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ZUSAMMENFASSUNG

Die vorliegende Dissertation beschäftigt sich mit strukturellen Fragen in der Theo-
rie der polyedrischen Unterteilungen von Punktkonfigurationen. Hierbei sind vor
allem globale Eigenschaften der Menge aller Unterteilungen einer gegebenen Punkt-
konfiguration von Interesse. Eine wichtige ungelöste Frage in diesem Zusammen-
hang ist die folgende: Ist es immer möglich, von einer beliebigen Triangulie-
rung einer gegebenen Punktkonfiguration zu jeder anderen Triangulierung der-
selben Konfiguration zu gelangen, indem man sogenannte bistellare Operationen
durchführt? Mit anderen Worten, ist die Menge aller Triangulierungen einer ge-
gebenen Punktkonfiguration stets bistellar zusammenhängend?

Die Ergebnisse der vorliegenden Doktorarbeit liefern auf zwei Seiten dieser
nach wie vor offenen Frage Fortschritte:

• Die Menge aller durch eine Polytopprojektion induzierten Unterteilungen
ist nicht immer — in einem verallgemeinerten Sinne — bistellar zusam-
menhängend. Dieses Resultat wird durch ein Gegenbeispiel zur sogenann-
ten ”Verallgemeinerten Baues Vermutung“ erzielt.

• Die Menge aller Triangulierungen eines zyklischen Polytops bildet eine be-
schränkte Halbordnung. Die Überdeckungsrelationen sind gerichtete bistel-
lare Operationen. Für zyklische Polytope ist die obige Frage nach bistella-
rem Zusammenhang also positiv beantwortet.

In der Einleitung wird das mathematische Umfeld der betrachteten Strukturen
näher beleuchtet: Die ”Verallgemeinerte Baues Vermutung“ steht in Verbindung
mit verschiedensten mathematischen Konzepten, angefangen von kombinatori-
schen Modellen von Schleifenräumen bis hin zu Diskriminanten von Polynomen
in mehreren Variablen. Die Triangulierungs-Halbordnungen von zyklischen Po-
lytopen sind zugleich natürliche Verallgemeinerungen der gut studierten Tamari-
Verbände in der Ordnungstheorie. Außerdem existiert ein Zusammenhang mit den
höheren Bruhat-Ordnungen, die ähnliche Struktureigenschaften aufweisen.

Ein Nebenprodukt der Untersuchungen ist die Schälbarkeit aller Triangulie-
rungen von zyklischen Polytopen ohne neue Ecken. Das ist um so interessanter,
da die meisten Triangulierungen von zyklischen Polytopen nicht-regulär sind.
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ABSTRACT

The present dissertation deals with the structure of polyhedral subdivisions of
point configurations. Of particular interest are the global properties of the set of
all subdivisions of a given point configuration. An important open problem in this
context is the following: can one always transform any triangulation of a given
point configuration to any other triangulation of the same configuration by means
of bistellar operations? In other words, is the set of all triangulations of a given
point configuration always bistellarly connected?

The results presented in this thesis contribute progress from two directions.

• The set of all subdivisions that are induced by a polytope projection is
in general not bistellarly connected in a generalized sense. This result is
obtained by constructing a counterexample to the so-called “Generalized
Baues Conjecture.”

• The set of all triangulations of a cyclic polytope forms a bounded poset. The
covering relations are given by increasing bistellar operations. Thus we get
an affirmative answer to the above question in the case of cyclic polytopes.

In the introduction, the mathematical environment of the structures under con-
sideration is illuminated. The “Generalized Baues Conjecture” has connections
to various mathematical concepts, such as combinatorial models for loop spaces,
discriminants of polynomials in several variables, etc. The triangulation posets of
cyclic polytopes are natural generalizations of the well-studied Tamari lattices in
order theory. Moreover, there is a connection to the higher Bruhat orders, which
have similar structural properties.

As a by-product, the investigations yield the shellability of all triangulations
of cyclic polytopes without new vertices. This is in particular interesting because
most triangulations of cyclic polytopes are non-regular.
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VORWORT

Im Sommer 1993 erhielt ich, noch in Bochum weilend, recht bald nach meiner Be-
werbung im Graduiertenkolleg ”Algorithmische Diskrete Mathematik“, aus Berlin
einen Anruf: ”Ziegler, guten Tag. Ich habe Ihre Diplomarbeit gelesen . . . Können
Sie nächste Woche nach Berlin kommen?“ (Um meine Überraschung einzuord-
nen, muß man wissen, daß es nicht jedem Mathematiker widerfährt, daß nach
dem Studium irgendjemand seine Diplomarbeit liest.)

Ich konnte nach Berlin kommen. Und damit entschied sich, daß ich mich von
nun an mehr der diskreten Mathematik als der algebraischen Topologie widmen
sollte. Bald merkte ich, daß die moderne diskrete Mathematik sich durchaus der
Methoden vieler mathematischer Disziplinen, auch der Topologie, bedient. So-
mit stellte mein Wechsel weniger eine komplette Neuorientierung, als vielmehr
eine natürliche Schwerpunktverlagerung dar. Nichtsdestoweniger bedeutete ein
Promotionsprojekt in einem neuen Spezialgebiet in der auf zweieinhalb Jahre be-
schränkten Stipendienzeit ein kleines Wagnis für alle Beteiligten. Daher sollen
hier alle diejenigen erwähnt werden, die zum Gelingen dieses Unterfangens bei-
getragen haben.

Die Ergebnisse dieser Doktorarbeit wurden erzielt während meiner Zeit im
Graduiertenkolleg Algorithmische Diskrete Mathematik, gefördert durch die Deut-
sche Forschungsgemeinschaft (GRK 219/2–96). Für die Aufnahme in das Kolleg
zum ersten April 1994 und mein Promotionsstipendium, durch das die zweiein-
halbjährige Forschungsarbeit erst ermöglicht worden ist, sowie für die Übernahme
zahlreicher Reisekosten bedanke ich mich hiermit sehr herzlich. Dem Konrad-
Zuse-Zentrum für Informationstechnik Berlin und der Technischen Universität
Berlin danke ich für die Bereitstellung eines fabelhaft ausgestatteten Arbeitsplat-
zes.

Das alles wäre jedoch nicht möglich gewesen ohne die Aufnahme als Dok-
torand bei meinem Betreuer Günter Ziegler, dem ich daher zu großem Dank ver-
pflichtet bin. Schon bei meinem ersten Berlin-Besuch hat er es verstanden, mich in
zwei Stunden für eine Reihe von mathematischen Problemen zu begeistern, deren
Lösung gleich für mehrere Dissertationen gereicht hätte. Sein Büro stand für mich
immer offen, und ich mußte nie lange auf eine Besprechung warten. Gleichzeitig
habe ich mich nie unter Druck gesetzt gefühlt, selbst in Phasen der Stagnation, die
bei jeder Forschungstätigkeit wohl unvermeidlich sind.

Häufig konnten durch seine Hinweise mathematischen Argumente vereinfacht

vii



viii Vorwort

und dadurch verdeutlicht werden; als ein sorgfältiger und kritischer Leser meiner
Notizen hat er oft zur Verbesserung der schriftlichen Darstellung meiner Gedan-
ken beigetragen. Vor allem Kapitel 2 dieser Arbeit hat durch ihn als Ko-Autor des
zugrundeliegenden Artikels gewonnen. Darüberhinaus hat er mich immer dabei
unterstützt, auf Konferenzen mit anderen Wissenschaftlern zusammenzutreffen,
was mir viele Kontakte und bleibende Eindrücke verschafft hat. Ohne ihn wäre
diese Dissertation nicht zustande gekommen.

In der Arbeitsgruppe Diskrete Mathematik der TU-Berlin sind Mathematike-
rinnen und Mathematiker mit recht unterschiedlichem Hintergrund versammelt.
Auch diese Dissertation reicht in verschiedene Teilgebiete der Mathematik hinein
und hat daher von der Vielfalt der Gedanken in dieser schillernden Arbeitsgrup-
pe profitiert. Ich habe mich sehr wohl gefühlt und möchte hiermit für die schöne
Arbeitsatmosphäre Dank sagen.

Diskussionen mit Anders Björner, Peter McMullen, Nicolai Mnëv, Gil Kalai
und Carl Lee haben meine Zeit als Doktorand, und damit auch diese Arbeit, be-
reichert. In diesem Zusammenhang geht mein besonderer Dank an Jesus de Loera
für sein nützliches Programm PUNTOS. Ich danke ihm und Victor Reiner für die
hilfreichen Kommentare zu Kapitel 3.

Die unangenehme Aufgabe des Korrektur-Lesens haben Eva-Maria Feichtner,
Frank Lutz, Jürgen Richter-Gebert und Andreas Schulz übernommen. Etwaige
verbliebene Tippfehler sind sicher darauf zurückzuführen, daß ich ihre Korrek-
turen nicht richtig übertragen habe. Insbesondere danke ich Laura Anderson, die
sich bereit gefunden hat, die Germanismen in der englischen Sprache dieser Ar-
beit zu reduzieren.

Es ist mir ein Anliegen, mich an dieser Stelle besonders herzlich bei meiner
Freundin Nicole Koch zu bedanken, die während der letzten zweieinhalb Jahre die
Lasten einer großen räumlichen Entfernung mitgetragen hat; ihre Nähe hat meine
Arbeit sehr befördert.

Schließlich, aber um so herzlicher, danke ich meinen Eltern für ihre Unterstützung
zu jeder Zeit meiner Ausbildung. Im ideellen Bereich haben sie durch ihre Wert-
schätzung von Wissen meine Motivation zu lernen stets gefördert; durch ihre ma-
terielle Unterstützung zur Zeit meines Mathematik-Studiums haben sie mir immer
den Rücken frei gehalten. Ihnen sei diese Arbeit herzlichst zugeeignet.

Jörg Rambau Berlin, im Juni 1996



PREFACE

In summer 1993, when I was still living in Bochum, I received a phone call from
Günter Ziegler in Berlin concerning my application for the graduate school “Algo-
rithmische Diskrete Mathematik.” He told me that he had read my “Diplomarbeit”
and asked me to come to Berlin.

I did come to Berlin. This was the starting point for me to deal with discrete
mathematics rather than algebraic topology. I noticed soon that modern discrete
mathematics is intertwined with many mathematical fields, including topology.
So this change of my main matter of study was quite natural. Nevertheless, a
research project in a new field was a little bit risky for everyone involved with this,
especially because my stipend was restricted to two-and-a-half years. Hence, all
those people who contributed to the success of this undertaking shall be mentioned
in the following.

The results presented in this doctoral thesis were obtained during my mem-
bership in the graduate school Algorithmische Diskrete Mathematik, supported by
the Deutsche Forschungsgemeinschaft (GRK 219/2–96). I thank them for my ad-
mission on April 1, 1994, the stipend, and the travel support that made possible
this research. Moreover, I thank Konrad-Zuse-Zentrum f”ur Informationstechnik
Berlin and Technische Universit”at Berlin for providing me with excellent work-
ing environments.

This all would not have been possible without being accepted as a doctoral
student in the group of G”unter Ziegler. Hence, I am especially indebted to him.
Already during my first visit to Berlin, he succeded in making me feel enthusiastic
about several mathematical problems, and a solution of any of them would have
been sufficient for a dissertation. He was constantly present when I needed his
advice. At the same time, I never felt myself pushed by him, even in those periods
of stagnation that are typically involved in research.

Often his hints simplified, and hence clarified, my mathematical arguments.
As a critical and careful reader of anything I wrote, he contributed many im-
provements to my writings. In particular, Chapter 2 has gained a lot from his
co-authorship in the corresponding paper. In addition to that, he always supported
my interaction with other mathematicians. This led to many experiences which
influenced my work. Without him this thesis would not have been written.

The group “Discrete Mathematics” of the TU-Berlin is a collection of math-
ematicians with quite different backgrounds. This dissertation drew from various
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x Preface

mathematical fields, thereby profiting from the wide range of viewpoints in the
group. I want to thank everybody in this group for creating this constantly pleas-
ant working atmosphere.

Discussions with Anders Bj”orner, Peter McMullen, Nicolai Mnëv, Gil Kalai,
and Carl Lee have enriched my time as a doctoral student, and thus this thesis.
In this context, my special thanks go to Jesus de Loera for his useful program
PUNTOS. I thank him and Victor Reiner for their helpful comments on Chapter 3.

The tiresome task of proof-reading the manuscript was executed by Eva-Maria
Feichtner, Frank Lutz, J”urgen Richter-Gebert, and Andreas Schulz. Remaining
typos are certainly due to my incorrect transferring of their corrections. In par-
ticular, I thank Laura Anderson who turned some “Germish” in this thesis into
English.

At this point it is my special desire to say my warmest thanks to my girlfriend
Nicole Koch. Her closeness, despite the large physical distance between us, also
supported this work.

Finally, I am grateful to my parents for their constant support during my edu-
cation. Their high regard of knowledge always motivated me to learn new things;
their financial support during my studies helped me to concentrate on mathemat-
ics. This thesis is most warmly dedicated to them.

J”org Rambau Berlin, June 1996



CONTENTS

Zusammenfassung iii

Abstract v

Vorwort vii

Preface ix

1 Introduction 1
1.1 Objects of Study . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1(a) Polyhedral Subdivisions and Triangulations . . . . . . . . 3
1.1(b) Projections and Subdivisions . . . . . . . . . . . . . . . . 7

1.2 Links to Other Fields . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2(a) Computational Geometry . . . . . . . . . . . . . . . . . . 13
1.2(b) Order Theory . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2(c) Oriented Matroid Theory . . . . . . . . . . . . . . . . . . 16
1.2(d) Combinatorial Models . . . . . . . . . . . . . . . . . . . 18
1.2(e) Polynomials in Several Variables . . . . . . . . . . . . . . 23

2 The Generalized Baues Conjecture 27
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Functions on the Chamber Complex . . . . . . . . . . . . . . . . 31
2.3 Validity in Low Codimension . . . . . . . . . . . . . . . . . . . . 37
2.4 How to Construct a Counterexample . . . . . . . . . . . . . . . . 42
2.5 An Explicit Counterexample . . . . . . . . . . . . . . . . . . . . 46

3 Triangulations of Cyclic Polytopes 55
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 A Combinatorial Framework for Triangulations . . . . . . . . . . 60
3.3 Cyclic Polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4 Special Triangulations of Cyclic Polytopes . . . . . . . . . . . . . 67
3.5 The Higher Stasheff-Tamari Orders . . . . . . . . . . . . . . . . . 74
3.6 Shellability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.7 Higher Bruhat Orders . . . . . . . . . . . . . . . . . . . . . . . . 83

xi



xii Contents

3.8 The Connection between B(n−2,d−1) and S1(n,d) . . . . . . 86

A Glossary of Basic Concepts 93
A.1 Partially Ordered Sets . . . . . . . . . . . . . . . . . . . . . . . . 93
A.2 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.3 Polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.4 Polytopal and Simplicial Complexes . . . . . . . . . . . . . . . . 101
A.5 Oriented Matroids . . . . . . . . . . . . . . . . . . . . . . . . . . 103

B Notation 107

Bibliography 111

Index 117

Curriculum Vitae 123



LIST OF FIGURES

1.1 Polyhedral subdivisions. . . . . . . . . . . . . . . . . . . . . . . 3
1.2 A regular triangulation and possible heights. . . . . . . . . . . . . 4
1.3 TZ+ and TZ− in dimension 3. . . . . . . . . . . . . . . . . . . . . 5
1.4 Bistellar operations. . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Chamber complexes of a simplex and a pyramid projection. . . . . 8
1.6 Induced and coherent subdivisions. . . . . . . . . . . . . . . . . . 10
1.7 An example for the poset of all induced subdivisions. . . . . . . . 11
1.8 A non-completable partial triangulation. . . . . . . . . . . . . . . 15
1.9 The “non-Pappus” tiling. . . . . . . . . . . . . . . . . . . . . . . 18
1.10 The string space of a 3-simplex. . . . . . . . . . . . . . . . . . . 22
1.11 The secondary polytope of {0,1,2} ⊂ R. . . . . . . . . . . . . . . 25

2.1 The face Fq,ψ induced by ψ ∈ (Rd−d′)∗. . . . . . . . . . . . . . . 32
2.2 The normal fan relation. . . . . . . . . . . . . . . . . . . . . . . 34
2.3 The pairwise cone condition. . . . . . . . . . . . . . . . . . . . . 37
2.4 The twist of σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5 An example for a locally coherent function. . . . . . . . . . . . . 43
2.6 The “basket ball obstruction.” . . . . . . . . . . . . . . . . . . . . 44
2.7 The fibers of the basket ball obstruction. . . . . . . . . . . . . . . 45
2.8 The vertex-facet incidence matrix of Pdeg. . . . . . . . . . . . . . 47
2.9 A sketch of πdeg : Pdeg→ Qdeg. . . . . . . . . . . . . . . . . . . . 48
2.10 An isolated element. . . . . . . . . . . . . . . . . . . . . . . . . 49
2.11 The vertex-facet incidence matrix of P. . . . . . . . . . . . . . . . 51
2.12 The chamber complex of π . . . . . . . . . . . . . . . . . . . . . . 52

3.1 The canonical projection and characteristic sections. . . . . . . . . 65
3.2 The expansion of F ′ in T . . . . . . . . . . . . . . . . . . . . . . . 69
3.3 The compression of H ′ in T . . . . . . . . . . . . . . . . . . . . . 71
3.4 Increasing flips in S1(6,1) respectively S1(5,2). . . . . . . . . . 75
3.5 Finding an increasing flip in S1(8,1). . . . . . . . . . . . . . . . 78

xiii





CHAPTER 1

INTRODUCTION

Subdivisions of mathematical objects are powerful tools in various frameworks.
Examples can be found in combinatorial geometry, convex geometry, algebraic
geometry, combinatorial topology, computational geometry, and numerical anal-
ysis. As a special case, triangulations are useful for the computation of volumes
of polyhedra, the resolution of singularities, the homeomorphism test of piece-
wise linear manifolds, surface interpolation, and the numerical solution of partial
differential equations. First, one solves the problem on the simplices of a triangu-
lation (which is usually simple), and then one glues the partial solutions together,
according to the incidences of the triangulation.

There are two principle kinds of subdivisions:

• subdivisions with arbitrary vertices (which shall not be considered here, see
NABUTOVSKY & BEN-AV [56] and NABUTOVSKY [55] for a treatment of
this concept),

• subdivisions with vertices in a given point set (which are referred to as tri-
angulations of point configurations).

Because, even in the second case, there are many subdivisions of an object — and
the quality of the solutions to most problems depends on the special choice — it
is worthwhile to find subdivisions that are as good as possible in some sense.

∗

In this thesis we study spaces of subdivisions from the point of view of poly-
tope theory. The notion of “spaces” is to indicate that we are after the global
interaction between several subdivisions of the same object. Getting a hand on
the structure of such spaces can help to find subdivisions with special properties.
The structure of the space of subdivisions of a point configuration is usually given
by certain local transformations that are theoretically and algorithmically easy to
handle. In the case of triangulations we are concerned with the so-called bistellar
operations, a simple modification on a small portion of a triangulation. One of
the main structural problems in this context is to decide whether or not these local
transformations allow us to transform any subdivision to any other subdivision.
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2 Introduction

While in dimension 2 the answer is well-known to be affirmative for every
point configuration, in higher dimensions this remains an open problem. This
thesis contributes progress from two quite different directions.

• In Chapter 2 we show that the space of all restricted subdivisions of a point
configuration may be disconnected, thus disproving the Generalized Baues
Conjecture, posed by BILLERA, KAPRANOV & STURMFELS [9]. (Hence,
we have a negative result for a generalized setting.)

• In Chapter 3 we illuminate the well-behaved structure of the space of all
triangulations of a cyclic polytope. (Hence, a certain special case leads to a
positive result.)

Although these approaches benefit from different areas of mathematics —
mainly geometry and topology in Chapter 2, in contrast to combinatorics dom-
inating Chapter 3 — they are linked by the description of subdivisions and cor-
responding local transformations by means of polytope projections. The intuition
leading to the main ideas is in both cases drawn from these geometric representa-
tions. We do not claim originality for this point of view (see, e. g., BILLERA &
STURMFELS [11, 12] and GELFAND, KAPRANOV & ZELEVINSKY [28]); in this
thesis, however, various (partially known) types of arguments are turned into sys-
tematic methods of investigation. In Chapter 2, our formal treatment of the fibers
over the chambers of a polytope projection takes us to a construction method for
counterexamples to the Generalized Baues Conjecture; in Chapter 3, closer in-
spection of the behavior of circuits and facets of cyclic polytopes with respect to
a certain projection flag leads us to the main result.

∗

The concepts and results investigated in this thesis are not isolated. Besides
the link to computational geometry, there are several relations to order theory, ori-
ented matroid theory, topology, and algebra that are not obvious. In Section 1.2 we
describe the landscape of connections to these fields. Before that, our main objects
of study are introduced in Section 1.1. Chapter 2 contains the new results about
the Generalized Baues Conjecture. It is based on joint work with ZIEGLER [61],
which will be published in Discrete & Computational Geometry. In Chapter 3
the results concerning triangulations of cyclic polytopes are collected, based on
a preprint of the author [60], which will appear in Mathematika. Both chapters
are in principle self-contained and may be read seperately. In Appendix A, im-
portant notions and results from various areas needed in this thesis are recalled.
Appendix B lists the notation used in this thesis.



1.1 Objects of Study 3

(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 1.1: A planar point configuration A where three of the
points are collinear (a), a polyhedral subdivision (b), a triangula-
tion (c), and a dissection of A that is not a polyhedral subdivision (d);
two triangulations (e) and (f) that do not use all points of A , their
common refinement (g) leading to a new (grey) vertex not in A , and
the common refinement of all triangulations of A (h). Hence, (g)
and (h) are polyhedral subdivisions of conv(A ), but not of A .

1.1 OBJECTS OF STUDY

Here we explain the fundamental concepts investigated in this thesis, and — aim-
ing at its title — the connection between subdivisions and projections. Back-
ground and notation is given in Appendix A and B, respectively.

1.1(a) Polyhedral Subdivisions and Triangulations

Figures 1.1 and 1.2 illustrate the following definitions.

Definition 1.1.1. Let P be a polytope in Rd . A polyhedral (or polytopal) subdi-
vision of P is a polytopal complex C in Rd (any two elements of C intersect in a
common face) with underlying set |C |= P.

Let A be a finite set of points in Rd . A polyhedral subdivision of A is a
polyhedral subdivision of conv(A ) with vertices in A .

If C and C ′ are polyhedral subdivisions of A such that for all R ∈ C there is
a R′ ∈ C ′ with R ⊆ R′, then C is a refinement of C ′. The common refinement of
C and C ′ is the polyhedral subdivision of conv(A )

C ∧C ′ :=
{

R∩R′ : R ∈ C ,R′ ∈ C ′
}

.

A polyhedral subdivision C of A in Rd is regular if there are heights αi for
every point ai ∈A such that C is combinatorially isomorphic to the complex of
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a2

a3

(a1,α1)

(a4,α4)

(a5,α5)a4

(a7,α7)

(a2,α2)

(a6,α6)

a6

a5

a7

a1

(a3,α3)

FIGURE 1.2: A regular triangulation and possible heights.

lower faces of the polytope

conv
{

(ai,αi) ∈ Rd+1 : ai ∈A
}

.

Here lower faces are faces in directions with a negative (d +1)-st coordinate. If a
polyhedral subdivision C is a simplicial complex then it is a triangulation of A .

Note that in general the common refinement of two polyhedral subdivisions of
a point configuration A fails to be a polyhedral subdivision of A .

We now get to the crucial concept of bistellar operations on triangulations
of point configurations. We follow the setting in the paper of EDELMAN &
REINER [21]. For a setting based on oriented matroids, see DE LOERA [43].
The following lemma makes things work.

Lemma 1.1.2. Any set Z of (d + 2) points whose convex hull is of dimension d
has exactly two triangulations, denoted by TZ+ and TZ− .

Figure 1.3 shows an example, where Z consists of 5 points in strictly convex
position in R3. Observe that the first triangulation consists of 2, the second one of
3 simplices.

Definition 1.1.3 (Bistellar Operations). Let T be a triangulation of A , where
d = dim(A ) and e ≤ d. Let Z be an (e + 2)-subset of A . Assume that the
following conditions are satisfied.
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FIGURE 1.3: The two triangulations TZ+ and TZ− of a set Z of 5 points
in convex position in dimension 3.

(i) The polytope conv(Z) is of dimension e,

(ii) TZ+ (respectively TZ−) is a subcomplex of T , and

(iii) all maximal e-simplices in TZ+ (respectively TZ−) have the same link L in T .

Then

T ′ :=
(
T\(TZ+ ∗L)

)
∪ (TZ− ∗L) respectively T ′ :=

(
T\(TZ− ∗L)

)
∪ (TZ+ ∗L)

is a new triangulation of A , and we say T ′ is obtained from T by a bistellar
operation (supported) on Z.

Because these transformations are local in nature, they are used in many al-
gorithms that start from some triangulation of a point configuration, perform bi-
stellar operations, and (should) end up with some special triangulation. In di-
mension 2 this is known to work well; in dimensions larger than 2, however, it
is open whether or not the set of all triangulations of a given point configura-
tion is connected with respect to bistellar operations. (This contrasts the bistellar
equivalence of simplicial polytopes and spheres investigated by EWALD [25] and
PACHNER [57, 58].)

All possible types of planar bistellar operations are illustrated in Figure 1.4. If
we are concerned with a point configuration in general position, then all bistellar
operations are supported on sets of (d + 2) points, and we may neglect the link
condition.

Definition 1.1.4. Let A be a point configuration in Rd . Then the graph GA of
all triangulations of A is the graph whose vertex set is the set of all triangulations
of A and where two triangulations are connected by an edge if and only if they
differ by a bistellar operation.
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(a) (b) (c) (d)

e = 2 e = 2 e = 1

FIGURE 1.4: A bistellar operation supported (black points) on a con-
vex quadrangle (edge flip) (a), on a triangle with an inner point (stel-
lar operation) (b), on a line segment with an inner point (c), and an
example where the link condition is not met (d).

Problem 1.1.5. Is the graph GA of all triangulations of A connected for every
point configuration A ?

The problem for the subgraph G reg
A of all regular triangulations of A was

solved affirmatively by GELFAND, KAPRANOV & ZELEVINSKY [28] (see Sec-
tions 1.1(b) and 1.2(e)). However, even such innocent-looking simple polytopes
as the 4-cube, the product of two 3-simplices (DE LOERA [44]), and the cyclic
polytope C(12,8) (BILLERA, GELFAND & STURMFELS [8]) admit non-regular
triangulations. Moreover, bistellar operations do not in general preserve regular-
ity. Indeed, regularity is not a combinatorial concept; it depends heavily on the
particular geometric realization.

What evidence supports a conjecture in the affirmative for the general prob-
lem? Of course, the proof in dimension 2 is very simple, but beyond this? For
arbitrary d and n > d, is there at least one non-trivial configuration of n points in
Rd that has a connected triangulation graph?

In a recent paper EDELMAN & REINER [21] attack, among other things, the
latter question by examining the set of triangulations of the standard cyclic poly-
tope C(n,d). Their result in this context reads as follows (see also Section 1.2(b)).

Theorem 1.1.6. (EDELMAN & REINER [21])
The graph of all triangulations of the cyclic polytope C(n,d) is the Hasse diagram
of a poset. If d ≤ 3 then this poset is a lattice, and for d ≤ 5 and all n > d the
graph of all triangulations of the cyclic polytope C(n,d) is connected.

A systematic treatment of the combinatorics of standard cyclic polytopes and
special constructions for the cyclic case give us the desired “friendly universal
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example” in Chapter 3. From the perspective of this part of the introduction, the
essential result of Chapter 3 is the following.

Theorem 1.1.7. (see Chapter 3, Theorem 3.1.1)
The graph of all triangulations of the cyclic polytope C(n,d) is the Hasse diagram
of a bounded poset. In particular, it is connected.

We refer to the paper on weakly neighborly polytopes by BAYER [6] concern-
ing enumerative results that apply to triangulations of cyclic polytopes in even
dimensions.

1.1(b) Projections and Subdivisions

In the following, some aspects of the interaction between projections of polytopes
and polyhedral subdivisions of polytopes are sketched. A formal way to deal with
the combinatorics of polytope projections is one of the main concepts of Chap-
ter 2. It leads to the solution of the Generalized Baues Problem, which has re-
ceived a considerable amount of attention in the theory of polyhedral subdivisions
(see, for example, [9], [14], [63, Introduction, Section 4], [22]).

Definition 1.1.8. Let P ∈ Rd and Q ∈ Rd′ be polytopes, and let π̂ : Rd → Rd′ be
an affine map with π̂(P) = Q. We call

π := π̂|P :
{

P → Q,
p 7→ π̂(p),

a polytope projection.
For q ∈ Q, the polytope

Pq :=
{

x ∈ Rd : π(x) = q
}

is called the fiber of π over q.

We refer to work of BALAS & OOSTEN [4] and LOVÁSZ & SCHRIJVER [46]
for the optimization viewpoint, and FILLIMAN [26] for algebraic aspects of poly-
tope projections.

Some of the faces of the preimage of a polytope projection can be recovered
from the faces of its image.

Lemma 1.1.9. (see, e. g., ZIEGLER [75, Lemma 7.11])
Let π : P→Q be a polytope projection. If F is a face of Q then π−1(F) is a face of
P. The preimage of the face Qψ under π is the face Pπ∗(ψ) with π∗(ψ) = ψ ◦π ∈
(Rd)∗.
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R3R4

0
x3

x2

x1

x4

(a) (b)

FIGURE 1.5: The chamber complexes of the projections of a 4-
simplex (a) and of a 3-dimensional pyramid (b) to a planar point con-
figuration A .

An important notion connecting projections and polyhedral subdivisions is the
chamber complex of (P,π).

Lemma 1.1.10. Let π : P→ Q be a polytope projection. Then the closures of the
connected components of the set

Q\{π(F) : F a face of P, dim(F) < dim(Q)}

are finitely many polytopes. Together with all their faces, they form a polyhedral
subdivision Γ(P,π) of Q.

Moreover, Γ(∆d,π) is the common refinement of all polyhedral subdivisions
of the point configuration π(vert(∆d)). This equals the common refinement of all
regular subdivisions of π(vert(∆d)); in particular, Γ(∆d,π) is shellable.

Definition 1.1.11. Γ(P,π) is the chamber complex of (P,π). Its elements are
called chambers of (P,π).

Note that the chamber complex itself is not a polyhedral subdivision of the
point configuration π(vert(P)) because in general it has more vertices than P.
Figure 1.5 indicates that the chamber complex contains information about the
facial structure of the projected polytope. We will describe the chamber complex
in a somewhat different manner in Chapter 2. There we develop a formalism
to precisely deal with the combinatorics of chambers. For the picture of a non-
trivial chamber complex of a polytope projection constructed in this thesis, see
Figure 2.12 in Chapter 2.
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Generalizing the secondary polytope of GELFAND, KAPRANOV & ZELEVIN-
SKY [28], BILLERA & STURMFELS [11] constructed a new polytope from a poly-
tope projection π : P→ Q, the fiber polytope of (P,π).

Definition 1.1.12. Let π : P→ Q be a polytope projection. The fiber polytope of
(P,π) is the polytope

Σ(P,π) :=
1

vol(Q) ∑
σ facet of Γ(P,π)

vol(σ) ·Pqσ
,

where the sum denotes the Minkowski sum of the fibers Pqσ
in Rd and qσ is the

barycenter of the chamber σ .
Given a d-dimensional point configuration A of n points in Rd , the secondary

polytope of A is defined as

Σ(A ) := (d +1)vol(conv(A )) ·Σ(∆n−1,πA ).

Here πA : ∆n−1 → A is the projection that sends the n vertices of the (n− 1)-
dimensional standard simplex ∆n−1 = conv{ei : i = 1, . . . ,n} in Rn to the points
in A . (This projection is canonical up to permutation of coordinates.)

The main result achieved by BILLERA & STURMFELS [11] is that the faces of
the fiber polytope Σ(P,π) are in one-to-one correspondence with certain polyhe-
dral subdivisions of Q that we briefly describe now. Note that in their setting it is
necessary to consider projections of distinct faces of P that project to the same sets
in Q as distinct polytopes. Such a polytope R⊆Q is labelled by the set of vertices
of the projecting face FR. A face R′ of R is always labelled by the vertex set of
the inclusion-maximal face FR′ with FR′ ⊆ FR and π(FR′) = R′. This makes the in-
tersection condition of a polyhedral subdivision C considerably more restrictive:
the intersection of the label sets of two polytopes in C must be the label set of a
face of both. Moreover, this results in regarding subdivisions with different label
sets as distinct, even if they are geometrically the same.

Definition 1.1.13. Let P ∈ Rd and Q ∈ Rd′ . A polyhedral subdivision C of Q is
induced by the polytope projection π : P→ Q, or π-induced for short, if every
element R in C is the projection of a proper face FR of P.

A π-induced subdivision C of Q is π-coherent if there is a linear functional
ψ ∈ (Rd−d′)∗ such that

π
−1(q)ψ = π

−1(q)∩FR for all q ∈ relintR and all R ∈ C .

A π-induced subdivision C of Q is tight if dim(FR) = dim(R) for all R ∈ C .
The set of all π-induced (respectively all π-coherent) subdivisions of Q — with
differently labelled subdivisions regarded as distinct — is partially ordered by
refinement. It is denoted by ω(P,π) and ωcoh(P,π), respectively.
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Q Q Q Q

3P P 3 P 3 P 3

4 22 2 4 2 44

1 1 15 5 5 1 5

ππππ

(d)(c)(b)(a)

FIGURE 1.6: The induced non-tight subdivision {123,345} (a), the
tight induced non-coherent subdivision {12,23,34,45} (b), the tight
coherent subdivision {13,35} (c), and the set of faces {134,35},
which does not induce any subdivision of Q (d).

Figure 1.6 illustrates these definitions for the projection of a bipyramid over
a triangle to an interval. (The notion of a locally coherent string in Chapter 2 is
equivalent to the notion of an induced subdivision.)

In case P is a simplex then the set of all π-induced subdivisions of Q is in
fact the set of all polyhedral subdivisions of π(vert(P)), while the set of all π-
coherent subdivisions of Q corresponds to the set of all regular subdivisions of
π(vert(P)). In both cases the tight subdivisions correspond to triangulations of
π(vert(P)). The bistellar operations (see Definition 1.1.3) can easily be recovered
in the poset of π-induced subdivisions: An edge (T1,T2) in the graph Gπ(vert(P)) of
all triangulations of π(vert(P)) corresponds to a common covering relation of T1
and T2 in ω(P,π).

If P is a general polytope, then we may interpret the π-induced subdivisions
as restricted polyhedral subdivisions. That means, the “pieces” of the subdivision
must stem from the face lattice of the polytope P. In this case two tight subdivi-
sions covered by a common element might be viewed as a generalized bistellar
operation. Therefore, the above setting provides a more general framework to
investigate the global behaviour of sets of subdivisions than the graph of all trian-
gulations.

Theorem 1.1.14. (BILLERA & STURMFELS [11])
Let P ∈ Rd and Q ∈ Rd′ be polytopes, and let π : P→ Q be a polytope projec-
tion. The face lattice of the fiber polytope Σ(P,π) is anti-isomorphic to the poset
ωcoh(P,π) of all π-coherent induced subdivisions of Q = π(P).
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FIGURE 1.7: The poset ω(P,π) where P is a bipyramid over a tri-
angle in R3, projecting via π to an interval Q in R. Indicated are
the inducing faces in P rather than subdivisions of Q. Note that its
order complex is not homeomorphic, but homotopy-equivalent to a 1-
sphere. The subposet indicated by the solid drawn covering relations
is the poset ωcoh(P,π) of all π-coherent subdivisions of Q, which is
isomorphic to a hexagon (picture based on ZIEGLER [75, p. 297]).

This result makes it possible to unify the setting of some remarkable concepts
that have been developed earlier, e. g., the associahedron, independently found by
LEE [42] and by HAIMAN [33], which models the set of triangulations of convex
n-gons, the already mentioned secondary polytope by GELFAND, KAPRANOV &
ZELEVINSKY [28] (see also Section 1.2(e)), which models the set of regular trian-
gulations of the convex hull of a point configuration, and the monotone path poly-
tope [75, Chapter 9], which models the set of monotone edge paths in a polytope.
A slight generalization of the fiber polytope construction was used by REINER &
ZIEGLER [62] to prove that certain combinatorially defined cell complexes asso-
ciated to Coxeter groups are in fact the face lattices of convex polytopes, such as
the permuto-associahedron.

A natural question is whether the poset of all induced subdivisions has some
“friendly” structure. It turns out that the best possible structure one can expect is
the following (see Figure 1.7).

Definition 1.1.15 (Generalized Baues Conjecture). (BILLERA, KAPRANOV &
STURMFELS [9])
We say that for d ≥ 1 and d− d′ ≥ 0 the Generalized Baues Conjecture holds if
the following is true: For all polytope projections π : P→ Q, where P ∈ Rd and
Q ∈ Rd′ , the poset ω(P,π) of all π-induced subdivisions of Q = π(P) is homo-
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topy equivalent to the poset ωcoh(P,π) of all π-coherent subdivisions of Q. In
particular, it is homotopy equivalent to a sphere of dimension d−d′−1.

An affirmative answer to this conjecture, at least for all π : P→ Q where P
is a simplex, would easily imply an affirmative answer to Problem 1.1.5. The
conjecture was motivated by the following result, which settled the original Baues
conjecture [5] (see Section 1.2(d)).

Theorem 1.1.16. (BILLERA, KAPRANOV & STURMFELS [9])
The Generalized Baues Conjecture holds for d′ = 1.

In the same paper, BILLERA, KAPRANOV & STURMFELS stated, without
proof, the correctness of the Generalized Baues Conjecture in the case where P
is a simplex and d′ = 2. A written proof for the generic case can be found in
EDELMAN & REINER [22].

Chapter 2 of this thesis gives a slightly different approach, stressing the struc-
ture of the “inducing faces” in P instead of the elements of the subdivision. Using
topological methods, we will prove another special case of the generalized Baues
conjecture. The general conjecture, however, will be disproved, leading to the
following theorem.

Theorem 1.1.17. (see Chapter 2, Theorem 2.1.7)
For d− d′ ≤ 2, the Generalized Baues Conjecture holds. There is, however, a
5-polytope Pdeg with 10 vertices and 36 facets projecting onto a triangle Qdeg in
the plane via a degenerate polytope projection πdeg : Pdeg → Qdeg such that the
poset of πdeg-induced subdivisions has an isolated element. Furthermore, there
is a simplicial 5-polytope P with 10 vertices and 42(!) facets projecting onto a
hexagon in the plane via a non-degenerate projection π : P→ Q such that the
poset of π-induced subdivisions is not connected.

In the spirit of the setting of the Generalized Baues Conjecture, the results
in Chapter 3 on triangulations of the cyclic polytope C(n,d) are obtained by the
following considerations. There is a projection flag

Rn−1 ⊃ ∆n−1 = C(n,n−1)→ ·· · →C(n,d)→ ··· →C(n,1) = [1,n]⊂ R,

given by successive deletion of the last coordinate (see BILLERA & STURM-
FELS [12] for more information on projection flags and iterated fiber polytopes).

The triangulations of C(n,d) are exactly the tight induced subdivisions with
respect to the projection πn,d : ∆n−1→C(n,d) that deletes the last n−d−1 coor-
dinates. This map trivially factorizes into projections of the projection flag. The
preimage of a triangulation of C(n,d) in C(n,d + 1) is a piecewise linear section
which uniquely determines this triangulation. This viewpoint was introduced by
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EDELMAN & REINER [21]. We obtain the main result of Chapter 3 by getting
a hand on the combinatorics of this projection step. In this context our theorem
reads as follows.

Theorem 1.1.18. (see Chapter 3, Theorem 3.1.1)
The tight πn,d-induced subdivisions of the cyclic polytope C(n,d) form a bounded
poset S1(n,d). Its elements correspond to certain equivalence classes of maximal
chains in S1(n,d−1).

It would be of interest whether the techniques of Chapter 3 could clarify the
structure of the poset ω(P,πn,d) of all πn,d-induced subdivisions of C(n,d) =
πn,d(∆n−1).

1.2 LINKS TO OTHER FIELDS

In this section we sketch a few connections between the problems attacked in this
thesis and other fields of mathematics.

1.2(a) Computational Geometry

Most investigations of subdivisions in computational geometry consider triangu-
lations of point configurations in the plane. Usually one assumes that all points
are in general position (no three on a line and no four on a circle) and that every
point must appear in some triangle of a triangulation. This leads to the notion
of edge-flipping operations. These are special cases of the bistellar operations in
Definition 1.1.3, namely where the set Z consists of 4 points in strictly convex
position. These edge-flipping operations are used to construct particular triangu-
lations, such as the Delaunay triangulation, from arbitrary starting triangulations
(see the diploma thesis by MERTSCH [50] for an overview on optimality consid-
erations).

Definition 1.2.1. Let A be a point configuration in Rd in general position (no
d + 1 points coplanar, no d + 2 points on a sphere). The Delaunay triangulation
TD(A ) is the unique triangulation of A for which every sphere spanned by the
d +1 points of a simplex in TD(A ) contains no other point of A .

In order to bound the complexity of an “edge-flipping” algorithm, the edge-
flipping distance dA (T1,T2) between two triangulations T1 and T2 of A is of
special interest. This is the minimal number of edge-flipping operations that is
necessary to transform T1 into T2. The edge-flipping diameter d(A ) of A is the
maximum of all dA (T1,T2) taken over all triangulations T1 and T2 of A . It is an
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easy exercise to show by induction that the graph of all triangulations of a planar
point configuration is connected.

If A is in strictly convex position then edge-flipping operations correspond
exactly to bistellar operations, and we have the following.

Theorem 1.2.2. (SLEATOR, TARJAN & THURSTON [67])
Let Qn be a convex n-gon. Then

d(Qn)≤ 2n−10 for n > 12,

d(Qn) = 2n−10 for infinitely many n.

For general planar point configurations with inner points there is the following
result, where now edge-flipping operations are considerably more restrictive than
bistellar operations.

Theorem 1.2.3. (HANKE, OTTMANN & SCHUIERER [34])
Let A be a set of points in the plane in general position, T1 and T2 two triangu-
lations of A , and let #(T1,T2) be the number of intersections of edges of T1 and
edges of T2. Then

dA (T1,T2)≤ #(T1,T2)≤ (3n−2nb−3)2,

where nb is the number of vertices of conv(A ).

Other results were achieved for the edge-flipping distance in general (non-
convex) simple polygons in the plane. These are n-gons where several nodes of
the boundary are not in convex position, the so-called reflex vertices. Although
this does not completely fit in our (convex) framework, we cite the corresponding
theorem.

Theorem 1.2.4. (HURTADO, NOY & URRUTIA [37])
Let Qn,k be a simple polygon with k reflex vertices. Then the diameter d(Qn,k) is
at most O(n+ k2).

There are simple 3-dimensional configurations (see Figure 1.8) for which cer-
tain partial triangulations (simplicial complexes that do not cover the complete
convex hull) cannot be completed to a triangulation (see CHIN & WANG [19]
for a characterizing approach). This indicates the difficulty of Problem 1.1.5 in
dimensions greater than 2.

On the other hand, for practical applications in computational geometry there
is a way to by-pass Problem 1.1.5. By an incremental algorithm, it is always
possible to find the unique regular triangulation Rw(A ) of A with respect to
given weights w : A → R on the points by means of bistellar operations. This
requires, however, bistellar operations in their full generality. For example, if the
weight function w is constant, one gets the Delaunay triangulation.
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FIGURE 1.8: This partial triangulation of a twisted prism over a tri-
angle cannot be completed to a triangulation without new vertices.

Theorem 1.2.5. (EDELSBRUNNER & SHAH [24])
For all point configurations A ⊂Rd in general position and all weights w : A →
R, there is an algorithm finding the triangulation Rw(A ) by adding the points one
by one and performing bistellar operations in between. If the points are added
in a random sequence and the history of bistellar operations is stored then the
expected running time is of order O(n logn+ndd/2e). This is also the order of the
number of simplices in some special triangulations.

1.2(b) Order Theory

Triangulations of a convex n-gon have been studied from a purely combinatorial
point of view for quite a long time. Starting in 1962, TAMARI [72] investigated
the poset Tn of all complete binary bracketings of a string of length n− 1. Its
elements turned out to be in one-to-one correspondence with the triangulations
of a convex n-gon without new vertices. Moreover, the covering relations in Tn
correspond to edge-flipping operations that have a certain direction.

Definition 1.2.6. Let Tn be the set of all complete binary bracketings of a string S
of length n−1. Define(

(AB)C
)

<
(
A(BC)

)
for substrings A,B,C of S.

Then the transitive closure of “<” defines a partial order “≤” on Tn. In view of
Theorem 1.2.7 below, the poset (Tn,≤) is called the Tamari lattice Tn.

Theorem 1.2.7. (HUANG & TAMARI [36])
Tn is a lattice.

The covering relations in Tn can also be considered as directed rotations in
binary trees, giving a link to computer science. The geometric connection is as
follows.
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Lemma 1.2.8. Tn is isomorphic to the set of all triangulations of the n-gon Qn
where the vertices 1, . . . ,n are ordered counter-clockwise. A covering relation
in Tn corresponds to an edge-flipping operation in a quadrangle (i, j,k, l) with
i < k < j < l that replaces the diagonal (i, j) with (k, l).

The diameter of the Hasse diagram of Tn is just the edge-flipping diameter
of Qn, and thus the bounds by SLEATOR, TARJAN & THURSTON [67] (see the pre-
vious section) apply to Tn. Additionally, PALLO [59] found an O(n3/2)-algorithm
to explicitly compute the distance of two elements of Tn.

The secondary polytope for this special case was found independently by
HAIMAN [33] and LEE [42] before the general theory of secondary polytopes
was developed by GELFAND, KAPRANOV & ZELEVINSKY [28].

Theorem 1.2.9. (HAIMAN [33], LEE [42], also MILNOR [52])
The Hasse diagram of Tn is the edge graph of an (n−3)-polytope, the associahe-
dron.

Using methods of formal concept analysis, GEYER [31] found some more
involved order theoretic facts about Tn. We omit them here because the corre-
sponding notions have no obvious connection to the geometry of triangulations.

The paper by EDELMAN & REINER [21], which we already mentioned at the
end of Section 1.1(a), presents a natural geometric generalization of Tn. There are
increasing bistellar operations for triangulations of the cyclic polytope C(n,d),
which coincide in the special case d = 2 with the directed edge-flipping operations
(see Section 3.5 for a detailed discussion). This yields a partial order on the set of
all triangulations of C(n,d), the (first) higher Stasheff-Tamari order S1(n,d).

Our positive result in Chapter 3 shows that at least the boundedness of Tn
survives in S1(n,d). Moreover, the correspondence between equivalence classes
of maximal chains in S1(n,d−1) and elements in S1(n,d) (see Theorem 1.1.18)
yields an additional order theoretic structure. The same property holds for the
higher Bruhat order B(m,k) of MANIN & SCHECHTMAN [48], further studied
by ZIEGLER [74]. A connection between these two classes of posets was first
detected by KAPRANOV & VOEVODSKY [40]; it will be an object of intensive
study in Section 3.8 of this thesis.

1.2(c) Oriented Matroid Theory

The framework of oriented matroids is by now a well-developed tool to study var-
ious kinds of combinatorial problems. At the same time, it has become a source
of problems that are interesting in their own right. We sketch the connnection be-
tween the unsolved Extension Space Conjecture and the Generalized Baues Con-
jecture, which is provided by the Bohne-Dress Theorem.
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Definition 1.2.10. The extension poset of an oriented matroid M is the set E (M )
of all extensions of M , partially ordered by the weak map relation. The order
complex ∆E (M ) of E (M ) is called the extension space of M .

Conjecture 1.2.11 (Extension Space Conjecture). Let M be a realizable oriented
matroid of rank d on n points. Then ∆E (M ) has the homotopy type of a (d−1)-
sphere.

That the realizability assumption is essential was shown by MNËV & RICH-
TER-GEBERT [53]. They constructed oriented matroids with even disconnected
extension spaces. Their result “killed” an older “extension space conjecture” that
did not assume realizability.

STURMFELS & ZIEGLER [71] derived affirmative answers to the extension
space conjecture for strongly euclidean oriented matroids, in particular for d ≤ 3,
for n≤ d+2, and for the alternating oriented matroid Z (n,d). The latter example
is the oriented matroid of the vector configuration of homogenous coordinates of
the vertices of the standard cyclic polytope C(n,d).

Definition 1.2.12. A zonotope is a polytope Z ⊂ Rd that is the projection of a
hypercube, or, equivalently, the Minkowski sum of finitely many line segments
[−vi,+vi]⊂ Rd , where V := {v1, . . . ,vn} is a configuration of vectors in Rd . The
oriented matroid M (Z) of Z is defined as the oriented matroid of V . This oriented
matroid has rank dim(V ).

Definition 1.2.13. Let Z be a zonotope. A (weak) zonotopal tiling of Z is a col-
lection Z of zonotopes that forms a polyhedral subdivision of Z.

A new proof of the following theorem may be found in RICHTER-GEBERT &
ZIEGLER [64].

Theorem 1.2.14 (Bohne-Dress Theorem). (BOHNE [16])
Let Z be a zonotope given by a vector configuration V ⊂Rd . There is a one-to-one
correspondence between the set of all zonotopal tilings Z of Z and the oriented
matroid liftings M̂ (Z) of M (Z).

Figure 1.9 shows a zonotopal tiling corresponding to the non-realizable ori-
ented matroid given by the so-called “non-Pappus” pseudoline configuration.

A zonotope Z may be viewed as the projection π(Cn) of the n-cube Cn. All
those zonotopes that can appear in a zonotopal tiling of Z are projections of faces
of the n′-cube for some n′, possibly larger than n; thus all zonotopal tilings of Z
are π ′-induced, where π ′(Cn′) = Z. Hence, a proof of the Generalized Baues Con-
jecture in the special case of hypercube projections would imply a “well-behaved”
structure of the set of all single-element liftings of a realizable oriented matroid.
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FIGURE 1.9: A zonotopal tiling corresponding to a non-realizable
oriented matroid. This is indicated by the dotted “pseudolines”
that form a configuration violating Pappus’ Theorem (picture from
ZIEGLER [75, p. 220]).

Moreover, via oriented matroid duality, this “cubical” Generalized Baues Con-
jecture is in fact equivalent to the extension space conjecture (see [63, Introduc-
tion] for an overview of concepts in oriented matroid theory). Recently, a con-
nection even between the set of all triangulations of a point configuration and the
extension space of its oriented matroid was drawn by SANTOS [65].

We only note here that there are several concepts of triangulations of ori-
ented matroids around. The first one was introduced by BILLERA & MUN-
SON [10], another one fitting in the theory of combinatorial differential manifolds
(see MACPHERSON [47]) was given by ANDERSON [2] (see SANTOS [65] for
more information).

Our negative result in Chapter 2 shows that for a successful attack to the exten-
sion space conjecture via the cubical Generalized Baues Conjecture it is essential
to take into account the particular structure of cube projections.

1.2(d) Combinatorial Models

When dealing with topological problems, it is often useful to work with special
combinatorial objects related to the topological spaces under consideration, rather
than with the topological spaces themselves. For example, triangulations of topo-
logical spaces lead to simplicial complexes that carry the complete topological in-
formation about the original space within their combinatorial structure. There are
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two quite different links between the Generalized Baues Conjecture and the theory
of combinatorial models of topological spaces: loop spaces and finite-dimensional
Grassmannians.

Combinatorial models of the finite-dimensional Grassmannians are closely re-
lated to oriented matroids. The real Grassmann manifold Gk(Rd), or Grassman-
nian for short, is the space of all k-dimensional subspaces of Rd with the usual
quotient topology, where V ∼W if and only if lin(V ) = lin(W ) for V = (v1, . . . ,vk)
and W = (w1, . . . ,wk) in (Rd)k. The oriented matroids M (V ) and M (W ) of
equivalent representatives V ∼W coincide. Thus, the set of all realizable oriented
matroids on d points of rank k with the topology inherited by the weak map re-
lation can be regarded as a model of Gk(Rd). But the realizability assumption
disturbs the combinatorial shape of the model; there is no combinatorial criterion
known to check realizability efficiently. (For additional problems occurring in this
stratification see STURMFELS [69].)

So a natural idea is to bring all oriented matroids on d points of rank k — real-
izable or not — into the game, forming the MacPhersonian MacP(d,k). This
was actually done by GELFAND & MACPHERSON [30] who conjectured that
MacP(d,k) is homotopy equivalent to Gk(Rd), which is in fact true if k ≤ 3 (see
BABSON [3] and MNËV & ZIEGLER [54]).

A generalization of this concept is the OM-Grassmannian (we refer to BAB-
SON [3], MNËV & ZIEGLER [54], and RICHTER-GEBERT [63, Introduction, Sec-
tion 4]).

Definition 1.2.15. Let M d be an oriented matroid of rank d on the set [n]. The
OM-Grassmannian of M is the poset

Gk(M d) :=
{

N k : N k is a rank k strong image of M d
}

,

partially ordered by the weak map relation.

The unifying conjecture is the following.

Conjecture 1.2.16. If M d is realizable, then the order complex of its OM-Grass-
mannian Gk(M d) is homotopy equivalent to the real Grassmannian Gk(Rd) for
all 1≤ k < n.

For k ≤ 2 there are affirmative results. For M d = F d we get the MacPherso-
nian MacP(d,k). In the case k = d−1 we are again concerned with the extension
space conjecture, inheriting the corresponding partial results. Further affirma-
tive partial answers to the extension space conjecture would support inductive
approaches to this problem.

The model theory of loop spaces deals with the construction of combinatorial
models for the loop space ΩX of X , which is the space of all closed paths in a
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topological space X , endowed with a certain topology. The source of the Gener-
alized Baues Conjecture actually lies in this field. The original Baues Conjecture
belongs to the purely combinatorial part of a whole theory developed by — among
others — ADAMS [1], MILGRAM [51], and BAUES [5]. The exact setting of this
framework requires much more insight into category theory than we can present
here. Thus, we restrict ourselves to a sketch of the situation.

In the book The Geometry of Loop Spaces by BAUES [5] a general model theo-
rem is presented, which roughly states the following: If X is a space glued together
from standard building blocks, then, under certain conditions, its loop space ΩX
is glued together from certain path spaces of the standard building blocks. The
following version of the model theorem is still a rough sketch of the exact setting.

Theorem 1.2.17 (Model Theorem for Loop Spaces, sketch). (BAUES [5])
Let K be a collection of abstract objects K with the following properties.

(i) Every K ∈K has a facial structure,

(ii) for every K ∈K all faces of K are again in K and have the inherited facial
structure,

(iii) every K ∈ K is a face of another K′ in K and has the inherited facial
structure,

(iv) for every K ∈K there is a topological standard realization ρ(K) of K that
is homeomorphic to a ball,

(v) there is another collection ΩK of abstract objects satisfying (i), (ii), and
(iii) with the following property: for every K ∈K there is an object ΩK and
a corresponding topological standard realization L(ΩK) that is (weakly)
homotopy equivalent to a certain path space Ωρ(K) of ρ(K),

(vi) for every K ∈K the boundary ∂L(ΩK) is homotopy equivalent to a sphere
of appropriate dimension.

Let X be a topological space that is the topological realization [C]ρ of a com-
plex C consisting of building blocks K from K . Then there is a construction that
builds up a complex ΩC from the building blocks ΩK in ΩK such that the topo-
logical realization [ΩC]L of ΩC is (weakly) homotopy equivalent to the loop space
ΩX of X. In other words, the following formula holds:

[ΩC]L ∼Ω[C]ρ .
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Because a closer inspection of this construction is outside the scope of this
thesis, we restrict ourselves to the problem of guaranteeing the assumptions of the
theorem.

We briefly sketch how one gets ΩK for building blocks K that are abstract
contractible cell complexes containing at least two vertices. Let Ω(ρ(K),xs,xt) be
the space of all paths in ρ(K) starting at xs ∈ ρ(K) and terminating at xt ∈ ρ(K),
where xs := ρ(sK) and xt := ρ(tK) correspond to vertices sK and tK in K. This path
space is (via certain topological constructions) related to the loop space of ρ(K).
We construct a model Ω(K,s, t) for Ω(ρ(K),xs,xt). To any element F of K we
assign vertices s(F) and t(F) of F with the following properties:

s(K) = sK,

t(K) = tK,

s(F ′) = s(F) if F ′ is a face of F and s(F) ∈ F ′,
t(F ′) = t(F) if F ′ is a face of F and t(F) ∈ F ′.

The pair (s, t) is called a double stippling on K. A cellular string in (K,s, t)
with respect to the double stippling (s, t) is a sequence (F0, . . . ,Fm) of faces of
K such that s(Fi) = t(Fi−1) for all i = 0, . . . ,m. The set ω(K,s, t) of all cellular
strings in K is partially ordered by refinement, i. e.,

(F0, . . . ,Fm)≤ (G0, . . . ,Gk) :⇐⇒
there are −1 = i0 < · · ·< ik+1 = m with:

(Fiν+1, . . . ,Fiν+1) is a cellular string in Gν for all ν = 0, . . . ,k.

The (cellular) string complex ΩK = Ω(K,s, t) (see Figure 1.10) is a certain
abstract cell complex that induces this partial order via its facial relations. We
may interpret this model as follows: for any path w from xs to xt in ρ(K) consider
the string of those faces of ρ(K) that are visited by w. This string gives rise to a
cellular string in K, thus to a cell in ΩK.

The crucial part in applications of the Model Theorem, as far as our framework
is concerned, is the construction of the spherical desuspensions L(ΩK). These are
the standard realizations satisfying (v) and (vi) of Theorem 1.2.17. Constructing a
spherical desuspension L(ΩK) roughly means finding a topological cell complex
with spherical boundary that carries the combinatorial structure of ΩK within its
incidences and is “consistent” for all K.

One straightforward attempt is to consider a topological realization of the or-
der complex of ΩK, which is the first barycentric subdivision of ΩK. Its boundary
is just a topological realization of the order complex of ΩK\{K}. If this boundary
is always homotopy eqivalent to a sphere, then we are done. For the special case
of double-stipplings on a polytope coming from a generic linear functional this
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L(Ω∆3)ρ(∆3)

(134)

(124) (1234)

(14)

31

FIGURE 1.10: The string space of the 3-simplex stippled by mini-
mal and maximal vertex. It is modelled by a 2-cube. The indicated
path going first through the face {1,2,3} and then along the edge
{3,4} corresponds to the grey point in the relative interior of the edge
{(134),(1234)} of the square.

is exactly the problem that is addressed by the Generalized Baues Conjecture for
d′ = 1.

The following considerations lead to the original Baues Conjecture. If we
are concerned with a triangulated topological space X , so that K is the set of
all abstract simplices with standard realizations, then the string complex for the
n-simplex ∆n is combinatorially equivalent to an (n− 1)-cube (see Figure 1.10).
Hence, by the Model Theorem, the loop space ΩX of X is (weakly) homotopy
equivalent to a certain space glued together from cubes. Continuing this process
with ΩX instead of X leads to the string complex of the n-cube, which turns out
to be the (n− 1)-permutahedron, the convex hull of all permutations of [n− 1],
viewed as vectors in Rn−1.

The next step, however, yields string complexes that cannot be realized as
polytopes. They even fail to be homeomorphic to balls. To apply the Model
Theorem, however, it would be sufficient to come up with realizations whose
boundary is homotopy equivalent to a sphere. The Baues Conjecture is roughly as
follows.

Conjecture 1.2.18 (Baues Conjecture). (BAUES [5])
The boundary of the string complex of a permutahedron has the homotopy type of
a sphere.

Here is our connection: assume that ρ(K) is a permutahedron with face lattice
K, and the double stippling on K is given by a generic linear functional ψ on ρ(K).
Then the first barycentric subdivision of the string complex ΩK coincides with the
order complex of the poset of all ψ-induced subdivisions. The minimal and the
maximal vertex of ρ(K) with respect to ψ correspond to the fixed base points
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in ρ(K). Thus, the proof of the case d′ = 1 of the Generalized Baues Conjecture
by BILLERA, KAPRANOV & STURMFELS [9] implies the Baues Conjecture.

Our negative result in Chapter 2 can be regarded as an obstruction for mod-
elling iterated loop spaces in one step, even if there were a similar model theorem
around (which — to the knowledge of the author — is not the case).

1.2(e) Polynomials in Several Variables

While examining discriminants of polynomials in several variables, GELFAND,
KAPRANOV & ZELEVINSKY [28] have detected a very surprising connection to
the combinatorics of coherent subdivisions. We try to give a rough idea of what
is going on. Details are contained in the book Discriminants, Resultants and
Multidimensional Determinants by the same authors [29]. For the following, let
A be a finite set of monomials xz := xz1

1 . . .xzd
d in d variables, and let CA denote

the space of all polynomials with complex coefficients all of whose monomials
belong to A. Moreover, for a monomial xz ∈ A let v(xz) := z = (z1, . . . ,zd) be the
corresponding lattice point in Rd , and let A be the configuration of all v(xz) for
xz ∈ A in Rd .

Definition 1.2.19. The A-discriminant ∆A( f ) of a formal polynomial

f = ∑
xz∈A

azxz ∈ CA

is a certain polynomial in the coefficients az of f which vanishes whenever f has
a multiple root (x1, . . . ,xd) with all xi 6= 0. For a collection of formal polynomials

f1 = ∑
xz∈A

a1,zxz, . . . , fm = ∑
xz∈A

am,zxz,∈ CA

the A-resultant RA( f1, . . . , fm) of f1, . . . , fm is a certain polynomial in the coeffi-
cients a1,z, . . . ,am,z of f1, . . . , fm which vanishes whenever f1, . . . , fm have a com-
mon root. The principal A-determinant EA( f ) of a formal polynomial f ∈ CA is
the following A-resultant, viewed as a polynomial in the coefficients az of f .

EA( f ) := RA

(
x1

∂ f
∂x1

, . . . ,xd
∂ f
∂xd

, f
)

.

Note that the argument “ f ” in the notation of the principal A-determinant
EA( f ) is only a formal parameter denoting a “generic” element of CA; it does
not mean that EA depends on some special polynomial f . Thus, we write EA for
the principal A-determinant whenever the formal parameter “ f ” is not needed.

The key step in the “translation” from polynomials to polytopes is the Newton
polytope of a polynomial f .
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Definition 1.2.20. The Newton polytope of a formal polynomial f (x1, . . . ,xd) in
d variables is the convex hull

N( f ) := conv(A ) = conv{v(xz) : xz is a monomial of f } ⊂ Rd

of all lattice points in Rd corresponding to monomials in f .

Before we state the theorem, we want to cite the original definition of the
secondary polytope by GELFAND, KAPRANOV & ZELEVINSKY [28].

Definition 1.2.21 (Secondary Polytope). Let A be a finite set of monomials, and
let A be the corresponding point configuration. Moreover, assume that conv(A )
is d-dimensional in Rd . For any triangulation T of A , let

φT :=
{

A → R,
z 7→ ∑S∈T :z∈vert(S) vol(S),

be its characteristic function. The secondary polytope of A is defined as

Σ(A) := conv
{

φT ∈ RA : T is a triangulation of A
}
⊂ RA.

Theorem 1.2.22. (GELFAND, KAPRANOV & ZELEVINSKY [28])
The Newton polytope of the principal A-determinant EA coincides with the sec-
ondary polytope Σ(A ) of the point configuration A corresponding to the mono-
mials in A.

We present a very simple example in order to illustrate that the three possible
constructions for the secondary polytope really lead to the same polytope rather
than only to an isomorphic one. Figure 1.11 illustrates the fiber polytope version.

Example 1.2.23. Let A = {1,x1,x2}, and thus A = {0,1,2}. Let f ∈ CA, that is,
f = ax2 + bx + c. Then ∆A( f ) = b2− 4ac, which vanishes if and only if f has a
double root.

I The Newton polytope: The principal A-determinant is

EA = ac(b2−4ac) = ab2c−4a2c2,

thus its Newton polytope is the one-dimensional polytope in R3 spanned by the
points (1,2,1)T and (2,0,2)T .

I The original secondary polytope: There are exactly two triangulations of
{0,1,2}, given by T1 = {[0,1], [1,2]} and T2 = {[0,2]}. The characteristic func-
tions are given by

φT1(0) = 1, φT1(1) = 2, φT1(2) = 1,

φT2(0) = 2, φT2(1) = 0, φT2(2) = 2,
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Φ
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Σ(∆2,πA )

Σ(Φ(∆2),π)

FIGURE 1.11: The secondary polytope of {0,1,2} ⊂ R.

and their convex hull inR3 is (up to permutation of coordinates) again the segment
spanned by (1,2,1)T and (2,0,2)T .

I The fiber polytope: The projection πA : ∆2→ [0,2] is given (up to permu-
tation of coordinates) by

πA (1,0,0)T := 0, πA (0,1,0)T := 1, πA (0,0,1)T := 2.

We perform the affine transformation Φ on ∆n−1 given by the linear transformation

Φ
′ :


R3 → R3,

x 7→

0 1 2
0 1 0
1 1 1

 · x,
and by deleting the last (constant) coordinate. We obtain the polytope projection
R2 ⊃Φ(∆2)→ [0,2] given by

π(0,0)T := 0, π(1,1)T := 1, π(2,0)T := 2.

There are two facets in the chamber complex of this projection, namely the two
segments [0,1] and [1,2]. Their barycenters are 1

2 and 3
2 , respectively. We have

P1
2

= [0, 1
2 ]× 1

2 , P3
2

= [0, 1
2 ]× 3

2 ,

and hence we get the fiber polytope of (Φ(∆n−1),π) as

Σ(Φ(∆n−1),π) =
1

vol([0,2])
·
(
vol([0,1]) ·

(
[0, 1

2 ]× 1
2

)
+vol([1,2]) ·

(
[0, 1

2 ]× 3
2

))
= [0, 1

2 ]×1.
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This polytope is transformed back by Φ−1 yielding

Σ(∆n−1,πA ) = conv{(1
4 , 1

2 , 1
4)T ,(1

2 ,0, 1
2)T}.

After rescaling we get the result

Σ(A ) = 2 ·2 ·Σ(∆n−1,πA ) = conv{(1,2,1)T ,(2,0,2)T}.



CHAPTER 2

THE GENERALIZED BAUES CONJECTURE

Associated with every projection π : P→ π(P) of a polytope P one has a partially
ordered set of all “locally coherent strings”: the families of proper faces of P that
project to valid subdivisions of π(P), partially ordered by the natural inclusion
relation.

The “Generalized Baues Conjecture” posed by Billera, Kapranov & Sturm-
fels [9] asked whether this partially ordered set always has the homotopy type of
a sphere of dimension dim(P)− dim(π(P))− 1. We show that this is true in the
cases when dim(π(P)) = 1 (see [9]) and when dim(P)−dim(π(P))≤ 2, but fails
in general.

For an explicit counterexample we produce a non-degenerate projection of a
5-dimensional, simplicial, 2-neighborly polytope P with 10 vertices and 42 facets
to a hexagon π(P)⊆R2. The construction of the counterexample is motivated by
a geometric analysis of the relation between the fibers in an arbitrary projection
of polytopes.

This chapter is based on a joint work with ZIEGLER [61].

2.1 INTRODUCTION

In this chapter we study the poset ω(P,π) of all “locally coherent strings” (defined
below) associated with a projection of a convex polytope. In particular, we prove a
new special case of the Generalized Baues Conjecture about the homotopy type of
this poset, and disprove the Conjecture by explicit counterexamples in the general
case.

The investigation of the posets ω(P,π) is motivated by problems that are con-
cerned with the global (topological) structure of a restricted set of subdivisions
of a fixed compact space. Such problems appear in very different frameworks,
among them

• model theory of loop spaces (see Section 1.2(d) and, e. g., the work by
ADAMS [1] and BAUES [5]),

• spaces of triangulations of manifolds (see NABUTOVSKY [55] for recent
work),

27
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• triangulations of point configurations and local transformations (see Sec-
tion 1.2(a) and, e. g., EDELSBRUNNER & SHAH [24] and JOE [38, 39]),

• extension spaces of oriented matroids (see Section 1.2(c) and STURMFELS

& ZIEGLER [71]), and

• finite models of the finite-dimensional Grassmannians (see Section 1.2(d)
and, e. g., MACPHERSON [47] and MNËV & ZIEGLER [54]).

The Generalized Baues Conjecture, whose precise setting we now introduce, di-
rectly applies to several of the situations we have just listed, and provides a proto-
typical model for the others.

Let π : P→ π(P) be a projection of polytopes. Here we assume that P is a d-
polytope in Rd , π(P) is a d′-polytope in Rd′ , and π :Rd→Rd′ is an affine map. If
π maps more than one vertex of P to a single point in π(P) we call π degenerate,
while π is weakly non-degenerate otherwise. If each affine dependence between
projections of vertices π(v1),π(v2), . . . ,π(vk) is induced by an affine dependence
between the vertices v1, . . . ,vk in P, then we call π (strongly) non-degenerate. The
main objects of study in this chapter are the following.

Definition 2.1.1. A locally π-coherent string — or a locally coherent string for
short — is a collection F of nontrivial faces of P (that is, faces different from P
and from ∅), such that

• {π(F) : F ∈F } is a polytopal subdivision of π(P) without repetitions,
that is, the sets π(F) are distinct polytopes which form a polytopal complex
with union π(P), and

• π(F)⊆ π(F ′) implies F = F ′∩π−1(π(F)), for F,F ′ ∈F .

The finite set of all locally π-coherent strings is partially ordered by

F ≤F ′ :⇐⇒
⋃

F ⊆
⋃

F ′.

The resulting partially ordered set (poset) of locally π-coherent strings is denoted
by ω(P,π). A string F ∈ ω(P,π) is called

• tight if dim(π(F)) = dim(F) for all F ∈F ,

• globally π-coherent — or coherent for short — if there exists a linear func-
tional ψ ∈ (Rd)∗\{0} such that π can be factorized into

π : P
(π,ψ)−→ {(π(x),ψ(x)) : x ∈ P} pr1−→ π(P),

such that (π,ψ)(F ) is locally pr1-coherent. The subposet of all coherent
strings is denoted by ωcoh(P,π)⊆ ω(P,π).
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For part (a) of the following useful Lemma see ZIEGLER [75, Chapter 9].
Part (b) is an immediate consequence.

Lemma 2.1.2. (Properties of tight strings)

(a) A locally coherent string is minimal in ω(P,π(P)) if and only if it is tight.

(b) If a tight locally coherent string is maximal then it is an isolated element in
ω(P,π(P)).

Definition 2.1.1 is equivalent to the definition of the set of all π-induced sub-
divisions of π(P), denoted “S (P,π(P)),” and the set of all π-induced subdivi-
sions of π(P), denoted “Scoh(P,π(P)),” in the paper of BILLERA, KAPRANOV

& STURMFELS [9] (see Section 1.1(b)). Since in general there may be many dif-
ferent locally π-coherent strings that determine the same polytopal subdivision of
π(P), we emphasize by our notation that one is dealing with objects in P rather
than with subdivisions of π(P).

BILLERA & STURMFELS [11] (see also ZIEGLER [75, Thm. 9.6]) showed that
the subposet ωcoh(P,π) is isomorphic to the poset of proper faces of the fiber poly-
tope Σ(P,π) of the projection π , a convex polytope of dimension d−d′. Thus, the
order complex (simplicial complex of chains, see Definition A.1.5) of ωcoh(P,π) is
homeomorphic to a sphere of dimension d−d′−1. In general, the poset ω(P,π)
is strictly larger than ωcoh(P,π), and not homeomorphic to a sphere (see Fig-
ure 1.7). However, in 1980 BAUES conjectured in his work on a model theorem
for loop spaces [5] (in somewhat different language) that for d′ = 1 the poset
ω(P,π) of all locally coherent strings is homotopy equivalent to the sphere Sd−2

(see Conjecture 1.2.18). In 1991, Billera, Kapranov & Sturmfels extended this to
the following conjecture.

Conjecture 2.1.3 (Generalized Baues Conjecture). (BILLERA, KAPRANOV &
STURMFELS [9], see also [70, Sect. 5])
For every projection π : P→ π(P) of a d-polytope P⊆Rd to a d′-polytope π(P)⊆
Rd′ , the poset ω(P,π) of all locally π-coherent strings is homotopy equivalent to
the (d−d′−1)-sphere.

Even stronger, ωcoh(P,π) is a retract of ω(P,π): the inclusion map

ωcoh(P,π) ↪→ ω(P,π)

is a homotopy equivalence.

Even for projections of reasonably small and simple polytopes, the poset of
all locally coherent strings can be large and complicated. Up to now, the main
positive result motivating the Generalized Baues Conjecture was the following
theorem, which settled the original conjecture by BAUES [5].
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Theorem 2.1.4. (BILLERA, KAPRANOV & STURMFELS [9])
The Generalized Baues Conjecture holds for d′ ≤ 1.

Actually, in [9] this is formulated only for the case where the projection is
non-degenerate. However, the proof can be extended to the general case without
greater difficulty.

Theorem 2.1.5. (Partial results for special polytopes P)

• If P is a simplex and dim(π(P))≤ 2, then the Generalized Baues Conjecture
holds ([9], a proof was recently presented by EDELMAN & REINER in [22]).

• If P is a hypercube and dim(π(P))≤ 2 or dim(P)−dim(π(P))≤ 3, then the
Generalized Baues Conjecture holds (see STURMFELS & ZIEGLER [71]).

We refer to BJÖRNER [14], BILLERA & STURMFELS [11], STURMFELS [70],
and MNËV & ZIEGLER [54] for related discussions. Our main positive result is
the following special case.

Theorem 2.1.6. The Generalized Baues Conjecture holds for d−d′ ≤ 2.

After preliminary work on the structure of locally coherent strings (includ-
ing a characterization theorem in terms of functions on the chamber complex) in
Section 2.2, we will prove Theorem 2.1.6 in Section 2.3.

Theorem 2.1.7. The Generalized Baues Conjecture is false in general for d′ ≥ 2
and d−d′ ≥ 3.

In Section 2.4 we present a construction method for polytope projections that
have isolated elements in their posets of all locally coherent strings, thus proving
Theorem 2.1.7. In order to provide more geometric and combinatorial intuition
for “what goes wrong here,” we present explicit coordinates for two counterexam-
ples in Section 2.5, together with simple, independent proofs that these polytope
projections violate the Generalized Baues Conjecture. These proofs depend on
“hands-on” knowledge of the face lattices of the polytopes, as can be obtained
from Fourier-Motzkin elimination (or any similar convex hull algorithm).

The first example is one special instance of the construction method of Sec-
tion 2.4. It is an extremely degenerate projection πdeg : Pdeg→ π(Pdeg) =: Qdeg,
where Pdeg is a 5-polytope with 10 vertices and 36 facets and Qdeg is a triangle.
Each vertex of Pdeg is projected by πdeg either to a vertex or to the center of the
triangle Qdeg. In this case ω(Pdeg,πdeg) has an isolated element.

The second example — obtained by perturbation of the vertices of the first
— is a strongly non-degenerate projection π : P→ π(P) =: Q, where P is a 2-
neighborly, simplicial 5-polytope with 10 vertices and 42(!) facets, and Q is a
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hexagon. Here ω(P,π) is disconnected: the locally coherent strings of one con-
nected component all have three special 2-faces of P in common.

By Theorems 2.1.4 and 2.1.6, these counterexamples have both minimal di-
mension and codimension. They easily imply that the Generalized Baues Conjec-
ture also fails in any higher dimension and codimension.

The most interesting cases of the Generalized Baues Conjecture that remain
open are the following:

• P is a simplex, and dim(π(P)) > 2
(directly relevant for triangulations and their local transformations),

• P is a hypercube, for dim(π(P)) > 2 and dim(P)−dim(π(P)) > 3
(important for extension spaces of oriented matroids).

2.2 FUNCTIONS ON THE CHAMBER COMPLEX

In this section we point out two crucial facts. The first one describes a basic prop-
erty of the chamber complex of a polytope projection, the second one is a “local
coherence condition” in terms of the normal fans of the fibers of the projection.

Given any linear or affine function ψ on a space that contains the polytope P,
we use Pψ to denote the set of all points in P on which ψ is maximal. This set Pψ

is a face of P, and all nonempty faces of P have this form (ψ = 0 corresponds to P
itself). We use L(P) to denote the face lattice of P: the set of all faces of P⊆ Rd ,
partially ordered by inclusion. This includes the trivial faces ∅ and P.

For a polytope projection π : P→ π(P) =: Q as above, the chamber complex Γ

is the set of intersections of all images of faces of P that contain a given point in Q,
that is,

Γ := {σ(q) : q ∈ Q} ,

where
σ(q) :=

⋂
{π(F) : q ∈ π(F),F ∈ L(P)}

is the chamber of q ∈ Q. (It can be shown that Γ is a polytopal complex subdi-
viding Q. The chamber complex Γ is the common refinement of all π-coherent
subdivisions of Q, and therefore shellable.)

There is no loss of generality if we assume from now on that the projection
map π : Rd → Rd′ is the restriction to the last d′ coordinates. For any q ∈ Q, the
fiber of q is the polytope

Pq :=
{

x ∈ Rd−d′ : (x,q) ∈ P
}

.
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FIGURE 2.1: The face Fq,ψ induced by ψ ∈ (Rd−d′)∗.

Thus, we consider the fibers as full-dimensional polytopes Pq in the (fixed)
vector space Rd−d′ (compare Section 1.1(b), where the fibers are considered as
subsets of Rd). Whenever we need to interpret a fiber as a subset of Rd we write
iq(Pq), where iq(x) := (x,q) ∈ Rd . The (surjective) map i∗q : (Rd)∗→ (Rd−d′)∗ is
as usual defined by i∗q(α)(x) := α(iq(x)) = α(x,q).

The nonempty faces of the fibers Pq can be represented in the form Pψ
q , where

ψ is a linear functional ψ ∈ (Rd−d′)∗. Now, if Pψ
q is any nonempty face of a

fiber Pq, then we use [ψ] to denote the (closed, polyhedral) cone in (Rd−d′)∗ of all
linear functions that are maximal on the face Pψ

q of Pq. This set [ψ] is the normal
cone of the face Pψ

q . If q′ is another point that lies in the relative interior of the
same chamber of the chamber complex as p, then the normal cones of the face Pψ

q
of Pq and Pψ

q′ of Pq′ coincide. (That is, the fibers Pq and Pq′ are normally equivalent,
see, e. g., BILLERA & STURMFELS [11].) Thus, we can use the notation [ψ]σ for
the normal cone of the face that ψ defines in the fiber, called the normal cone
over σ induced by ψ . Moreover, let N(σ) denote the fan consisting of all normal
cones over σ , the normal fan over σ (that is, the normal fan of the fiber over a
point in the relative interior of σ ).

For each face Pψ
q of a fiber Pq, there is a unique minimal face of P that contains

Pψ
q (the intersection of all faces that contain Pψ

q ). We use Fq,ψ to denote this face
of P corresponding to the face Pψ

q of Pq. For its normal cone in (Rd)∗ we use the
notation CP(Fq,ψ). Figure 2.1 depicts the situation for d = 2 and d′ = 1.

The following Lemma collects the elementary basic facts.
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Lemma 2.2.1. (Elementary Facts)
The faces of the polytope P, of the fibers Pq, and the chambers σ ∈ Γ, are related
as follows.

(i) The chamber of q ∈ Q is given by

σ(q) =
⋂

ψ∈(Rd−d′)∗
π(Fq,ψ).

(ii) For all q ∈ Q and ψ,ψ ′ ∈ (Rd−d′)∗,

Pψ
q < Pψ ′

q ⇐⇒ Fq,ψ < Fq,ψ ′

(iii) For all q,q′ ∈ Q and ψ ∈ (Rd−d′)∗,

q′ ∈ relintπ(Fq,ψ) =⇒ Fq′,ψ = Fq,ψ ,
q′ ∈ ∂π(Fq,ψ) =⇒ Fq′,ψ ⊂ Fq,ψ ,

π(Fq′,ψ)⊂ π(Fq,ψ) ⇐⇒ Fq′,ψ ⊂ Fq,ψ ,
π(Fq1,ψ ∩·· ·∩Fqk,ψ) = π(Fq1,ψ)∩·· ·∩π(Fqk,ψ).

(iv) Let q′ ∈ σ(q),q ∈ Q, x ∈ Pψ
q ,x′ ∈ Pψ

q′ and α ∈CP(Fq,ψ). Then

i∗q′(α)(x′) = i∗q(α)(x).

(v) The normal cone CP(Fq,ψ) of Fq,ψ in (Rd)∗ is mapped by i∗q onto the normal
cone of Pψ

q in (Rd−d′)∗.

(vi) For each face F of P, there exist q ∈ Q and ψ ∈ (Rd−d′)∗ such that

F = Fq,ψ .

As a corollary of (iii), we get that, if ψ is fixed, the face Fq,ψ does not change if
q moves in the relative interior of the chamber σ(q). Hence, with each chamber σ

and each functional ψ we can associate a well-defined face of P, via

Fσ ,ψ := Fq,ψ , q ∈ relint(σ).

The following “normal fan relation” of the chamber complex was used in the
special case d′ = 1 by BILLERA, KAPRANOV & STURMFELS [9] in their proof of
the Baues Conjecture. Here we state its general validity.
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(a) (b)

FIGURE 2.2: The normal fan relation.

Lemma 2.2.2. If τ is a face of σ in the chamber complex Γ, then for each ψ ∈
(Rd−d′)∗ the normal cone over τ defined by ψ is contained in the corresponding
normal cone over σ :

τ < σ ∈ Γ =⇒ [ψ]σ ⊆ [ψ]τ .

Hence, the normal fan over σ is a refinement of the normal fan over τ:

N(σ)� N(τ).

Proof. Let φ = i∗q(α) be a linear functional on (Rd−d′)∗ in [ψ]σ with q∈ relint(σ)
and some α in the normal cone CP(Fσ ,ψ) of Fσ ,ψ in P by Lemma 2.2.1(v). Then

φ = i∗q(α) ∈ i∗q(CP(Fσ ,ψ)).

But this is contained in i∗q′(CP(Fσ ,ψ)) for each q′ ∈ σ (Lemma 2.2.1(iv)), espe-
cially for q′ ∈ τ .

We know from Lemma 2.2.1(iii) that if τ is a face of σ then Fτ,ψ is a (not nec-
essarily proper) face of Fσ ,ψ for all ψ ∈ (Rd−d′)∗. Hence, from Lemma 2.2.1(v)
we derive

i∗q′(CP(Fσ ,ψ)) ⊆ i∗q′(CP(Fτ,ψ)) = [ψ]τ ,

which completes the proof.

Remark 2.2.3. In general we cannot expect a strict refinement (see Figure 2.2(b)),
because the map i∗q′ does not preserve strict inclusions if the projection is degen-
erate. But if we restrict ourselves to non-degenerate projections then the cone
inclusion has to be proper for at least one ψ ∈ (Rd−d′)∗, and therefore the fan
refinement is strict.
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The following proposition describes the relations between the fibers over ad-
jacent chambers even metrically.

Proposition 2.2.4. Let σ ∈ Γ be a chamber with vertices v1, . . . ,vk and

q =
k

∑
i=1

λivi

with λi ≥ 0 and ∑
k
i=1 λi = 1.

Then Pq is the Minkowski sum of the fibers over the vertices of σ , scaled as in
the representation of q in σ ,

Pq =
k

∑
i=1

λiPvi.

Proof. Consider the polytope projection

πσ : Pσ := π
−1(σ)→ σ .

In this special case the fiber over each vertex vi of σ is the convex hull of ver-
tices vi,1, . . . ,vi,l(i) of Pσ and these are the only vertices of Pσ . This yields the
claim after a straightforward computation.

Corollary 2.2.5. The normal fan over the relative interior of a chamber σ ∈ Γ is
exactly the common refinement of the normal fans over the faces of σ .

Any locally coherent string can be interpreted as a function which associates a
face of Pq to every point q∈Q in some “locally coherent” way. This selection must
be constant (in the sense that the same face Fσ ,ψ is chosen) in the relative interior
of every chamber. No locally coherent string can contain a whole d′-dimensional
fiber Pq for some q ∈ Q, because this would imply that P itself is contained in
that string. Complete fibers Pq of dimension smaller than d′ — e. g., for q in
the boundary of Q — can always be expressed by non-zero normal vectors. (For
example, if a fiber consists only of one vertex any non-zero vector will do the job.)
Hence, we will interpret the selection functions as functions from Γ to Sd−d′−1,
where ψσ ∈ Sd−d′−1 induces a face of a fiber over σ — which is a proper one
whenever the fiber is full-dimensional — and therefore a proper face of P.

The following criterion (see BILLERA, KAPRANOV & STURMFELS [9] for
the case d′ = 1) describes the admissible selection functions in terms of normal
cones.

Proposition 2.2.6. (Cone Condition)
A function

ψ :
{

Γ → Sd−d′−1

σ 7→ ψσ
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defines a locally π-coherent string of Q via

F (ψ) :=
{

Fσ ,ψσ
: σ ∈ Γ

}
if and only if for all σ ,τ ∈ Γ with τ < σ one has

relint[ψσ ]σ ⊆ relint[ψτ ]τ .

Furthermore, every locally coherent string arises from a selection function ψ in
this way. Two functions ψ and ψ ′ define the same string, F (ψ) = F (ψ ′), if and
only if [ψσ ]σ = [ψ ′σ ]σ holds for all σ ∈ Γ.

The proof is a careful check of definitions, where Lemma 2.2.1 yields the
necessary details.

Definition 2.2.7. A function ψ as in Proposition 2.2.6 is called locally coherent.
Two functions ψ,ψ ′ are equivalent if they define the same locally coherent string.
In this case we write

[ψ] = [ψ ′]

for their equivalence class.

Because of Lemma 2.2.2 the crucial function values are just those over the
chambers of maximal dimension.

Proposition 2.2.8. (Pairwise Cone Condition)
The cone condition in Proposition 2.2.6 is equivalent to the following:

[ψσ1]σ1∩σ2 = [ψσ2]σ1∩σ2

for all d′-dimensional chambers σ1,σ2 ∈ Γ such that σ1∩σ2 6= ∅. Any function
that respects the pairwise cone condition for the chambers of dimension d′ can be
completed to a locally coherent function.

Figure 2.3 illustrates Propositions 2.2.6 and 2.2.8 for the situation d = 3 and
d′ = 1: A choice of 1 over σ2 and 5 over σ3 is locally coherent and would imply
the choice of 3 over σ23. If 2 is chosen over σ2 then 5 is not a consistent choice
over σ3. However, in this case 6 or 7 are “good choices” over σ3 — with respect
to the pairwise cone condition — which both determine 4 over σ23. Observe that
for example the open normal cone at 6 is the intersection of the open normal cones
at 8 and 4 (compare Corollary 2.2.5).
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FIGURE 2.3: The pairwise cone condition.

2.3 VALIDITY IN LOW CODIMENSION

In this section we prove Theorem 2.1.6, by presenting an explicit retraction of the
following models of the order complexes of ω(P,π) and ωcoh(P,π), namely

Ω =
{

ψ ∈ (S1)Γ : [ψσ ]τ = [ψτ ]τ for all τ ≤ σ ∈ Γ
}

,

and
Ωcoh =

{
ψ ∈ (S1)Γ : ψσ = ψτ for all τ,σ ∈ Γ

}
.

The topology of the order complexes coincides with the topology induced by the
canonical metric on Ω,Ωcoh ⊆ (S1)Γ, induced from (S1)Γ viewed as a product of
copies of the metric space S1 (see Section A.2).

Let σ ∈ Γ. From now on we call two values ψ1 and ψ2 in S1 locally coherent
with respect to σ , if

[ψ1]σ = [ψ2]σ .

A function
ψ : Γ→ S1

defines a locally coherent string if and only if all function values of intersecting
chambers are pairwise locally coherent with respect to the intersection of their
preimages. (This is the pairwise cone condition of Proposition 2.2.8.)
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The crucial observation for the situation in codimension 2 is that the local co-
herence property reduces to a distance property for function values in the universal
cover of S1: if we replace two locally coherent function values by values in the
closed interval they span, then they stay locally coherent. In higher codimension
this fails in general.

Proof of Theorem 2.1.6. We proceed in seven steps.
Step 1: From now on we write qσ for the barycenter of the chamber σ ∈ Γ. For
a function

ψ :
{

Γ → S1

σ 7→ ψσ

that defines a locally coherent string, let

ψ̂ : Q→ S1

be the unique piecewise linear function on Q with

ψ̂(qσ ) = ψσ

for all chambers σ ∈ Γ. Here “piecewise linear” means that whenever q is in
the simplex spanned by the barycenters of the chambers σi, i = 1, . . . ,k, with
barycentric coordinates λ1, . . . ,λk ≥ 0 and ∑

k
i=1 λi = 1, its function value is given

by

ψ̂(q) = ∑
k
i=1 λiψ̂(qσi)

‖∑k
i=1 λiψ̂(qσi)‖

.

This yields a well-defined continuous function: the function ψ defines a locally
coherent string and thus the function values on pairwise adjacent chambers lie
inside some open hemisphere in S1 (see Corollary 2.2.5).
Step 2: For the rest of the proof, let σ0 be a fixed chamber of Γ, let ψ : Γ→ S1 be
a locally coherent function, and ψ0 := ψσ0 its value for σ0. For λ ∈ S1, let

Φλ :
{
{z ∈ C : ‖z‖= 1} → S1

1 7→ λ

be an isometry that coordinatizes S1. Let

w : [0,1]→ Q

be a path in Q that starts at qσ0 . Then

ψ̂∗(w) :
{

[0,1] → S1

t 7→ (ψ̂ ◦w)(t)
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is a path in S1 that starts at ψ0.
Step 3: Let

p :
{
R → {z ∈ C : ‖z‖= 1}
t 7→ exp(2πit)

be the universal covering of {z ∈ C : ‖z‖= 1} and let

pλ :
{
R → S1

t 7→ (Φλ ◦ p)(t)

be the universal covering of S1 where the parameter λ describes different coordi-
nate systems on S1. For a path

u : [0,1]→ S1

with u(0) = λ , let
Lλ (u) := Lpλ

(u,0) : [0,1]→ R

be its lifting with Lλ (u)(0) = 0. We know from the theory of coverings that liftings
of paths that are homotopic relative ∂ [0,1] have the same endpoint.
Step 4: We will now lift the “distance” between the considered function values to
R in order to get maximum and minimum values.

Definition 2.3.1. We define the twist of ψ to be the following function:

twistψ :
{

Γ → R
σ 7→ Lψ0(ψ̂∗)(w)(1),

where w : [0,1]→ Q is a path from qσ0 to qσ .

In other words: coordinatize S1 properly, take a path from the barycenter of σ0
to the barycenter of σ , consider the corresponding path induced by the piecewise
linear extension ψ̂ of ψ , and take the endpoint of its lifting to R. This is well-
defined by step 3 because all paths in Q are homotopic. From the definition we
get that twistψ(σ0) = 0. Figure 2.4 shows the twist of the chamber σ .

A locally coherent string is globally coherent if and only if it can be described
by a function ψ with twistψ(Γ) = {0}. In addition we have pψ0 ◦ twistψ = ψ̂ ,
which makes it possible to recover the function ψ from its twist or to define a new
function ψ ′ by simply changing the twist of ψ (with twist of σ0 unchanged) and
projecting it via pψ0 .
Step 5: The following lemma shows that local coherence in this special case is
preserved under “pushing together” lifted function values — this is the crucial
point that cannot be generalized to higher codimension.
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FIGURE 2.4: The twist of σ .

Lemma 2.3.2. Let ψ : Γ→ S1 be a locally coherent function, in particular, ψσ1 ,
ψσ12 , and ψσ2 are pairwise locally coherent with respect to σ12 := σ1∩σ2. With-
out loss of generality, let twistψ(σ1) < twistψ(σ2). Then each pair of values
ψ1,ψ2 contained in the arc

pψ0([twistψ(σ1), twistψ(σ2)])⊂ S1

is locally coherent with respect to σ12 as well.

Proof. Let w0,1 : [0,1]→ Q be an arbitrary path from qσ0 to qσ1 . Moreover, let
w1,2 : [0,1]→Q be the polygonal path (this is the reason why we defined the twist
via paths rather than via straight lines!) which leads straight from qσ1 to qσ12 and
then straight from qσ12 to qσ2 . (The following will not depend on the parametriza-
tion.) Because of local coherence over σ12, we have

ψσ1 ∈ relint[ψσ12]σ12,

ψσ2 ∈ relint[ψσ12]σ12,

ψσ12 ∈ relint[ψσ12]σ12.

By definition, each q on the straight line from qσ1 to qσ12 is mapped by ψ̂ to a
point between ψ̂(qσ1) = ψσ1 and ψ̂(qσ12) = ψσ12 . (“Between” is well-defined be-
cause all these points lie in the same pointed cone [ψσ12]σ12 .) Analogously, each q
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on the straight line from qσ12 to qσ2 is mapped by ψ̂ to a point between ψ̂(qσ12) =
ψσ12 and ψ̂(qσ2) = ψσ2 .

Hence, we get

ψ̂∗(w1,2)(t) ∈ relint[ψσ12]σ12 for all t ∈ [0,1].

Therefore, if we compute the twist of ψ1 and ψ2 using the paths w0,1 and
w0,1 ·w1,2 (the concatenation of w0,1 and w1,2), we get that all values in the inter-
val [twistψ(σ1), twistψ(σ2)] project into the open cone relint[ψσ12]σ12 , and hence
produce local coherent pairs.

If a twist is extremal, then there is only one direction in R with other twist
values. That means we can “retwist” all chambers that yield this extremal value
until their twist meets the next occuring different twist. So at the next step we will
introduce a “twist cutoff” homotopy.
Step 6: Let M(ψ) be the maximum of all absolute values of ψ-twists taken over
all chambers σ ∈ Γ. Define

twistψ(σ , t) :
{

Γ× [0,1] → R
(σ , t) 7→ max{min{twistψ(σ), tM(ψ)},−tM(ψ)}.

Step 7: Now we are in position to define the final “retwist”-homotopy. Let

ψt :
{

Γ → S1

σ 7→ pψ0(twistψ(σ , t)).

Then ψ1(σ) = ψσ and ψ0(σ) = ψ0 for all σ ∈ Γ. Hence, ψ1 = ψ ∈ Ω and ψ0 ∈
Ωcoh. This yields the desired retraction

H :
{

Ω× [0,1] → S1

(ψ, t) 7→ ψt

with
H(Ω,1) = idΩ and H(Ω,0) = Ωcoh.

This retraction is continuous in t by definition. It is continuous in ψ because
it contracts distances between all functions ψ1 and ψ2 in (S1)Γ according to the
maximum metric d, whenever

d(ψ1,ψ2) < δ with δ := 2−max
{

d([ψ]σ ) : ψ ∈ (S1)Γ,σ ∈ Γ
}

> 0.

Since the diameter d((S1)Γ) of (S1)Γ is bounded by 2, we are done by Corol-
lary A.2.4.
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This proof and the proof of Theorem 2.1.4 in the paper of BILLERA, KAPRA-
NOV & STURMFELS [9] suggest a duality between the geometric situations in the
case dim(Q) = 1 and the case dim(P)−dim(Q) = 2, as one would expect from an
oriented matroid perspective (see also BILLERA, GELFAND & STURMFELS [8]):

• In the case of dimension 1 the polytope Q is linearly ordered and therefore
has a “maximum chamber” with local coherence condition only in one di-
rection. The retraction can start at this chamber moving its function value
to that of the next adjacent chamber, no matter what the dimension of the
image sphere is.

• In the case of codimension 2 the chambers can yield a very complicated
structure of local coherence conditions between their function values, but in
this case the lifting of the image of this structure can be retracted in R easily
starting from its boundary, i. e., from the extremal values.

Analysis of the key points in the proof of Theorem 2.1.6 also led us to the
crucial structures for the counterexamples in Sections 2.4 and 2.5.

2.4 HOW TO CONSTRUCT A COUNTEREXAMPLE

In this section we introduce the main idea for the construction of a counterexample
in dimension dim(Q) = 2 and codimension dim(P)−dim(Q) = 3. We start with
a configuration of three two-dimensional chambers σ1,σ2,σ3 that form a subdi-
vision Γ of Q (see Figure 2.5(a)). The corresponding edges in the boundary of Q
are τ1, τ2, and τ3. We denote σi∩σ j by σi j, and thus the inner vertex σ1∩σ2∩σ3
by σ123. Analogously, we set τi∩ τ j =: τi j.

We want to construct functions ψ : Γ→ S2 that satisfy the “local coherence
condition” (Proposition 2.2.6) with respect to the fiber structure of some polytope
projection. First we assign to each σi a fixed value ψσi in S2 such that the cone
spanned by the ψσi in (R3)∗ is full-dimensional. Since ψ ought to be locally
coherent, this leads to several restrictions on the possible structures of the normal
fans over the chambers.

There is a consistent choice for ψσ12 only if ψσ1 and ψσ2 lie in the same open
cone of the normal fan over relint(σ12). In general, this open cone (which de-
scribes the correct selections for ψσ12) does not contain ψσ3 . These cones are the
crucial ones because for local coherence at the inner vertex σ123, we just have to
choose a vector in the open cone of the normal fan over σ123 that contains the rest
of the configuration, which is always possible (see Lemma 2.2.2). The generic
topological picture of the situation in the sphere S2 is as in Figure 2.5(b), which is
a superposition of cones from the normal fans over σi j and σ123.
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(a) (b)

ψσ1

ψσ3

ψσ2

[ψσ1]σ123

[ψσ1]σ12

[ψσ1]σ13

[ψσ1]σ23

FIGURE 2.5: A simple chamber complex (a) and a sketch for a possi-
ble “locally coherent” choice of function values on this complex (b).

If the vectors ψσi are in general position with respect to some fiber structure,
then the locally π-coherent string F0 they determine in a polytope projection that
induces this fiber structure is tight. In the following we describe what “has to go
wrong” to get a fiber structure in which this tight string is not dominated by a
non-tight string F > F0. (In this case the tight string is stuck: this is the situation
of Lemma 2.1.2(b)).

To get from F0 to F , we have to move at least one of the vectors ψσi to a
more special position, that is, to the boundary of the normal cone it lies in. One
can now see that for every movement of a function value of a maximal chamber
— say ψσ1 — to a face of the normal cone associated with an edge, say ψσ12 ,
requires a movement of the other normal vector — here ψσ2 — contained in that
cone to the same face in order to stay locally coherent.

The idea is now to produce a configuration of normal cones of the fibers such
that for each cone corresponding to the starting values of the function ψ no face
is reachable by both the function values of the maximal chambers in a way such
that the intermediate functions stay locally coherent.

Consider the “basket ball” with three segments in Figure 2.6(a): the normal fan
of a triangle in R3 intersected with the 2-sphere. We take three perturbed copies
of this configuration such that the superposition locally looks as in Figure 2.6(b).
The rounded triangle bounding the configuration sketches the normal cone of ψσ1

over σ123 (its exact shape is not important, it could have, for example, more than 6
extremal rays). Together with the three basket balls it provides the three triangular
“prisons” which the function values are placed into. These function values are
pairwise locally coherent because ψσ1 and ψσ2 lie in the same cone [ψσ1 ]σ12 over
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ψσ2

ψσ3

[ψσ1]σ13

[ψσ3 ]σ23

[ψσ1 ]σ123

[ψσ2]σ12

(b)(a)

ψσ1

FIGURE 2.6: The “basket ball obstruction.”

σ12, and so on. There is no possibility to push the function values to more special
position without violating the pairwise cone condition.

Assume, without loss of generality, ψσ1 moves to a face of [ψσ1]σ12 while no
other function value has reached a more special position earlier. Then ψσ2 has to
move to the same face at the same moment — but then it must have passed over a
face of [ψσ3]σ23 in the meantime: a contradiction (see the “funny star-like thing,”
a flash where the contradiction occurs, in Figure 2.6(b)).

In the same manner all possibilities of moving function values over the 2-
chambers fail. Hence, this provides an obstruction for homotopies on the starting
function ψ which we call the basket ball obstruction.

The configuration of Figure 2.6 is realized by the following innocent-looking
construction that is illustrated in Figure 2.7.

• Let π : R5→ R2 be the projection to the last two coordinates.

• Put three triangles intoR5 in the following way: each triangle projects down
to one vertex of the triangle Q, such that the superposition of their normal
fans in R3 (basket balls!) locally looks like the configuration inside [ψ1]σ123

in Figure 2.6(b) — the local basket ball obstruction.

• Let P̃deg be their convex hull in R5. At this point the normal fan over σ123
is the common refinement of the three basket balls (Corollary 2.2.5).

• Position a single vertex into R5 such that it projects to the 0-cell σ123 in
the center of Γ. The resulting fiber over σ123 will just be the convex hull
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(a) (b) (c) (d)

FIGURE 2.7: A part of the normal fan over the vertex τ12 of Q (a),
over σ123 (b), over the corresponding edge σ12 (c), and over the ad-
jacent 2-dimensional chamber σ1 (d). If ψσ1 is chosen in the interior
of the shaded cone, and if ψσ2 and ψσ3 are chosen analogously with
respect to the rotational symmetry we get the basket ball obstruction
of Figure 2.6.

of the old fiber over σ123 and the new vertex. Choose the new vertex v in
such a way that its normal cone in the fiber realizes the cone [ψ1]σ123 of Fig-
ure 2.6(b). (From the primal point of view we put the vertex “beyond” those
faces of the fiber that have normal cones in the local basket ball obstruction.
Hence, in the new normal fan over σ123 the local basket ball obstruction
is replaced by the normal cone of the new vertex.) The resulting polytope
Pdeg = conv(P̃deg,v) has 10 vertices.

• Because of Proposition 2.2.2, the normal fans over the edges σi j of Γ are
the common refinement of the normal fan over σ123 and the normal fan over
the corresponding vertex of Q. Over a vertex of Q there is one basket ball
and over σ123 there is a fan that contains a cone that “locks” the basket ball
obstruction into one cone.

• Define the function values on σi as in Figure 2.6(b) and the function values
on σi j somewhere inside the corresponding cones [ψσi]σi j = [ψσ j ]σi j .

• Complete this function on the boundary of Q (Proposition 2.2.8). This
yields a tight locally coherent string that is not dominated by a coarser one,
i. e., an isolated element in ω(P,π) (see Lemma 2.1.2(b)).

In Section 2.5 we will present a version of Pdeg with explicit coordinates in
R5. Moreover, we will slightly perturb the vertices of Pdeg to get a simplicial,
non-degenerate counterexample P. For each of them we will provide another,
simple way to see that it violates the Generalized Baues Conjecture.
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2.5 AN EXPLICIT COUNTEREXAMPLE

Throughout this section we use homogeneous coordinates in order to get a nice
threefold rotational symmetry for Qdeg and Q without square roots. We use pro-
jections that delete the first three coordinates. The following list contains as rows
the (homogeneous) coordinates for ten points in R5 in convex position.

DIM = 6
CONE_SECTION
( 1) 1 0 0 1 0 0
( 2) 0 3/2 1 1 0 0
( 3) 0 1 3/2 1 0 0

( 4) 0 1 0 0 1 0
( 5) 1 0 3/2 0 1 0
( 6) 3/2 0 1 0 1 0

( 7) 0 0 1 0 0 1
( 8) 3/2 1 0 0 0 1
( 9) 1 3/2 0 0 0 1

( 10) 2 2 2 1/3 1/3 1/3
END

The first nine rows correspond to the three triangles of the abstract construc-
tion in Section 2.4, the tenth one represents the additional vertex. The chamber
complex of the projection to the last three coordinates is as in Figure 2.5(a). The
normal fans of the three triangles in R3 form the basket ball obstruction. The
additional vertex yields the midpoint of the chamber complex and bounds the ob-
struction over the edges of the chamber complex. Figure 2.9 is an attempt to
visualize the construction.

The above listing is in correct input format for the PORTA program, written
by CHRISTOF [20]. This program easily produces a complete list of all 36 facets
of P, and the vertex-facet incidence matrix in Figure 2.8.

The following tight locally coherent string — where the faces Fdeg
1 ,Fdeg

2 ,Fdeg
3

(compare Figure 2.10) are given by their vertices labelled as in the listing above
— will correspond to the three given function values in Figure 2.6.

F deg
0 := {(1,4,10),(4,7,10),(7,1,10)}.

Once we have this, it is very easy to see independently from Section 2.4 that
this is a counterexample to the Generalized Baues Conjecture. To form a strictly
coarser string, we must replace at least one of the faces Fdeg

1 ,Fdeg
2 ,Fdeg

3 in F deg
0
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strong validity table :
\ P | | |
\ O | | |

I \ I | | |
N \ N | 1 6 | # |
E \ T | | |
Q \ S | | |
S \ | | | ||

\ | | | \/
--------------------------- |
1 | .***. .*..* : 5 | 19 | ..*** .*..* : 5
2 | *...* **..* : 5 | 20 | .*.*. .*.** : 5
3 | *..*. ..*** : 5 | 21 | *.*.* .*..* : 5
4 | ....* .**** : 5 | 22 | **.*. ...** : 5
5 | ..*.. .**** : 5 | 23 | *.... ***.* : 5
6 | ...** *..** : 5 | 24 | *..*. *.*.* : 5
7 | .*.** *...* : 5 | 25 | .**.. .*.** : 5
8 | ***.. ..*.* : 5 | 26 | .**** ....* : 5
9 | ***.. *...* : 5 | 27 | ....* ***.* : 5
10 | ...** ****. : 6 | 28 | *.*.* *...* : 5
11 | ***.. .***. : 6 | 29 | ...*. *.*** : 5
12 | ***** *.... : 6 | 30 | **... ..*** : 5
13 | *.*** .*... : 5 | 31 | ****. .*... : 5
14 | **.*. .*.*. : 5 | 32 | *..** **... : 5
15 | *..*. ***.. : 5 | 33 | *..*. .***. : 5
16 | ...** .*.** : 5 | 34 | ....* *.*** : 5
17 | *.*.. .**.* : 5 | 35 | .**.. ..*** : 5
18 | **.*. *...* : 5 | 36 | .**.* *...* : 5

| .................
|| | # | 21121 12112
\/ | | 06606 60667

FIGURE 2.8: The vertex-facet incidence matrix of Pdeg.
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N(1,0,0)

N(0,1,0)

N(1
3 , 1

3 , 1
3)

N(0,0,1)

4

10

(0,0,1)

(1,0,0)

(0,1,0)

7

8 9
5

1

3

6

(1
3 , 1

3 , 1
3)

2

FIGURE 2.9: A sketch of πdeg : Pdeg → Qdeg: Over each vertex
of Qdeg one perturbed basket ball is positioned. Adding the tenth
vertex in the middle provides a bounding cone around the basket ball
obstruction. (The grey vertices and the dotted lines are drawn to in-
dicate the positions of the fans with respect to each other.) The 5-
polytope Pdeg is the convex hull of the three dark triangles — each
of them in an R3 over one vertex of Qdeg — and the additional ver-
tex (10) in the middle.
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2

8 9
6

4

3

1

5

10

N(σ3)
ψσ3

ψσ2

ψσ1

N(σ1)

N(σ2)

7

FIGURE 2.10: The medium-dark triangles correspond to the isolated
locally coherent string {(1,4,10),(4,7,10),(7,1,10)} that is defined
by the function values ψσ1 , ψσ2 , and ψσ3 for the chambers σ1, σ2,
and σ3.
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by a face F̂deg
i of Pdeg that contains Fdeg

i . This can be described by adding one
or more vertices to Fdeg

i such that we get a face. From the definition of a locally
coherent string it follows that a new vertex v has to be added (combinatorially) to
all faces of F deg

0 whose projection contains π(v).
From the vertex-facet incidence matrix we can compute for each face F in

F deg
0 all sets V of vertices in Pdeg\F such that vert(F)∪V are the vertices of a

face in Pdeg. They correspond exactly to the faces in the link of F in Pdeg denoted
by lk(F) := lkPdeg(F). It turns out that all links are 4-gons, namely

lk(1,4,10) = (2,9,8,6),
lk(4,7,10) = (5,3,2,9),
lk(7,1,10) = (8,6,5,3).

Because of the rotational symmetry, it suffices to test the vertices in the link
of (1,4,10). For example, adding vertex 2 to the face (1,4,10) requires adding
vertex 2 to the face (7,1,10) because π(7,1,10) contains π(2) — but vertex 2 is
not contained in the link of (7,1,10). Analogous contradictions occur in all other
cases. This proves that F deg

0 is in fact an isolated element in ω(Pdeg,π). This
example corresponds exactly to the construction at the end of Section 2.4.

The coordinates of Pdeg can be slightly perturbed in order to make the projec-
tion non-degenerate. We claim that the following listing contains the coordinates
of a simplicial, non-degenerate counterexample P.

DIM = 6
CONE_SECTION
( 1) 1 0 0 1 0 0
( 2) 0 3/2 1 1 -1/11 -1/21
( 3) 0 1 3/2 1 -1/20 -1/10

( 4) 0 1 0 0 1 0
( 5) 1 0 3/2 -1/21 1 -1/11
( 6) 3/2 0 1 -1/10 1 -1/20

( 7) 0 0 1 0 0 1
( 8) 3/2 1 0 -1/11 -1/21 1
( 9) 1 3/2 0 -1/20 -1/10 1

( 10) 2 2 2 1/3 1/3 1/3
END

All the vertices of P project to pairwise different points in the plane. We again
inspect the vertex-facet incidence matrix, see Figure 2.11. Each facet has exactly
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strong validity table :
\ P | | |
\ O | | |

I \ I | | |
N \ N | 1 6 | # |
E \ T | | |
Q \ S | | |
S \ | | | ||

\ | | | \/
--------------------------- |
1 | .**** *.... : 5 | 22 | *...* **..* : 5
2 | *.*** *.... : 5 | 23 | *.*.* .*..* : 5
3 | ****. *.... : 5 | 24 | ..*** .*..* : 5
4 | *..** **... : 5 | 25 | .***. .*..* : 5
5 | *.*** .*... : 5 | 26 | *.... ***.* : 5
6 | ****. .*... : 5 | 27 | *..*. *.*.* : 5
7 | *..*. ***.. : 5 | 28 | ...** *..** : 5
8 | ...** **.*. : 5 | 29 | ...** .*.** : 5
9 | **.*. .*.*. : 5 | 30 | **.*. ...** : 5
10 | ***.. .*.*. : 5 | 31 | .*.*. .*.** : 5
11 | ***.. ..**. : 5 | 32 | .**.. .*.** : 5
12 | ...*. ****. : 5 | 33 | ***.. ..*.* : 5
13 | *..*. .***. : 5 | 34 | .**.. ..*** : 5
14 | ....* ****. : 5 | 35 | **... ..*** : 5
15 | *.*.. .***. : 5 | 36 | ...*. *.*** : 5
16 | .**** ....* : 5 | 37 | *..*. ..*** : 5
17 | .*.** *...* : 5 | 38 | ....* ***.* : 5
18 | .**.* *...* : 5 | 39 | ....* *.*** : 5
19 | *.*.* *...* : 5 | 40 | ....* .**** : 5
20 | ***.. *...* : 5 | 41 | *.*.. .**.* : 5
21 | **.*. *...* : 5 | 42 | ..*.. .**** : 5

| .................
|| | # | 21221 22122
\/ | | 38038 03807

FIGURE 2.11: The vertex-facet incidence matrix of P.
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FIGURE 2.12: The chamber complex of π .
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five vertices, so P is a simplicial polytope. Consider the chamber complex of
the projection in Figure 2.12 — a computer-generated drawing which also shows
that P is 2-neighborly. The projections of the three faces (1,4,10), (4,7,10), and
(7,1,10) do not cover Q. However, for chambers that are not covered we find, for
example, the following tight completion:

F0 := {(1,4,10),(1,2,4),(2,3,4),(3,4,5),
(4,7,10),(4,5,7),(5,6,7),(6,7,8),
(7,1,10),(7,8,9),(8,9,1),(9,1,2)}.

This is not an isolated element in ω(P,π), because there are local changes pos-
sible on the new faces. For example, the faces (1,2,4) and (2,3,4) are dominated
by (1,2,3,4), etc. However, a local change of (1,4,10), (4,7,10), or (7,1,10), is
not possible. To see this, we first check that no facet of P contains more than one
of these three faces. Consider again Figure 2.12. If, without loss of generality,
we take any face F in P that contains (1,4,10) we observe that some new edge
of F projects into the interior of π(4,7,10) or π(7,1,10). (The link of (1,4,10)
is again (2,9,8,6), etc.) For example, if we replace (1,4,10) by (1,2,4,10) —
a simplex — the projection of the new edge (2,10) cuts through the interior of
π(7,1,10). But then we have produced overlapping projections, a contradiction
to the fact that every locally coherent string defines a polyhedral subdivision after
projection.

We see that any locally coherent string in the connected component of F0
must contain the three faces (1,4,10), (4,7,10), and (7,1,10). But obviously
there is the following locally coherent string where the face (1,4,7) replaces the
three “rigid” faces:

F1 := {(1,4,7),(1,2,4),(2,3,4),(3,4,5),
(4,5,7),(5,6,7),(6,7,8),
(7,8,9),(8,9,1),(9,1,2)}.

Thus we conclude that there are at least two connected components in ω(P,π), in
contradiction to the Generalized Baues Conjecture.





CHAPTER 3

TRIANGULATIONS OF CYCLIC POLYTOPES

In 1995, EDELMAN & REINER suggested two partial orders S1(n,d) and S2(n,d)
on the set of all triangulations of the cyclic d-polytope C(n,d) with n vertices.
Both posets are generalizations of the well-studied Tamari lattice. While S2(n,d)
is bounded by definition, the same is not obvious for S1(n,d). In the paper by
EDELMAN & REINER the bounds of S2(n,d) were also confirmed for S1(n,d)
whenever d ≤ 5, leaving the general case as a conjecture.

In this chapter their conjecture is answered in the affirmative for all d, using
several new functorial constructions. This yields the first class of polytopes with
no bound on the dimension and on the number of vertices for which the set of
all triangulations is known to be connected by bistellar operations. Moreover, a
structure theorem is presented, stating that the elements of S1(n,d + 1) are in
one-to-one correspondence to certain equivalence classes of maximal chains in
S1(n,d). By similar methods, it is proved that all triangulations of cyclic poly-
topes are shellable. In order to clarify the connection between S1(n,d) and the
higher Bruhat order B(n− 2,d− 1) of MANIN & SCHECHTMAN, we define an
order-preserving map from B(n− 2,d− 1) to S1(n,d), thereby concretizing a
result by KAPRANOV & VOEVODSKY in the theory of ordered n-categories.

3.1 INTRODUCTION

In this chapter we examine the structure of the first higher Stasheff-Tamari order
S1(n,d) on the set of all triangulations of the cyclic polytope C(n,d) (definitions
below), introduced by EDELMAN & REINER [21]. It turns out that it is similarly
structured as the higher Bruhat order B(n− 2,d− 1) of MANIN & SCHECHT-
MAN [48]; in particular, it is bounded.

∗

Given a triangulation of the convex hull of a finite point configuration in Eu-
clidean d-space that is not satisfying a certain quality measure, can one find a
better, or even the best triangulation (with respect to this measure) by performing
a finite sequence of (computationally cheap) local transformations? A necessary
condition for the latter case is that any possible triangulation is accessible by this

55
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kind of transformation. In particular, a repeatedly posed question in combinatorial
and computational geometry (see for example BILLERA, KAPRANOV & STURM-
FELS [9], EDELSBRUNNER [23, Open Problem 8], and JOE [38, Conjecture 1]) is
whether or not any two triangulations of (the convex hull of) a given finite point
configuration in Euclidean space of dimension d can be connected by a sequence
of bistellar operations.

For d = 2 the answer is affirmative, as is for the restriction to regular triangu-
lations (by the work of GELFAND, KAPRANOV & ZELEVINSKY [28]). For d ≥ 3
and general triangulations, however, the problem is open in spite of many attacks
in this direction.

Similar problems attained attention in several fields of pure mathematics. This
led to remarkable new concepts, such as the secondary polytope defined by GEL-
FAND, KAPRANOV & ZELEVINSKY [28]), further studied by BILLERA, FIL-
LIMAN & STURMFELS [7] and BILLERA, GELFAND & STURMFELS [8]. The
theoretical question behind this all is the following: Has the set of all triangula-
tions of a point configuration a well-behaved global structure with respect to local
transformations? A far-reaching generalization of this question to restricted poly-
hedral subdivisions was answered in the negative in Chapter 2 (see also RAMBAU

& ZIEGLER [61]).
The cyclic d-polytope C(n,d) with n vertices appears on the scene as a com-

binatorially well-understood natural generalization of (convex) n-gons to higher
dimensions. The triangulations of an n-gon form the extensively studied Tamari
lattice — which one is definitely willing to consider as a good-natured structure
in this context. (For a historical background on Tamari lattices and their different
combinatorial interpretations, we refer to the paper by EDELMAN & REINER [21]
and references given there.) The natural question now is which properties of the
Tamari lattices survive in higher dimensions.

Since, in general, there are many non-regular triangulations of cyclic poly-
topes (see BILLERA, GELFAND & STURMFELS [8] and DE LOERA, HOŞTEN,
SANTOS & STURMFELS [45]) it is not a priori clear that the set of all triangula-
tions of the cyclic polytope C(n,d) is well-behaved. In the paper by EDELMAN

& REINER [21] two poset structures S1(n,d) and S2(n,d) are defined on this
set, both generalizing the Tamari lattice and hence quite interesting from a purely
combinatorial point of view. In the following we sketch their definitions.

The triangulations of the cyclic polytope C(n,d) are in one-to-one correspon-
dence to the piecewise linear sections from C(n,d) into C(n,d + 1), according to
the projection from C(n,d+1) onto C(n,d) that deletes the last coordinate. EDEL-
MAN & REINER [21] suggest two partial orders on all piecewise linear sections,
and hence on the set of all triangulations of C(n,d).

The first higher Stasheff-Tamari order S1(n,d) is defined by a covering re-
lation between two sections if exactly one (d + 1)-simplex fits between them in
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C(n,d +1); the section that contains the upper facets of this simplex is defined to
be greater than the other one. This corresponds to an increasing bistellar flip that
replaces the lower facets of the (d +1)-simplex by the upper facets. Thus, we get
a purely combinatorial description of this poset in terms of local transformations.
The second higher Stasheff-Tamari order S2(n,d) is defined geometrically via
pointwise comparison of the heights of the sections.

While S2(n,d) has a unique minimal element F l(n,d + 1) (the set of lower
facets of C(n,d +1)) and a unique maximal element F u(n,d +1) (the set of upper
facets of C(n,d + 1)), the same is not obvious for S1(n,d). On the other hand,
the local structure of S1(n,d) is clear by definition while the covering relations
in S2(n,d) are a priori unknown.

This led to the following conjectures and results by EDELMAN & REINER.

• For even d, both S1(n,d) and S2(n,d) are self-dual [21, Prop. 2.11, true in
general].

• S1(n,d) coincides with S2(n,d) [21, Conj. 2.6, true for d ≤ 3].

• F l(n,d +1) is the unique minimal element of S1(n,d) [21, Conj. 2.7a, true
for d ≤ 5].

• F u(n,d + 1) is the unique maximal element of S1(n,d) [21, Conj. 2.7b,
true for d ≤ 4].

• Any two triangulations of C(n,d) are connected by a sequence of bistellar
operations [21, Conj. 2.8, true for d ≤ 5].

• S1(n,d), respectively S2(n,d), is a lattice [21, Conj. 2.13, true for d ≤ 3].

• In any interval of S1(n,d), respectively S2(n,d), distinct subsets of coatoms
have different meets [21, Conj. 2.14, true for d ≤ 3].

Our main Theorem answers their Conjectures 2.7a, 2.7b, and 2.8 affirmatively
and points out the connections between the triangulation posets in different di-
mensions. Its proof is completed in Section 3.5, using the functorial constructions
in Section 3.3 which we consider as interesting in their own right.

Theorem 3.1.1. (Main Result)

(i) For all n and all d < n, the first higher Stasheff-Tamari order S1(n,d)
is bounded. The unique minimal element is the set F l(n,d + 1) of lower
facets, the unique maximal element is the set F u(n,d + 1) of upper facets
of C(n,d +1). In particular, the set of all triangulations of C(n,d) is bistel-
larly connected.
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(ii) The elements of S1(n,d +1) are in bijection with the equivalence classes of
maximal chains in S1(n,d) under the following equivalence relation: Two
maximal chains are equivalent if they differ only by a permutation of their
increasing bistellar operations.

(iii) Two maximal chains in S1(n,d) are equivalent if and only if they differ by
a sequence of interchanges of consecutive bistellar operations that corre-
spond to non-adjacent (d +1)-simplices in C(n,d +1).

(iv) All triangulations of cyclic polytopes are shellable.

The following list of implications demonstrates the quantitative consequences
of the main Theorem and the constructions provided in Section 3.3.

Corollary 3.1.2. For all n and all d < n, the following hold:

(i) For odd d, S1(n,d) is a ranked poset with rank function

r(T ) := #F l(n,d +1)−#T for all T ∈S1(n,d).

(ii) The number of simplices in a triangulation of C(n,d) lies between the num-
ber
(n−dd/2e−1
bd/2c

)
of upper facets and the number

(n−d(d+1)/2e
b(d+1)/2c

)
of lower facets

of C(n,d +1). In particular, for even d all triangulations of C(n,d) consist
of
(n−d/2−1

d/2

)
simplices. (That the latter fact is actually true for all weakly

neighborly polytopes, was proved by BAYER [6].)

(iii) The length of a maximal chain in the poset S1(n,d) lies between the number(n−d(d+1)/2e−1
b(d+1)/2c

)
of upper facets and the number

(n−dd/2e−1
bd/2c+1

)
of lower facets

of C(n,d + 2). In particular, for odd d the length of any maximal chain in
S1(n,d) equals

(n−(d+1)/2−1
(d+1)/2

)
.

(iv) For even d, the diameter of the Hasse-diagram of the poset S1(n,d) is be-
tween

(n−d/2−2
d/2

)
and twice this value; for odd d, it is equal to

(n−(d+1)/2−1
(d+1)/2

)
.

Theorem 3.1.1 points out a similarity to the structure of the higher Bruhat order
B(n−2,d−1), a certain generalization of the weak Bruhat order on the symmet-
ric group, defined by MANIN & SCHECHTMAN [48] (see also ZIEGLER [74]).
Previously, KAPRANOV & VOEVODSKY [40] reported the existence of an order-
preserving surjection from B(n− 2,d− 1) onto a poset structure on the set of
all triangulations of C(n,d) that is inherited by a certain ordered n-category. Un-
fortunately, it is not clear whether their poset structure is equivalent to S1(n,d).
This led us to the investigations in Section 3.8 where we present an explicit order-
preserving map T from B(n− 2,d − 1) to S1(n,d) that should help to get a
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more concrete idea of the connections between higher Bruhat orders and higher
Stasheff-Tamari orders. Furthermore, we relate some of the functorial construc-
tions for higher Bruhat orders to similar constructions for higher Stasheff-Tamari
orders.

In Section 3.7 we will recall the main definitions and results in the frame-
work of higher Bruhat orders. Additionally, we answer a question posed by
ZIEGLER [74] on the existence of an order-preserving embedding of B(n,k) into
B(n+1,k +1) affirmatively.

The following three problems concerning the higher Stasheff-Tamari orders
remain open:

• Is S1(n,d) equal to S2(n,d)?

• Is S1(n,d) or S2(n,d) a lattice?

• Is T surjective; in particular, is T the map suggested by KAPRANOV &
VOEVODSKY?

∗

Throughout this chapter the following notation is used:

• For a set L and “<l” a linear order on L, we denote by L<l the set L linearly
ordered with “<l .”

• Numbers in brackets (i1, . . . , in) denote the set {i1, . . . , in}< which is linearly
ordered with iν < iν+1 for ν = 1, . . . ,n−1.

• Let L be a set. For a subset S⊆ L, let {S = {LS be the complement L\S of S
in L.

• For a set L and two sets K and K′ of subsets of L such that S∩ S′ = ∅ for
all S ∈ K and S′ ∈ K′, let K ∗K′ := {S∪S′ : S ∈ K,S′ ∈ K′ } be the join of
K and K′.

• For a set K of subsets of L and S0 ∈ K, the deletion of S0 from K is the
set K\S0 := {S ∈ K : S∩S0 =∅}, and the contraction of S0 in K is the set
K/S0 := {S\S0 : S ∈ K,S⊇ S0 }.

• For integers a < b, the interval [a,b] is the set {a,a + 1, . . . ,b− 1,b}, and
]a,b[ is the set {a+1, . . . ,b−1},

• [n] denotes the interval [1,n], and ]n[ is the interval ]1,n[.
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3.2 A COMBINATORIAL FRAMEWORK FOR TRIANGULATIONS

In this section we present a combinatorial concept of triangulations that is similar
to that of DE LOERA [43]. Dealing with vertex labels when investigating triangu-
lations is formally justified by the following considerations that are closely related
to the theory of abstract simplicial complexes.

Definition 3.2.1. Let L be a finite set, the label set. A combinatorial d-simplex
in L is a (d + 1)-element-subset S of L . Its (k + 1)-subsets are called k-faces
of S, and its d-subsets facets of S.

If ` : L →RN is an injective function with `(L ) =: A , and S⊂L is a com-
binatorial d-simplex corresponding to affinely independent points then the convex
hull σ = conv`(S) of `(S) is the geometric d-simplex with vertex set vertσ = `(S)
and label set lab(σ) = S with respect to `, the labelling function.

A combinatorial simplicial complex in L is a set K of combinatorial simplices
in L . Its k-simplices are the k-faces of its elements. (That is, we identify the
usual abstract simplicial complexes with their set of inclusion-maximal faces; see
Section A.4 in the appendix.) A set ∆ of geometric simplices σ with the property
that the set { lab(σ) : σ ∈ ∆} of label sets is a combinatorial simplicial complex,
and that

conv(vertσ ∩vertτ) = σ ∩ τ for all σ ,τ ∈ ∆,

is a geometric simplicial complex.
A combinatorial simplicial complex K′ is a combinatorial subcomplex of K if

all simplices of K′ are faces of simplices in K. A geometric subcomplex is defined
analogously.

For a combinatorial simplicial complex K in L and a combinatorial sim-
plex S0 in L , the combinatorial link of S0 in K is defined as

lkK(S0) := {S\S0 : S ∈ K,S0 ⊆ S} ;

the combinatorial star of S0 in K is defined by

stK(S0) := {S ∈ K : S0 ⊆ S} ,

and the combinatorial antistar of S0 in K is the complex

astK(S0) := {S ∈ K : S∩S0 =∅} .

If K is a combinatorial simplicial complex in L , and S0 is a combinatorial simplex
in L ′ where L and L ′ are disjoint, then the combinatorial join of K and S0 is
the complex

K ∗S0 := {S∪S0 : S ∈ K } .
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The convex hull convA of A is a d-polytope if the affine hull of A is Rd .
For A ′ ⊂A , the polytope convA ′ is a facet of convA , if convA ′ is the (d−1)-
dimensional intersection of A with a hyperplane H such that one closed halfspace
defined by H contains convA . In this case the label set lab(A ′) is a combinato-
rial facet of `. Note that the set of facets of a simplicial polytope (all facets are
simplices) forms a simplicial complex.

If Z = (Z+,Z−) is a pair of disjoint inclusion minimal subsets Z+ and Z− of
L with the property

conv`(Z+)∩ conv`(Z−) 6=∅

then Z is called a minimal combinatorial dependence in `, or — for short — a
circuit of `. The set supp(Z) = Z+ ∪Z− is the support of Z. The set Z+ is the
positive part and the set Z− is the negative part of Z.

The triple P(`) = (L ,F`,Z`), where Z` denotes the set of all circuits of `,
and F` is the set of all combinatorial facets of `, is the combinatorial polytope
of `.

If ∆ a geometric simplicial complex with vertices in A such that convA =⋃
σ∈∆ σ then ∆ is called a triangulation of A . In this case the set T of label sets

of the simplices in ∆ is a combinatorial triangulation of P(`).
We will sometimes call the geometric objects geometric interpretations of the

corresponding combinatorial ones, which themselves are said to be combinatorial
models for their geometric counterparts.

A combinatorial, label-based handling of triangulations is made possible by
the following proposition. We present a complete elementary proof because this
characterization is fundamental for this chapter.

Proposition 3.2.2. Let L be a finite set, and let ` : L → Rd be injective with
`(L ) =: A . Furthermore, let P(`) = (L ,F`,Z`) be the combinatorial poly-
tope of `. A non-empty subset T of the (d + 1)-subsets of L is a combinatorial
triangulation of ` if and only if

(UP) for all S ∈ T and all facets F of S either F is contained in some F ′ ∈F`, or
there is another simplex S′ ∈ T such that S′ ⊃ F (Union Property), and

(IP) there is no circuit Z ∈Z` with Z+ ⊂ S and Z− ⊂ S′ for combinatorial sim-
plices S,S′ ∈ T (Intersection Property).

Proof. We first prove that (UP) and (IP) are necessary. Let T be a combinatorial
triangulation with respect to some geometric triangulation ∆ of the point set A ,
given by ` : L → Rd . Assume there is a combinatorial facet F of some combi-
natorial d-simplex S in T that is not contained in some F ′ in F`, such that there
is no other combinatorial d-simplex in T containing F . Then the corresponding
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(d− 1)-simplex τ := conv`(F) is contained in only one simplex σ := conv`(S)
of ∆.

Let H be a supporting hyperplane of τ such that its closed positive half-
space H+ contains σ . Let qτ be the barycenter of τ . Because τ is not a facet of P =
conv(A ), there is a point x0 in P lying in the open negative halfspace relint(H−).
Connect qτ and x0 by a segment I. This segment is completely contained in P
since P is convex.

∆ is a triangulation. Hence, there must be at least one d-simplex σx0 that
contains x0. Either σx0 contains qτ or not. If it does then σx0 must contain the
complete (d−1)-simplex τ as a facet since qτ lies in the relative interior of τ , and
the intersection of τ and σx0 must be a face of both. But this is a contradiction.

If σx0 does not contain qτ then the segment I intersects the boundary of σx0 in
a point qx0 . Consider the mid-point x1 of qτ and qx0 on I. This point is neither
contained in τ nor in σx0 . Since I lies completely in P, there must be a new d-
simplex σx1 in ∆ containing x1. This procedure shows either a contradiction as
above or an infinite sequence of d-simplices in ∆, which is a contradiction too.
Hence, Property (UP) is necessary.

In order to show the necessity of Property (IP) assume that there are combina-
torial d-simplices S and S′ in T and a circuit Z = (Z+,Z−) in Z (n,d) such that
Z+ is contained in S and Z− is contained in S′. Then by the definition of circuits

conv`(Z+)∩ conv`(Z−) 6=∅,

and their minimality implies that there are geometric simplices in ∆, namely
conv`(Z+) and conv`(Z−) the relative interiors of which intersect, a contradic-
tion. Hence, Property (IP) is necessary as well.

Let T be a collection of (d + 1)-subsets of L (that is, T ⊆
( L

d+1

)
) satisfying

(UP) and (IP). Then T gives rise to a set ∆ := {conv`(S) : S ∈ T } of geometric
simplices. We must show that every point in P lies in at least one d-simplex σ

in ∆ and that for every pair of simplices σ and σ ′ we have conv(vertσ ∩vertσ ′) =
σ ∩σ ′.

Let x be an arbitrary point in P. Since T is non-empty, we find a combina-
torial d-simplex S0 in T . Hence, there is a simplex σ0 := `(S0) in ∆. Consider
a segment I from an inner point x0 of σ0 to x that does not meet any (d− 2)-
simplex of ∆. Such a line exists because of the concept of general position. This
segment is completely contained in P and meets exactly one facet τ of σ0 unless
x ∈ relint(σ0). If this intersection point qτ equals x then we are done. Other-
wise this facet is not a facet of P because then qτ is an interior point of I and I
is contained in P. Hence, the label set F of τ is not in F`, and we find another
combinatorial d-simplex S1 in T containing F corresponding to a geometric d-
simplex σ1 containing τ . The segment I meets the interior of σ1 because of the
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general position property of I. Choose an arbitrary point x1 in I∩ relint(σ1). Note
that the distance between x1 and x is strictly smaller than the distance between x0
and x. Therefore, by repeating this procedure we will reach a d-simplex σr lying
in ∆ and containing x.

Now assume that there are geometric d-simplices σ and σ ′ in ∆ with label
sets S respectively S′ in T and conv(vertσ ∩ vertσ ′) ⊂ σ ∩σ ′. Since σ ⊇ σ ∩
σ ′ and σ ′ ⊇ σ ∩σ ′, there are inclusion-minimal faces τ of σ and τ ′ of σ ′ with
conv(vertτ∩vertτ ′)⊇ σ ∩σ ′. From the minimality assumption we get relint(τ)∩
relint(τ ′) 6= ∅, hence, by Radon’s Theorem, there are minimal, vertex-disjoint
faces ρ of τ and ρ ′ of τ ′ with relint(ρ)∩ relint(ρ ′) 6= ∅. Set Z+ := lab(ρ) and
Z− := lab(ρ ′). Then Z+ and Z− are disjoint and conv(`(Z+))∩conv(`(Z−)) 6=∅.
Hence, (Z+,Z−) lies in Z`, where Z+ is contained in S, and Z− is contained in S′.
However, this contradicts the assumption that T has Property (IP).

Pairs of simplices with property (IP) are called admissible.

3.3 CYCLIC POLYTOPES

In this section we recall the basic definitions and theorems related to cyclic poly-
topes in a combinatorial language.

Definition 3.3.1. Let L be a linearly ordered set, and let t : L → R, i 7→ ti be a
strictly monotone function.

The d-dimensional cyclic polytope C(L ,d, t), labelled by L , parametrized
by t is the convex hull of the points νd(t1), . . . ,νd(tn) with

νd(x) := (x,x2, . . . ,xd) ∈ Rd.

For simplicity, we set C(n,d, t) := C([n],d, t).

The main reason for the fact that triangulations of cyclic polytopes can be
treated effectively in a purely combinatorial way are the following well-known
properties that follow from the special structure of Vandermonde-determinants.

The first one — Gale’s famous Evenness Criterion — characterizes the set
Fνd◦t of all combinatorial facets of C(L ,d, t). The following notion allows us to
state that criterion in a compact way.

Definition 3.3.2. Let L be a linearly ordered set and S a subset of L. An element
s0 ∈ {S is an even gap in S if #{s ∈ S : s > s0 } is even, otherwise it is an odd gap.

Theorem 3.3.3 (Gale’s Evenness Criterion). [32] An ordered subset F of the ver-
tex set of the cyclic polytope C(L ,d, t) is a facet if and only if between any two
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vertices not in F there is an even number of vertices in F. Equivalently, F is a
facet of C(L ,d, t) if and only if either all gaps in F are even or all gaps in F are
odd.

The second one describes the form of those sets of vertices of C(L ,d, t) whose
convex hulls intersect in the relative interior of both. Hence, this determines Cνd◦t .

Theorem 3.3.4. [15] The circuits of C(L ,d, t) are the alternating (d + 2)-sub-
sets of L , i. e., the pairs (Zo,Ze) and (Ze,Zo), where Zo is the set of odd el-
ements (z1,z3,z5, . . .), and Ze is the set of even elements (z2,z4,z6, . . .) of Z =
(z1, . . . ,zd+2).

The combinatorial polytopes P(νd ◦t) are identical for all t because the strictly
monotone function t does not affect the assertions of these criteria. This means
that the combinatorial study of triangulations of cyclic polytopes with any parame-
trization is equivalent to the investigation of combinatorial triangulations of the
combinatorial polytopes P(νd ◦ t).

Definition 3.3.5. The combinatorial polytope C(L ,d) := P(νd ◦ t) of νd ◦ t :
L → Rd is called the cyclic d-polytope with vertices labelled by L . The set of
its combinatorial facets is denoted by F (L ,d), the set of its circuits is written
as Z (L ,d). Those combinatorial facets with only odd gaps are the upper facets,
the set of which is denoted by F u(L ,d); those with only even gaps are the lower
facets of C(L ,d), denoted by F l(L ,d).

The set of circuits Z with maximal element zd+2 in Z+ is denoted by Z +(n,d),
the set of circuits having their maximal element in Z− is written as Z −(n,d). The
cyclic polytope labelled by [n] is denoted by C(n,d).

Note that in odd dimensions there are polytopes that have the same face lattice
as C(n,d, t) but a different circuit structure (see [15]); this leads to completely
different triangulations.

Remark 3.3.6. Geometric Meaning (see Figure 3.1): Consider for some strictly
monotone t : [n]→ R the projection

p = p(n,d) :
{

C(n,d +1, t) → C(n,d, t),
(x1, . . . ,xd,xd+1) 7→ (x1, . . . ,xd).

Moreover, consider for some geometric triangulation ∆ of C(n,d, t) the unique
piecewise linear section (linear on each simplex σ ∈ ∆)

s∆ :

{
C(n,d, t) → C(n,d +1, t),

σ
linear7→ conv

(
νd+1 ◦ t

(
lab(σ)

))
, ∀σ ∈ ∆.
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p

FIGURE 3.1: The canonical projection p : C(5,3)→C(5,2) and char-
acteristic sections corresponding to triangulations of C(5,2).

Then any triangulation ∆ of C(n,d, t) can be recovered from its characteristic
section s∆.

The upper facets F u(n,d + 1) of C(n,d + 1) are the sets of those facets of
C(n,d +1, t) that can be seen from a point in Rd+1 with large positive (d +1)-th
coordinate (geometric upper facets of C(n,d +1, t)), the lower facets F u(n,d +1)
label the sets of those facets of C(n,d + 1, t) that can be seen from a point in
Rd+1 with large negative (d +1)-th coordinate (geometric lower facets of C(n,d +
1, t)). The geometric upper (respectively lower) facets project down to C(n,d, t)
without overlapping. Therefore, their projections define geometric triangulations
of C(n,d, t).

The support supp(Z) of any circuit Z = (Z+,Z−) in C(n,d) corresponds to the
label set of a unique (d + 1)-simplex in C(n,d + 1, t) where its set of geometric
upper facets belongs to the elements of the star of the positive part Z+ in supp(Z),
and its set of geometric lower facets corresponds to the elements of the star of the
negative part Z− in supp(Z).

Lemma 3.3.7. (Elementary Facts)

(i) F l(n,d+1) and F u(n,d+1) are combinatorial triangulations of the cyclic
polytope C(n,d).

(ii) Every facet in F u(n,d) contains n.

(iii) If a pair of simplices S1 and S2 is not admissible then there exists a circuit
in Z (n,d) with maximal element zd+2 = max(S1∪S2).
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(iv) If a (d− 1)-simplex F is the common facet of the admissible pair (S1,S2)
then S1\F lies in an odd gap of F and S2\F lies in an even gap of F, or vice
versa.

Remark 3.3.8. The circuits of C(n,d) can be visualized in a table that consists of
columns numbered from 1 to n and rows corresponding to Z+ and Z−, where a
star “∗” in column i and row Zε means that i ∈ Zε , ε ∈ {+,−}. The stars can then
be connected by a zig-zag-path with (d +2) nodes. For example, if n = 6, d = 3,
and Z = ((1,3,5),(2,4)) we get the following table:

1 2 3 4 5 6
Z+ ∗ ∗ ∗
Z− ∗ ∗

If the rows are filled with stars corresponding to two simplices then these two
simplices are admissible if and only if each zig-zag-path connects at most (d +1)
stars. For instance, if n = 6, d = 3, S = (1,3,4,5), and S′ = (2,3,4,6) the table
looks as follows:

1 2 3 4 5 6
S ∗ ∗ ∗ ∗
S′ ∗ ∗ ∗ ∗

The reader will easily find a zig-zag-path connecting even 6 > d + 2 stars,
showing that S,S′ is not an admissible pair.

Obviously all C(L ,d) with #L = n are isomorphic to C(n,d). From now on
we are exclusively dealing with combinatorial triangulations of C(n,d), and we
will leave out the “combinatorial” attribute whenever this is not confusing.

The following Propositions — consequences of Theorems 3.3.3 and 3.3.4
— relate cyclic polytopes with different parameters. We use the notation F =
( f1, . . . , fd) for F ∈F (n,d) and Z = (z1, . . . ,zd+2) for Z ∈Z (n,d).

Proposition 3.3.9. (Functorial Facet Properties)

F u(n+1,d +1) = F l(n,d)∗{n+1},
F l(n+1,d +1) = F u(n,d)∗{n+1}

∪{F\n∪{ j, j +1} : F ∈F u(n,d), j ∈] fd−1,n[} ,
F u(n−1,d−1) = lkF l(n,d)(n),

F l(n−1,d−1) = lkF u(n,d)(n),

F u(n−1,d) = astlkFu(n,d)(n)(n−1)∗{n−1},

F l(n−1,d) = astF l(n,d)(n).
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Proposition 3.3.10. (Functorial Circuit Properties)

Z +(n+1,d +1) =
{

(Z+∪{ j},Z−) : (Z+,Z−) ∈Z −(n,d), j > zd+2
}

,

Z −(n+1,d +1) =
{

(Z+,Z−∪{ j}) : (Z+,Z−) ∈Z +(n,d), j > zd+2
}

,

Z +(n−1,d−1) =
{

(Z+,Z−\zd+2) : (Z+,Z−) ∈Z −(n,d)
}

,

Z −(n−1,d−1) =
{

(Z+\zd+2,Z−) : (Z+,Z−) ∈Z +(n,d)
}

,

Z +(n−1,d) =
{

(Z+,Z−) ∈Z +(n,d) : n /∈ supp(Z)
}

,

Z −(n−1,d) =
{

(Z+,Z−) ∈Z −(n,d) : n /∈ supp(Z)
}

.

The following proposition is the combinatorial description for the geomet-
ric connection provided by the projection p(n,d) between (d + 1)-simplices in
C(n,d, t) and the minimal affine dependencies in C(n,d, t).

Proposition 3.3.11. (Functorial Circuit-Facet Relations)
For Z ∈Z +(n,d) and supp(Z) considered as a simplicial complex, we have

stsupp(Z)(Z
+) = F u(supp(Z),d +1),

stsupp(Z)(Z
−) = F l(supp(Z),d +1).

3.4 SPECIAL TRIANGULATIONS OF CYCLIC POLYTOPES

In this section we show nice functorial constructions of triangulations of cyclic
polytopes.

Definition 3.4.1. For a set T of (d +1)-subsets of [n], define

T̂ := T ∗{n+1}
∪{S\sd+1∪{ j, j +1} : S = (s1, . . . ,sd+1) ∈ T, j ∈]sd,sd+1[} ,

(extension)

T/n := lkT (n), (contraction)
T\n := astT (n)∪ astlkT (n)(n−1)∗{n−1}. (deletion)

Theorem 3.4.2. Let T ∈ S(n,d). Then the following hold:

(i) T̂ is a triangulation of C(n+1,d +1),

(ii) T/n is a triangulation of C(n−1,d−1),

(iii) T\n is a triangulation of C(n−1,d).
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Proof. For each assertion, we verify the Union Property (UP) and the Intersec-
tion Property (IP) of Proposition 3.2.2. Recall that we have to show — roughly
speaking — that

• all simplices are pairwise admissible, and that

• each facet of a simplex is either a facet of the cyclic polytope or appears in
at least one other simplex.

The reader may get a picture from the proof by inspecting the tables suggested
in Remark 3.3.8, using that circuits correspond to zig-zag-paths and facets to sets
with only even or only odd gaps.

Part (ii) is true because the link of a triangulation of any polytope at some
vertex triangulates the corresponding vertex figure, and for cyclic polytopes this
vertex figure is cyclic with the correct parameters. This follows from Proposi-
tions 3.3.9 and 3.3.10 and well-known properties of vertex figures (see, e. g.,
GRÜNBAUM [32]).

The proof of (UP) (i). The following abbreviations are used:

A := T ∗{n+1},
B := {S\sd+1∪{ j, j +1} : S ∈ T, j ∈]sd,sd+1[} .

Let F = ( f1, . . . , fd+1) be a facet of a simplex S in A\F (n+1,d +1).
I The case fd+1 = n + 1. By Proposition 3.3.9, F\n + 1 is not in F (n,d),

because otherwise (F\n + 1)∪{n + 1} is a facet of C(n + 1,d + 1). Since T has
the Union Property, there must be a simplex F ′ ∈ T with F\n+1⊂F ′ and F ′ 6= F .
Hence,

F ⊂ F ′∪n+1︸ ︷︷ ︸
6=S

since F ′ 6= F

∈ T̂ .

I The case F ∈ T , fd+1− fd > 1. Then

F ⊂ F\ fd+1∪{ fd+1−1, fd+1}︸ ︷︷ ︸
6=S

since n+1 ∈ S

∈ T̂ .

I The case F ∈T , fd+1− fd = 1. By Proposition 3.3.9, F\ fd is not in F (n,d),
because either fd+1 is an inner singleton in F\ fd or fd+1 = n with the consequence
that (F\ fd)\n∪{n−1,n} = F is a facet of C(n + 1,d + 1). The Union Property
in T leads to the existence of a simplex F ′ = ( f ′1, . . . , f ′d+1) in T with F\ fd ⊂ F ′

and F ′ 6= F . The Intersection Property in T implies either

f ′d+1 = fd+1, f ′d−1 = fd, (∗)
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1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n

F(1) = F ′ . . . . . . . . . . . . . . . f ′d−1 . . . f ′d . . . f ′d+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F(2) . . . . . . . . . . . . . . . f (2)
d−1 . . . . . . . . . . . . . . f (2)

d . . . f (2)
d+1 . . . . . . . . . . . . . . . . . .

.

.

.
.
.
.

F(r−1) . . . . . . . . . . . . . . . f (r−1)
d−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . f (r−1)

d . . . f (r−1)
d+1 . . .

F(r) = F ′′ . . . f ′′k . . . f ′′d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . f ′′d+1 . . .

FIGURE 3.2: The expansion of F ′ in T .

or that

f ′d+1 > fd+1, f ′d−1 = fd−1. (∗∗)

(Compare Lemma 3.3.7(iv).)
In the first case (∗) we get

F ⊂ F ′\ f ′d+1∪{ fd+1−1, fd+1}︸ ︷︷ ︸
6=S

since n+1 ∈ S

∈ T̂ .

In the second case (∗∗) we know that F ′\ f ′d is not in F (n,d). Performing the
same steps for F ′\ f ′d yields a finite sequence F ′= F(1),F(2), . . . ,F(r) = F ′′ (where
F(µ) = ( f (µ)

1 , . . . , f (µ)
d+1) for µ ∈ {1, . . . ,r}) of simplices in T with

f ′′d+1 = f (r−1)
d+1 > f (r−2)

d+1 > · · ·> fd+1,

f ′′d = f (r−1)
d−1 = f (r−2)

d−1 = · · ·= fd−1 < fd = fd+1−1,

where at step (r) we end up in case (∗) because case (∗∗) can occur at most n−
fd+1 times. This leads to

F ⊂ F ′′\ f ′′d+1∪{ fd+1−1, fd+1}︸ ︷︷ ︸
6=S

since n+1 ∈ S

∈ T̂ .

For further use, we refer to this sequence as the expansion of F ′.
Now let F = ( f1, . . . , fd+1) be a facet of the simplex S = G\gd+1∪{ j, j + 1}

in B, such that F is not a facet of C(n+1,d +1), with G = (g1, . . . ,gd+1) in T .
I The case F = S\ j +1, j = fd+1 > fd +1 = gd +1. Then

F ⊂ G\gd+1∪{ j−1, j}︸ ︷︷ ︸
6=S

since j +1 ∈ S

∈ T̂ .
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I The case F = S\ j +1, j = fd+1 = fd +1 = gd +1. Then we proceed as fol-
lows. G\gd is not in F (n,d). Hence, there is another simplex G′ = (g′1, . . . ,g

′
d+1)

in T with G\gd ⊂ G′. Consider the expansion G′ = G(1),G(2), . . . ,G(r) = G′′ of
G′. We have

g′′d+1 ≥ fd+1, g′′d = fd−1 < fd = fd+1−1,

and therefore
F ⊂ G′′\g′′d+1∪{ fd+1−1, fd+1}︸ ︷︷ ︸

6=S
since j +1 ∈ S, j +1 > fd+1

∈ T̂ .

I The case F = S\ j, j +1 < gd+1. Then

F ⊂ G\gd+1∪{ j +1, j +2}︸ ︷︷ ︸
6=S

since j ∈ S, j > gd

∈ T̂ .

I The case F = S\ j, j +1 = gd+1. Then

F = G⊂ G∪{n+1}︸ ︷︷ ︸
6=S

since n+1 /∈ S

∈ T̂ .

I The case F = S\gi, 1 ≤ i ≤ d. In this case G\gi is not in F (n,d) because
otherwise (G\gi)\gd+1∪{ j, j + 1} = F is a facet of C(n + 1,d + 1) by Proposi-
tion 3.3.9. Hence, we find a simplex H = (h1, . . . ,hd+1) in T with G\gi ∈ H and
H 6= G.

(∗) If hd+1 = gd+1 and hd < j then

F ⊂ H\hd+1∪{ j, j +1}︸ ︷︷ ︸
6=S

since H 6= G,hd+1 = gd+1

∈ T̂ .

(∗∗) If hd+1 = gd+1 and hd = j then either hd+1 = j + 1 and thus F = H, or
hd+1 > j +1, whence

F = H ⊂ H ∪{n+1}︸ ︷︷ ︸
6=S

since n+1 /∈ S

∈ T̂ in the first case,

F ⊂ H\hd+1∪{ j +1, j +2}︸ ︷︷ ︸
6=S

since j +2 /∈ S

∈ T̂ in the second case.
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FIGURE 3.3: The compression of H ′ in T .

(∗∗∗) If hd+1 = gd+1 and hd > j then hd > gd +1 and hence hd−hd−1 > gd +
1−gd = 1. Therefore, H\hd+1 is not in F (n,d) because hd is an inner singleton.
This implies that there is a simplex H ′ = (h′1, . . . ,h

′
d+1) in T with H\hd+1 ⊂ H ′.

The Intersection Property in T leads to

h′d+1 = hd > j, h′d < hd.

Performing the above step with H ′ instead of H induces a finite sequence (the
compression of H ′) H ′ = H(1),H(2), . . . ,H(r) = H ′′, where for H ′′ case (∗) or case
(∗∗) must occur because the d-th element decreases monotonely. Then

h′′d ≤ j < h(r−1)
d = h′′d+1,

and the constructions in (∗) and (∗∗) work with H ′′ instead of H as well.
(∗∗∗∗) If hd+1 > gd+1 then H\hd is not a facet of C(n,d), i. e., we find a

simplex H ′ = (h′1, . . . ,h
′
d+1) in T with H\hd ⊂ H ′ and H ′ 6= H, and we can finish

the proof by using the expansion of H ′.

The proof of (IP) (i). We must show that any pair of simplices (R,S) with R =
(r1, . . . ,rd+2) and S = (s1, . . . ,sd+2) in T̂ is admissible. Without loss of generality
max(R∪S) ∈ R. There are three different cases:

I The case R ∈ A, S ∈ A. It is well-known that a pyramid over a simplicial
complex is again a simplicial complex, i. e., it has the Intersection Property.

I The case R ∈ B, S ∈ B. There are R′ = (r′1, . . . ,r
′
d+1) and S′ = (s′1, . . . ,s

′
d+2)

in T such that

R =: R′\r′d+1∪{ j, j +1}, r′d < j < r′d+1,

S =: S′\s′d+1∪{k,k +1}, s′d < k < s′d+1.

Without loss of generality, j ≥ k. Assume (R,S) is not admissible. Then,
by Lemma 3.3.7, there exists a circuit Z ∈ Z +(n + 1,d + 1) with supp(Z) =
(z1, . . . ,zd+3) and

Z+ ⊂ R, Z− ⊂ S, zd+3 = rd+2 = j +1.
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By Proposition 3.3.10, we know that Z′ := (Z+\zd+3,Z−) is a circuit in Z −(n,d)
with

(Z′)+ ⊂ R\{ j +1}, (Z′)− ⊂ S, z′d+2 ≤ k +1≤ s′d+1.

Hence, z′d+1 < j and z′d < k. Therefore,

(Z′)+ ⊂ R′, (Z′)−\z′d+2∪ s′d+1 ⊂ S′.

But then
Z′′ := ((Z′)+︸ ︷︷ ︸

⊂R′

,(Z′)−\z′d+2∪ s′d+1︸ ︷︷ ︸
⊂S′

)

is a circuit in Z −(n,d) showing that (R′,S′) is not admissible; contradiction.
I The case R ∈ A, S ∈ B. There are R′ = (r′1, . . . ,r

′
d+2) and S′ = (s′1, . . . ,s

′
d+2)

in T with

R =: R′∪{n+1},
S =: S′\s′d+1∪{k,k +1}, s′d < k < s′d+1.

Assume again that (R,S) is not admissible. Let Z ∈ Z +(n + 1,d + 1) be a
circuit with supp(Z) = (z1, . . . ,zd+3) such that

Z+ ⊂ R, Z− ⊂ S, zd+3 = rd+2 = n+1.

Then
Z′ := (Z+\n+1︸ ︷︷ ︸

⊂R′

,Z−\zd+2∪ s′d+1︸ ︷︷ ︸
⊂S′

)

is a circuit in Z −(n,d) showing that (R′,S′) is not admissible; contradiction.

The proof of (UP) (iii). In order to simplify notation we set

A := astT (n),
B := astlkT (n)(n−1)∗{n−1}.

We bring some known facts into a useful form:

(a) Let F be a facet of C(n−1,d−1) that does not contain n−1. Then (F,n−1)
is a facet of C(n−1,d).

(b) Let F be a facet of C(n,d) that does not contain n. Then F is a facet of
C(n−1,d).

(c) stT (n)∪ astT (n) = T , stT (n)∩ astT (n) = lkT (n).



3.4 Special Triangulations of Cyclic Polytopes 73

Because of (c), all boundary facets of A are contained in lkT (n) or are facets
of C(n,d) that do not contain n. Then by (b) all boundary facets of A that are not
facets of C(n−1,d) are contained in lkT (n). Now let F be an element of lkT (n)
but not a facet of C(n− 1,d). If n− 1 /∈ F then (F,n− 1) ∈ T\n. If n− 1 ∈ F
then by (a) we know that F\(n−1) is not a facet of C(n,d)/n. Hence, there is a
simplex S in astlkT (n)(n−1) that containes F\(n−1) and therefore F ⊂ (S,n−1)∈
T\n.

Now let F be a facet in B that is not in F (n− 1,d). If n− 1 /∈ F , then F is
contained in astlkT (n)(n−1) and there must be a simplex in A containing F since
there is such a simplex for all elements of lkT (n) by (c). If n− 1 ∈ F , then —
by (a) — F\(n− 1) is not a facet of lkT (n). Hence, there must be a simplex S
in astlkT (n)(n−1) containing F\(n−1), and therefore the simplex (S,n−1) is in
B and contains F , which completes the proof.

The proof of (IP) (iii). The simplices in A are pairwise admissible because they are
part of T , the simplices in B are pairwise admissible because B is a pyramid over
a set of admissible simplices. Therefore, assume there are S1 ∈ A and S2 ∈ B and a
circuit Z with Z+ ⊆ S1 and Z− ⊆ S2, where n−1 ∈ S2 by definition. If n−1 /∈ Z−

then S′2 := S2\(n−1)∪n and S1 are not admissible either; contradiction because
S1 and S′2 are in T . But if we replace n−1 by n in Z then we get a circuit Z′ that
again shows that S1 and S′2 are not admissible.

Corollary 3.4.3. Any triangulation of the cyclic d-polytope C(n,d) with n vertices
induces

• a canonical triangulation T̂ of C(n + 1,d + 1) containing T as the link of
n+1,

• a canonical triangulation T/n of C(n−1,d−1) which is the link of n,

• a canonical triangulation T\n of C(n−1,d) containing the antistar of n as
a subcomplex, and

• a canonical triangulation δT defined as T̂\n + 1 of C(n,d + 1) containing
T as a subcomplex.

Remark 3.4.4. All these constructions — except for the link — are specific for
cyclic polytopes and are incorrect for some more general polytopes.

In order to demonstrate that triangulating cyclic polytopes is nevertheless non-
trivial, we provide an example showing that they are not greedily triangulable.
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Example 3.4.5. Let n = 8, d = 5 and

S1 := (3,4,5,6,7,8),
S2 := (1,2,3,6,7,8),
S3 := (1,2,3,4,5,6).

Every pair of these simplices is admissible.
However, consider the facet F := (1,3,6,7,8) of S2: it is not a facet of C(8,5).

Hence, in any triangulation T of C(8,5) that contains S1, S2, and S3 there must be
a simplex S′ containing F . But all three possibilities for such a simplex produce
non-admissible pairs. Therefore, there is no such triangulation. Hence, one can
get stuck by triangulating a cyclic polytope.

3.5 THE HIGHER STASHEFF-TAMARI ORDERS

In this section we describe the notion of increasing bistellar operations, or flips,
(as suggested by EDELMAN & REINER [21]) in terms of our set-up. This leads
to a combinatorial definition of the first higher Stasheff-Tamari order S1(n,d).
In contrast to this, the geometric definition of the second higher Stasheff-Tamari
order S2(n,d, t) is related to a geometric interpretation S1(n,d, t) of S1(n,d).
Specific properties of cyclic polytopes lead to a simple proof of Theorem 3.1.1.

The set of all triangulations of C(n,d), respectively C(n,d, t), is denoted by
S(n,d), respectively S(n,d, t).

Definition 3.5.1. An increasing (bistellar) flip set in T ∈ S(n,d) is a simplex
S̃ ∈

( [n]
d+2

)
with the property that the set of simplices F l(S̃,d +1) is a subset of T .

For all (d +2)-subsets S̃ of [n], we have the increasing flip function of S̃

flipS̃ :


S(n,d) → S(n,d),

T 7→


T\F l(S̃,d +1)
∪F u(S̃,d +1) if F l(S̃,d +1)⊆ T

T otherwise.

Remark 3.5.2. By Proposition 3.3.11, this definition is equivalent to the notion of
directed bistellar operations in EDELMAN & REINER [21].
Remark 3.5.3. Geometric Meaning (see Figure 3.4): Let t : [n]→ R be strictly
monotone. Let ∆ be a geometric triangulation of C(n,d, t) labelled by T , and let
∆′ be a geometric triangulation of C(n,d, t) defined by the labels of flipS̃(T ) for
some increasing flip S̃ in T ∈ S(n,d). Then the geometric lower facets of the
(d + 1)-simplex σ̃ := νd+1 ◦ t(S̃) in C(n,d + 1, t) are contained in the character-
istic section s∆, the geometric upper facets lie in s∆′ , and elsewhere the sections
coincide.
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∆′∆

∆′

∆

s∆ s∆′

σ̃ σ̃

FIGURE 3.4: Increasing flips in S1(6,1) respectively S1(5,2).

Definition 3.5.4. (EDELMAN & REINER [21])
The first higher Stasheff-Tamari order on S(n,d) is defined via

T1 ≤1 T2 ⇐⇒ T2 = flipS̃r
◦· · · ◦flipS̃1

(T1)

for some sequence (S̃1, . . . , S̃r) in
( [n]

d+2

)
. The set of all triangulations of C(n,d)

with this partial order is denoted by S1(n,d).
The second higher Stasheff-Tamari order on S(n,d, t) is defined via

∆1 ≤2 ∆2 ⇐⇒ s∆1(x)d+1 ≤ s∆2(x)d+1 for all x ∈C(n,d, t),

that is, s∆1 lifts C(n,d) weakly lower than s∆2 . It is written as S2(n,d, t).

Remark 3.5.5. The triangulation F l(n,d +1) is locally minimal, the triangulation
F u(n,d +1) is locally maximal in S1(n,d, t).

Moreover, F l(n,d + 1) represents the unique (thus global) minimal element,
and F u(n,d +1) the unique maximal element of S2(n,d, t), for all strictly mono-
tone t : [n]→ R.

EDELMAN & REINER [21, Conjecture 2.6] conjectured that S1(n,d) is the
correct combinatorial model for S2(n,d), that is, S2(n,d, t) coincides with S1(n,d, t)
for all strictly monotone t : [n]→ R. Theorem 3.1.1 shows that, at least the maxi-
mal and minimal elements of both partial orders coincide.

In order to prove this, we introduce in the following for all T in S(n,d) a partial
order on the set of their simplices. In this context the notion of the parity of “gaps”
in linearly ordered sets of Definition 3.3.2 is again useful.
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Definition 3.5.6. To each S ∈
( [n]

d+1

)
we assign a unique string by

Γ :



( [n]
d+1

)
→ {o,∗,e}n

S 7→ (γ1, . . . ,γn),

with γi =


e if i /∈ S and #{ j ∈ S : j > i} even,
∗ if i ∈ S,
o if i /∈ S and #{ j ∈ S : j > i} odd.

(Here the letter “e” denotes an even gap, the letter “o” an odd gap in S, while “∗”
corresponds to an element of S.)

Let “≺(o∗e)” be the lexicographic order on
( [n]

d+1

)
induced by Γ and the linear

order of letters “o≺(o∗e) ∗ ≺(o∗e) e.”

Definition 3.5.7. For S1 and S2 in T ∈ S(n,d) with #(S1∪S2) = d +2, define the
relation

S1 ≺ S2 ⇐⇒ S1∩S2 ∈F u(S1,d)∩F l(S2,d).

Moving from one simplex of a triangulation to an adjacent one can either be
considered as moving an element or moving a gap of the support.

Lemma 3.5.8. Let T ∈ S(n,d) and S1,S2 ∈ T with S1 ≺ S2. Set S12 := S1 ∩ S2,
S1\S12 =: i1, and S2\S12 =: i2.

1. If i2 is an even gap in S1 then i1 is an even gap in S2 and i1 < i2, that is,
“≺” moves even gaps to the left.

2. If i2 is an odd gap in S1 then i1 is an odd gap in S2 and i1 > i2, that is, “≺”
moves odd gaps to the right.

3. A gap changes parity if and only if it lies between i1 and i2.

Proof. The assumptions imply that S2 is obtained from S1 by deleting an odd
element i1 from S1 and adding an even gap i2 /∈ S1 to S12, or equivalently, the
gap i2 moves to position i1.

If i1 < i2 then i2 is an even gap in S1, and i1 is an even gap in S2, i. e., the even
gap at i2 moves to the left. If i2 < i1 then i2 is an odd gap in S1, and i1 is an odd
gap in S2, i. e., the odd gap at i2 moves to the right.

The third assertion is true because for any label i /∈ {i1, i2} not between i1
and i2 the number of elements to the right stays constant.

Corollary 3.5.9. The transitive closure of “≺” is a partial order on the set of all
d-simplices in

( [n]
d+1

)
. A d-simplex S is minimal if and only if all of its lower facets

are contained in F l(n,d); it is maximal if and only if all of its upper facets are in
F u(n,d).
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Proof. By Lemma 3.5.8, we have that

S1 ≺ S2 =⇒ S1 ≺(o∗e) S2.

Hence, “≺” is acyclic, thus defining a partial order.

Remark 3.5.10. Geometric Meaning: Let ∆ be a triangulation of C(n,d, t). Corol-
lary 3.5.9 tells us that the repeated transition from one simplex σ ∈ ∆ to an adja-
cent one docking from below does not create any cycles.

One cannot expect a similar property for triangulations of general polytopes,
as is shown by the strongly non-regular triangulation of the twisted capped prism
in LEE [41].

Now the following proposition can be proved by combining combinatorial and
geometric facts.

Proposition 3.5.11. Let T ∈ S(n,d)\F u(n,d + 1) and T̃ ∈ S(n,d + 1) such that
T is a subcomplex of T̃ . Then there is a (d + 1)-simplex S̃ ∈ T̃ that defines an
increasing flip in T .

Similarly, if T ∈ S(n,d)\F l(n,d +1) there is a (d +1)-simplex that defines a
decreasing flip in T .

Proof. Choose a simplex S in T\(F u(n,d +1)∩T ). Since S is not an upper facet
of C(n,d + 1), condition (UP) for T̃ implies that there must be a simplex S̃ in T̃
containing S as a lower facet. (Either S is a lower facet of C(n,d), and hence a
lower facet of a simplex in T̃ , or S lies in two different simplices of T̃ , and not
both of them can simultaneously contain S as an upper facet because of (IP).)

We now choose a geometric interpretation by fixing t : [n]→ R strictly mono-
tone. This gives rise to geometric interpretations C(n,d, t) of C(n,d), C(n,d +1, t)
of C(n,d + 1), ∆̃ of T̃ , ∆ of T , and σ̃ of S̃. Because T is a subcomplex of T̃ ,
we know that its characteristic section s∆ is a subcomplex of ∆̃. But then σ̃ lies
weakly above the section s∆ because at least one of its lower facets, namely s∆(σ),
is contained in s∆.

If there exists a lower facet Fl ∈F l(S̃,d + 1) of S̃ that is not contained in T
then either Fl is a lower facet of C(n,d + 1) — which is impossible because be-
tween the geometric interpretation σ ′ of Fl and the lower facets of C(n,d + 1, t)
lies the section s∆ — or there is a simplex S̃′ ∈ T̃ with Fl ⊂ S̃′ and S̃′ ≺ S̃, the
geometric interpretation of which is still lying weakly above the section. By con-
tinuing this process, we will — by Corollary 3.5.9 — end up with a simplex
S̃′′ ∈ T̃ with F l(S̃′′,d +1)⊆ T (see Figure 3.5). The decreasing flip can be found
analogously.

We know that all geometric interpretations have the same combinatorial struc-
ture, thus the proof is complete.
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s∆

σ̃ ′
σ̃ ′′

σ̃

FIGURE 3.5: Finding an increasing flip in S1(8,1).

The special form of the increasing (decreasing) flips in Proposition 3.5.11
leads to the following result.

Corollary 3.5.12. Let T̃ be a triangulation of C(n,d + 1). Then every linear
extension “≺l” of “≺” on T̃ defines a maximal chain in S1(n,d) via

F l(n,d +1) = T0
S̃1l T1

S̃2l · · ·
S̃r−1
l Tr−1

S̃rl Tr = F u(n,d +1),

where

T̃ = {S̃1, S̃2, . . . , S̃r}, S̃1 ≺l S̃2 ≺l · · · ≺l S̃r.

Proof of Theorem 3.1.1. In order to prove (i), we show that any triangulation of
C(n,d) is on a chain from F l(n,d + 1) to F u(n,d + 1). Let T be an arbitrary
triangulation of C(n,d). By Theorem 3.4.3, δT is a triangulation of C(n,d + 1)
containing T as a subcomplex. Thus, by Proposition 3.5.11 and induction, we can
connect T to F u(n,d +1) by a sequence of increasing flips (compare Figure 3.5),
and to F l(n,d +1) by a sequence of decreasing flips, which implies the assertion.

For the proof of (ii), observe that, by the definition of increasing bistellar flips,
any chain

c : F l(n,d +1)
S̃1
< · · ·

S̃r
< F u(n,d +1)

from F l(n,d +1) to F u(n,d +1) defines a triangulation Tc of C(n,d +1) via

Tc := {S̃1, . . . , S̃r},

hence factoring out the order of c. For the converse, let T̃ be an arbitrary triangu-
lation of C(n,d +1). Then, by Corollary 3.5.12,

cT̃ := T≺(o∗e)

is a chain in S1(n,d) from F l(n,d +1) to F u(n,d +1).
Part (iii) follows directly from Corollary 3.5.12.
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The central roles of the triangulations T̂ , T/n, T\n, δ (T ) are underlined by
the following additional results.

Lemma 3.5.13. (Functorial Flip Properties)
If S̃ is an increasing flip from T to T ′ then

(S̃)̂≺l
:=
{

S̃\s̃d+2∪{ j, j +1} : s̃d+1 < j < s̃d+2
}
≺l

is a decreasing flip sequence from T̂ to T̂ ′,

(S̃/n) :=
{

(S̃\{n}) if n ∈ S̃,
() otherwise,

is an increasing flip from T/n to T ′/n,

(S̃\n) :=


(S̃) if n /∈ S̃,

(S̃\{n}∪{n−1}) if n ∈ S̃, n−1 /∈ S̃,
() otherwise,

is a decreasing flip sequence from T\n to T ′\n, where “≺l” is any linear extension
of “≺.”

In other words, there are the following maps of posets.

Proposition 3.5.14. (Functorial Order Properties)

(i) The map

·̂ :
{

S1(n,d) → S1(n+1,d +1),
T 7→ T̂ ,

is order-reversing.

(ii) The map

·/n :
{

S1(n,d) → S1(n−1,d−1),
T 7→ T/n,

is order-reversing.

(iii) The map

·\n :
{

S1(n,d) → S1(n−1,d),
T 7→ T\n,

is order-preserving.
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(iv) The map

δ :
{

S1(n,d) → S1(n,d +1),
T 7→ δ (T ),

is order-reversing.

Corollary 3.5.15. Every chain in S1(n,d) that corresponds to a flip sequence
(T̃ ) := (S̃1, . . . , S̃r) gives rise to flip sequences

(i) (T̃ )̂≺l
in S1(n+1,d +1),

(ii) (T̃/n)≺l in S1(n−1,d−1),

(iii) (T̃\n)≺l in S1(n−1,d), and

(iv) δ (T̃ )≺l in S1(n,d +1).

3.6 SHELLABILITY

In this section we present another application of the partial order property of the
simplices in a triangulation of a cyclic polytope, namely that all triangulations
(without new vertices) of a cyclic polytope are shellable. This fact is far from
trivial because there exists, for example, a non-shellable triangulation of a convex
3-polytope with all vertices in convex position, namely a perturbed version of
Rudin’s non-shellable tetrahedron (see [73]).

Theorem 3.6.1. All T ∈S1(n,d) are shellable. A shelling order on the simplices
of T is given by first shelling the star of n in T corresponding to a shelling order
on the link of n in T , and then shelling the rest of T according to a reversed linear
extension of “≺,” for example “�(o∗e).”

The rest of this section is devoted to the proof of Theorem 3.6.1, which im-
plies Theorem 3.1.1(iv). We start with some lemmas that are intuitively plausible
when one considers the geometric interpretations. With the results of Section 3.3,
however, we have tools at hand that provide more security.

Lemma 3.6.2. Let S be a d-simplex in
( [n]

d+1

)
. A face G⊆ [n] is the intersection of

lower facets of S if and only if S is of the form

S = (G#(S\G),s#(S\G), . . . , G2︸︷︷︸
odd

,s2, G1︸︷︷︸
odd

,s1),

G = G1∪G2∪·· ·∪G#(S\G), s1,s2, . . . ,s#(S\G) ∈ S\G.
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G is the intersection of upper facets of S if and only if S is of the form

S = (G#(S\G),s#(S\G),G#(S\G)−1︸ ︷︷ ︸
odd

, . . . ,s2, G1︸︷︷︸
odd

,s1, G0︸︷︷︸
odd

),

G = G0∪G1∪·· ·∪G#(S\G), s1,s2, . . . ,s#(S\G) ∈ S\G.

Proof. If there were two elements in S\G separated by an even number of ele-
ments in G then leaving them out separately in S would produce gaps of different
parity. From this the claim follows.

Lemma 3.6.3. Let S ∈
( [n]

d+1

)
. If G is the intersection of lower (upper) facets of S

then G is not contained in any upper (lower) facet of C(n,d).

Proof. If d = 1, everything is clear. Let G be the intersection of lower facets
F(1), . . . ,F(r) of S = (s1, . . . ,sd+1). Then all F(i) contain only even gaps, in par-
ticular they contain sd < sd+1 ≤ n. Assume G is contained in some upper facet
F = ( f1, . . . , fd) of C(n,d). Then F contains sd and n. Consider F ′ := F\{n}, a
lower facet of C(n−1,d−1), and the (d−1)-simplex S′ := S\{sd+1}. The sets

F(i)\{ f (i)
d−1, f (i)

d }∪{sd}, i = 1, . . . ,r,

are upper facets of S′, and their intersection is contained in F ′ (because sd ∈ F ′);
contradiction by the following paragraph and induction.

If G is the intersection of upper facets F(1), . . . ,F(r) of S = (s1, . . . ,sd+1) then
all F(i) contain only odd gaps, in particular, they contain sd+1. Assume G is
contained in some lower facet F = ( f1, . . . , fd) of C(n,d). Then F contains sd+1
as well, so fd ≥ sd+1. Therefore, we may assume, without loss of generality,
that n = fd . Since F contains only even gaps, we have fd−1 = fd − 1. Consider
F ′ := F\{ fd−1, fd}∪{n− 1} = F\n which is an upper facet of C(n− 1,d− 1).
The sets

F(i)\{sd+1}, i = 1, . . . ,r,

are lower facets of the (d− 1)-simplex S′ := S\{sd+1}, and their intersection is
contained in F ′ (because n ≥ sd+1); contradiction by the previous paragraph and
induction.

Lemma 3.6.4. Let T ∈S1(n,d) and S1 6= S2 ∈ T . If S1∩ S2 is not contained in
any upper (lower) facet of S1, i. e., is the intersection of lower (upper) facets of
S1, then it is contained in some upper (lower) facet of S2.

Proof. Assume S1 ∩ S2 is the intersection of lower (upper) facets of S1 and also
the intersection of lower (upper) facets of S2. We show by induction that S1∪ S2
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contains the support of a circuit Z in Z (n,d) with S1 ⊆ Z+ and S2 ⊆ Z−. If d = 1
then everything is clear.

Both S1 and S2 are of the form given in Lemma 3.6.2, in particular, we may set
S1 = (S′1,s1) and S2 = (S′2,s2) with s1 > s′2 for all s′2 ∈ S′2 and s2 > s′1 for all s′1 ∈ S′1.
If S′1 = S′2 then s1 6= s2 and (S′1,s1,s2) supports a circuit Z in Z (n,d) with S1⊆ Z+

and S2⊆ Z−, showing that (S1,S2) is not admissible; contradiction. If S′1 6= S′2 then
S′1 ∩ S′2 is the intersection of upper or the intersection of lower facets of S′1, and
the same for S′2, by Lemma 3.6.2. Hence, by the induction hypothesis, S′1 ∪ S′2
contains the support of a circuit Z′ in Z (n−1,d−1) with Z+ ⊆ S′1 and Z− ⊆ S′2.
Without loss of generality, zd+1 = max(S′1∪S′2) ∈ S′1. Then Z := (Z+,Z−∪{s2})
is a circuit (recall that s2 > s′1 for all s′1 ∈ S′1) in Z (n,d) proving that (S1,S2) is
not admissible; contradiction.

Definition 3.6.5. Let T ∈ S1(n,d) and T ′ ⊆ T . An upper (lower) facet F of a
simplex S ∈ T ′ is a free upper (lower) facet of T ′ if F is neither a facet of C(n,d)
nor a facet of some other simplex in T ′.

Proposition 3.6.6. Let T ∈ S1(n,d) and T ′ ⊆ T such that T ′ contains no free
upper facet. Then the intersection of T ′ with any simplex S ∈ T\T ′ having all
upper facets in T ′ equals the union of the upper facets of S.

Proof. Let G⊆ S∩T ′ be not contained in any upper facet of S. Let S′ be a simplex
in T ′ with G⊆ S′ that is maximal with respect to “≺.” By Lemma 3.6.4, G is con-
tained in some upper facet F ′ of S′ that is not a facet of C(n,d) by Lemma 3.6.3.
Thus, there is a simplex S′′ with S′′ 6= S′ and F ′ ⊂ S′′. But then S′′ � S′; contradic-
tion to the maximality of S′.

Lemma 3.6.7. Let T ∈S1(n,d). Then stT (n) contains no free upper facets.

Proof. Every simplex in stT (n) contains n, thus any upper facet in stT (n) contains
n, so it cannot be contained in a simplex outside stT (n).

Proof of Theorem 3.6.1. A triangulation of C(n,1) is just a dissection of an in-
terval, thus shellable. Let d > 1 and T ∈ S1(n,d). Assume that all triangula-
tions of C(n− 1,d− 1) are proven to be shellable. Then we know that lkT (n) ∈
S1(n−1,d−1) is shellable. Let (lkT (n))≺d−1 denote a shelling order of lkT (n).
Then (stT (n))≺d−1 is a canonical shelling order of stT (n).

Now pick any linear extension “�l” of “�.” We claim that

(astT (n))�l =: (S(1), . . . ,S(r))

completes (stT (n))≺d−1 to a shelling order on T . Let T (0) := stT (n) and

T (i) := stT (n)∪S(1)∪·· ·∪S(i), i = 1, . . . ,r.
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We know by Lemma 3.6.7 that there is no free upper facet in T (0) = stT (n). Since
“�l” extends “�,” all upper facets of the i-th element S(i) in (astT (n))�l are con-
tained in T (i−1) for all i = 1, . . . ,r. Hence, there are no free upper facets in T (i)

for all i = 1, . . . ,r. Thus, by Proposition 3.6.6, the intersection of S(i) and T (i−1)

is indeed the union of these upper facets, in particular pure of dimension d−1 for
all i = 1, . . . ,r, which proves the Theorem by induction.

3.7 HIGHER BRUHAT ORDERS

In this section we recall the basic definitions and theorems in the framework of
higher Bruhat orders and answer a question by ZIEGLER [74]. Let L be a linearly
ordered finite set. The reader may consider L as the set [n], without loss of
generality.

Definition 3.7.1. (MANIN & SCHECHTMAN [48], ZIEGLER [74])

• For some (k +1)-subset P := (p1, . . . , pk+1) of L , the set of its k-subsets

P =
(P

k

)
= {P\pν : ν = 1, . . . ,k +1}

is a k-packet of L . It is naturally ordered by P\pν < P\pµ ⇐⇒ µ < ν ,
the lexicographic order.

• An ordering α of
(L

k

)
is admissible if the elements of any (k + 1)-packet

appear in lexicographic or in reverse-lexicographic order. Two orderings α

and α ′ are equivalent if they differ by a sequence of interchanges of two
neighbors that do not lie in a common packet.

• The inversion set inv(α) of an admissible ordering α is the set of all (k+1)-
subsets of L whose k-subsets appear in reverse-lexicographic order in α .

• A set U of (k + 1)-subsets of L is consistent if its intersection with any
(k + 1)-packet P of L is a beginning or an ending segment of P with
respect to the lexicographic order on P .

• The set of all equivalence classes of admissible orders of
(L

k

)
, partially

ordered by single-step-inclusion of inversion sets. That is, [α]≤ [α ′] if and
only if

inv(α) = U1 ⊂U2 ⊂ ·· · ⊂UK = inv(α ′)

with #Uν\Uν−1 = 1 and all Uν are admissible — is the higher Bruhat order
B(L ,k), where B(n,k) denotes B([n],k).
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• For an inversion set U ∈B(L ,k), define

∂U :=
{

I ∈
( L

k+2

)
: I\i1 /∈U, I\ik+2 ∈U

}
.

The structure of B(L ,k) does of course only depend on the cardinality of L ,
but the general setting leads to some advantages in the notation of functorial con-
structions. For simplicity, however, we switch now to B(n,k).

Theorem 3.7.2. (MANIN & SCHECHTMAN [48], ZIEGLER [74])
The higher Bruhat order B(n,k) is a ranked poset with rank function r(U) =
#U. Moreover, it has a unique minimal element 0̂n,k = ∅ and a unique maximal
element 1̂n,k =

( [n]
k+1

)
.

The following Theorem gives a more geometric insight into the structure of
higher Bruhat orders.

Theorem 3.7.3. (ZIEGLER [74])
The higher Bruhat order B(n,k) is isomorphic to

1. the set of all consistent sets U of (k + 1)-subsets of [n] with single-step-
inclusion-order,

2. the set of (equivalence classes of) extensions of the cyclic hyperplane ar-
rangement Xn,n−k−1 by a new pseudo-hyperplane in general position, par-
tially ordered by single-step-inclusion of the sets of vertices on “the negative
side,”

3. the set of maximal chains of inversion sets in B(n,k−1) — corresponding
to orders of k-sets — modulo equivalence of admissible orders.

The following notations for deletion and contraction in B(n,k) provide intu-
ition via the corresponding notions in Xn,n−k−1.

Definition 3.7.4. For U ∈B(n,k), define

U/n := { I\n : n ∈ I, I ∈U } , (contraction)
U\n := { I ∈U : n /∈ I } . (deletion)

In order to construct inversion sets in B(n + 1,k + 1) from inversion sets in
B(n,k) and in B(n,k +1), the following Theorem is useful.

Theorem 3.7.5. (ZIEGLER [74])
Let U be an inversion set in B(n,k), and let V be an inversion set in B(n,k +1).
Then U ′ := V ∪U ∗ (n+1) is consistent if and only if

∂U ⊆V and ∂{U ⊆ {V.
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Corollary 3.7.6. The following maps from B(n,k) to B(n + 1,k + 1) are injec-
tive:

U 7→ Ũ := U ∗ (n+1)∪∂U, (extension)

U 7→ Û := U ∗ (n+1)∪δ (U) = U ∗ (n+1)∪ (U\n)̂ , (expansion)

where δ (U) is defined as

δ (U) :=
{

I ∈
( [n]

k+2

)
: I\ik+2 ∈U

}
.

The extension is not order-preserving in general. But the following defini-
tion yields a canonical single-step-inclusion order for the expansion of U from an
arbitrary single-step-inclusion order of U .

Definition 3.7.7. For some U ∈B(n,k) with a given single-step-inclusion-order
Ω(U) = (Ω(U ′), I), define the following order Ω̂: For n = k +1, start with

Ω̂
(
{[n]}̂

)
:= ([n+1])

corresponding to Ω({[n]}) = ([n]) in B(n,k). If n > k + 1 and Ω̂(Û ′) is already
constructed then define

Ω̂(Û) :=
(

Ω̂(Û ′),Ω̂(∂ I), I∪{n+1},Ω̂(δ I\∂ I)
)

,

where the orders on ∂ I and δ I\∂ I are given by restriction of Ω̂
(
(U\n)̂

)
.

Proposition 3.7.8. For all U ∈ B(n,k) and all single-step-inclusion orders Ω

of U, the order Ω̂ is a single-step-inclusion order of the expansion Û of U in
B(n+1,k).

Proof. The following properties make sure that no cycles are produced:

δ (U)\n = δ (U\n),
∂ (U)\n = ∂ (U\n).

At each single-step-inclusion step all packets in B(n,k + 1) are consistent by
induction. From the remaining packets only those containing I ∪{n + 1} are in-
volved.

If n /∈ I then the order increases just by I∪{n} which is consistent because Ω

is a single-step-inclusion order of U and Û ′ is already ordered consistently.
Let n be in I. For all packets P containing I ∪{n + 1}, either P/n + 1 is

completely contained in U or only I meets U . In the first case the only element
P\a′ of P\n+1 comes before I∪{n+1} in Ω̂, in the second case I∪{n+1} is
positioned after P\n+1 in Ω̂; both cases lead to consistent orders on P .



86 Triangulations of Cyclic Polytopes

From this we derive the promised result.

Theorem 3.7.9. The expansion

·̂ :
{

B(n,k) → B(n+1,k +1),
U 7→ Û ,

is an order-preserving embedding that maps 0̂n,k to 0̂n+1,k+1 and 1̂n,k to 1̂n+1,k+1.

3.8 THE CONNECTION BETWEEN B(n−2,d−1) AND S1(n,d)

In this section we present an order-preserving map from the higher Bruhat or-
der B(]n[,d− 1) ∼= B(n− 2,d− 1) to the poset S1(n,d) of all triangulations of
C(n,d). This map is obtained by two different constructions, each of them provid-
ing complementary parts of the properties claimed. It is not quite clear whether
this map coincides with the map suggested by Kapranov & Voevodsky [40].

We start with some additional specific properties of triangulations of cyclic
polytopes.

Lemma 3.8.1. Let T ∈S1(n,d). Then for each (d− 1)-subset (s2, . . . ,sd) there
is at most one simplex S ∈ T with S = (s1,s2, . . . ,sd,sd+1) for some s1 < s2 and
some sd+1 > sd .

Proof. Assume there were S 6= S′ ∈ T and

S = (s1,s2, . . . ,sd,sd+1),
S′ = (s′1,s2, . . . ,sd,s′d+1).

Either s1 6= s′1 or sd+1 6= s′d+1. If s1 < s′1 then define

Z :=
{

(s1,s′1, . . . ,sd,s′d+1) if d even,
(s1,s′1, . . . ,sd,sd+1) if d odd.

In any case, Z+ ⊆ S and Z− ⊆ S′.
The cases s1 > s′1, sd+1 < s′d+1, and sd+1 > s′d+1 are analogous.

Definition 3.8.2. For S := (s1, . . . ,sd+1) ∈ T ∈S1(n,d), let XS := (s2, . . . ,sd) be
the central set of S. The number lS := s1 is called the left boundary, the number
rS := sd+1 the right boundary of XS in T .

Since there are no multiple central sets in triangulations of cyclic polytopes,
we have the following simple representation.
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Corollary 3.8.3. Any triangulation T of C(n,d) is determined by its set of central
sets and their boundaries.

Lemma 3.8.4. In every triangulation T of C(n,d) every interval of length (d−1)
in [2,n−1] appears as a central set of some simplex S ∈ T .

Proof. Here is a proof for d odd: Let T be in S1(n,d) and I an interval of length
d−1. From Gale’s evenness criterion it follows that I is contained in exactly two
facets of C(n,d), namely (1, I) and (I,n). Therefore, there must be a simplex S1
in the triangulation T containing (1, I).

If S1 = (1, I,r) we are done. Otherwise S1 = (1, l1, I). Because (l1, I) is not a
facet of C(n,d), there must be another simplex S2 ∈ T with (l1, I) ⊆ S2. If S2 =
(l1, I,r) we are done. Otherwise we proceed as above. Because of Lemma 3.8.1,
at each step we have li < li+1. Hence, there must be a k and an r such that the
simplex Sk = (lk−1, I,r) is in T .

The case where d is even is analogous, where the corresponding facets of
C(n,d) are (i1−1, I) and (I, id +1) and the sequence of the lk is decreasing.

We start now to construct a map by defining a natural family of functions on
S1(n,d).

Definition 3.8.5. For an element I = (i1, . . . , id) ∈
(]n[

d

)
, define the map

flipI :


S1(n,d) → S1(n,d),

T 7→
{

flip(l,I,r)(T ) if (l, I,r) is an increasing flip,
T otherwise.

For an inversion set U ∈ B(]n[,d− 1), let Ω(U) = (Ii)i=1,...,#U be a single-
step-inclusion-order of the elements of U , i. e.,

⋃K
i=1 Ii is consistent for all K =

1, . . . ,#U . The flip-map Tflip is now defined as follows:

Tflip :
{

B(]n[,d−1) → S1(n,d),
U 7→ flipI#U

◦· · · ◦flipI1
(F l(n,d)).

Remark 3.8.6. At this point it is not obvious that this definition is independent of
the special order Ω(U) = (Ii)i=1,...,#U of U . Up to now, we only know that Tflip
maps each pair (U,Ω(U)) to a triangulation in S1(n,d), where U ∈B(]n[,d−1)
and Ω(U) is a single-step inclusion order of its elements. It is order-preserving
in the sense that if U < U ′ and Ω(U),Ω(U ′) are corresponding single-step in-
clusion orders with the property that Ω(U) is an initial segment of Ω(U ′), then
Tflip(U,Ω(U)) < Tflip(U ′,Ω(U ′)).

Definition 3.8.7. For i ∈ I ∈
(]n[

d

)
, define the index of i in I as

indI(i) := k if I = (i1, . . . , i = ik, . . . , id).
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Definition 3.8.8. For an inversion set U ∈B(]n[,d−1), define the central set of
U as

XU := {X = (x1, . . . ,xd−1) ∈
( ]n[

d−1

)
: X ∪ j ∈U ∀ j ∈ [n]\X :

x1 < j < xd−1,
d− indX∪ j( j) even,

X ∪ j /∈U ∀ j ∈ [n]\X :
x1 < j < xd−1,
d− indX∪ j( j) odd}.

Definition 3.8.9. For an inversion set U ∈B(]n[,d−1), define the left boundary
function of U as

λU :


XU → [n],

X 7→
{

max{ l ∈ [n] : (l,X) /∈U } for d odd,
max{ l ∈ [n] : (l,X) ∈U } for d even,

and the right boundary function of U as

ρU :
{

XU → [n],
X 7→ min{r ∈ [n] : (X ,r) /∈U } ,

with the additional notation

min(∅) := n and max(∅) := 1.

Definition 3.8.10. Now define the direct map Tdir as

Tdir :
{

B(]n[,d−1) → S1(n,d),
U 7→ {(λU(X),X ,ρU(X)) : X ∈ XU } .

Remark 3.8.11. Here it is neither obvious that Tdir(U) is indeed a triangulation
nor that the map is order-preserving, but it is uniquely defined.

Proposition 3.8.12. Let U and U ′ := U ∪{I} be inversion sets in B(]n[,d− 1).
Define the following two properties for some ik ∈ I,1 < k < d−1.

Property A: I \ ik ∈ XU but I \ ik /∈ XU ′ ,

Property B: I \ ik /∈ XU but I \ ik ∈ XU ′ .

Then the following hold:

(i) If ik has Property A then all im ∈ I with m ≡ k mod 2 have Property A as
well,
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(ii) If ik has Property B then all im ∈ I with m ≡ k mod 2 have Property B as
well.

Proof. From Definition 3.8.8 we know that

• ik has Property A if and only if d− k is odd and ik has Property C, namely

– indI\ik∪ j( j) is even for all j /∈ I with i1 < j < id−1 and I \ ik ∪ j ∈U ,
and

– indI\ik∪ j( j) is odd for all j /∈ I with i1 < j < id−1 and I \ ik∪ j /∈U ,

• ik has Property B if and only if d− k is even and ik has Property C.

In the sequel we will show that Property C for ik induces Property C for all im ∈ I.
Assume ik ∈ I has Property C. Let j /∈ I, i1 < j < id be arbitrary. (If there is

no such j we are done.) Consider the inversion J := (I∪ j)\ ik. From Property C
we know that J has Property D, namely

J ⊆
{

U if indJ( j) even,
Ū if indJ( j) odd.

Now we investigate the d-packet P := I∪ J. Because both U and U ′ are con-
sistent, the complete segment that starts at a neighbor of I = P \ j and contains
J = P\ ik must have property D as well as J, and the complementary segment must
have exactly the contrapositive property D̄. That means, by parsing the packet P
from one end to the other “having property D” switches at I = P\ j.

In other words, I \ im∪ j ∈U if and only if I \ ik∪ j ∈U for all im lying on the
same side of j as ik in P and I \ im∪ j ∈U if and only if I \ ik ∪ j /∈U for all im
lying on the opposite side of j as ik.

Additionally, if m is congruent k modulo 2 then indI\im∪ j( j) is congruent
indI\ik∪ j( j) modulo 2 if and only if im lies on the same side of j as ik in P, but —
since j was arbitrary — this means that im has Property C.

Remark 3.8.13. The above Proposition roughly states that for I \ im “being con-
tained in the central set of U” for all possible m only depends on whether I is in
U — not on whether some inversion I \ im∪ j is in U — whenever this is correct
for one m.

Proposition 3.8.14. Let U and U ′ as above. Then the following hold for all 1 <
l < i1 and id−1 < r < n:

(l, I \ ik) ∈U ⇐⇒ (l, I \ im) ∈U for all m≡ k mod 2,

(I \ ik,r) ∈U ⇐⇒ (I \ im,r) ∈U for all m≡ k mod 2.



90 Triangulations of Cyclic Polytopes

Proof. The proof is analogous to the proof of Proposition 3.8.12 with j replaced
by l,r.

Theorem 3.8.15. The maps Tflip and Tdir coincide.

Proof. We will show that Tflip(U) = Tdir(U) for all U ∈B(]n[,d−1). Because
B(]n[,d − 1) has a unique minimal element ∅, we can proceed by induction
on #U .

The proof for U =∅ is a simple computation. Therefore, we assume that the
claim is true for some inversion set U , and we will show that then the claim is also
true for all consistent U ′ := U ∪{I}.

It remains to check the following points:

1. If Tdir(U ′) 6= Tdir(U) then there exist 1 ≤ l < i1 and id < r ≤ n such that
(l, I,r) is an increasing flip in Tflip(U) = Tdir(U), and

2. if the (d + 2)-set (l, I,r) is an increasing flip in Tflip(U) = Tdir(U) then
Tdir(U ′) = flipI Tdir(U).

From Proposition 3.8.12 it follows that the assertions 1 and 2 are correct as far
as the central sets of U or U ′, resp., are concerned.

From Proposition 3.8.14 and the corresponding definitions in 3.8.9 we get that
in the situations of both 1 and 2 the left and right boundary functions are constant
on the sets I \ ik with 1 < k < d− 1, i. e., there exist l and r with 1 < l < i1 and
id−1 < r < n such that

λU(I \ ik) = l, ρU(I \ ik) = r.

Moreover, it follows that

λU(I \ i1) =
{

i1 for d odd,
l for d even,

ρU(I \ i1) = r,

λU(I \ id−1) = l, ρU(I \ id−1) = id−1.

After having added I to the inversion set U , we have

λU ′(I \ ik) =
{

l for d odd,
i1 for d even,

ρU ′(I \ ik) = r.

λU ′(I \ i1) = l, ρU ′(I \ i1) = r,
λU ′(I \ id−1) = l, ρU ′(I \ id−1) = r.

With this the proof of Theorem 3.8.15 is complete.
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Corollary 3.8.16. The map

T := Tflip = Tdir

is well-defined and order-preserving.

We finish our investigations by stating — as a bonus track without a proof —
the following connections between the constructions of this chapter.

Proposition 3.8.17. (Functorial Relations)

T (Û) =
(
T (U)

)̂
,

T (U\n−1) = T (U)\n,

T (δU) = δT (U).

The analogous property for the link does not hold in general!





APPENDIX A

GLOSSARY OF BASIC CONCEPTS

We recall some basic facts about partially ordered sets, topology, polytopes, poly-
topal complexes, and oriented matroids.

A.1 PARTIALLY ORDERED SETS

The notation used in this section is based on the book of STANLEY [68, Chap-
ter III].

Definition A.1.1. Let S be a finite set. A partial order on S is a binary relation
“≤” on S that is reflexive, antisymmetric, and transitive. That is,

(i) x≤ x for all x ∈ S,

(ii) x≤ y and y≤ x implies x = y, and

(iii) x≤ y and y≤ z implies x≤ z.

The pair S = (S,≤) is called a partially ordered set, or a poset, for short. Con-
sider a binary relation “<” on S that is irreflexive, antisymmetric, and acyclic.
That is,

(i) x≮ x (x is not related to x by “<”) for all x ∈ S,

(ii) x < y implies y≮ x, and

(iii) there is no chain of relations x < · · ·< x.

Then the transitive closure “≤” of “<” is the partial order given by

x≤ y :⇐⇒ either x = y or x = x1 < · · ·< xr = y for some x1, . . . ,xr ∈ S.

A chain in S is a totally ordered subset of S. Its length is the number of
elements minus one. The interval [x,y] in S is the set of all z ∈ S with x≤ z and
z ≤ y with the induced partial order. If [x,y] = ({x,y},≤) then y is a cover of x
and xl y denotes the corresponding covering relation. S is bounded if there is

93
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a unique maximal and a unique minimal element in S , that means, if S = [0̂, 1̂]
for suitable 0̂ and 1̂ in S. S \{0̂, 1̂} is called the proper part of S .

S is graded, or ranked, if it is bounded and every maximal chain has the same
length. The length of a maximal chain in [0̂,x] is the rank of x. The rank of S is
the rank of 1̂.

S is a lattice if it is bounded and every two elements x and y in S have a
unique minimal upper bound x∨ y in S , called the join of x and y, and a unique
maximal lower bound x∧ y in S , called the meet of x and y.

The minimal elements of the proper part of a graded lattice are called atoms,
the maximal elements coatoms. If every element in S is the join of atoms in S
then S is atomic. S is coatomic if every element in S is the meet of coatoms in
S .

Definition A.1.2. A map f : (S,≤S)→ (R,≤R) is order-preserving, respectively
order-reversing, if f (x)≤R f (y), respectively f (y)≤R f (x), for all x≤S y in S.

Isomorphisms are order-preserving, anti-isomorphisms are order-reversing bi-
jections in the category of posets.

Definition A.1.3. The Hasse diagram of a poset S = (S,≤) is a directed graph
with vertex set S. Two vertices x and y in S are connected by an arc from x to y
if and only if y covers x. In a drawing of this graph usually all arcs are directed
upwards, whence the arrows are omitted.

The following example will appear in much more general form in Sections 3.7
and 3.8.

Example A.1.4. Let Sn be the set of all permutations on n elements, where [n] =
{1, . . . ,n} is linearly ordered with 1 < · · ·< n. For a permutation π , let inv(π) be
the set of all pairs (i, j) with 1≤ i < j ≤ n and π(i) > π( j). We set π ≤ σ if and
only if inv(π)⊆ inv(σ). The poset (Sn,≤) is the weak (Bruhat) order on Sn.

We end this section with a definition of the order complex of a poset, which is
the standard translation of combinatorial structures into topology.

Definition A.1.5. Let S = (S,≤) be a poset. The (abstract) simplicial complex
(see Section A.4)

∆(S ) := {R⊂ S : R is a chain in S }

is the order complex of S .
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A.2 TOPOLOGY

For details, we refer to the book “Topology and Geometry” by BREDON [17].

Definition A.2.1. A topological space is a pair (X ,O) where X is a set and O is
the topology on X , that is, a family of subsets of X , called open sets, such that

(i) the empty set and X are open,

(ii) the intersection of two open sets is open,

(iii) the union of any collection of open sets is open.

If the topology on X is fixed, we often denote the topological space (X ,O) by X .
A subfamily B of open sets is a basis of O if every open set is the union of

sets in B. It is a subbasis if the set of all finite intersections of sets in B is a basis.
In these cases we say that B generates O .

Let (X ,O) be a topological space and x ∈ X . A subset N ⊆ X is a neighbor-
hood of x if there is an open set O ∈ O with x ∈ O and O ⊆ N. Let (Y,U ) be
another topological space. A function f : X → Y is continuous at x if for any
neighborhood N of f (x) the set f−1(N) is a neighborhood of x. A function f is
continuous if it is continuous at every x ∈ X . A homeomorphism is a bijective
continuous map whose inverse is continuous as well.

What we really need is the standard topology of metric spaces, as on the Eu-
clidean space Rd .

Definition A.2.2. A metric space is a pair (X ,d) where X is a set and d is a map
from X×X to R such that

(i) d(x,y)≥ 0, and d(x,y) = 0 if and only if x = y,

(ii) d(x,y) = d(y,x),

(iii) d(x,z)≤ d(x,y)+d(y,z).

If d(X) := supx,y∈X d(x,y) exists then it is called the diameter of X . If the metric
on X is fixed, we often denote the metric space (X ,d) by X .

The topology induced by d on X is generated by the open balls B(x0,r) :=
{x ∈ X : d(x,x0) < r } for x0 ∈ X and r ∈ R.

From now on all spaces are assumed to be metric spaces.

Lemma A.2.3. Let (X ,d) and (X ′,d′) be metric spaces. Then f : X → X ′ is
continuous if and only if for all ε > 0 and all x ∈ X there is a δ > 0 such that
d′( f (x), f (y)) < ε for all y ∈ X with d(x,y) < δ .
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Corollary A.2.4. If for f : (X ,d)→ (X ′,d′) there is a constant c with

d′( f (x), f (y))≤ c ·d(x,y) for all x,y ∈ X ,

then f is continuous.

Lemma A.2.5. The product

(X ,d)× (X ′,d′) := (X×X ′,max(d,d′))

is a metric space.

The following example is important in Section 2.3.

Example A.2.6. The 1-dimensional standard sphere

S1 := {z ∈ C : ‖z‖= 1}

is a metric space with the induced metric of C. Its diameter is 2.
The product S1×·· ·×S1 is a metric space with the maximum metric

d((z1, . . . ,zk),(z′1, . . . ,z
′
k)) := max(‖z′1− z1‖, . . . ,‖z′k− zk‖).

This gives again a diameter of 2.

Definition A.2.7. Let f ,g : X → Y be continuous. A homotopy from f to g is a
continuous (in both coordinates) map

H :
{

X× [0,1] → Y,
(x, t) 7→ H(x, t),

such that
H(x,0) = f (x) and H(x,1) = g(x).

Let A ⊆ X be a subspace of X . If H is a homotopy from f to g with H(x, t) =
f (x) = g(x) for all x ∈ A then H is a homotopy relative A. The maps f and g are
homotopic (relative A) if there exists a homotopy from f to g (relative A).

A continuous map f : X →Y is a homotopy equivalence if there exists a func-
tion g : Y → X such that g◦ f : X → X is homotopic to the identity idX on X , and
f ◦ g : Y → Y is homotopic to the identity idY on Y . In the case that such a map
exists, X and Y are homotopy equivalent. If X is homotopy equivalent to a point
then X is contractible.
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Definition A.2.8. A path in X from x0 to x1 is a continuous function w : [0,1]→ X
with x0 = w(0) and x1 = w(1). A path w in X is null-homotopic if it is homotopic
to a constant function x0 : [0,1]→ X . Two paths w,v in X are homotopic relative
∂ [0,1] if w is homotopic to v by a homotopy relative {0,1} ⊂ [0,1]. In particular
v(0) = w(0) and v(1) = w(1). For two paths w,v : [0,1]→ X in X with w(1) =
v(0), the concatenation of w and v is the path

w · v :


[0,1] → X ,

t 7→
{

w(2t) if 0≤ t ≤ 1
2 ,

v(2t−1) if 1
2 ≤ t ≤ 1.

If w(0) = w(1) then w is a closed path. Given a continuous function f : X→Y
and a path w in X we define the path f∗(w) := f ◦w : [0,1]→ Y in Y .

X is path-connected if for any two points x and y in X there is a path in X from
x to y. It is 1-connected if it is path-connected, and all paths are null-homotopic.

Lemma A.2.9. If w and v are paths homotopic relative ∂ [0,1] in X and f : X→Y
is continuous then the paths f∗(w) and f∗(v) are homotopic relative ∂ [0,1] in Y .

Definition A.2.10. Let X be a topological space. A continuous function p from a
topological space X̃ onto X is a covering of X if for all x ∈ X there is an open set
Ox ⊂ X with x ∈ Ox such that

(i) the set p−1(Ox) is the disjoint union of finitely many open sets Õ(i)
x in X̃ ,

where i = 1, . . . ,r,

(ii) the restricted projection p|
Õ(i)

x
: Õ(i)

x → Ox is a homeomorphism for all i =
1, . . . ,r.

For a path w in X and a covering p : X̃→ X , the lifting of w with starting point
x̃0 ∈ p−1(w(0)) is the unique path Lp(w, x̃0) : [0,1]→ X̃ with Lp(w, x̃0)(0) = x̃0
and p∗(Lp(w, x̃0)) = w.

The universal covering of X is a covering p : X̃ → X where X̃ is 1-connected.

Example A.2.11. The exponential function

exp :
{
R → S1,
t 7→ exp(2πit),

describes the universal covering of the standard 1-sphere S1 ⊂ C, the set of all
complex numbers with absolute value 1.

Theorem A.2.12 (Lifting Theorem). Let p : X̃ → X be a covering, and let w,v
be paths homotopic relative ∂ [0,1]. Then Lp(w, x̃0) and Lp(v, x̃0) are homotopic
relative ∂ [0,1] for all x̃0 ∈ p−1(w(0)).
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A.3 POLYTOPES

Detailed information about classical polytope theory can be found in Convex Poly-
topes by GRÜNBAUM [32], more recent concepts may be found in Lectures on
Polytopes by ZIEGLER [75].

In the sequel we assume some familiarity with elementary linear algebra. The
equivalences in the following definitions are non-trivial.

Definition A.3.1. A bounded subset P in the affine space Rd is a polytope if it is
the convex hull

conv(V ) :=

{
n

∑
i=1

λivi ∈ Rd :
n

∑
i=1

λi = 1,λi ≥ 0, i = 1, . . . ,n

}

of a finite set of points V := {v1, . . . ,vn} in Rd , or, equivalently, if it is the inter-
section P(A,b) of finitely many closed affine halfspaces H−a1,β1

, . . . ,H−am,βm
, where

A := (a1, . . . ,am) ∈ Rd×m and b = (β1, . . . ,βm)T ∈ Rm, and

H−ai,βi
:=
{

x ∈ Rd : aT
i x≤ βi

}
, i = 1, . . . ,m.

The dimension of P is the dimension of the affine hull aff(V ) of V . If the
dimension of P equals d then P is full-dimensional.

If P is contained in one of the closed affine halfspaces defined by an affine
hyperplane H in Rd then H is called a supporting hyperplane. The intersection
FH := P∩H of P with a supporting hyperplane H is a face of P.

If ψ is a linear functional in (Rd)∗ then the set Pψ of all points in P that have
maximal values under ψ among all points in P is the face of P in direction ψ .

Faces of dimension 0 are vertices. We denote the set of vertices by vert(P).
Faces of dimension 1 are edges, and faces of dimension dim(P)− 1 are facets
of P. The only face of dimension dim(P) is P itself. The faces of dimension
strictly between (−1) and dim(P) are called proper. The union of all proper faces
of P is the boundary of P, denoted by ∂P. The set of all faces of P, partially
ordered by inclusion, is the face lattice of P (for a glossary on partially ordered
sets see Section A.1).

The relative interior relint(P) of P is the interior of P in its affine hull aff(P),
or, equivalently, P\∂P.

Definition A.3.2. A polyhedral cone C is the conical hull

cone(V ) :=

{
n

∑
i=1

λivi ∈ Rd : λi ≥ 0, i = 1, . . . ,n

}
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of a finite set of vectors V = {v1, . . . ,vn} in Rd , or, equivalently, the intersec-
tion P(A,0) of finitely many closed linear halfspaces H−a1

, . . . ,H−am
, where A :=

{a1, . . . ,am} ⊂ Rd , and

H−ai
:=
{

x ∈ Rd : aT
i x≤ 0

}
.

The dimension of C is the dimension of the linear hull lin(V ) of V . If the
dimension of C equals d then C is full-dimensional.

If C is contained in the positive closed linear halfspace H− defined by a linear
hyperplane H in Rd then H is called a supporting hyperplane. The intersection
FH := C∩H of C with a supporting hyperplane H is a face of C.

If ψ is a linear functional in (Rd)∗ then the set Cψ of all points in C that have
maximal values under ψ among all points in C is the face of C in direction ψ .

If there is a face of dimension 0 (in fact this may only be the zero-vector),
then C is pointed. Faces of dimension 1 are rays, faces of dimension dim(C)−1
are facets of C. The only face of dimension d is C itself. The faces of dimension
strictly between (−1) and d are called proper. The union of all proper faces of C
is the boundary of C, denoted by ∂C. The set of all faces of C partially ordered by
inclusion is the face lattice of C.

The relative interior of C is the interior of C in its linear hull lin(C), or, equiv-
allently, C\∂C.

The “vertex versions” of these definitions give immediately that a projection
of a polytope P (a cone C) is again a polytope (cone), while the “halfspace-
version” implies that the intersection of a polytope (cone) with a closed halfspace
is a polytope (cone) as well. From another point of view, one can consider each
polytope (cone) with n vertices (rays) and m facets as a projection of the (n−1)-
dimensional affine (n-dimensional linear) standard simplex inRn, and, at the same
time, as the intersection of the (m−1)-dimensional affine (m-dimensional linear)
standard simplex in Rm with an affine (linear) subspace. In fact, this double de-
scription is used in some algorithms to transform the different representations into
each other (e. g. the program “porta” by CHRISTOF [20]).

In this thesis cones are needed to describe sets of (dual) vectors ψ ∈ (Rd)∗

that determine a face Pψ of a polytope P (see Chapter 2).

Definition A.3.3. A fan in Rd is a family F of non-empty polyhedral cones in
Rd with the properties that

(i) every non-empty face of a cone in F is contained in F itself, and

(ii) the intersection of any two non-empty cones in F is a face of both.
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If Rd =
⋃

F∈F F then the fan is complete. F is pointed if 0 ∈F .
For complete fans F and F ′ with the property that for all C ∈F there is a

C′ ∈F ′ with C ⊆C′, we say that F is a refinement of F ′.
The common refinement of F and F ′ is the fan

F ∧F ′ :=
{

C∩C′ : C ∈F ,C′ ∈F ′ } .

Definition A.3.4. Let P be a polytope in Rd and F be a face of P. Then the set

NP,F :=
{

ψ ∈ (Rd)∗ : F ⊆ Pψ

}
is the closed normal cone of F in P. The polyhedral fan

NP := {NP,F : F is a face of P}

is the normal fan of P.

We continue our glossary by listing some basic constructions on polytopes.

Lemma A.3.5. Let P,P′ ⊂ Rd and Q ⊂ Rd′ be polytopes. Then the following
constructions produce polytopes, where {0}d is the zero-vector in Rd .

P×Q =
{

(p,q) ∈ Rd+d′ : p ∈ P,q ∈ Q
}

, (product)

P+P′ =
{

p+ p′ ∈ Rd : p ∈ P, p′ ∈ P′
}

, (Minkowski sum)

P∗Q = conv
(
(P×{0}d′×{1})∪ ({0}d×Q×{−1})

)
, (join)

and, if {0}d ∈ relint(P) and {0}d′ ∈ relint(Q),

P⊕Q = conv
(
(P×{0}d′)∪ ({0}d×Q)

)
. (direct sum)

The following natural objects arise as special cases of the above constructions:

• A prism over P is a polytope P× I where I is an interval in R,

• the pyramid over P⊂ Rd with apex p ∈ Rd is the polytope P∗{p},

• a bipyramid over P may be constructed as P⊕ I where I is an interval in R
containing 0 in its interior.

In this setting the d-dimensional simplex can be considered as an iterated pyra-
mid starting from a point, the d-dimensional hypercube Cd is just an iterated prism
starting from a point, and the d-dimensional cross-polytope C∆

d is an iterated sym-
metric bipyramid starting from 0 and proceeding with the interval [−1,1].
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How many k-faces can a d-polytope with n vertices have? This was com-
pletely answered in 1970 by MCMULLEN [49]; his proof uses the shellability of
polytopes (see Section A.4). Already in the last century SCHLÄFLI [66] had sort
of postulated that polytopes are shellable, before it was finally proved in 1970 by
BRUGESSER & MANI [18] with a surprisingly simple argument.

Because the polytopes that realize these upper bounds are of special interest
in Chapter 3 of this thesis, we give here a definition of k-neighborly and cyclic
polytopes, and cite the famous Upper Bound Theorem.

Definition A.3.6. A polytope P is k-neighborly if every subset of its vertices with
at most k elements is the vertex set of a face of P.

Definition A.3.7. The standard cyclic d-polytope with n vertices is the convex
hull of the points (i, i2, . . . , id)T ∈ Rd , where i runs from 1 to n. A cyclic polytope
is a polytope with the same face lattice as the standard cyclic polytope.

In odd dimensions there is a slight difference between standard cyclic poly-
topes and non-standard cyclic polytopes, because in contrast to standard cyclic
polytopes there are cyclic polytopes where the convex hulls of certain subsets of
vertices are not cyclic (see BISZTRICZKY & KÁROLYI [13] for a characteriza-
tion).

Lemma A.3.8. The cyclic d-polytopes are bd
2c-neighborly.

Theorem A.3.9 (Upper Bound Theorem). (MCMULLEN [49])
For all k = 1, . . . ,d− 1, any d-polytope P with n vertices has at most as many
k-faces as the cyclic d-polytope with n vertices. If equality holds for one k with
bd

2c ≤ k < d then P is bd
2c-neighborly.

A.4 POLYTOPAL AND SIMPLICIAL COMPLEXES

We refer to ZIEGLER [75, Lecture 5] for details.

Definition A.4.1. A (geometric) polytopal complex C in Rd is a collection of
polytopes in Rd such that

(i) the empty set is in C ,

(ii) for any P ∈ C all faces of P are in C ,

(iii) the intersection of any two polytopes in C is a face of both.
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The dimension of C is the largest dimension of a polytope in C , the union |C | of
all polytopes in C is called the underlying set of C . The facets are the inclusion-
maximal elements of C . If all facets are of the same dimension then C is pure.
Two polytopal complexes C and C ′ are combinatorially isomorphic if there is a
bijection from C to C ′ preserving the incidence relations.

If all polytopes in C are simplices then C is a (geometric) simplicial complex.

As an example of a polytopal complex, consider the set of all faces of a poly-
tope. Another example is a polyhedral subdivision of a point configuration (see
Section 1.1(a)).

Definition A.4.2. Let C be a pure d-dimensional polytopal complex. A shelling
of C is an ordering (F1,F2, . . . ,Fr) of its facets such that

(i) ∂F1 has a shelling, and

(ii) for all i = 1, . . . ,r the set Fi∩ (F1∪ ·· · ∪Fi−1) is a beginning segment of a
shelling of ∂Fi.

Here a shelling of a 0-dimensional complex is just any linear ordering of its ver-
tices. A polytopal complex is shellable if it has a shelling.

The following theorem led to the proof of the Upper Bound Theorem by MC-
MULLEN [49] (see Section A.3, Theorem A.3.9).

Theorem A.4.3. (BRUGESSER & MANI [18])
Every polytope is shellable. In particular, every regular polyhedral subdivision is
shellable.

In the case of simplicial complexes things are easier because of the following
simple lemma.

Lemma A.4.4. If C is a pure d-dimensional simplicial complex, then an ordering
(F1,F2, . . . ,Fr) of its facets is a shelling of C if and only if Fi∩ (F1∪·· ·∪Fi−1) is
of pure dimension (d−1) for all i = 1, . . . ,r.

Since any subset of vertices of a simplex is the vertex set of a face, it is more
convenient to describe a simplicial complex in terms of the associated abstract
simplicial complex in the set of its vertices.

Definition A.4.5. Let L be a finite set. An abstract simplicial complex in L is a
non-empty family K of subsets of L that is closed under taking subsets. That is,
if S ∈ K and S′ ⊆ S then S′ is also in K. The union of all sets in K is the support
supp(K) ⊆L of K. The dimension of K is the maximal cardinality of a set in K
minus 1.
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There is no real difference between the concepts of geometric and abstract
simplicial complexes. This is shown by the following lemma.

Lemma A.4.6. For every d-dimensional abstract simplicial complex K with n ver-
tices, there is a geometric simplicial complex ∆ in R2d−1 that is combinatorially
isomorphic to K.

This is best possible in general, and the proof requires tools. It is, however,
trivial to embed an abstract simplicial complex into Rn. We will need the follow-
ing standard operations on abstract simplicial complexes.

Definition A.4.7. Let K be an abstract simplicial complex in L and S0 ∈ K a
simplex in K. Then the following abstract simplicial complexes are defined.

stK(S0) := {S ∈ K : S∪S0 ∈ K } , (star)
astK(S0) := {S ∈ K : S∩S0 =∅} , (antistar)
lkK(S0) := {S ∈ K : S∪S0 ∈ K,S∩S0 =∅} . (link)

If K′ is another abstract simplicial complex in L with supp(K)∩ supp(K′) = ∅
then the join of K and K′ is defined as

K ∗K′ :=
{

S∪S′ : S ∈ K,S′ ∈ K′
}

. (join)

A.5 ORIENTED MATROIDS

Further information can be found in the book Oriented Matroids by BJÖRNER,
LAS VERGNAS, STURMFELS, WHITE & ZIEGLER [15]. A shorter introduc-
tion to important modern concepts in oriented matroid theory is by RICHTER-
GEBERT [63].

Definition A.5.1. Let E be a finite set. For sign vectors X ∈ {−,0,+}E , we define

0E := (0, . . . ,0),
supp(X) := {e ∈ E : Xe 6= 0} , (support)

X+ := {e ∈ E : Xe = +} , (positive part)

X− := {e ∈ E : Xe =−} , (negative part)
S(X ,Y ) := {e ∈ E : Xe =−Ye 6= 0} , (separation)

(X ◦Y )e :=
{

Xe if Xe 6= 0,
Ye otherwise. (composition)

A set V ∗ of sign vectors in {−,0,+}E is a set of covectors in E if it satisfies
the following conditions.
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(CV0) 0E ∈ V ∗,

(CV1) X ∈ V ∗ implies −X ∈ V ∗,

(CV2) X ,Y ∈ V ∗ implies X ◦Y ∈ V ∗,

(CV3) if X ,Y ∈ V ∗ and e ∈ S(X ,Y ), then there exists Z ∈ V ∗ such that Ze = 0
and Z f = (X ◦Y ) f = (Y ◦X) f for all f /∈ S(X ,Y ).

An oriented matroid is a pair M = (E,V ∗), where E is a finite set, and V ∗ is a
set of covectors in E.

The big face lattice F (M ) of an oriented matroid M is the poset (V ∗,≤),
where “≤” denotes the inclusion of supports. The rank r(M ) of M is the rank of
F (M ). A non-zero covector with inclusion-minimal support is called a cocircuit.

For E ′ ⊂ E, the restriction of X ∈ {−,0,+}E to E ′ is the sign vector XE ′ ∈
{−,0,+}E ′ on E ′ that coincides with X on E ′. We define

V ∗\E ′ :=
{

XE\E ′ : X ∈ V ∗
}

, (deletion)

V ∗/E ′ :=
{

XE\E ′ : X ∈ V ∗,XE ′ = 0E ′
}

. (contraction)

This gives rise to the corresponding oriented matroids

M \E ′ := (E\E ′,V ∗\E ′),
M /E ′ := (E\E ′,V ∗/E ′).

An element e ∈ E is a loop of M if Xe = 0 for all X ∈ V ∗. It is a coloop
if r(M \e) < r(M ). A (one-element) lifting of M is an oriented matroid M̂ on
E]g such that M = M̂ /g and g is not a loop of M̂ . A (single-element) extension
of M is an oriented matroid on E]g such that M = M̂ \g and g is neither a loop
nor a coloop of M̂ .

Let M and N be oriented matroids on E. N is a strong image of M if every
covector of N is also a covector of M . N is a weak image of M if M and N
are of the same rank, and for every covector X of N there is a covector Y of M
with X ≤Y . We write N ≤M if N is a weak image of M . This yields a partial
order “≤” on the set of all oriented matroids, the weak map relation.

Definition A.5.2. Let V = (v1, . . . ,vn) be a vector configuration in Rd . The ori-
ented matroid M (V ) of V is defined by its ground set [n] := {1, . . . ,n} and its set
of covectors

V ∗(V ) :=
{(

sign(ψ(v1)), . . . ,sign(ψ(vn))
)

: ψ ∈ (Rd)∗
}
⊆ {−,0,+}n.

The oriented matroid F d of d linearly independent vectors in Rd is called
the free oriented matroid on d elements. An oriented matroid M is realizable if
M = M (V ) for some vector configuration V .
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The reader may get a picture of covectors by thinking of some linear oriented
hyperplane (corresponding to the ψ in the definition above) in Rd partitioning the
vectors in V into vectors on the hyperplane, vectors on its positive, and vectors on
its negative side, thus defining a sign vector. Alternatively, one can consider the
arrangement of hyperplanes given by the vectors in V , viewed as normal vectors
of hyperplanes Hvi in Rd . This arrangement divides Rd into cells. For every open
cell c, we get a sign-vector σ(c) corresponding to a covector by setting

σ(c)i =


+ if c is on the positive side of Hvi,
− if c is on the negative side of Hvi,
0 if c is on Hvi.

Vertices in this cell decomposition correspond to cocircuits. The latter interpreta-
tion may be generalized to pseudosphere arrangements on the d-sphere with cer-
tain intersection properties. This generalization encompasses all oriented matroids
via the Topological Representation Theorem by FOLKMAN & LAWRENCE [27].
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NOTATION

A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a point configuration
astK(S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the antistar of the simplex S in K
B(m,k) . . . . . the higher Bruhat order on the set of all consistent subsets of

( [m]
k+1

)
C(n,d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the cyclic d-polytope with n vertices
CA . . . . . . . . . . . . . . . . . . . . the set of all complex polynomials with monomials in A
cone(V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the conical hull of V
conv(A ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the convex hull of A
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a polytopal complex
|C | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the underlying set of C
C ∧C ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the common refinement of C and C ′

∆(S ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the order complex of S
∆n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the n-dimensional standard simplex
∆A( f ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the A-discriminant of f
dim(P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the dimension of P
dde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the smallest integer greater than or equal to d
bdc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the largest integer smaller than or equal to d
EA( f ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the principal A-determinant of f
E (M ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the extension space of M
ei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the i-th unit vector (0, . . . , 1︸︷︷︸

i

, . . . ,0)T

flipS̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the increasing flip function
F (n,d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of all facets of C(n,d)
F l(n,d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of all lower facets of C(n,d)
F u(n,d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of all upper facets of C(n,d)
F d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the free oriented matroid on d elements
f |X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the function f restricted to X
GA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the graph of all triangulations of A
G reg

A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the graph of all regular triangulations of A
Γ(P,π) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the chamber complex of (P,π)
Gk(Rd) . . . . . . . . . . . . . . . . the Grassmannian of all k-dimensional subspaces of Rd

Gk(M d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the OM-Grassmannian of M d

L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a linearly ordered label set

107
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` . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a labelling function L →A
lin(V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the linear span of V
lkK(S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the link of the simplex S in K
M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . an oriented matroid
M̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a one-element lifting of M
M (V ) . . . . . . . . . . . . . . . . . . . . . . the oriented matroid of the vector configuration V
MacP(d,k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the MacPhersonian
N(σ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . normal fan over the chamber σ

N( f ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the Newton polytope of f
[n] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set {1, . . . ,n}
]n[ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set {2, . . . ,n−1}
g(n) = O( f (n)) . . . . . . . . . . . there is a constant c such that g(n)≤ c · f (n) for all n
Ω(U) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a single-step inclusion order of U
ΩX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the loop space of X
ω(P,π) . . . . . . . . . . . . . . . . . . . . . . . the poset of all locally coherent strings of (P,π)
ωcoh(P,π) . . . . . . . . . . . . . . . . . . . the poset of all globally coherent strings of (P,π)
P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a polytope
Pψ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the face of P in direction ψ

Pq . . . . . . . . . . . . . . . . . . . . . . . . . the fiber over q ∈ Q for some projection π : P→ Q
π : P→ Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a polytope projection
π∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the dual map of π

[ψ]σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the normal cone in N(σ) in direction ψ

relintP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the relative interior of P
RA( f1, . . . , fm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the A-resultant of f1, . . . , fm
Rd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the d-dimensional euclidean space
(Rd)∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the dual space of Rd

(S)<l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set S linearly ordered with “<l”
S]S′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the disjoint union of S and S′

{S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the complement of S
#S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the cardinality of S(S

k

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of all k-element subsets of S

S1 ≺ S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . an upper facet of S1 is a lower facet of S2
S1 ≺(o∗e) S2 . . . . . . S1 is less than S2 with respect to their strings of even/odd gaps
stK(S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the star of the simplex S in K
S(n,d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of all triangulations of C(n,d)
S1(n,d) . . . . . . . . . . . . . . . . . . . . . . the first higher Stasheff-Tamari order on S(n,d)
S2(n,d) . . . . . . . . . . . . . . . . . . . the second higher Stasheff-Tamari order on S(n,d)
s∆ : C(n,d)→C(n,d +1) . . . . . . . . . . . . . . . . . . . . . . . the characteristic section of ∆

Σ(P,π) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the fiber polytope of (P,π)
Σ(A ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the secondary polytope of A
Tn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the Tamari lattice
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U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . an inversion set
XU ,λU ,ρU . . . . . . . . . the central set, the left, and the right boundary function of U
V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a set of vectors in euclidean space
V ∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of covectors of an oriented matroid
vert(P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of vertices of P
vol(P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the volume of P
vT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the transposed vector/matrix of v
w1 ·w2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the concatenation of the paths w1 and w2
X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a topological respectively a metric space
∂X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the boundary of X
Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a circuit
Z+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . positive part of Z
Z− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . negative part of Z
Z (n,d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of all circuits of C(n,d)
Z +(n,d) . . . . . . . . . the set of all circuits of C(n,d) with maximal element in Z+.
Z −(n,d) . . . . . . . . . . the set of all circuits of C(n,d) with maximal element in Z−

‖z‖ . . . . . . . . . . . . . . . . . . . . . . . . the norm
√

a2 +b2 of a complex number z = ai+b
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[63] JÜRGEN RICHTER-GEBERT, New construction methods for oriented ma-
troids, Ph.D. thesis, Royal Institute of Technology, Department of Mathe-
matics, Stockholm, 1992.



116 Bibliography
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[73] GÜNTER M. ZIEGLER, Shelling polyhedral 3-balls and 4-polytopes, Pre-
print-No. 473/1995, Fachbereich Mathematik, TU-Berlin.

[74] , Higher Bruhat orders and cyclic hyperplane arrangements, Topol-
ogy 32 (1993), 259–279.
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antistar, 103
arrangement of hyperplanes, 105
associahedron, 11
atom, 94
atomic, 94
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basis, 95
basket ball obstruction, 43–46, 48
Baues conjecture, 22
big face lattice, 104
bipyramid, 100
bistellar
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operation, 1, 5, 10, 13–15, 55, 56

Bohne-Dress theorem, 16, 17
boundary

of a cone, 99
of a polytope, 98
of an inversion set, 84

bounded poset, 93
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string, 21
string complex, 21
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of a simplex, 87

of an inversion set, 88
chain in a poset, 93
chamber, 2, 8, 31, 32–36, 42
chamber complex, 8, 31, 32–36, 42, 46,
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function, 24
section, 65, 75, 78

circuit, 61
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normal cone, 100
path, 97

coatom, 94
coatomic, 94
cocircuit, 104
coherent subdivision, 9, 10, 12, 23, 29
coloop, 104
combinatorial

antistar, 60
cyclic polytope, 64
differential manifold, 18
facet, 61
join, 60
link, 60
model, 61

for a loop space, 19
for the Grassmannian, 19

polytope, 61
simplex, 60
simplicial complex, 60
star, 60
subcomplex, 60
triangulation, 61
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complexes, 101
subdivisions, 3
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of subdivisions, 3

complete fan, 99
composition, 103
compression in a triangulation, 71
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in a set, 59
in a triangulation, 67
in an inversion set, 85
in an oriented matroid, 104
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covering of a topological space, 97
covering relation, 93
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cross-polytope, 100
cyclic polytope, 2, 6, 7, 12, 13, 16, 55,

56, 63–67, 100, 101

degenerate, 28
Delaunay triangulation, 13
deletion of an element

in a set, 59
in a triangulation, 67
in an inversion set, 85
in an oriented matroid, 104

diameter, 42, 95
dimension

of a cone, 98
of a polytope, 98
of an abstract simplicial complex,

102
direct map, 89
direct sum, 100

double description, 99
double stippling, 21

edge, 98
edge-flipping

diameter, 13
distance, 13
operation, 13

equivalent
admissible orderings, 84
locally coherent functions, 36

even gap, 63, 76
expansion

in a triangulation, 69
of an inversion set, 85

extension, 104
of a triangulation, 67
of an inversion set, 85
poset, 17
space, 17

extension space conjecture, 17

face
of a combinatorial simplex, 60
of a cone, 99

in direction ψ , 99
of a polytope, 98

in direction ψ , 31, 98
face lattice

of a cone, 99
of a polytope, 31, 98

facet
of a combinatorial simplex, 60
of a complex, 101
of a cone, 99
of a polytope, 61, 98

fan, 99
fiber, 2, 7, 31, 32–36
fiber polytope, 9, 29
flip map, 88
free



Index 119

lower facet, 82
oriented matroid, 104
upper facet, 82

full-dimensional
cone, 98
polytope, 98

functorial
circuit properties, 67
circuit-facet relations, 67
facet properties, 66
flip properties, 79
order properties, 79
relations, 91

Gale’s evenness criterion, 63
generalized Baues conjecture, 2, 7, 11,

12, 29, 42–46
generalized bistellar operation, 10
generator, 95
geometric

interpretation, 61, 74, 78
simplex, 60
simplicial complex, 60
subcomplex, 60

globally coherent string, 28, 39
graded poset, 94
graph of all triangulations, 5
Grassmannian, 19
greedily triangulable, 74

Hasse diagram, 94
higher Bruhat order, 16, 55, 58, 84, 87–

91
higher Stasheff-Tamari order

first, 16, 55, 56, 75
second, 57, 75

homeomorphism, 95
homotopic, 96

relative ∂ [0,1], 39, 96
homotopy

equivalence, 96

equivalent, 96
of functions, 96
relative a subset, 96

hypercube, 100

increasing
bistellar flip set, 74
bistellar operation, 16, 57, 74
flip function, 75
flip set, 74

incremental triangulation, 14
index, 88
induced subdivision, 9, 11, 29
intersection property, 61
interval in a poset, 93
inversion set, 84
isomorphism of posets, 94
iterated fiber polytope, 12
iterated loop space, 23

join
in a poset, 94
of polytopes, 100
of simplicial complexes, 103

k-neighborly, 100
k-packet, 84

label set, 60
labelling function, 60
lattice, 94
left boundary

function, 89
of a simplex, 87

length of a chain, 93
lexicographic order, 84
lifting, 104

of a path, 39, 97
lifts weakly lower, 75
link, 50, 103
locally coherent

function, 36, 38, 40, 42–46
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function values, 37, 50
string, 10, 28, 35, 38, 39, 42–46,

49–51
loop, 104
lower

face, 4
facet, 57, 64, 77, 81–83

lower bound in a poset, 94

MacPhersonian, 19
maximal element in a poset, 93
meet in a poset, 94
metric space, 95
minimal

combinatorial dependence, 61
element in a poset, 93

Minkowski sum, 100
model theorem for loop spaces, 20
monotone path polytope, 11

negative part
of a circuit, 61
of a sign vector, 103

neighborhood, 95
neighborly, 100
Newton polytope, 24
non-degenerate, 28
normal cone, 32, 100

over a chamber, 32, 33–36, 42–46
normal fan, 100

over a chamber, 32, 33–36, 42–46
normally equivalent, 32
null-homotopic, 96

odd gap, 63, 76
OM-Grassmannian, 19
one-element lifting, 104
open

ball, 95
set, 94

order complex, 11, 17, 19, 21, 29, 94
order-preserving map, 94

order-reversing map, 94
oriented matroid, 104

of a vector configuration, 104
of a zonotope, 17

parametrized cyclic polytope, 63
partial order, 93
partial triangulation, 14, 74
partially ordered set, 93
path, 96
path space, 21
path-connected, 97
permutahedron, 22
permuto-associahedron, 11
piecewise linear section, 12
planar bistellar operation, 5
pointed

cone, 99
fan, 99

polyhedral
cone, 98
subdivision, 101

of a point configuration, 3, 10
of a polytope, 3

polytopal complex, 101
polytope, 61, 98
polytope projection, 2, 7, 30–36, 44–46,

48, 56, 64
poset, 93
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of a circuit, 61
of a sign vector, 103

principal A-determinant, 23
prism, 100
product
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of polytopes, 100

proper
face
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pure, 101
pyramid, 100

rank
in a poset, 94
of a poset, 94
of an oriented matroid, 104

ranked poset, 94
ray, 99
real Grassmann manifold, 19
realizable oriented matroid, 19, 104
refinement

of a fan, 99
of a subdivision, 3

reflex vertex, 14
regular

subdivision, 3, 10
triangulation, 3, 10, 56
triangulation for weights, 14

regular triangualtion, 6
relative interior

of a cone, 99
of a polytope, 98

restricted polyhedral subdivision, 10, 56
restriction, 104
right boundary

function, 89
of a simplex, 87

rotations in binary trees, 15

secondary polytope, 9, 11, 56
example, 24
via characteristic functions, 24
via fiber polytope, 9

separation, 103
shellability, 100
shellable, 102
shelling, 101
sign vector, 103

simple polygon, 14
simplex, 100
simplicial

complex, 101
polytope, 61

single-element extension, 104
spherical desuspension, 21
standard

cyclic polytope, 101
star, 103
strong image, 104
strongly

euclidean oriented matroid, 17
non-degenerate, 28

subbasis, 95
support

of a bistellar operation, 5
of a circuit, 61
of a sign vector, 103
of a simplicial complex, 102

supporting hyperplane
of a cone, 99
of a polytope, 98

Tamari lattice, 15
tight

induced subdivision, 9
locally coherent string, 28, 43, 46,

50, 51
topological space, 94
topology, 94

induced by a metric, 95
transitive closure, 93
triangulation, 1

of a cyclic polytope, 2, 6, 12, 16,
55, 67–74, 79–83, 87, 88

of a point configuration, 4, 10, 13–
16, 18, 24, 28, 55, 61

of a polytope, 4
of a topological space, 18, 27
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trivial face of a polytope, 31
twist function, 39
twisted capped prism, 77

underlying set of a complex, 101
union property, 61
universal covering, 39, 97
upper bound in a poset, 94
upper bound theorem, 100, 101, 102
upper facet, 57, 64, 81–83

vertex, 98

weak Bruhat order, 58, 94
weak image, 104
weak map relation, 104
weakly

neighborly polytope, 7
non-degenerate, 28

zonotopal tiling, 17
zonotope, 17
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JÖRG RAMBAU

geboren am 9. Juni 1966 in Gevelsberg

1972–1976: Grundschule

1976–1985: Gymnasium in Wetter (Ruhr)

Juni 1985: Abitur

1985–1987: Zivildienst bei der Arbeiterwohlfahrt in Gevelsberg

1987–1993: Mathematikstudium an der Ruhruniversität Bochum

März 1993: Diplom mit Spezialgebiet “Algebraische Topologie,” Betreuer: Pro-
fessor Ralph Stöcker, Bochum
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