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Abstract. One key problem in modern chemistry is the simulation of the dynamical reaction
of a molecule subjected to external radiation. This is described by the Schrédinger equation, which,
after eigenfunction expansion, can be written in form of a system of ordinary differential equations,
whose solutions show a highly oscillatory behaviour. The oscillations with high frequencies and small
amplitudes confine the stepsizes of any numerical integrator — an effect, which, in turn, blows up the
simulation time. Larger stepsizes can be expected by averaging these fast oscillations, thus smoothing
the trajectories. This idea leads to the construction of a quasiresonant smoothing algorithm (QRS).
In QRS, a natural and computationally available splitting parameter § controls the smoothing proper-
ties. The performance of QRS is demonstrated in two applications treating the selective excitation of
vibrational states by picosecond laser pulses. In comparison with standard methods a speedup factor
of 60-100 is observed.

A closer look to purely physically motivated quasiresonant approximations such as WFQRA shows
some additional advantages of the above smoothing idea. Among these the possibility of an adaptive
formulation of QRS via the parameter § is of particular importance.
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1. Introduction. In the last years phrases like Molecular Modelling appear in
nearly all discussions about the future of chemistry. In most of the processes constructed
to model molecules the interaction of light with the considered molecule is a fundamen-
tal part. More exactly those processes depend on an exact knowledge how external
radiation effects the internal excitation or the dynamical structure of the molecule.
The key equation for the description of the dynamical behaviour of the molecule is the
time dependent Schrodinger equation

(1) ihop = Hip

where H is the Hamiltonian of the whole system. For the largest class of problems
from real life applications it is reliable to assume that the molecule-light interaction
is quasiclassical (i.e. H = Hy+ Hj;¢) and that the pure molecular problem (i.e. the
eigenproblem Hy® = E®) has been solved in a first step (by experimental data or
numerical means). In this situation eigenfunction expansion shows (1) to be equivalent
to a system of ordinary differential equations (ODE):

(2) i = (Q+ gt)V) a,

with a = (ay,...,a,) € C, a diagonal and possibly complex matrix 2, and a real, but
dense one V', and with ¢ modelling the external radiation field. In the presented form
(with Q,V and ¢ being optional within the given scope) (2) describes a wide family of
problems, whose common property is the highly oscillatory behaviour of the solutions
of its members. Let us call (2) the fundamental equation of motion.

In nontrivial cases the computational effort of solving (2) is enormous. But fundamen-
tal equations should be solvable with utmost efficiency. Many users from physics or
chemistry apply simple explicit Runge-Kutta methods with fixed stepsizes to integrate
(2). But there are several ideas to gain efficiency: Floquet theory, quasiresonant ap-
proximations, ... (see e.g. [6], [9]). They all were invented treating problems with real
2 and ¢(t) = Eycoswt. Their transferability to a wider subclass of (2) is either little
investigated or questionable. However, from the point of view of numerical mathematics
one is interested in an efficient tool for solving a sufficiently large subclass of (2) with
an in some sense guaranteed exactness of its results.

Section 2 of this article will give a more detailed derivation of (2) for the special
case of the interaction of the vibrational states of single OH- and HOD-molecules
with monochromatic light. These two problems will be used as examples to point out
the following observations, which can be made in a very vast class of problems from
application:

1. The solutions of (2) show oscillations with high frequencies and small ampli-
tudes around average trajectories.
2. These fast oscillations confine the stepsizes of any numerical integrator, which,
in turn, blows up the computation times.
3. For all practical means the knowledge of the average trajectories is sufficient.
1



Hence: Larger stepsizes can be expected by averaging the fast oscillations, thus smooth-
ing the trajectories. On this background the central task this article deals with is:
Construct a smoothing algorithm, which increases the efficiency of the numerical inte-
gration of (2) by computing the average trajectories only.

In section 3 I will give a more precise and mathematical formulation of this task. As
a first step to a solution a quasiresonant smoothing algorithm (QRS) will be motivated
and constructed (starting with the smoothing idea). Its usefulness as an efficient solver
for a sufficiently large subclass of (2) will be demonstrated.

It was no accident that the interaction of the vibrational structure of OH and HOD
with monochromatic light was chosen as the example. Following Paramonov et al. (e.g.
8], [7]) the selective vibrational excitation of single bounds in simple molecules using
ultrashort laser pulses is broadly discussed today. A tool for increasing the selectivity
in such a process is the optimization of the parameters of the driving laser pulse. In the
optimization procedure one must solve (2). Thus, this is a good example for the use of
simulation processes based on our fundamental equation of motion. Hence with a little
overstatement we can call the OH- and HOD-examples 'real life applications’.

Not for nothing QRS is named quasiresonant. Section 4 will introduce and gen-
eralize the most common quasiresonant method WFQRA (Weak Field QuasiResonant
Approximation). We will see fundamental structural similarities between WFQRA and
QRS, in particular with regard to smoothing. But WFQRA was physically motivated
as a method giving in some sense approximate solutions of (2). I see no way (apart from
"having physical or chemical experiences’) in which this ’in some sense’ could guarantee
the exactness of the results (an example is given). QRS, in its formulation presented
here, works more reliable and more efficient, but cannot give any guarantees, too. But
together with the smoothing idea it opens the door for an adaptive formulation via the
parameter o — an adaptivity which permits the construction of an error control.

In section 5 the performance of QRS and WFQRA is demonstrated in the OH- and
HOD-problems. In these examples a speedup factor of 60-100 is observed for QRS.

2. A derivation of the equation of motion for monochromatic radiation.
The physical systems we consider are samples of dilute gas molecules subjected to
strong, monochromatic infrared laser radiation. We are only interested in the popula-
tion dynamics of a set of discrete states during the interaction of a single molecule with
the external laser field. This set of states may be a discrete part of the vibrational or
rotational ones.



The equation of motion. Then in a standard way (electric dipole approximation),
we can write the molecular Hamiltonian in the form

(3) H - HO + HI
(4) H, = —ji-E

where H is the pure molecular Hamiltonian, neglecting the field E (t). fiis the molecular
dipole moment operator. For monochromatic radiation we can write

(5) E(t) = f(t) coswt

with the pulse form function f, which in comparison to the light oscillations coswt is a
slowly varying function. We may choose f = const to describe a constant light source
or f as the pulse form function in order to model a short laser pulse.

We consider the pure molecular problem to be solved:

Hopr, = €r ¢k

with discrete and countable eigenvalues €, k € J C N. For simplicity let us consider J
as finite, so k =0,...,n.

The key for the description of the population dynamics is the time dependent Schrodinger
equation:

(6) thoywp = H.
Expanding the wave function v of the sample in the basis of the molecular eigenfunctions
Pk
(7) Vo= > akpr,
k

we can deduce an equivalent ODE—form of Schrédinger’s equation:
(8) ihow = (2 + f(t)cos(wt)V) a

using the assumption E(t)||i with 7 E = f(t)cos(wt) . a = (az) is the (complex)
vector of the expansion coefficients, 2 the real and diagonal matrix of the molecular
eigenvalues 2 = diag(eg,...,€,) and V = (Vi) the dipole matrix defined by:

9) Vie = — < orlp o>

In addition, let us assume that the values in V' can be evaluated by use of experimental
data or computational results. This is reasonable for all kinds of e.g., pure rovibrational
problems. Normally (8) is given in the standard form

(10) i0i = (2 + f(t)cos(wt)V) a
3



transformed to dimensionless units by the substitutions:

€o

t —1
%
1

(11) Q < —0Q
€0
1

V -V
€0

hw

w & —
€o

For simplicity the old symbols are held, but divergently let us write

Q = diag(wg,...,w,) with
€k

W = —.
€o

Physically the expansion coefficients are not observables. Only the populations py of
the molecular eigenstates are measurable. They are given by the probabilities

(12) pe(t) = [ <@l >17 = |al”

Hence it is more than sufficient for our task to know the expansion coefficients a(t) =
(ax(t)) or any unitary transformed set of coeflicients @ = U a (unitary U with U*U = 1).
Another important property of equation (10) is the number conservation

(13) SO UBl? = <> = 1,
k=0

which is inherited from the Schrédinger equation.
Equation (10) can be transferred into the interaction picture by

(14) b(t) = D(t)a(t)

with the unitary diagonal matrix D(t) = exp(i§2t). Written in components the result
1s

(15) i0by = f(t)cos(wt) Y Vi by exp(i (wm — w)t).
k=0
Equation (10) becomes an initial value problem introducing the initial condition

(16) ax(0) = %(1 +4) 6o

which (by phase choose) results from the assumption that at t = 0 all systems occupy
the ground state:

(17) |ak[*(0) = G

4



Two application problems. The two application problems in which the work of the
presented algorithm will be demonstrated are
1. the selective excitation of the 5th vibrational state of a single OH-bound with
an optimal parameterized picosecond laser pulse and
2. the selective vibrational excitation of the OD-bound in HOD via an analogue
process.
For both problems the modelling can be done as explained above with (10) as the
equation of motion for the populations. To get the data for V and € the oscillating
bounds are modelled by Morse potentials (see Fig. 1) and the necessary computations
are done in accordance with [4].

Potential V / eV

% 1 2 3 s 5 6 7 8
X120
Fi1G. 1. Morse potential and vibrational eigenstates of an OH-bound

The model for the laser pulses has been sin® shapes, written in the time coordinate
of (10) as

(18) f(t) = E, sing(nt)

Wlth n= ”5 for pulse length 7 = 1ps. Hence physically we have got two free parameters

n (10): hght frequency w and field strength F, . In the second problem (HOD) the
coupled vibrational states are numbered in energetic order. In this order the selected
quasi pure OD-vibration state with quantum number (0,7) gets the number 23 while
the ground state (0,0) is numbered 0. Hence problem 2 can be formalized as: Find
w and E, so that ps3(T) = |cesl*(T) becomes mazimal. To compute |cg3/*(7) for some
pair (w, E,) one has to solve (10) or an equivalent problem.

Remarks. The demand for the spectrum of H, to be discrete can be weakened
without loosing (10) as the equation of motion. According to [10] we can consider the
5



existence of decay into continua by allowing for complex eigenenergies with decay width
Ve

€ = §R(€/€) + 1Y

leading to a complex €. This gives us another link between (10) and its generalized form
(2). Naturally we need not confine our derivation of (10) to the case of monochromatic
light. This is done for simplicity only. Another possibility of choosing ¢ in (2) could be

(19) g(t) = D fult) cos uyt

modelling the case of a mixture of several frequencies.

3. Quasiresonant Smoothing. Let us take the situation in problem 1 as a typ-
ical situation for the data Q,V in equation (10). In addition let us assume, that we
want to solve this equation by use of a numerical integrator. So our first question is:
How can we find a computationally cheap solution of (10) using integrators.

0.9

0.8

0.6

0.5

0.4

0.1r-

6] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (ps)

Fi1G. 2. Population dynamics for states 0 and 4 for OH with optimal laser parameters

To answer this we can take a closer look to Fig. 2, which shows data from the exact
solution of (10) with the OH-data from problem 1 using the optimal laser parameters
for this process. We see the population py = |cg|?® of the ground state dying out and
the evolution of the desired full occupation p;(7) = 1. Most of the high computational

6



effort of this solution is caused by the oscillations with high frequencies and small
amplitudes: they force the integrator to choose very small time steps. At least this
becomes clear if we take a look at Fig. 3. The complicated oscillatory time dependence
of the populations can be found in the single coefficients ¢, too.

0.4

0.2~ i

o
1

-0.2f- Re(c4) -

[¢] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (ps)

F1G. 3. Dynamics of coefficient Re(c4) for OH. Same parameters as in Fig. 1

Physically, in the most cases, namely for the class of problems above, the knowledge
of the averaged trajectories of the populations py = |cx|* would be sufficient. The local
time average of the populations can be defined introducing an average—operator like

(20 Arp) (0) = 57 [ lenl*(9)ds

with T big enough in comparison with the fast oscillation’s periods. In our OH-example
we are getting some behaviour as shown in Fig. 4.

Hence one should reformulate our problem the following way
Replace equation (10) by a similar one, whose pg—solutions are good approzimations of
the averaged py—solutions of (10).
Later on this ’similar one’ will be called smoothed equation. If this problem could be
managed the integrator would make larger time steps and we can expect a gain in
efficiency for the simulation. We should call ¢ a good approximation of p if at least
for some norm:

(21) |Arqr — Arpr| < TOL,

with a chosen tolerance TOL > 0. In this section I will present a heuristical solution of
the reformulated problem. For this purpose a few agreements on some notations should
7
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FiG. 4. Section from Fig. 2: p4 and its local time average

precede.

Cutting smoothers. Let us denote the set

(22) L :={f:R—=R|f(t)=> oy exp(int) with n, € R, ay, € C}.
k

For simplification of the heuristical reasoning let us assume that in the following the
functions we want to smooth are such sums of exp(i-)-terms from L. For p > 0 the
operation

G,:L— L

) =" ay explint)

(23) (Gu ) = Ek: . exp(int)

Mg 1 <p

can be called a 'cutting smoother’.

Heuristical smoothing. Using coswt = $(e™' + ¢=™') and the definition

Amk = W — Wk
8



one can rewrite our dynamical equation (15) (interaction picture):
1 n ) )
(24) 0 = Sf() D Vib (Gt el (Bmmelt)
k=0

Hence a simple choice of a good class of equations for searching a ’smoothed equation’
is

, 1 " ; " o »
(25) 1O = (1) kg;o (Afyei (Amirolt o A, i (Bmimol) g

If we assume di, € L, di(t) =3 al(k) exp(int), one obtains from (25) by integration:
]

J(t) & k _
06) () = dult) + DS o (A L+ A L)
k=0 1
with
1
2 I* o ep(i(pt At )]
( 7) mk,l(t7t0) m +Amkiw eXp(/L(nl + Ak w)t)’to

If the d,, should have smooth trajectories, i.e. if d,,, = G,d,, should hold for some small
p, all I35, with A, £ w > p must vanish. The simplest choice in order to realize this
is

Vik @ |Apertw| <dw
+ _
(28) Arr(9) = { 0 otherwise

where 6 > 0 is a free parameter.
This observation already gives the rather simple idea of the QRS(4) algorithm (Quasi—
Resonant Smoothing):
e Choose § heuristically by physical insight (see below).
e For this § compute a smooth solution d of (25) with data (28).
e take d as an approximation for G,,b and take |d,,|* as an approximation for the
smoothed populations |b,,]* = |¢,,]? to be computed from (10).

Interpretation. Choosing a small § € (0,1) the matrices A(d) only consist of the
quasi—resonant elements in V: For those § we can interpret the condition

(29) Ak £ w| < dw

as a choice of pairs of states (m, k) between which the light field w can induce a quasi
first order transition. Therefore the effect of the pulse form function f (which is slowly
varying in comparism to coswt) can be understood as the effect of a splitting of the
inducing light frequency w. This splitting causes a softening of the hard first order
transition condition

’Amk’ ~ W
9



to a condition like (29). Hence only those elements V,,,; have to be considered, which
belong to interactions fulfilling (29). § has to be chosen in a way which reflects these
connections. Let us write

B(6) = {(m.k), |ApsEw|<dwl.

Remarks. In addition to the given smoothing heuristics one can try to take equation
(24) and operate with integral smoothers (see (21)) on it. Together with some heuristical
assumptions one gets a result for the 'smoothed equation’ very similar to (25). Naturally
these assumptions forbid the cases of neglecting too big dipole elements in V', i.e. there
must not be states (j,!) ¢ B with Vj; > (erlrlk&}:éB Vink-

4. Quasiresonant Approximations. The quasiresonant approximation (often
called rotating wave approzimation) has been attacked by many authors. I only mention
9] and [10], where it is called more exactly weak field quasiresonant approzimation
(WFQRA), and the references cited herein. It was discussed as an efficient method for
the solution of equation (10) in the case of pure coherent, monochromatic light, i.e. for
constant f(t) = E,. Here, after a short introduction to WFQRA, a proposal will be
made how it can be generalized in order to use it as an approximative algorithm for
solving (10) with time-dependent f.

Standard WFQRA. Let us rewrite equation (15) as
1 n
(30) i Oy, = §f(t) > Vik b, exp(i Dpit) (1 + exp(24 sgn(Apy)wt)),
k=0

using the notion
Dpie := Api — sgn(Apg) w.

From this we come to
1 n
(31) z’&tbm = §f(t) Z mG bk eXp(i Dmkt),
k=0
neglecting the high frequency term exp(2isgn(A,.x)wt). According to [10] this is valid

(in the sense of getting a 'good approximation’) if the two conditions

(32) ) Vi < w,

10



are fulfilled.
We can introduce the level scheme integer Ny by defining it as that integer which fulfills

(34) wr = Nyw + xp  with — % < xp < %
Hence equation (31) gets the form

1 .
(35) 10b,, = §f(t) ( Z Vior b €' (Tm—z1 )t

| Ny — N, | =1

+ Z mG bk el (xm—zp )t 6:l:zwt
k
| Ny — N 1=0,2

+  terms with e*™"“' m =23, ...).

Now a second approximation is made by removing all terms with |N,, — N| # 1.
Following [10] again this shall be valid approximately if the conditions (32) are fulfilled.
However this may be, let us do this approximation and write

: 1 " :
(36) i O, = §f(t) > B by exp(i (zm — i)t)
k=0
with the sparse dipole matrix

(37) 0 : otherwise

At least this can be brought into an interesting form by defining

(38) X = diag(zy,...,z,)
(39) a = exp(—iXt)b.

We finally obtain a system
1
(40) i = (X + §f(t)B)a

which in the case f(t) = E, becomes a system with constant coefficients. Originally
this property was the main success of this form of WFQRA: If the approximation is
valid one can answer questions for |¢,,|%(7) = |bm|*(T) = |an|*(7) for a certain 7 by
solving (40) directly:

(41) a(r) = exp(—i (X + %ETB)T) a(0),

The right side of (41) can be computed very efficiently by diagonalization, because
X+ éEr B is real and symmetric.

In our case of time dependent f the most efficient direct evaluation of (36) or (40) can
be done by integrators.

11



A generalization of WFQRA. Starting from (35) we can enlarge the WFQRA al-
gorithmic idea, getting the family of methods WFQRA (M):
e Choose an index M.
e Find an approximation by solving

1 | ‘
(42)  i0bn = SF() DD Vaby el et (R,

k
II1Nm — N |=1|<M

Then the effective dipole matrix is

0 : otherwise

with B(” = B from the original WFQRA equation. The form in which the sparse matrix
B™) is given shows a wide structural similarity of WFQRA to the QRS smoothing
algorithms.

Remark. Obviously in the case of usual rovibrational spectra and infrared radiation
the second condition in (32) can never be fulfilled. In [10] this point is discussed.
Therein the result is: Only (32.1) is useful and that only as an advice for the usefulness
of WFQRA as an approximation method.

12



5. Numerical experiments. Now, let me demonstrate the performance of QRS

and WFQRA in the two application problems from section 2:

e Excitation 0 — 4 for OH (dimension of the ODE-system: 44)

e Excitation 0 — 23 for HOD (dimension: 120)
As integrator for calculations leading to the exact solutions I have already used the
extrapolation code DIFEX (for details of implementation and availability see [3]) with
adaptive control of order and stepsize (for numerical details see [1] and [2]). Looking
at the figures you will remark dots at some trajectories. They serve as marks for each
single time step of the integrator.
In the following figures the exact trajectories for some populations and coefficients are
compared with their counterparts computed with QRS(d). In the most cases the opti-
mal data for w, E, are chosen as laser parameters (OH: w = 0.8866, E, = 3.641; HOD:
w = 0.8975, £, = 7.55 in the dimensionless units given above). The §-values have been
d = 0.4 (for OH) and 6 = 0.7 (for HOD).

In addition, exact data will be given for a comparison of the computational effort
of the different algorithms presented above. Two tables embody the effort observed
by the solution of the OH- (Table 1) and the HOD-problem (Table 2). The effort is
measured by

e the needed number of evaluations of the right hand side of the solved ODE,

e the time the computation needs on a SUN sparc station IPX.
Measured in realtime the speedup factor of QRS compared with DIFEX is about 100
(OH) and 60 (HOD), respectively. Measured in the number of evaluations it is 20 and
6. The difference is caused by the fact that QRS uses a sparsed dipole matrix, which
decreases the effort of each evaluation of the right hand side in comparison with the
original situation. The effort of the respectively 'right” WFQRA (M) is always a factor
2-3 higher as that of QRS.

5.1. The OH—example.

Results for QRS in the OH-example. In Fig. 5 and Fig. 6 the exact and the QRS-
trajectories basing on the OH-data are plotted. Comparing them you can observe
the QRS-integrator choosing much bigger stepsizes. For QRS(0.4), compared with an
efficient exact solver, a speedup of about a factor 100 is obtained. For more information
about the computational effort see Table 1 below.

Results of WEFQRA in the OH-example. Taking the data of the OH example even
the original WFQRA(0) gives about the same solutions for the populations pj as
QRS(0.4) does. In particular you can take Fig. 6 as the graphical output of WFQRA(0)
in this case. Thus both, WFQRA(0) and QRS, compute a smoothed solution via a
quasiresonant sparsing of the dipole matriz. But the computational effort for WFQRA(0)
is about a factor 2 higher than that of QRS(0.4).

13
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Fi1G. 5. Population dynamics for states 0 and 4 for OH with optimal laser parameters
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F1G. 6. QRS(0.4) population dynamics for states 0 and 4 for OH with optimal laser parameters
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F1G. 7. Ezact and QRS(0.4) dynamics of coefficient Re(c4) for OH.

5.2. The HOD—-example.

Results for QRS in the HOD-ezample. In this example QRS(0.7), if compared with
an efficient exact solution, decreases the computational effort by a factor 60 (see Table
2). Fig. 8 and Fig. 9 show the plotted exact and QRS results. Obviously QRS works
as a smoothing algorithm in the sense of equation (21). Again an increase in the chosen
stepsizes can be observed.

Results of WFQRA(M) in the HOD-example. While WFQRA still works well in
the OH-case, let us have a look at the WFQRA (M) approximations of the populations
in our HOD example (Fig. 11).

Here the solutions of standard WFQRA(0) are simply wrong, while WFQRA(1)

Algorithm | no. of evaluations | time effort | relative effort

Exact 19774 122 sec 1
WFQRA(0) 2258 2.5 sec 0.02
WFQRA(1) 5221 8 sec 0.06

QRS 1087 1.2 sec 0.01
TABLE 1

Computational effort for the solution of the OH—problem

15
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Fi1G. 8. Population dynamics for states 0 and 23 for HOD with optimal laser parameters
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F1G. 9. QRS(0.7) population dynamics for states 0 and 23 for HOD with optimal laser parameters
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HOD with optimal parameters. Compare the exact solution shown in Fig. 8
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gives a more or less usable approximation (compare Fig. 11 with Fig. 8 and Fig. 9 —
WFQRA(1) computes a probability |cgg| > 1!). But unfortunately the computational
effort of WFQRA(1) is again about a factor 2 higher than that of QRS(0.7). In addition
WFQRA(1) cannot seriously be called a smoothing method.

Algorithm | no. of evaluations | time effort | relative effort

DIFEX 18023 17 min 1
WFQRA(0) Fail Fail Fail
WFQRA(1) 6521 62 sec 0.06

QRS 3125 18 sec 0.02
TABLE 2

Computational effort for the solution of the HOD—problem

5.3. Nonmonochromatic radiation. Let us have a look at the case of non-
monochromatic radiation. If we consider a superposition of several single frequencies
QRS can be extended to this case in a trivial way. In test runs this extended version
works well and efficient as well for constant light sources as for laser pulses. The case
of two superposed laser pulses with different frequencies is important for work on the
field ‘selective vibrational excitation' (see [5] as an example).

Fig. 12 shows the exact and QRS solutions of
0w = (Q+9(t)V)a
with data €2,V from our OH-example and
g(t) = Eysin®nt cos(ust) + Egsin®nt cos(pat)

(i.e. the superposition of two picosecond laser pulses). E; and pu; are the optimal laser
parameters for the 0 — 4 transition in OH from above, Ey = 0.275 E; and ps = 0.96 p;.
Comparing QRS(0.4) and DIFEX one measures a speedup factor of 90. For structural
reasons WFQRA cannot be extended to those situations, in particular not to the case
of very different frequencies.
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F1G. 12. Ezact and QRS(0.4) dynamics of the populations of states 0 and 6 of OH for a nonmonochro-
matic laser pulse.

5.4. QRS and nonoptimal laser parameters. This is the place to remark that
the well-working of QRS isn’t bounded to the use of the optimal laser parameters. Fig.
13 shows exact and smoothed population dynamics for parameters slightly different from
the optimal ones. In general I have found that QRS works well for all tried parameter
values, while E, doesn’t get too large (in this case one has to increase the d—value).
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F1G. 13. Ezact and QRS(0.7) dynamics for the populations for nonoptimal laser parameters for HOD.
For a change the populations of states 0 and 1 are shown.

Looking at the whole process of searching the optimal laser parameters for given
target—state L and given data V and 2 the following observation is of special impor-
tance: p(7) reaches its maximal value at the same parameter point (w, E,) as p?™ (1)
does (if ¢ is not too small).

19



6. Conclusion. The above derivation and numerical results lead to the following
main observations:

Up to now, quasiresonant approximation methods like WFQRA were the most ef-
ficient solvers for problems of type (2). However, as we have seen, WFQRA has been
constructed for the case of monochromatic radiation with constant intensity (f(t) =
const). The inventions in short time laser physics brought up the time-dependent case
(f(t) = E,sin”put), where the major advantage of WFQRA (derivation of a system
with constant coefficients (see (40)) and solution in one step via diagonalization) can
no longer be exploited. Therefore a generalization of the method to this new class of
problems is necessary. The results presented herein show that this cannot be done with
satisfactory efficiency. In addition there seems to be no possibility to extend WFQRA
to cases of polychromatic radiation. Thus, looking for an efficient solution technique
applicable to a sufficiently large subclass of (2), WFQRA will not be the method of
choice. Therefore an alternative approach called QRS has been developed herein. This
approach has proved its robust applicability and reliability for both optimal and nonop-
timal laser parameters and for cases of polychromatic radiation. Thus it can be used
within optimization routines as well. In all these cases QRS yielded a relative speedup
with respect to the exact solution of the order of magnitude 10%.

A crucial role in the version of QRS presented herein is played by the smoothing
parameter d, which must be chosen externally. This can be done satisfactorily with
some physical insight from the presented interpretation or by just setting 6 = 1 (a
choice that is still of high efficiency and has worked in all test runs). On the other hand
this smoothing parameter is one of the big advantages of QRS, since it can successfully
be used for an adaptive formulation, within which ¢ is chosen automatically in the course
of the integration process. This will be a topic of further investigation.
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