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Abstract

In this paper we describe a cutting plane based algorithm for the mul-
tiple knapsack problem. We use our algorithm to solve some practical
problem instances arising in the layout of electronic circuits and in the de-
sign of main frame computers, and we report on our computational expe-
rience. This includes a discussion and evaluation of separation algorithms,
an LP-based primal heuristic and some implementation details. The pa-
per is based on the polyhedral theory for the multiple knapsack polytope
developed in our companion paper [?] and meant to turn this theory into
an algorithmic tool for the solution of practical problems.

∗ On leave from University of São Paulo, Brazil.

� Introduction

Given a set N of items and a set M of knapsacks. With every item i ∈ N there
is associated a weight fi > 0, and every knapsack k ∈ M has a capacity Fk > 0.
Moreover, an objective function cik ∈ IR, i ∈ N, k ∈ M is given, which reflects
the cost if item i is assigned to knapsack k. The task is to assign a subset of the
set of items to the set of knapsacks that yields minimum cost. This problem is
called the weighted multiple knapsack problem.

Closely related to the (weighted) multiple knapsack problem are the single 0/1
knapsack problem and the generalized assignment problem. The single 0/1 knap-
sack problem is the special case of the multiple knapsack problem where |M | = 1.
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This problem is NP-hard (cf. [?]) and has been extensively studied in terms of
approximation algorithms (see, for instance, [?]), in terms of branch and bound
methods (see, for example, [?]) and from a polyhedral point of view (see, for
instance, [?], [?], [?], [?]). The generalized assignment problem is a generaliza-
tion of the multiple knapsack problem where every item i may have a particular
weight fik for each knapsack k. The corresponding polyhedron was investigated
in [?].

Our motivation for studying the multiple knapsack problem came from two ap-
plications, namely, the design of processors for main frame computers and the
layout of electronic circuits. We will briefly describe both applications now.

The first problem arises in the (global) design of a main frame computer. We
are given a set of electronic components. The most important property of the
electronic circuits – for our purposes – is the area that these components cover.
The electronic components have to be integrated on printed circuit boards, multi
chip modules or other devices. Each of these devices is defined by several technical
properties that we do not intend to describe here. Two properties of devices are
important for us. Every device k has a capacity Fk, representing its “area” or
the weight it can hold and a cut capacity Sk, describing the number of wires that
can be connected to this device. The electronic components have certain contact
points, called pins, from which wires can extend to pins of other components. In
the logical design phase it is determined which pins of which components have to
be connected by a wire to ensure certain functional properties. It is customary
to call a collection of pins that have to be connected a net.

The task is to assign the electronic components to the devices in such a way
that a certain objective function is minimized and a number of technical side
constraints is satisfied. Among them are two essential requirements.

• For each device k the sum of the areas of the electronic components that
are assigned to this device must not exceed the capacity Fk.

• The number of nets that must leave some device k must not exceed its cut
capacity Sk.

The mathematical problem that arises by thoroughly modelling all (or at least
the most important) aspects of this question is a rather complicated integer pro-
gram. The full model appears to be hopelessly difficult – at least for the present
state of integer programming technology. Thus, we investigated a hierarchy of
combinatorial relaxations of the complete model. A first relaxation of the general
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model is the multiple knapsack problem, where we neglect the nets completely
and concentrate on the packing aspect of the problem. In knapsack terminology,
the items correspond to the electronic components and the devices to the knap-
sacks. An appropriate objective function for the multiple knapsack problem is
determined heuristically. For more details we refer the reader to [?].

The second application we have in mind arises in the layout of electronic circuits.
Here, one major subproblem (the so-called placement problem) is to assign a set
of logical units (cells) to locations on a given rectangle (silicon) subject to certain
technical side constraints. In general, cells are of rectangular shape and have a
particular weight representing its area. Due to the inherent complexity of the
placement problem and its large scale, it is further decomposed in practice. In a
first step, the given rectangle is subdivided and it is determined which cells are
assigned to which of the subareas such that the total weight of the cells that are
assigned to the same subarea does not exceed the corresponding area capacity.
This process of iteratively subdividing areas and assigning cells to subareas is
continued until every subarea contains at most one cell. If we interpret cells as
items and subareas as knapsacks, we can associate with every problem arising in
this decomposition scheme a multiple knapsack problem. In fact, the multiple
knapsack problem does not reflect the whole situation, since – besides the area
requirements – there are many additional side constraints which are to be taken
into account and a complicated objective function must be minimized which
strongly depends on the underlying fabrication technology. Nevertheless, solving
the corresponding multiple knapsack problems seems to be a reasonable starting
point to attack the much more complicated placement problems.

We consider the multiple knapsack problem from a polyhedral point of view. Let
an instance (N,M, f, F ) of the multiple knapsack problem be given, i. e., a set
N of items, a set M of knapsacks, a weight vector f = (fi)i∈N and a capacity
vector F = (Fk)k∈M . We introduce variables xik ∈ IRN×M with the interpretation
xik = 1, if item i is assigned to knapsack k, and xik = 0, otherwise. The multiple
knapsack polytope MK(N×M, f, F ) is defined as the convex hull of all feasible
solutions to the multiple knapsack problem. It is easy to see that the following
relation holds.

MK(N×M, f, F ) = conv{x ∈ IRN×M |∑
i∈N fixik ≤ Fk, for all k ∈ M ; (1)∑
k∈M xik ≤ 1, for all i ∈ N ; (2)

xik ∈ {0, 1}, for all i ∈ N, k ∈ M}.

The constraints (1) are called knapsack constraints and the constraints (2) SOS
(Special Ordered Set) constraints. The weighted multiple knapsack problem can
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be solved – in principle – via the following linear program:

(??.1)
min

∑
i∈N

∑
k∈M cikxik

x ∈ MK(N×M, f, F ).

In order to apply linear programming techniques we need a description of the
polytope MK(N×M, f, F ) by means of inequalities. This issue was addressed in
[?]. Since the number of facet-defining inequalities is exponential in the size of
the input, we use a cutting plane based algorithm to solve (??.1). Here, the idea
is the following.

Start with a small set of valid inequalities, for example, the SOS and knapsack
inequalities. These inequalities define a polyhedron P ′ that contains MK(N×
M, f, F ). Optimize the linear objective function over P ′ and let y be an optimal
solution. Obviously, y yields a lower bound for the optimum value of the weighted
multiple knapsack problem. If y is also feasible, y is an optimal solution for the
weighted multiple knapsack problem. Otherwise, there exists a valid inequality
for MK(N×M, f, F ) that is violated by y. Thus, we must solve the separation
problem which is to find a valid inequality that is violated by y. If such an
inequality is found, we add it to the linear program and solve it again. The
procedure of iteratively solving linear programs and adding violated constraints
is commonly called a cutting plane algorithm.

A cutting plane algorithm ends with an optimal solution or (at least) with a
lower bound for the weighted multiple knapsack problem. The latter case is not
avoidable in general, since we do not know a complete description of the multiple
knapsack polytope, and exact separation routines are not available for all known
classes of facet-defining inequalities. If we intend to find an optimal solution of
the problem we must embed the procedure into an enumeration scheme.

In this paper we discuss how to adapt the general cutting plane method to the
weighted multiple knapsack problem. In detail, the paper is organized as follows.
In Section 2 a short review is given on several classes of valid and facet-defining
inequalities for the multiple knapsack polytope. Section 3 is devoted to the sepa-
ration problem for these classes of inequalities. We investigate the computational
complexity of the separation problem for one class and present several heuristic
procedures to find violated inequalities. This issue includes lifting and comple-
menting of inequalities. In Section 4 we deal with implementational details. In
particular, a primal heuristic to find a good feasible solution for the multiple knap-
sack problem is presented. We have tested our cutting plane based algorithm on
instances arising in the applications mentioned above. The computational results
we have obtained are shown in Section 5.
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� The Multiple Knapsack Polytope

In this section we outline several classes of inequalities that play an important
role in our cutting plane algorithm. For many of these classes we give necessary
and sufficient conditions such that the corresponding inequalities are valid or
facet-defining. For the proofs we refer the interested reader to [?]. We suppose
throughout this chapter that an instance (N,M, f, F ) of the multiple knapsack
problem is given. In case |M | = 1, the quadruple (N,M, f, F ) defines an instance
of the single knapsack problem. We will frequently abbreviate this instance by
the triple (N, f, Fk) where M = {k}. First of all, let us fix some notation.

It will turn out that we often refer to subinstances of the multiple knapsack
problem where certain items are not feasible for certain knapsacks. Thus, we will
define the polyhedron in a more general frame. Suppose Ai ⊆ N and Bi ⊆ M for
i = 1, . . . , t are given, and let T :=

⋃t
i=1 Ai×Bi. Define the polytope

MK(T, f, F ) := conv{x ∈ IRT | ∑
i:(i,k)∈T fixik ≤ Fk, k ∈ ⋃t

l=1Bl,∑
k:(i,k)∈T xik ≤ 1, i ∈ ⋃t

j=1Aj,
xik ∈ {0, 1}, (i, k) ∈ T}.

In this notation the polytope corresponding to the multiple knapsack problem
defined at the beginning coincides with MK(N×M, f, F ), which we will often
abbreviate by MK. It is easy to see that MK is full dimensional if and only
if fi ≤ Fk for all i ∈ N and k ∈ M . Similarly, the dimension of the polytope
MK(T, f, F ) equals |T | = ∑t

i=1 |Ai||Bi| if and only if fi ≤ Fk for all (i, k) ∈ T .
For the remainder of this paper we assume that fi ≤ Fk for all i ∈ N, k ∈ M .

A set S ⊆ N is a cover with respect to some knapsack k ∈ M if
∑

i∈S fi > Fk.
The cover is minimal with respect to k if

∑
i∈S\{s} fi ≤ Fk for all s ∈ S. Let

d ≥ 1 be some integer. We say that a subset of items S ⊆ N is a d-cover with
respect to some knapsack k ∈ M , if S is a cover and every subset D ⊆ S with
|D| = |S| − d satisfies f(D) ≤ Fk and f(D ∪ {s}) > Fk for all s ∈ S \D. Using
this notation a minimal cover is a 1-cover. A set N ′ ∪ {z} with N ′ ⊆ N and
z ∈ N \N ′ is called a (1,d)-configuration with respect to some knapsack k ∈ M
if

1.
∑

j∈N ′ fj ≤ Fk;

2. K ∪{z} is a minimal cover with respect to knapsack k, for all K ⊂ N ′ with
|K| = d.

For I ⊆ N and a vector x ∈ IRN we set x(I) :=
∑

i∈I xi.
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For the rest of this section we briefly review some of the valid inequalities for the
multiple knapsack polyhedron.

First of all, note that the trivial inequalities xik ≥ 0 define facets of MK for all
i ∈ N, k ∈ M . In case m ≥ 2, the SOS constraints define facets of MK.

Let (N,M, f, F ) be an instance of the multiple knapsack problem. With each of
the |M | knapsack constraints we can associate the single knapsack polyhedron

SK(N, f, Fk) := conv{x ∈ IRN | ∑
i∈N

fixi ≤ Fk, xi ∈ {0, 1}, i ∈ N}.

Obviously, for every k ∈ M the relation MK(N×M, f, F ) ⊆ SK(N, f, Fk) holds,
and hence, a first question arising in this context is, whether knowledge about
these single knapsack polyhedra can be used to describe the corresponding mul-
tiple knapsack polytope. Indeed, the answer to this question is yes, since the
subsequent lemma states that all nontrivial facet-defining inequalities associated
with the single knapsack polytopes are inherited by MK (cf. [?]).

Lemma 2.1 Let V ⊆ N and k ∈ M be given. Suppose aTx ≤ α is a nontriv-
ial facet-defining inequality of SK(V, f, Fk). Then, aTx ≤ α defines a facet of
MK(V ×M, f, F ), where a ∈ IRV×M and

ail :=

{
ai, if l = k;
0, otherwise.

Inequalities that are valid for some polytope MK(N×M, f, F ) and obtained by
applying Lemma 2.1 will be called individual. More precisely, let aTx ≤ α be
a nontrivial facet-defining inequality of SK(N, f, Fk) and set ail = ai, if l = k
and ail = 0, otherwise (i ∈ V, l ∈ M). Then, the inequality aTx ≤ α which is
valid for MK(N×M, f, F ) is called individual. Valid inequalities for the polytope
MK(N×M, f, F ) that cannot be obtained by applying Lemma 2.1 will be called
joint. Examples of individual inequalities are the minimal cover inequality and
the (1,d)-configuration inequality that we want to present now.

Suppose that S ⊆ N is a minimal cover with respect to some knapsack k ∈ M .
The inequality ∑

i∈S
xik ≤ |S| − 1

is called minimal cover inequality corresponding to S and k. In [?], [?] and [?] it
was shown that the minimal cover inequality corresponding to S and k defines a
facet of SK(S, f, Fk) (and, thus, of MK(S×M, f, F )).
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Another well known class of individual inequalities consists of the (1,d)-configura-
tion inequalities. Suppose that N ′∪{z} ⊆ N is a (1,d)-configuration with respect
to some knapsack k ∈ M . The inequality∑

i∈N ′
xik + (|N ′| − d+ 1)xzk ≤ |N ′|

is called (1,d)-configuration inequality corresponding to N ′ ∪ {z} and k. In [?] it
was shown that the (1,d)-configuration inequality corresponding to N ′∪{z} and k
defines a facet of SK(N ′∪{z}, f, Fk) (and, therefore, ofMK((N ′∪{z})×M, f, F )).

Besides minimal cover and (1, d)-configuration inequalities there are classes of
joint inequalities that are valid for the multiple knapsack polytope (cf. [?], [?]).
Among them are the heterogeneous two-cover inequalities, the extended cover
inequalities and the multiple cover inequalities. In the remainder of this section
we will briefly review some of the results from our companion paper.

In [?] a theorem is presented which allows to extend certain classes of facet-
defining inequalities of the multiple knapsack polytope. Here, we will restrict
the discussions just to the special case where a minimal cover inequality is to be
extended. This yields the so-called extended cover inequalities.

Let S ⊆ N be a minimal cover with respect to some knapsack k ∈ M and let
M ′ ⊆ M be a subset of knapsacks with k ∈ M ′. Let us choose a positive integer
r ≤ min{|N \ S|, |M \M ′|}, sets T1, . . . , Tr that are mutually disjoint subsets of
N \ S and a subset {k1, . . . , kr} of M \M ′. We call the inequality

∑
i∈S

xik +
r∑

v=1

∑
i∈S∪Tv

xikv ≤ |S| − 1 +
r∑

v=1

|Tv|

the extended cover inequality corresponding to S, T1, . . . , Tr, k, k1, . . . , kr. It is
valid for MK if and only if Tv∪{i} is a cover with respect to kv for all i ∈ S and
v = 1, . . . , r. Necessary and sufficient conditions when these inequalities define
facets were given in [?].

Finally, let us introduce the class of multiple cover inequalities which can be
viewed as a generalization of minimal cover inequalities to several knapsacks.
These inequalities were introduced in [?], and in [?] some conditions were derived
when they define facets.

Let an instance of the multiple knapsack problem (N,M, f, F ) be given. Suppose,
S ⊆ N and J ⊆ M such that

∑
i∈S fi >

∑
k∈J Fk. Under these assumptions, the

inequality ∑
i∈S

∑
j∈J

xij ≤ |S| − 1
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is called multiple cover inequality. It is valid for the polytope MK(N×M, f, F ).

For the rest of this paper we will deal with the task how to integrate these
inequalities in a cutting plane algorithm and we will discuss their use in solving
practical problems.

� The Separation Problem

In this section we deal with the separation problems for the classes of inequalities
presented in [?]. Formally, the separation problem for a given class of inequalities
can be stated as follows:

Given an instance (N,M, f, F ) of the multiple knapsack problem,
a vector y ∈ [0, 1]N×M and a class of valid inequalities for MK(N×
M, f, F ). Decide, whether y satisfies all inequalities of the given class,
if not, find an inequality of that class which y violates.

All the classes of inequalities shown in the previous section include the concept
of a cover. So, it seems natural to look at the separation problem for the minimal
cover inequalities first. Obviously, the problem of finding a minimal (with respect
to some weighting of the items) cover is NP-hard, because it reduces to the
single knapsack problem. This fact indicates that the separation problem for the
minimal cover inequalities is also NP-hard. We have not found an explicit proof
of this result in the literature. Therefore, we give a short proof here.

Though this result does not prove that all the other separation problems are NP-
hard as well, we conjecture that these problems are not solvable in polynomial
time. Thus, we put our emphasis on developing separation heuristics, which we
will discuss in the following. We conclude this section by describing the main
ideas of lifting and complementing inequalities.

��� Separation of Minimal Cover Inequalities

Theorem 3.1 The separation problem for the minimal cover inequalities is NP-
hard.

Proof.
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Obviously, it suffices to show that the following decision problem (SMC) of the
separation problem for the minimal cover inequalities is NP-complete.

(SMC) Given an instance (V, a, b) of the single knapsack problem and a vector
x ∈ [0, 1]V . Does there exist a subset S ⊆ V such that

∑
i∈S ai ≥ b + 1,∑

i∈S\{j} ai ≤ b for all j ∈ S and
∑

i∈S xi > |S| − 1?

We show that the decision problem associated with the knapsack problem (KP ),
which is known to be NP-complete [?], can be reduced to (SMC).

(KP) Given an instance (R,w, k) of the single knapsack problem, an objective
function vector c ∈ INR and a positive integer number f ∈ IN. Does there
exist a subset S ′ ⊆ R such that

∑
i∈S′ ci ≥ f and

∑
i∈S′ wi ≤ k?

First of all, note that (SMC) belongs to NP , since it can be verified in linear
time whether a given set S ⊆ V is a solution to (SMC). Let us now show that
(KP ) can be reduced to (SMC) in polynomial time.

Let an instance IKP of (KP ) be given, i. e., an instance (R,w, k) of the single
knapsack problem, a weight vector c ∈ INR and a positive integer number f ∈ IN.
We define an instance ISMC of (SMC) by setting

V := R;
xi := 1− wi

k
+ ε, for all i ∈ V ;

a := c;
b := f − 1;

where 0 < ε < 1
k|V | .

Now we show that IKP has a solution if and only if ISMC has one.

Let S be a solution of ISMC. Then,
∑

i∈S ai ≥ b + 1 and
∑

i∈S xi > |S| − 1.
By substitution, we obtain

∑
i∈S ci ≥ f and

∑
i∈S(1 − wi

k
+ ε) > |S| − 1. Thus,

|S|(1+ε)− 1
k

∑
i∈S wi > |S|−1, or equivalently 1

k

∑
i∈S wi < 1+ε|S|. Since ε < 1

k|V |
and wi ∈ IN, we have that

∑
i∈S wi ≤ k. So, S is a solution of IKP .

Conversely, let S ′ be a solution of IKP . Without loss of generality we can assume
that S ′ is minimal, i. e., every proper subset of S ′ is no solution of IKP . Then,∑

i∈S′ ci ≥ f and
∑

i∈S′ wi ≤ k. Substituting c and f , we obtain
∑

i∈S′ ai ≥
b + 1. Since S ′ is minimal, we have that

∑
i∈S′\{j} ai ≤ b for all j ∈ S. Dividing∑

i∈S′ wi ≤ k by −k and adding |S ′| to both sides, we obtain |S ′| − 1
k

∑
i∈S′ wi ≥
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|S ′| − 1, which is equivalent to
∑

i∈S′(1 − wi

k
) ≥ |S ′| − 1. Since ε > 0, we get∑

i∈S′(1− wi

k
+ ε) > |S ′|−1, and, hence,

∑
i∈S′ xi > |S ′|−1. Thus, S ′ is a solution

of ISMC.

In [?] a pseudopolynomial algorithm was presented that solves the separation
problem for minimal cover inequalities. The algorithm is based on a transforma-
tion of the problem into a network flow problem with a pseudopolynomial number
of vertices and edges. By applying network flow techniques the problem can be
solved with a pseudopolynomial time and space complexity.

In our code we have integrated a heuristic to separate minimal cover inequalities
that was introduced in [?]. This procedure can be described as follows.

Separation heuristic for minimal cover inequalities
Input: An instance of the single knapsack problem (N, f, C) and a
vector x′ ∈ [0, 1]N .
Output: A violated minimal cover inequality or the procedure fails.

Solve the following linear program

min
∑

i∈N(1 − x′
i)s̃i

s.t.
∑

i∈N fis̃i ≥ C + 1,
0 ≤ s̃i ≤ 1 for all i ∈ N.

Set S := {i ∈ N | s̃i > 0}.
Reduce S to a minimal cover.
Lift the corresponding inequality to a facet of SK(N, f, C).
If the resulting inequality is violated add it to the list of violated
inequalities.

We store all minimal covers we obtain by applying this procedure in a certain
structure, called “pool”. We use these minimal covers as substructures for some
other separation routines (see next subsection). Note that the minimal cover
S found by the heuristic defines a facet for the polytope SK(S, f, C), but not
necessarily for SK(N, f, C). In order to obtain a facet-defining inequality for
SK(N, f, C) (and thus for MK(N×M, f, F )) the inequality must be lifted. This
can be done in polynomial time, as we will see in the last subsection.

The linear program in the heuristic can be solved efficiently by using Dantzig’s
procedure. For ease of exposition suppose for the moment that N = {1, . . . , n}
and that (1−x1)

f1
≤ . . . ≤ (1−xn)

fn
. Set c := min{i ∈ {1, . . . , n} | ∑i

j=1 fj > C}.
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Then, the solution of the linear program is given by s∗ = (s∗i )i∈N , where

s∗i =

⎧⎪⎪⎨
⎪⎪⎩

1, 1 ≤ i ≤ c− 1;
0, c+ 1 ≤ i ≤ n;
C+1−

∑c−1

j=1
fj

fc
, i = c.

��� Further Separation Heuristics

In this subsection we present several procedures that we implemented to find
violated inequalities for the multiple knapsack polytope. For the exposition of
these separation heuristics we always assume that an instance (N,M, f, F ) of the
multiple knapsack problem is given and that x′ ∈ [0, 1]N×M is the fractional point
to be cut off.

Separation of (1, d)-Configuration Inequalities

In order to find violated (1, d)-configuration inequalities we have been implement-
ing and evaluating two heuristics. One of these was introduced in [?] and can be
described as follows.

Heuristic 1
Choose a minimal cover S (with respect to some knapsack k) from the pool.
Let z ∈ S be an item with maximum weight.
Set N ′ := S \ {z} and d := |N ′|.
For every item i ∈ N \ S such that

∑
j∈N ′∪{i} fj ≤ Fk,

if
∑

j∈N ′∪{i} fj ≤ C and if for all K ⊆ N ′ ∪ {i} with |K| = d,
the set K ∪ {z} is a cover with respect to k,

set N ′ := N ′ ∪ {i},
lift the corresponding (1,d)-configuration inequality and
check whether it is violated.

The second algorithm for finding (1, d)-configuration inequalities uses a threshold
parameter t and partitions the set of items N into two sets L and S. For the
items in S the corresponding weight is smaller or equal than t and the items in L
have weight greater than t. The special element of the (1, d)-configuration is now
chosen among the items in L and the other elements in the (1, d)-configuration
are selected in S by solving a linear program. More precisely, the algorithm can
be described as follows.

Heuristic 2
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Set L := {i ∈ N | fi > t} and S := {i ∈ N | fi ≤ t}.
Choose a knapsack k ∈ M .
Let z ∈ L be an item such that x′

z = max{x′
i | i ∈ L}.

Solve the following linear program

max
∑

i∈S x′
iti

s.t.
∑

i∈S fiti ≤ Fk,
0 ≤ ti ≤ 1, for all i ∈ S.

Set N ′ := {i ∈ S | ti = 1}.
If N ′ ∪ {z} is a (1, d)-configuration,
lift the corresponding inequality and check whether it is violated.

Problem Heuristic 1 Heuristic 2

cl2 0% red. 3 106
cl2 1% red. 4 162
cl2 2% red. 1 91
cl2 3% red. 1 124
cl2 4% red. 1 143
dm1 36.75% red. 1 9
dm1 36.8% red. 1 9
dm2 27 % red. 1 4
dm2 28 % red. 0 9
dm2 29 % red. 1 6
dm2 30 % red. 0 16

Table 1: Comparison of heuristics for (1,d)-configuration separation.

Table ?? subsumes the performance of both heuristics on some problem instances
(see Section 5 for more details on these instances). In column 2 the total num-
ber of violated inequalities found by the first procedure is given. Accordingly,
the numbers shown in column 3 correspond to the number of violated (1, d)-
configuration inequalities that were obtained by applying Heuristic 2. On all
these examples the second heuristic performs much better than does Heuristic
1. Our explanation is that Heuristic 1 takes a cover that was stored in the pool.
However, minimal covers in the pool correspond to inequalities that were violated
in some previous iteration, but are mostly satisfied by the current fractional point.
Hence, choosing one item from the cover as the special element of the configura-
tion and adding some other items that do not belong to the cover may not give
rise to a violated inequality. In contrast, the performance of Heuristic 2 only
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depends on the fractional point x′ and on the parameter t. In our implemen-
tation we sort the items in increasing order according to their weights, w.l.o.g.
N = {1, . . . , n}, f1 ≤ f2 ≤ . . . ≤ f|N |, and run the heuristic with all possible sets
L and S such that S = {1, . . . , i}, L = {i+ 1, . . . , |N |} and fi < fi+1.

Separation of Multiple Cover Inequalities

Given a set J ⊆ M of knapsacks. A multiple cover with respect to J is a set
of items S ⊆ N such that f(S) > F (J). The procedure we suggest in order
to find violated multiple cover inequalities, is a two-stage process. First, we
determine a set M of candidate sets M ′ ⊆ M . For every of these sets M ′ ∈ M
we then try to determine a set of items that defines a multiple cover. The latter
problem is solved, in principle, by applying the minimal cover separation routines
to the “aggregated” knapsack with capacity F (M ′). More precisely, suppose,
x′ ∈ IRN×M is the current fractional point and M ′ ⊆ M is the set of knapsacks
for which we want to find a multiple cover. We define the instance (N, f, C) of
the single knapsack problem by setting C := F (M ′). Moreover we define a new
fractional point, y ∈ IRN say, where yi :=

∑
k∈M ′ x′

ik for all i ∈ N . With input
(N, f, C) and y, the routines for finding minimal cover inequalities are called. If
these calls yield a violated minimal cover inequality, it is transformed back to the
original space and, hence, corresponds to a violated multiple cover inequality.

Unfortunately, there are 2|M | − (|M | + 2) different sets of knapsacks for which
we could perform the algorithm just described. This would, even for small |M |,
result in an immense running time. Therefore, we generate a set M of candidates
M ′ ⊆ M according to some heuristic rules which we briefly explain now. For every
item i ∈ N we determine Bi := {k ∈ M | x′

ik > 0}, where x′ is the current LP
solution. If 2 ≤ |Bi| ≤ |M | − 1, we consider Bi as one candidate set for which
we try to find a multiple cover as described before. In case Bi = M , we simply
add all subsets of M of cardinality |M | − 1 to the set M of candidate sets. The
idea for this (heuristic) selection of the candidate sets is that Bi is a subset of
knapsacks where still (at least) one item is in conflict with its “correct position”.
Thus, additional inequalities are needed that provide further information how to
handle this conflict.

Proceeding in this way, the number of different candidate sets that are generated
does not exceed the number |N |+ |M | − 1.

Separation of Extended Cover Inequalities

Let S be a cover with respect to some knapsack k, let l ∈ M \{k} and T ⊆ N \S.
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The inequality ∑
i∈S

(xik + xil) +
∑
i∈T

xil ≤ |S|+ |T | − 1

is the extended cover inequality corresponding to S, T , k and l. As shown in [?],
it is valid for the polytope MK if and only if T ∪ {i} is a cover with respect to
l for all i ∈ S. We have been implementing two (heuristic) procedures for the
extension of some minimal cover S by some set T which we briefly explain now.

The first routine chooses a cover S (with respect to some knapsack k) that is
stored in the pool. For every l ∈ M \ {k} we proceed as follows. Initialize T by
setting T := N\S. Iteratively, we remove from T the item iwith minimal value xil

fi

until the condition f(T ) ≤ Fl holds. Finally, we check whether T ∪{smin} defines
a cover with respect to k where smin ∈ S is an element in S mith minimal weight
fsmin . In case this is true, we lift the extended cover inequality corresponding to
S, T , k and l and check for a possible violation.

At this point, let us note that the criterion how to delete items from the initial
set T is of very heuristic nature. The idea is that an item i with heigh weight and
small value xil is very unlikely contained in the set T belonging to a violated ex-
tended cover inequality. Second, the condition “T ∪{smin} defines a cover” guar-
antees that the resulting inequality is valid, since f(T ∪{s}) ≥ f(T∪{smin}) > Fk

for all s ∈ S. One property of this algorithm is that the result it produces strongly
depends on the covers stored in the pool. Another way to generated extended
cover inequalities is to start from the scratch and build up a cover S and a set
T \S based on the information given by the fractional solution x′. This is, roughly
speaking, the outline of the subsequent algorithm.

Extended Cover Heuristic 2
Choose two knapsacks k, l ∈ M , k �= l and solve the linear program:
min

∑
i∈N(1.0 − x′

ik − x′
il)si

s.t.
∑

i∈N fisi > Fk,
0 ≤ si ≤ 1 for all i ∈ N.

Set S := {i ∈ N | si > 0}.
Reduce S to a minimal cover.
Let smin be an item in S with minimum weight.
Solve the linear program:
min

∑
i∈N\S(1.0 − x′

il)ti
s.t.

∑
i∈N\S fiti > Fl − fsmin ,

0 ≤ ti ≤ 1 for all i ∈ N \ S.
Set T := {i ∈ N \ S | ti > 0}.

Reduce T so that T ∪ {smin} is a minimal cover.
Lift the extended cover inequality corresponding to S, T , k and l.
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We have performed several experiments to evaluate both algorithms. It turned
out that in most cases the latter procedure finds more violated inequalities than
does the first one. Nevertheless, we included both routines in our cutting plane
algorithm in order to find as many extended cover inequalities as possible.

Separation of Heterogeneous Two-Cover Inequalities

Before sketching the ideas how to find violated heterogeneous two-cover inequal-
ities, let us recall the definition of this class. Suppose, two knapsacks k, l ∈
M, k �= l are given. Moreover, assume that S ⊆ N is a cover with respect to k
and G ⊆ N \ S is some set of items. The inequality

∑
i∈S

xik +
∑

i∈S∪G
(|S| − 1)xil ≤ |S|(|S| − 1)

is called heterogeneous two-cover inequality corresponding to S, G, k and l. It is
valid for the multiple knapsack polytope MK if and only if for all G̃ ⊆ G and
S̃ ⊆ S, |G̃| = |S̃| ≥ 1, the set S \ S̃ ∪ G̃ is a cover with respect to knapsack
l. The algorithm we designed and implemented for the separation of this class
of inequalities proceeds in a two stage process. First a cover S with respect to
knapsack k is generated by solving the same linear program as in the Extended
Cover Heuristic 2. Thereafter, a set G ⊆ N \ S is generated by successively
adding elements of N \S to G as long as the following condition is satisfied. The
condition requires that every subset T ⊆ S ∪ G, |T | = |S| and T ∩ G �= ∅ is a
cover with respect to l. This test can be performed efficiently by maintaining
a set Tmin with the |S| − 1 smallest elements in S ∪ G and updating this set
Tmin for each new item added to G. Moreover, the condition guarantees that
the resulting inequality is valid for MK. If the procedure succeeds in finding
a violated heterogeneous two-cover inequality, a lifting step is performed. This
issue is discussed in the next subsection.

��� Lifting and Complementing Inequalities

The concept of lifting and complementing inequalities is a very important issue
in solving practical problem instances via a polyhedral based approach. The idea
is to study subpolytopes obtained by fixing the value of some variables to zero or
one. The inequalities found for the subpolytopes must then be “translated” back
to the original space. In other words, the coefficients of the fixed variables in the
inequality must be determined. We call lifting the operation of calculating the
coefficients of those variables that are fixed to zero in the subproblem. If some
variable was fixed to one, we refer to the operation of calculating this coefficient
as complementing. In the following we will discuss both operations in more detail.
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Lifting Inequalities

Given an index set N , a subset S ⊆ N and a polytope P ⊆ [0, 1]N with 0/1
vertices. Moreover, suppose that aTx ≤ α is a valid inequality for the polytope
P ∩ {x ∈ IRN | xi = 0 for all i ∈ N \ S}. We say that an inequality aTx ≤ α is a
lifting of aTx ≤ α if ai = ai for all i ∈ S, α = α and aTx ≤ α is valid for P . The
coefficients ak (k ∈ N \ S) are called lifting coefficients. In principle, lifting some
inequality can be solved via the follwing procedure ([?]).

Initialize ai = ai for all i ∈ S.
Choose a sequence of the variables in N \ S (w.l.o.g. we assume that
these variables are indexed by {1, . . . , |N \ S|}).
For k = 1, . . . , |N \ S| calculate
γk := max aTx

s.t. x ∈ P ∩ {x ∈ IRN | xk = 1, xi = 0 if |N \ S| ≥ i > k};
xi ∈ {0, 1}, for all i ∈ S ∪ {1, . . . , k − 1}.

ak := α − γk.

At this point a few comments are appropriate. First, note that the lifted inequal-
ity depends on the ordering of the variables in N \ S. Second, if the inequality
aTx ≤ α is facet-defining, then the lifted inequality is facet-defining as well.
Finally, let us point out that the computation of γk is NP-hard, in general.
However, if P is the single knapsack polytope, Zemel showed that the coefficients
γk (and hence ak) can be computed in polynomial time ([?]). His idea is to “dual-
ize” the problem, slightly modify it and solve this modified program by applying
dynamic programming techniques. Due to the particular structure of the result-
ing optimization problem the running time of the dynamic program is bounded
by a polynomial in the size of the input data.

We have been implementing this idea and applied it to the classes of minimal
cover and (1, d)-configuration inequalities.

For the joint inequalities we cannot calculate the exact lifting coefficients effi-
ciently. Instead, we just determine an upper bound, uk say, on the value γk and
determine the (approximate) lifting coefficient by setting ak := α−uk. This ap-
proach guarantees validity of the generated inequality. In case of heterogeneous
two-cover- and extended cover inequalities we solve the linear relaxation of the
program given in the procedure above and define uk as the objective function
value rounded down. In order to lift multiple cover inequalities we proceed in a
slightly different way. Roughly speaking, lifting of multiple cover inequalities is
heuristically performed by lifting a cover inequality. Suppose, S ⊆ N is a multiple
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cover with respect to M ′ ⊆ M . With the multiple cover inequality corresponding
to S and M ′ we associate a cover inequality

∑
i∈S yi ≤ |S| − 1 which is valid

for the single knapsack polytope SK(N, f, F (M ′)). The latter inequality is now
lifted by using Zemel’s procedure. Let bTy ≤ |S| − 1 denote this lifted inequality
and define aik := bi for all k ∈ M ′ and i ∈ N . Then, it is easy to see that the
inequality aTx ≤ |S| − 1 is a lifted multiple cover inequality corresponding to S
and M ′ which is valid for the multiple knapsack polytope MK.

Complementing Inequalities

To our knowledge the idea of complementing inequalities (lifting the comple-
mented variables) was first suggested in [?]. In the following we will briefly discuss
the algorithms we designed and implemented for complementing the inequalities
introduced in section 2.

Given an index set N , a subset S ⊆ N and a polytope P ⊆ [0, 1]N with 0/1
vertices. Moreover, suppose that aTx ≤ α is a valid inequality for the polytope
P ∩ {x ∈ IRN | xi = 1 for all i ∈ N \ S}. We say that an inequality aTx ≤ α
is a complementing of aTx ≤ α if ai = ai for all i ∈ S, α ≥ α and aTx ≤
α is valid for P . The coefficients ak (k ∈ N \ S) are called complementing
coefficients. Similarly to the previous subsection, a general procedure can be
derived for the complementing of some inequality aTx ≤ α which is valid for the
polytope P ∩ {x ∈ IRN | xi = 1 for all i ∈ N \ S}.

Initialize ai = ai for all i ∈ S and set α := α.
Choose a sequence of the coefficients in N \ S (w.l.o.g. we assume that
the variables are indexed by {1, . . . , |N \ S|}).
For k = 1, . . . , |N \ S| calculate
μk := max aTx

s.t. x ∈ P ∩ {x ∈ IRN | xk = 0, xi = 1 for all |N \ S| ≥ i > k};
xi ∈ {0, 1}, for all i ∈ S ∪ {1, . . . , k − 1};

ak := μk − α.
α := μk.

By using similar techniques as described in [?] we now show that, if P is the
single knapsack polytope, the complementing coefficients for minimal cover and
(1,d)-configuration inequalities can be computed in polynomial time.

Let k ∈ {1, . . . , |N \ S|} be given and suppose that aTx ≤ α defines a facet

of the polytope SK(S ∪ {1, . . . , k − 1}, f, F − ∑|N\S|
i=k fi). In order to obtain a

facet-defining inequality of the polytope SK(S ∪{1, . . . , k}, f, F −∑|N\S|
i=k+1 fi) the
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value μk must be determined.

μk = max aTx

s.t.
∑

j∈S∪{1,...,k−1} fjxj ≤ F −∑|N\S|
i=k+1 fi,

xj ∈ {0, 1}, for all j ∈ S ∪ {1, . . . , k − 1}.
In order to solve this problem we consider, for μ ∈ IN, the following minimization
problem (cf. [?]).

d(μ) = min
∑

j∈S∪{1,...,k−1} fjxj

s.t. aTx ≥ μ
xj ∈ {0, 1}, for all j ∈ S ∪ {1, . . . , k − 1}.

The nice relationship between the two problems is that μk can be expressed in
terms of the second problem, namely μk = max{μ | d(μ) ≤ F−∑|N\S|

i=k+1 fi}. Using
dynamic programming techniques the problem of computing max{μ | d(μ) ≤
F −∑|N\S|

i=k+1 fi} can be solved in time complexity O(|N |μk). Hence, if there exists
an upper bound for μk that is polynomial in |N |, then μk itself can be computed
in polynomial time. A trivial upper bound for μk is given by

μk ≤ ∑
i∈S

ai + a1 + . . .+ ak−1.

Since ai = μi − μi−1 for all i = 1, . . . , k − 1 (with μ0 = α) and ai = ai for all
i ∈ S, we obtain

μk ≤
∑
i∈S

ai + μk−1 − α.

Solving this recursion formula yields μk ≤ k(
∑

i∈S ai − α). Moreover, in the case
of minimal cover and (1,d)-configuration inequalities,

∑
i∈S ai − α is bounded by

|N |. Finally, k is bounded by |N | and, consequently, |N |2 is an upper bound for
μk which is, of course, polynomial in the encoding length of the input.

In order to complement joint inequalities, this type of approach does not work any
more. Hence, we determine approximate complementing coefficients by applying
the same techniques as in the case of lifting (see previous subsection). Besides this
we have been implementing an additional complementing procedure for extended
cover inequalities. This issue is discussed next. For the ease of exposition let
us assume that just one variable xjr is fixed to one. Moreover, assume that∑

i∈S xik +
∑

i∈S∪T xil ≤ |S| + |T | − 1 is an extended cover inequality which is
valid for MK ∩ {xjr = 1}. This implies, in particular, that S is a cover with
respect to k and that T ∪{i} is a cover with respect to l for all i ∈ S. Depending
on r we distinguish the following cases:

• r �= k, r �= l: Then, the complementing coefficient corresponding to variable
xjr is 0 and the extended cover inequality

∑
i∈S xik+

∑
i∈S∪T xil ≤ |S|+|T |−1

is valid for MK.
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• r = k: In this case the relation
∑

i∈S fi > Fk−fj holds and hence, S∪{j} is
a cover with respect to k. If, in addition, T∪{j} is a cover for knapsack l, we
add j to S, i.e., S := S ∪ {j} and the extended cover inequality

∑
i∈S xik +∑

i∈S∪T xil ≤ |S| + |T | − 1 is valid for MK. Otherwise, the coefficient
corresponding to variable xjk is set to 1 and the coefficient corresponding to
variable xjl is set to 0. This yields the inequality

∑
i∈S∪{j} xik+

∑
i∈S∪T xil ≤

|S| + |T | − 1 which is valid for MK, but no longer an extended cover
inequality.

• r = l: The conditions above imply that T ∪ {i} is a cover with respect to l
for all i ∈ S, i.e., f(T )+fi > Fl−fj. Therefore, we can append j to the set
T , i.e., T := T ∪{j} and the inequality

∑
i∈S xik+

∑
i∈S∪T xil ≤ |S|+ |T |−1

is the extended cover inequality corresponding to S, T , k and l. It is valid
for MK, as one can easily convince oneself.

In fact, this complementing procedure for extended cover inequalities can be
generalized to the case when more than one variable is fixed to one.

Let us conclude this section with some remarks on the interplay between lifting,
complementing and separation routines. Suppose, x′ ∈ IRN×M is a fractional

solution that is obtained during the run of the cutting plane algorithm. In our
implementation all variables that are close to zero or one will be fixed temporarily.
More precisely, there is a threshold parameter, t say, and a variable xik is fixed if
x′
ik < t or x′

ik > 1−t holds. Initially, t is set to 0.05. This way, we reduce the size of
the original problem instance drastically. Thereafter, the separation routines are
called in order to find violated inequalities for the subpolytope P := MK∩{xik =
0, if x′

ik < t, xik = 1, if x′
ik > 1 − t}. If the separation algorithms succeed in

finding violated inequalities for P , the appropriate complementing and lifting
procedures are applied. Table 2 shows the number of violated inequalities that
are obtained by fixing variables to one (as described above), calling the separation
routines, applying lifting and complementing the corresponding inequalities. For
more details on the problem instances we refer to section 5.

� Further Implementation Details

At the end of the introduction we have already discussed the general outline of a
cutting plane based algorithm. In order to make such an algorithm effective and
applicable for the solution of practical problem instances many “little” tricks and
problem dependent ideas must be implemented. In this section we briefly report
on some of these issues.
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Problem # viol. ineq.

cl2 0% red. 60
cl2 1% red. 127
cl2 2% red. 109
cl2 3% red. 123
cl2 4% red. 157
dm1 36.75% red. 14
dm1 36.8% red. 14
dm2 27 % red. 42
dm2 28 % red. 47
dm2 29 % red. 50
dm2 30 % red. 15

Table 2: Separation in subproblems using complementing procedure.

For solving the linear programs we use the CPLEX Callable Library [?], a very
fast and robust LP solver written and supported by R. E. Bixby. The initial
linear program in our algorithm is composed of the knapsack constraints, the
SOS constraints and the trivial inequalities 0 ≤ xik ≤ 1, for all i ∈ N , k ∈ M .
For the practical applications we have in mind all items must be assigned to
the knapsacks, i. e., the SOS constraints must be satisfied with equality. Thus,
instead of using the SOS constraints we factually add the corresponding equalities∑

k∈M xik = 1 (i ∈ N) to the initial linear program. From now on, we will call a
solution feasible for the multiple knapsack problem only if all items are assigned
to the knapsacks, i. e., if all SOS constraints are satisfied with equality.

One main aspect in the design of a cutting plane algorithm is to keep the actual
linear program of moderate size. To this end, we eliminate inequalities from the
LP that are not tight at the current linear programming solution x′. In each
iteration we call all separation algorithms discussed in the previous section, but
we control the number of violated inequalities added to the LP by a parameter.
If we find more violated inequalities than specified by this parameter, we take the
most “violated” inequalities, i. e., the inequalities aTx ≤ α whose value aTx′ −α
is smallest. Of course, we make sure that no redundant inequalities are added to
the linear program.

An important issue in our algorithm is the fixing of variables by reduced costs.
Let z′ be the objective function value of the current LP solution, z∗ be an upper
bound on the value of the optimum solution, x′ = (x′

ik) the current LP solution
and d = (dik) the corresponding reduced cost vector. Then, each non basic
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variable xik with x′
ik = 0 and z∗ − z′ ≤ dik can be fixed to zero. Similarly, each

non basic variable xik with x′
ik = 1 and z∗ − z′ ≤ −dik can be fixed to one.

Moreover, further variables can be fixed by logical implications, for example, if
some variable xik is fixed to one by the reduced cost criterion, then all variables
xil, l ∈ M \{k}, can be fixed to zero. Table ?? shows for some problem instances
the number of variables (in percentages) that are fixed by this procedure.

Problem Variables fixed

cl2 0% red. 2433 (22.32%)
cl2 1% red. 3039 (27.89%)
cl2 2% red. 2184 (20.04%)
cl2 3% red. 2933 (26.91%)
cl2 4% red. 3293 (30.22%)
dm1 36.75% red. 89 (8.79%)
dm1 36.8% red. 89 (8.79%)
dm2 27 % red. 1544 (33.33%)
dm2 28 % red. 1538 (33.20%)
dm2 29 % red. 3384 (73.05%)
dm2 30 % red. 1346 (29.05%)

Table 3: Variables fixed by reduced costs.

Clearly, we cannot guarantee that our cutting plane algorithms finds an integer
optimum solution, since a complete description of the multiple knapsack polytope
is not known and exact separation algorithms for the known classes of inequalities
are not at hand. Due to this fact, we have also implemented several LP-based
heuristics in order to obtain good upper bounds on the value of the optimal
solution. These heuristics are based on rounding the current linear programming
solution x′.

In the first heuristic we proceed as follows. We set F ′
k := Fk for all k ∈ M and

determine the item i whose value max{x ′
ik | k ∈ M and fi ≤ F ′

k} is maximum.
Let i∗ be the “maximum” item and k ∗ the corresponding knapsack. We assign
i∗ to knapsack k∗ and update the value F ′

k∗ by setting F ′
k∗ := F ′

k∗ − fi∗. We
continue this way until a feasible solution is found (i. e. all items are assigned) or
no further item can be assigned.

The second heuristic differs from the first one by selecting the node that is
assigned next, randomly. More precisely, we determine a random sequence of
the items, and, according to this sequence, we compute max{x ′

ik | k ∈ M and
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fi ≤ F ′
k}. If there exists no more feasible knapsack for item i we stop. Otherwise,

we assign item i to a knapsack k∗ where the maximum value is attained, update
F ′
k∗ accordingly and continue.

In the third heuristic, we interpret each vector (x′
ik)k∈M , for i ∈ N , as a prob-

ability distribution, i. e., we toss a dial that assigns item i to knapsack k with
probability x′

ik. The sequence according to which the items are chosen is again
randomly determined. This procedure is performed several times depending on
a parameter that is a multiple of the number of fractional variables.

It turns out that none of these heuristics is superior to the others. In most
examples, the first two procedures are more successful at the very beginning,
whereas the third one performs better in the sequel.

Moreover, we have implemented an improvement heuristic that is based on the
ideas of [?]. The procedure applied to our problem is described in the following.

Improvement heuristic.
Initialize z′ with z, where z ∈ {0, 1}N×M is a given feasible solution.
For p := 1 to number-of-passes

Initialize zp with z′.
Set F ′

k := Fk −∑
i∈N fiz

p
ik for all k ∈ M .

All items are supposed to be “unlocked”.
While {i ∈ N | i unlocked, zpik = 0 and fi ≤ F ′

k for some k ∈ M} �= ∅
Determine an unlocked item i∗ and a knapsack k∗ with zpi∗k∗ = 0
such that ci∗k∗ = min{cik | i is unlocked, zpik = 0 and fi ≤ F ′

k}.
Move item i∗ to knapsack k∗.
Update zp and F ′.
Lock item i∗ (in order to avoid cycling).

Let z∗ be the best solution found during this pass.
If cT z∗ < cTz′, set z′ := z∗.
Else return z′ and STOP.

Return z′.

It turns out that these three primal heuristics together with the improvement
heuristic perform quite well and even find the optimal solution in many cases
(see next section).

Finally, let us note that we have embedded our cutting plane algorithms in an
enumeration scheme. Here, if we find no further violated inequality and the
current linear programming solution is not integer, we select a variable that is
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closest to 0.5 and create two subproblems, one where the selected variable is set
to zero, and one where this variable is set to one. The resulting branching tree
is worked out in depth first search manner.

� Computational Results

In this section we report on computational experiences with our cutting plane
based algorithm. We have tested the algorithm on multiple knapsack problem
instances arising in the design of main frame computers and in the layout of
electronic circuits.

Let us first focus on the class of problems that arise in the design of main frame
computers. Table ?? summarizes the data. (Instances coming from this applica-
tion are abbreviated by dm in the tables.) Column 2 and 3 give the number of
items and knapsacks, respectively, whereas in columns 4 and 5 the total weight
of the items and the total sum of the capacities are shown.

Problem |N | |M | ∑
i∈N fi

∑
k∈M Fk

dm1 257 4 83827 132704
dm2 772 6 284608 423972

Table 4: Description of the examples dm.

Table ?? presents the solutions obtained by our algorithm. Neither individual
nor joint inequalities where necessary to obtain the objective function value of
an optimal solution, which was already found by the primal heuristics in the first
iteration. The CPU Times are in seconds obtained on a Sun Sparc IPX.

Problem Opt. Sol. Ind. Ineq. Joint Ineq. CPU Time

dm1 236250 0 0 1.97
dm2 81120 0 0 6.50

Table 5: Computational results for examples dm.

The fact that both problem instances are trivial is not surprising, since the total
sum of the knapsack capacities is much bigger than the sum of the weights of the
items. The reason for that is that after assigning the items to the devices the

23



nets must be connected by wires which requires a certain amount of space. The
real amount of space that is necessary for connecting the wires is not available in
advance. Thus, the numbers in Column 5 of Table ?? are only a rough estimate.
A usual procedure in practice is to start with some initial capacities of the devices
and try to find a solution that assigns the modules to the devices and connects
the nets by wires. If this succeeds, the capacities of the devices are reduced, the
whole problem is solved again, and it is continued in this way until no further
area reduction is possible. In fact, one of the main goals in the design of main
frame computers is to reduce the available amount of space as far as possible. So,
from a practical point of view a very interesting question is how far the capacities
of the devices can be reduced at most. We followed this question and iteratively
reduced the total amount of the knapsack capacities.

Problem Red. Opt. Sol. Ind. ineq. Joint ineq. CPU

dm1 36.75% 236250 18 15 9.72
dm1 36.8% 236250 18 15 9.42
dm2 27% 81134 23 40 10:20.80
dm2 28% 81176 27 55 14:36.73
dm2 29% 81204 25 58 17:21.80
dm2 30% 81302 33 15 41:13.93

Table 6: Solutions of the reduced instances of dm examples.

Table ?? summarizes our results. A reduction of 36.85% in example dm1 and a
reduction of 33% in example dm2 leads to infeasibility, since the total available
knapsack capacity is less than the sum of the weights of the items. Column 2
shows the amount of reduction, columns 3 to 6 present the value of the optimal
solution, the number of individual and joint inequalities found by our separation
algorithms and the total CPU Time (min:sec). All problem instances in Table
?? are solved to optimality without branching.

Two problems could not be solved to optimality by our algorithm even when
branching was applied. Table ?? shows the results for these two examples. The
gap we obtain after running our algorithm 500 minutes of CPU time is presented
in the last column. We see that the lower and upper bound are very close.

Let us now turn to the examples arising in the layout of electronic circuits. Table
?? summarizes the data. (Here, the instances are abbreviated by the symbol
cl in the tables.) The ratio between the total weight of the items and the total
available knapsack capacity is much closer to one than it is the case for the
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Problem Red. Lower bound Upper bound Gap (%)

dm2 31% 81482 81498 0.0196
dm2 32% 81728 81736 0.0097

Table 7: Difficult dm instances.

instances in Table ??. One might expect that these instances are more difficult
than the examples dm with 0% area reduction.

Problem |N | |M | ∑
i∈N fi

∑
k∈M Fk

cl1 2292 16 9522 10000
cl2 681 16 2571 2704
cl3 2669 16 6762 7104
cl4 1021 16 4031 4240
cl5 68 16 260 288
cl6 6112 16 25392 26672

Table 8: Description of the examples cl.

However, the results are very similar. The first lower bound provides already
the value of the optimal solution in almost all examples. A possible explanation
for this fact is that in these examples the weights of the items are similar and
that there are many items with small weights and identical objective function
value for all knapsacks. In all cases for which the value of the first LP is already
equal to the value of the optimal solution our primal heuristics find an optimal
solution in the first iteration of the algorithm. The only nontrivial example is cl2,
where indeed individual and joint inequalities were necessary to find the optimal
solution. In Table ?? we show the value of an optimal solution, the number of
individual and joint inequalities found by our separation algorithms and the total
CPU Time (min:sec).

Here, as in the design of main frame computers an interesting problem is to
determine the minimum area for which the problems still have a feasible solu-
tion. We created some problem instances by reducing the total amount of the
capacities for the knapsacks until the total weight of the items exceeds the total
available knapsack capacity. Even here, we solve all reduced examples, except
the reduced instances of cl2, in the first iteration, a very astonishing fact. The
reduced instances of cl2 are much more difficult. In all but one example the first
lower bound does not give the optimal objective function value. To solve these
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Problem Opt. Solution Ind. ineq. Joint ineq. CPU Time

cl1 2292 0 0 3:56.30
cl2 939.99 145 60 23:52.40
cl3 2669 0 0 3:25.18
cl4 1021 0 0 4:16.65
cl5 472 0 0 1.80
cl6 6112 0 0 27:03.75

Table 9: Solutions of the examples cl.

problems to optimality not only individual inequalities but also joint inequalities
were necessary. Table ?? presents the results. (Note that a reduction of 5 %
leads to infeasibility, since in this case the total sum of the knapsack capacities
is less than the total weight of the items.)

Problem Red. Opt. Sol. Ind. ineq. Joint ineq. CPU Time

cl2 1% 946.99 318 143 21:12.10
cl2 2% 946.99 126 135 22:12.25
cl2 3% 960.99 162 146 22:56.90
cl2 4% 967.99 196 185 16:06.03

Table 10: Solutions of the reduced instances of cl2.

An interesting peculiarity of all practical problem instances is that the first lower
bound is quite close to the value of the optimal solution. The reason for this is
that, for many items i ∈ N , the objective function coefficients cik, k ∈ M , are
similar. However, the gap between the first lower bound and the upper bound
after the first iteration is larger by far. Only when individual and especially when
joint inequalities are added the linear programming solution provides structural
information such that the primal heuristics find good upper bounds or even an
optimal solution. This fact can also be observed by running random examples.

Table ?? provides typical results for random problems. The first two columns
give the number of items and the number of knapsacks. The weights of the items
are randomly chosen from the interval [5, 300], the objective function coefficients
are random numbers in the interval [1, 1000], and the knapsack capacities are ran-
domly computed such that

∑
k∈M Fk ≤ α

∑
i∈N fi, where α is a random number

chosen from [1.05, 1.3]. We have created four different problems with the same
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|N | |M | Average gap Average gap Average gap
after first LP after ind. ineq. after joint ineq.

50 4 561.0 231.4 (41.2%) 36.6 (6.5%)
100 4 265.4 164.0 (61.8%) 78.6 (29.6%)
150 4 355.2 149.2 (42.0%) 114.2 (32.3%)
200 4 335.4 117.0 (34.9%) 75.2 (22.4%)
300 4 332.0 112.4 (33.9%) 100.6 (30.3%)
400 4 210.5 154.8 (73.5%) 90.0 (42.8%)
500 4 171.0 41.5 (24.3%) 38.2 (22.4%)

Table 11: Random examples.

number of knapsacks and items. The numbers in column 3 to 5 show the average
over the absolute values of the gaps between the upper bounds and the lower
bounds after the first iteration, after no further violated individual inequalities
were found, and after no further violated joint inequalities were found. The num-
ber in brackets give the percentual improvement of the gap. Although we cannot
solve most of these random examples to optimality without branching, the re-
sults confirm that the gap between the lower and an upper bound is substantially
decreased by using individual and joint inequalities.

� Conclusions

In this paper we have developed a cutting plane based algorithm for the multiple
knapsack problem. In particular, we have discussed the separation problem for
several classes of valid and facet-defining inequalities. Our algorithm was tested
on problem instances arising in the design of main frame computers and in the
layout of electronic circuits. Almost all practical examples are solved to optimal-
ity without branching. These results confirm the practical use of the inequalities
presented in [?] and indicate that the separation procedures perform quite well.
This impression is also supported by applying our cutting plane algorithm to
random examples.
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