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Introduction

One thing a child has to learn is to divide and to group objects based on their color,
form or size, i.e. based on their attributes. Such an ability is very important for the
improvement of abstract and logical human thinking. But it is also a very helpful
ability in economics, industry, science or politics, where the identification and de-
scription of homogeneous groups — so calbhasters— of customers, products,
events or situations helps to structure information about these objects and there-
fore generates knowledge, which allows to make special, group depending offers
or decisions. Unfortunately, the ad hoc identification and description of clusters
by human beings usually gets impossible with increasing numbers of objects and
attributes.

Clustering methods have been studied first in statistimgt nowadays, where
the improvement of technology allows to store the data of millions of objects
with hundreds of attributes in single databases, new techniquetuiier analy-
sisare also suggested by researchers frormtaehine learning/neural networks
ared and thedatabasecommunity. Furthermore, a new direction of research
calledData Miningor — according to the more general definition of Fayyad and
Piatetsky-Shapiro [21] —Knowledge Discovery in Databases (KDDas been
established, where algorithms are developed that are able to scan huge databases
and to extracknowledge patternwithin the data. Since clusters are important
examples of such knowledge patterns, the development of fast and efficient clus-
tering techniques is part of this fast growing research area.

The most popular clustering methodismeans and most of the suggested
algorithms in the literature are variants of this method. The basic ideart#ans
is to determinet cluster representatives and to assign each object to the cluster
with its representative closest to the object so that the sum of the squared distances
between the objects and their corresponding representatives is minimized.

1See, e.g., the introductory textbooks by Duran and Odell [18] or Fukunaga [27].

2For an overview see the complementary textbooks by Bishop [7] and Ripley [53].

3Important research is not only done by database groups at university [64, 19, 32], but also
from industrial groups like IBMS Quest group [1].



An investigation of algorithms based on themeans method or other fre-
guently used clustering methods leads to the following observations:

e The computed clusters ageometricallybased, i.e. the objects within the
same cluster have the property that their distance is small if they are in-
terpreted as points in a suitable metric space. For non-geometric cluster
problems, the computed clusters are usually not satisfactory. An important
example arelynamiccluster problems, where one is interested in the iden-
tification of metastableclusters. Here, the objects within the same cluster
should exhibit a high probability for transitions between each other with
regard to an underlyingynamic system

¢ If the numbers of objects and attributes is high, heuristics are used to speed
up the cluster identification process. Many of these heuristics are designed
for special applications and therefore not generally usable. Further, a math-
ematical justification is very often missing.

e A correct number of clusterishas to be known a priori.

In the case of reversible dynamic cluster problems, the thedPgwbn Clus-
ter analysis that has been recently developed lBUBLHARD ET AL. offers
a new access. The key concept of Perron Cluster analysis is the identification
of metastable clusters by computiagmost invariant aggregatesf a suitable
stochastic matrixS. Via an investigation of the eigenvalues and the eigenvec-
tors of the matrixS, not only a correct number of clustekscan be determined,
but also the metastable clusters themselves. Without a problem reduction, the
size of the matrixS depends on the number of objects that have to be clustered.
Therefore Perron Cluster analysis is directly usable only for very small reversible
dynamic cluster problerfis

Self-organized neural networkaspecially KKHONEN' s Self-Organizing Maps
can be used to replace groups of similar objects by single representatives. The
representatives are related to each other in a way that tries to preserve the original
cluster structure, i.e. a fitting clustering of the representatives should correspond
to a fitting clustering of the original objects. In contrast to themeans method
and its variants, the number of representatives is usually much larger than any cor-
rect number of clusters. Therefore, self-organized neural networks can be used as
a kind of pre-clustering process to reduce the complexity of a cluster problem.

The aim of this thesis is a fruitful combination of Perron Cluster analysis and
self-organized neural networks within adaptive multilevel clustering approach

4As a first remedy, the use of essential degrees of freedom in the spirit of [4] made it possible
to identify metastable clusters of a small molecule via Perron Cluster analysis [59].



that allows a fast and robust identification and an efficient description of clus-
ters inhigh-dimensionatlata. In a general variant that needs a correct number
of clustersk as an input, this new approach is relevant for a great number of
cluster problems since it uses a cluster model that covers geometrically, but also
dynamically based clusters. Its essential part is a method c&jedsentative
clusteringthat guarantees the applicability to large cluster problems: Based on
anadaptive decompositiasf the object space via self-organized neural networks,
the original problem is reduced to a smaller cluster problem. The general clus-
tering approach can be extended by Perron Cluster analysis so that it can be used
for large reversible dynamic cluster problems, even if a correct number of clusters
k is unknown a priori. The basic application of the extended clustering approach
is theconformational analysisf biomolecules, with great impact in the field of
Drug Design Here, for the first time the analysis of practically relevant and large
molecules like amHIV protease inhibitobecomes possible.

This thesis is divided into five chapters. It starts with a general mathematical
definition of cluster analysis in high-dimensional data. The scalability problem of
the identification step will be addressed and the idea of representative clustering
will be presented. In the section following, a rigorous definition of efficient cluster
description will be given. The first chapter closes with a survey of the difficulties
that arise, if a correct number of clusters is not known a priori.

The second chapter establishes a concept of decomposition within cluster anal-
ysis. Based on a general definition we will present a special variant called approx-
imate box decomposition. It will be shown that the concept of decomposition
gives way to a significant cluster problem reduction via representative clustering
without destroying the original cluster structure. In addition, the usefulness of
approximate box decompositions for the computation of efficient cluster descrip-
tions will be demonstrated.

In the following chapter, WHONEN' s Self-Organizing Maps are used for the
computation of adaptive decompositions. Further, a powerful extension called
Self-Organizing Box Mapaill be suggested that computes approximate box de-
compositions.

In the fourth chapter, we are going to present a multilevel clustering approach
using representative clustering based on successively refined adaptive decomposi-
tions. After an introduction to the basic theory, we combine Perron Cluster anal-
ysis with our clustering approach so that it includes an automatic computation of
a correct number of cluster for cluster problems with a stochastic homogeneity
function.

The final chapter gives a comprehensive presentation of applications. Espe-
cially the conformational analysis of biomolecules will be described in detail and
illustrated with numerical results.
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Chapter 1

Cluster Analysis in
High-Dimensional Data

Clustering can be loosely defined as partitioning a set of objects into a given num-
ber £ of disjoint subsets, so called clusters, so that the homogeneity between ob-
jects within each cluster is strong. Instead of homogeneity, the terms relationship
or similarity are used synonymously in the literature.

Obviously, the definition given above does only make sense together with a
measure for the homogeneity between objects. In this case any possible set of
k clusters has a certain quality, depending on the measured homogeneity between
all objects within each cluster.

One easily checks that the number of ways to partition a setafjects in
k disjoint non-void subsets is given by [18]:

K(n, k) := %ZO <f) (—=1)'(k — i)™ (1.1)

The functionC(n, k) grows exponentially fast in. Already in a very small set
of objects the number of possible partitioningscidisjoint subsets is staggering,
e.g., forn = 100 objects, there aré&(100,2) ~ 10*° ways to partition them in
two subsets. It can be shown that the problem to compute a getlokters of
high quality is NP-complete [33]. Therefore fast solutions usually can only be
achieved by using heuristic algorithms.

In addition to the identification of clusters, one is also interested in their de-
scription, i.e. in rules that allow to determine the cluster membership of each
object, based on its properties. Especially in the case of high-dimensional data,
where the objects have a high number of properties, such rules have to be efficient
in the sense that their number is as small as possible and that they depend on a
minimal number of properties only.
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Given the above terminology, we definkister analysis in high-dimensional
dataas the process of fast identification and efficient description of clusters. The
clusters have to be of high quality with regard to a suitably chosen homogeneity
measure.

1.1 Modeling

In the following we suggest a general model for cluster problems, supposing that
the measure for the relationship between objects is given explicitly. It will be
shown that the model — in contrast to other models suggested in the literature
that are designed for geometric cluster problems — is usable for different fields of
applications, because it is not only suitable for a geometrically based modeling,
but also for dynamic cluster problems.

Let A := {A,,..., A,} be aset of not necessarily ordered domains and define

Q= QI A4 = {(a,...,a)" |a; € A;,5 = 1,...,q}. We will refer to
Ay, ..., A, as theattributesof (2 and tog as thedimensionof 2. Each finite
subsetV = {vy,...,v,} C Q, n > 2, is called adata setin 2 and for each

data object; := (v;1,...,vi4)" € V, the valuey; ; € A; denotes thgroperty
of v; for attribute A;. We will further call each functiory : Q@ — R with
f(v) =0 < v ¢ V afrequency functiorior the data set V and we define
f(M) =", f(v) forany subseds C .

Suppose now that there exists a functton(2 x 2 — [0, 1] so thath(v, w) =
h(w,v) for anyv,w € V. Thenh will be called ahomogeneity functiofor the
data sel/. We seth, 4, (V) := max, ey h(v,w) and call two objects;, v, € V
maximally homogeneous, if(vy, v2) = Ay (V).

Based on given functiong and i the problem of clustering” in a given
numberk of subsets can be stated in the following general way:

Definition 1.1.1 Letk € {1,...,n} andC := {C},..., Cx} any set ok non-void
subsets’, C V.

(i) f U, ¢, =VandC,NnC, =0 for 1 < s <t <k, then we calC a
k-cluster set of the data sét.

(17) LetC anyk-cluster set of/. If C maximizes the weighted intra-cluster homo-
geneity

| =

:
I'rn(C) = Z ! Z Z h(v,w)f(v)f(w) — max, (1.2)

f(CS) veCs weCl

then we callC an optimalk-cluster set ofV, f, h).
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1.1.1 Geometric cluster problems

Many of the traditional clustering methods, including the famouseansnethod
[46], have in common that they are geometrically driven, i.e. they suppose that
can be modeled as a metric space, €g., R?, and that the relationship between
objects is given by aistance functionl : 2 — Ry, satisfying the following
requirements for alb, w, z € Q:

(D1) d(v,w) >0

(D2) d(v,v)=0

(D3) d(v,w) = d(w,v)

(D4) d(v,w) <d(v,z)+d(z,w).

In the case tha C RY, theEuclidean distancéunction is often used:

deetia(v,0) = |lv — w| == /(v — w)T(v —w) ,v,w € R

The basic idea of almost all geometrically driven cluster methods is the identifi-
cation of ak-cluster seC := {C,...,Cy} so thatZ’j:1 cost(C5) is minimized,
wherecost : () — Ry is a cost function based on the distance function. The
methods differ in the choice of the cost and the distance function and the several
possible optimization strategies lead to different cluster algorithms. Many popular
algorithms try to minimize theum-of-squaresost function [20]:

cost(Cy) 1= ! Z Z d(v,w)*f(v)f(w) — min .

The corresponding cluster problem can be formulated within our general defini-
tion:

Lemma 1.1.2 Let ) be a metric space with a distance functién Q@ — R{.
Further letV = {vy,...,v,} C Q, n > 2, be any finite data set if2 and
f: V. — R{ be any frequency function fdf. Finally suppose tha€ is any
k-cluster set ol/.

(@) Thenh, : 2 x Q — |0, 1], with

d(v, w)?

h =1-
a(v, w) (maxg gey d(v,w))?

v,w € .

is a homogeneity function far.
(b) C is an optimalk-cluster set of V, f, h), if and only if

Z : Z Z d(“aw)Qf(U)f(w) — min .
f(Cs)

s=1 veCs wels
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Proof: (a) i, is well defined, becaude, (v, w) € [0,1] for all v, w € Q. Sinced
is a distance function, i.el(v, w) = d(w,v) for anyv, w € Q, one further checks
thathy(v, w) = hg(w,v) and thereforéy,; is a homogeneity function.

(b) Sincemaxs zey d(v, w), f(V') are constant and positive values, we have:

mlnzf ZZde (w)

) & iz,
= mz PP d)2 =l 0w

— max (V) i — 2(;;; ) )
- Z( 101y 2 2 it ))2f<v>f<w>>
= Z ( T Y G L ))2f(v)f(w)>
= Z G2 2 (1 E:vlfzf ) S
— %Z € 2 2 el w)f(@)f (w)

vels wels

O

If d = d..qiq, then the sum-of-squares cost function is equivalent to the cost
function used by algorithms based on theneans method:

Lemma 1.1.3LetC C V C R?any non-void subset & and f : Q@ — R any
frequency function for the data s&t Then we have

> v =mel® fv ZZHU—UJH f) f(w),
veC UGCU}EC
where
Zf
UGC

denotes the centroid of .
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Proof:
S o — el £(v)
veC
= Zvva(v) -2 (Z f(U)UT> me + Z fo)meime
velC velC vel
= S uTuf(v) — F(C)mEme
veC
- 5 (Z F(CYTuf(v) f<0>2m£mc>
veC
= —C)<ZZU vf(v w)—ZZUwa(U)f(w)>
veC wel veC wel
B yie ( > > vl w>—2ZZvaf<v>f<w>>
veC wel veC wel
_ §f_zz VT f () f(w) — 207w f (v) f(w) + wTwf (w) f(v))
veC wel
= 570 2 2 I vl F)
UGC wel

O

A combination of Lemma 1.1.2 and Lemma 1.1.3 guarantees that geometric
cluster problems, where tihiemeans method is suitable, can always be formulated
within the suggested general model. Figure 1.1 shows a simple example of such
a cluster problem in?? with £ = 3. In the following sections, we will use this
example for demonstration purposes.

AZA .
° °
41 ®e® 0q0 %0 o Cluster C3
o % °*°%°° o0 o .
® o ® . :oo. .
o @ ClusterC1 ° o o
° o o .
° e e ®%°,e°
o * e, o0 %o o
2l ° L
o0 ee0 oo
[ I ] oo o ®
0o 0 0 0 °
o g0 0%,
ClusterC2 ®® oo
f f f f f f —» Al
2 4 6 8

Figure 1.1:Example: Clustering of data set inR? with k = 3.
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1.1.2 Dynamic cluster problems

Recently new cluster methods have been suggested using homogeneity measures
not derived from a distance function or a more general data model [1, 5, 36]. The
reason for this conceptual change is the emergence of new fields of application for
cluster analysis, like e.g., the clustering of web-pages or of genomic data, where
a geometrically driven modeling is often not suitable.

One of these new fields of application is the the analysis of dynamic systems.
Here, an interesting problem is the identification of metastable sets of states, i.e.
sets of states with a high probability that the dynamic system moves between
states within the same set and a low probability of transitions between states of
different sets. Although the state space of a dynamic system might be modeled as
a geometric space, it is not advisable to equate metastable sets with geometrically
based clusters inside this space: The dynamics between different states may not
only depend on their geometric similarity. In the following we transform the iden-
tification of metastable sets of states of a dynamic system in a dynamic cluster
problem, which will be described within our general model.

Let ) be the set of all possible states of a dynamic system and choose any
representative trajectoty (1),..., X (7) € Q. SetV = {X(t)|t =1,...,T}
and define a frequency functigh:= Q@ — R{ via f(v) := [{t| X(t) = v, }|,
where|M | denotes the number of elements in a finite &et Further define for
anyv,w € V:

{t] X(t) = v, X(t + 1) = w}]
f(v)

so thatS(v, w) is the conditional probability of transitions from statéo statew
in a single step. We can directly exteSdon subsets oV, if we define for any
non-void subset$;, V5, C V:

S(Vi,Va) - sz (1.4)

vEV] wEVS

S(v,w) := (1.3)

One easily checks thd?(vl, V,) is the conditional probability of the dynamic
system being in a state of S&tto move to a state of séf in a single step.

The identification oft metastable sets of states of a dynamic system corre-
sponds to the computation bfdisjoint subset§’, C V' so thatﬁ(Os, Cy) =~ 1 for
s = 1,..., k. Since this is equivalent to a maximization¥}'_, S(C,, C;), the
identification ofk metastable sets is equivalent to the identification of an optimal
k-cluster set fofV, f, hs) wherehg is a suitable homogeneity function:
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Lemma 1.1.4 Definehgs : Q@ x Q@ — [0, 1] via

l S(’U,u}) S(’LU,U) .
hS('U,’U}) = { 2 < f(w) + O] > lf’l},w cV
0 else

Thenhg is a homogeneity function of.

Proof: Since0 < |{t|X(t) = v, X(t+ 1) = w}| < f(v) forall v,w € V, we
haveS(v,w) € [0,1]. Thereforehg is well defined and one easily checks that
hs(v,w) = hg(w,v) for anyv,w € V. O

Lemma 1.1.5 For any k-cluster seC of V' the weighted intra-cluster homogene-
ity with respect tof andhg is given by

1 k
Frns(C Ez (Cs, Cy).
Proof:
k
Cn@ = 13 gy o 3 st w01 @)
s=1 UEngGCq
k
- %Z 52 S 5 (S ,w) + f(w)S(w,v))
s=1 vGC weCs
k
- %Z (Zf Zs<v,w>+2f<w>25<w,v>>
s=1 velCy weCy weCy veCs
1< 1

1.2 Problem reduction via representative clustering

A point very critical within the application of algorithms for the identification of
clusters in high-dimensional data is the computational complexity, i.e. the corre-
spondence between the time one needs to compute a solution and the number of
data objects, respectively the number of attributes

Suppose we have an algorithm that computes an optirthlister setC of a
data set/ of sizen and dimensiom with respect to a frequency functighand
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a homogeneity functioh. One easily checks that we ne€dn?) valuesh(v, w)

to compute the weighted intra-cluster homogengEity(C). This usually makes a
direct optimization of s ;,(C) impossible, if the number is large. In the literature
several heuristic optimization approaches are suggested, but unfortunately, most
algorithms are designed for special applications and are therefore not generally
usable. Moreover a mathematical justification is very often missing. In the fol-
lowing, we will describe another way to deal with large data sets that is motivated
by principles of vector quantization and signal compression (see [35]) and that we
will call representative clustering

The reduction of cluster problems to a handier size via representative cluster-
ing rests upon the following assumption:

Optimal cluster assumption

LetC be any optimak-cluster set of a data set C (2 with respect to a frequency
function f and a homogeneity functioln ThenC assigns nearly maximally ho-
mogeneous objects in a predominant portion to the same cluster, Zec it is
any cluster and, w € V' are any data objects with(v, w) < hyu.. (V) — € for
smalle > 0, then usually we have: € C — w € C.

Since each optimalt-cluster set of(V, f, h) maximizes the weighted intra-
cluster homogeneity, this assumption should be true for most cluster problems.

Suppose now that the homogeneity functtomeets the following two condi-
tions:

e Local maximum condition: Objectsv,, v, € V are nearly maximally ho-
mogeneous, if they have nearly the same properties.

e Global correspondence conditionThe homogeneity functioh is nearly
identical for any two nearly maximally homogeneous obje¢ts; € V':

h(v1,v9) & hpar (V) = h(vy,v) = h(vy,v) forallv € V.

In the case of geometric cluster problems, the possible homogeneity functions
should meet the first condition and usually also the second one. For dynamic
cluster problems, itis necessary that the state s@aséuild by a set of attributes.

In this case moves between states with identical values for most attributes are
usually very frequent, i.e. the local maximum condition holds, and typically, such
states have very common dynamic properties, i.e. also the global correspondence
condition holds.
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If we successively replace objeats, v,,, . .. that have nearly the same prop-
erties by a representative object e.g.,w; := v;,, and define forw; a compressed
frequency valuef(w;) := f(v;,) + f(vi,) + ..., we come out with a data set
W = {wy,w,, ...} and a compressed frequency functjoof V.

LetC := {C}, ..., Cy} be any optimak-cluster set of W, f,h), then we can
extendC onV, if we deflneC = {Cy,...,C} with C, : = Uw,ec. 1Virs Vigs - - - }-

ObviouslyC is ak-cluster set of/. The Iocal maximum condition assures that
andv € {v;,, v, ...} are nearly maximally homogeneous. Therefore the global
correspondence condition guarantees:

th(C)
- Y T X M)
S w; €Cs wj€Cs

— kz Z S ohwiw) Y f) DS flw)

S w; €Cs wjeCls v1€{viy Wiy, } v2€{Vj; Vjg,-- }

= - Z Z Z Z Z h(wi, wy) f(v1) f(v2)

S w;i €C%s v1€{Viy Wiy, } WHECs va€{vj; ,vjy,.- }

kZ DIDIED SRR

S U1 eC, wi€Cs U2E{U]1 Vjg s -}

/{;Z Z ZhUhUQ Ul f(UQ)

S U1€C UQECQ

Q

Q

= FM(C).

Suppose now thatis not nearly optimal fofV, f, h). Then the optimal cluster
assumption guarantees that there exist objects, € V that are assigned to
different clusters irt, althoughh(vq, 1) is large. But this is a contradiction to the
fact that nearly homogeneous objects are replaced by the same representative and
therefore are assigned to the same clustét in

Let V(j) := {vsj|v = (vsn,...,v.4)" € V} be the projection of” on the
attributeA;. SetVy .= QI_, V(j) = {(a1,...,a))" [a; €V(j), i =1,...,q}.
Obviously we have” C V, € Q andn = |V| < |Vu| < n% When analyzing
high-dimensional data one often observes thats rather sparse with respect to
V, i.e. thesparsity factor|'V“ is very small. This guarantees thélt'| is smaller
thann, i.e. we have reduced our cluster problem.
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Figure 1.2 shows a reduction of our geometric cluster problef¥iia rep-
resentative clustering in principle.

A2, Representatives A2,
o b l \ o
° o o
4t %o ® 950 20 o N 4 o °
e %°® o 0.0 40 ) ° )
° o o 000% o ° o
° N )
LI o, Ce o ®0 Reduction o °
o o0 % * oo o ° o o
2 ° o® 0, ® 2 [
oe oo 0 0% o °
e o e 0o o ©° o o
0Le 0 4% @ o o o ©
® o0 %5°%, o o
e %% ¢ o
t —» Al t t t t t t t —» Al
2 4 6 8 2 4 6 8

Figure 1.2:Example: Reduction of geometric cluster problem ink?.

A problem reduction via representative clustering is only efficienti¥if is
significantly smaller than the number Obviously the number of representatives
depends strongly on the criterion that is used for the identification of objects with
nearly the same properties. As a brute force approach one could think about using
a very weak criterion that allows to replace much objects by the same representa-
tive. In this case the local maximum condition only holds, if we call two objects
v1, v9 Nearly maximal homogeneous, evemifv;, v) is not so high. But then
we cannot be sure that their homogeneity in relation to all other objects is nearly
identical, i.e. that(vy,v) ~ h(vy,v) holds for allv € V. If the global correspon-
dence condition is violated too often, this usually has negative consequences for
the quality ofC.

In chapter 2 we will describe a concept caletompositiothat can be used
as a basis for the development of methods for an efficient problem reduction via
representative clustering. We will replace the global correspondence condition
for h by the construction of a compressed homogeneity fundii@amd define a
more convenient condition that guarantees the optimality, of C is an optimal
k-cluster set of W, f,h). Moreover in chapter 4 a multilevel approach is pre-
sented that uses decomposition based representative clustering for a fast cluster
identification.

1.3 Efficient cluster description

Besides the identification of clusters in high-dimensional data, also their efficient
description is very important for most practical applications (see chapter 5). We
want to know, which objects are homogeneous and also why they are homoge-
neous.



1.3 Efficient cluster description

Obviously such a description can be achieved via rules that allow to determine
the cluster membership of each object, based on its properties, i.e. rules like:

If v = (vi1,...,0.q)" €V hasthe properties, ; = a; and. .. andv, , = a,,
thenv belongs to cluste’;.

A description based on such rules has to be consistent, i.e. it contains no rules
assigning the same objecto different clusters.

Given anyk-cluster set€ := {C1, ..., C}} of adata seV in (2, we can always
generate rules for a cluster description in the following trivial way:

Define a functiorr, : V. — {1,...,k} via

ey (v) = ZSXCS(U) forallv e V,

s=1

wherey, denotes the characteristic function of clustér Then for any object

v := (vi1,...,v4)" €V we can state a rule:

If v = (ve1,...,v.4)" has the properties.; = v;; and... andv, , = v,
thenv belongs to cluste€. (.,).

Obviously then rulesry, ..., r, describe the clusters,, .. ., C} consistently,

but such a description is surely not efficient. We will demonstrate this by our
example of a geometric cluster problemRA (see Fig. 1.1):

ClusterC; contains33 data objects, i.e. we neel rules to describe this
cluster if we use our trivial approach. If we allow rules that are slightly more
complex, one easily checks that the following two rules are sufficient to describe
clusterC;:

If v = (v.1,v.2)" has the properties, ; = a; andv, 5 = ap With a; € [0, 2],
ay € [1,5], thenv belongs to cluste€’;.

If v = (v.1,v.2)" has the properties, ; = a; andv, 5 = ap With a; € [2,4],
ay € [3,5], thenv belongs to cluste€’;.

This motivates the following definition of cluster membership rules:

Definition 1.3.1 For any setB := {B,,...,B,} with B; C A;forj =1,...,q,
we callrg : © — {0, 1} with

, V= (Vaty ., Ueg)] €Q,

1 if(Vje{l,...,q}) v.; € B,
TB(U) :{0 els(e] { Q}) ) J

a membership rule for cluster,, if

rg(v) =1 = veCy forallveV.
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Usually we need a set := {r.1,...,7sm,} Of ms € N membership rules
for each cluste€’s, to guarantee that each object C, is assigned to clust&r,
by at least one rule, i.e. that we have

velCs, = (dreryr(v)=1 forallveV.

We call such a set, acomplete membership rule det clusterCs.
Based on complete membership rule sets for each cldstewe can easily
generate a description 6f

Lemma 1.3.2 Suppose there exists for each Clustérof C a complete member-
ship rule sets := {rs1,...,7rsm, }. Let’Hy denote the Heaviside function with

0 ift<0
Ho(®) ':{1 if £ > 0.

Then the functiom, : V. — {1, ..., k} with

s=1

e (v) = ZsHo(—l + eryj(v)) forallv e V.
=1

is a consistent description fat, i.e. we have

¢(v)=s <= vel; forallvelV.

Proof. “<=":Choose any € {1,...,k} and anyv € C. Sincer, is a complete
membership rule set, there existsan {1, . .., m,} so that, ,(v) = 1. Therefore
we haveH,(—1 + Z;”;l rsj(v)) = 1. Suppose now that there exists another
pe{l,....k}withp # sandH (-1 + > 7" r,;(v)) = 1. If this is the case,
there must existac {1,...,m,} so that, (v;) = 1. Sincer, > is a membership
rule for ClusterC,, this impliesv € C,. But this is a contradiction to € C;.
Therefore we have.(v) = s.

“—":Choose any € {1,...,k} and any € V' \ C;. SinceC is ak-cluster set

of V there exists @ € {1,...,k} withp # s andv € C,. As already proofed
above this guarantees(v) = p and therefore,. (v) # s. O

Letv = (vs1,...,0.q) € V be any data objectand let: V. — {1,... k}
be a consistent description 6fwith corresponding complete membership rule
setsry, ..., .. Then the determination of the cluster membership of rather
simple: Find a membership rulg € [J*_, r, with 75(v) = 1, i.e, withv, ; € B,
forj = 1,...,q. Sincec, is consistent, there exists exactly one {1,...,k}
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with 5 € r,. Therefore data objeat belongs to cluste€’;. Note that the exis-
tence of more than one membership rule r, with (v) = 1 is possible.

Obviously descriptions should be efficient in the sense that the correspond-
ing complete membership rule sets:= {r,,...,rs,,, } are minimal. i.e. the
numbersn, are as small as possible.

Often not all properties of a data object have to be considered to determine its
cluster membership. Especially in the case of high-dimensional data, with a great
numberg of attributesA;, a description based on a reduced set of attributes is of
great interest.

We will illustrate this again by our two-dimensional example. Suppose that
we restrict our data set to the data objects of cluSteand clustelC;. Then the
following two rules will be sufficient to describe the clusters:

If v = (v.1,v.2)7 has the property,; = a; with a; € [0, 4], thenv belongs
to clusterC.

If v = (vi1,v.2)" has the property, ; = a; witha, € [4.5, 8], thenv belongs
to clusterCs.

Obviously we only need attributd; for a description of clustef’; and Cj,

i.e. attributed, has no influence on the discrimination of both clusters. Note that
this is not true, for a description that includes cluster

We can easily extend our earlier definitions to work with reduced attribute sets:

Let J := {j1,...,Jm} C {1,...,q} any index subset of lengtln and let
A(J) :=={A;|j € J} be areduced set of attributes(ef Set(2(J) := &, ; 4.
and forv := (ve1,...,0.9)7 € Qdenote by (J) := (vijy, ..., v )" € QJ)
the projection or2(.J). Further setM (J) := {v(J)|v € M} C Q(J) for any
subsetM C (.

We can define/-reduced membership rules a special kind of membership
rules:

Definition 1.3.3 Let vz be any membership rule with := {B,,..., B,} and
B; c Ajforj =1,...,q. We callrz J-reduced, ifB; = A, for j ¢ J. Let
furtherr, be a complete membership rule set of clusterWe callr, a complete
J-reduced membership rule set, if each membershipirdae-, is J-reduced.

There exists an unique projection of ariyreduced membership rule on the
subspacé)(J):

Lemma 1.3.4 Letr; be any.J-reduced membership rule with:= {B,, ..., B,}
andB; C A;forj=1,...,q. Then the functionrg : Q(J) — {0, 1} with

0 else

F(5) = { LtV e v €8 o e T e Q)

is the unique projection ofs on Q(.J).
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Proof: For anyv = (v.1,...,0.4)" € Q we havev, ; € A; = B, forj ¢ J, and
thereforerg(v) = 75(v(J)). O

Analogously to Lemma 1.3.2 we can achieve a description based on the re-
duced set of attributed(.J), if there exists for each cluster a complgteeduced
membership rule set:

Lemmal.3.5Let J C {1,...,q} be any index subset of length. Suppose
there exists for each Clustér, of C a complete/-reduced membership rule set

rs == A{rs1,...,Tsm,} andr, ; denotes the unique projection of the membership
rule r, ; onQ(.J), then the functiom, : V. — {1,..., k} with
k ms

er(v() = sHo(—1+ Y Fa;(v(J))) forallv €V,
s=1 j=1
is a consistent description f@t based on the reduced attribute sét./), i.e. we
have

er(v(J)=s <= vel, forallvelV.

Obviously descriptions should be efficient in the sense that they are based on a
maximally reduced attribute set(.J), i.e. A(J) should contain as less attributes
as possible.

Efficient cluster description algorithm

Using the above definitions, the following general algorithm generates an efficient
cluster description for &-cluster set := {C}, ..., Cy} of a data set’ € Q:

(1) Find an index subset = {ji,...,jm} C {1,...,q} of minimal size so that
there exists a function: V. — {1,..., k} with

cv(J))=s <= veC, forallvelV.

(2) Compute for each cluste&r, a minimally complete/-reduced membership
rule setry == {rs1,...,"sm,}-

(3) User := {ry,...,r;} to construct a consistent descriptionof C based on
the reduced attribute sgt(.J).

Since we are analyzing high-dimensional data, i.e. the dimensistarge,
we obviously need heuristic solutions for step (1) and (2). For the development
of suitable methods the concept of decomposition is very helpful: In section 2.4
we will describe techniques for the computation of membership rule sets based on
approximate box decompositioasd we will introduce the concept adiscrim-
inating attributesthat allows the construction of heuristic algorithms to identify
optimally reduced attribute set(.J).
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1.4 How many clusters?

Up to now, we have supposed that the number of clustassknown a priori.

But in many real world applications this is not the case. Looking at Eq. (1.1) one
easily checks that the number of possibleluster sets explodes, ifis a further
unknown parameter of the cluster problem. Obviouslg the most important
parameter, i.e. with the words of cluster expert &zBEK: “It is clearly more
important to be looking in the right solution space (within k) than it is to be com-
paring partitions across k because k specifies the number of clusters to look for,
while the other parameters control the search for these substructyfgs.”

The definition of a general model for cluster problems with unknown cluster
number is still an open problem. Usually it is not suitable to determine a correct
number of clusters by computing for differehtthe optimalk-cluster set& (k)
and comparing the weighted intra-cluster homogenditjigsC(k)), because most
homogeneity functions tend to prefer extreme clusterings withl or k = n.

Example: Cluster problem with unknown number of clusters

We will illustrate this by the following simple example: Suppose we want to com-
pute an optimal clustering of a data $ét= {a,b,c,d, e, f,g,h,i} C R? with

a frequency function so thgt(v) = 1 for all v € V. We choosér = hy (see
Lemma 1.1.2) based on the Euclidean distance funetiend.., ;4. Figure 1.3
shows a plot o#” and the corresponding homogeneity matrix.

A2 B | blc]d | aT]g[h]

4 [1.000.67 | 0.96|0.86 0.800.73] 0.02)0.000.13
_l.'I !3.-'_' I'.l.'l_l'.l“EIH_l.'l Eli-"_l.'l FIH_I.'I ."":'I_I'.I Hd-_ﬂ .'-II-"_I.'I 47
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0,60 0.860.92(0.99 1.00(0.99/0.42 0.46/0.60
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Figure 1.3:Example: Cluster problem in R2 with unknown cluster number &.
Left hand side: Plot of data sét. Right hand side: Homogeneity matrix of
based on Euclidean distance.

In Table 1.1 the optimak-cluster set (k) of (V, f, h) and their weighted
intra-cluster homogeneitids; ;, (C(k)) are presented for differerit Obviously
one would expect = 2, 3 or4 as a correct number of clusters, but a maximization
of I'; ,(C(k)) leads always té& = 1. Therefore we cannot udg ,(C(k)) to judge
which k is best.
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optimalk-cluster set (k) | Tn(C(K)) |
c(l) =V 6.17
C(2) :={{a,b,c,d,e, f},{g,h,i}} 4.24
C(3) :={{a,b,c},{d,e, f},{g,h,i} 2.96
C(4) .= {{a} {b,c} {d. e, f},{g, h.i}} 2.23
C9) := {{a}, {0}, {c}, {d}, {e}. {f}. {g}. {R}. {s}} | 1.00

Table 1.1:Example: Optimal k-cluster sets of(V, f, h) for different k.

In the literature [42, 6, 25, 51] several other measures are suggested to deter-
mine the validity of a givert-cluster set and so to find the optimal clustering, but
all of these measures have the deficit that they first need the computation of opti-
mal k-cluster sets for different. In the worst scenario this requires the solution
of n optimization problems. If: is large, this is a really heroic task.

Another possibility to cope with the problem of the unknown number of clus-
ters might be to determine it in a pre-processing step. Via a projection of the
high-dimensional data on a two-dimensional plane, one hopes that the cluster
structure is not destroyed through the transformation and the number of clusters
can be determined by visual investigation. A very popular tool for such a pro-
jection aremultidimensional-scalingnethods [49], e.g., SMMON’ S non-linear
mapping algorithm [56]. The deficits of projection methods are obvious: For high-
dimensional data it is unlikely that the cluster structure on the two-dimensional
plane reflects the original structure. Moreover a visual investigation could be very
subjective.

For cluster problems with a special type of homogeneity functions, exhibiting
a stochastic property, we will present in chapter 4 a new method based on the
theory ofPerron Clusteranalysis that allows the computation of a correct number
of clusters. We will show that this method can be easily used together with the
suggested multilevel cluster identification approach.



Chapter 2

Decomposition

In different research fields, decomposition usually describes the process of split-
ting a problem in smaller problems with less complexity. As was already mo-
tivated in section 1.2, a suitable reduction of a cluster problem can be achieved
via a grouping of nearly maximally homogeneous objects and a representation of
each group by a single object with compressed frequency value. If this kind of
partitioning of the data sét exhibits a certain homogeneity property, we will call

it a decomposition. After giving a general definition, we will introduce a special
type of decomposition, the so callegpproximate box decompositiotdere the
objects are pre-grouped in a way that they build a special subspéceat has

the shape of a multidimensional box(¥ is a metric space. We will develop a
theory for an efficient reduction of cluster problems via representative clustering
based on decomposition and we will present a basic reduction algorithm that will
be refined in chapter 4. Finally we will show how an approximate box decom-
position can be used to derive an efficient cluster description based on a minimal
number of so callediscriminating attributes

2.1 General Definition

Let V = {vy,...,v,} C Q be any data set if2 with frequency functiornf and
homogeneity functioth.

Definition 2.1.1 Assumen;, € N withn, < n ande € R with € < . (V).
We call® := {04, ...,0,, } ane-decomposition ofV, i) with partitions©y, if

ng

U@Szv, O:;#0, 0,N0,=0 forl <s<p<ny

s=1

and  h(v,w) > e (V) — € forallv,w € O4,s = {1,...,nx}.
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We further call

214(0) = 77 2 7767 22 2 theelV) =) 70 () = i

UG@ WEB

the decomposmon error @& with respect tof andh.

Since0 < h(v,w) < Ay (V) for all v,w € Q, any ng-clustering ofV' is an
e-decomposition of V, h) with € = h,,... (V). The following Lemma guarantees
P4 1(0) € [0, hymae (V)] for anye-decomposition of V, h):

Lemma 2.1.2 Let© anye-decomposition ofV, »), then we haved;,(0) < e.
Proof. We have(h,,q: (V) — h(v,w)) < e forall v,w € ©, and therefore

1 ng
Iel®) = f(V);f( 22 WS

ve@ wEB4
_ e N F0) S flw
77 2 760 & Z )
IR - fw
sz 629
S TS L0 = 2SO = ) =

We will refer to© as a decomposition of, if there exists a homogeneity function
h and are € [0, hyq. (V)] SO thato is ane-decomposition ofV, h).

If we use the homogeneity measure= h, (see Lemma 1.1.2) based on a
distance functionl, one easily checks that we havg,, = 1 and

1

f(V)maxaaevde Zf > D dww)fo)f(w).

UG@ wWEB

Jrn(©) =

Therefore, in this special case, we can use algorithms that try to optimize the sum-
of-squares cost function to compute a decomposition for givewith minimal
decomposition error. Figure 2.1 shows two possible decompositionsith 6
partitions®, for our example of a geometric cluster problemiihusing the Eu-
clidean distance functiod = d...;s- The decomposition on the left hand side
has been computed automatically via a simple hierarchical optimization method
and leads te = 0.137 andd;,(©) = 0.019. The decomposition on the right
hand side has been additionally optimized manually and leads=td).135 and
Vrn(©) = 0.018. Obviouslye is only a very rough upper bound of the decompo-
sition error.
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Theta_6 Theta_6

Theta_5 Theta_5
Theta_4 Theta_4

Theta_3 Theta_3

Theta_2 Theta_2

® © O ¢ O 1
® @ O ¢ O n

Theta_1 Theta_1

Figure 2.1:Example: Two possible decompositions with six partitions ink?.

2.2 Approximate box decomposition

In the following we call any subse® C  aboxin €, if there exist non-void
subsetsB,, ..., B, with B; C A; andB = @j_, B;. We setBOX(Q) :=
{B| Bboxin2}.

Definition 2.2.1 Assumen;, € N with n, < n. We call (©,A) an approxi-
mate box decomposition &f with respect tof, wheneve© = {©,,...,0,, }

is a decomposition o and A is a set ofn, boxesAy, ..., A, € BOX(Q)

so thatoverlap;(A) ~ 0 and f(©, N A,) > 0fors = 1,...,n,. The value
overlay ;(©, A) € ]0, 1] indicates how good\ approximates.

Herein we use the terntwerlapandoverlayin the following way:

Definition 2.2.2 Let M := {M,, ..., M, } be any set ofy, € N subsets of2 with
f(Ms) >0fors=1,... ,n. Let© be adecomposition df with n,, partitions
O,. Then the overlay ab and M with respect tof is given by

overlay ;(©, M) := %V) Z f(M;NOy), (2.1)

whereas the overlap 0$1 with respect tof is given by

i f(MSmUp sMp)
overlap ;(M) := Z ra ;;) :

If overlay ;(©,A) = 1, we call(©, A) a perfect box decomposition &f, Note
that if A(V) :={A1NV,...,A,, NV} is adecomposition of, (A(V),A) is
always a perfect box decomposition.

(2.2)
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Figure 2.2 presents two approximate box decompositions based on the decom-
positions shown in Figure 2.1. On the left hand side, the six boxes does not ap-
proximate the decomposition perfectly, because two boxes overlap each other and
four points are not covered, i.e. there is an insufficient overlay. On the right hand
side of Figure 2.2, the decomposition is approximated perfectly with six boxes.
Note that for the automatically computed decomposition, shown on the left hand
side of Figure 2.1, no perfect approximation with six boxes is possible at all.

o ° L °
e ® 0,0 %0 o ®e ®(0g0 0 o
o 1% ® % °*° oo o o o % © % *° o0 .J o
° o ®ee? ° e b % ¢
.'.\ .. [} K [} ° ° .. [} ° ® [}
o' overlap ’e’e |0 o. ® o' %o’ |0 o. ®
o ° * e, ° o %o o o ° * e, 0 %o o
° 0,0 ° 0,
) oo ® oo ° o e ® ot e
o o P K, I ° ® ) 'YX ° ®
0 rle(® ® @ ® 000 0% o b
® o0 ® %, insuficient o0 %0,
°° "5 overlay °® “o0

Figure 2.2:Example: Approximate box decomposition i, = 6) in R%. Left
hand side: Approximate box decomposition with insufficient overlay and overlap.
Right hand side: Perfect box decomposition.

Example: Uniform box decomposition

We can always construct a perfect box decomposition;jFkoK1, . .., ¢} choose
anym; € N and any disjoint non-void subsets, ;, ..., B, ; C A; so that
Uiy Bij = A;. Setm := []i_; m; and for any index tupléi,, ..., i,) with
1 <i; < m; choose an unique numbee= p(iy,...,4,) € {1,...,m} and define
A, = Q)j_, Bi, ;. Obviously we have), € BOX(Q2) for eachp € {1,...,m}.

If we setl(V) := {p|A, NV # 0} andA;y) == {A,|p € I(V)}, then
one easily checks that\;(V), Ajw)) is a perfect box decomposition f
becauseA ;) (V) = {A, NV |p e I(V)} is a decomposition o¥. Since the
construction ofA,, is uniform in the sense that each attributeois divided into
m; disjoint subsets, we callA;(V'), Ajvy) an uniform box decomposition of
Q.

Note that the construction of the decomposititypyy (V') is independent of
the homogeneity functioh and so the decomposition error is not guaranteed to
be small. Further remember that, with increasjpghe numbern grows expo-
nentially, even if we split each attribute in only two subsets, i.e. if werget= 2
for j = 1,...,q. For example; = 20 leads tom > 10°. So we usually have
m > n and thereforé/ (V)| ~ n. But this makes an uniform box decomposition
unsuitable for a reduction of high-dimensional cluster problems.
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Figure 2.3 shows an example of an uniform box decomposition for our geo-
metric cluster problem k>

Figure 2.3:Example: Uniform box decomposition in R2.

In chapter 3 we will present an adaptive method based on self-organized neural
networks that allows to compute approximate box decompositions without the
described shortages of an uniform procedure.

2.3 Decomposition based representative clustering

In section 1.2 we motivated the basic idea of a cluster problem reduction via repre-
sentative clustering. We have presented a simple way to compute representatives
w; € Q with compressed frequency valf(ey;). Further, we have shown that an
optimal clustering of the representatives corresponds to an optimal clustering of
the original data sét’, if the homogeneity functioh meets a local maximum and

a global correspondence condition for all objects that are compressed to the same
representative. Unfortunately this often leads to an unsatisfactory problem reduc-
tion, i.e. too many representatives are needed. The described conditions seems to
be too strong for practical applications.

In this section we will develop a theory for cluster problem reduction via de-
composition based representative clustering, without using any conditiohs for
The objects are grouped together so that they are building partitions of a decom-
position of the data sét. For the computation of an optimalcluster set of the
representative sét/, the original homogeneity functioh is replaced by a com-
pressed functiorh. We will show that if the decomposition is suitably fine, i.e.
the decomposition error is small, thiscluster set can be extended to an optimal
k-cluster set o/ with respect tof andh.
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Definition 2.3.1 Assumey, € N withn, < n. LetW := {wy,...,w, } CV
any subset o and let© any decomposition df with n;, partitions©,.

(1) We calliv a codebook o®, if w, € ©, for s =1,...,n,. We will refer to the
data objectsu, as representatives or codebook vectors.

(i4) LetW any codebook d, then we call the functiofi : 2 — R with

fws) == f(©,) fors =1,...,n; and f(v):=0forve Q\W,

the compression of onW. We setf (M) := 3", _,, f(m) for any subsed/ C Q.
(iii) LetTW any codebook a®, then we call the functioh, : Q — [0, 1] with

;Lf(ws,wp) = - Z Z h(v,w)f(v)f(w) fors,p=1,... ,n

f(ws)f(wp) vEO, WED,

andh (v, w) := 0 forv,w € Q\ W, the compression éf on W with respect tof.
(iv) For anyk-cluster seC := {C},...,Cy} of V, setCs(W) := C;nW. Then
we callC(W) := {Cy (W), ..., Cx(W)} the compression af on V.

(v) For any k-cluster setC := {C,...,C\} of a codebookl?” of ©, we define
C:={C,...,Ci}with C; :=J,, ¢, ©, and callC the extension af on V.
Lemma 2.3.2 Assume;, € N with k£ < n;, < n and let®© be any decomposition
of V with n;, partitions©, and a codebookl’. Then we have:

(a) The compressioji is a frequency function fa” and the compressiofmf is a
homogeneity function fdi'.

(b) If C is a k-cluster set ofV/ then the extensiofi is a k-cluster set of/.

Proof. (a) and (b) follow directly from Definition 2.3.1. O

A decomposition is fine enough for a givércluster set, if each partition belongs
to only one cluster:

Definition 2.3.3 LetC := {C4,...,Cy} be anyk-cluster set oft’. Further as-
sumen;, € N with £ < n; < nandleto := {0y,...,0,,} be any decomposi-
tion of V. We call© a covering ofC, if there exist non-void disjoint index subsets
I,... . Lywith U I, = {1,... n;} so thatC, = |, ©,.

Obviously®y = {{v}|v € V} and©, := C are trivial coverings of’. But
there exists also non-trivial coveringgifmeets a stronger version of the optimal
cluster assumption (see section 1.2):

Lemma 2.3.4 Let C be anyk-cluster set o ande € R with ¢ < hp. (V).
If we have(v € ¢ = w € () for any clusterC € C and allv,w € V with
h(v,w) > hpa (V) — €, then anye-decompositio® of (V, ) is a covering of.
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Proof: Letn, € N withk < n, < nand® := {6,...,0, } be any
e-decomposition ofV, k). For any cluste’; € C setl, := {p| 0, N C;s # 0}.

Then we have J*_ I, = {1,...,n,} andC, c | ., ©,. Obviously we are
ready, if we show:

pEls

(Vpel,) O, CCs.

But this follows directly: Since < I, there exists an objeete ©, N C,. Then
for all w € ©, we haveh(v, w) > hp.. (V) — e and therefore also € Cs. O

The next Lemma shows that the weighted intra-cluster homogeneity of any
k-cluster set of V and its compression o’ are equal if there exists any cover-
ing of C. We will use this fact in combination with Lemma 2.3.6 within the proof
of the basic Theorem 2.3.7.

Lemma 2.3.5LetC := {C4,...,Cy} be anyk-cluster set ofi” and © be any
covering ofC with n,, partitions©,, and a codebookV" := {w;,...,w,, }. Then
the compressio6i(IV) is ak-cluster set ofV with 'y ; (C(W)) = L'z (C).

Proof: ObviouslyC(WW) is ak-cluster set, ifCs(W) # () fors = 1,..., k. But
this follows immediately from the fact th& is a covering ofC with codebook
W. Further it follows that the index subséts . . ., I, with I, .= {p|lw, € Cs}
are non-void and disjoint and that we have= U

Sincef(C,) = f(Cy(W)), this yields:
k

ra(C) = %Z PIDILCRONONT

s=1 UGCq U}GCQ

=EZ 322 D 2 hww)f()f(w)

plEIs p2€ls vEO, WEBy,
1 Z
k

Z Z hf wpl’wp2 wPl)f(wp2>
- %Z f Cl(W Z Z hf wpl’wPQ wpl)f(wm)

pGI

—_
=

e

plEIs pQGIs

s=1 p1€Iq p2€ls
k
1 1 . . .
= - S — Z Z hf(wpu wpz)f(wm)f(wpz)
k s=1 f(CS(W)) wpy €Cs (W) wpy €Cs (W)
= Dgp, (C(W))
O

The covering property of a decomposition can be transmitted to its extension:
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Lemma 2.3.6 Let © be any covering of with ny, partitions©,, and a codebook
W= {wy,...,w,, }. IfC:={C,...,Ck} is ak-cluster set of//, then® is a
covering of the extensiahofC onV.

Proof: SetJ; := {p|w, € Cs} fors =1,... k. SinceC is ak-cluster set ofV,
we have/, # 0, J,NJ,=0for1 < s <p<kandJ"_, J, = {1,...,n}. By
definition ofC, we further have’, := U, .. ©, = U, ©, and therefor® is
a covering ofC. o

Using the previous lemmata we can proof the basic theorem of decomposition
based representative clustering:

Theorem 2.3.7LetC := {C}, ...,C)} be any optimak-cluster set of V, f, h).
Further let © be any covering of with ny partitions ©,, and a codebookV'.

If C is an optimalk-cluster set of W, £, h;), then the extensiof is an optimal
k-cluster set of V, f, h).

Proof: (i) LetC(W) := {C,(W),...,Ci(W)} with Co(W) := C; N W be the
compression of. Since® is an covering of’, we can apply Lemma 2.3.5 and
yield:

Irn(€C) = Tyj, (C(W)).

(i7) LetC(W) == {C1(W), ..., C(W)} with Cs(W) := C;NW be the compres-

A

sion ofC. Then one easily checks thatlV') = C. Since Lemma 2.3.6 guarantees
that® is a covering o, we can again apply Lemma 2.3.5 and yield:

Lra(C) = T4, (C).

(i1i) SinceC is an optimak-cluster set of W, f, i) andC is an optimak-cluster
set of(V, f, h), we have

Ts5,(C) > T (C(W)) and Tya(C) > Tpu(C).
Using (i) — (7it) we get
0 > Tyu(C) = Tpu(C) = Tyu(C) = Ty (CW)) > Tyn(C) — Tz, (C) = 0

and thereford';,(C) = nyh(f). SinceC is an optimalk-cluster set, this guaran-
tees that is also optimal. O

From Theorem 2.3.7 we can derive a basic algorithm for the reduction of clus-
ter problems via representative clustering based on decomposition:
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Basic reduction algorithm

Suppose we want to compute an optirhalluster set of a data sét with respect

to a frequency functiorf and a homogeneity function

(1) To reduce the complexity of the cluster problem, we have to compute first a
decompositior® := {Oy,...,0,,} of V and a codebook’ so that® is an cov-
ering of an optimak-cluster set of V, f, h).

(2) Next we compute an optimedpresentative clusteringe. an optimak-cluster

setC of (W, f, hy).

(3) Finally we have to extend on V. The resulting is an optimal-cluster set

of (V. f,h).

Obviously such an algorithm makes only sense if in step (1) the optirolister
set has not to be known a priori and the numieis much smaller than the num-
bern of objects inV/.

Using the optimal cluster assumption (see section 1.2) and Lemma 2.3.4, we
can suppose that for sufficiently smalleache-decomposition o/ is a covering
of each optimak-cluster set of V, f, h). This motivates the following assump-
tion:

Covering assumption

If a decompositior® of V' is sufficiently fine, i.e. ifd;,(©) is small, then there
exists a nearly optimai-cluster set of V, f, h) so that® is a covering of it.

Obviously the fineness dd corresponds with the number of partitionsg.
Therefore we need a method that — given an upper bound, 6f tries to
compute a maximally fine decomposition, while using only a minimal number
of partitions. In chapter 3 we will present such a method based@mndfEN s
Self-Organizing Maps (SOM). Since the choice of the upper boundfa rather
arbitrary, in chapter 4 we will refine our basic reduction algorithm to a multilevel
algorithm that iterates the steps (1) and (2) until a sufficiently fine decomposition
and corresponding optimal representative clustering is found.

Example: Representative clustering of a geometric cluster problem ik

We will give a short demonstration of our basic reduction algorithm by our exam-
ple of a geometric cluster problem it?.

Sinceh,q. (V) = 1, any e-decompositior® with ¢ = 0.05 should be fine
enough to use it within our algorithm. Figure 2.4 shows a suitadiecomposition
of the100 points in the data sét with n, = 10 partitions.
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Figure 2.4:Example: Covering with n;,, = 10 partitions of 3-cluster set in 2.

Now we have to choose any codebddk:= {w;, ..., wo} of © and to com-
pute the compressed functiofiind/ according to Definition 2.3.1.

One easily checks thdt{w,, wy, w3}, {ws, ws, we, we }, {ws, we, wio}} is an
optimal 3-cluster set of I, f, ). An extension ori/ directly leads to the three
clusters”;, Cy andCs (see Figure 1.1). Note that tBecluster se€ := {C, Cs, C5}
meets the conditiofw € C = w € C) for any clustelC € C and allv,w € V
with i(v, w) > hpe (V) — €. Therefore Lemma 2.3.4 guarantees that our decom-
position® is a covering or, i.e. that it was fine enough.

Decomposition clustering

Instead of clustering codebook vectors, we can also cluster a decomposition itself:
Let® := {©,...,0,,} be any decomposition df. Then© can be interpreted

as a data set ift := p(Q), wherep(Q) := {M | M c Q} denotes the power set

of Q2. We can extend the frequency functipmnd the homogeneity functionon
subsets of:

Definition 2.3.8 R

(@) We callf : p(©2) — N with f(M) := > _,, f(v) for any subsef\/ C €,
the set extension gf. We setf (M) := 3, ., f(M) for M C p(Q).

(b) We callh; : p(Q) x p(2) — [0, 1], with

D S i
hy(Vi, Vo) = { TRV 2ovevi ZwOEVQ Ao, w) ()] (w) ;fls‘(:l VRNV

for any subset¥;, 1, C €2, the set extension afwith respect tof.
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~

Note that we hav® < h;(Vi,V3) < 1 andhs(Vi, Va) = hy(Va, Vi) for any
non-void subset®;, V5, C V.

The following Theorem guarantees that the computation of an optirolister
set of (W, f,h) is equivalent to the computation of an optimiatluster set of
(O, f h) if © is any decomposition of with codebooki’. This makes it pos-
sible to replace the clustering of codebook vectors by a direct clustering of the
corresponding partitions of the decomposition within step (2) of the basic reduc-
tion algorithm.

Theorem 2.3.9LetW := {w, ..., w,, } be any codebook @&.

(1) LetC := {C4,...,Cy} be anyk-cluster set oB. Then there exist non-void
disjoint index subsets; with U’;Zl Iy ={1,...,m} sothatCs = {O©,|p € I}.

If we setC(W) := {w,|p € I}, thenC(W) = {Cy(W),...,C(W)} is a
k-cluster set otV with I'; ; (€C) =Ty5, (C(W)).

(1) LetC := {C,...,Cy} be anyk-cluster setofV. Ifwe setl; := {p|w, € (JS},
then the index subsejﬁ -, 1 are non-void and disjointwitb)’“ Io=A{1,... n}.
The extensiok(2) := {Cl( ), ..., Ce()} with Cy(Q) = {6,|p € I} isa
k-cluster set oB with I'; 5 (C) = r, 1, (C(Q).

Proof: Since(i:) follows analogously, we only shof):

(a) Iy5,(€) = kz Z > bV Vo) f(V) £ (V)
VleC Voels
= Z P IPILLCAESYCHICHS
k Zpels p1 €l pa€ls
= kZ oy 2 2 2 2 M w)f)f(w)
pGIq p1€Ig p2€ls vEOp, WEOY,

= kZ C’ W) p;gp;@ hy(wp,, wy,) f wm)f(wpz)

= L5, (C(W))
O

We will use this equivalence of representative clustering and decomposition clus-
tering in the discussion of our main Theorem 4.3.9 in chapter 4.
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2.4 Efficient cluster description via approximate box
decomposition

In this section we will describe, how approximate box decompositions can be used
to generate efficient cluster descriptions according to section 1.3.

2.4.1 Computation of membership rules

We can easily determine cluster membership rules fechuster set, if we have
an approximate box decompositionlofthat is a covering of :

Lemma 2.4.1 Assumen;, € N with k < n, < n. LetC := {C},...,Cy} be
any k-cluster set o’ and®© := {©,,...,0,, } be any covering of with non-
void disjoint index subsets, ..., I so thatC, = Upels ©,. Further suppose
the existence of ang := {A;,...,A,, } so that(©,A) is an approximate box
decomposition oF” with respect tof.

(i) Forp € {1,...,n;} there exist for each € {1,...,¢q} asubseB, ; C A; so
thatA, = Qj_, By

(i) SetB, := {By1,...,Byq} forp e {1,...,n;} and definez, : @ — {0,1}
with

o, (v) = { 1 if(Vje{l,....q}) vij € By,

T
0 olse , V= (Vi1y. ., 0ig) € Q.

If p € I, and f(A,\ C;) = 0, thenrp, is a membership rule for cluster,.
(#i) If f(A\Cs) = 0forallp € IyandCys C ;. Ay, thenrs := {rp, |p € I}
is a complete membership rule set of cluster

Proof: (i) Follows directly fromA, € BOX((2).
(17) We have
F(A\NCs) =0 <= ANV CC;
and therefore
rg,(v) =1 = veA,CC; forallv e V.

it1) From (iz) follows thatrg, is a membership rule af for eachp € /. Since
C, C Upels A,, we have

velC, = (pel)vel, < (Fpecl)rs,(v)=1.
U

Note that the conditiorf(A, \ Cs) = 0 is only violated if boxes from different
clusters overlap each other. Therefore this condition is weaker than the condition
overlap;(A) = 0.
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Membership rule set algorithm

From Lemma 2.4.1 we can derive an algorithm to compute complete membership
rule sets that are nearly minimal fokcecluster set:

(1) Compute an approximate box decompositienA) of V' so that® is a cov-

ering ofC, A fits the conditions of Lemma 2.4.1 ang < n.

(2) Construct they, membership ruless, as described in Lemma 2.4.1. Since
for each cluster a minimally complete membership rule set must contain at least
one rule, we need at leastmembership rules to describéaluster set. If the
difference ofn, andk is not to large, the complete membership rule setare
nearly minimal.

Example: Complete membership rule set for a3-cluster set in R? based on
approximate box decomposition.

For our geometrically based cluster problenfifiwith & = 3, Figure 2.5 shows

an approximate box decompositigf?, A) that covers the optimal-cluster set.
Obviously the overlap between the boxes causes no problems and therefore we
canuse\ := {Aq,..., A, }, withboxesA, = B, ; x B, , and subset®, ; C R
according to Table 2.1, to determine minimal membership rule set for the optimal
3-cluster sef C, Cy, C3}.

N, ®
21 '..o 20.0 %’ C3
o ® OO0 . o °
o %o °q .0 o ©
° o °©o%%, o
T| ® ¢ |CL % o °
° o 0,° ®°o °®
o L oo O |0g o
o1 JAN ° o,
oo 1 oo ® c2 o o
e o o0 A6 o ®
0%, 0. 0y et
—+ 0.0 .o o o,
As * o 0 o. .o
1 1 1 1 1 1 1 —» Al
2 4 6 8

Figure 2.5:Example: Approximate box decomposition that is a covering of a
3-cluster set in R?. Unproblematic overlap between boxes of the same cluster.
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If we define the membership ruleg, as described in Lemma 2.4.1, then

r1 = {rs,,rs,} (respectivelyry := {rg,,rg,}, r3 := {rg,,rs,}) is a complete
membership rule set of clustél; (respectivelyC;,, C's). One easily checks that

r1, 9 @ndrs are minimal.

‘ P ‘ Bp,l ‘ Bp,Q ‘
1] [0.25, 1.5] | [1.25, 3.75]
2| [0.25, 3.5] | [3.25, 4.75]
3| [2.5,4.125]| [0.25, 2.5]
4| [3.625,6] | [0.25, 1.5]
5|[4.25,7.5] [2.25, 4]
6| [6.25, 9] [1, 4]

Table 2.1:Example: Approximate box decomposition that is a covering of a
3-cluster set in 2,

Instead ofA we could also use the box decomposition that is shown on the
right hand side of Figure 2.2. But note that the approximate box decomposition on
the left hand side leads to an incomplete membership rule set for clustdihe
uniform box decomposition from Figure 2.3 is also suitable, but the corresponding
membership rule sets are not minimal.

2.4.2 Discriminating attributes

Since we are interested in efficient cluster descriptions, we have not only to de-
termine complete membership rule sets, we have also to reduce them as much as
possible (see section 1.3). Therefore we have to identifydiberiminating at-
tributesof the cluster problem, i.e. the attributes that are necessary to determine
the cluster membership of each data object.

LetV = {vy,...,v,} C Q be any data set if2 with frequency functionf
and homogeneity functioh. Further letC := {C},...,C.} be anyk-cluster
set ofV and® := {©4,...,0,,} be any covering o€ with non-void disjoint
index subsetd,, ..., I; so thatJ*_, I, = {1,...,n;} andC, = Uyer, ©, for
s = 1,..., k. Remember that for any index subset {1,...,q}, v(J) denotes
the projection ob € Q2 onQ(V'), whereQ2(1) is spanned by the attributels with
j € J. Remember further that we have defined.J) := {v(J)|v € M} for any
subsetM C (.
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Definition 2.4.2 LetJ C {1,..., ¢} be any non-void index subset and denote by
Je:={1,...,q}\ I its complement.
(a) We call the attribute set(J¢) := {A; | j € J°} redundant forC if we have:

veC, < v(J)e | 6,J) forallv € V.

p€ls

(b) We call the attribute setl(.J¢) maximally redundant fo€ if there exists no
subset/ C {1,...,q} so thatA(J) is redundant foC and|.J| > | J|.

(c) We call attributeA; an univariate discriminating attribute df, if A({j}) is
not redundant foC.

(d) We call the attributesl; € A(.J) multivariate discriminating attributes @f if

A(J¢) is maximally redundant fof.

The following Lemma is an extension of Lemma 2.4.1:

Lemma 2.4.3 Suppose there exist any := {Ay, ..., A,, } so that(0,A) is an
approximate box decompositioniofwith respect tgf. Choose any € {1,...,k}
and anyp € I,. Definerg, according to Lemma (2.4.1) and suppose further that
f(A,\ Cs) =0, then we have:

The functiong, ;) with B,(J) := {B,1(J), ..., By4(J)} and

A else

J

By () :={Bj A o e L)

is a J-reduced membership rule for clustét if .A(J¢) is redundant foiC.

Proof: We have

FAN\C) =0 ANV CC=[]6, = A)c ] 6,))

pEls p€El;s

and therefore

re,0n(v) =1 = v(J) € Ay(J) C | 6,()) <= veCl.

p€ls

O
Analogously to Lemma 2.4.1 one easily checks thas ., |p € L} is a
J-reduced complete membership rule set of clustgrif f(A, \ Cs) = 0 for
allp € I, andCy C U,c;, Ay Moreover if A(J¢) is maximally redundant,
{rs,) | p € I} is optimally reduced.
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Discriminating attributes identification algorithm

Suppose thaf is any optimalk-cluster set of(V, f, h) and that there exist any
A = {Ay,..., A, } sothat(©,A) is an approximate box decomposition 16f
with respect tof. Then the following algorithm can be used to determine the
multivariate discriminating attributes Gt

(1) Choosd < 0 < 1. SetJ,,: :={1,...,q} andd,, := 0.

(2) LetJ C {1,...,q} be any index subset of minimal size so that

A~

overlap ;(A(J) < overlap;(A) + 0,
whereA(J) := {A(J),..., A, (J)} with
Ay(J)cQandve A(J) < v(J)eA(J) forallv € Q.

(3) If | J| < ¢, then goto step (5).

(4) If 4.,: = 0, then goto step (7), else stop.

(5) If A(JC) is not redundant fo€, then decreaséand goto step (2).
(6) If |.J] < |Jopt|, then set/,,, := J andd,,; := 9, else stop.

(7) If |J| > 1, then increasé and goto step (2), else stop.

For cluster problems with a special type of homogeneity function, that exhibits
a stochastic property, in chapter 4 we are going to present a method that allows to
proof quickly if A(J¢) is redundant fo€.

Example: Discriminating attributes of cluster problem with unknown num-
ber of clusters

If we look again at our simple example from section 1.4, we can easily identify the
discriminating attributes corresponding to the optidaluster sets for differently
chosenk.

Obviously for the clustering§(1) — C(4) we need for each € V only the
value for attributed, to determine the cluster membership.

Formally spoken, if we sef := 1 and choosé < {1,...,4}, then we have
for each cluste€ € C(k) and for allv € V.

vely <= v(J)e ).

Since® := C(k) is always a trivial covering of-cluster set (%), the attribute
setA(J¢) = {Ay} is redundant. Further it is maximally redundant, because it
is not possible that a redundant attribute set contains all attributes. Therefore
Ay € A(J) is a multivariate discriminating attribute 6{k), k = 1, ..., 4.
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To illustrate the working of the suggested identification algorithm, we use it to
determine the discriminating attributes®f= C(2):

At the beginning we se® := C and A := {A;, A}, with boxesA; :=
Bl,l X BLQ = [05, 2] X [05, 3] andAQ = BQ,l X 8272 = [55, 6] X [15, 25]
Then(©, A) is an approximate box decompositionlof

In step (1) we choose a smalle.g.,d := 0.01. We set/,,; := {1,...,q}
andd,,; := 0.

Obviously in step (2) it is enough to investigate:= {1} and.J, := {2}.
Extending the projection&\(./;) := Bs; and Ay(Jy) := B2 we got
Ag(J1) == Bsy x RandAg(Jz) := R x By for s = 1,2. This leads

to overlap;(A(J)) := 0 andoverlap;(A(Jy)) := 0.56. Since we have
overlap;(A) = 0, we set/ := J;.

At step (3) we havéJ| = 1 < 2 = ¢ and therefore we jump to step (5).

Now we have to prove, if{(J¢) = {A,} is redundant. This is the case and
we go to step (6).

Since|J| =1 < 2 = |Jope|, We set],,; := J andd,y; := 6.

At step (7) we stop, becausé| = 1. The result of the algorithm ig,,; := 1

and determines!; as the only multivariate discriminating attribute ©f
One easily checks, thag,, is a kind of quality indicator of the computation.

If 6, is sufficiently small, we can be confident that we have identified the
correct multivariate discriminating attributes of clusterihg



40

Decomposition




Chapter 3

Adaptive Decomposition by
Self-Organized Neural Networks

In this chapter we will describe two methods, based on self-organized neural net-
works !, that can be used to compute a decomposiion= {0,,...,0,, } of

a data set” with homogeneity functiork. The decomposition is adaptive in the
sense that the numbey, is chosen automatically — only an upper bolind N

has to be fixed a priori — so thétis fine enough to use it within our basic reduc-
tion algorithm (see section 2.3). Moreover, the second method that is an recently
developed extension of the first one (see [29]), allows to compute non-uniform
approximate box decompositions.

Since each decomposition Bfis also a kind of clustering df, the computa-
tion of a decomposition with small decomposition error (see Eg. (2.1)) has to be
done heuristically in a shorter time théh(n?). Otherwise there is no advantage
of our basic reduction algorithm in comparison with a direct computation of an
optimal k-cluster set ol

We suppose thd? C R?is a metric space, otherwise we will extend it suffi-
ciently as described in the appendix. Further we assume that there exists a distance
functiondist : 2 x 2 — R so that for allv, w € V the following local maximum
condition holds:

dist(v,w) ~ 0 = h(v,w) = hpe (V) . (3.1)

Usually, this condition is given for geometric cluster problems and also for many
dynamic cluster problems (see the earlier discussion in section 1.2).

For an introduction to neural networks see, e.g., [55]
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3.1 Self-Organizing Maps (SOM)

Let V' any data set irf2 with frequency functionf. The following Lemma de-
scribes a way to compute an adaptive decomposition based on a given codebook:

Lemma 3.1.1 Assumé € N andW := {wy,...,wg} C €.
SetOy = {Oyy, . . ., Oy, } With partitions,,, C (2 so that for allv €

vEOBO,, <= p=min{s|dist(v,w,)= Hlun dist(v, w;)}. (3.2)
Further set/ := {p|©,,(V) #0,p=1,... k}witho,, (V) :=06,, NV. Then
Ow, (V) :={0,,(V)|p € I} is adecomposition df with n;, := || partitions.

Since we havelist(v, w) < dist(v, wy) + dist(w, w;) for all v, w € 6,,(V),
each method that tries to computéfa so that forv € 0, (V) the distances
dist(v, ws) are minimized, can be used to generate a decompositidn with
small decomposition error.

At first, one might think of pure vector quantization (VQ) methods (see [35]).
These methods often try to minimize ttistortion valuewhich is defined as:

Z Z dlSt’U’LUS ) f(v). (3.3)

s=1 1)6@“)5

However, they have the tendency to produce codebook vectors that are maximally
different, to achieve a more uniform decompositiol/ofThis might cause prob-
lems of so calleghseudo-clusters.e. clusters” with nearly zero frequency value
f(C). Therefore it seems better to use a method that tends to gather codebook
vectors in some more robust way. Here a powerful method atedfNEN s Self-
Organizing Maps (SOM). The corresponding algorithm usually produces fast and
good solutions even for high-dimensiontal It can be easily adapted to the case
of cyclic data which will be essential for using it within biomolecular data (see
chapter 5). Further it has the feature of topology approximation which avoids the
appearance of pseudo-clusters and leads to decompositions that are rather robust
under changes of the numier

In the following we give a short general description of the SOM method. For
an exhaustive presentation see [48].

To be in correspondence with the usual notation in the literature, we suppose
that there exists a probability distributid?,; on¢) With a probability density func-
tionp : Q — R{ so thatp(v) = f(v)
replace all integral signs by sums and has tofisl&ectly.

Each SOM is formed by a-dimensional input-layer that is fully connected
with the two-dimensional Kohonen layer, which is a neural x m, grid G with
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rectangular or hexagonal topology akd= m,m, grid neurons. The coordi-

nate tuple of each neuronon the grid is denoted by, € G and each neu-

ron s is uniquely related to g-dimensional codebook vectar,. After a suit-

able initialization of the codebook vectors, the SOM is trained. itime steps

by a repeated presentation of vectors of thdimensional input spac@ ac-
cording to the probability distributio®’,. For each presented input vector the
SOM computes a so called winner neuron and its neighboring neurons on the grid
and adapts the related codebook vectors so that the distance to the input vector
is reduced. To achieve convergence, the learning rate of the distance reduction
a: {0,...,L} — [0,1] and the width of the neighborhood of the winner neuron,
the so called neighborhood radius functipn {0, ..., L} — R, shrink to zero

with time. After a suitable number of training steps the codebook vectors that are
related to neighboring neurons on the grid, are neighboring in the input space ac-
cording to the chosen distance function. Therefore the codebook vectors not only
determine via Eq. (3.2) a decompositiontafbut also approximate the topology

of the input space via the neighborhood structure of the grid.

Algorithmic Realization In the following we describe the initialization of the
codebook vectors, the definition of the winner neuron together with its grid neigh-
borhood and the specification of the codebook adaptation rule.

Initialization. We suggest to choose the initial valueg0), ..., wx(0) as
approximatelyP,-distributed random vectors with,(0) € €.

Winner neuron and grid neighborhootlet z = (z4,...,z,)" € Q be an
any input vector andvy, ..., w, € 2 the actual codebook vectors of the
SOM. Then we call neurop e {1, ..., k} thewinner neurorfor inputz, if

minkdist(a:, w;)}. (3.4)

1=

p = min{s | dist(z, w;)

.....

Note that Eq. (3.4) is equivalent toc ©,,,, if ©,,, is defined according to
Eq. (3.2).
To determine the neighboring neurons of the winner neuron, one has to
specify a grid distance functiop: G x G x Rt — [0, 1]. Usually one uses
either the bubble grid distance

0 if flzs — 2l <

nbubble(zsa Zps 7) =
1 else,

or the Gaussian grid distance

2s — 2|17
i 27) = 1= (L2220,
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wherey denotes the actual neighborhood radius jafidhe two-dimensional
Euclidean distance. A neurarbelongs to the neighborhood of winner neu-
ronp if n(zs, zp,7v) < 1. If we choose),qussian, then the neighborhood of
each neuron covegl grid neurons.

Codebook adaptation ruled.et neuronp be the winner neuron for input

z(t) = (z1(t),...,z,(¢))" € Q at timet andw, (¢),...,w(t) € Q the

actual codebook vectors. Further tett) and~(t) be two time-dependent

linear or log-linear functions that decrease to zero witt) < 1 andy(0) <

min{mg,my}

A R

Then the new codebook vectarsg(t + 1), ..., wg(t + 1) are computed as
ws(t + 1) := ws(t) + a(t) neigh(zs, zp, t) (x(t) — ws(t)) (3.5)

with neigh(zs, z,, t) == 1 — n(zs, 2p, Y(t)).

In the case that we set(0) = 0, the SOM is a pure VQ algorithm and there-
fore optimizes the distortion value [48]. If we allow neighborhood learning, e.g.,
v(0) > 0, the formulation of an energy function that is minimized by the SOM is
not possible [47]. Recently slight modifications of the adaptation rules have been
suggested that allows the formulation of an energy function without destroying the
essential features of the SOM [38, 40]. For further theoretical investigations of the
SOM algorithm, especially a comparison to pure VQ methods, see [54, 11, 12].

3.2 Self-Organizing Box Maps (SOBM)

The basic idea of the recently developed Self-Organizing Box Maps (SOBM)
method [29] is to computeodebook boxe®/, := (W,,,...,W, ) € BOX(Q)
with W, = [I,,,7,,] C R instead of codebook vectors, € . This is done in
such a way that each codebook box is a nearly optimal box approximation of its
corresponding partitio®;, C

We will call any setB = Q?_,[l;,r;] € BOX(2) with /;,7; € R an optimal
box approximation of a se¥/ C 2 with respect taP,, if

P,(B\ M)+ P,(M\ B) — min.

Algorithmic Realization  Obviously, this change of concept induces changes of
the SOM algorithm, which we arrange here:

Initialization. Let w, (0), ..., wx(0) be different initial values for the code-
book vectors of the traditional SOM, e.g., approximatejydistributed ran-
dom vectors withw,(0) € Q for s = 1,...k. For our extended algo-
rithm, we chooséV,(0) := @™, I, (0), 7, (0)] with I,,(0) = W,,(0) and
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rs,(0) = Wy, (0) + € in terms of a small positive valug the initial width of

i

the interval so thatV, N1, = P forall s,p € {1,...,k}.

Winner neuron.We suppose that the problem specijidimensional dis-
tance functiondist(x, y) with =,y € € can be written as a functioh of ¢
one-dimensional distance measufgs;, y;), which means thatist(z, y) =
F(di(z1,11), ..., dy(xq,y,)). Note that many popular distance measures, as
e.g., the Euclidean distance, just exhibit this feature. Obviously we need a
distance measurBIST that permits to compute the distance between an
input vectorz € 2 and codebook boxd§/, e BOX(£2). For that purpose,

we suggest

DIST (, Wy) := F(di (21, Wy,), . . ., dy(aq, Ws,))
with
0 if z; € Wsi
min{d;(z;, ls,), d;(x;,7rs,)} else.

Then the winner neuromhas to match a condition analogous to Eq. (3.4):

A

sz‘(%', Wsi) =

p = min{s | DIST(z, W,) minkDIST(x, Wi)}. (3.6)

1=

.....

Obviously we can use Eq. (3.6) to define for each codebookibpthe
corresponding partitio®, := ©,;, C (2 analogously to Eq. (3.2).

Codebook adaptation rulesn analogy to the SOM algorithm, the SOBM
algorithm has to adapt the codebdodéxes This will be done by the fol-

lowing rules:

ls,(t+1) = (1)
+ (L, (1), 75, (1), (1)) o(t) neigh(zs, 2z, 1) (2i(t) — 15, (1))
- Oé(t) C(lSi (t)v T's; (t))

r,(t+1) = 7re(t)

+g(=7rs,(t), =1, (t), —7i(t)) (t) neigh(zy, 2, 1) (zi(t) — 7r4,(t))
+a(t) c(ls, (1), rs,(t))
fzx<a

1
with a linear functiory : R?® — [0,1], g(a,b,z) = { 0 if >0
else
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and a functiore : R? — R that is independent of the inpuft) and will
be defined later.

Note that instead of the above functignalso a smoother "sigmoid” function
like g(a,b,x) :=1— m can be chosen in principle.

Suppose for the time being that= 0, then one easily verifies that the left
interval boundary is only adapted, if the input is left of the right interval boundary
and vice versa. Further one observes that inputs outside the interval have a greater
influence on the adaptation of the nearest interval boundary, as when they are
inside the interval. In the following we will motivate the suggested adaptation
rule.

One easily verifies, that after the initialization we have c O, for all
s=1,..., k. Suppose now an inputthat belongs t®,. If z; ¢ IW.,, we have
to widen the interval. Therefore the nearest interval boundary is “pulled” towards
x;. Thisis just the same method as in the original SOM algorithm, & Wsi the
first strategy is to do nothing, because in this case the box seems to be all right.
This however, turns out to be not a good idea, because ffebange over time so
that we can observi/, \ O, +# ( after several adaptation steps. If this difference
becomes larger, it is not only possible tHa{(1V, \ ©,) increases so that, is
no longer a good box approximation ©f. Also the probability grows that one
observes overlaps between the boxes after the algorithm stops (see Figure 3.1).

Figure 3.1:Poor partitioning in the absence of interval shrinkage.

If, however the overlap between the boxes is too larjeand its correspond-
ing decomposition are no longer an approximate box decomposition. Therefore
it is necessary to shrink the intervals. This could be done by adapting the inter-
val boundaries when even the inpytis inside the interval, the so called interior
adaptation. It is obvious that the adaptation of the nearest boundary should be
greater than that of the opposite side. By doing this a new problem arises: Usu-
ally after some time there are more inpuisnside the interval than outside. As a
consequence, the interval shrinks faster than it grows, which implies that the value

PP(WS) shrinks, too. But then the box approximation@®f is not as good as it
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could be. Therefore one has to introduce something like a damping coefficient or
a correction term, which reduces the inter-interval adaptation. Such a parameter
will depend on the ratio of the inputs inside and outside the interval. A direct
computation would be impracticable, because it is very time consuming. So one
has to think about certain heuristics, which only consider the interval width. Our

approaches with a damping coefficient, appeared to supply unsatisfactory results.

Excellent results were obtained by another approach, which uses an analytically
derived correction term. This approach will be presented subsequently.

Correction term

Without loss of generality, we suppose that there exjsk; € R so that we

haveQ, := {z € Q| p(z) > 0} C QL ,[a;,b;]. Let O4(t) be the decomposition
that is defined vidV,(t) and letA,(t) := I [ (t), 7% (t)] be an optimal box
approximation o, () with minimal volume, i.e.

q

boxvol(A, (1)) := [[(rs,(t) — I2,(t)) — min.

=1

For our further expositions we define fof C Q with P,(A/) > 0, the condi-
tional probability density functiop,; on M via

p(w) fweM
w) = Pp(M) !
pu(w) { 0 else.

Usingpg, ), We can compute the conditional expectation vall(&,(t + 1))

for each actual codebook vecttr, (1) under the condition that is the winner
neuron. Note that this implicitly ensuré%(6,(t)) > 0.

We haveFE (W, (t + 1)) = Q™ [E(l,,(t + 1)), E(re,(t + 1))] with

b;
BU(+1) = [ 1+ Do, (X do = [ 1t + D)o, (00) dai,

P 1

b;
Elra(t+1)) = / ot + 1)pa o (X) d = / ot + 1) o, 4(72)

P 1

and
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pé)s(t),i(xi) =

b1 bi—1 bit1 bg T
/ / / / Do (@1, )TV ey . dayy dys . day.
al a;—1 A+1 Qg

Upon considering our above adaptation rule we obtain:

Els(t+1)) = ()

and

E(rg,(t+1)) = rg(t

+a(t) c(ls, (1), 75, (1)) -

SinceA,(t) is an optimal box approximation @, (¢), we may assume that

Ppésu)(As(t)) = / P@S(t)(aJ) dw =~ 1.
k weAL(t)

Therefore, for simplicity, we suppose that the i-th components the inputs
X € O4(t) are uniformly distributed over? (¢), r}(¢)] so that

IS TS .
Per. (1) = 4 TOLO if X = (21,...,29)7 € A1)
O 0 else.
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Hence, we arrive at;
E(rg,(t+1)) = rg(t)

ri*(t) Oé(t) i — T €T;
I oo (RO

)
Ts; (t) (JZ'Z — ls(t)) Od(t)
i /l t)) (ry ; (i — 75,(1)) dz;

84 (t) (rsi (t) - lsl(

+a(t) e(ls,(t), rs,(t))
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By means of the intuitive choice

C(lSi (t)v T's; (t)) = (Tsi (t) - lSi (t)) (37)

we end up with

B (t41)) = 1, — galt) o) ~ b0}

and

E(rs,(t+1)) = rs + 1oz(t)

in terms of some model quantity

(Tsi (t) B lSi (t))
(i) = (1)

Vs, (t) ==

This quantity measures the deviation of the actual interval width from the op-
timal one.

In the following, we have to assure that the intervals are always well defined,
i.e. we always have, (t) < r,,(t) forallt € {0, ..., L}.

Lemma 3.2.1Foranys € {1,...,q}and allt € {0,..., L} we have

[;(t) <rs,(t) = I, (t+1) <rg,(t+1).
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Proof. Let p be the winner neuron for input X(t). Then one easily verifies:
(1) xi(t) < ls,(t) ==

ntr )= ter ) = (1420 0ul) - 1)
— a(t) neigh(z, 2p, 1) (2(t) — 1,(1))

~—
>0 >0 <0

Y
<
w
—~
~
~—
|
S~
il
—~
~
~—

@ alt) > ()
(4 1) Lt +1) = (1+—)<r5i<t>—z5i<t>>

!

+ a(t) neigh(z,, 2,, t) (zi(t) — 7, (t))J

[

-~

> -l

(3) i) € [ls,(1),rs, ()] =

1) (1) — <1+@)<mi<t>—zsi<t>>

+ a(t) neigh(zs, 2p, t) e l; ol (i (t) — rs. (1))
ol neieh(s. o g Ts®) —@i)
(t) neigh(zs, 2p, 1) (rs. (1) — lsi(t))( i(t) = 15,(1))

_ (1 i @) (ras() = 1, (1))

(rs;(t) — 2i(0)) (:(t) —

L, (1))

—2a(t) w (rs,(t) — L5, (1))

<1 ~ ~
<3 (rs; (D)=1s; (1) (%)

V4
VR

[a—y
+

w‘

|

M‘

~_
—~
=

w0
—
~
SN~—

|
o~

w
—~
~
N—
N—

1
(%) max (r —x)(z —1) = Z(r—l)2 forall [, € R

1<z<r
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Becausex(t) < 1forallt € {0,..., L}, we have in all three cases:

(re,(t) = 1,(t) >0 = (ry,(t+1) =1, (t+1))>0.

Note that Lemma 3.2.1 is usually not truenift) > 6.

Hence ifl,, (0) < ,,(0), Lemma 3.2.1 guarantees that, (t),,,(t)) > 0 and
Y5, (t) > 0forallt € {0,...,L}.

Therefore we obtain

W, (t) C (1), r1 ()] = s,(t) €]0,1]
= E(l,(t+1)) <l (t) and E(rs,(t + 1)) > rg,(t)

and

Wo, () = [F(0),ri (0] = Bl (¢ +1)) = L,(t) and E(r,(t 4 1)) = r,(0).

2 2

If we chooselV,(0) € A,(0) we can be confident that,, (L) ~ 1 and there-
fore W, (L) ~ [I¥(L),r(L)], whenever we use our extended algorithm with

7

time steps and. large enough. This means tHéﬁS(L) ~ A,(L) and therefore
Wi(L) is nearly an optimal box approximation 6f,(L) with respect tg. Obvi-
ously the chosen functianis a suitable correction term for the interval shrinkage.

Using this correction term the presented SOBM algorithm is suitable to gen-
erate approximate box decompositiond/ofsee Definition 2.2.1):

Lemma 3.2.2 AssumelV = {IW;,..., W} C Q so thatWW, € BOX(1) is
a nearly optimal box approximation @Wp forp =1... k. Set@Wp(V) =
@Wp nv. Then@WI(V) = {G)WP(V) |p € I} with I := {p‘@WP(V) # 0}
is a decomposition of” with n;, := [I| < k partitions and(©y;, (V'), W) with
W = {W,|p € I} is an approximate box decomposition.

Proof. There exists a smadl > 0 so that for any € I we have
FWu\ O,) + F(O, \ Wy) < 0 (V).

This guaranteeg(©y;, N W,) > f(©yy,) — (V) foranyp € I. SinceOy;, (V)
is a decomposition of” by construction andg' (M NV') = f(M) for any subset
M of Q, this yields:

overlay ; (O, (V), W) >1—ong.
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One easily verifies that for anyc I, we have

fWnJWe) <D fW\Og) =) f(W) =Y f(W.ney,)
DF#D sel sel sel

A

Since) ., f(W;) < f(V), this yields:
. W, N6y
< Z <1 — overlayf(QWI(V),W1)> < on;.

sel

sel

3.3 Comparison SOM - SOBM

Upon comparing codebool& and W, computed by the original SOM and the
SOBM algorithm with the same parameters and initialization, one will observe
clear similarities. In most cases the orientation of the maps and the visually iden-
tifiable clusters are equal (see subsection 5.2.2 for an example).

For each codebook vectar, € 1V one can usually find a codebook bid €
W with w, € W,. Therefore the SOBM algorithm will be at least as powerful
as the classical SOM algorithm. In the following, however, we will show that the
SOBM algorithm has important advantages.

For simplicity we suppose that we have only an one-dimensional input space
2 = R. We want to compute & x 1 map with neurons ands, the Euclidean
distance function andeigh(z,, z5,t) = 0 fort € {0, ..., L}.

For the purpose of illustration, we define two probability density functigns
andp, (see Figure 3.2):

25 if z€[0.8, 1]
pi(x) = 0.5 ifze[-1,0]
0 else

25  ifzel08, 1]
) 0625 ifze[-1,-06]
p®) =0 0625 itz e [-04, 0]
0 else.

We have used the original SOM algorithm and our extended algorithm with
¢ = 0 andc as defined in Eq. (3.7) to compute the codebookspfoand p,.
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p,(%) p,(X)

05f 4 05t ’ ‘
0 L L L L 0 L
-2 -15 -1 -05 0 05 1 15 2 -2 -15 -1 -05 0

Figure 3.2:Probability density functions p; and p,

Table 3.1 shows the results (random codebook initializatioi) = 0.9 and

L = 10000).
P1
SOM ws = —0.5, wsy = 0.9
SOBM(c = 0) | W, = [0.75, —0.25], W5 = [0.85,0.95]
SOBM . = [—1.00,0.00], W5 = [0.80, 1.00]
P2
SOM ws, = —0.5,ws = 0.9
SOBM(c = 0) | W, = [-0.78, —0.22], W5 = [0.85, 0.95]
SOBM W, = [~1.05,0.07], W5 = [0.80, 1.01]

Table 3.1:Codebooks forp; and p,

Obviously, the following three observations are of interest:

e The probability density functiop; is positive on[—1,0] and[0.8,1]. Al-
though these intervals are of different width, we get no hint about this fact,
if we look at the codebook vectors, andws.

e The codebook boxes are box approximations of the partitions, which they
implicitly define. These approximations are perfect if we use the correction
termc as defined in Eqg. (3.7).

e The point codebooks are equal for both probability density functions, i.e.
althoughp; andp, are different, we cannot distinguish them by looking at
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the codebook vectors. The situation is quite different if we use the correc-
tion termc and look at the codebook boxes. Here we see that the interval
width of I, in the case of, is larger then in the case ¢f. If we look
deeper, we see that the difference is approximately the width of the hole
between-0.4 and—0.6 of p,. This is not surprising, because the correction
terms forl¥, are equal in both cases, but the power of the interval shrink-
age forl¥, is lower in the case of,. Therefore the intervall’, can grow
stronger in this case. Although we cannot derive the differences befwyeen
andp, from looking at the differentV,, we at least get a hint that there are
differences.

We have made similar observations for higher-dimensional input spaces and
larger maps.

Additionally we want to show an intriguing feature of the SOBM algorithm.
Look at he following probability density functions:

i (e () e (52

One observes thal/, ~ [ — o,y + o] andW; ~ [uy — o, iz + o]. The
approximation is the better, the larger the difference is betweemd .. Fig-
ure 3.3 showgs with iy = —0.5, s = 0.5 ande = 0.27 and Table 3.2 gives the
corresponding computational results.

p3(z) =

0.8

0.7

0.6

0.5

04t

0.3

0.2

01r

L L L L L
-2 -15 -1 -0.5 0 0.5 1 15 2

Figure 3.3:Probability density functions ps
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P3
SOM ws = —0.5, wsy = 0.5
SOBM(c = 0) | W, = [<0.67, —0.33], W5 = [0.31,0.67]
SOBM W, = [-0.85, —0.15], W = [0.13, 0.86]

Table 3.2:Codebook vectors forps

Although the concept of codebook boxes develops its full power still within
the computation of approximate box decompositions the advantages in compari-
son with point codebooks are already obvious.

A disadvantage of the SOBM algorithm is that it requires more computing
time than the classical SOM algorithm. Although the difference depends on the
chosen implementation, one easily checks that the number of variables that have
to be adapted and to be evaluated are doubled. Therefore in the worst case the
SOBM algorithm doubles the computing time of the original SOM algorithm.

3.4 Computational complexity

To speed up the computing time, one may think about a combination of the SOM
and the SOBM algorithm. In the following we suggest such a combination, which
has turned out to be quiet powerful in our first applications (see chapter 5).

As usual in the original SOM algorithm, we first computein:= u - k steps
the codebook vectors,, . . ., wy with a suitable average number of codebook up-
datesu, e.g.,u = 100, a large learning rate at the beginning, e«d()) = 1, and
with neighborhood adaptation, i.eeigh(zs, 2,,t) > 0 for ¢t < L,. This is often
called theordering phasef the SOM algorithm.

After this ordering phase one usually passes on to another adaptation cycle
with L, > L, adaptation steps, a low learning ratend no neighborhood adap-
tation, i.e.neigh(z;, 2,,t) = 0for s # pandt € [L;, L; + Lo]. After this so called
convergence phasd the SOM algorithm, the codebook vectors are rather stable
and good representatives of the input space and the used probability distribution.

To achieve convergence, in the classical SOM algorifiynis usually much
larger than’,, e.g., a factoB or more. In our combined approach, we et~ L,
and use the SOBM algorithm for an additional convergence phase: We first ini-
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tialize the codebook boxeléfs(()) by using the earlier computed representatives
ws(L2) within the described initialization routine. Then we adapt the codebook
boxes inL3 ~ L, time steps with a low learning rate and no neighborhood adap-
tation.

Summarizing, as a result of this combination — original SOM algorithm plus
additional convergence phase with SOBM algorithm — we obtain a shorter com-
puting time, as if we only use the SOBM algorithm, while getting comparable
results. Additionally we avoid possible negative effects of the neighborhood adap-
tation on the generation of the codebook boxes.

Up to now, we have not answered the question, if the SOM/SOBM algorithm
needs less thath(n?) operations to compute a decomposition of any data set
V' C Q with n data objects and dimensign

Letu denote the average number of codebook updates that is sufficient to guar-
antee convergence of the SOM/SOBM algorithm, i.e. we rf@@d k) adaptation
steps. Since we have to compute the winner neuron and to adapt the codebook
within each adaptation step, each of these steps gtsk) operations. There-
fore we need)(u - ¢ - k?) operations to generate a suitable codebook. In addition,
the computation of a decomposition based on this codebook according to Eq. (3.2)
can be done witl0(q - k - n) operations.

Since for large cluster problems we usually have

u-k<n and ¢g<n,
we totally need
Ow-q¢-kK*+q-k-n)=0(Kk-n)

operations to compute a decomposition of the datad/seta the SOM/SOBM
algorithm.

If we choosek significantly smaller than, e.g. .k = O(log n), this guarantees
that we can compute a decomposition much faster ¢h@art).

Therefore the SOM/SOBM algorithm is a suitable heuristic for the computa-
tion of decompositions.

3.5 Practical extensions

In the following we shortly describe two practical extensions of the SOM and the
SOBM algorithm, whenever they are used for computing decompositions of a data
setV with frequency functiory and homogeneity functioh.
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3.5.1 Pruning

Neuron pruning is a classical technique in the field of neural networks, to simplify
the network architecture and therefore also the corresponding model. In our set-
ting each neuron of the Kohonen layer corresponds with one codebook ugctor

If now ny, is too large after the convergence phase of the SOM, we eliminate those
neurons, whose associated codebook vacianly represents a small number of
input objects, i.ew, with f(©,,,) < & for sufficiently larges;, e.g.,; == L.

Note that after such a neuron pruning, the corresponding decompc@mae
changed, especially, is smaller than before. Pruning has the additional advan-
tage that it prevents the appearing of pseudo clusters (see the earlier discussion in
section 3.1).

3.5.2 Early stopping

A main problem of the SOM algorithm is the fact that the number of training
steps of the convergence phase has to be fixed a priori and therefore must be set
to a large value, because otherwise we cannot be sure that we will reach conver-
gence. If we use our combined SOM/SOBM algorithm, the choice of the length
of the SOM convergence phase is rather uncritical, because we have an additional
convergence phase of the SOBM algorithm. At a first view, the determination of
the right number of convergence steps for the SOBM algorithm seems to be as
problematic as for the SOM algorithm. But if we look closer, we detect a nice
early stopping criterion for the SOBM algorithm:

To guarantee thd®;, (V), W) is an approximate box decomposition, we have
to ensure thabverlap (1) is small. Therefore we have to stop the adaptation of
the codebook boxes,dfverlap(W) > 0o With smalld,, e.g.,6o = 0.001.



Chapter 4

Multilevel Representative Clustering

In this chapter we will extend the basic reduction algorithm (see section 2.3) to
a multilevel approach. The main idea is to iterate the decomposition based rep-
resentative clustering method until the decomposition is fine enough so that the
optimal solution of the reduced cluster problem determines an optimal clustering
of the original cluster problem.

We will present a general approach that can be always used if the number of
clustersk is known a priori. For special homogeneity functions we will addition-
ally describe a powerful extension basedRerron Clusteranalysis that can be
used for cluster problems, where the number of clusters is unknown.

4.1 General approach

Let V = {vy,...,v,} C Q be any data set if2 with frequency functiornf and
homogeneity functiok. A point very critical within the application of the basic
reduction algorithm (see section 2.3) is the fulfillment of the condition that the
decomposition of” has to be a covering of an optinfakluster set of V, f, h).

Suppose now that we have any decomposi@oof 1 with codeboolV and
any optimalk-cluster seC of (W, f, hs). We know that the extensiafof C on
V' is ak-cluster set of V, f, h). Since® is a covering ofC by construction, it is
also a covering of. Therefore we havé; ; (C) = I';4(C). At the moment we
cannot be sure th&b is also a covering of an optiméatcluster set of V, f, h),
what would imply that is optimal. Therefore we try to refin@.

Let ©° with codebook vector/© be the result of a suitable refinement process,
e.g., as it will be described in the next section. If we now compute an optimal
k-cluster seC* of (W*, f, hf), we can extend it t¢‘ and compute the weighted
intra-cluster homogeneity;(C*) = 'y (C*). If T'¢,(C) > T'4(C), the new
clustering is better, i.e0 was definitely not a covering of an optimiakcluster set
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of (V, f, h). With ©° we have a new candidate that is a finer decompositiadh as
and that is a covering of lacluster set with improved quality.

From the above reflections one easily derives the main idea of the new mul-
tilevel representative clustering approach: Refine iteratively the decomposition
0, until no further improvement of the corresponding representative clustering is
observable.

Multilevel Reduction Algorithm

The following algorithm embeds the basic reduction algorithm in a multilevel re-
finement process. Note thathas to be known a priori.

(1) Compute a decompositiagn (based on a codebodk’) with adaptive choice
of ng, k < nip <k < n.

(2) Compute an optimail-cluster set of (W, f, h;).

(3) ExtendC onV: C is ak-cluster set ofV, f, h). Since® is a covering of’, we
havel';;, (C) = I'yn(C).

(4) Refine® so that the new decompositié of 1 with codebookiV’ is also a
covering ofC.

(5) Compute an optimail-cluster set* of (W*, f, hy).

(6) ExtendC* on V: C' is k-cluster set of V, f, h). Since®‘ is a covering o,
we havel';;, (C*) = T';4(CY).

() If Uin, (CY) > ny,vlf(C) then seP := O and go to step (4), else stop.

For the computation o® with adaptive choice of,, and the codebookl’
we can use the algorithms described in chapter 3. In the following section we
will describe techniques for a refinement of an existing decomposition so that the
guality of the corresponding codebook clustering increases.

4.2 Adaptive decomposition refinement

Let C be any optimalk-cluster set of(V, f, h) andC be any nearly optimat-
cluster set oV, f, h). Further let®© := {©,,...,0,, } any decomposition of’
with codebookiV = {wl, . wnk} so that® is a covering ofC, but not ofC.
Then there exist cIustel@’l,(JQ e, Cy,C, € C and partltlonsﬁ)s,@ € ©so0
thatCy, N O, # 0, C, N O, £ 0, (Jlm@ # () andO, C01,® c Cs.

Suppose now tha is a decomposition of := ©, U ©,. Then the refined
decompositior®* := 0\ {0,,0,} U{O©,NO,|6, € O} U {G)Z- no,|o, € B}
would be better fitting t@, while still being a covering of. The problem is how
to identify the partition®, ande,,, without knowingC.
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The following qualitative observation offers a heuristic solution: Sidds
optimal, we havehf((Jl,Cl) > 0 and thereforei (0, N Cy,0, N C;) > 0.
But this givesh;(©,,0,) > 0, which is equivalent tdi(w,, w,) > 0. So if
we refine all partitions withh (w,, w,) > 0, we can be sure to refine also all
partitions which destroy the covering propertyafor C. Note that partitions that
are already fitting t@, are also fitting after a refinement.

Decomposition refinement algorithm

Let © be any decomposition df with codebookV := {wy, ..., w,, }.

(1) Identify all indicess, p € {1,...,n} S0 tha%f(ws, wy,) > o With o > 0. Let
I be the resulting index subset.

(2) SetV := U, O,

(3) Compute a decompositic@n of V' with 7, partitions®;.

(4)Seto :=0\{06,]|s€I}U{6;,NO,|0,€O,s¢c I}

Obviously the above algorithm increases the number of partitions froto
maximallyn,, + (7, — 1)|1] partitions. Often several of the new partitigAsN O,
are nearly empty. Therefore step (4) is improved by the following conditin:
is replaced only by thog®,; N ©,, with £(©;N16,) > 0. Note that in this case the
refined© has to be adapted slightly to guarantee that it is still a decomposition.
This can be easily done, if we use the SOM algorithm for the computation of the
decomposition of/:

Let IV be the codebook dd generated by the SOM algorithm. For each [
we setl, := {i| f(©, N O,) > 0}. Then the reduced codebodK;, defines a
decompositior®y,, of V. If we replaceO, by {6,; N0, |6,,; € Oy, } forall
s € 1, the refinedd is still a decomposition o¥.

Instead of the suggested refinement algorithm, one could also think about us-
ing methods that tries to grow the SOM adaptively [26, 17]. In this case one has
to assure that the growing process is driven by the homogeneity furictibthe
cluster problem is geometrically based, this should be no problem.

4.3 Approach based on Perron Cluster analysis

In this section, we will extend our general multilevel cluster approach by using
results and methods from the theoryRdrron Clusteranalysis that has been re-
cently developed by BUFLHARD ET AL.. We will show that for cluster problems

with a stochastic homogeneity functions, this extended approach can be used for
a fast identification and efficient description of clusters, even if a correct number
of clustersk is not known a priori.
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4.3.1 Theoretical background

In the following, we will give a short description of the theory of Perron Cluster
analysis. For details and proofs see [16, 13].

Suppose we have a primitive stochasticx n;, matrix S, i.e. there exist an
m € N so thatS™ > 0, the entriesS; ; are non-negative and the sum of each
row equals one. As a consequence, the constant vector(1,...,1)" is an
eigenvector corresponding to the simple eigenvalue- 1 of S. For all other
eigenvalues\; of S we havel\;| < 1.

Letm = (my,...,m, )" any strictly positive distribution so that'e¢ = 1 and
778 = =T, We suppose that is reversible with respect to, i.e. DS = STD?,
whereD := diag(,/7;) is called aweighting matrixof S. If S is reversible, it
is self-adjoint with respect to the weighted scalar product,y >.:= 27 D%y
and consequently, all eigenvalues are real. Additionally there exist a basis of
w-orthogonal right eigenvectors, which diagonalizeand for every right eigen-
vectorY there is an associated left eigenvector= D?Y’, which corresponds to
the same eigenvalue.

In the following let/y, . . ., I;, any disjointindex subsets wit) C {1,..., ny},
ped{l,... k}, andU’;:1 I, ={1,...,n}. Based on these index subsets we de-

fine a so called¢oupling matrixS := (81_9,1p)1§5,p§k via

S, =y el Z (4.1)

i€ls gelp Ze]?

Lemma 4.3.1 The matrixS is stochastic and reversible with respect to the distri-
bution# := (71, ..., 7)" wherer, := 3>, .

Proof. Sinces is stochastic, i-eZ?L S(i,7) = 1for 1 <i < ng, we have

k
> S, = 2 ZZS i-d)
p=1

ZEIS 5 p= 1 jel,
7T’L Z
= 2= Zé‘w > =1
ZGIQ ’LEI@ S

and therefores is stochastic. We further have

sS1,1, = ZZ%-S(Z’,]’) forl <s,p<k.

icls jel,

SinceS is reversible, i.e.m;S(i,j) = m,;S(j,i) the reversibility ofS follows
immediately. O
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We are interested in index subsdis. . ., I, that lead to a nearly diagonal
coupling matrix:

Definition 4.3.2 Choosep € {1,...,k}. Then we call/, an almost invariant
aggregate ofS, if S;,;, ~ 1. If I, is an almost invariant aggregate o for all
pe{l,...,k}, wecalll,..., I, acovering set of almost invariant aggregates of
S. In this case we calt an optimal number of almost invariant aggregatesSof

One easily checks that almost invariant aggregates correspond to a permutation
of S so that the matrix is nearly block-diagonal:

Lemma4.3.3Letly,..., I, C {1,...,nx} any covering set of almost invariant
aggregates o8. Then the indice$1, ..., n;} can be ordered so that the matrix
S is of block-diagonally dominant form:
D171 ELQ e El,k:
S _ D + E _ Egyl D272 PPN Egyk
EkJ Ek72 e Dk,k

Herein the perturbation matrig’ satisfies®” = O(¢) wheree is some perturbation
parameter.

Supposing that the conditions of Lemma 4.3.3 hold, we set:
S(e) == 8(0) + SV + 8@
whereS(0) = D is the unperturbed part &f.
It follows from perturbation theory [45] that the spectrum&i) can be di-
vided into two parts:

1. ThePerron Clusterincluding thePerron Root\; = 1 and thek — 1 eigen-
valuesiy(e), . .., A\x(€) approaching for e — 0.

2. The remaining part of the spectrum, bounded away frdar ¢ — 0.

The eigenvectors corresponding to eigenvalues of the Perron Cluster have a
useful property:

Lemma 4.3.4 Let A\ (e), ..., A\x(e) be the Perron Cluster a$. Then there exits a
covering set of almost invariant aggregdte. . ., I, of S so that the eigenvectors
Yi,..., Y, € R™, corresponding to\ (¢), . . ., A\x(¢), are almost constant on each
I, i.e. we have foralk € {1,... k}:

i,jel, = (Vpe{l,....k}) Y, (i) = Y,()).



64

Multilevel Representative Clustering

The above theoretical results lead to a powerful method for the determination
of an optimal numbek of almost invariant aggregates &f

Suppose there exist — a priori unknown — index subgets. ., I, so that
the conditions of Lemma 4.3.3 hold. Then there exists,av thatS(e,) = S. If
e, 1S sufficiently small, we can find a large gap within the spectrur§ between
the eigenvalues, and )\, of S. In this casek is an optimal number of almost
invariant aggregates d.

But we cannot only determine an optimal number of almost invariant aggre-
gates, also the index subsets themselves can be computed based on Lemma 4.3.4:

LetYy,..., Y, € R"™ be the eigenvectors corresponding to the eigenvalues
A(€), ..., \(e) of §. Then the identification ok groups of nearly identical
k-tuple Y (i) := (Y1(i),...,Y%(i))T of eigenvector components associated with
each: € {1,...,n}, is sufficient to identify the covering set of almost invariant
aggregates,, ..., I, of S. Obviously such a grouping can be done via the com-
putation of ak-cluster set of the séty := {Y(1),...,Y (nx)} with frequency
function fy (v) := 1 for v € V4 and a suitable homogeneity functiég, e.g.,
hy = hg, Whered is a distance function iR*.

4.3.2 Stochastic homogeneity functions

In the following we suppose that the homogeneity functiois stochastic in/
with respect tof:

Definition 4.3.5 We call any homogeneity functién 2x Q2 — [0, 1] stochastic
in V with respect tof if we have

> h(v,w) =1 forallv e V. (4.2)

SetP(v,w) := h(v,w)f(w) for anyv,w € V. We can directly extend® on
subsets of/, if we define for any non-void subséis, V, C V:

PV, Va) =Y Y f . (4.3)

veVT weVa

Using earlier definitions (see section 2.3) we get:

Lemma 4.3.6 P(V;, V3) = hy(Vi,Va)f(Va) for any non-voidv;, Vs C V.
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Proof:

~

b (VL) = W SO b, w)f(v) flw)

) 1 weVs
= T 2 2 Pl
1 P(V;, V)
f(V) f(Va) ( LR f(V2)

We have a sort of reversibility aP with respect tof:
Lemma 4.3.7 f(v)P(v,w) = f(w)P(w,v) forall v,w € V.

Proof: Sinceh is a homogeneity function, we ha¥i¢v, w) = h(w, v) and there-
fore also

f)P(,w) = f(v)h(v,w)f(w) = f(v)h(w,v)f(w) = P(w,v)f(w).

forallv,w e V. O
From Lemma 4.3.7 directly follows:

FVI)P(Vi,Va) = f(Va) P(Va, 1)
for all non-void subset®;, V; C V.

Based orP and a decomposition &f we can define a stochastic and reversible
matrix S:

Lemma 4.3.8Let© := {O4,...,0,,} be any decomposition 6f. Define the
ny Xy MatrixS via S(i, j) == P(6;,0;). Further setr := (m, ..., m,,)T with
e 1= J;((e;))_ Then we have:

(7) Ifforanyi,j € {1,...,n;} there existp,,...,p,, m € N, so thatp; = 4,
pm =7 andS(py, pry1) > 0for 1 <t < m — 1, then the matrixS is primitive.
(77) The matrixS is stochastic.

(ii1) mis a strictly positive distribution with”e = 1 and7?S = 7.

(7v) The matrixS is reversible with respect to.

Proof:
(7) is obvious andyi) follows directly from the fact thak is stochastic an@® is
a decomposition of the data dét
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(¢ii) Obviously we haver’e = 1. Further letS,; := (S(1,)),...,S(n,j))" be
the j-th column of the matrixS. Using Lemma 4.3.7 we have:

WTS*J' = Zf @za@ )
RS J(0)P(v.0)
‘m@y ;%

- ZZZf

i=1 v€EO; WEO;

- ZZZf

i=1 v€O; WEO;

S DY) 3) DYURY

we@ i=1 vEO;
we@

(v) Foranyi,j € {1,...,nx} we have:

mS(i,j) = f;((%))ﬁ(@ 0;)
1
- f—zz
€O0; weo;
_ J® vj ZZ Jw)Ptw,o) s ).
€0, vev; J

O

Based onS we can use Perron Cluster analysis to determine an optimal num-
berk and to identify the almost invariant aggregates off he following Theorem
shows that a covering set ffalmost invariant aggregates Sfcorresponds to a
nearly optimalk-cluster set of ©, f, iz) what we know is equivalent to a nearly
optimal representative clustering for any codebtiolof © (see Theorem 2.3.9).
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Theorem 4.3.9 Letk be an optimal number of almost invariant aggregates of the
matrix S and letly,..., I, C {1,...,n} be the corresponding covering set of
almost invariant aggregates. Then we have:

(i) + ZS 1\ Srr, > 1 — e, with smalle, := 1 — min, Sy, 1,

(17) If we setC = {C,... Ck} with C, = {0, ]p € I} thenC is an nearly
optimalk-cluster set of ©, f, ), with ' ( ) = ZS L S1.1L

Proof:
(1) Since eacH, is almost invariant, we hav®;, ;, ~ 1fors=1,... k.
(77) ObviouslyC is ak-cluster set oB. We have:

0 = FY s 3 AT

V1 €Cs VoeCs

- kz ZZ (051032 (0,,)f(6)

plEIs pQEIs

= kZ Z Z @mv@m @ 1)

Km

(V2)

plefe p2€ls
- % Z Z Z (p1,p2) f(Op,)
plefe p2€ls
= pEIs ))S(p17p2)f(@p1>
k Z p;s p; ZpEIg f(®p)

. 2 : pGIg 2 : 2 : p17p2 7Tp1
k s
plels pQGIs Zpe[s p
1
- - E st,fs'
k
s=1

S_ince% S S <1, we havel'; ;. (C) < 1 and therefordi) guarantees that
C is nearly optimal. O

If we setC := {C1,..., Cy} with C; := {,¢;. ©,, then using Theorem 2.3.9
and Lemma 2.3.5 we hatg ,(C) = Ui, (C) and therefor€ is a nearly optimal
k-cluster set of V, f, h).
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Note that it is possible that there exist differérgo thatt is an optimal number
of invariant aggregates. But this is not surprising, because cluster problems might
also have different correct numbers of clusters.

Multilevel Reduction Algorithm for stochastic homogeneity functions

We can use our results for a special version of the multilevel reduction algorithm
that can be used even if the number of clusteisnot known a priori:

(1) Compute a decompositigh (based on a codebodk’) with adaptive choice
of ny, ny <k < n.

(2a) Compute the matrix.

(2b) Compute an optimal numbkiof almost invariant aggregates&ivia Perron
Cluster analysis.

(2c) Compute an optimdl-cluster set of Vy, fy, hy), leading to a covering set
of k almost invariant aggregatés, ..., [, C {1,...,nx} of S.

(3) SetC := {C4,...,Cy} with C; = |J,.; ©,. ThenC is ak-cluster set of
(V, f,h) with T ,(C) = £ S°F_ Sy 1.

(4) Refine® so that the new decompositiéi of VV with codebooki’ is also a
covering ofC.

(5) Repeat the steps (2a)-(2c) and (3) véthinstead o0, leading to &:*-clustering
C of (V, f,h).

(6) If k* # k then se® := ©° andk = k‘ and go to step (4)

(M) IFT¢n(C) > Tfu(C), then seB := ©° and go to step (4), else stop.

pEls

Identification of discriminating attributes based on Perron Cluster analysis.

In section 2.4.2 we have presented an algorithm for the identification of discrimi-
nating attributes. We now give a simple heuristic criterion to decide if an attribute
setA(JY) is redundant or not:

LetC := {C4,...,Cy} be any optimak-cluster set of a data sét with a
covering®y, that is defined based on a codebdbkaccording to Eq. (3.2). Fur-
ther let W (J) be the projection ol on Q(J) and Oy ;) = {O1,...,0,,}
be the corresponding decompositionlof.). If the eigenvalue spectrum of the
matrix S corresponding t®yy, is nearly the same as the spectrum of mafiix
corresponding t®y (), then the attribute sed(.J¢) is redundant.

The above criterion uses the obvious fact that an attributd 6&t) is redun-
dant, if the cluster structure of the cluster problem is independent of the attributes
in A(JY).
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Natural and artificial stochastic homogeneity functions

For a reversible dynamic system, the homogeneity functignas defined in
Lemma 1.1.4, is stochastic:

Lemma 4.3.10 Let (X (¢)):—1. 7 any representative trajectory of lengihe N
of a reversible dynamic system @y i.e. |{t|X(t) = v, X(t + 1) = w}| =
{t| X(t) = w, X (t+ 1) = v}| forall v,w € Q. Then the homogeneity function
hs is stochastic with respect to the frequency functiahat is given byf(v) :=

{t] X (&) = v}l.

Proof: We havef (v)S(v,w) = f(w)S(w,v) and sohg(v, w) = ) for any

v,we V. Since)_ ., S(v,w) = 1forallv € V, hg is stochastic. O

Note that the condition fof primitive (see Lemma 4.3.8) is true for any de-
composition ofV := {X(¢)|t = 1,...,T} because one easily checks that for
all v,w € V, there existy,...,v,, € V,m < T, so thatv = v, w = v, and
S(Uz‘,UH_l) > (0 for1l <i<m-—1.

In addition to natural given stochastic homogeneity functions, we can also
construct them artificially: For each homogeneity functiotinere exists a trans-
formation into a stochastic homogeneity functfowith respect to a suitable fre-
qguency function:

Lemma 4.3.11LetV be any data set if with homogeneity functioh and fre-
quency functiory. Setf(v) := >, oy h(v,w)f(v)f(w) for all v € Q. Define

h:QxQ—[0,1]via

h(v,w) = h(v,g;)fﬂ(ﬂv)f(w) v,w € ()

f(0)f(w)

Thenh is a stochastic homogeneity function with respe(i.to

For well structured simple cluster problems, i.e. cluster problems with clusters
of nearly identical size and a nearly identical homogeneity and a nearly constant
frequency function, we havg(v) ~ const. and thereforéi(v, w) ~ ¢ - h(v, w),
wherec is a constant value. This guarantees that an optimeluster set of
(V, f, h) is nearly an optimakt-cluster set ofV, f, h). Note that in the case of ge-
ometric cluster problems with a distance functibrve usually haveé (v, w) > 0
for nearly allv, w € V, becausé, vanishes only for objects with maximal dis-
tance. Therefore the constructed matfixwill be primitive. We will use this
observation to compute an optimal number of clusters for our simple example
from section 1.4:
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Example: Determination of a correct number of clusters

Obviously the cluster problem for the data $éts given by Figure 1.3 is well
structured and the frequency functigris constant withf(v) = 1 forallv € V.

Forh = hy with d = deyqiqa We getf(v) € [4.90,7.24] for v € V. To reduce the
variance we slightly modify our homogeneity function. We set

d(v,w)

(max, wev d(v, w))

,v,w € €.

Obviously this homogeneity function is still suitable for the computation of ge-
ometrically based clusters. Now we géw) € [3.81,5.78] for v € V, i.e. the
variance has decreased. The modificatioh bfs no influence on the ranking of
optimal k-cluster sets for differerit. We still cannot use the valués ;,(C(k)) to
determine the optimal number of clusters (see Table 4.1).

| optimalk-cluster set (k) | Tn(C(K)) |
C) =V 4.85
C(2) :={{a,b,c,d,e, f},{g,h,i}} 3.67
C(3) :={{a,b,c},{d,e, f},{g,h,i} 2.72
C(4) :={{a},{b,c},{d,e, f},{g,h,i}} 2.10
C(9) == {{a}, {0}, {c}. {d}. {e}, {/}. {g}. {n}, {i}} | 1.00

Table 4.1: Example: Optimal k-cluster sets of(V, f, h) for different & with
modified homogeneity function.

Based oni and the trivial decompositio®, := {{v}|v € V1, we can
compute the matrix§. The spectrum of is given in Table 4.2:

LM LA [ A [ A [ A [ A | A [ A | A |
[1.000[ 0.577] 0.165] 0.046] 0.041] 0.025] 0.018] 0.015] 0.010]

Table 4.2:Example: Spectrum of matrix S.

Obviously the large gap between the Perron Cluster and the remaining part of
the spectrum is at = 2, indicating thatS has two almost invariant aggregates.
Therefore the optimal number of clusters for our cluster problem isalsthe
fact that the distance between the Perron Rootand also very large, is a result
of the artificial construction of the stochastic homogeneity functionNe will
see in chapter 5 that for natural stochastic homogeneity functions, as e.g., the
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dynamically based functiohg, the Perron Cluster is always approachingf at
least there exist two clusters within the data.

Since the eigenvector associated with the Perron Root is the constant vector
e=(1,...,1)T, we only need the eigenvectbs associated with,, to compute
the almost invariant aggregates.

We haveY, = (—0.35, —0.21, —0.20, —0.13, —0.13, —0.13, 0.54, 0.53, 0.42)".
Comparing the components Bf we can directly identify the almost invariant ag-
gregates/; := {1,...,6} andl, := {7,...,9}. One easily checks that this
solution corresponds to the optimakluster set(2) of (V, f, h).
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Chapter 5

Applications

5.1 Conformational analysis of biomolecules

5.1.1 Introduction

The analysis of biomolecular structure and function is one of the real challenges
of scientific computing nowadays. Advances in this area will have tremendous
impact on the design and identification process of new pharmaceutical drugs. The
enrichment of chemical databases with structural and functional information will
allow the use ovirtual screeningprocedures, reducing time and costs of the phar-
maceutical research decidedly.

The key concept to characteriggructurehas become the characterization in
terms ofgeometric conformationoften just called conformations in the liter-
ature. In contradiction to structurénction seems to depend on the dynamic
properties of the molecule and therefore should be rather characterized by what
has been callethetastable conformationény type of conformations consists of
sets of possible molecular states. In geometric conformations such sets are de-
fined via the geometric similarity of different states. In metastable conformations
such sets are defined via the high probability of the molecule to stay in such a set,
once itis in such a set.

In classical molecular dynamics [2] a molecule is modeled by a Hamiltonian
function

H(q,p) = $p"M'p + V(q),
whereq andp are the corresponding positions and momenta of the atams,

denotes the diagonal mass matrix, ane a differentiable potential. The Hamil-
tonian functionH is defined on the phase space. The corresponding canonical
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equations of motion
g = M1p, p = —gradV/ (5.1)

describe the dynamics of the molecule. The formal solution of (5.1) with initial
statexy = (¢(0),p(0)) is given byz; = (q(t), p(t)) = @] x¢, whered], denotes
the flow.

In [14] a first attempt had been made to identify metastable conformations
on the basis of the so-called Perron-Frobenius operator. That approach, though
principally opening the door to the new concept of conformation dynamics, had
been more or less restricted to toy molecules. In a further step, performing some
momenta averaging based on the Boltzmann distribufiofor given heat bath
temperature, the Perron-Frobenius operator in phase space has been replaced by a
different Markov operator in position space [58, 59]. This new operator has much
nicer theoretical properties and it may be interpreted as the transfer operator of
an underlying Markov chaiX (¢). This Markov chain can be realized via Hybrid
Monte-Carlo (HMC) methods [22]:

e random choice of momenta from a Gaussian distribution,

e deterministic propagation of the molecular system by the figwwith po-
tentialV and over short time,

e acceptance or rejection of new configurations by an appropriate transition
kernel K of the underlying Markov process, e.g., Metropolis-Hastings.

Like classical Monte-Carlo, HMC also suffers from possiioggpingin local
potential wells. In order to overcome this unwanted effect, an adaptive temper-
ature version has been worked out [22] that embeds the given problem into a
family of problems with flow®d{;* in terms of an embedding parametes [0, 1].

At s = 0, only a few metastable subsets need to be identified, whereas ata

rich structure of conformations might arise. Two types of embedding are in quite
common usetemperature embeddirgnd potential embeddingUpon examin-

ing the equations of motion, one immediately sees that, in the context of HMC,
temperature embedding can be realized by the following flow:

O = @57, (5.2)

which requires a scaling of the potential and the time step of propagation [58].



5.1 Conformational analysis of biomolecules 75

Any kind of embedding stimulates the idea of a hierarchical algorithm con-
sisting of the following steps:

1. Simulate the molecular system for a specific parameter (say, high tempera-
ture), which causes the flow to overcome specific energy barriers.

2. ldentify metastable subsets.

3. Increase the parameter (say, lower the temperature), but restrict the simula-
tion to one of the metastable subsets. Go to step 1.

This algorithm will generate a hierarchy of subsets that can be sampled indepen-
dently at each level. The restriction of an HMC-simulation to a given metastable
subsetC, requires only a slight modification of the Markov kerrf€lto K, [23].

The additional rule is that any configuration outside the subsetill be rejected.
Detailed balance still holds for this modified Markov kernel so thatis still
reversible. Sinc&’ is metastable, only a few rejections will be expected with
respect to the new rule. Moreover, trapping should thus be avoided, since energy
barriers towards all other metastable subsets can be ignored. A further exploita-
tion of this embedding structure is given in [23], where an uncoupling/coupling
technique has been suggested and worked out.

A schematic diagram of such a hierarchy is given in Figure 5.1. As can been
seen there, each cluster needs to be described by appropriate boundaries. To save
computer time over the whole simulation, one is interested in efficient descriptions
of the identified metastable subsets (see section 1.3).

$=0.20 1
2
50.30 3 ° 6 7
4
| | Lo

Figure 5.1:Hierarchical scheme of clustering combined with parameter em-
bedding. The numbers denote metastable conformations at different levels of the
hierarchical embedding scheme.
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As described in section 1.1, the problem of finding metastable conformations
can be transformed into a cluster problem, if we use a sufficiently long Markov
chain X (¢) as a representative trajectory. Sinkét) is reversible (see [59]), we
can use Perron Cluster analysis to determine an optimal nuinbemetastable
conformations (see section 4.3).

Based on an uniform box decomposition, the conformations of small molecules
like n-pentandnave been recently analyzed successfully [58]. For larger molecules
such a simple decomposition is not possible, because the number of boxes ex-
plode (see section 2.2). Therefore the use of approximate box decompositions,
computed via the SOBM algorithm, allows for the first time the conformational
analysis of molecules of practically relevant size.

5.1.2 Adaptation of SOM and SOBM to cyclic data

One easily checks that the computing time of the SOM and the SOBM algorithm
strongly depends on the dimensionfaf The dimension of the position space of
molecules is three times the number of atoms and therefore it is very large even
for small molecules. The following observation leads to a reduction of the di-
mension: For each molecule there exists a set of so callstbn angleswhich
are sufficient for a rough reconstruction of the spatial position of each atom of
the molecule together with the corresponding equilibrium bonds and angles [39].
Without loss of generality we assume each torsion angle withinr, 7|. Then
we define? as the space spanned by the torsion angles of the molecule. Since the
analysis of cyclic data is different from non-cyclic data (see [24] for a compre-
hensive introduction), it is not surprising that we have to adapt the SOM and the
SOBM algorithm to cyclic data.

First one has to choose a suitable distance measure. We suggest to use the
distance on the-dimensional unit circle, i.e. we defirkst : QO x Q — R via

dist(z,y) == F(di(z1,91), - - ., dg(2q,yq)) == Zd iy i) 1/2
with  d;(z;,y;) := (sin(x;) — sin(y;))* + (cos(xi) — cos(y;))?
for z,y € Q, wherez; andy; denote the values of théh torsion angle.

Next we have to assure that the codebook is adapted in the right direction (see
Figure 5.2). For the SOM algorithm this requires that the input vegtoror the
old codebook vectow;(t), respectively, may need to be transformed first, before
the new codebook vectar,(t + 1) can be computed according to Eq. (3.5):
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-180 -180
+180 +180

Figure 5.2:Example: Adaptation of the codebook vector (grey) in direction
of the input vector (black) on the shortest way.

Cyclic Transformation Rules (SOM)

1. IF w,(t) >0 AND z;(t) < 0 AND abs(ws,(t)) + abs(z;(t)) > 7
THEN z;(t) := x;(t) + 27

2. IF w,,(t) <0 AND z;(t) > 0 AND abs(wy,(t)) + abs(x;(t)) > =
THEN wy, (t) := ws, (t) + 27
Note that we havebs(z) := /22 for = € R.
After the new codebook vector has been computed, eventually it must also

be transformed so that each componift(t + 1) is inside the interval—x, 7.
Figure 5.3 shows an one-dimensional example for the first case.

~""""1. Transformation” """~~~

.- 2. Adaptation ~
Ho—@ 1 © —o—@ 1 !
-180 . 0 +180 +270 +360

~-___ 3. Transformation - -~ -

Figure 5.3:Example: Transformations of the codebook vector (grey) and the
input vector (black) to guarantee correct adaptation.

To use cyclic data within the SOBM algorithm, we need more sophisticated
rules, because we have to distinguish between normal and complementary inter-
vals:

If I,, < r,,, we calll,, := [I,,,r,,] a normal interval. But we allow also the
casel,, > r,,. In this case we hav®d/, := [—m, 7]\ [r,, 1], i.e. W, is the
complementary interval df., [,,].

First we have to refine function: [—=, 7]*> — [0, 1] used within the codebook
adaptation rules (see Eq. (3.7)):
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Case 1la < b. Set

1 if © ¢ [a,b] Adi(z,a) < di(x
g(a,b,x) = { 0 if © ¢ [a,b] Ndi(x,a) > di(z

—~
=
=

=

b—x
(F) else

with ¢([a, b]) := (b — a).

Case 2a > b. Set

1 if x € [b,a] ANdi(z,a) < di(z,b)
0 if z €[b,al Ndi(x,a) > di(z,b)
g(a,b,z) = Qizr[éba)x) if x¢[ba]Nz>a
Ty ol

with ¢([a, b]) := 27 + (b — a).
Next we have to specify the necessary transformations to guarantee a correct
adaptation of the codebook boxes:

Cyclic Transformation Rules (SOBM)

If W, (t) == [I,,(t), 7, (£)] with I, () > 7, (¢) or if z;(¢) is not inside the comple-
mentary intervalV, (t), i.e. 2;(t) € [r,,(t), 1, (t)], then we have to consider the
earlier defined cyclic transformation rules for the SOM algorithm, Wittt) and
r,,(t) instead ofiV,(t). But if z;(t) is inside the complementary intervial,, (¢),

i.e. x;(t) & [rs,(t),1s(t)], one has to consider slightly different transformation
rules to assure that the boundaries are adapted towards the correct direction:

IF (L, (£), 74, (£), 2:(1)) > g(—ry,(£), —Ls, (£), —:(t)) THEN
Use the cyclic transformation rules (SOM) for the adaptatioh, ¢f).
IF z;(t) > r,(t) THEN
First setz;(t) := z;(t) — 2w, afterwards adapt, (¢) directly
(i.e. without further transformation).
ELSE
Adaptr, (t) directly.
ELSE
Use the cyclic transformation rules (SOM) for the adaptation @t).
IF z;(t) <, (t) THEN
First setx;(t) := x;(t) + 2, afterwards adagt, (¢) directly.
ELSE
Adapti,, (t) directly.
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If the width of the intervall, (t), rs,(t)] is nearly2r, then one observes some-
times the artifact that left and right boundaries interchange so that the interval
becomes “too small”. In this case the adaptation step has to be skipped and the
interval[—27 + ¢, 21 — €] has to be fixed as the new valueldf (¢ + 1).

5.1.3 Numerical results: HIV protease inhibitor

The fact that the cleavage of the HIV polyprotein by HIV protease is essential for
viral propagation, has made the HIV protease a key target for the design of drugs
against AIDS. The recent development of HIV protease inhibitors has dramati-
cally improved the therapeutic outcome for many AIDS patients. Unfortunately,
these inhibitors are very expensive and the effectiveness of therapy can encounter
problems with drug-resistant viral strains. So there is further strong interest in the
development of other classes of HIV protease inhibitors [10]. It is obvious that
with a deeper understanding — including knowledge about the dynamic behavior
— of the existing inhibitor molecules, it becomes much easier and cheaper to find
and to design new inhibitor classes. In the following we present the numerical
results of the conformational analysis of the HIV-protease inhibitor VX-478.

The inhibitor VX-478 of the enzyme HIV protease consist§@atoms. The
molecule was parameterized by the Merck molecular force field (MMFF) [37].
Figure 5.4 shows one possible state (configuration) of the molecule.

Figure 5.4:Possible configuration of the HIV-protease inhibitor.
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As noted in Eq. (5.2), the sampling of a thermodynamic distribution at vari-
ous temperatures within a temperature embedding can be realized by a correlated
scaling of time steps and potential [58].

The Hybrid Monte Carlo (HMC) simulations are performed with temperature
dependent time steps (fs = femtoseconds)

1.4

Each new configuration is generated by a propagation of the system over a random
length betweer( and80 time steps and each simulation consists imfdependent
Markov chains. For every configurati® torsion angles are stored which are
sufficient for a rough reconstruction together with the corresponding equilibrium
bonds and angles. Convergence of the HMC-simulation is reached, as soon as the
Gelman and Rubin quotier® [34, 9] is sufficiently close to the value Note
that the choice of what is “sufficiently close 1dis rather critical, because on the
one hand one is interested in fast simulations, but on the other hand a worse con-
vergence bears the risk of sampling not the whole configurational space. In [30]
the focus was definitely on fast simulations, leading to a sampling of only parts of
the configurational space. Together with a slight different choice of pararheters
this has led to a detection of conformations even at rather high temperatures. In
the following the results of simulations with much better convergence properties
are presented, where the Gelman and Rubin quotient accomplishes the rigorous
condition||1 — R|| < 0.05.

Based on the five Markov chains we have constructed the daté, see fre-
guency functionf and the homogeneity functidiy as described in section 1.1.
The computation of the approximate box decompositiofr ofiith respect tof
was done automatically via a combination of the SOM and the SOBM algorithm
with pruning and early stopping (see section 3.3+3.5). Note that the chosen pa-
rameters are comparable with the suggestions in the SOM literature [48]:

1. As an upper bound for the number of partitiéhswe have chosen an upper
boundk := 600, what is large enough to guarantee robust results, i.e. nearly
equal results, ik is changed slightly.

2. The computation of a5 x 24 SOM was done by performing- k ordering
steps (witho(0) = 1.0, 7 := Nyaussian aNdy(0) = 12) andu - k convergence
steps (witha(0) := 0.1, n = Nyusne @nNd~y(0) = 1), whereu := 50 denotes
the average number of codebook updates.

In [30] shorter time steps and a propagation of fixed length were used. This has reduced the
flexibility of the molecular system.
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3. We have initialized the SOBM codebook by using only the codebook vec-
torsw, with f(0,,,(V)) > 2u. Then we have performed convergence steps
(with a(0) := 0.005, 1 := Npusme andy(0) := 1), until the overlap between
the codebook boxes has exceedddt. We have used the final codebook to
derive an approximate box decompositionoaccording to Lemma 3.2.2.

Cluster identification

For the cluster identification, we have used our extended multilevel approach.
First we look at the results, without decomposition refinement (see Table 5.1):

| 7K | N | k [ spectrum| coupling matrix| overlay [%] |
1.000
0.830
900 60000| 53 0.805 1.000 26.5
0.791
1.000
0.930
0.885

700 | 31000/ 72| 0.876 83?;‘ 88;2 405
0.860 ' '
0.795
0.790
1.000
0.890
700-Cy RS | 60000| 65 0.820 1.000 355
0.798
0.768
1.000
0.896
700C; RS | 42000| 92| 0.875 1.000 36.4
0.824
0.820

Table 5.1:Hierarchical temperature embedding for HIV protease inhibitor
with resimulation atlevel 7 = 700K (N = number of configurations per Markov
chain, k = final number of codebook boxes).

While for 7 > 900K the Perron cluster analysis only identifies one confor-
mation, one observes a large spectral gap between the secos@ and the third
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(0.885) eigenvalue of the transition matr& at level7 = 700 K. To prove the
metastability of the identified clustef andC', a resimulation at the same level
was performed. As expected the gap betweenlthad the second eigenvalue
grows for both clusters, but there are also large gaps between the se&a)l (
and the third eigenvalu® §20) for the first cluster and between the thifdq75)

and the fourth {.824) eigenvalue for the second cluster. But if one looks again
at the original spectrum at lev&l = 700 K, one finds another large gap between
the fifth (0.860) and the sixth {.795) eigenvalue. Obviously the configurational
space at level' = 700 K decomposes into two strongly metastable clusters, but
also into five weaker metastable subsets (see Table 5.2).

| T[K] | spectrum| coupling matrix | overlay [%] |
1.000
0.930 0.908 0.021 0.024 0.031 0.018
0.885 0.014 0.874 0.022 0.001 0.090
700 0.876 0.013 0.018 0.879 0.006 0.085 40.5
0.860 0.044 0.002 0.015 0.896 0.043
0.795 0.004 0.029 0.033 0.006 0.928
0.790

Table 5.2:Weaker metastability: Five conformations for HIV protease inhibitor
at level7 = 700K (31000 configurationsy2 final codebook boxes).

Next we have refined the decomposition after step (2) and performed step (3),
until the decomposition was fine enough. At le?el= 700 K, we have achieved
the results presented in Table 5.3.

The number of final codebook boxes has increased, leading to a larger second
eigenvalue ({.952), a larger gap size and a better coupling matrix. Additionally
the overlay has increased7(7% in comparison witht0.5%), while the overlap
still has remained near zero.

For a temperature embedded simulation at I&vek 500 K inside the both
metastable clusters, andC', our cluster method computés$Coo, Co1, Coz, Co3)
and3 conformationgC, C11, Ci2) respectively (see Table 5.3). The seven iden-
tified conformations have weighf§C;) according to Table 5.4.

Figure 5.5 and Figure 5.6 show average configurations for always two out of
the seven conformations & = 500 K. To allow a better comparison the two
average configurations are aligned in a plane defined by three common atoms.
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| 7Kl | N | k | spectrum| coupling matrix | overlay [%] |
1.000
0.830
900 | 60000| 53 0.805 1.000 26.5
0.791
1.000
0.952
0.898
0.889 0.934 0.066
700 | 31000| 113 0.886 0.015 0.985 47.7
0.830
0.802
0.794

1.000

8823 0.921 0.015 0.040 0.023
' 0.012 0.920 0.023 0.044
500C, | 60000} 101 —8311? 0.034 0.024 0.919 0.023 >1.8

0.903 0.010 0.024 0.012 0.954

0.896
1.000
0.952
0.942
0.920
0.908
0.891

0.961 0.029 0.010
0.025 0.964 0.012 47.3
0.044 0.062 0.894

500" | 60000| 72

Table 5.3: Hierarchical temperature embedding for HIV protease inhibitor
with decomposition refinement (N = number of configurations per Markov
chain, k = final number of codebook boxes).

Coo | Coi | Co2 | Cog Cho Cn Cha
3.3%| 4.1% | 3.9% | 7.4% | 33.8%| 40.1%| 7.5%

Table 5.4:Weights of the seven conformations for HIV protease inhibitor at
level 7 =500 K
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Figure 5.5: Visualization of conformations of HIV protease inhibitor:
Average configurations for two metastable conformations at temperature level
7 =500 K (left COO andCOQ, I’Ight 002 andCH).

Figure 5.6: Visualization of conformations of HIV protease inhibitor:
Average configurations for two metastable conformations at temperature level
7 =500 K (left 001 andC()g, I’Ight 001 andclo).

For comparison purposes, we have also used mere VQ instead of SOM. In
this case Perron Cluster analysis leads to four metastable clusters instead of the
three conformation€’,y, C1, Ci5 atT = 500K. Upon careful examination of the
results, however, one observes that one of the four clusters is nearly empty — this
is the kind of pseudo-clusters already mentioned in chapter 3.
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Cluster description

Using the corresponding approximate box decomposition (see Figure 5.7 for a
projection of codebook boxes computed by the SOBM algorithm on two out of
the 34 torsion angles), we have identifiéd discriminating torsion angles for the
clusteringC := {Cy, C1} atT = 700K. Further we have used the corresponding
113 codebook boxes to determine reduced membership rul€s ahdC;. Here

is one of these membership rules for cluster

IF v.5 ¢ [18.9,151.8] AND v,4 ¢ [ — 169.4,—29.2] AND v, 5 ¢ | — 82.3,58.5]
AND v, ¢ ¢ [29.3,168.0] AND v,.7 ¢ [ — 45.4,94.6] AND v, g ¢ [ — 103.7,29.0] AND

Vs & [—36.4,99.9] AND v, 16 ¢ [~160.0, —22.5] AND v, 17 ¢ [—138.5, —10.1] AND
Us18 & [ —52.1,67.7) AND v, 19 € [ — 61.8,177.7) AND v, 26 € [ — 148.1,77.0] AND
Vyor € [—158.1,68.4) AND v, o9 € [—144.4,89.2] AND v, 39 € [~ 110.5,107.4] AND
Vx,31 € [— 152.7, 76.5] AND Vx,32 € [— 99.3, 121.3] THENv = (U*,l, ... ,U*,34) ey
180 . ..
. .h, .i s?_°_.ﬂ ‘.‘ oo - - ‘.: — .
. .J‘I . eI} o.. == ,:‘ "“ e :.pv.
k ‘:‘? 3 ‘:‘: ] 99 4 4 £) .}“: 3
[o leull[4%h '3.; :&', - ;. s 4% ;..:.r' ‘: GBI
Ry vl \ ..°
60} S . =
-60 = ..
T
" . ' : ..;.I
S 8 ::.‘:l. "‘v::.:
-180 ° P - it . j
-180 -60 60 180

Figure 5.7:Example: Adaptive box decomposition for HIV protease inhibitor.
Visualized projection of codebook boxes on two ousétorsion angles.
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5.1.4 Prospect: Virtual screening

Clustering techniques and especially self-organized neural networks have been
already used for the analysis of molecular dynamics [43, 41]. But all suggested
algorithms have the deficit that they use a geometric cluster model: They try to
group geometric conformations to metastable conformations by an investigation
of a suitable visualization of the transition probabilities between the geometric
conformations. Obviously such a procedure is only possible if the number of geo-
metric conformations is very small, as it is only the case for simple molecules. In
contradiction, the method described in the previous subsections is able to compute
metastable conformations also for large and complex molecules. Therefore it can
be used for a virtual screening of chemical databases.

Example: Virtual screening of CDK inhibitor

Virtual screening of chemical databases is a powerful tool for the identification of
derivatives of already known molecules with a function of pharmaceutical interest.
Figure 5.8 shows a virtual screening process for@RK inhibitor indirubin in
principle: First we have to perform a conformational analysis of indirubin and also
of all molecules inside the database, to generate knowledge about their function.
Then we have to use suitable matching algorithms (see [52]) to identify molecules
inside the database with a similar structure and similar metastable conformations
as the indirubin molecule. For afirst application of conformational analysis within
a virtual screening project see [30].

Sbruciure ol knven chembod Infis b of Lliks

Cro e mia fa s X —

] Virual
I' Aervaming
At e / *

Figure 5.8:Virtual Screening of CDK inhibitor indirubin.
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5.2 Cluster analysis of insurance customers

5.2 Cluster analysis of insurance customers

Cluster analysis is a powerful tool for insurance companies to get a better under-
standing of their customer structure, e.g., to design new tariffs or services. In the
following we will present a successful applications of our new cluster approach
for the analysis of insurance data that has been done in cooperation kh R
CONSULTING, KOLN. For a description of a further application see [31].

5.2.1 Modeling

Suppose that each insurance customer can be described by ajsattrdfutes,

e.g., age, sex, occupation. As described in the appendix, we can easily transform
the corresponding) to a normalized metric space and therefore the customers
can be interpreted as points in a $etC ). Since we want to identify groups

of customers, who have similar properties with regard to the different attributes,
we have to solve a geometric cluster problem. If the data quality is good, i.e.
if we have for each customer valid values for nearly all attributes, we can use a
homogeneity measurk; based on the Euclidean distance functibe= d.,.;4-
Otherwise we have to use more sophisticated distance measures as, e.g., the Tani-
moto measure [48] or measures that use information levels [28]. Since each cus-
tomer is unique, we use a frequency functiprwith f(v) = 1 forallv € V.

If the number of clusters is unknown a priori, we transfdiminto a stochastic
homogeneity functiort,; as described in Lemma 4.3.11 so that we can use our
extended multilevel approach based on Perron Cluster analysis. Since we cannot
be sure that the homogeneity functioncorresponds to the same optimal clusters

as the original homogeneity functian(see the earlier discussion in connection
with Lemma 4.3.11), we have to validate the identified clusters carefully. This is
especially necessary, if the artificial constructiomgfleads to a spectrum with
much noise, i.e. a spectrum where the separation between the Perron Cluster and
the remaining part is difficult. Obviously an efficient cluster description based on
an approximate box decomposition is a helpful tool for cluster validation.

5.2.2 Numerical results: Whiplash Injury Patients

Within our application we have clustereéd53 customers of a German health in-
surance company with a diagnosisadfiplastt during the observation yeat§96
and1997. The number of attributes after transformatiorfbfnto a normalized
metric space wass5.

2Whiplash (German: Schleudertrauma) is an injury to the cervical spine and its soft tissues
caused by forceful flection of the neck, especially that occurring during an automobile accident.
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The computation of an approximate box decompositiol aflas done with
a combination of the SOM and the SOBM algorithm as described in section 3.3.
We have used early stopping, but we have not pruned neurons to allow a visual
comparison with the results generated by using only the SOM algorithm.

1. As an upper bound for the number of partitiéhswe have chosek := 99,
what is large enough to guarantee robust results, i.e. nearly equal results, if
k is changed slightly.

2. The computation of &1 x 9 SOM was done by performint)0k ordering
steps (withw(0) = 0.9, 17 := Ngaussian @Ndy(0) = 5) and300k convergence
steps (witho(0) := 0.1, 7 = Mpussie @aNdy(0) = 1).

3. Using the codebook vectots,, we have initialized the SOBM codebook
boxes. Then we have performed convergence steps (with := 0.005,
N = Npueie @NAY(0) := 1), until the overlap between the codebook boxes
has exceeded the valog %.

In a first trial, we have stopped after step (2). We have used the codebook
vectorsw, to determine a decomposition &f and performed a Perron Cluster
analysis (see Table 5.5):

‘ )\1 ‘ )\2 ‘ )\3 ‘ )\4 ‘ )\5 ‘ )\6 ‘ )\7 Hrf’hd(k:3>‘rf7hd(k25)‘
[1.00] 0.81]0.72] 0.60] 0.51[ 0.38] 0.34] 071 | 060 |

Table 5.5:Whiplash Patients: Perron Cluster analysis usifig< 11 SOM.

Figure 5.9:Whiplash Patients: SOM gray-level visualization including cluster
borders computed via Perron cluster analysis (solid border: clusteks$oi3,
dashed border: two additional clusters o 5).
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The two largest gaps are betwegnand A, and between\; and A\ respec-
tively. Figure 5.9 shows the borders of the computed clusters within a SOM gray-
level visualization.

Next we have performed additionally step (3). We have computed an approx-
imate box decomposition df based on the final codebook boxes and we have
used Perron Cluster analysis to determine an optimal clustering:

n T el m [ % ] N [Toh=3) [Tm=5) ]
[1.00[ 0.81] 0.73] 0.62] 0.654] 0.43[ 0.35] 069 | 062 |

Table 5.6:Whiplash Patients: Perron Cluster analysis usifig< 11 SOBM.

The algorithm suggests or 5 clusters. Since we have not pruned neurons
after step (2), we can visualize the SOBM with gray-levels (see Figure 5.10). The
borders computed via Perron Cluster analysis corresponds to the the borders indi-
cated by the dark-shades. Especially the right upper cluster is clearly identified.
This cluster contains customers that has been taken over by the insurance company
from another company many years ago. It is very interesting that these customers
have been grouped together, because we have not used the corresponding attribute
within our analysis, i.e. the information “customer has been overtaken” was not
given explicitly. Nevertheless there exists a strong relationship between these cus-
tomers, hidden inside the used attributes. Our cluster algorithm was able to detect
these relationship and therefore has generated knowledge.

T

Figure 5.10:Whiplash Patients: SOBM visualization including cluster borders
computed via Perron cluster analysis (solid border: clusters fer 3, dashed
border: two additional clusters far= 5).

3SOM gray-level visualization is used to determine the clusters by visual investigation (see
[48]). Dark shades represent low homogeneity between the codebook vectors, while light shades
represent a high homogeneity . Other techniques for cluster visualization are presented in [61]
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Conclusion

This thesis deals with a new and rather general multilevel approach for cluster
analysis in high-dimensional data. In contrast to known cluster methods it applies
not only for geometric, but also for dynamic cluster problems.

To guarantee the applicability to large cluster problems, the cluster identifica-
tion is done via a decomposition based representative clustering method. If the
underlying decomposition is fine enough, this method allows a problem reduction
without destroying the original cluster structure. Furthermore, an efficient cluster
description becomes possible if one uses a special decomposition variant, called
approximate box decomposition. The computation of a suitably fine decomposi-
tion is done by a self-organized neural network.

Upon using the theory of Perron Cluster analysis, the general multilevel cluster
approach can been extended: For cluster problems with a stochastic homogeneity
function it allows to compute a correct set of clusters, even if their number is un-
known a priori. Since traditional cluster methods need the number of clusters as
an input, this is a significant improvement. Furthermore, the extended approach
allows for the first time a conformational analysis of large biomolecules in com-
bination with hierarchical temperature embedding.

On the computational complexity side, the computation of a suitably fine de-
composition is still thébottleneck Especially for an application within commer-
cial virtual screening projects, a speed-up will be necessary. In this respect, paral-
lelization and an improved convergence of the SOM/SOBM algorithm seem to be
promising.
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Appendix

Extension of(2 to a normalized metric space

Let A := {4,,..., A,} be a set of not necessarily ordered domains and define
Q:=Q%L, A ={(ar,...,a9)" |a; € A;,i =1,...,q}. Further letV’ C Q2 be
any finite subset of).

We suppose that any attributg is finite or at least bounded. Otherwise we
replace it byA;(V) := {z € A;|(3v = (Vs1,.--,0sq)T € V)uvu; = z}. We
define an unique projectionfrom €2 into a normalized metric space, as follows:

1. Let 4; any attribute of2 with A; = {z;1,..., 2} € R, m; € N. For
1 < j <m;setd;; = {0,1} and definer; : 4; — @7, A;; C R™ via

Wi(ZEi?j) = ((51‘71, PN 5i,mi)T fOI‘j = ]_, e,y

with

1 ifi=j
0ij = { 0 else.
2. Let A; any attribute ofQ with A, C [l;,~;] € R andl;,r; € R. Set
A; 1 :=10,1], m; :== 1 and definer; : A, — A;; C Rvia

mi(z) = — forz € A,.

Thenr := (m,...,7,)" is a projection fron2 into ag := >_7 , m; dimen-
sional normalized subspati = Q;_; Q= A;; C RY.

Obviously we haver(v) = m(w) <= v =wforallv,w € Q.
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Symbols

General Notation
| M|
1]

Sets
N

>
=2

ST Q=0
I

SOOI IO
= = bbb

Matrices

NSRS

number of objects in a finite sét’
Euclidean distance

natural numbers

real numbers, positive real numbers including zero
attribute, finite set of attributes

direct product of attributes

data set

cluster,k-cluster set (finite set of disjoint clusters)
power set of?

index subset

reduced set of attributes (only; with j € J)

direct product of attributes il (.J)

canonical projection o¥ on2(.J)

partition

decomposition (finite set of disjoint partitions)
subset of attributel ;

box

set of boxes, reduced set of boxes (oAlywith s € 1)
codebook

compressed clustering

extended clustering

decomposition based on SOM codebook
codebook box

stochastic matrix
coupling matrix
weighting matrix
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Symbols

Variables

q
U, U;

Functions

f
h

hmax(v)
Ff,h

d
hq
S
S

~
ECIJ

NUb SOk, SN 3
] ol
=

SIS
>

dimension of(2

data object in/

number of data objects i

number of clusters

projection ofv onQ2(.J)

number of decomposition partitions
codebook vector

time steps

upper bound of,,

grid position of neurom

left and right boundaries of interval iR
random variable

average number of codebook updates
eigenvalue, eigenvector

frequency function

homogeneity function

maximal value of homogeneity function in
weighted intra-cluster homogeneity
distance function

homogeneity function based on distance function
conditional transition probability function
set extension of

homogeneity function based on transition probability function
characteristic function of set/
membership rule (set)

decomposition error

compressed frequency function
compressed homogeneity function

set extension of

set extension ok

probability density function

probability function corresponding i@
learning rate

neighborhood radius function

grid distance function

conditional expectation value &f
weighted homogeneity function

set extension oP
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Zusammenfassung

Als Cluster Analyse bezeichnet man den Prozess der Suche und Beschreibung von
Gruppen (Clustern) von Objekten, so daf die Objekte innerhalb eines Clusters
beziglich eines gegebenen MalRes maximal homogen sind. Die Homageeit”
Objekte lngt dabei direkt oder indirekt von den Auagtingen ab, die si@féine
Anzahl festgelegter Attribute besitzen. Die Suche nach Clus&f$hdich somit

als Optimierungsproblem auffassen, wobei die Anzahl der Cluster vorher bekannt
sein muf3. Wenn die Anzahl der Objekte und der Attribute grol3 ist, spricht man
von komplexen, hoch-dimensionalen Cluster Problemen. In diesem Fall ist eine
direkte Optimierung zu aufwendig, und man bggt entweder heuristische Opti-
mierungsverfahren oder Methoden zur Reduktion der Komglexit'der Vergan-
genheit wurden in der Forschung fast ausschlie3lich Verfahregdometrisch
basierte Clusterprobleme entwickelt. Bei diesen Problemen lassen sich die Ob-
jekte als Punkte in einem von den Attributen aufgespannten metrischen Raum
modellieren; das verwendete Homogatsthall basiert auf der geometrischen
Distanz der den Objekten zugeordneten Punkte. Insbesondere zur Bestimmung
sogenannter metastabiler Cluster sind solche Verfahren aber offensichtlich nicht
geeignet, da metastabile Cluster, die z.B. in der Konformationsanalyse von Bio-
molekiilen von zentraler Bedeutung sind, nicht auf einer geometrischen, sondern
einer dynamischeAhnlichkeit beruhen.

In der vorliegenden Arbeit wird ein allgemeines Clustermodell vorgeschla-
gen, das zur Modellierung geometrischer, wie auch dynamischer Clusterprobleme
geeignet ist. Es wird eine Methode zur Kompletsteduktion von Clusterpro-
blemen vorgestellt, die auf einer zuvor generierten Komprimierung der Objekte
innerhalb des Datenraumes basiert. Dabei wird bewiesen, daf3 eine solche Reduk-
tion die Clusterstruktur nicht zemt, wenn die Komprimierung fein genug ist.
Mittels selbstorganisierter neuronaler Netze lassen sich geeignete Komprimierun-
gen berechnen. Um eine signifikante Komplatstéduktion ohne Zexstling der
Clusterstruktur zu erzielen, werden die genannten Methoden in ein mehrstufiges
Verfahren eingebettet. Da neben der Identifizierung der Cluster auch deren ef-
fiziente Beschreibung notwendig ist, wird ferner eine spezielle Art der Kompri-
mierung vorgestellt, der eine Boxdiskretisierung des Datenraumes zugrunde liegt.
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Diese ernoglicht die einfache Generierung von regelbasierten Clusterbeschrei-
bungen. Ef einen speziellen Typ von Homogeatsfunktionen, die eine stocha-
stische Eigenschaft besitzen, wird das mehrstufige Clusterverfahren um eine Per-
roncluster Analyse erweitert. Dadurch wird die Anzahl der Cluster, im Gegensatz
zu herlommlichen Verfahren, nicht mehr als EingabeparameteotignMit dem
entwickelten Clusterverfahren kann erstmalig eine computergéstKonforma-
tionsanalyse groRemif'die Praxis relevanter Biomolale' durchgetfifhirt werden.

Am Beispiel dedIV Protease Inhibitors VX-47&ird dies detailliert beschrieben.
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