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Abstract. Pseudo-Boolean problems generalize SAT problems by allow-
ing linear constraints and a linear objective function. Different solvers,
mainly having their roots in the SAT domain, have been proposed and
compared, for instance, in Pseudo-Boolean evaluations. One can also for-
mulate Pseudo-Boolean models as integer programming models. That is,
Pseudo-Boolean problems lie on the border between the SAT domain
and the integer programming field.
In this paper, we approach Pseudo-Boolean problems from the integer
programming side. We introduce the framework scip that implements
constraint integer programming techniques. It integrates methods from
constraint programming, integer programming, and SAT-solving: the so-
lution of linear programming relaxations, propagation of linear as well as
nonlinear constraints, and conflict analysis. We argue that this approach
is suitable for Pseudo-Boolean instances containing general linear con-
straints, while it is less efficient for pure SAT problems.
We present extensive computational experiments on the test set used for
the Pseudo-Boolean evaluation 2007. We show that our approach is very
efficient for optimization instances and competitive for feasibility prob-
lems. For the nonlinear parts, we also investigate the influence of linear
programming relaxations and propagation methods on the performance.
It turns out that both techniques are helpful for obtaining an efficient
solution method.

1 Introduction

Over the past decade, SAT-solvers have grown increasingly more efficient. Since
they allow to solve large SAT instances in a consistent and fast manner, also new
fields of application have been sought. One such field are Pseudo-Boolean (PB)
problems, in which SAT-models are extended by linear and nonlinear constraints.
Several PB-solvers have been proposed and compared during the Pseudo-Boolean
evaluations, see Manquinho and Roussel [13–16].

One way to solve PB-problems is by transformation to a SAT problem, see,
e.g., Eén and Sörensson [9]; this approach is used, for instance, in the solver
minisat+ [8, 9]. Another way is to handle PB-constraints directly in the solver,
see, e.g., PBS [5]. Some solvers use a constraint programming approach, for
example, absconPseudo [11].
? Supported by the DFG Research Center Matheon Mathematics for key technologies
in Berlin.
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Pseudo-Boolean problems can also be formulated as an integer program (IP),
in which the nonlinear constraints are linearized. This idea is used by the solver
glpPB, which applies glpk [10] for solving the IPs. The solver bsolo [12]
combines integer programming techniques with SAT-solving. A comparison of
the SAT versus integer programming approaches is given in Aloul et al. [4].

In this paper, we approach PB-problems from a constraint integer program-
ming (CIP) point of view. CIP is a combination of integer and constraint pro-
gramming (CP) methods. We use the framework scip that is based on a branch-
and-cut method as commonly used for the solution of IPs; see Achterberg [2] for
details. Hence, scip performs a branch-and-bound algorithm to decompose the
problem into subproblems, solves a linear relaxation, and, in order to strengthen
the relaxation, it possibly adds additional inequalities (cutting planes). It also
incorporates methods from SAT-solving like conflict analysis and restarts. Fur-
thermore, scip applies techniques from CP like constraint propagation.

Besides introducing a new PB-solver, the main contribution of this paper is
the evaluation of extensive computations on the instances of the Pseudo-Boolean
evaluation 2007 [16]. It turns out that scip is a very effective solver.

The structure of the paper is as follows. In Section 1.1, we define linear and
nonlinear Pseudo-Boolean problems. In Section 2, we introduce the concept of
constraint integer programming. Section 2.1 gives a brief account of the different
techniques incorporated into scip. The computations are discussed in Section 3.
We provide an overall summary, a comparison to the results of the PB evaluation
2007, and more details for different problem groups. We also investigate the be-
havior of scip on the problems including nonlinear constraints more thoroughly.
We summarize the outcomes in Section 4 and discuss some future challenges.

One reason for the success of our approach is that scip is also a very fast
CIP solver. It can be used free of charge for academic purposes [21].

1.1 Problem Definition

A linear Pseudo-Boolean problem is an optimization problem over n binary
(Boolean) variables x1, . . . , xn in the following form:

min cTx

Ax ≥ b (1)
x ∈ {0, 1}n,

where A ∈ Zm×n, b ∈ Zm, c ∈ Zn. The term cTx is called the objective function.
The inequalities in Ax ≥ b are called linear constraints.

The above format is quite general. First, expressions that involve literals
`j ∈ {xj , xj} can be transformed into the above form by using the relation
xj = 1− xj , i.e., if `j = xj , we replace `j by 1− xj , otherwise by xj . Maximiza-
tion problems can be transformed to minimization problems by multiplying the
objective function coefficients by −1. Similarly, “≤” constraints can be multiplied
by −1 to obtain “≥” constraints. Equations can be replaced by two opposite in-
equalities. Inequalities or objective functions involving rational coefficients can
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be multiplied with the least common multiple of the denominators of all coeffi-
cients to yield integer numbers.

Integer programs are extensions of linear Pseudo-Boolean instances, in which
the variables may also assume arbitrary integer values. Integer programs may
be further extended by allowing some variables to take continuous values, which
yields mixed integer programs (MIPs).

SAT problems are special cases of Pseudo-Boolean problems: A clause of a
SAT formula `1 ∨ · · · ∨ `k (with literals `1, . . . , `k) can be expressed as

k∑
j=1

`j ≥ 1. (2)

Then the literals are transformed as explained above. Inequalities of the type (2)
are also called or-constraints or set covering constraints. In order to state fea-
sibility problems we can set c = 0.

A nonlinear Pseudo-Boolean constraint over literals `ij is defined as follows

t∑
i=1

di

k∏
j=1

`ij ≥ r, (3)

where d ∈ Zt, r ∈ Z. Each product zi =
∏k

j=1 `ij ∈ {0, 1} can be expressed as
an and-constraint

zi =
k∧

j=1

`ij .

The resulting new variables zi can be inserted into the linear constraint dTz ≥ r,
which is equivalent to (3). and-constraints are nonlinear in the sense that they
cannot be represented by a single linear constraint. They can either be treated
directly by the solver or linearized by adding the following linear constraints.

zi ≤ `ij for j = 1, . . . , k
k∑

j=1

`ij − zi ≤ k − 1. (4)

These constraints suffice to describe an and-constraint in the sense that 0/1-
solutions of (4) are solutions of the corresponding and-constraint and conversely.
The above inequalities do not, however, suffice to guarantee that so-called ex-
treme (fractional) solutions are integer – or put differently, they do not describe
the convex hull of all feasible 0/1-solutions. This is relevant for LP-based branch-
and-cut approaches, which rely on a good approximation of the convex hull of
the feasible solutions. In our approach we treat and-constraints in varying levels
of algorithmic effort; this is described in Section 3.5.

2 Constraint Integer Programming

The majority of the solvers for SAT, MIP, and CP work in the spirit of branch-
and-bound, which means that they recursively subdivide the problem instance
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yielding a so-called branch-and-bound-tree, whose nodes represent subproblems
of the original instance. Although this strategy implicitly enumerates all poten-
tial solutions, the hope is that due to effective processing and bounding of the
subproblems, one may prune other parts of the tree.

SAT and MIP are special cases of the general idea of CP. The power of CP
arises from the possibility to model the problem directly with a huge variety of
different, expressive constraints. In contrast, SAT and MIP only allow for very
specific constraints: Boolean clauses for SAT and linear and integrality con-
straints for MIP. Their advantage, however, lies in the sophisticated techniques
available to exploit the structure provided by these constraint types.

An important point for the efficiency of solving algorithms is the interaction
between constraints. For instance, in SAT-solving, this takes place via propa-
gation of the variables’ domains. In MIP solving there exists a second, more
complex but very powerful communication interface: the LP-relaxation.

The goal of constraint integer programming is to combine the advantages
and compensate the weaknesses of CP, MIP, and SAT. To support this aim,
we slightly restrict the notion of a CP, in order to be able to apply MIP and
SAT-solving techniques, and especially provide an LP-relaxation without losing
the high degree of freedom in modeling.

Definition. A constraint integer program CIP = (C, I, c) consists of solving

c? = min
{
cTx : Ci(x) = 1 for all i = 1, . . . ,m, x ∈ Rn, xj ∈ Z for all j ∈ I},

with a finite set C = {C1, . . . , Cm} of constraints Ci : Rn → {0, 1}, i = 1, . . . ,m,
a subset I ⊆ N := {1, . . . , n} of the variables, and an objective function c ∈ Zn.
Defining C := N \ I, a CIP has to fulfill the following additional condition:

∀ x̂I ∈ ZI ∃ (A′, b′) : {xC ∈ RC : C(x̂I , xC)} = {xC ∈ RC : A′xC ≤ b′} (5)

where A′ ∈ Zk×C and b′ ∈ Zk for some k ∈ Z≥0.

Restriction (5) ensures that the subproblem remaining after fixing all integer
variables always is a linear program. Note that this does not forbid quadratic or
more involved expressions – as long as the nonlinearity only refers to the integer
variables.

Clearly, MIPs are special cases of CIPs. Hence, the same holds for PB-
problems. One can also show that every CP with finite domains for all variables
can be modeled as a CIP.

In the following, we will describe basic ideas for solving CIPs on the example
of the CIP-framework scip (Solving Constraint Integer Programs). We keep the
description quite brief and refer to Achterberg [2] for details.

Most MIP solvers are based on a branch-and-cut strategy, which is a com-
bination of branch-and-bound and cutting plane algorithms. It is also a main
component of scip. In every node of the tree the linear relaxation, i.e., a linear
program (LP), of the current subproblem is solved. Then iteratively additional
cutting inequalities are added to strengthen the relaxation. More information
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about this method can be found in Nemhauser and Wolsey [18], Caprara and
Fischetti [7], and Padberg and Rinaldi [19].

The ideas to solve linear relaxations and to add cutting inequalities have also
been used in PB-solvers like bsolo [12] and pueblo [22, 23].

2.1 Main Components of scip

The central objects of scip are constraint handlers. There are constraint handlers
for linear, integrality, and, or, and many other constraints. A constraint han-
dler must be able to decide whether a given solution is feasible for all constraints
of the respective type or not. Furthermore, it may provide supplementary algo-
rithms like constraint specific presolving, or domain propagation and additional
information such as a linear relaxation of the constraints.

The use of constraint propagation is an important part of state-of-the-art CP
and SAT-solvers. The task is to analyze the set of constraints of the current
subproblem and the local domains of the variables in order to infer additional
valid constraints and domain reductions, thereby restricting the search space. In
scip, every constraint handler may provide its own propagation method.

A main component of modern SAT-solvers is conflict analysis, which was
introduced by Marques-Silva and Sakallah [17]. It enables SAT-solvers to learn
from infeasible subproblems. The target is to deduce short, globally valid conflict
clauses from a series of branching decisions which led to an infeasibility. These
clauses enable the solver to prune other parts of the search tree and to apply
non-chronological backtracking.

This approach has been transferred to CIPs/MIPs by Achterberg [1] and
Sandholm and Shields [20]. The concept of a conflict graph is extended in such a
way that the nodes represent bound changes instead of variable fixings in order
to cope with general integer variables. Furthermore, in the (usual) case that the
infeasibility arises from the linear relaxation, scip analyzes the LP via a greedy
heuristic that tries to identify a small subset of the bound changes that suffices
to render the LP infeasible. Note that it is NP-hard to find such a subset of
minimal cardinality. After having analyzed the LP, scip proceeds in the same
fashion as SAT-solvers: it constructs a conflict graph, chooses a cut therein, and
produces a conflict constraint which consists of the bound changes along the
frontier of this cut.

Tightening the problem via adding additional linear inequalities, which sep-
arate the current fractional LP optimum from the set of feasible integer so-
lutions, is a basic concept in mixed integer programming. More precisely, the
LP-relaxation is strengthened by adding linear constraints aTx ≥ β which are
violated by the current LP-solution, but not by any of the feasible solutions.
scip features a variety of MIP based cutting plane separators.

The task of primal heuristics is to produce feasible solutions of high quality in
the early steps of the branch-and-bound process. For optimization problems, the
knowledge of a good feasible solution helps to guide the remaining search, prune
the tree, and apply propagation techniques. For pure feasibility instances, good
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primal heuristics are even more important, since finding any feasible solution
suffices to solve the problem.

It is a crucial decision of the branch-and-bound process how a problem Q
should be split into smaller subproblems. A popular branching strategy in MIP-
solving is to split the domain of a binary variable xj with fractional LP value
into two parts, thus creating two subproblems Q1 = Q ∩ {xj = 0} and Q2 =
Q ∩ {xj = 1}. This technique is also used in most SAT-solvers. Moreover, scip
supports branching schemes that create more than two subproblems or branch
on constraints.

In SAT-solving, usually the branch-and-bound node to be investigated next
is chosen in a depth first manner. The global lower bound (the minimum of
the lower bounds of each open node) of a MIP can, however, usually be raised
faster if the nodes are processed in an order that also takes these bounds into
consideration. scip uses a combination of best estimate search (select a node
where good feasible solutions are expected) and depth first search by default.

Presolving or preprocessing procedures aim to transform the original problem
into an equivalent problem that is easier to solve. This can be done by remov-
ing irrelevant information such as redundant constraints or fixed variables and
by strengthening the LP-relaxation of a problem via tightening the bounds of
variables or the coefficients of linear constraints.

Finally, restarts are a widely used component of SAT-solvers. scip also in-
corporates restarts. The idea is to abort the search process if a certain amount
of global problem reductions has been triggered in the early steps and restart
the search from scratch. The motivation is to use the knowledge obtained in pre-
vious runs by reapplying other presolving mechanisms to the reduced problem
and procedures which are only applied at the root node. Note, however, that
restarts should be applied less frequently in MIP-solvers than in SAT-solvers,
since the solution of individual nodes is more time consuming.

2.2 Pseudo-Boolean Presolving Techniques

We analyzed nonlinear Pseudo-Boolean models, which led us to incorporate two
new presolving ideas into scip. The first presolving technique aims for strength-
ening constraints and can be described as follows: Let k, ` ∈ Z>0. Furthermore,
let
∑k

i=1 ai < β and d1, . . . , d` ≥ β, where all ai, dj , and β are positive integers.
Then the linear constraint

k∑
i=1

aixi +
∑̀
j=1

djyj ≥ β,

in which all xi and yj are binary variables, can be replaced by the (stronger)
or-constraint ∑̀

y=1

yj ≥ 1.
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The second presolving idea eliminates variables. Let
∑k

i=1 aixi = β, where
a ∈ Zk, β ∈ Z, x ∈ {0, 1}k. If there exists exactly one i for which ai is odd, then
xi = 0 if and only if β is even. Hence, we can fix xi = β mod 2. If there exist
exactly two distinct i, j for which ai, aj are odd, then xi = xj if and only if β is
even, and xi = 1− xj if and only if β is odd. Hence, one of the variables can be
substituted.

Both preprocessing techniques can be applied, for instance, if general integer
variables are decomposed into a sum of binary variables for which all coefficients
are powers of 2 (also see Section 3.2). This often occurs in PB-models.

3 Computational Results

In this section we discuss the results of computations we performed for the test
set of the Pseudo-Boolean evaluation 2007. These instances are split into the
following seven groups:

– Opt-Bigint-Lin: linear PB optimization instances with “big” coefficients
– Opt-Smallint-Lin: linear PB optimization instances, “small” coef.
– Opt-Smallint-Nlc: nonlinear PB optimization instances, “small” coef.
– SatUnsat-Bigint-Lin: linear PB feasibility instances, “big” coef.
– SatUnsat-Smallint-Lin: linear PB feasibility instances, “small” coef.
– SatUnsat-Smallint-Nlc: nonlinear PB feasibility instances, “small” coef.
– Pure-Sat: SAT instances transformed into PB feasibility instances

For details we refer to the web page [16].
All computations reported in the following were obtained using version 1.00.4

of scip on Intel Quad Core 2.6 GHz computers (in 32 bit mode) with 4 MB cache,
running Linux and 2.5 GB of memory. We used CPLEX 11 as an LP-solver. As
in the PB evaluation we set a time limit of 1800 seconds.

When reporting results in the tables, we use the following notation. The
tables first report the names of the (sub)groups, then in columns labeled “cnt”
the number of instances in each (sub)group. For optimization problems, columns
labeled “opt” give the number of instances that were solved to optimality or
proved to be infeasible and columns labeled “feas” give the number of instances
for which our code found a feasible solution, but could not prove that this solution
is optimal. For feasibility problems, columns labeled “feas” give the number of
instances that are shown to be feasible, while columns “infs” give the number
of instances proven to be infeasible. In general, columns labeled “unkn” give the
number of instances for which we could not find any feasible solution or could
not prove infeasibility. For some of the instances optimal solution values or the
feasibility status are known through the PB evaluation, and columns “fail” give
the number of instances for which scip obtained a different result; see also the
remark in Section 3.3. Columns labeled “Nodes” and “Time” report the number
of search nodes and CPU time, respectively; the first subcolumn reports the
total number of nodes (in thousands) and time in seconds, respectively, while
the second subcolumn gives the geometric mean over the numbers used for the
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Table 1. Results of scip for all instances in the Pseudo-Boolean evaluation 2007, split
into the seven groups.

Nodes Time
Type cnt solved fail total(k) geom. total geom.

Opt-Bigint-Lin 388 158 57 53649 35.5 307956.1 90.4
Opt-Smallint-Lin 807 447 2 229144 236.3 682208.8 94.5
Opt-Smallint-Nlc 405 291 0 18035 664.8 215015.6 21.3
Pure-Sat 166 15 0 28358 222.4 274130.9 1200.1
SatUnsat-Bigint-Lin 14 5 0 14 53.5 1.9 1.0
SatUnsat-Smallint-Lin 371 326 0 15142 48.2 127749.0 15.1
SatUnsat-Smallint-Nlc 100 73 0 1313 75.0 50638.3 18.7

Total 2251 1315 59 345658 148.1 1657700.6 57.8

T
im

e
in
te
rv
al
s
in

m
in
.

#Instances

≤1

1–5

5–15

15–30

>30

94/1050

52/136

33/103

7/26

877

Fig. 1. Distribution over time

first subcolumn. Note that instances hitting the time limit are included with the
time limit of 1800 seconds.

3.1 Overall Results and Comparison

Table 1 summarizes the results obtained by scip on all 2251 instances; more de-
tails about the results for the individual groups are reported in the next sections.
The column labeled “solved” gives the number of instances for which optimality
(or infeasibility) was proven for optimization instances, and the feasibility status
was determined for feasibility instances. We used scip default settings for opti-
mization instances and feasibility emphasis settings for the feasibility instances.
In both cases we disabled expensive presolving methods.

Figure 1 gives a histogram of the solution times over all instances. Each
bar corresponds to the number of instances that could be solved within a given
time; failed instances are not reported. Light gray bar display the total number
of solved instances. Among these instances dark gray bars list the number of
instances that we could solve and could not be solved by any code participating
in the Pseudo-Boolean evaluation 2007. The figure clearly shows that most of
the instances that we could solve are solved in less than a minute. It also shows
that we could solve 186 additional instances that could not be solved during the
PB evaluation 2007.

In Table 2 we compare the number of instances solved by scip (in column
labeled “scip”) with the results of the solvers in the PB evaluation 2007; see below
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Table 2. Comparison to Pseudo-Boolean evaluation 2007

best solver
Type cnt scip minisat+ test set instance

Opt-Bigint-Lin 388 158 74 118 124
Opt-Smallint-Lin 807 447 243 270 396
Opt-Smallint-Nlc 405 291 275 275 280
Pure-Sat 166 15 115 125 143
SatUnsat-Bigint-Lin 14 5 11 11 13
SatUnsat-Smallint-Lin 371 326 305 341 367
SatUnsat-Smallint-Nlc 100 73 65 65 80

Total 2251 1315 1088 1205 1403

for a discussion of the different computing environments. In the competition,
minisat+ turned out to be the best solver overall with respect to the number
of solved instances. The number of instances solved by minisat+ is given in the
corresponding column. We also determined the best solver in each group and
report the number of solved instances by this solver in column “best solver/test
set”. If we choose the best solver instance-wise the numbers are given in column
“best solver/instance”.

It turns out that scip can solve about 20% more instances than minisat+.
Moreover, even if we compare against the best solver in each group, scip is still
better. Only if scip is compared against the best solver on each instance, it can
solve less instances (which is mainly due to the Pure-Sat group). Since scip
also solved 186 instances, not solved by any other PB-solver, we think that this
is a very valuable contribution to the field of Pseudo-Boolean computation and
shows the strength of the LP-based branch-and-cut approach.

Remark. It is important to note that Table 2 compares results obtained on
different computers. The results of the PB evaluation 2007 were computed on
bi-Xeon 3 GHz, 2MB cache computers and ours on Intel Quad Core 2.6 GHz,
4 MB cache, computers. We estimate (e.g. from the SPEC values [24]) that our
computers are at most twice as fast. As shown in Figure 1, this difference would
only effect the 26 instances for which scip needed between 15 and 30 minutes.
Keeping this in mind, we think that the conclusions drawn above are fair.

3.2 BIGINT Instances

The Pseudo-Boolean evaluations contain instances with big coefficients (> 230).
scip is not designed to handle such problems. In fact, in the PB evaluation, the
solvers were classified as being able to handle these cases or not. We wanted to
know, however, how well scip would perform on these instances as it is. Hence,
we expect scip to produce some wrong answers. Table 3 and 4 give the results
on the corresponding instances.

It turns out that for the Opt-Bigint-Lin problems, scip had only 57 fails,
and in 71 instances we agreed with the results of the other solvers. Note that we
additionally check each found solution for feasibility and if it turns out to fail
this check, the instance status is “unknown”. Recall that there is no “easy” way
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Table 3. scip results for Opt-Bigint-Lin

Nodes Time
cnt opt feas unkn fail total(k) geom. total geom.

Handmade
Course Assignment 1 1 0 0 0 0 1.0 1.1 1.1
Number Factorization 100 41 2 6 51 9 1.7 9480.5 23.6
MPS 276 108 55 107 6 53640 122.3 292979.6 159.6
Reduced MPS 3 0 1 2 0 0 1.0 5400.0 1800.0

Remaining 8 8 0 0 0 0 2.5 94.8 3.1

Total 388 158 58 115 57 53649 35.5 307956.1 90.4

Table 4. scip results for SatUnsat-Bigint-Lin

Nodes Time
Type cnt feas infs unkn fail total(k) geom. total geom.

Handmade
Numerical Problems 14 5 0 9 0 14 53.5 1.9 1.0

Total 14 5 0 9 0 14 53.5 1.9 1.0

to check whether a claimed infeasible instance is really infeasible, i.e., there is in
general no polynomial-time proof unless P = NP.

For SatUnsat-Bigint-Lin there is no “fail”, but the “unknowns” arise from
solutions that fail the scip internal check. In total, the results for the instances
with big coefficients are surprisingly good.

Instances with big coefficients are much less common in MIP, because there
are hardly any efficient LP-solver that provides the needed higher accuracy for
the linear relaxations. In fact, many instances with big coefficients in the PB
evaluation test sets arise from the transformation of MIPs to PB-problems. For
example, for some MIPLIB [6, 3] instances, continuous variables are discretized
by the sum of binary variables

∑`
i=−k 2i xi, which produces big coefficients de-

pending on the values of k and `. Since such variables can naturally be treated
in IP-solvers, it usually makes no sense to perform a transformation. To support
this conclusion, we performed the following experiment: We took the 38 original
MIPLIB 2.0/3.0 instances whose transformed counterparts are contained in the
PB evaluation test set (subgroup MPS). scip solved all of these instances in a
total of 93.5 seconds. In contrast, scip took 27927.8 seconds in total to com-
pute the PB counterparts; only 23 instances could be solved within the time
limit. The main complications come from the discretization of continuous vari-
ables (all instances without continuous variables could be solved in a total of
200.5 seconds). We conclude that discretizing continuous variables is usually a
bad idea. It remains to be seen, however, whether there are cases in which the
transformation of general integer variables to 0/1-variables is beneficial.

3.3 SMALLINT Instances

Tables 5 and 6 report the results of scip for linear PB-problems with small
coefficients. For the optimization problems in Table 5, our code could solve 447 of
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Table 5. Results for Opt-Smallint-Lin

Nodes Time
Type cnt opt feas unkn fail total(k) geom. total geom.

Handmade
Course Assignment 5 5 0 0 0 0 1.1 15.0 1.7
Weighted Domination Set 15 0 15 0 0 1440 88377.5 27000.0 1800.0
Graph Problems 15 0 15 0 0 430 27593.8 27000.0 1800.0
Haplotype Inference 8 0 5 3 0 8 9.9 14400.0 1800.0
Minimum-Size Prime Implicant 130 96 13 19 2 2314 819.4 68973.1 76.2
Misc 3 2 1 0 0 149 265.9 2161.3 86.6
MPS 32 23 5 4 0 9019 126.9 19316.9 33.1
Numerical Problems 34 10 4 20 0 3995 7485.3 45166.5 389.5
Synthesis PTL/CMOS Circuits 8 8 0 0 0 0 2.1 10.5 1.4
Queens Problems 15 0 0 15 0 0 1.0 27000.0 1800.0
Radar Surveillance 12 12 0 0 0 0 5.9 1022.6 10.9
Reduced MPS 273 127 65 81 0 33204 236.0 272007.6 141.3
Routing 10 10 0 0 0 0 1.1 1.4 1.0
Travelling Tournament Problem 8 2 3 3 0 21 89.8 10808.2 390.7

Industrial
Logic Synthesis 74 70 4 0 0 327 12.3 8509.1 4.0

Random
Kexu Benchmarks 40 0 40 0 0 1253 13676.1 72000.0 1800.0
Market Split Problem 40 9 15 16 0 176976 402890.6 58168.9 1151.6

Remaining 85 73 7 5 0 3 2.6 28647.5 22.5

Total 807 447 192 166 2 229144 236.3 682208.8 94.5

807 instances to optimality and found feasible solutions for another 192. The best
solver (bsolo) of the PB evaluation 2007 was able to solve at most 270 instances
to optimality and even if we would choose the best solver for each instance, only
396 instances could be solved. This indicates that scip is extremely efficient on
this class of instances. Table 5 shows that many subgroups of instances could be
solved with relatively little effort, while in other subgroups no instance could be
solved to optimality.

Remark. For the two failed instances in Table 5, scip claims infeasibility al-
though they are feasible. The reasons are numerical instabilities, and cutting

Table 6. Results for SatUnsat-Smallint-Lin

Nodes Time
Type cnt feas infs unkn fail total(k) geom. total geom.

Handmade
Graph Problems 15 5 0 10 0 0 3.4 22767.1 1436.3
Numerical Problems 5 0 0 5 0 10 8.4 9000.0 1800.0
Pigeon Hole 20 0 20 0 0 0 1.0 0.6 1.0
Progressive Party Problem 6 2 0 4 0 1 203.5 8571.2 1301.8
Queens Problems 112 38 68 6 0 9207 6.1 11327.4 1.8
Traveling Salesperson Problem 100 40 60 0 0 5780 8718.4 32041.9 105.3
Travelling Tournament Problem 6 3 0 3 0 47 1797.4 5506.1 188.9

Industrial
FPGA 57 36 21 0 0 0 1.7 94.1 1.5
UCLID Benchmarks 50 0 33 17 0 94 47.4 38440.6 101.1

Total 371 124 202 45 0 15142 48.2 127749.0 15.1
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Table 7. scip results for Pure-Sat

Nodes Time
Type cnt feas infs unkn fail total(k) geom. total geom.

Handmade
Pigeon Hole 20 0 2 17 0 2618 6515.1 32401.1 850.6

Remaining 146 1 12 133 0 25740 140.0 241729.8 1258.0

Total 166 1 14 150 0 28358 222.4 274130.9 1200.1

Table 8. Results for the 405 Opt-Smallint-Nlc instances

Nodes Time
Setting opt feas unkn fail total(k) geom. total geom.

default 291 65 49 0 18035 664.8 215015.6 21.3
no propagation 291 58 56 0 14062 1117.8 219104.5 35.7
no LP-relaxation 265 48 92 0 95880 3625.5 254690.6 27.3
linearized 283 96 26 0 65820 3018.0 231388.4 22.2

planes cut off all feasible solutions. Since scip and the underlying LP-solver
work with finite floating point arithmetic, it seems impossible to completely
avoid such outcomes. Nevertheless, in the past PB evaluations a solver was ex-
cluded from the results of a group, if it produced a fail in any of the instances
of this group.

3.4 Pure Satisfiability Problems

Table 7 shows the results of scip on the pure SAT instances. As expected scip
performs much worse than the other solvers, e.g., minisat+ (see Table 2). The
reason is that the LP-relaxation provides very little information about SAT
problems (for instance setting all variables to a value of 1

2 gives a feasible (frac-
tional) solution for nontrivial formulae). Furthermore, the overhead of solving
an LP and handling a more complex tree structure is not compensated by their
benefits.

3.5 Nonlinear Problems

For the nonlinear instances, i.e., the ones including and-constraints, we were es-
pecially interested in different ways to handle the nonlinearities. Tables 8 and 9
show the results of scip on these optimization and feasibility instances, respec-
tively. For each case we ran four variants of scip. The results of the default

Table 9. Results for the 100 SatUnsat-Smallint-Nlc instances

Nodes Time
Setting feas infs unkn fail total(k) geom. total geom.

default 53 20 27 0 1313 75.0 50638.3 18.7
no propagation 52 20 28 0 1386 95.3 54375.5 22.2
no LP-relaxation 51 15 34 0 28222 1193.9 64728.7 25.4
linearized 51 15 34 0 15806 334.0 62258.6 26.6
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setting are included in the overall comparison of Tables 1 and 2; note that this
version dynamically deals with the linear relaxation (as in (4)) of the and-
constraints. In one variant (“no propagation”) we turned off the propagation of
and-constraints, but kept the dynamic handling of the linear relaxation. In the
next variant (“no LP-relaxation”), we kept propagation, but turned off the linear
relaxation of and-constraints. In the final version (“linearized”) we replaced each
and-constraint by the full set of linear constraints (4).

It turns out that the default setting is superior to the other variants: it was
the fastest and solved the most instances. Interestingly, the linearized version
found much more feasible solutions in Table 8. One explanation is that primal
heuristics are much more efficient if they have the whole information of the
linear relaxation available. We conclude that it usually pays off to use all of the
mentioned techniques to handle and-constraints and to deal with the relaxation
dynamically.

4 Conclusions and Outlook

In this paper, we presented a very efficient solver to treat Pseudo-Boolean prob-
lems. We see the following components to be crucial for the success of the ap-
proach: a fast LP solver, adding cutting inequalities, and the interaction of many
different ideas incorporated in the solver. Moreover, it pays off to treat and-
constraints with a combination of LP-based and CP methods.

Pseudo-Boolean problems are at the border between the SAT and IP world.
For instances bearing more similarity with SAT structures, e.g., feasibility prob-
lems with many constraints that have 0/1 coefficients only, it seems best to
ignore the LP-relaxation and rather rely on fast combinatorial SAT-techniques.
For instances having more similarity to general integer programs, e.g., optimiza-
tion instances with many inequalities with arbitrary coefficients, it seems better
to rely on IP-techniques based on a linear relaxation. This view is supported by
the fact that scip is best on the linear PB optimization instances with small
coefficients and worst on pure SAT instances, while for SAT-based solvers like
minisat+ the outcome is reverse. Nonlinear PB-problems currently seem to take
a middle position between the two worlds. It will be interesting to see whether
more advanced techniques from one or the other side can help.
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