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Abstract

Fast nonlinear programming methods following the all-at-once approach
usually employ Newton’s method for solving linearized Karush-Kuhn-Tucker
(KKT) systems. In nonconvex problems, the Newton direction is only guaran-
teed to be a descent direction if the Hessian of the Lagrange function is positive
definite on the nullspace of the active constraints, otherwise some modifications
to Newton’s method are necessary. This condition can be verified using the
signs of the KKT’s eigenvalues (inertia), which are usually available from di-
rect solvers for the arising linear saddle point problems. Iterative solvers are
mandatory for very large-scale problems, but in general do not provide the in-
ertia. Here we present a preconditioner based on a multilevel incomplete LBLT

factorization, from which an approximation of the inertia can be obtained. The
suitability of the heuristics for application in optimization methods is verified
on an interior point method applied to the CUTE and COPS test problems,
on large-scale 3D PDE-constrained optimal control problems, as well as 3D
PDE-constrained optimization in biomedical cancer hyperthermia treatment
planning. The efficiency of the preconditioner is demonstrated on convex and
nonconvex problems with 1503 state variables and 1502 control variables, both
subject to bound constraints.
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1 Introduction

In this paper we address the numerical solution of nonlinear optimization problems
(NLPs) given as

min
x∈Rn

f(x) subject to c(x) = 0, xL ≤ x ≤ xU (1)

where the objective function f : Rn −→ R and the constraints function c : Rn −→
Rm are assumed to be C2. Note that problems with general nonlinear inequality
constraints can be equivalently reformulated into the above statement by means of
slack variables.

Despite the vast amount of literature published in this area (cf. [25] and the refer-
ences therein), large-scale nonconvex nonlinear constrained programming remains
to be algorithmically and computationally challenging. Here, we address one spe-
cific open aspect of that class of problems: How to compute or approximate the
inertia of the Hessian of the Lagrange functional (a.k.a. KKT matrix) when an
iterative linear solver is used to obtain the search directions of the optimization al-
gorithm. This piece of information can be employed to generate optimization steps
that promote convergence to minimizers of a nonconvex optimization problem, and
not merely to any stationary point, which is often unsatisfactory.

A rich source for large-scale nonconvex NLPs are PDE-constrained optimal control
problems. Here, the unknowns x = (y, u) can often be partitioned into control vari-
ables u ∈ Rn−m and state variables y ∈ Rm. Usually, the state equation c(y, u) = 0
defines (locally) unique states y = y(u) in terms of given controls. The reduced
solution approach, which considers the reformulation

min
u∈Rn−m

f(y(u), u) subject to yL ≤ y ≤ yU , uL ≤ u ≤ uU

is formally attractive, but requires to solve the nonlinear state equation to high
accuracy in every step of the optimization algorithm. In addition, the PDE solver
has to provide the derivative information ∂y

∂u (and possibly ∂2y
∂u2 for an optimiza-

tion algorithm with fast local convergence), which is often implementationally and
computationally challenging or impossible. Furthermore, in problems where a par-
titioning x = (y, u) of the unknowns is not induced by the problem structure,
computing a reduced basis is usually only practical for small problems.

On the other hand, in the all-at-once approach, optimality and feasibility are
reached simultaneously. The infinite-dimensional differential equations are dis-
cretized, and only linearized state equations have to be solved in every optimization
step, which can improve the overall performance tremendously (cf. [4,5,26]). Draw-
backs are a significantly increased number of variables and the necessity to handle
the equality constraints explicitly. However, the first and second derivatives of
the discretized constraints and objective are typically readily available, sparse, and
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well-structured. Unfortunately, direct linear solvers applied to the step computation
system can create a lot of fill-in. This is particularly pronounced for discretized op-
timal control problems with three-dimensional PDE constraints. Here, the memory
requirements induced by the fill-in may practically rule out direct solvers for very
large problems, in which case preconditioned iterative methods are the only viable
alternative.

One important aspect in nonconvex optimization is the usage of second-order in-
formation. On the analytical side, sufficient and necessary optimality conditions
require the Hessian of the Lagrangian function to be positive definite or positive
semidefinite, respectively, on the nullspace of the linearized constraints. On the
algorithmic side, positive definiteness of the Hessian on the constraints’ nullspace
is necessary for Newton type methods to compute downhill tangential steps. Thus,
for both, verification of a candidate solution as well as computing good search di-
rections, it is important to check whether the Hessian is positive definite on the
nullspace of the linearized constraints. This information is given by the inertia
of the Lagrange functional’s second derivative. How to reliably obtain the inertia
from iterative methods, however, is essentially an open research problem. In the
current paper we propose an algebraic multilevel preconditioning technique (not to
be confused with algebraic multigrid) based on an incomplete LBLT factorization
using maximum weighted matchings that aims to reveal the inertia of the iteration
matrix and is used in a primal-dual interior point method. Although no theoret-
ical guarantees are provided, we will show that the practical performance of this
approach is very satisfactory.

For completeness, we point out that several other approaches have been proposed in
the literature to handle nonconvexity in nonlinear optimization such as [12,17,24].
However, these require the direct factorization of a matrix that contains at least
the Jacobian of the constraint matrix, i.e., the discretized PDE. A recent exception
to this is [13] which allows the use of iterative linear solvers for nonconvex equality
constrained optimization without specific preconditioner requirements, but practical
performance has not yet been tested on large problems.

The remainder of the paper is structured as follows. Section 2 reviews a typical
interior-point NLP optimization algorithm, introduces the matrix that commonly
appears in linear systems for the search direction computation, and discusses how
information about the inertia of this matrix can be used to promote convergence
to minimizers of the problem. Section 3 describes the novel inertia-revealing pre-
conditioning technique in detail. The practical performance of the preconditioner is
assessed in Section 4, specifically with respect to the exactness of the inertia approx-
imation and its usability for nonconvex optimization. Finally, Section 5 presents the
application of the proposed approach in hyperthermia cancer treatment planning.
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2 Saddle point matrices in nonlinear nonconvex opti-
mization

In order to solve optimization problems (1) coming from the all-at-once approach
for PDE-constrained optimal control, the optimization method needs to be able to
handle a large number of variables and bound constraints. At current time, the
most successful methods for NLP are active set Sequential Quadratic Programming
(SQP) methods and Interior-Point Methods (IPM). Since SQP methods are cur-
rently not able to efficiently handle very large problems with millions of (bounded)
variables due to the combinatorial complexity of identifying the active set, we will
concentrate in this work on IPMs.

Interior point methods avoid the high complexity introduced by inequality con-
straints by replacing them by a barrier term which is added to the objective func-
tion. One then obtains the barrier problem

min
x∈Rn

ϕµ(x) = f(x)− µ

n∑
i=0

ln(x(i)) subject to c(x) = 0, (2)

where µ > 0 is a barrier parameter, and x(i) denotes the i-th component of the
vector x. For the sake of simplicity, we assume here that xL = 0 and xU = ∞, but
the approach can easily be generalized.

The literature in the past 15 years has presented a number of different IPMs [18].
Most methods have in common that steps are computed from the linearization of
some formulation of the optimality conditions of (2) and that µ is eventually driven
to zero.

The particular method considered in this paper, implemented in the software pack-
age Ipopt, reduces the barrier parameter µ monotonically, where a decrease is done
every time the corresponding barrier problem is solved to a convergence tolerance
O(µ). At an iteration k with iterate xk > 0 and approximation of the Lagrangian
multipliers λk, the method computes search directions from a linearization of the
optimality conditions for (2),[

Hk Ak

AT
k 0

](
∆xk

∆λk

)
= −

(
∇ϕµ(xk) + Akλk

c(xk)

)
(3)

Here, AT
k denotes the Jacobian of the constraint functions at xk, and Hk is a suitable

(primal-dual) approximation of the Hessian of the Lagrangian function for (2).
Once a search direction ∆xk has been determined, a line search is performed to
find a step size αk ∈ (0, 1], using a filter mechanism to test acceptability of trial
step sizes. Finally, the new iterates are obtained from xx+1 = xk + αk∆xk and
λx+1 = λk + αk∆λk
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Details of the method implemented in Ipopt can be found in [40]. The following
discussion is restricted to the features that matter when we want to use an iterative
linear solver to solve the system (3).

First, under some circumstances no acceptable step size αk can be determined for a
search direction (∆xk,∆λk). In this case, the filter line search procedure switches to
a restoration phase, which solves a related optimization problem, aiming to reduce
the infeasibility. The search directions are then obtained by solving a linear system
of the same dimension as (3) but with a matrix[

Hk Ak

AT
k −Ck

]
(4)

where Ck is a diagonal matrix with positive entries.

Second, as mentioned in the Introduction, NLP solvers need to take special mea-
sures if they are solving nonconvex problems, to ensure that they generate descent
directions for the globalization mechanism, and to attempt to avoid convergence to
non-minimizers. In the considered IPM, this is done by requiring that the Hessian
matrix Hk in (3) is positive definite in the null-space of AT

k , or—equivalently—that
the matrix in (3) has exactly n positive and m negative eigenvalues. In Ipopt, if
the linear solver determines at an iteration that the number of negative eigenvalues
is more than m, the matrix Hk in (3) or (4) is replaced by Hk + δI for some δ > 0;
a sufficiently large value of δ is determined by a trial-and-error procedure.

In summary, the considered IPM requires solutions of linear systems

Kv =
[

H A
AT −C

]
v = b, (5)

where the n × n matrix H is symmetric and potentially indefinite, C is a non-
negative diagonal regularization matrix which is often zero, and the n×m matrix
A has full column rank. Although we motivated this linear system in the context
of the particular IPM implemented in Ipopt, we emphasize that many currently
proposed IPMs compute steps by solving different variations of (5), including those
implemented in popular software packages such as Knitro [41] and Loqo [39]. An
efficient solution methods for (5) that is able to provide inertia information could
benefit these optimization algorithms as well.

For a detailed survey on solution techniques for large linear saddle-point systems (5),
the interested reader should consult [3]. Most direct factorization methods for such
indefinite symmetric systems (usually based on variations of the Bunch-Kaufman
algorithm [11]) can very easily compute the inertia of the factorized matrix. How-
ever, iterative linear solvers do not compute such information on the fly. In the next
section we discuss a preconditioner that aims to recover the inertia of the original
matrix. Even though this approach is a heuristic, we show that it is working very
well in practice.
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3 An efficient heuristic to reveal the inertia using mul-
tilevel incomplete factorizations

The inertia of a symmetric matrix K—denoted by In(K)—is the integer triple
(n, m, z), where n, m and z denote the nonnegative numbers of positive, negative
and zeros eigenvalues of K. In this section we make use of Sylvester’s law of inertia
[22], which states that if K is a symmetric matrix, and T is a nonsingular matrix
of the same dimension as K, then In(K) = In(TKT T ). For a symmetric Karush-
Kuhn-Tucker matrix K, which may be partitioned with a permutation matrix P
and scaled with a scaling matrix D into

PDKDT P T =
(

B F T

F C

)
with B nonsingular, the Schur complement of B in K is defined as SC = C −
FB−1F T . The matrix PDKDT P T can be decomposed into

PDKDT P T =
(

B F T

F C

)
=
(

LB 0
LF I

)(
DB 0
0 SC

)(
LT

B LT
F

0 I

)
. (6)

Sylvester’s law of inertia applied to (6) gives the relation

In(K) = In(PDKDT P T ) = In(DB) + In(SC) (7)

When solving an equation with a decomposition approach involving a symmetric
indefinite matrix K, which is large and sparse, the permutation matrix P must be
chosen in order to maintain both sparsity and numerical accuracy. One can use a
diagonal pivoting factorization of the form PKP T = LDLT , where L is a unit lower
triangular matrix, P is a permutation matrix and D is a diagonal matrix; we refer
to such a factorization as an LDLT -factorization. However, for a general indefinite
symmetric matrix K, one also has to allow pivots of dimension 1 × 1 and 2 × 2.
This gives PKP T = LBLT , where B is a symmetric block-diagonal matrix whose
diagonal blocks are of dimension 1× 1 and 2× 2. We refer to such a factorization
as an LBLT -factorization. Different pivoting strategies have been suggested, see
e.g. [10, 11].

The key idea here is to define a series of permutation matrices P and nonsingular
scaling matrices D without performing a complete factorization in such a way that
the resulting incomplete LBLT -factorization is as stable as possible and that most
of the globally important numerical entries in K are permuted into the diagonal
block DB to serve as potential 1× 1 and 2× 2 pivots for the inertia computation.

The resulting incomplete factorization leads to a 1 × 1 and 2 × 2 diagonal block
DB and a Schur complement SC . We now present the heuristic to reveal the in-
ertia by an indefinite incomplete multilevel factorization that is mainly based on
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three parts, which are repeated in a multilevel framework in each subsystem. The
components consist of (i) reordering of the system using weighted graph matchings
to approximate Gaussian scaling and Gaussian 1 × 1 and 2 × 2 pivoting ordering
as good as possible, (ii) approximate factorization using inverse-based pivoting and
Eigenvalue decompositions of 1 × 1 and 2 × 2 diagonal blocks, and (iii) recursive
application to the system of the pivot elements that are permuted into the Schur
complement.

3.1 Symmetric 1× 1 and 2× 2 block weighted matchings

The key ingredient for turning this approach into an efficient inertia-revealing mul-
tilevel solver consists of the symmetric maximum weighted matching [16, 27, 34].
After the system is reordered into a representation

PsDsKDT
s P T

s = K̂, (8)

where Ds ∈ Rn×n is a diagonal matrix and Ps ∈ Rn×n is a permutation matrix, K̂ is
expected to have many diagonal blocks of size 1×1 or 2×2 that are well conditioned.
Once the diagonal blocks of size 1×1 and 2×2 are built, the associated block graph
of K̂ is reordered by a symmetric reordering, such as Metis [28], to obtain

ΠT P T
s DsKDsPsΠ = K̃, (9)

where Π ∈ Rn×n refers to the associated symmetric block permutation that pre-
serves the 1× 1 and 2× 2 pivot blocks.

3.2 Inverse-based pivoting

Given K̃, we compute an incomplete factorization LBLT = Ã+E of K̃. To do this
at step k of the algorithm, we have

K̃ =
(

B F T

F C

)
=
(

LB 0
LF I

)(
DB 0
0 SC

)(
LT

B LT
F

0 I

)
, (10)

where LB ∈ Rk−1,k−1 is lower triangular with unit diagonal and DB ∈ Rk−1,k−1

is block diagonal with diagonal blocks of sizes 1 × 1 and 2 × 2. Also, SC = C −
LF D−1

B LT
F = (sij)i,j denotes the approximate Schur complement. To proceed with

the incomplete factorization, we perform either a 1×1 update or a 2×2 block update.
One possible choice could be to use Bunch’s algorithm [9] and this approach has
been used in [27]. Here we use a simple criterion based on block diagonal dominance
of the leading block column. Depending on the values

d1 =
∑
j>1

|sj1|
|s11|

, d2 =
∑
j>2

∥∥∥∥∥(sj1, sj2)
(

s11 s12

s12 s22

)−1
∥∥∥∥∥ , (11)
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we perform a 2× 2 update only if d2 < d1. Here, d1 and d2 represent the diagonal
dominance of the current row/column. The two leading columns of SC can be
efficiently computed using linked lists [29], and it is not required to have all entries
of SC available.

When applying the (incomplete) 1 × 1 and 2 × 2 block factorization LBLT to K̃
we may still encounter a situation where at step k either 1/|s11| or ‖[(sij)i,j62]−1‖
is large or even infinite. Since we are dealing with an incomplete factorization, we
propose to use inverse-based pivoting [6]. Therefore, we require in every step that∥∥∥∥∥

(
LB 0
LF I

)−1
∥∥∥∥∥ 6 κ1 (12)

for a prescribed bound κ1. If after the update using a 1× 1 pivot (or 2× 2 pivot)
the norm of the inverse lower triangular factor fails to be less than κ1, the update
is postponed and the leading rows/columns of LF are permuted to the end of SC .
Otherwise, depending on whether a 1 × 1 or a 2 × 2 pivot has been selected, the
entries

(sj1/s11)j>1,

(
(sj1, sj2)

(
s11 s12

s12 s22

)−1
)

j>2

(13)

become the next (block) column of L, and we drop these entries whenever their
absolute value is less than ε/κ1 for some threshold ε. For a detailed description
see [6]. The norm of the inverse can be cheaply estimated using a refined strategy
of [14].

3.3 Eigenvalue decomposition of 1× 1 and 2× 2 pivots

The inverse-based pivoting approach has been successfully used in [35,36]. In addi-
tion to the inverse-based pivoting approach we will resort to a second heuristic to
permute 1× 1 and 2× 2 diagonal blocks into the Schur complement if the absolute
value of the eigenvalues αi of these blocks are smaller than a prescribed bound κ2:

|α1| < κ2 (for a 1× 1 pivot); min(|α1|, |α2|) < κ2 (for a 2× 2 pivot). (14)

This strategy has the effect that diagonal blocks with potentially small eigenval-
ues are permuted into the Schur complement and, here, can be computed more
exactly in the multilevel framework. This eigenvalue decomposition is another key
component to turn the method into an effective inertia-revealing preconditioner.

3.4 Recursive application

After the incomplete matching-based factorization we have an approximate factor-
ization

QT DT
s K̃DsQ =

(
L11 0
L21 I

)(
D11 0
0 S22

)(
LT

11 LT
21

0 I

)
, (15)
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where Q represents the product of all permutation matrices that are necessary to
maintain sparsity and accuracy, and Ds is the initial scaling matrix which was
obtained as a by-product of the weighted matchings. It typically does not pay
off to continue the factorization for the remaining matrix S22 which consists of
the previously postponed updates. Thus, S22 is now explicitly computed and the
strategies for reordering, scaling, and factorization are recursively applied to S22,
leading to a multilevel factorization.

We use a technique called aggressive dropping that sparsifies the triangular factor
L a posteriori. Observe that when applying a perturbed triangular factor L̃−1 for
preconditioning, we have

L̃−1 = (I + EL)L−1 with EL = L̃−1(L− L̃),

instead of L−1. We can expect that L̃−1 serves as a good approximation to L−1 as
long as ‖EL‖ � 1. If we obtain L̃ from L by dropping some entry, say lij , from L,
then we have to ensure that

‖L̃−1ei‖ · |lij | 6 τ � 1

for some moderate constant τ < 1, e.g., τ = 0.1. This requires that a good estimate
for νi ≈ ‖L̃−1ei‖ is available for any i = 1, . . . , n. It can be computed using L̃T

instead of L̃ [6, 14]. Finally, knowing how many entries exist in column j, we drop
any lij such that

|lij | 6 τ/(νi ·#{lkj : lkj 6= 0, k = j + 1, . . . , n}).

3.5 Iterative solution

By construction, the computed incomplete multilevel factorization is symmetric but
indefinite. For the iterative solution of linear systems using the multilevel factoriza-
tion, different Krylov subspace solvers could be used, such as general methods that
do not explicitly use symmetry (e.g., GMRES [32]) or methods like SYMMLQ [31],
which preserve the symmetry of the original matrix but are devoted only to sym-
metric positive definite preconditioners. To fully exploit both symmetry and indef-
initeness at the same time, we choose the simplified QMR method [21,20].

4 Numerical results

In this section, we present comparative numerical results for the inertia-revealing
multilevel preconditioner in large-scale nonconvex optimization. First, we will pro-
vide numerical results on the numerical linear algebra level by using a selection
of Karush-Kuhn-Tucker systems. Then, we will evaluate the performance of the
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method within an interior-point optimization method on the popular CUTE [8]
and COPS [7] collections of nonconvex optimization problems. Finally, we present
numerical results on several large-scale examples of convex and nonconvex three-
dimensional PDE-constrained optimizations.

The numerical test in Sections 4.1, 4.3 and 5 were performed on Intel Xeon servers
(2.2 GHz) with either 24 or 32 GB of memory. The results in Section 4.2 were
obtained on an AMD Opteron (2.2GHz, 8 GB memory). All codes were compiled
by the GCC compiler suite (including GFortran) version 4.2 with the −O3 opti-
mization option and linked with the ACML library containing BLAS and LAPACK
subroutines, optimized for AMD architectures.

The linear saddle-point systems (5) are solved by a preconditioned Sqmr iteration,
where the initial vector is always chosen as v0 = (0, · · · , 0)T . We iterate until either
the maximum of 200 iterations has been exceeded or until the residual has been
reduced by a factor of either 10+4, 10+7 or 10+14. Furthermore, in Sections 4.2–
5, where the iterative linear solver is used within the interior-point optimizer, the
Sqmr iteration is terminated if the last 5 residuals do not change within 4 digits of
accuracy. In all experiments, we used the identical set-up for the incomplete mul-
tilevel factorization preconditioner with κ1 = 500 (norm of the inverse), κ2 = 0.01
(eigenvalue bound), and τ = 10−3 (threshold value for dropping). For completeness,
let us recall the main software packages we used:

• Pardiso is a fast sparse direct solver developed at the Computer Science
Department of the University of Basel [33, 34]. Pardiso/Ml is the multi-
level iterative solver package which contains all preconditioners used for the
presented numerical results. Both packages are available at http://www.
pardiso-project.org.

• Ipopt is a software package for large-scale nonlinear optimization [40]. This
optimization package has been developed at the Department of Mathematical
Sciences of the IBM Thomas Watson Research Center and the Carnegie Mellon
University. It is available at https://projects.coin-or.org/Ipopt.

The performance of the multilevel incomplete factorization preconditioners are com-
pared with each other and also compared with the exact factorization solver in
Pardiso.

4.1 Performance comparison of the preconditioners for a selection
of Karush-Kuhn-Tucker systems

Our first numerical results compare the computational requirements and inertia
approximation of the preconditioners from Section 3 applied to typical matrices of
the form (5) appearing in optimization problems.
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The first Table 1 provides the set-up times (in seconds) for an exact sparse LBLT

factorization with Pardiso. We selected a representative set of matrices that arise
in a nonconvex 3D PDE-constrained optimization process with Ipopt. We also
provide the inertia information for these matrices. As mentioned in Section 2, it is
important in nonconvex optimization that the current iteration matrix has a specific
inertia in order to promote convergence to minimizers of the optimization problem.
The Ipopt algorithm modifies the Hessian until the inertia of the full matrix is
exactly n positive eigenvalues (number of Hessian equations) and m negative eigen-
values (number of Jacobian equations). For example, for the Ipopt series A, the
inertia of the first two matrices (pde-a-01-01, pde-a-01-02) is not exactly (n, m, 0)
and a regularization based on [40] is performed until the inertia has exactly the
correct number, such as in the third iteration for matrix pde-a-01-03.

The set-up times for the numerical factorization in Table 1 increase significantly
with the problem sizes n and m, up to a fill-in factor of 215 in comparison to the
numbers of nonzeros in the KKT matrix, resulting in an expensive factorization
time of over 2, 644 seconds1.

Table 2 shows the set-up information for these matrices for three different incom-
plete multilevel factorization preconditioners, using the parameters given in the
introduction of Section 4. The first preconditioner (ildlt) is an incomplete mul-
tilevel factorization solver with inverse-based pivoting and D is a diagonal matrix.
The second preconditioner (ildlt-match) is additionally stabilized using symmet-
ric weighted matchings described extensively in [16,27,34]. Our last preconditioner
(ilblt-match) is based on the second preconditioner, but uses in addition a 1× 1
and 2 × 2 diagonal matrix B based on Bunch and Kaufman pivoting. The set-up
time for ilblt-match includes all processing steps that are necessary to build this
preconditioner. Note that the high set-up time for the exact factorization in Table
1 can be reduced significantly by two orders of magnitude.

Comparing the inertia information of the three preconditioners in Table 2, we note
that by using graph matchings and 1 × 1 and 2 × 2 pivoting, we can recover the
correct inertia information by using a multilevel incomplete factorization method.
Also importantly, the fill-in of the last preconditioner (ilblt-match) for these 3D
PDE-constrained optimization matrices is only a factor of four to five, which makes
this kind of multilevel preconditioner very attractive for large-scale optimization
problems, which will be discussed in Section 4.3.

In Tables 3 and 4, we test the preconditioners against the exact sparse factorization
for a set of publicly available symmetric indefinite saddle-point matrices described
in [23]. Interestingly, the preconditioners behave very similar as in Table 2 and
almost all inertia information can be revealed by using the third preconditioner.
In order to demonstrate that our inertia revealing method is only a heuristic (that
still performs very well in practise), we point out the results for matrix NCVXQP7.

1Note that the performance of sparse direct solvers for symmetric indefinite matrices have been
improved by two orders of magnitude during the last years, see, e.g., the results in [38].
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For this matrix the inertia computed by the preconditioner was not correct and we
observed an overestimate of 15 positive eigenvalues compared to the exact inertia.

Finally, in Table 5 we present the convergence history of the iterative linear solver
for a selection of matrices by using the ilblt-match preconditioner. It can be seen
that it the linear systems can be solved very efficiently, with only a few numbers of
Sqmr iterations, even to a very tight tolerance of a residual reduction of 10−14.

Based on these positive numerical results, we will use ildlt-match with Sqmr in
the interior-point optimization solver in the next sections and will refer to it as the
Pardiso/Ml method.

4.2 Numerical results for standard NLP test sets

In this section we assess the practical performance of the inertia revealing heuristic
described earlier. The goal is to see whether the inertia information made available
by the preconditioner ildlt-match is sufficiently reliable for a general-purpose
optimization code to solve nonlinear nonconvex optimization problems contained in
standard collections of test problems.

The first test set consists of 720 problems from the CUTE [8] collection, as provided
by Benson [2] in the AMPL modeling language [19]. Here, we omitted problems
which are unbounded, infeasible, or have too few degrees of freedom. The size
of the problems varies between 1 – 50,000 variables (including slack variables for
reformulated inequality constraints) and 0 – 14,000 constraints. The second test
consists of 65 COPS [7] problems (Version 3.0)2. Those problems have 150 – 20,496
variables, and 0 – 20098, constraints. We note here that the AMPL preprocessor
was disabled for the CUTE problems, and enabled for the COPS problems.

Tables 6 and 7 show the outcome of the optimization for the two test sets with
different options to solve the linear systems. Comparing the iterative solver with
the direct linear solver shows that the robustness is almost identical, and most cases
with unsuccessful outcome for the iterative solver that have been solved with the
direct solver are due to exceeding the time limit. Since these problems are not
large, the iterative solve option usually requires more CPU time than the direct
linear solver. Furthermore, ignoring the inertia leads to a significant reduction in
robustness of the optimization code. In particular, in a number of problems the
iterates diverge or the optimization algorithm fails because the generated steps do
not have the descent properties that are required in order for Ipopt to generate a
new iterate.

A comparison of the final objective function values in successful outcomes obtained
for different options is presented in Table 8. As can be seen, ignoring the inertia leads

2We excluded the first instance of the tetra example since the gradient of the objective function
could not be evaluated at the starting point provided by AMPL.
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to worse final objective function values in many cases, while the values are identical
for the direct linear solver and the iterative solver options, in almost all cases. We
note here that problems in the test sets have frequently several local minimizers, so
that a convergence to different final solutions is not unexpected. However, the fact
that the inertia-ignoring option leads to worse solutions in so many cases seems due
to convergence to maximizers or saddle-points since the search directions do not
promote necessarily a decrease in the objective function.

These observations show that the inertia-revealing preconditioner is indeed able to
provide estimates of the inertia of the linear systems encountered in the optimization
algorithm that is sufficiently close to the exact inertia to allow robust optimization
in most practical cases, at least measured in the standard and non-trivial test sets
CUTE and COPS.

4.3 Numerical results for convex and nonconvex three-dimensional
PDE constrained optimization problems

As a large-scale nonlinear programming example we choose a nonlinear PDE-constrained
optimization problem with homogeneous Neumann boundary conditions. The do-
main is Ω = (0, 1)× (0, 1)× (0, 1), and the goal is to compute the optimal boundary
control u(x) and state y(x) with respect to x = (x1, x2, x3) that minimizes a convex

f(y, u) =
1
2

∫
Ω

(y(x)− yt(x))2 dx +
α

2

∫
Ω

u(x)2 dx (16)

or nonconvex

f(y, u) =
1
2

∫
Ω

BT (y(x)− yt(x)) dx +
α

2

∫
Ω

u(x)2 dx (17)

objective function. Here, the parameter in the Tikhonov regularization is chosen
as α = 10−4, and BT (t) is a C2 approximation of the nonconvex Beaton-Tukey
function, given as

BT (t) =
{

(3
2 −

9C
8B )t2 + (7

4
C
B3 − 3

2B2 )t4 + ( 1
2B4 − 5C

8B5 )t6 if |t| ≤ B
B2

2 + C(|t| −B) if |t| > B

with a cutoff value B = 0.25 and with C = 0.01. The original Beaton-Tukey
function [1] has a discontinuous second derivative at |t| = B, and is constant for
|t| > B. While the original function is a popular robust quality measure for the fit
of observations y(x) with respect to given data yt(x), our approximation provides
the smoothness properties required by a second-order optimization method, and
the slope |BT ′(t)| = C > 0 informs the optimizer that smaller deviations are more
desirable, even if |t| > B.
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The PDE constraints in our example are defined by the elliptic operator

in Ω : −∆y(x) = 20, y(x) ≤ 3.5, yt(x) = 3 + 5x1(x1 − 1)x2(x2 − 1), (18)

and the boundary conditions are

on ∂Ω : y(x) = u(x), 0 ≤ u(x) ≤ 10. (19)

This problem is a variation of Example 5.1 in [30].

We use an equidistant Cartesian grid with N points in each space direction to
discretize (16)–(19), where the usual 7-point stencil is used for discretizing the
Laplace operator. The size of the nonlinear programming problem as a function of
the discretization parameter N is shown in Table 9.

Tables 10 (convex) and 11 (nonconvex) shows the timing results for the complete
interior-point optimization algorithm with Ipopt and the ilblt-match precondi-
tioner.

In the convex PDE optimization example in Table 10, a residual reduction of already
four orders of magnitude is sufficient to converge to the correct solution of the
optimization problem. The iterative solver performs very well in this example and
it is very memory efficient. For the larger example that have more than N = 80
discretization points in each direction we observed a 32-bit integer overflow in the
direct solver, whereas with our preconditioner it was possible to solve a 3D PDE-
constrained optimization problem with N = 150 in less than 3 hours on a single
processor. This problem has more than 3 million state variables with upper bounds,
over one hundred thousand control variables with both upper and lower bounds,
and about 91 millions of nonzeros in the Jacobian matrix.

The nonconvex optimization example in Table 10 is computationally challenging
and a higher residual reduction is necessary in order to converge to the optimal
solution while not impeding the convergence of Newton’s method. In general, the
iterative method requires slightly more Newton iterations than the direct solver for
convergence. The reason is that the preconditioner has not always computed the
inertia correctly and a slight increase in Newton iterations is visible by comparing
the results for the direct and iterative solver. However, the iterative method is
much more memory efficient and faster even if a residual reduction of 14 orders of
magnitude is requested. Note that all these nonconvex examples would fail if one
would ignore the inertia in Ipopt during the Newton iteration.

Finally, in Figure 4.3, we plot the convergence histories of Sqmr iterations for both
the convex and nonconvex example with N = 80. It is clearly shown that the
number of iterations is in general rather small. For example, it is possible to reduce
the residual by 14 orders of magnitude within typically 100 Sqmr iterations. Note
that N = 80 represents already a large-scale saddle-point matrix with over 500,000
equations.
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Figure 1: Number of Sqmr iterations for the convex (left) and nonconvex (right)
PDE-constrained optimization example with N = 80 to reduce the residual by
either 4, 7 or 14 order of magnitudes.

5 Numerical results for three-dimensional optimal hy-
perthermia treatment planning problems

Regional hyperthermia is a cancer therapy that aims at heating large and deeply
seated tumors by means of radio wave absorption. Heating tumors above a tem-
perature of about 41◦C makes them more susceptible to an accompanying radio
or chemo therapy. Modern hyperthermia applicators operating at around 100MHz
provide 12 antennas for which the amplitude and phase can be controlled inde-
pendently. The squared amplitude of the resulting superposed electrical field gives
the energy density absorbed by the tissue. The generated heat is dissipated and
transported by blood flow, which finally results in a temperature profile inside the
patient’s body.

For designing an individually optimal therapy, amplitudes and phases have to be
selected such that the tumor temperature is maximized. On the other hand, in order
not to damage healthy tissue, certain temperature constraints have to be respected.
A simple model leads to the following nonlinear nonconvex optimal control problem:

min
y∈H1(Ω),u∈C12

−
∫

Ωt

f(y) dx

subject to

−div(κ∇y) + cbw(y) (y − ya) =
σ

2

∣∣∣∣∣∑
i

uiEi

∣∣∣∣∣
2

in Ω (20)

γ∂ny = g − y on ∂Ω
y ≤ ymax in Ω\Ωt.
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Figure 2: Left: Coarse finite element grid of the patient geometry. Shown are bones,
large vessels, the bladder, and the tumor located in the lower right part of the pelvic
region. Right: Optimal temperature distribution in the vicinity of the tumor.

Here, Ω is the part of the patient’s body that is affected, Ωt ⊂ Ω is the domain
occupied by tumor tissue, κ is the heat diffusion coefficient, cb the specific heat
of blood, w(y) the temperature-dependent perfusion, ya the arterial blood temper-
ature, g the exterior temperature, γ the heat transfer coefficient, σ the electrical
conductivity, ui the complex control of antenna i, and Ei the corresponding elec-
trical field. The temperature constraint ymax is piecewise constant on each tissue
type. For actual data we refer to [15]. Different types of cost functionals are in
use. For simplicity, here we use a tracking type form with f(y) = (y − 50)2. As is
apparent from (20), a simultaneous phase shift of all antennas has no effect on the
temperature distribution. For this reason, one of the phases can been fixed, such
that the control variables can be interpreted as a vector in R23.

The problem has been discretized by finite elements (FE) on a tetrahedral grid
with 14334 vertices (see Fig. 2). For the simple case of constant perfusion, the FE
discretization yields the following finite-dimensional NLP:

min
1
2
(y − 50)T Mht(y − 50)

subject to

Ahy + Mhw(y − ya) + Dh(y − g)− 1
2
uT Ehu = 0

y ≤ ymax

Here, Ah is the stiffness matrix, Mht and Mhw denote the mass matrices scaled by
χΩt and w, respectively, Dh discretizes the Robin boundary conditions, and Eh is
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the tensor mapping the control to the heat absorbed by the tissue. The associated
KKT matrix is λT

h Eh (Ehu)T

Mht Ah + Mhw + Dh

Ehu Ah + Mhw + Dh

 .

For the simple case of linear finite elements, the discretized NLP data scales with
the mesh size h as specified in Table 12. The size of the nonlinear programming
problem for different FE discretizations is shown in Table 13. Table 14 shows the
timing results for Ipopt combined with the ilblt-match preconditioner. For some
discretizations, the iterative solver leads to much more Newton iterations than the
direct solver, even with a requested residual reduction factor of 10−14. This indi-
cates that the inertia is not always computed correctly. However, the approximation
of the inertia is still sufficiently accurate to allow a robust and reliable convergence
of the NLP solver. Since on the one hand the evaluation of the NLP functions is
quite expensive and on the other hand the problem structure leads to relatively
low fill-in in the direct solver, the larger number of Newton iterations compensates
the efficiency gained by the iterative solution. The remaining advantage of the
incomplete factorization in this particular FE application is its lower memory re-
quirement, which allows to solve larger problems than those that could be addressed
by the direct solver.

6 Conclusion

We considered the use of preconditioned iterative linear solvers to solve large-scale
nonlinear optimization problems. One way to handle nonconvexity and generate
search directions that promote convergence to local minimizers is to ensure a specific
inertia of the saddle-point matrix used in the computation of optimization steps. We
examined the effectiveness of several new preconditioners for nonconvex problems.
At the heart of these preconditioners lies the use of symmetric matchings [27] on each
level, and in the preconditioning stage the use of the inertia-revealing, inverse-based
and eigenvalue-bounded incomplete factorization preconditioner Pardiso/Ml [37].
The method is able to reveal the inertia of the original matrix sufficiently accurate.
It is reliable and robust enough to allow a general-purpose interior-point optimiza-
tion code to solve a large variety of nonlinear nonconvex optimization problems.

The resulting algorithm was shown to be able to solve very large-scale difficult
discretized three-dimensional PDE-constrained optimization problems, which were
intractable when a direct linear solver was used. The practical relevance was demon-
strated on a hyperthermia cancer treatment application.

The encouraging results presented in this paper indicate that this method might
also be successfully applied to other large-scale problems arising in convex and
nonconvex large-scale PDE-constrained optimizations.
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Table 1: Characteristics of sample matrices from 3D PDE-constrained optimization
problems. Key: n = number of Hessian equations; m = number of Jacobian equa-
tions; nnz(A),nnz(H) = number of nonzeros in A and H; inertia = inertia of the
KKT matrix; fill-in = fill-in of the complete factor during a sparse direct factor-
ization in % compared to the original matrix; anal. and fact. = times for analysis
and factorization to compute inertia information with sparse direct solver (in CPU
seconds)
.

Problem inertia sparse LBLT

fill-in anal. fact.

Ipopt series A, n = 2,331, m =1,331
nnz(A) = 37,791, nnz(H) = 17,892

pde-a-01-01 (2059, 1603, 0) 18.5 0.03 0.38
pde-a-01-02 (2067, 1595, 0) 18.5 0.03 0.38
pde-a-01-03 (2331, 1331, 0) 18.5 0.04 0.38
pde-a-02-01 (2073, 1589, 0) 18.5 0.05 0.38
pde-a-02-02 (2331, 1331, 0) 18.5 0.02 0.36

Ipopt series B, n = 17,261, m = 9,261
nnz(A)=290,981, nnz(H) = 135,382

pde-b-01-01 (15618, 10904, 0) 60.1 0.24 17.1
pde-b-01-02 (15623, 10899, 0) 60.2 0.34 16.4
pde-b-01-03 (17261, 9261, 0) 59.9 0.25 16.6
pde-b-02-01 (15633, 10889, 0) 60.4 0.26 16.0
pde-b-02-02 (17261, 9261, 0) 59.2 0.27 16.7

Ipopt series C, n = 132,921, m = 68,921
nnz(A) = 2,283,561, nnz(H) = 1,053,162

pde-c-01-01 (132921, 68921, 0) 212. 4.3 2644.
pde-c-02-01 (68921, 132921, 0) 214. 4.4 2532.
pde-c-02-02 (132921, 68921, 0) 215. 4.2 2612.
pde-c-03-01 (68921, 132921, 0) 216. 4.4 2622.
pde-c-03-02 (132921, 68921, 0) 215. 4.3 2634.

Table 2: Inertia-revealing KKT preconditioner applied to matrices from Table 1.
Key: fill-in = fill-in of the preconditioner in % compared to the original matrix; iner-
tia = is the computed inertia correct? set-up= time to compute the preconditioner
(in CPU seconds).

Problem ildlt ildlt-match ilblt-match
fill-in inertia set-up fill-in inertia set-up fill-in inertia set-up

Ipopt series A, fill-in sparse direct solver: ≈ 18.5

pde-a-01-01 4.91 wrong 0.33 9.92 wrong 1.30 3.15 ok 0.12
pde-a-01-02 5.12 wrong 0.34 7.15 ok 0.58 3.17 ok 0.07
pde-a-01-03 5.51 wrong 0.37 8.39 ok 0.50 3.00 ok 0.07
pde-a-02-01 6.52 wrong 0.38 7.83 ok 0.67 3.29 ok 0.08
pde-a-02-02 5.19 wrong 0.34 7.31 ok 0.69 3.16 ok 0.07

Ipopt series B, fill-in sparse direct solver: ≈ 60.2

pde-b-01-01 6.03 wrong 13.4 17.7 ok 7.38 4.23 ok 0.96
pde-b-01-02 5.83 wrong 12.4 67.7 wrong 1044 4.34 ok 1.00
pde-b-01-03 3.87 wrong 7.41 16.3 ok 4.48 4.16 ok 0.96
pde-b-02-01 6.03 wrong 13.4 18.2 ok 6.96 4.29 ok 0.99
pde-b-02-02 6.05 wrong 13.4 61.5 wrong 1019 4.37 ok 1.01

Ipopt series C, fill-in sparse direct solver: ≈ 212.2

pde-c-01-01 18.4 wrong 2901 112. ok 5915 4.53 ok 9.47
pde-c-02-01 21.4 wrong 4130 35.1 wrong 2915 4.57 ok 9.86
pde-c-02-02 29.4 wrong 4530 45.1 ok 3215 4.52 ok 9.56
pde-c-03-01 12.4 wrong 1031 15.1 ok 1015 4.56 ok 9.73
pde-c-03-02 11.4 wrong 1041 25.1 ok 2115 4.53 ok 9.66
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Table 3: Characteristics of publicly available indefinite saddle-point matrices.
Key: n = number of Hessian equations; m = number of Jacobian equations;
nnz(A),nnz(H) = number of nonzeros in A and H; H spd.? = is the Hessian
H(x) positive definite?; fill-in = fill-in of the complete factor during a sparse di-
rect factorization in % to the original matrix; anal. and fact.= times for analysis
and factorization to compute inertia information with sparse direct solver (in CPU
seconds)
.

Problem n m H spd.? nnz(A) nnz(H) sparse LBLT

fill-in anal. fact.

A0NSDSIL 60,012 20,004 no 115,005 100,020 3.49 0.11 0.08
A2NNSNSL 60,012 20,004 no 111,099 100,020 3.31 0.23 0.07
A5ESINDL 45,006 15,002 no 15,002 75,010 4.89 0.07 0.04
AUG3DCQP 27,543 8,000 yes 50,286 27,543 43.0 0.41 1.58
BLOWEYA 20,002 10,002 no 50,003 40,003 1.75 0.19 0.02
BRAINPC2 13,807 13,800 yes 82,794 13,807 3.82 6.25 0.27
BRATU3D 15,625 12,167 no 15,625 85,169 49.8 0.30 2.35
c-55 19,121 13,659 yes 185,335 19,121 49.5 1.02 8.36
c-58 22,461 15,134 yes 257,481 22,461 30.1 1.18 6.51
c-59 23,813 17,469 yes 219,627 23,813 43.5 1.19 9.66
c-62 25,158 16,573 yes 258,806 25,158 67.3 1.41 20.9
c-63 25,505 18,729 yes 195,235 25,505 26.4 1.08 4.26
c-71 44,814 31,824 yes 391,458 44,814 89.2 2.48 72.7
DIXMAANL 234,128 155,746 yes 466,319 701,366 10.8 3.27 1.53
NCVXQP1 7,111 5,000 no 14,998 25,539 76.2 0.25 2.13
NCVXQP7 50,000 37,500 no 112,497 199,984 70.0 14.6 116.

Table 4: Inertia-revealing preconditioner applied to matrices from Table 3. Key:
fill-in = fill-in of the preconditioner in % to the original matrix; inertial = is the
computed inertia correct? (number of incorrect sign in parentheses); set-up = time
to compute the preconditioner (in CPU seconds). † indicates that the process was
terminated due to a significantly higher computation time compared to the direct
solver
.

Problem ildlt ildlt-match ilblt-match
fill-in inertia set-up fill-in inertia set-up fill-in inertia set-up

A0NSDSIL 0.94 yes 0.88 0.92 no (9) 0.52 2.28 yes 3.79
A2NNSNSL 0.85 no (2) 0.82 0.94 no (4) 0.51 2.22 yes 0.56
A5ESINDL 0.85 yes 0.40 0.90 no (3) 0.38 2.98 yes 0.36
AUG3DCQP 0.49 no (8000) 0.49 0.99 yes 0.31 2.88 yes 0.30
BLOWEYA 0.78 no (100) 1.04 2.54 yes 0.56 0.79 yes 0.18
BRAINPC2 0.99 no (89) 0.87 2.50 no (1762) 3.97 0.68 yes 1.70
BRATU3D † † † 49.1 yes 9.66 2.04 yes 0.22
c-55 † † † 1.62 yes 0.87 1.24 yes 0.82
c-58 † † † 0.89 yes 1.40 1.07 yes 0.97
c-59 † † † 1.52 yes 0.97 1.96 yes 1.04
c-62 † † † 1.16 yes 1.61 1.65 yes 1.24
c-63 † † † 1.46 yes 0.90 1.45 yes 0.89
c-71 † † † 1.77 yes 2.01 1.80 yes 2.01
DIXMAANL 1.86 no (2) 0.47 1.88 no (5) 0.54 1.86 yes 0.53
NCVXQP1 2.94 no (2712) 0.96 1.21 yes 0.28 1.00 yes 0.28
NCVXQP7 † † † 10.0 no (2) 20.8 5.5 no (15) 11.55
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Table 5: Inertia-revealing KKT preconditioner ilblt-match. Numbers of Sqmr
iterations for different value of the initial residual reduction for several KKT ma-
trices.

Relative residual
Problem 10−4 10−7 10−14

pde-a-01-03 12 20 25
pde-a-02-02 14 20 27
pde-b-01-03 14 18 24
pde-b-01-02 17 21 27
pde-c-01-01 17 23 26
pde-c-02-02 16 23 29
pde-c-03-02 18 20 26
AUG3DCQP 16 41 59
BRAINPC2 19 23 27
c-55 6 15 21
c-58 27 39 54
c-59 14 18 23
c-62 13 19 28
c-63 10 18 21
c-71 10 17 22
DIXMAANL 73 95 131

Table 6: Optimization outcome for CUTE test set. Key: “Direct” uses the regular
Pardiso code; “Direct w/o inertia” uses the regular Pardiso code, but the inertia of
the linear system was ignored and no modifications for the Hessian block to treat
negative curvature were done; “Iterative” uses the iterative linear solver with the
inertia-revealing preconditioner Pardiso/Ml (for two residual reduction tolerances
for the iterative solver). The possible outcomes are: Successful termination due to
satisfaction of the tolerances for the optimizer; exceeding maximal iteration count
(3000) or CPU time limit (30min); convergence to points that satisfy the optimizer’s
tolerances to determine local infeasibility; divergence of the iterates; other failures
(including Ipopt’s termination in the restoration phase)

Outcome Direct Direct Iterative Iterative
w/o inertia (res=10−7) (res=10−14)

Success 688 627 674 667
Max iter 14 40 15 16
Time limit 1 0 11 14
Local infeas 2 7 1 5
Diverging 0 7 0 0
Other failure 15 39 19 18
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Table 7: Optimization outcome for COPS test set. Column and row labeling as in
Table 6.

Outcome Direct Direct Iterative Iterative
w/o inertia (res=10−7) (res=10−14)

Success 64 49 64 64
Max iter 0 4 0 0
Local infeas 0 1 0 0
Diverging 0 3 0 0
Other failure 1 8 1 1

Table 8: Comparison of final objective function values for CUTE and COPS test
problems. For a given pair of linear solver options the entries in the table list the
number of problems that were successfully solved by both options and for which
the final objective function values are more than 1% for the option names in the
row compared to the option named in the column. The two numbers in each entry
correspond to the number of CUTE and COPS problems, respectively.

Direct Direct Iterative Iterative
w/o inertia (res=10−7) (res=10−14)

Direct — 95/1 5/0 0/0
Direct w/o inertia 0/0 — 5/0 6/0
Iter (res=10−7) 2/0 90/1 — 1/0
Iter (res=10−14) 0/0 88/1 0/0 —
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Table 9: Size of nonlinear programming problems for the 3D PDE-constrained
optimization problem with boundary control as a function of the discretization
parameter N using second-order finite difference approximations.

Problem Variables with Variables with Number of Number of nonzeros in
Size upper bounds lower/upper bounds equality constraints Jacobian matrix

N = 20 8,000 2,400 8,000 215,296
N = 40 64,000 9,600 64,000 1,726,576
N = 60 216,000 21,600 216,000 5,829,856
N = 80 512,000 38,400 512,000 13,821,136

N = 150 3,510,000 135,400 3,510,000 91,119,616

Table 10: Timing results for the convex 3D PDE-constrained optimization problem
(with objective (16)) as a function of the discretization parameter N . Key: MByte
= Memory consumption in MByte; it. = total number of Newton iterations in
Ipopt; secs = CPU time in seconds. The numerical experiments for the iterative
solver Pardiso/Ml are performed with a relative residual (res.) of either 10−4,
10−7 or 10−14. † indicates a 32-bit integer overflow for the direct solver Pardiso.

Problem Ipopt — Pardiso Ipopt — Pardiso/Ml
res.= 10−4 res.= 10−7 res.=10−14

MByte it. secs MByte it. secs it. secs it. secs

N = 20 56 9 13 11 9 7 9 8 9 10
N = 40 952 9 604 96 9 78 9 87 9 118
N = 60 4,484 9 6473 336 9 311 9 362 9 554
N = 80 15,784 10 35,710 808 10 935 9 1,016 9 1,536
N = 100 † † † 1,600 10 2,121 9 2,324 9 3,789
N = 150 † † † 5,400 10 9,588 9 10,607 9 16,491

Table 11: Timing results for the nonconvex 3D PDE-constrained optimization prob-
lem (with objective (17)) as a function of the discretization parameter N . Key:
MByte = Memory consumption in MByte; it. = total number of Newton iterations
in Ipopt; secs = CPU time in seconds. The numerical experiments for the iterative
solver Pardiso/Ml are performed with a relative residual (res.) of either 10−4,
10−7 or 10−14. † indicates a 32-bit integer overflow for the direct solver Pardiso
and ‡ a convergence problem in Ipopt.

Problem Ipopt — Pardiso Ipopt — Pardiso/Ml
res.= 10−4 res.= 10−7 res.=10−14

MByte it. secs MByte it. secs it. secs it. secs

N = 20 56 68 272 12 44 70 49 94 67 136
N = 40 952 49 8,157 96 69 1,083 56 947 54 1,068
N = 60 4,484 58 104,837 384 67 4,029 67 4,501 66 5,701
N = 80 15,784 102 1,234,345 832 ‡ ‡ 115 21,772 109 28,524
N = 100 † † † 1,603 ‡ ‡ 381 197,323 345 258,369
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Table 12: Scaling of NLP data with mesh size h for linear elements. n is the
number of grid points, k the number of boundary points, “spd” = symmetric positive
definite, “sp semidef” = symmetric positive semidefinite

quantity dimension scaling structure

Ah m×m h spd
Mht m×m h3 sp semidef
Mhw m×m h3 spd
Eh m× 23× 23 h3

Dh m×m h2 sp semidef

Table 13: Characteristic of the hyperthermia treatment planning problem.
Key: n = number of Hessian equations; m = number of Jacobian equations;
nnz(A),nnz(H) = number of nonzeros in A and H(x).

Discretization
FE order grid refinements n m nnz(A) nnz(H)

1 0 14,357 14,334 529,084 107,144
2 0 106,891 106,868 5,398,662 1,524,059
1 1 106,891 106,868 3,999,824 824,640
2 1 824,387 824,364 42,139,056 12,001,800

Table 14: Memory consumption in MByte, total number of Newton iterations in
Ipopt, and CPU in seconds for the linear solvers in the nonconvex hyperthermia
3D PDE-constrained optimization problem. The numerical experiments for the
iterative solver Pardiso/Ml are performed with a relative residual reduction (res.)
of either 10−7 or 10−14. † indicates a 32-bit integer overflow for the direct solver
Pardiso.

Discretization Ipopt — Pardiso Ipopt — Pardiso/Ml
FE grid res.= 10−7 res.=10−14

order refinements MByte it. secs MByte it. secs it. secs

1 0 72 93 580 32 90 469 87 476
2 0 1,352 118 35,379 288 165 44,461 194 50,836
1 1 1,120 83 20,151 392 374 34,251 223 28,118
2 1 † † † 7,005 — — 113 482,786
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