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On the cardinality constrained matroid polytope

Rüdiger Stephan

Abstract

In [8] it was shown how one can combine integer characterizations
for cycle and path polytopes and Grötschel’s cardinality forcing inequal-
ities [6] to give facet defining integer representations for the cardinality
restricted versions of these polytopes. Motivated by this work, we ap-
ply the same approach on the matroid polytope. It is well known that
the so-called rank inequalities together with the nonnegativity constraints
provide a complete linear description of the matroid polytope (see Ed-
monds [3]). By essentially adding the cardinality forcing inequalities, we
obtain a complete linear description of the cardinality constrained matroid
polytope which is the convex hull of the incidence vectors of those inde-
pendent sets that have a feasible cardinality. Moreover, we show how the
separation problem for the cardinality forcing inequalities can be reduced
to that for the rank inequalities. We give also necessary and sufficient
conditions for a cardinality forcing inequality to be facet defining.

1 Introduction

Let E be a finite set and I a subset of the power set of E. The pair (E, I) is
called an independence system if (i) ∅ ∈ I and (ii) whenever I ∈ I then J ∈ I
for all J ⊂ I. If I ⊆ E is in I, then I is called an independent set, otherwise it is
called a dependent set. Dependent sets {e} with e ∈ E are called loops. For any
set F ⊆ E, B ⊆ F is called a basis of F if B ∈ I and B∪{e} is dependent for all
e ∈ F \B. The rank of F is defined by rI(F ) := max{|B| : B basis of F}. The
set of all bases B of E is called a basis system. There are many different ways to
characterize when an independence system is a matroid. Fur our purposes the
following definition will be most comfortable. (E, I) is called a matroid, and
then it will be denoted by M = (E, I), if

(iii) I, J ∈ I, |I| < |J | ⇒ ∃K ⊆ J \ I : |I ∪K| = |J |, K ∪ I ∈ I.

Equivalent to (iii) is the requirement that for each F ⊆ E all its bases have the
same cardinality. Throughout the paper we deal only with loopless matroids.
The results of the paper can be easily brought forward to matroids containing
loops.

Let M = (E, I) be a matroid. A set F ⊆ E is said to be closed if rI(F ) <
rI(F ∪ {e}) for all e ∈ E \ F and inseparable if there are no F1 6= ∅ 6= F2 with
F1 ∪̇F2 = F such that rI(F1) + rI(F2) ≤ rI(F ).

Given any independence system (E, I) and any weights we ∈ R on the
elements e ∈ E, the combinatorial optimization problem maxw(I), I ∈ I, where
w(I) :=

∑
e ∈ Iwe, is called the maximum weight independent set problem. The

convex hull of the incidence vectors of the feasible solutions I ∈ I is called the
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independent set polytope and will be denoted by PI(E). If (E, I) is a matroid,
then PI(E) is also called the matroid polytope.

It is well-known, the maximum weight independent set problem on a ma-
troid can be solved to optimality with the greedy algorithm. Moreover, the
matroid polytope PI(E) is determined by the rank inequalities and the nonneg-
ativity constraints (see Edmonds [3]), i.e., PI(E) is the set of all points x ∈ RE
satisfying ∑

e∈F
xe ≤ rI(F ) for all ∅ 6= F ⊆ E,

xe ≥ 0 for all e ∈ E.
(1)

The rank inequality associated with F is facet defining for PI(E) if and only if
F is closed and inseparable (see Edmonds [3]).

Let c = (c1, . . . , cm) be a finite sequence of integers with 0 ≤ c1 < c2 < · · · <
cm. Then, the cardinality constrained independent set polytope P cI(E) is defined
to be the convex hull of the incidence vectors of the independent sets I ∈ I with
|I| = cp for some p ∈ {1, . . . ,m}, that is, P cI(E) = conv{χI ∈ RE : I ∈ I, |I| =
cp for some p ∈ {1, . . . ,m}}. If (E, I) is a matroid, then P cI(E) is called the
cardinality constrained matroid polytope. In the next section we will see that,
if (E, I) is a matroid, then the associated combinatorial optimization problem
maxwTx, x ∈ P cI(E) can be solved in polynomial time. Since c is linked to a
cardinality constrained optimization problem, it is called a cardinality sequence.

Grötschel [6] gave a polyhedral analysis of the underlying basic problem of
cardinality restrictions that enables us to provide a complete linear description of
P cI(E). Given a finite set B and a cardinality sequence c = (c1, . . . , cm), the set
CHSc(B) := {F ⊆ B : |F | = cp for some p} is called a cardinality homogenous
set system. The polytope associated with CHSc(B), namely the convex hull of
the incidence vectors of elements of CHSc(B), is completely described by the
trivial inequalities 0 ≤ ze ≤ 1, e ∈ B, the cardinality bounds c1 ≤

∑
e∈B ze ≤

cm, and the cardinality forcing inequalities

(cp+1 − |F |)
∑
e∈F

ze − (|F | − cp)
∑

e∈B\F
ze ≤ cp(cp+1 − |F |)

for all F ⊆ B with cp < |F | < cp+1 for some p ∈ {1, . . . ,m− 1},
(2)

see Grötschel [6]. In [8] the cardinality forcing inequalities were successfully
integrated in integer characterizations for cycle and path polytopes to provide
characterizations of the integer points of cardinality constrained cycle and path
polytopes by facet defining inequalities. Of course, with respect to M = (E, I),
P cI(E) = conv{χI ∈ RE : I ∈ I ∩ CHSc(E)}. By default, we assume that
cm ≤ rI(E). Our main result is that the system

CFF (x) := (cp+1 − rI(F ))x(F )− (rI(F )− cp)x(E \ F ) ≤ cp(cp+1 − rI(F ))
for all F ⊆ E with cp < rI(F ) < cp+1 for some p ∈ {0, . . . ,m− 1}, (3)

x(E) ≥ c1, (4)
x(E) ≤ cm, (5)
x(F ) ≤ rI(F ) for all ∅ 6= F ⊆ E, (6)
xe ≥ 0 for all e ∈ E (7)

completely describes P cI(E). Here, for any I ⊆ E we set x(I) :=
∑
e∈I xe.

Of course, each x ∈ P cI(E) satisfies c1 ≤ x(E) ≤ cm. The cardinality forcing
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inequality CFF (x) ≤ cp(cp+1 − rI(F )) associated with F , where cp < rI(F ) <
cp+1, is valid as can be seen as follows. The incidence vector of any I ∈ I of
cardinality at most cp satisfies the inequality, since rI(I ∩ F ) ≤ cp:

(cp+1 − rI(F ))χI(F )− (rI(F )− cp)χI(E \ F ) ≤ (cp+1 − rI(F ))χI(F )
≤ (cp+1 − rI(F ))cp.

The incidence vector of any I ∈ I of cardinality at least cp+1 satisfies also the
inequality, since rI(I ∩ F ) ≤ rI(F ) and thus rI(I ∩ (E \ F )) ≥ cp+1 − rI(F ):

(cp+1 − rI(F ))χI(F )− (rI(F )− cp)χI(E \ F )
≤ (cp+1 − rI(F ))rI(F )− (rI(F )− cp)χI(E \ F )
≤ (cp+1 − rI(F ))rI(F )− (rI(F )− cp)(cp+1 − rI(F ))
= cp(cp+1 − rI(F )).

However, it is not hard to see that some incidence vectors of independent sets
I with cp < |I| < cp+1 violate the inequality.

When M = (E, I) is the trivial matroid, i.e., all F ⊆ E are independent
sets, then I ∩CHSc(E) = CHSc(E). Thus, cardinality constrained matroids are
a generalization of cardinality homogenous set systems.

The paper is organized as follows. In Section 2 we prove that the system
(3)-(7) provides a complete linear description of the cardinality constrained
matroid polytope. Next, we will give sufficient conditions for the cardinality
forcing inequalities to be facet defining. Finally, we show that the separation
problem for the cardinality forcing inequalities can be reduced to that for the
rank inequalities. This results in a polynomial time separation routine based
on Cunningham’s separation algorithm for the rank inequalities. In Section 3
we briefly discuss some consequences for cardinality constrained combinatorial
optimization problems and in particular for the intersection of two cardinality
constrained matroid polytopes.

2 Polyhedral analysis of P c
I(E)

Let M = (E, I) be a matroid. As already mentioned, PI(E) is determined by
(1). For any natural number k, the independence system M ′ := (E, I ′) defined
by I ′ := {I ∈ I : |I| ≤ k} is again a matroid and is called the k-truncation of
M . Therefore, the matroid polytope P cI′(E) associated with the k-truncation
of M is defined by system (1), where the rank inequalities are indexed with I ′
instead of I. Following an argument of Gamble and Pulleyblank [5], the only
set of the k-truncation which maybe closed and inseparable with respect to the
truncation, but not with respect to the original matroid M is E itself, and the
rank inequality associated with E is the cardinality bound x(E) ≤ k. Hence, in
context of the original matroid M , P cI′(E) is described by

x(F ) ≤ rI(F ) for all ∅ 6= F ⊆ E,
x(E) ≤ k,
xe ≥ 0 for all e ∈ E.

(8)

Of course, the connection to cardinality constraints is obvious, since P cI′(E) =
P

(0,...,k)
I (E). The basis system of M ′ is the set of all bases B of E (with respect
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to M ′) and in case of rI(E) ≥ rI′(E) the bases are all of cardinality k. Assuming
rI(E) ≥ rI′(E), the associated polytope

conv{χB ∈ RE : B basis of E with respect to M ′}

is determined by

x(F ) ≤ rI(F ) for all ∅ 6= F ⊆ E,
x(E) = k,
xe ≥ 0 for all e ∈ E.

(9)

On a basis system of a matroid one can optimize in polynomial time by applica-
tion of the greedy algorithm. Thus, for each member cp of a cardinality sequence
c = (c1, . . . , cm) an optimal solution Ip of the linear optimization problem
maxw(I), I ∈ I, |I| = cp can be found in polynomial time. The best of the solu-
tions Ip, p = 1, . . . ,m with respect to the linear objective w is then the optimal
solution of maxw(I), I ∈ I ∩CHSc(E). Since 0 ≤ c1 < · · · < cm ≤ rI(E) ≤ |E|
and thus m ≤ |E|, it can be found by at most |E|+ 1 applications of the greedy
algorithm.

These preliminary remarks are sufficient to present our main theorem. In
the sequel, we denote the rank function by r instead of rI . Given a valid
inequality ax ≤ a0 with a ∈ RE , F ⊆ E is said to be tight if aχF = a0. A
valid inequality ax ≤ a0 is dominated by another valid inequality bx ≤ b0, if
{x ∈ P cI(E) : ax = a0} ⊆ {x ∈ P cI(E) : bx = b0}. It is said to be strictly
dominated by bx ≤ b0, if {x ∈ P cI(E) : ax = a0} ( {x ∈ P cI(E) : bx = b0}.

2.1 A complete linear description

Theorem 2.1. The cardinality constrained matroid polytope P cI(E) is com-
pletely described by system (3)-(7).

Proof. Since all inequalities of system (3)-(7) are valid, P cI(M) is contained in
the polyhedron defined by (3)-(7). To show the converse, we consider any valid
inequality bx ≤ b0 for P cI(M) and associate with the inequality the following
subsets of E:

P := {e ∈ E : be > 0},
Z := {e ∈ E : be = 0},
N := {e ∈ E : be < 0}.

We will show by case by case enumeration that the inequality bx ≤ b0 is dom-
inated by some inequality of the system (3)-(7). By definition, E = P ∪̇Z∪̇N ,
and hence, if P = Z = N = ∅, then E = ∅, and it nothing to show. By a scaling
argument we may assume that either b0 = 1, b0 = 0, or b0 = −1.

(1) b0 = −1.

(1.1) c1 = 0. Then 0 ∈ P cI(E), and hence 0 = b · 0 ≤ −1, a contradiction.

(1.2) c1 > 0.
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(1.2.1) P = Z = ∅, N 6= ∅. Assume that there is some tight I ∈ I
with |I| = cp, p ≥ 2. Then, for any J ⊂ I with |J | = c1 holds:
χJ ∈ P cI(E) and bχJ > bχI = −1, a contradiction. Therefore, if
any I ∈ I ∩ CHSc(E) is tight, then |I| = c1. Thus, bx ≤ −1 is
dominated by the cardinality bound x(E) ≥ c1.

(1.2.2) P ∪ Z 6= ∅, N = ∅. Then, by ≥ 0 for all y ∈ P cI(E), a contradic-
tion.

(1.2.3) P ∪ Z 6= ∅, N 6= ∅. If c1 ≤ r(P ∪ Z), then there is some inde-
pendent set I ⊆ P ∪ Z of cardinality c1, and hence, bχI ≥ 0,
a contradiction. Thus, c1 > r(P ∪ Z). Assume, for the sake of
contradiction, that there is some tight independent set J of car-
dinality cp with p ≥ 2. If J ⊆ N , then the incidence vector of any
K ⊂ J with |K| = c1 violates bx ≤ −1. Hence, J ∩ (P ∪Z) 6= ∅.
On the other hand, J ∩N 6= ∅ due to cp > c1 > r(P ∪Z). How-
ever, by removing any (cp − c1) elements in N ∩ J , we obtain
some independent set K of cardinality c1 whose incidence vector
violates the inequality bx ≤ −1, a contradiction. Therefore, if
any T ∈ I ∩ CHSc(E) is tight, then |T | = c1. Thus, bx ≤ −1 is
dominated by the bound x(E) ≥ c1.

(2) b0 = 0.

(2.1) P ∪ Z 6= ∅, N = ∅. Then, either bx ≤ 0 is not valid or b = 0.

(2.2) P = ∅, Z ∪N 6= ∅. Then, bx ≤ 0 is dominated by the nonnegativity
constraints xe ≥ 0 for e ∈ N or b = 0.

(2.3) P 6= ∅, N 6= ∅.
(2.3.1) c1 > 0. If c1 ≤ r(P ∪ Z), then there is some independent set

I ⊆ P ∪ Z with I ∩ P 6= ∅ of cardinality c1, and hence, bχI > 0,
a contradiction. Thus, c1 > r(P ∪ Z). Assume, for the sake
of contradiction, that there is some tight independent set J of
cardinality cp with p ≥ 2. Since cp > c1 > r(P ∪ Z) and J is
tight, J ∩ (P ∪ Z) 6= ∅ 6= J ∩ N . From here, the proof for this
case can be finished as the proof for the case (1.2.3) with b0 = 0
instead of b0 = −1 in order to show that bx ≤ 0 is dominated by
the cardinality bound x(E) ≥ c1.

(2.3.2) c1 = 0. As in case (2.3.1), it follows immediately that c2 >
r(P ∪ Z), and if I ∈ I ∩ CHSc(E) is tight, then |I| = c1 = 0,
that is, I = ∅, or |I| = c2. Moreover, if I ∈ I with |I| = c2 is
tight, then follows |I ∩ (P ∪ Z)| = r(P ∪ Z). Hence, bx ≤ b0
is dominated by the cardinality forcing inequality CFF (x) ≤ 0
with F = P ∪ Z.

(3) b0 = 1.

(3.1) P = ∅, Z ∪N 6= ∅. Then, b ≤ 0, and hence bx ≤ 1 is dominated by
any nonnegativity constraint xe ≥ 0, e ∈ E.

(3.2) P ∪ Z 6= ∅, N = ∅. Assume that there is some I ∈ I, I /∈ CHSc(E)
with |I| < cm that violates bx ≤ 1. Then, of course, all independent
sets J ⊃ I violate bx ≤ 1, in particular, those J with |J | = cm, a
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contradiction. Hence, bx ≤ 1 is not only a valid inequality for P cI(E)
but also for P (0,1,...,cm)

I (E), that is, bx ≤ 1 is dominated by some
inequality of the system (8) with k = cm.

(3.3) P 6= ∅, N 6= ∅. Let p ∈ {1, . . . ,m} be minimal such that there
is a tight independent set I∗ of cardinality cp. Of course, cp > 0,
because otherwise I∗ could not be tight. If p = m, then bx ≤ 1 is
dominated by the cardinality bound x(E) ≤ cm, because then all
tight J ∈ I ∩ CHSc(E) have to be of cardinality cp = cm. So, let
0 < cp < cm. We distinguish 2 subcases.

(3.3.1) cp ≥ r(P ∪ Z). Suppose, for the sake of contradiction, that
there is some tight independent set I of cardinality cp such that
|I∩(P ∪Z)| < r(P ∪Z). Then, I∩(P ∪Z) could be completed to
a basis B of P ∪Z, and since |B| ≤ |I|, there is some K ⊆ I \B
such that I ′ := B ∪K ∈ I and |I ′| = |I|. K is maybe the empty
set. Anyway, by construction, I ′ is of cardinality cp and violates
the inequality bx ≤ 1. Thus, |I ∩ (P ∪ Z)| = r(P ∪ Z). For the
same reason, any tight J ∈ I ∩CHSc(E) satisfies |J ∩ (P ∪Z)| =
r(P ∪ Z), and since p is minimal, |J | ≥ cp. Now, with similar
arguments as in case (1.2.3) one can show that if T ∈ I∩CHSc(E)
is tight, then |T | = cp. Thus, cp = c1 > 0 and bx ≤ 1 is
dominated by the cardinality bound x(E) ≥ c1.

(3.3.2) cp < r(P ∪ Z). Following the argumentation line in (3.3.1), we
see that I ⊆ P ∪ Z and |I ∩ P | has to be maximal for any tight
independent set I of cardinality cp. Assume that cp+1 ≤ r(P∪Z).
Then, from any tight independent set I with |I| = cp we can
construct a tight independent set J with |J | = cp+1 by adding
some elements e ∈ Z. However, it is not hard to see that there
is no tight K ∈ I ∩ CHSc(E) that contains some e ∈ N . Thus,
when cp+1 ≤ r(P ∪Z), bx ≤ 1 is dominated by the nonnegativity
constraints ye ≥ 0, e ∈ N . Therefore, cp+1 > r(P ∪ Z). The
following is now immediate: If I ∈ I ∩ CHSc(E) is tight, then
|I| = cp or |I| = cp+1; if |I| = cp, then I ⊂ P ∪ Z, and if
|I| = cp+1, then |I ∩ (P ∪ Z)| = r(P ∪ Z) and cp+1 > r(P ∪ Z).
Thus, bx ≤ 1 is dominated by the cardinality forcing inequality
CFP∪Z(x) ≤ cp(cp+1 − r(P ∪ Z)).

2.2 Facets

We first study the facial structure of a single cardinality constrained matroid
polytope P (k)

I (E). All points of P (k)
I (E) satisfy the equation x(E) = k, and

hence, any inequality x(F ) ≤ r(F ) is equivalent to the inequality x(E \ F ) ≥
k− r(F ). Motivated by this observation, we introduce the following definitions.
For any F ⊆ E, the number rk(F ) := k − r(E \ F ) is called the k-rank of
F . Due to the submodularity of r we have rk(F1) + rk(F2) ≤ rk(F ) for all
F1, F2 with F = F1∪̇F2, and F is said to be k-separable if equality holds for
some F1 6= ∅ 6= F2, otherwise k-inseparable. Due to the equation x(E) = k,
dimP

(k)
I (E) ≤ |E|−1, and in fact, in the most cases we have equality. However,
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if dimP
(k)
I (E) < |E| − 1, then at least one rank inequality x(F ) ≤ r(F ) with

∅ 6= F ( E is an implicit equation. As is easily seen, this implies that an
inequality x(F ′) ≤ r(F ′) (or x(F ′) ≥ rk(F ′)) does not necessarily induce a facet
of P (k)

I (E), although F is inseparable (k-inseparable). To avoid the challenges
involved, we only characterize the polytopes P (k)

I (E) of dimension |E| − 1.

Lemma 2.2. Let M = (E, I) be a matroid and for any k ∈ N, 0 < k <
r(E), Mk = (E, Ik) the k-truncation of M with rank function rk. Then, E is
inseparable with respect to rk.

Proof. Let E = F1∪̇F2 with F1 6= ∅ 6= F2 be any partition of E. We have
to show that rk(F1) + rk(F2) > rk(E). By definition, rk(E) = k. First, let
r(Fi) ≤ k for i = 1, 2. Then, rk(Fi) = r(Fi) and consequently, rk(F1) +
rk(F2) = r(F1) + r(F2) ≥ r(E) > k due to the submodularity of r. Next, let
w.l.o.g. r(F1) > k. Then, rk(F1) = k and, since F2 6= ∅, rk(F2) > 0. Thus,
rk(F1) + rk(F2) = k + rk(F2) > k.

Lemma 2.3. Let M = (E, I) be a matroid, Mk = (E, Ik) its k-truncation with
rank function rk, ∅ 6= F ⊆ E, and F̄ = E \ F be closed with r(F̄ ) < k < r(E).
Then, F is k-inseparable with respect to rk.

Proof. r(F̄ ) < k implies rk(F̄ ) = r(F̄ ), and since beyond it F̄ is closed with
respect to r, it is also closed with respect to rk. Let F = F1∪̇F2 be a proper
partition of F . We have to show that rkk(F1) + rkk(F2) < rkk(F ). First, suppose
that I ∈ I with |I| = k and |I ∩ F̄ | = rk(F̄ ) implies I ∩ F1 = ∅ or I ∩ F2 = ∅.
Since F̄ is closed with respect to rk, it follows that rkk(F1) = rkk(F2) = 0, while
rkk(F ) = k − rk(F̄ ) > 0. So assume that there is some independent set I ′ of
cardinality k such that |I ′ ∩ F̄ | = rk(F̄ ) and I ′ ∩ Fi 6= ∅ for i = 1, 2. Since
k < r(E), there is some element e such that I := I ′ ∪ {e} is independent with
respect to r. Set I1 := I \ {f1} and I2 := I \ {f2} for f1 ∈ I ∩ F1, f2 ∈ I ∩ F2.
Then, rkk(F1) ≤ |I1 ∩ F1| and rkk(F2) ≤ |I2 ∩ F2|. Hence, rkk(F1) + rkk(F2) ≤
|I1 ∩ F1|+ |I2 ∩ F2| < |I1 ∩ F1|+ |I1 ∩ F2| = |I1 ∩ F | = rk(F ).

Lemma 2.4. Let M = (E, I) be a matroid, ∅ 6= F ⊆ E, and A the matrix
whose rows are the incidence vectors of I ∈ I with |I| = k that satisfy the
inequality x(F ) ≥ rk(F ) at equality. Moreover, denote by AF the submatrix of
A restricted to F . Then, rank(AF ) = |F | if and only if rk(F ) ≥ 1, F̄ := E \ F
is closed, and (i) F is k-inseparable or (ii) k < r(E).

Proof. Necessity. The inequality x(F ) ≥ rk(F ) is valid for P (k)
I (E). As is easily

seen, if rk(F ) ≤ 0, then rank(AF ) < |F |. Next, assume that F̄ is not closed.
Then, there is some e ∈ F such that r(F̄ ∪ {e}) = r(F̄ ) which is equivalent
to rk(F ) = rk(F \ {e}). Thus, x(F ) ≥ rk(F ) is the sum of the inequalities
x(F \ {e}) ≥ rk(F \ {e}) and xe ≥ 0. This implies χIe = 0 for all incidence
vectors of independent sets I with |I| = k satisfying x(F ) ≥ rk(F ) at equality.
Again, it follows rank(AF ) < |F |. Finally, suppose that neither k < r(E)
nor F is k-inseparable. Then, k = r(E) and F is r(E)-separable. Thus, the
inequality x(F ) ≥ rr(E)(F ) is the sum of the valid inequalities x(F1) ≥ rr(E)(F1)
and x(F2) ≥ rr(E)(F2) for some F1 6= ∅ 6= F2 with F = F1∪̇F2. Setting
λ := rr(E)(F2)χF1

F − rr(E)(F1)χF2
F , we see that for any |F | × |F | submatrix ÃF

of AF we have ÃFλ = 0, that is, the columns of ÃF are linearly dependent
which implies rank(AF ) < |F | − 1.

7
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Suffiency. First, let k = r(E). Suppose rank(AF ) < |F |. Then, AFλ = 0
for some λ ∈ RF , λ 6= 0. Since F̄ is closed and rk(F ) ≥ 1 (that is, r(F̄ ) < k),
for each e ∈ F there is an independent set I with |I| = k that contains e and
whose incidence vector satisfies x(F ) ≥ rk(F ) at equality. Thus, AF does not
contain a zero-column. Moreover, AF ≥ 0, and hence, F1 := {e ∈ F : λe > 0}
and F2 := {e ∈ F : λe ≤ 0} defines a proper partition of F . Let J ⊆ F̄ with
|J | = r(F̄ ) be an independent set. For i = 1, 2, let Bi ⊆ F be an independent
set such that J ∪ Bi is a basis of E and J ∪ (Bi ∩ Fi) is a basis of F̄ ∪ Fi.
Set Si := Bi ∩ Fi and Ti := Bi \ Si (i = 1, 2). By construction, T1 ⊆ F2 and
T2 ⊆ F1. By matroid axiom (iii), to J ∪ S1 there is some U1 ⊆ J ∪ B2 such
that K := J ∪ S1 ∪ U1 is a basis of F . Clearly, U1 ⊆ (B2 ∩ F2) = S2. Since
the incidence vectors of J ∪ B1 and K are rows of A, it follows immediately
λ(T1) = λ(U1). With an analogous construction one can show that there is
some U2 ⊆ S1 such that λ(U2) = λ(T2). It follows, λ(T2) = −λ(S2) ≥ −λ(U1) =
−λ(T1) = λ(S1) ≥ λ(U2) = λ(T2). Thus, between all terms we have equality
implying λ(S1) = λ(U2). Moreover, since U2 ⊆ S1 and λe > 0 for all e ∈ S1,
it follows S1 = U2. Hence, K = J ∪ S1 ∪ S2. This, in turn, implies that F is
k-separable, a contradiction.

It remains to show that the statement is true if k < r(E). Let Mk = (E, Ik)
be the k-truncation of M with rank function rk. By hypothesis, all conditions
of Lemma 2.3 hold. Hence, F is k-inseparable with respect to rk. Thus, all
conditions of the theorem hold for rk instead of r and hence, rank(AF ) =
|F |.

Theorem 2.5. Let M = (E, I) be a matroid and k ∈ N, 0 < k ≤ r(E).

(a) P
(k)
I (E) has dimension |E|−1 if and only if E is inseparable or k < r(E).

(b) Let dimP
(k)
I (E) = |E| − 1 and ∅ 6= F ( E. The inequality x(F ) ≤ r(F )

defines a facet of P (k)
I (E) if and only if F is closed and inseparable, r(F ) <

k, and (i) F̄ := E \ F is k-inseparable or (ii) k < r(E).

Proof. (a) First, let k = r(E). For any ∅ 6= F ⊆ E, the rank inequality
x(F ) ≤ r(F ) defines a facet of PI(E) if and only if F is closed and inseparable.
Consequently, the polytope P (r(E))

I (E), which is a face of PI(E), has dimension
|E| − 1 if and only if E is inseparable. Next, let 0 < k < r(E). By Lemma
2.2, E is inseparable with respect to the rank function rk of the k-truncation
Mk = (E, Ik). Consequently, x(E) ≤ rk(E) = k defines a facet of PIk

(E) and
hence, dimP

(k)
I (E) = |E| − 1.

(b) Clearly, x(F ) ≤ r(F ) does not induce a facet of P (k)
I (E) if F is separable

or not closed, since dimP
(k)
I (E) = |E|−1, and hence, any inequality that is not

facet defining for PI(E) is also not facet defining for P (k)
I (E). Next, if r(F ) ≥ k,

then holds obviously x(F ) ≤ x(E) = k ≤ r(F ), that is, either F is not closed,
x(F ) ≤ r(F ) is an implicit equation, or the face induced by x(F ) ≤ r(F ) is the
emptyset. Finally, assume that F is closed but neither (i) nor (ii) holds. Then,
k = r(E) and F̄ is k-separable. Thus, there are nonempty subsets F̄1, F̄2 of
F̄ with F̄ = F̄1∪̇F̄2 such that rk(F̄ ) = rk(F̄1) + rk(F̄2). Now, the inequality
x(F̄ ) ≥ rk(F̄ ), which is equivalent to x(F ) ≤ r(F ), is the sum of the valid
inequalities x(F̄i) ≥ rk(F̄i), i = 1, 2, both not being implicit equations.
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On the cardinality constrained matroid polytope 9

To show the converse, let F satisfy all conditions mentioned in Theorem 2.5
(b). The restriction of M = (E, I) to F is again a matroid. Denote it by M ′ =
(F, I ′) and its rank function by r′. F remains inseparable with respect to r′.
Thus, the restriction of x(F ) ≤ r(F ) to F , denoted by xF (F ) ≤ r(F ) = r′(F ),
induces a facet of PI′(F ). A set of affinely independent vectors whose sum of
components is equal to some `, is also linearly independent. Thus, there are
|F | linearly independent vectors χI

′
j of independent sets I ′j ∈ I ′ of cardinality

r′(F ) (j = 1, . . . , |F |). The sets I ′j are also independent sets with respect to I.
Due to the matroid axiom (iii), P := I ′1 can be completed to an independent
set I1 of cardinality k. Since P ⊆ F and |P | = r(F ), Q := I1 \ P ⊆ F̄ . Now,
I ′j , I1 ∈ I, I ′j ⊆ F , and r(F ) = |I ′j | < |I1| = k. Hence, Ij := I ′j ∪ Q ∈ I for

all j. Consequently, we have |F | linearly independent vectors χIj ∈ P
(k)
I (E)

satisfying x(F ) ≤ r(F ) at equality.
Next, let A be the matrix whose rows are the incidence vectors of tight

independent sets and AF̄ its restriction to F̄ . By Lemma 2.4, AF̄ contains a
|F̄ | × |F̄ | submatrix B of full rank. By construction, each row Bi of B is an
incidence vector of an independent set J ′i ⊆ F̄ with |J ′i | = rk(F̄ ). W.l.o.g. we
may assume that B1 = χQ, that is, Q = J ′1. By a similar argument as above,
the independent sets Ji := J ′i ∪P are tight and its incidence vectors are linearly
independent.

Alltogether we have |F | linearly independent vectors χIj with Ij ∩ F̄ = Q
and |F̄ | linearly independent vectors χJi with Ji ∩F = P , where J1 = I1. As is
easily seen, this yields a system of |F |+ |F̄ | − 1 = |E| − 1 linearly independent
vectors satisfying x(F ) ≤ r(F ) at equality.

Theorem 2.6. P cI(E) is fulldimensional unless c = (0, r(E)) and E is separa-
ble.

Proof. Clearly, dimP cI(E) ≥ dimP
(cp)
I (E) + 1 for all p, since the equation

x(E) = cp is satisfied by all y ∈ P
(cp)
I (E) but violated by at least one vec-

tor z ∈ P cI(E).
If 0 < cp < r(E) for some p, then, by Theorem 2.5, dimP

(cp)
I (E) = |E| − 1,

and consequently dimP cI(E) = |E|. If there is no such p, then c = (0, r(E)).
Again by Theorem 2.5, dimP

(r(E))
I (E) = |E| − 1 if and only if E is inseparable.

Since dimP
(0,r(E))
I (E) = dimP

(r(E))
I (E) + 1, it follows the claim.

Theorem 2.7. For any ∅ 6= F ⊆ E, the rank inequality x(F ) ≤ r(F ) defines a
facet of P cI(E) if and only if one of the following conditions holds.

(i) 0 < r(F ) < cm−1 and F is closed and inseparable.

(ii) 0 < cm−1 = r(F ) < cm < r(E), and F is closed and inseparable.

(iii) 0 < cm−1 = r(F ) < cm = r(E), F is closed and inseparable, F̄ is cm-
inseparable, and E is inseparable.

(iv) 0 < cm−1 < cm = r(F ), F = E, and cm < r(E) or E inseparable.

(v) cm−1 = c1 = 0, cm = r(E), and r(F ) + r(E \ F ) = r(E).

9
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Proof. We prove the theorem by case by case enumeration.
(a) Let 0 < r(F ) < cm−1. It is not hard to see that if F is separable or not

closed, then x(F ) ≤ r(F ) does not define a facet of P cI(E). So, let F be closed
and inseparable. By Theorem 2.5, x(F ) ≤ r(F ) defines a facet of P (cm−1)

I (E)
and dimP

(cm−1)
I (E) = |E| − 1. Thus, it defines also a facet of P cI(E).

(b) Let 0 < cm−1 = r(F ) < cm < r(E). Clear by interchanging cm−1 and
cm in item (a).

(c) Let 0 < cm−1 = r(F ) < cm = r(E). The conditions mentioned in (iii)
are equivalent to the postulation that x(F ) ≤ r(F ) defines a facet of P (cm)

I (E)
and dimP

(cm)
I (E) = |E| − 1. If, indeed, the latter is true, then x(F ) ≤ r(F )

induces a facet also of P cI(E). To show the converse, suppose, for the sake
of contradiction, that x(F ) ≤ r(F ) does not induce a facet of P (cm)

I (E) or
dimP

(cm)
I (E) < |E| − 1. Let B := {χIj : Ij ∈ I, |Ij | = cm, j = 1, . . . , z, } be

an affine basis of the face of P (cm)
I (E) induced by x(F ) ≤ r(F ). By hypothesis,

z ≤ |E| − 2. Moreover, set J := I1 ∩ F and K := I1 \ J . Then, any incidence
vector of an independent set L ⊆ F with |L| = cm−1 can be obtained as an affine
combination of the set B′ := B ∪ {χJ}, which can be seen as follows: L, I1 ∈ I,
and |L| = r(F ) implies L ∪ K ∈ I. Consequently, χL = χL∪K − χK . Now,
χK = χI1−χJ and χL∪K =

∑z
j=1 λjχ

Ij with
∑z
j=1 λj = 1, since L∪K is tight.

Thus, χL =
∑z
j=1 λjχ

Ij − χI1 + χJ , that is, χL is in the affine hull of B′. Since
|B′| ≤ |E| − 1, x(F ) ≤ r(F ) is not facet defining for P cI(E), a contradiction.

(d) Let 0 < cm−1 < r(F ) < cm. Since none of the independent sets I with
|I| = cp is tight for p = 1, . . . ,m − 1, x(F ) ≤ r(F ) defines a facet of P cI(E) if
and only if it is an implicit equation for P (cm)

I (E) and dimP
(cm)
I (E) = |E| − 1.

However, dimP
(cm)
I (E) = |E| − 1 implies cm < r(E) or E is inseparable. In

either case, it follows that x(F ) ≤ r(F ) is an implicit equation for P (cm)
I (E) if

and only if F = E. Thus, r(F ) = cm, a contradiction.
(e) Let 0 < cm−1 < cm = r(F ). Clearly, if F ⊂ E, then x(F ) ≤ r(F ) is

strictly dominated by the cardinality bound x(E) ≤ cm. Consequently, F = E

and x(F ) ≤ r(F ) is an implicit equation for P (cm)
I (E). For the same reasons as

in (d), dimP
(cm)
I (E) = |E| − 1. Hence, cm < r(E) or E is inseparable.

(f) Let cm−1 = c1 = 0. Again, x(F ) ≤ r(F ) defines a facet of P cI(E) if and
only if it is an implicit equation for P (cm)

I (E). This is the case if and only if
cm = r(E) and r(F ) + r(E \ F ) = r(E).

(g) Let r(F ) > cm. Then, x(F ) ≤ x(E) ≤ cm < r(F ), that is, the face
induced by x(F ) ≤ r(F ) is the empty set.

Theorem 2.8. Let F ⊆ E with cp < r(F ) < cp+1 for some p ∈ {1, . . . ,m− 1}.
Then, the cardinality forcing inequality CFF (x) ≤ cp(cp+1 − r(F )) defines a
facet of P cI(E) if and only if

(a) cp = c1 = 0 and the inequality x(F ) ≤ r(F ) defines a facet of P (cp+1)
I (E),

or

(b) cp > 0, F is closed and (i) F̄ := E \ F is cp+1-inseparable or (ii) cp+1 <
r(E).

10



On the cardinality constrained matroid polytope 11

Proof. For P (cp+1)
I (E), the inequality CFF (x) ≤ cp(cp+1 − r(F )) is equivalent

to x(F ) ≤ r(F ), while for P (cp)
I (E), it is equivalent to x(F ) ≤ cp. Hence, in

case cp = c1 = 0, CFF (x) ≤ cp(cp+1 − r(F )) induces a facet of P cI(E) if and
only if it induces a facet of P (cp+1)

I (E). When dimP
(cp+1)
I (E) = |E| − 1, this is

the case if and only if F is closed and inseparable and (i) F̄ is cp+1-inseparable
or (ii) cp+1 < r(E), see Theorem 2.5 (b).

In the following, let cp > 0. Let A be the matrix whose rows are the
incidence vectors of I ∈ I with |I| = cp or |I| = cp+1 that satisfy the inequality
CFF (x) ≤ cp(cp+1− r(F )) at equality. Denote by AF and AF̄ the restriction of
A to F and F̄ , respectively. By Theorem 2.6, P cI(E) is fulldimensional. Hence,
CFF (x) ≤ cp(cp+1 − r(F )) is facet defining if and only if the affine rank of A is
equal to |E|.

If F is not closed, then there is some e ∈ F̄ with r(F ∪ {e}) = r(F ). Thus,
CFF ′(x) ≤ cp(cp+1−r(F ′)) is a valid inequality for P cI(E), where F ′ := F ∪{e},
and CFF (x) ≤ cp(cp+1−r(F )) is the sum of this inequality and −(cp+1−cp)xe ≤
0. Next, assume that neither (i) nor (ii) holds. Then, cp+1 = r(E) and F̄ is r(E)-
separable. Thus, there is a proper partition F̄ = F̄1∪̇F̄2 of F̄ with rr(E)(F̄1) +
rr(E)(F̄2) = rr(E)(F̄ ). Since F is closed, it is not hard to see that rr(E)(F̄i) > 0
which implies cp < r(F ∪ F̄i) < r(E) for i = 1, 2, and hence, the inequalities
CFF∪F̄1

(x) ≤ cp(cp+1 − r(F ∪ F̄1)) and CFF∪F̄2
(x) ≤ cp(cp+1 − r(F ∪ F̄2)) are

valid. One can check again that then CFF (x) ≤ cp(cp+1 − r(F )) is the sum of
these both cardinality forcing inequalities.

To show the converse, let MF = (F, IF ) with IF := {I ∩ F : I ∈ I} be
the restriction of M to F and MF

cp
= (F, IFcp

) the cp-truncation of MF . Since
0 < cp < r(F ), Lemma 2.2 implies that F is inseparable with respect to the
rank function of MF

cp
. Consequently, the restriction of x(F ) ≤ cp to F defines

a facet of PIF
cp

(F ). Hence, A contains a |F | × |E| submatrix B such that BF
is nonsingular and BF̄ = 0. Next, since F is closed, rcp+1(F̄ ) ≥ 1, and (i) F̄
is cp+1-inseparable or (ii) cp+1 < r(E), Lemma 2.4 implies that A contains a
|F̄ | × |E| submatrix C such that CF̄ is nonsingular. Thus,

D :=
(
BF 0
CF CF̄

)
is a nonsingular |E| × |E| submatrix of A (or a row permutation of A).

2.3 Separation problem

Given any P cI(E) and any x∗ ∈ RE , the separation problem consists of finding
an inequality among (3)-(7) violated by x∗ if there is any. This problem should
be solvable efficiently, due to the equivalence of optimization and separation
(see Grötschel, Lovász, and Schrijver [7]). By default, we may assume that x∗

satisfies the cardinality bounds (4), (5) and the nonnegativity constraints (7). A
violated rank inequality among (6) (if there is any) can be found by a polynomial
time algorithm proposed by Cunningham [1]. So, we are actually interested only
in finding an efficient algorithm that solves the separation problem for the class
of cardinality forcing inequalities (3). We shall see, however, that the separation
problem for the cardinality forcing inequalities can be transformed to that for
the rank inequalities.

11



12 Rüdiger Stephan

The separation problem for the class of cardinality forcing inequalities con-
sists of checking whether or not

(cp+1 − r(F ))x∗(F )− (r(F )− cp)x∗(E \ F ) ≤ cp(cp+1 − r(F ))
for all F ⊆ E with cp < r(F ) < cp+1 for some p ∈ {0, . . . ,m− 1}.

For any F ⊆ E,

(cp+1 − r(F ))x∗(F )− (r(F )− cp)x∗(E \ F ) ≤ cp(cp+1 − r(F ))

⇔ (cp+1 − cp)x∗(F )− (r(F )− cp)x∗(E) ≤ cp(cp+1 − r(F ))

⇔ x∗(F ) ≤ cp(cp+1−r(F ))+(r(F )−cp)x∗(E)
(cp+1−cp) =: γF .

Moreover, for any k ∈ {1, . . . , r(E)}, the right hand sides of the inequalities
x∗(F ) ≤ γF for F ⊆ E with r(F ) = k are equal and differ only by a constant
to the right hand sides of the corresponding rank inequalities x(F ) ≤ r(F ) = k.
Thus, both the separation problem for the rank inequalities and cardinality
forcing inequalities could be solved by finding, for each k ∈ {1, . . . , |E|}, a set
F ∗ ⊆ E of rank k that maximizes x∗(F ). If x∗(F ∗) > k, then the inequality
x(F ∗) ≤ r(F ∗) is violated by x∗. If, in addition, cp < k < cp+1 for some
p ∈ {1, . . . ,m − 1} and x∗(F ∗) > γF∗ , then x∗ violates the cardinality forcing
inequality associated with F ∗.

This natural approach, however, seems not to result in an efficient separation
routine. In order to mark the difficulties, we investigate the above approach
for the class of rank inequalities, when M = (E, I) is the graphic matroid
defined on some graph G = (V,E). It is well-known, the closed and inseparable
rank inequalities for the graphic matroid are of the form x(E(W )) ≤ |W | − 1
for ∅ 6= W ⊆ V . If we would tackle the separation problem for this class of
inequalities by finding, for each k ∈ {1, . . . , |W |} separately, a set W ∗k that
maximizes x∗(E(W )) such that |W | = k, then we would run into trouble, since
for each k, such a problem is the weighted version of the densest k-subgraph
problem which is known to be NP-hard (see Feige and Seltser [4]).

The last line of argument indicates that it is probably not a good idea to split
the separation problem for the cardinality forcing inequalities (3) into separation
problems for the subclasses CFF (x) ≤ cp(cp+1 − r(F )) with r(F ) = k, k ∈
{c1 + 1, . . . , cm − 1} \ {c2, c3, . . . , cm−1}. It would be rather better to approach
it as “non-cardinality constrained” problem. And this is exactly that what
Cunningham did for the rank inequalities.

In the sequel, we firstly remind of some important facts regarding Cunning-
ham’s algorithm for the separation of the rank inequalities. Afterwards, we
show how the separation problem for the cardinality forcing inequalities can be
reduced to that for the rank inequalities.

The theoretical background of Cunningham’s separation routine is the fol-
lowing min-max relation.

Theorem 2.9 (Edmonds [2]). For any x∗ ∈ RE+, max{y(E) : y ∈ PM (E), y ≤
x∗} = min{r(F ) + x∗(E \ F ) : F ⊆ E}. �

Indeed, for any y ∈ PM (E) with y ≤ x∗, y(E) = y(F ) + y(E \ F ) ≤
r(F ) + x∗(E \ F ), and equality will be attained if only if y(F ) = r(F ) and
y(E \ F ) = x∗(E \ F ). Theorem 2.9 guarantees that any F minimizing r(F ) +

12



On the cardinality constrained matroid polytope 13

x∗(E \ F ) maximizes x∗(F ) − r(F ). For any matroid M = (E, I) given by an
independence testing oracle and any x∗ ∈ RE+, Cunningham’s algorithm finds
a y ∈ PM (E) with y ≤ x∗ maximizing y(E), a decomposition of y as convex
combination of incidence vectors of independent sets, and a set F ∗ ⊆ E with
r(F ∗) + x∗(E \ F ∗) = y(E) in strongly polynomial time. The vector y will be
constructed by path augmentations along shortest paths in an auxiliary digraph.

Next, we return to the separation problem for the cardinality forcing in-
equalities (3). In the sequel, we suppose that x∗ satisfies the rank inequalities
(6).

Lemma 2.10. Let x∗ ∈ RE+ satisfying all rank inequalities (6). If a cardinality
forcing inequality CFF (x) ≤ cp(cp+1 − r(F )) with cp < r(F ) < cp+1 is violated
by x∗, then cp < x∗(E) < cp+1.

Proof. First, let x∗(E) ≤ cp. Then x∗(F ) ≤ cp, and hence,

(cp+1 − r(F ))x∗(F )− (r(F )− cp)x∗(E \ F )
≤ (cp+1 − r(F ))cp − (r(F )− cp)x∗(E \ F )
≤ cp(cp+1 − r(F )).

Next, let x∗(E) ≥ cp+1. By hypothesis, x∗ satisfies all rank inequalities (6),
in particular, x(F ) ≤ r(F ). Thus,

(cp+1 − r(F ))x∗(F )− (r(F )− cp)x∗(E \ F )
= (cp+1 − cp)x∗(F )− (r(F )− cp)x∗(E \ F )
≤ (cp+1 − cp)r(F )− (r(F )− cp)x∗(E)
≤ (cp+1 − cp)r(F )− (r(F )− cp)cp+1

= cp(cp+1 − r(F )).

Lemma 2.11. Let x∗ ∈ RE+ satisfying all rank inequalities (6), and let cp <
x∗(E) < cp+1 for some p ∈ {1, . . . ,m − 1}. Then for any F ⊆ E holds: If
(cp+1− r(F ))x∗(F )− (r(F )− cp)x∗(E \F ) > cp(cp+1− r(F )), then cp < r(F ) <
cp+1.

Proof. Let F ⊆ E, and assume that r(F ) ≤ cp. Then,

(cp+1 − r(F ))x∗(F )− (r(F )− cp)x∗(E \ F )− cp(cp+1 − r(F ))
= (cp+1 − cp)x∗(F )− (r(F )− cp)x∗(E)− cp(cp+1 − r(F ))
≤ (cp+1 − cp)r(F )− (r(F )− cp)x∗(E)− cp(cp+1 − r(F ))
= (cp+1 − x∗(E))︸ ︷︷ ︸

>0

(r(F )− cp)︸ ︷︷ ︸
≤0

≤ 0.

Next, if r(F ) ≥ cp+1, then

(cp+1 − r(F ))x∗(F )− (r(F )− cp)x∗(E \ F )− cp(cp+1 − r(F ))
= (cp+1 − cp)x∗(F )− (r(F )− cp)x∗(E)− cp(cp+1 − r(F ))
≤ (cp+1 − cp)x∗(E)− (r(F )− cp)x∗(E)− cp(cp+1 − r(F ))
= (cp+1 − r(F ))︸ ︷︷ ︸

≤0

(x∗(E)− cp)︸ ︷︷ ︸
>0

≤ 0.

Thus, (cp+1− r(F ))x∗(F )− (r(F )− cp)x∗(E \F ) > cp(cp+1− r(F )) at most
if cp < r(F ) < cp+1.
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Theorem 2.12. For any P cI(E) and any x∗ ∈ RE+ satisfying all rank inequalities
(6), the separation problem for x∗ and the cardinality forcing inequalities (3) can
be solved in strongly polynomial time.

Proof. By Lemmas 2.10 and 2.11 we know that x∗ violates a cardinality forcing
inequality at most if cp < x∗(E) < cp+1 for some p ∈ {1, . . . ,m − 1}. Thus, if
x∗(E) = cq for some q ∈ {1, . . . ,m}, then x∗ ∈ P cI(E).

Suppose that cp < x∗(E) < cp+1 for some p ∈ {1, . . . ,m−1}. We would like
to find some F ′ ⊆ E such that

(cp+1 − r(F ′))x∗(F ′)− (r(F ′)− cp)x∗(E \ F ′)− cp(cp+1 − r(F ′)) > 0

if there is any. Lemma 2.11 says that cp < r(F ′) < cp+1, and thus, the inequality
CFF ′(x) ≤ cp(cp+1− r(F ′)) is indeed a cardinality forcing inequality among (3)
violated by x∗. If there is no such F ′, then for all F ⊆ E with cp < r(F ) < cp+1

the associated cardinality forcing inequality with F is satisfied by x∗, and by
Lemma 2.10, all other cardinality forcing inequalities among (3) are also satisfied
by x∗.

To find such a subset F ′ of E, set δ := x∗(E)−cp

cp+1−cp
. Since cp < x∗(E) < cp+1,

0 < δ < 1. Moreover, cp+1−x∗(E)
cp+1−cp

= 1− δ. For any F ⊆ E it now follows:

(cp+1 − cp)x∗(F )− (r(F )− cp)x∗(E)− cp(cp+1 − r(F )) > 0
⇔ x∗(F )− r(F )x∗(E)+cpx

∗(E)−cpcp+1+cpr(F )
cp+1−cp

> 0

⇔ x∗(F )− r(F )x
∗(E)−cp

cp+1−cp
− cp cp+1−x∗(E)

cp+1−cp
> 0

⇔ x∗(F )− r(F )δ > cp(1− δ)
⇔ x∗(F )

δ − r(F ) > cp
(1−δ)
δ .

Setting x′ := 1
δx
∗, we see that the last inequality is equivalent to x′(F )−r(F ) >

cp
(1−δ)
δ . Thus, we can apply Cunningham’s algorithm to find some F ⊆ E that

maximizes x′(F )− r(F ). If x′(F )− r(F ) > cp
(1−δ)
δ , then cp < r(F ) < cp+1 and

the cardinality forcing inequality associated with F is violated by x∗.

Consequently, we suggest a separation routine that works as follows. First,
compute with Cunningham’s algorithm a subset F of E maximizing x∗(F ) −
r(F ). If x∗(F ) − r(F ) > 0, then the associated rank inequality x(F ) ≤ r(F )
is violated by x∗. However, in the special case that cp < r(F ) < cp+1 and
cp < x∗(E) < cp+1 for some p ∈ {1, . . . ,m − 1}, also the cardinality forcing
inequality associated with F is violated by x∗, and it is not hard to see that
then the former inequality is dominated by the latter one. If x∗(F )− r(F ) ≤ 0,
then x∗ satisfies all rank inequalities (6), and if, in addition, x∗(E) = cp for
some p, then we know that x∗ ∈ P cI(E). Otherwise, i.e., if cp < x∗(E) < cp+1

for some p ∈ {1, . . . ,m − 1}, then we check whether or not there is a violated
cardinality forcing inequality among (3) by applying Cunningham’s algorithm
on M = (E, I) and x′ = 1

δx
∗.

3 Concluding remarks

The cardinality constrained matroid polytope turns out to be a useful object to
enhance the theory of polyhedra associated with cardinality constrained combi-
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natorial optimization problems. Imposing cardinality constraints on a combina-
torial optimization problem does not necessarily turn it into a harder problem:
The cardinality constrained version of the maximum weight independent set
problem in a matroid is manageable on the algorithmic as well as on the poly-
hedral side without any difficulties. Facets related to cardinality restrictions
(cardinality forcing inequalities) are linked to well-known attributes of matroid
theory (closed subsets of E). The analysis of the separation problem for the
cardinality forcing inequalities discloses that it is sometimes better not to split
a cardinality constrained problem into simpler cardinality constrained problems
but to transform it into one or more non-cardinality restricted problems.

It stands to reason to investigate the intersection of two matroids with regard
to cardinality restrictions. It is well-known, if an independence system I defined
on some ground set E can be described as the intersection of two matroids
M1 = (E, I1) and M2 = (E, I2), then the optimization problem maxw(I), I ∈ I
can be solved in polynomial time, for instance with Lawler’s weighted matroid
intersection algorithm [9]. This algorithm solves also the cardinality constrained
version maxw(I), I ∈ I ∩ CHSc(E), since for each cardinality p ≤ r(E) it
generates an independent set I of cardinality p which is optimal among all
independent sets J of cardinality p. Thus, from an algorithmic point of view
the problem is well studied. However, there is an open question regarding the
associated polytope. It is well known, PI(E) = PI1(E) ∩ PI2(E), that is,
the non-cardinality constrained independent set polytope PI(E) is determined
by the nonnegativity constraints xe ≥ 0, e ∈ E, and the rank inequalities
x(F ) ≤ rj(F ), ∅ 6= F ⊆ E, j = 1, 2, where rj is the rank function with respect
to Ij . We do not know, however, whether or not P cI(E) = P cI1(E)∩P cI2(E) holds.
So far, we have not found any counterexample contradicting the hypothesis that
equality holds.
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