, and thus the dimension of the corre-
sponding polytope.

The classical Coxeter groups An−1,Bn,Dn.

The Coxeter groups An−1 and Dn are both subgroups of the signed permutation group Bn,
which consists of all permutations and sign changes of the coordinates in IRn. An−1 is the
subgroup of permutations with no sign changes (i.e., the symmetric group on n letters),
and Dn is the subgroup of signed permutations with an even number of sign changes. We
use the following one-line notation for signed permutations w:

w = w1w2 · · ·wn

where

wi =

{
j if w(ei) = +ej

j if w(ei) = −ej
and ei denotes the i

th standard basis vector in IRn. For example, w = 24513 is the element
sending

e1 �→ +e2
e2 �→ −e4
e3 �→ +e5
e4 �→ +e1
e5 �→ −e3

We will think of the three groups W = An−1,Bn,Dn as Coxeter systems (W, S), i.e.
each may given a distinguished set of generators S having certain properties (see [Bro] or
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[Hum] for definitions). For the symmetric group An−1 the set S consists of the adjacent
transpositions {si}1≤i≤n−1, where si interchanges the i

th and the (i+1)st coordinate. The
set S for Bn contains an extra generator sn which changes the sign of the last coordinate,
while the set S for Dn contains an extra generator sn which swaps and changes the sign
of the last two coordinates.

Face lattices of the Coxeterhedra.

Definition 3. For any Coxeter system (W, S), the subgroups WJ generated by subsets
J ⊆ S are called parabolic subgroups of W. The Coxeterhedron PW is the finite poset of
all cosets

{wWJ}w∈W,J⊆S

of all parabolic subgroups of W, ordered by inclusion.

Remark 4 (Realization). For any Coxeter system (W, S), there is a simple polytope
that has PW as its face lattice. See Figure 1 for examples. This polytope may be
constructed in at least two ways,

(i) as the convex hull of the orbit of a generic point in IRn under the action of W as a
reflection group on IRn,

(ii) as the zonotope generated by the root system for (W, S).

We will abuse notation and refer to both the poset and to its geometric realization as the
Coxeterhedron PW.

The polytopes PW are simple, so their polar duals are simplicial polytopes. Thus the
boundary complex of the dual polytope PW∗ is a simplicial complex, called the Coxeter
complex. We refer to [BLSWZ, Sect. 2.3], [Bro] or [Hum] for further discussions.

123

132

312

321

231

213

Figure 1: The Coxeterhedra PA2,PB3,PD3
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For the classical groups W = An−1,Bn,Dn, it will be useful to have a unified termi-
nology for these cosets, which we now describe. Given a coset wWJ , we will

(1) place dots between certain of the letters of w, thereby breaking w = w1w2 · · ·wn
into blocks,

(2) possibly introduce a single box that surrounds some of the blocks,

(3) alter w within the coset wWJ to obtain a coset representative in a canonical form
(described below).

Step (1) proceeds by placing a dot between wi and wi+1 if the adjacent transposition
si is not in J . Step (2) proceeds by

(2a) circling no blocks, if W = An−1 or sn is not in J

(2b) circling the entire last block, if W = Bn and sn is in J ,

(2c) circling those blocks which contain the last two letters if W = Dn and sn is in J .
Thus the box encloses either the last block (if that block has at least two elements),
or the last two blocks (if the last block is a singleton).

Step (3) proceeds by using the subgroup WJ to alter the coset representative w until
it satisfies the following conditions.

(3a) Within each block and within the box (if present), the numbers are in increasing
order.

(3b) If W = Bn, there can be no bars inside the box.

(3c) If W = Dn and the last block is the only one boxed, then only the last letter can
have a bar.

It is easy to check that exactly one coset representative satisfies these conditions
in each case. We will call this dotted, boxed, canonical coset representative the string
corresponding to wWJ . Here are some examples:

2.146.35 ←→ 261453W{s2 ,s3,s5} in PA5

2.146.35 ←→ 264153W{s2,s3,s5} in PB6

2.146. 35 ←→ 264153W{s2,s3,s5,s6} in PB6

2.146.35 ←→ 264153W{s2,s3,s5} in PD6

2.14. 356 ←→ 241563W{s2,s4,s5,s6} in PD6

2.14. 35.6 ←→ 241563W{s2,s4,s6} in PD6

The inclusion relation on cosets wWJ corresponds to the following order relation on
strings: α ≤ β if and only if the string β is obtained from α by any combination of these
two operations:
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(1) Combining a consecutive sequence of blocks into one block. For example,

6.2.147.35. 8 < 6.123457. 8 in PB8

6.2.147.35. 8 < 6.2.147. 358 in PB8

6.2.147. 35.8 < 6.2. 13457.8 in PD8

(2) Adding in the box.

6.2.147.35 < 6.2.147. 35 in PB7

6.2.14.37.5 < 6.2.14. 35.7 in PD7

Face posets of Coxeter-associahedra.

We now define the face poset of the Coxeter-associahedron KPW for W = An−1, Bn, Dn.
In Sections 4 and 5 we will prove that KPW is the face lattice of a convex polytope, which
(by abuse of notation) we will also call KPW.

Definition 5. For W = An−1, Bn or Dn, the Coxeter-associahedron KPW is a partially
ordered set, defined as follows. The elements of KPW are the strings (canonical coset
representatives) in PW, partially parenthesized: this means that the blocks are treated
as if they were being multiplied together and some of them are grouped together by
parentheses to indicate order of multiplication. In particular, every pair of parentheses
encloses at least two blocks. In the cases W = Bn,Dn, but not in case W = An−1, there
is always an extra virtual parenthesis pair around the entire string if and only if there is
more than one block and no box is present.

The order relation on these parenthesized strings is defined as follows: A ≤ B if and
only if B is obtained from A by any combination of these three operations:

(1) removing a parenthesis pair (possibly the virtual one), and combining all the blocks
within it into one block,

(2) adding in the box (and hence removing the virtual parenthesis pair),

(3) removing a non-virtual parenthesis pair.

Finally, an extra minimum element 0̂ and an extra maximum element 1̂ are included in
the posets KPW.

For examples, Figure 2 shows the posets KPA2, KPB2, KPD2: they are the face lattices
of a 12-gon, an octagon and a square, respectively.
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Figure 2: The posets KPA2, KPB2 and KPD2

Here are some larger examples of the order relation:

((9(4.2 6.8)(3.5))1) < (9.2 4 6 8(3.5)1) in KPA9

(7(9.8)(2(6(15.34)))) < 7.9.8.2(6(15. 34)) in KPB9

(((9.8)2(6(15.37)))4) < 89.2(6(15. 34))7 in KPD9

Figure 3 shows Polytopes KPA2,KPB3,KPD3. Note that KPAn−1 is embedded as the
principal order ideal below the face 123 · · · n−1n in either KPBn or KPDn. For example,
in Figure 3, the 12-gon KPA2 is isomorphic to the facet labelled 123 in KPB3 or KPD3).
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1(2.3)

1(3.2) (1.3)2

(3.1)2

3(2.1)
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(2.3)12(3.1)

2(1.3)
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(1.2)3 3(1.2)
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(3.2)1

(2.3)12(3.1)
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(1.2)3 3(1.2)

Figure 3: KPA2,KPB3,KPD3

The next two lemmas are needed for the proof of Realization (Theorem 2) in Sections
4 and 5.

Lemma 6. The posets KPW are ranked lattices.

Proof. Since every covering relation x < y in KPW involves removing exactly one paren-
thesis pair from x to obtain y, it follows that

rank(x) := n −#{parenthesis pairs in x}

defines a rank function on KPW for W = An−1,Bn,Dn.
Since KPW is a finite poset with 0̂ and 1̂, to show it is a lattice it will suffice to

show that every two elements x, y have a greatest lower bound x ∧ y in KPW (see [Stan,
Prop. 3.3.1]). Given x, y in KPBn, we describe x ∧ y in stages, and leave it to the reader
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to check that this actually defines their greatest lower bound. This also defines x ∧ y
in KPAn−1 as a special case, and the description of x ∧ y in KPDn requires only minor
modifications which we omit.

Stage 1: For each i ∈ {1, 2, . . . , n} determine whether i appears without a bar, with a bar, or
boxed in x ∧ y, by taking the greatest lower bound in the lattice shown below of i’s
appearances in x and y:

0̂

i

i i

�
�

�
�

�
�

�
�

This means, for example, that if i appears without a bar in x and boxed in y, then
it will appear without a bar in x ∧ y. If it appears with a bar in x and without a
bar in y, then x ∧ y will be 0̂ and the description process is done.

Stage 2: Determine the (unordered) block structure of x ∧ y by intersecting the blocks of x
and y (i.e., the usual greatest lower bound for set partitions).

Stage 3: Determine the order on the blocks of x ∧ y by placing block B before block B ′ if
and only if all numbers in B appear in earlier blocks or in the same block as all the
numbers in B ′ in both x and y. If two numbers i, j lie in different blocks in both x
and y, and appear in different order in x than they do in y, then x∧ y = 0̂, and the
description process is done. Up to this stage, we have determined the underlying
(unparenthesized) string of x ∧ y. For example,

1(23) ∧ 1(2.3) = 0̂

1.23 ∧ 2.13 = 0̂

while the underlying string of

1234.56.78 ∧ 1.234.5678

will be
1.234.56.78

Stage 4: Identify parenthesis pairs in x, y with the subset of numbers they enclose. For each
parenthesis pair in x or in y, include the same parenthesis pair in x ∧ y. Whenever
a sequence B1.B2. · · · .Bk of consecutive blocks in x ∧ y is combined into a single
block of x or of y, include a parenthesis pair around B1.B2. · · · .Bk in x ∧ y. If two
parenthesis pairs in x∧ y conflict, i.e., they are not disjoint but neither one encloses
the other, then x ∧ y = 0̂. For example,

(1.2.3) 45 ∧ 12.3.4.5 = ((1.2)3)(4.5)

1.23 ∧ 12.3 = 0̂
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This completes the description of x ∧ y in KPBn, and the proof that KPW is a lat-
tice.

Lemma 7. The lattices KPW are atomic and coatomic.

Proof. The proofs are straightforward combinatorial arguments, and we include here
only the argument for atomicity.

Given x in KPW, and y an element of KPW which lies above all the atoms ( =
completely parenthesized (signed) permutations) below x, we must show that y ≥ x. We
will explain why y ≥ x in stages, using an example in KPB11:

x = ((7.9)8 10 11)2(6(1 5 3 4 ))

First of all, if i appears boxed in x, then it must appear boxed in y, since y lies above
atoms containing i and atoms containing i. E.g. in our example, y must have 3 boxed
since y lies above atoms of the form

· · · (5(3.4)) · · ·
· · · (5(3.4)) · · ·

If i or i appears unboxed in y, then it must appear the same way in x: otherwise x would
lie above an atom that contains the same letter with the opposite sign, i resp. i. E.g., if
7 appears in y but not in x, then we get a contradiction since x lies above an atom that
contains 7,

· · · ((7.9)8) · · ·
If i, j appear in the same block of x, they must appear in the same block of y, since y
lies above atoms having i, j in either order. E.g. y must have 8, 10, 11 in the same block
since it lies above atoms of the form

· · · (8(10.11)) · · ·
· · · (11(10.8)) · · ·

If i appears to the left of j in x, then i’s block must appear weakly to the left of j’s block
in y, since y lies above atoms having i to the left of j. E.g. y must have 7’s block weakly
left of 11’s block, since y lies above atoms of the form

((((7.9)8)10)11) · · ·
So far, we have shown that the underlying (unparenthesized) string of y lies above the
string of x in PW. Now we discuss the parenthesization of these strings. Identify a
parenthesis pair with the set of numbers it encloses. We claim that every parenthesis pair
in y is also in x. If not, then without loss of generality, y has the form · · ·A1(A2.A3) · · ·
while x has the form · · ·A1.A2.A3 · · · and there would be atoms of the form · · ·A1.A2.A3 · · ·
below x but not below y. We further claim that whenever A1. · · · .Ak is a consecutive
sequence of blocks in x which is combined into a single block of y, there must be a
parenthesis pair (A1. · · · .Ak) around them in x. If not, then there would be atoms of the
form (A0.A1)A2. · · · .Ak below x, but not below y.

Finally, the last two claims imply that y ≥ x, completing the proof.
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Remarks 8. The vertices of the polytope KPAn−1 correspond to complete parenthe-
sizations of permutations of the letters 1, 2, . . . , n. The edges are of two types: they
correspond to either a single re-parenthesization, or to a transposition of two adjacent
letters that are grouped together.

The vertices of the polytope KPBn correspond to complete parenthesizations of signed
permutations of the letters 1, 2, . . . , n. The edges are of three types: they correspond to
either a single re-parenthesization, to a transposition of two adjacent letters that are
grouped together, or to inverting the sign of the last letter in the permutation.

The vertices of the polytope KPDn correspond to complete parenthesizations of signed
permutations of the letters 1, 2, . . . , n, having an even number of minus-signs. The edges
are again of three types: they correspond to either a single re-parenthesization, to a
transposition of two adjacent letters that are grouped together, or to exchanging the last
two letters in the permutation and inverting their signs. (The last operation is allowed
even if the last two letters are not grouped together.)

Observe that KPA3 and KPD3 are not equivalent, although the associated Coxeter
systems A3 and D3 are isomorphic.

Figure 4: KPA3
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�� Sphericity�

In this section we prove Theorem 1: the dual poset KPW∗ for W = An−1,Bn,Dn describes
the inclusion of faces in a regular CW-ball. Our strategy is as follows: For any Coxeter
system (W, S), the polar dual PW∗ to the Coxeterhedron PW is a simplicial polytope,
whose boundary complex ∂PW∗ is called the Coxeter complex (see [Bro], [Hum]). For
W = An−1,Bn,Dn, we will define a surjective set map

Φ : sd(∂PW∗)→ KPW\{0̂}
from the barycentric subdivision of the Coxeter complex to the Coxeter-associahedron
poset with its bottom element 0̂ removed, (i.e the dual of the face poset of ∂KPW∗). This
map will have the following properties:

(Φ1) For all faces A in KPW\{0̂}, the pair

(
⋃
B≥A

Φ−1(B),
⋃
B>A

Φ−1(B))

is a pair of subcomplexes of sd(∂PW∗), and homeomorphic as a pair to (Bd, ∂Bd)
for some d. Here Bd denotes a topological d-ball and ∂Bd its boundary.

(Φ2) If we let α(A) denote the underlying string of a parenthesized string A in KPW∗,
then the usual barycentric subdivision homeomorphism (see [Mun])

h : ||sd(∂PW∗)|| → ||∂PW∗||
maps

⋃
B≥A Φ−1(B) inside the face of ∂PW∗ corresponding to α(A).

This will then complete the proof of Theorem 1, namely that⋃
A∈KPW\{0̂}

⋃
B≥A

Φ−1(B)

is a regular CW-decomposition of a sphere which refines ∂PW∗, and which is refined by
sd(∂PW∗), i.e.,

sd(∂PW∗) ≺ ∂KPW∗ ≺ ∂PW∗.

Figure 5 shows these sequences of refinements for W = A3,B3,D3.
The map Φ is easy to define once we have identified what faces in the barycentric

subdivisions look like. By the definition of barycentric subdivision, a face in sd(PW∗) is
a chain C of strings

α1 < α2 < · · · < αk

where < is the order relation on strings previously defined. This means that for each i,
αi+1 is obtained from αi by combining consecutive blocks and/or adding in the box. To
define Φ(C) = A as a parenthesized string, let the underlying string α(A) be α1. Then
at each step αi < αi+1, if some consecutive blocks of αi are combined together, put a
parenthesis pair around the corresponding blocks of α1. This defines Φ(C) = A. For
example, if C is the chain in PD8 given by

7.14.8.5.26 < 147.8.5. 26 < 1478. 256
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sd(∂(PA∗
3))

sd(∂(PB∗
3))

sd(∂(PD∗
3))

∂(KPA∗
3)

∂(KPB∗
3)

∂(KPD∗
3)

∂(PA∗
3)

∂(PB∗
3)

∂(PD∗
3)

Figure 5: sd(∂PW∗) ≺ ∂KPW∗ ≺ ∂PW∗ for W = A3,B3,D3
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then Φ(C) is
((7.14)8)(5.26)

Property (Φ2) of the map Φ will follow from the following lemma, whose proof is
straightforward:

Lemma 9. If A ≤ B in KPW then α(A) ≤ α(B) in PW.

To show property (Φ2), assume C ∈ ⋃
B≥AΦ

−1(B) i.e. Φ(C) = B ≥ A. Under the
homeomorphism h we know that the chain C of strings

α1 < · · · < αk

will be mapped inside the face α1 of PW∗. Since α1 = α(B) ≥ α(A) by the lemma, we
know that α1 is a subface of α(A), and so C is mapped inside of α(A) by h as desired.

Property (Φ1) is not quite as obvious. The fact that
⋃
B≥AΦ

−1(B) and
⋃
B>A Φ−1(B)

are both subcomplexes of sd(PW∗) follows immediately from the next lemma, whose proof
is again straightforward:

Lemma 10. If C ⊆ D in sd(PW∗) then Φ(C) ≥ Φ(D) in KPW.

To show that
⋃
B≥A Φ−1(B) is a ball with boundary

⋃
B>A Φ−1(B), we need to review

a bit of the theory of signed posets and their associated Bn-distributive lattices J(P ) from
[Rei]. A signed poset P on m elements is a subset P of the root system Bm

Bm = {±ei ± ej}1≤i≤j≤m ∪ {±ei}1≤i≤m
satisfying two axioms related to irreflexivity and transitivity for posets:

(SP1) If u is in P , then −u is not in P .

(SP2) If u,v are in P , and w = c1u+ c2v is in Bm for some c1, c2 > 0, then w is in P .

An order ideal I of P is a vector I in {0,+1,−1}m whose (usual) inner product with any
vector in P is non-negative, i.e.

〈I,u〉 ≥ 0 ∀u ∈ P.

The order ideals of P are then ordered component-wise using the order 0 < +1,−1 in
each component to form a poset J(P ). In [Rei], J(P ) is called a Bm-distributive lattice.
Two examples are shown in Figure 6.

Why are these J(P ) relevant? Let ΔJ(P ) denote the order complex of J(P ), that
is the simplicial complex of chains in J(P ). A theorem of [Rei] shows that ΔJ(P ) is
EL-shellable in the sense of Björner [Bj1], and it then follows from a theorem of Danaraj
& Klee [DK] [Bj2] [BLSWZ, Sect. 4.7] that ΔJ(P ) is homeomorphic to a ball. Our next
goal then is to show that

⋃
B≥A Φ−1(B) is isomorphic as a simplicial complex to ΔJ(PA)

for a certain signed poset PA.
To do this, label the parenthesis pairs in A by p1, p2, . . . , pm in such a way that the

virtual pair (if present) is labelled pm. Then define the signed poset PA by

PA = {+ei − ej : pair pi encloses pj} ∪ {+ei : pi is not the virtual pair}
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Figure 6: Two examples of the Bm-distributive lattices J(P )

It is easy to see that PA always satisfies axioms (SP1), (SP2) of signed posets. For
example, let

A1 = ((3.14)(26.578)) in KPB8

A2 = (12(6.3))(8. 45)7 in KPD8

and number the parenthesis pairs p1, p2, p3 in such a way that p3 encloses p1, p2 in A1 and
so that p2 encloses p1 in A2. In this case, PA1 , PA2 coincide with the examples P1, P2 from
Figure 6.

We must now produce a simplicial isomorphism

fA :
⋃
B≥A

Φ−1(B)→ ΔJ(PA).

First we define fA on vertices. A vertex of
⋃
B≥A Φ−1(B) is a single string α satisfying

Φ(α) = α ≥ A (here the string α on the right-hand side of the equality is thought of as
a parenthesized string with the empty set of parentheses). Let fA(α) be the vector I in
{0,+1,−1}m specified by

Ii =

⎧⎨⎩
+1 if the numbers enclosed by pair pi in A are all inside a single block of α,
−1 if i = m and A contains the virtual pair pm and α has any boxed blocks,
0 otherwise.

It is easy to check that I is an ideal of PB, and furthermore that fA gives a bijection

vertices of
⋃
B≥AΦ

−1(B) ←→ vertices of ΔJ(PA)
(= strings α ≥ A) (= ideals of P )

15



The fact that fA induces a simplicial isomorphism is immediate from the following lemma
(whose proof is again straightforward):

Lemma 11. Let α, β be two strings with α, β ≥ A (again we are thinking of α, β as
empty parenthesizations of themselves). Then α < β in PW if and only if fA(α) < fA(β)
as ideals in J(PA).

Figure 7 shows the chains C in sd(PW∗) that lie in
⋃
B≥AΦ

−1(B) for A = A1, A2 as
in the previous example. Compare this with Figure 6.
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A2 = (1 2(6.3))(8. 4 5)7

Figure 7: Two examples of the chains in
⋃
B≥AΦ

−1(B)

It only remains to verify that

fA

( ⋃
B>A

Φ−1(B)

)
= ∂ΔJ(PA).

This is a routine exercise in the definitions, which we will not go through in detail.
However, it does help to point out that the boundary ∂ΔJ(PA) is described completely
once we know its maximal faces. These maximal faces are the chains C of ideals in P
that miss exactly one rank of J(P ), and have a unique extension to the missing rank.
One may then classify such a chain C according to whether the rank it misses is the top,
bottom, or among the middle ranks, and this classification helps to show that f−1

A (C) lies
in
⋃
B>A Φ−1(B), i.e. Φ(f−1

A (C)) > A.
This completes the proof of

Theorem 1. For W = An−1,Bn,Dn, the order dual KPW∗ is the face poset of a regular
CW-ball, and there is a sequence of subdivisions

sd(∂PW∗) ≺ ∂KPW∗ ≺ ∂PW∗
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Corollary 12. For W = An−1,Bn,Dn, the topological space ||Δ(KPW\{0̂, 1̂})|| associ-
ated to the order complex of KPW is a sphere.

�� Associahedra�

In this section, we start with a brief review of the construction of fiber polytopes due to
Billera & Sturmfels [BS1] (see also [BS2], [Stu]), which generalizes and re-interprets the
construction of secondary polytopes of Gel’fand, Zelevinsky & Kapranov [GZK1,GZK2].
The intuition of this construction motivates our construction of the Coxeter-associahedra,
and provides the principal “building blocks” for it. Our sketch is supposed to provide
geometric intuition for our construction of the permuto-associahedra, and (especially nice)
coordinates for the associahedra Kn−2 ⊆ IRn.

Let P ⊆ IRp and Q ⊆ IRq be polytopes. Consider a projection

π : P −→ Q,

of these polytopes, i.e., an affine map π : IRp −→ IRq such that Q = π(P ). A section of π
is a continuous map γ : Q −→ P which satisfies π◦γ = idQ, that is, π(γ(x)) = x for all
x ∈ Q.
Definition 13. The fiber polytope Σ(P,Q) ⊆ IRp of a polytope projection π : P −→ Q
is the set of all average values of the sections of π, that is,

Σ(P,Q) =
{ 1

vol(Q)

∫
Q
γ(x)dx : γ is a section of π

}
.

Without loss of generality, we need only consider sections that are piece-wise linear
over a finite polyhedral subdivision of Q. Thus we can integrate the sections (component-
wise) using classical Riemann integrals.

It is quite trivial to see that the fiber polytope is a convex set that is contained in the
fiber of the barycenter,

Σ(P,Q) ⊆ π−1(q0),

where the barycenter of Q is given by

q0 =
1

vol(Q)

∫
Q
x dx.

Here we use that for a linear function f on a polytope R, one has the formula∫
R
f(x) dx = vol(R)·f(r0),

where r0 is the barycenter of R. In the following we will mostly ignore the scaling factor
vol(Q), which is needed for this inclusion but irrelevant for our discussion. The following
is the key result from Billera & Sturmfels [BS1].
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Theorem 14. [BS1] Σ(P,Q) is a polytope of dimension dim(P ) − dim(Q), whose
faces correspond to the coherent subdivisions of Q by faces of P . Here the vertices of
Σ(P,Q) correspond to the finest subdivisions, while the facets correspond to the coarsest
proper subdivisions.

For every polytope Q with p vertices, there is a canonical map π : Δp−1 −→ Q from the
simplex with p vertices to Q. In this case the vertices of Σ(Q) := Σ(Δp−1, Q) correspond
to the regular triangulations of Q — this Σ(Q) is the secondary polytope of Gel’fand,
Zelevinsky & Kapranov [GZK1,GZK2].

The following construction from [Zie] explains the construction of coherent subdi-
visions, and thus of vertices and facets of Σ(P,Q), for the special case of secondary
polytopes. For any linear functional x �−→ cx on IRp, we can consider the projection
π̂ : x �−→ (π(x),−cx), which maps P to Q̂ := π̂(P ) ⊆ IRq+1. Thus the projection π

factors into P
π̂−→ Q̂ −→ Q, where the second map just forgets the last coordinate.

Interpreting the last coordinate as a “height function” on Q̂, we get a subdivision of Q
from the “bottom faces” of Q̂. Thus every linear functional cx on P defines a subdivision
of Q. Also, a generic linear function will induce a triangulation of Q, which describes a
unique section γ : Q −→ P .

Conversely, suppose we are given any regular subdivision of Q and a convex function
f : Q −→ IR which induces it, that is, such that with Q̂ = conv{(x, f(x)) : x ∈ Q) we get
the original subdivision as the projection of the bottom faces of Q̂ to Q. From this we can
define a linear function cf on P by setting cfv := f(π(v)) for the vertices of P = Δp−1,
and extending linearly over Δp−1. If the original subdivision was a coarsest non-trivial
one (e.g., with only two maximal faces), then the linear functional cf obtained from it
will induce the corresponding facet of Σ(Δp−1, Q).

Instead of a detailed discussion and proofs we refer to [GZK2], [BS1] and [Zie, Lect. 9].
Here we will only discuss the two main examples that are relevant for the permuto-
associahedra.

Example 15 (Permutahedron). [BS1, Ex. 5.4] Let P = [0, 1]n ⊆ IRn be the unit
cube in IRn, and let Q = [0, n] ⊆ IR1, then the map π : IRn −→ IR, x �−→ ∑n

i=1 xi defines
a projection π : [0, 1]n −→ [0, n].

Here the “extreme sections” map [0, n] to paths in the 1-skeleton of [0, 1]n that are
increasing with respect to the height function

∑n
i=1 xi. These correspond to permutations:

the permutation σ = σ(1)σ(2) . . . σ(n) corresponds to the path

γσ : 0 −→ eσ(1) −→ eσ(1) + eσ(2) −→ . . . −→ eσ(1) + eσ(2) + . . . + eσ(n) = 1

where 0 and 1 denote the zero vector and the all-ones vector in IRn, and {e1, . . . , en}
denotes the standard basis in IRn. The integral of γσ is given by the sum∫ n

0
γσ(x) dx =

1

2

(
(γσ(0) + γσ(1)) + (γσ(1) + γσ(2)) + . . . + (γσ(n−1) + γσ(n))

)
=

1

2

(
(2n−1)eσ(1) + (2n−3)eσ(2) + . . . + (1)eσ(n)

)
=

1

2

n∑
i=1

(2n + 1− 2i)eσ(i)
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=
2n+ 1

2
1 − (σ−1(1), σ−1(2), . . . , σ−1(n)).

Thus the fiber polytope of the projection π turns out to be an affine image of the “usual”
representation of the permutahedron, which represents the permutation σ by the vector
whose entries are given by σ−1:

Σ([0, 1]n, [0, n]) ∼= PAn−1.

Remark 16. There seems to be no similarly straightforward way to obtain the other
Coxeterhedra as fiber polytopes, without admitting an extra group action.

We now turn to the (n− 2)-dimensional associahedron, which was constructed as the
secondary polytope of an (n+1)-gon by Gel’fand, Zelevinsky & Kapranov [GZK1,GZK2].
Viewed in terms of the fiber polytope construction, for any projection of an n-simplex to
an (n+ 1)-gon the resulting fiber polytope is an associahedron.

For our purpose, however, we need a very special choice both of the n-simplex and of
the (n+ 1)-gon, as follows.

Example 17 (Associahedron). Define fi := e1 + e2 + . . . + ei for 1 ≤ i ≤ n, with
f0 = 0. We use

Δn := conv{0, f1, . . . , fn} = {x ∈ IRn : 1 ≥ x1 ≥ . . . ≥ xn ≥ 0}

as our standard simplex.
Consider the (linear) projection map π : Δn −→ IR2 that maps 0 to (0, 0) and

π : fi −→ (i, i2),

fi − fi−1 = ei −→ (1, 2i− 1) = (i, i2) − (i− 1, (i− 1)2),

for 1 ≤ i ≤ n. The image π(Δn) is the “cyclic” convex (n + 1)-gon

C2(n + 1) := conv{(i, i2) : 0 ≤ i ≤ n}.

One can calculate the volume and the barycenter q0 of this (n+ 1)-gon as

vol(C2(n + 1)) =

(
n+ 1

3

)
, q0(C2(n+ 1)) = (

n

2
,
6n2 + 1

15
).
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Figure 8: The projection π : Δn −→ C2(n+ 1) for n = 3
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Figure 9: The correspondence between parenthesizations and triangulations.
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There is a well-known correspondence between the complete parenthesizations of a
string of n letters and the triangulations T of the (n+ 1)-gon C2(n+ 1), as follows. For
a string of length n, label with the numbers 0, 1, 2, . . . , n the parenthesis positions before
the word, between the letters and after the word. Then a parenthesis pair placed at
positions i and j corresponds to a diagonal (i, j), and if the parenthesis pair groups two
blocks together, one from positions i to j, the second from positions k to j, then this
corresponds to the triangle [ijk] having vertices

(i, i2), (j, j2), (k, k2).

Note that if a parenthesization is complete (with n− 2 parenthesis pairs), then every
pair groups only two blocks together.

We denote by Tn the set of all these triangulations, viewed as sets of triangles. So, for
example, we get (omitting set brackets for the triples),

T3 =
{
{013, 123}, {012, 023}

}
,

T4 =
{
{014, 124, 234}, {014, 123, 134}, {024, 012, 234},
{013, 034, 123}, {012, 023, 034}

}
.

With this the fiber polytope [BS1] of the projection

π : Δn −→ C2(n+ 1)

is given by

3

(
n + 1

3

)
·Σ(Δn, C2(n+ 1)) = conv{vT : T ∈ Tn+1},

where
vT :=

∑
(i,j,k)∈T

1
2
(j − i)(k − i)(k − j) · (fi + fj + fk) ∈ ZZn,

for all triangulations T of C2(n + 1) without new vertices. Here the sum is over all
triples i < j < k such that (π(fi), π(fj), π(fk)) is a triangle in the triangulation T , of area
1
2
(j − i)(k − i)(k − j).
This yields a specific embedding of the associahedron Kn−2. We use the scaled fiber

polytope
Kn−2 := conv{vT : T ∈ Tn} ⊆ IRn

as our standard associahedron. It is realized in an (n − 2)-dimensional affine subspace,
which can be derived from the condition that π(Σ(Δn, C2(n + 1))) = {q0(C2(n + 1))}.
Thus we derive the equations

n∑
i=1

xi = 3

(
n+ 1

3

)
n

2
=

n2(n2 − 1)

4
n∑
i=1

(2i− 1) · xi = 3

(
n+ 1

3

)
6n2 + 1

15
=

6n5 − 5n3 − n
30

.
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Now we derive defining inequalities for the facets of the standard associahedron, using
the method described above. The diagonals of C2(n + 1) (which describe the coarsest
possible subdivisions of C2(n + 1)) correspond to the pairs (i, j) with 0 ≤ i < j ≤ n and
2 ≤ j − i ≤ n− 1. With every such (i, j) we associate the convex function

f ij(x, y) := max{0,−y + (i+ j)x− ij}
which defines the subdivision of C2(n+1) by the diagonal (i, j), because it is linear except
for a break at the line through (i, i2) and (j, j2). We calculate cij ∈ (IRn)∗ from

cijfk = f ij(π(fk)) = f ij(k, k2) = max{0,−k2 − (i+ j)k − ij} = max{0, (k − i)(j − k)},
and thus

cijx = cij
n∑
k=1

xkek = cij
n∑
k=1

xk (fk − fk−1)

=
n∑
k=1

xk
(
max{0, (k − i)(j − k)} − max{0, (k − 1− i)(j − k + 1)}

)

=
j∑

k=i+1

xk
(
(k − i)(j − k) − (k − 1− i)(j − k + 1)

)

=
j∑

k=i+1

(
(−2k + 1) + i + j

)
xk

— so cijk = (−2k+1)+ i+ j for i < k ≤ j, and cijk = 0 otherwise. Knowing cij, the facets
of Kn−2 are given by

cijx ≥
(
j − i+ 1

3

)
3(j − i)2 − 2

10
for 0 ≤ i < j ≤ n, 2 ≤ j − i ≤ n− 1.

Here the right-hand side of the inequalities is min{cijvT : T ∈ Tn+1}, where the minimum
is achieved exactly by those triangulations that use the diagonal (i, j). The formula for
the minimum was computed by integrating f ij over C2(n + 1). This has a contribution
of 0 for the part where f ij vanishes. The rest is an integration of a linear function over
{(x, y) ∈ C2(n + 1) : −y + (i + j)x − ij ≥ 0}, which is again a cyclic polygon, affinely
isomorphic to C2(j − i+ 1), so we get its barycenter from the computation above.

The coordinates for this standard associahedron have further special properties. For
example, the points x ∈ Kn−2 of this associahedron satisfy

3

(
n + 1

3

)
> x1 > x2 > . . . > xn > 0.

In fact, this holds for the vertices by construction, and thus also for the convex hull.
A more miraculous effect is that for this special coordinatization of Kn the vertices lie

on a sphere around the origin: for all T ∈ Tn, we have
n∑
i=1

(vTi )
2 =

(
n+ 1

3

)
30n4 − 33n2 + 2

70
.

We have an algebraic proof for this, by analyzing the situation along an edge, correspond-
ing to a single reparenthesization/change-of-diagonal, but no really good explanation.
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�� Realization�

The construction of the Coxeter-associahedra, and the verification that the constructed
objects have the desired face lattice KPW, is a problem of polyhedral combinatorics. We
recommend Schrijver’s book [Sch] as a reference for terminology, results and techniques
of this field; see also Grötschel & Padberg [GrP] for a valuable introduction.

In producing irredundant descriptions, it is of great advantage to deal with full-
dimensional polytopes, since for these the facet defining inequalities are unique (up to a
positive scalar). Therefore, we treat here the case of KPBn ⊆ IRn in detail (Theorem 20).
From this we get the case of KPAn−1 ⊆ IRn, which is a facet of KPBn (Corollary 21). The
case of KPDn is handled analogously, where we omit some details (Theorem 22).

For the construction of polytopes with specified combinatorics (and this is the principal
object of this paper) it suffices to establish that the constructed polytope has the correct
vertex-facet incidences. Here is the precise criterion we use to establish the combinatorial
structure of the Coxeter-associahedra.

Lemma 18. Let L be a finite lattice that is atomic and coatomic. Let there be a map
that associates a point vα ∈ IRn with every atom α ∈ atom(L), and let

P := conv{vα : α ∈ atom(L)} ⊆ IRn

be the convex hull of these points. Now assume that the following two conditions hold.

(i) There is a linear functional cφ ∈ (IRn)∗ for every coatom φ in L, such that the atoms
below φ maximize cφ among the points vα, that is,

cφvα = max{cφvβ : β ∈ atom(L)} if and only if α ≤ φ.

(ii) Every c ∈ (IRn)∗ can be written as a non-negative sum of the functionals in a set
Sα of the form Sα := {cφ : φ ∈ coatom(L), φ ≥ α}, for some α ∈ atom(L).

Then L is the face lattice of P , and we have an equality

P = {x ∈ IRn : cφx ≤ max{cφvα : α ∈ atom(L)}, for all φ ∈ coatom(L)}.

Proof. Let Q denote the subset of IRn defined by the right-hand side of the last equation.
We have P ⊆ Q by construction. Now by condition (ii), every linear function c ∈ (IRn)∗

be written as a positive sum of functions cφ that are compatible with some α ∈ atom(L).
From condition (i) we derive that vα ∈ P maximizes c over Q. Thus every linear function
on Q is maximized by some vertex in P , and this proves P = Q.

With this, condition (i) shows that the inequalities associated with φ ∈ coatom(L)
exactly define the facets of P . This is enough to determine the complete combinatorics,
since vertex sets of faces of a polytope are all the intersections of vertex sets of facets.
(Abstractly, this follows since for a finite lattice that is atomic and coatomic, the subposet
of atoms and coatoms completely determines the lattice [Stan, Ex. 3.12].)

Let us recall (and rephrase) Theorem 2 from the introduction:
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Theorem 2. The polytopes KPAn−1, KPBn and KPDn can be realized as the convex
hulls

|KPAn−1| := conv{w · vT : T ∈ Tn, w ∈ An−1} = conv(An−1 ·Kn),
|KPBn| := conv{w · vT : T ∈ Tn, w ∈ Bn} = conv(Bn ·Kn),
|KPDn| := conv{w · vT : T ∈ Tn, w ∈ Dn} = conv(Dn ·Kn),

where An−1, Bn and Dn act on IRn by permutation and sign change of the coordinates (as
usual).

Here we have and inclusion |KPDn| ⊆ |KPBn|, an |KPAn−1| is the common facet of
|KPBn| and of |KPDn| given by

|KPAn−1| ⊆ |KPBn| ∩ {x ∈ IRn :
∑
i

xi =
n4 − n2

4
}.

Proof. The statements for KPAn−1 follow from those for KPBn. Those in turn we derive
below, in Theorem 20, after we have constructed an explicit description of the vertices
and the facet-defining inequalities for KPBn. Similarly, the proof for KPDn is given in
Theorem 22.

Remark 19. Let us indicate some of the geometric motivation for the construction
in Theorem 2. The realization of the associahedron that we obtained in the last section
already has many special properties. It can be viewed as the scaled fiber polytope of
the projection Δn −→ [0, n], where Δn ⊆ [0, 1]n is a simplex whose images under the
action of An−1 (resp. Bn) cover the cubes [0, 1]n (resp. [−1, 1]n). Each of these simplices
has a canonical map to C2(n+ 1). Those maps fit together to give a non-linear “folding
map” from [0, 1]n resp. [−1, 1]n to C2(n + 1). Thus our construction can be viewed as
a generalized fiber polytope associated with this non-linear projection map, or as an
“equivariant fiber polytope”, where we have a combination of compatible projection and
group action.

We start now with the explicit description of the vertices and the facet-defining inequalities
for our realization KPBn.

Consider α, a completely parenthesized, signed, permutation of length n, correspond-
ing to an atom of the lattice KPBn. Let σ

α = σ1σ2 . . . σn be the permutation given by the
letters of α, let κα ∈ {+1,−1}n be the vector of signs, where καi = −1 if the letter ‘i’ has
a bar in α, and καi = +1 otherwise, and let T = T α be the triangulation associated with
the parenthesization of α. Here wα = [σα, κα] represents an element of Bn. The string α
will be represented by the point vα = wα · vTα ∈ IRn, whose important property is that

κσ1v
α
σ1

> κσ2v
α
σ2

> . . . > κσnv
α
σn.

For example, for α = 2((1 5)((4 6)3)) we get the permutation σα = 215 4 6 3, the sign vec-
tor κα = (+1, −1, +1, +1, −1, +1), and the triangulation T α = {016, 136, 123, 356, 345},
with areas

vol[016] = 15, vol[136] = 15, vol[123] = 1, vol[356] = 3, vol[345] = 1.

24



Thus we compute

vα = 15 · { 2(−e2) + 1(+e1) + 1(−e5) + 1(+e4) + 1(+e6) + 1(+e3) }
= 15 · { 3(−e2) + 2(+e1) + 2(−e5) + 1(+e4) + 1(+e6) + 1(+e3) }
= 1 · { 3(−e2) + 2(+e1) + 1(−e5) }
= 3 · { 3(−e2) + 3(+e1) + 3(−e5) + 2(+e4) + 2(+e6) + 1(+e3) }
= 1 · { 3(−e2) + 3(+e1) + 3(−e5) + 2(+e4) + 1(+e6) }
= − 90e2 + 59e1 − 58e5 + 38e4 + 37e6 + 33e3

= (59,−90, 33, 38,−58, 37) ∈ vert(KPB6).

which satisfies −vα2 > vα1 > −vα5 > vα4 > vα6 > vα3 > 0.
The facets of KPBn correspond to strings without parentheses that either have only

one block, or have a box, but not both. With each such string φ we associate a vector cφ,
as follows.

Assume that the string φ has p ≥ 1 blocks, where the first letter of the r-th block is
the ir-th letter of the string, and the last letter of the r-th block is the jr-th letter of the
string. Thus the string φ has a ‘block structure’ given by

i1 · · · j1 . i2 · · · j2. · · · · · · .ip · · · jp
with

1 = i1 ≤ j1, j1 + 1 = i2 ≤ j2, . . . , jp−1 + 1 = ip ≤ jp = n.

Again, we get a sign vector λφ ∈ {−1,+1}n to indicate which letters in φ have a bar:

λi := −1 if the letter ‘i’ has a bar in φ, and

λi := +1 if the letter ‘i’ has no bar.

Also, we read off a permutation τ φ = τ1τ2 . . . τn from φ. With these conventions, we define
cφ ∈ (IRn)∗ as

cφ := λφ if p = 1,

and cφk := λφk(ip + jp − ir − jr) if p > 1, and the letter ‘k’ lies in the r-th block of φ.

The first important property we need of this construction is that (in both cases) we have

λτ1c
φ
τ1
≥ λτ2c

φ
τ2
≥ . . . ≥ λτnc

φ
τn
≥ 0,

with strict inequality λτkc
φ
τk
> λτk+1

cφτk+1
if and only if the k-th and the (k + 1)-st letter

of τφ lie in different blocks, that is, if k = ir and k + 1 = jr+1 for some r < p, and with
strict inequality λτnc

φ
τn > 0 if and only if p = 1.

Again, here are examples: for φ = 12 3 4 5 6 we get p = 1, i1 = 1, j1 = n = 6,
τφ = 12 . . . 6, and thus

λφ = cφ = (+1,−1,+1,−1,−1,+1).

For φ = 2.1 5. 346 we have p = 3, 1 = i1 = j1, 2 = i2 < j2 = 3, 4 = i3 < j3 = 6. We derive
τφ = 215346, λφ = (+1,−1,+1,+1,−1,+1), and thus we compute

cφ = ( + (4 + 6 − 2− 3), −(4 + 6 − 1− 1), 0, 0, −(4 + 6− 2 − 3), 0)

= (+5,−8, 0, 0,−5, 0)
with −cφ2 > cφ1 = cφ5 > cφ3 = cφ4 = cφ6 = 0.
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Theorem 20. With vα ∈ IRn and cφ ∈ (IRn)∗ as just constructed, the polytope
|KPBn| = conv{vα : α ∈ atom(KPBn)} ⊆ IRn has face lattice KPBn. A complete linear
description is given by

|KPBn| = {x ∈ IRn : cφx ≤ bφ for all φ ∈ coatom(KPBn)},

where the right-hand sides are given by bφ = n4−n2
4

if p = 1 (i.e., φ consists of one single
block), and

bφ = (ip + jp − 1)
n4 − n2

4
− 6n5 − 5n3 − n

30
−

p∑
r=1

(
jr − ir + 2

3

)
3(jr − ir + 1)2 − 2

10
.

otherwise.

Proof. We apply the criterion of Lemma 18. Here vα and cφ have already been con-
structed. Now every permutation and sign change of a vector vα is again a vector of this
form. Thus from

κσ1v
α
σ1

> κσ2v
α
σ2

> . . . > κσnv
α
σn

we see that for fixed φ, the sum
cφvα =

∑
k

cφkv
α
k

can be maximized over {vα : α ∈ atom(KPBn)} only if all the summands cφkv
α
k are

positive, i.e. κk = λk, and the components are ordered compatibly in size, with

κσ1c
φ
σ1
≥ κσ2c

φ
σ2
≥ . . . ≥ κσnc

φ
σn ≥ 0.

With this we may assume that τ = σ. In fact, using the symmetry of the situation we may
as well assume τ = σ = 123 . . . n and κk = λk = +1 for all k. This reduces our situation
to considering the linear function cφ, optimizing over the vertices of the associahedron in
the coordinatization of Section 3, conv{vT : T ∈ Tn}.

Now we decompose cφx, as follows:

−cφx =
n∑

k=1
ir≤k≤jr

(ir + jr − ip − jp)xk

=
n∑

k=1
ir≤k≤jr

(−2k + ir + jr)xk +
n∑
k=1

(2k − ip − jp)xk

=
p∑
r=1

jr∑
k=ir

((−2k + 1) + (ir − 1) + jr) xk +
n∑
k=1

(2k − 1)xk − (ip + jp − 1)
n∑
k=1

xk.

This last expression shows the following. The last two sums are constant over the as-
sociahedron Kn−2 ⊆ IRn. For the first sum, if ir = jr, then the coefficient of xk is zero
for k = ir = jr. If p = 1 and i1 = 1, j1 = n, then the whole sum is constant over the
associahedron. In all other cases we get that the sum

∑jr
k=ir

((−2k + 1) + (ir − 1) + jr) is
maximized by vα if and only if T α has a diagonal from ir − 1 = jr−1 to jr, that is, if α
has a parenthesis pair at the positions ir − 1 and jr.
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In other words, vα minimizes −cφx if and only if the string α has a parenthesis pair
around every non-trivial block of φ (of length between 2 and n−1). The explicit minimal
value can now be derived from the data in Section 3.

This completes the argument that vα maximizes cφx if and only if α ≤ φ. It only
remains to show hypothesis (ii) of Lemma 9, i.e., that every c ∈ (IRn)∗ can be written
as a positive linear combination of linear functionals that define the facets meeting at a
particular vertex. The proof of this gives an algorithm for maximizing the functional cx
over the polytope, which we now describe.

Let c ∈ (IRn)∗ be arbitrary. Maximizing cx over Q, we may use the symmetry of P
and Q, to assume c1 ≥ c2 ≥ . . . ≥ cn ≥ 0. Now we algorithmically expand c into a positive
combination of vectors cφ, where φ is a partition of φ0 = 12 · · · n into blocks, where the
last one is boxed if there is more than one block. Here we have cφ0 = (1, 1, . . . , 1). First
write c = cnc

φ0 + c′, where the vector c′ := c− cncφ0 satisfies c′1 ≥ c′2 ≥ . . . ≥ c′n = 0. For
c′ = (0, 0, . . . , 0) we are done. Otherwise c′ has p > 0 different components, and we can
determine ir, jr such that

c′i1 = . . . = c′j1 > c′i2 = . . . = c′j2 > . . . > c′ip = . . . = c′jp = 0.

Now set φ1 := i1 · · · j1.i2 · · · j2. · · · .ip · · · jp and subtract a suitable multiple of cφ1 from
c′. In fact, we can rewrite c′ = t1c

φ1 + c′′ for

t1 := min
1≤r<p

c′
jp − c′

ip+1

cφ1jp − cφ1ip+1

This t1 is the largest t1 such that c′′ turns out to be decreasing. Then c′′ is again
decreasing, with the last component 0, and the blocks of components where c′′ is constant
are unions of such blocks for c′. Furthermore, c′′ has fewer different components than c′.
Thus if we iterate this procedure, after k ≤ n steps we have written c in the form

c = cnc
φ0 + t1c

φ1 + . . . + tkc
φk

with ti ≥ 0, and such that the blocks of φi+1 are unions of blocks of φi. Thus there exist
complete parenthesizations α of 12 · · · n such that α ≤ φi for all i. In other words, the
ordered partitions φi determine a certain set of diagonals in C2(n+1), one for every block
of size 2 ≤ |B| < n occurring in some φi. Thus v

T maximizes cx over Q if and only if the
triangulation T contains this set of diagonals.

We illustrate this algorithm for optimization over Q by an example. Let n = 6, and
c0 = (−2, 5, 7,−4,−5, 9). We first optimize c = (9, 7, 5, 5, 4, 2) over KPB6. This c is
rewritten as follows.

(9, 7, 5, 5, 4, 2) = 2 (1, 1, 1, 1, 1, 1) + (7, 5, 3, 3, 2, 0)

(7, 5, 3, 3, 2, 0) =
1

3
(10, 8, 5, 5, 2, 0) + (

11

3
,
7

3
,
4

3
,
4

3
,
4

3
, 0)

(
11

3
,
7

3
,
4

3
,
4

3
,
4

3
, 0) =

1

4
(10, 8, 4, 4, 4, 0) + (

7

6
,
1

3
,
1

3
,
1

3
,
1

3
, 0)

(
7

6
,
1

3
,
1

3
,
1

3
,
1

3
, 0) =

1

15
(10, 5, 5, 5, 5, 0) + (

1

2
, 0, 0, 0, 0, 0)

(
1

2
, 0, 0, 0, 0, 0) =

1

12
(6, 0, 0, 0, 0, 0)
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and thus we rewrite

c = 2 c123456 +
1

3
c1.2.34.5. 6 +

1

4
c1.2.345. 6 +

1

15
c1.2345. 6 +

1

12
c1. 23456 .

From this we read off that cx is maximized (over Q) by

v1((2((3.4)5))6) = 15(f0 + f1 + f6) + 10(f1 + f5 + f6) +

+ 6(f1 + f2 + f5) + 3(f2 + f4 + f5) + 1(f2 + f3 + f4) =

= (90, 59, 49, 48, 44, 25),

so c0 is maximized by v6((3((2.5)4))1) = (−25, 49, 59,−44,−48, 90)
and by v6((4((2.5)3))1) = (−25, 48, 59,−44,−49, 90).

As a corollary, we get a complete description of the polytope KPAn−1. The facets
of KPAn−1 correspond to the ordered partitions ψ of {1, 2, . . . , n} into at least 2 blocks.
Given ψ, let (ψ) denote the string φ surrounded by a pair of parentheses, then (ψ)
corresponds to a face of codimension 2 in KPAn−1. This face lies below two facets of
KPBn: namely the facet corresponding to φ0 = 12 . . . n, which we identify with KPAn−1,
and the facet corresponding to φ(ψ), where φ(ψ) is obtained from φ by boxing the last
block.

Corollary 21. With vα ∈ IRn, cφ ∈ (IRn)∗ and bφ as used in Theorem 20, the polytope
|KPAn−1| = conv{vα : α ∈ atom(KPAn−1)} ⊆ IRn has face lattice KPAn−1. A complete
linear description is given by

|KPBn| = {x ∈ IRn :
∑
i

xi =
n4 − n2

4
,

cφ(ψ)x ≤ bφ(ψ) for all ψ ∈ coatom(KPAn−1)},

where φ(ψ) is obtained from ψ by boxing the last block.

Analogously, we have a theorem for the case of KPDn. Here the vertex set is given as

vert|KPDn| := {vα : α ∈ atom(KPDn)} ⊆ {vα : α ∈ atom(KPBn)} = vert|KPBn|.

The lattices KPDn have three types of coatoms φ: strings with exactly one block (and an
even number of minus signs), strings with more than one block such that the last block is
boxed (so this last block contains more than one element) and strings where the last two
blocks are boxed (and the last block is a singleton). In first two cases, we have already
constructed cφ and bφ for the linear description of the polytopes KPBn in Theorem 19.
Reusing this, we get a complete description of the polyhedral realization of KPDn, as
follows.

Theorem 22. With vα ∈ IRn, cφ ∈ (IRn)∗ and bφ ∈ IR as constructed before, the
polytope |KPDn| = conv{vα : α ∈ atom(KPDn)} ⊆ IRn has face lattice KPDn. A
complete linear description is given by

|KPDn| = {x ∈ IRn : cφx ≤ bφ for all φ ∈ coatom(KPDn)},
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where bφ has the same values as in Theorem 19 if at most one block is boxed. When the
last two blocks of φ are boxed, ip = jp = n, we define λφ ∈ {+1,−1}n as before, and

cφk := λφk(3n− 1+ ip−1− 2ir − 2jr) if p > 1, and the letter ‘k’ lies in the r-th block of φ.

and

bφ := (3n − 3 + ip−1)
n4 − n2

4
− 6n5 − 5n3 − n

15
−

p∑
r=1

(
jr − ir + 2

3

)
3(jr − ir + 1)2 − 2

5
.

Proof. We apply the criterion of Lemma 18. The proof is analogous to that of Theo-
rem 20, so we only remark about two new points.

First, we need a lemma for maximizing a linear function over an orbit of Dn (the same
is quite trivial for Bn). For this, let v ∈ IRn with v1 > v2 > . . . > vn > 0 and c ∈ (IRn)∗

with c1 ≥ c2 ≥ . . . > cip−1 = . . . = cn−1 = −cn > 0. Then

max{c(w · v) : w ∈ Dn} = cv,

and the maximum is achieved by w = id, and by those signed permutations with exactly
two minus signs such that w · c is weakly decreasing, except that one component (w · c)i
with ip−i ≤ i < n has a minus sign.

Secondly, it helps to observe that both in KPBn and in KPDn, every facet is either
isomorphic to KPAn−1 or adjacent to such a facet. This implies a strong relationship
between the facet defining inequalities of KPBn and of KPDn. In fact, assume that the
last block of φ is a singleton, and the last two blocks of φ are boxed, so φ defines a facet
of KPDn. Let ψ be the string obtained by boxing only the last singleton block (instead
of the box in φ), so ψ defines a facet of KPBn. Also, let ψ′ be the string with only one
block, and bars over the same letters as in φ. Then one can see from the combinatorics
that the inequality cψ ≤ bψ has to be a positive combination of the inequalities cφ ≤ bφ

and cψ
′ ≤ bψ

′
. Indeed, we have

cψ = 2cψ − (ip + jp − ip−1 − jp−1)c
ψ′

and bψ = 2bψ − (ip + jp − ip−1 − jp−1)b
ψ′
,

as is easily checked.

�� Remarks�

1. The three families of Coxeter-associahedra are realized, by construction, with the
symmetry of the associated Coxeter group. Additionally, the vertices in our descrip-
tion are integral, and they lie on a sphere around the origin. This last fact follows by
construction from the same phenomenon that we observed for the associahedron at
the end of Section 3. As stated there, we have a proof, but lack a good explanation
for this phenomenon.
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2. It would be extremely desirable to have a coherent description of the Coxeter-
associahedra in terms of the fiber polytopes. This suggests an extension of the
fiber polytope construction either for piecewise-linear maps, or to an equivariant
setting (compare Remark 16).

3. The geometric intuition in Kapranov’s paper [Kap] was that one should construct
the permuto-associahedron by placing a “small” associahedron at every vertex of
a permutahedron, in a suitable way. This suitable way was found and described
in Section 3, except that the associahedra were not small (cf. Figure 4). However,
there is a construction that matches Kapranov’s intuition, producing arbitrarily
small associahedra at the vertices of a Coxeterhedron. For this we observe that
the normal fan for our realizations of KPW refines that of the Coxeterhedron PW,
realized as usual as the convex hull of an orbit of W. Thus we get

KPW ∼= t ·KPW + (1− t) · PW t−→0−−−→ PW

from the fact that if the normal fan of P refines that of Q, then the Minkowski sum
P +Q is combinatorially isomorphic (and normally equivalent) to P (see [GrS]).

4. The face poset of the associahedron Kn was shown to be EL-shellable by Björner
(personal communication), and it follows from the realization of KPW as a polytope
that its face poset KPW is CL-shellable (see [BW]). Are there nice EL- or CL-
shellings of KPW?

5. With the proof of Theorem 20, we have a combinatorial, polynomial algorithm for
optimization over the Coxeter-associahedra. Is there a similar routine for separation,
i.e., to decide whether a given point lies in KPAn−1?

6. Comments on tools: We have used the program “PORTA” [Chr] [CJR] for Fourier-
Motzkin computations, yielding complete and irredundant sets of defining equations
and inequalities from lists of vertices (and vice versa). This program is powerful
enough to do complete computations for all the 4-dimensional Coxeter-associahedra.
The Figures 1, 3 and 4, displaying the Coxeterhedra and Coxeter-associahedra for
n = 3 as spatial polytopes, were generated from PORTA output by Jürgen Richter-
Gebert (using Mathematica graphics in Figure 4).
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