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Introduction

One thing a child has to learn is to divide and to group objects based on their color,
form or size, i.e. based on their attributes. Such an ability is very important for the
improvement of abstract and logical human thinking. But it is also a very helpful
ability in economics, industry, science or politics, where the identification and de-
scription of homogeneous groups — so calledclusters— of customers, products,
events or situations helps to structure information about these objects and there-
fore generates knowledge, which allows to make special, group depending offers
or decisions. Unfortunately, the ad hoc identification and description of clusters
by human beings usually gets impossible with increasing numbers of objects and
attributes.

Clustering methods have been studied first in statistics1, but nowadays, where
the improvement of technology allows to store the data of millions of objects
with hundreds of attributes in single databases, new techniques forcluster analy-
sisare also suggested by researchers from themachine learning/neural networks
area2 and thedatabasecommunity3. Furthermore, a new direction of research
calledData Miningor — according to the more general definition of Fayyad and
Piatetsky-Shapiro [21] —Knowledge Discovery in Databases (KDD), has been
established, where algorithms are developed that are able to scan huge databases
and to extractknowledge patternswithin the data. Since clusters are important
examples of such knowledge patterns, the development of fast and efficient clus-
tering techniques is part of this fast growing research area.

The most popular clustering method isk-means, and most of the suggested
algorithms in the literature are variants of this method. The basic idea ofk-means
is to determinek cluster representatives and to assign each object to the cluster
with its representative closest to the object so that the sum of the squared distances
between the objects and their corresponding representatives is minimized.

1See, e.g., the introductory textbooks by Duran and Odell [18] or Fukunaga [27].
2For an overview see the complementary textbooks by Bishop [7] and Ripley [53].
3Important research is not only done by database groups at university [64, 19, 32], but also

from industrial groups like IBM’S Quest group [1].
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An investigation of algorithms based on thek-means method or other fre-
quently used clustering methods leads to the following observations:

• The computed clusters aregeometricallybased, i.e. the objects within the
same cluster have the property that their distance is small if they are in-
terpreted as points in a suitable metric space. For non-geometric cluster
problems, the computed clusters are usually not satisfactory. An important
example aredynamiccluster problems, where one is interested in the iden-
tification of metastableclusters. Here, the objects within the same cluster
should exhibit a high probability for transitions between each other with
regard to an underlyingdynamic system.

• If the numbers of objects and attributes is high, heuristics are used to speed
up the cluster identification process. Many of these heuristics are designed
for special applications and therefore not generally usable. Further, a math-
ematical justification is very often missing.

• A correct number of clustersk has to be known a priori.

In the case of reversible dynamic cluster problems, the theory ofPerron Clus-
ter analysis that has been recently developed by DEUFLHARD ET AL. offers
a new access. The key concept of Perron Cluster analysis is the identification
of metastable clusters by computingalmost invariant aggregatesof a suitable
stochastic matrixS. Via an investigation of the eigenvalues and the eigenvec-
tors of the matrixS, not only a correct number of clustersk can be determined,
but also the metastable clusters themselves. Without a problem reduction, the
size of the matrixS depends on the number of objects that have to be clustered.
Therefore Perron Cluster analysis is directly usable only for very small reversible
dynamic cluster problems4.

Self-organized neural networks, especially KOHONEN‘ S Self-Organizing Maps,
can be used to replace groups of similar objects by single representatives. The
representatives are related to each other in a way that tries to preserve the original
cluster structure, i.e. a fitting clustering of the representatives should correspond
to a fitting clustering of the original objects. In contrast to thek-means method
and its variants, the number of representatives is usually much larger than any cor-
rect number of clusters. Therefore, self-organized neural networks can be used as
a kind of pre-clustering process to reduce the complexity of a cluster problem.

The aim of this thesis is a fruitful combination of Perron Cluster analysis and
self-organized neural networks within anadaptive multilevel clustering approach

4As a first remedy, the use of essential degrees of freedom in the spirit of [4] made it possible
to identify metastable clusters of a small molecule via Perron Cluster analysis [59].
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that allows a fast and robust identification and an efficient description of clus-
ters inhigh-dimensionaldata. In a general variant that needs a correct number
of clustersk as an input, this new approach is relevant for a great number of
cluster problems since it uses a cluster model that covers geometrically, but also
dynamically based clusters. Its essential part is a method calledrepresentative
clusteringthat guarantees the applicability to large cluster problems: Based on
anadaptive decompositionof the object space via self-organized neural networks,
the original problem is reduced to a smaller cluster problem. The general clus-
tering approach can be extended by Perron Cluster analysis so that it can be used
for large reversible dynamic cluster problems, even if a correct number of clusters
k is unknown a priori. The basic application of the extended clustering approach
is theconformational analysisof biomolecules, with great impact in the field of
Drug Design. Here, for the first time the analysis of practically relevant and large
molecules like anHIV protease inhibitorbecomes possible.

This thesis is divided into five chapters. It starts with a general mathematical
definition of cluster analysis in high-dimensional data. The scalability problem of
the identification step will be addressed and the idea of representative clustering
will be presented. In the section following, a rigorous definition of efficient cluster
description will be given. The first chapter closes with a survey of the difficulties
that arise, if a correct number of clusters is not known a priori.

The second chapter establishes a concept of decomposition within cluster anal-
ysis. Based on a general definition we will present a special variant called approx-
imate box decomposition. It will be shown that the concept of decomposition
gives way to a significant cluster problem reduction via representative clustering
without destroying the original cluster structure. In addition, the usefulness of
approximate box decompositions for the computation of efficient cluster descrip-
tions will be demonstrated.

In the following chapter, KOHONEN‘ S Self-Organizing Maps are used for the
computation of adaptive decompositions. Further, a powerful extension called
Self-Organizing Box Mapswill be suggested that computes approximate box de-
compositions.

In the fourth chapter, we are going to present a multilevel clustering approach
using representative clustering based on successively refined adaptive decomposi-
tions. After an introduction to the basic theory, we combine Perron Cluster anal-
ysis with our clustering approach so that it includes an automatic computation of
a correct number of cluster for cluster problems with a stochastic homogeneity
function.

The final chapter gives a comprehensive presentation of applications. Espe-
cially the conformational analysis of biomolecules will be described in detail and
illustrated with numerical results.
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Chapter 1

Cluster Analysis in
High-Dimensional Data

Clustering can be loosely defined as partitioning a set of objects into a given num-
berk of disjoint subsets, so called clusters, so that the homogeneity between ob-
jects within each cluster is strong. Instead of homogeneity, the terms relationship
or similarity are used synonymously in the literature.

Obviously, the definition given above does only make sense together with a
measure for the homogeneity between objects. In this case any possible set of
k clusters has a certain quality, depending on the measured homogeneity between
all objects within each cluster.

One easily checks that the number of ways to partition a set ofn objects in
k disjoint non-void subsets is given by [18]:

K(n, k) :=
1

k!

k∑
i=0

(
k

i

)
(−1)i(k − i)n. (1.1)

The functionK(n, k) grows exponentially fast inn. Already in a very small set
of objects the number of possible partitionings ink disjoint subsets is staggering,
e.g., forn = 100 objects, there areK(100, 2) ≈ 1030 ways to partition them in
two subsets. It can be shown that the problem to compute a set ofk clusters of
high quality is NP-complete [33]. Therefore fast solutions usually can only be
achieved by using heuristic algorithms.

In addition to the identification of clusters, one is also interested in their de-
scription, i.e. in rules that allow to determine the cluster membership of each
object, based on its properties. Especially in the case of high-dimensional data,
where the objects have a high number of properties, such rules have to be efficient
in the sense that their number is as small as possible and that they depend on a
minimal number of properties only.
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Given the above terminology, we definecluster analysis in high-dimensional
dataas the process of fast identification and efficient description of clusters. The
clusters have to be of high quality with regard to a suitably chosen homogeneity
measure.

1.1 Modeling

In the following we suggest a general model for cluster problems, supposing that
the measure for the relationship between objects is given explicitly. It will be
shown that the model — in contrast to other models suggested in the literature
that are designed for geometric cluster problems — is usable for different fields of
applications, because it is not only suitable for a geometrically based modeling,
but also for dynamic cluster problems.

LetA := {A1, . . . , Aq} be a set of not necessarily ordered domains and define
Ω :=

⊗q
j=1Aj := {(a1, . . . , aq)

T | aj ∈ Aj , j = 1, . . . , q}. We will refer to
A1, . . . , Aq as theattributesof Ω and toq as thedimensionof Ω. Each finite
subsetV = {v1, . . . , vn} ⊂ Ω, n ≥ 2, is called adata setin Ω and for each
data objectvi := (vi,1, . . . , vi,q)

T ∈ V , the valuevi,j ∈ Aj denotes theproperty
of vi for attributeAj . We will further call each functionf : Ω −→ R+

0 with
f(v) = 0 ⇐⇒ v /∈ V a frequency functionfor the data set V and we define
f(M) :=

∑
v∈M f(v) for any subsetM ⊂ Ω.

Suppose now that there exists a functionh : Ω×Ω −→ [0, 1] so thath(v, w) =
h(w, v) for anyv, w ∈ V . Thenh will be called ahomogeneity functionfor the
data setV . We sethmax(V ) := maxv,w∈V h(v, w) and call two objectsv1, v2 ∈ V
maximally homogeneous, ifh(v1, v2) = hmax(V ).

Based on given functionsf andh the problem of clusteringV in a given
numberk of subsets can be stated in the following general way:

Definition 1.1.1 Letk ∈ {1, . . . , n} andC := {C1, . . . , Ck} any set ofk non-void
subsetsCs ⊂ V .
(i) If

⋃k
s=1Cs = V andCs ∩ Ct = ∅ for 1 ≤ s < t ≤ k, then we callC a

k-cluster set of the data setV .
(ii) LetC anyk-cluster set ofV . If C maximizes the weighted intra-cluster homo-
geneity

Γf,h(C) :=
1

k

k∑
s=1

1

f(Cs)

∑
v∈Cs

∑
w∈Cs

h(v, w)f(v)f(w) → max, (1.2)

then we callC an optimalk-cluster set of(V, f, h).
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1.1.1 Geometric cluster problems

Many of the traditional clustering methods, including the famousk-meansmethod
[46], have in common that they are geometrically driven, i.e. they suppose thatΩ
can be modeled as a metric space, e.g.,Ω ⊂ Rq, and that the relationship between
objects is given by adistance functiond : Ω −→ R+

0 , satisfying the following
requirements for allv, w, z ∈ Ω:

(D1) d(v, w) ≥ 0

(D2) d(v, v) = 0

(D3) d(v, w) = d(w, v)

(D4) d(v, w) ≤ d(v, z) + d(z, w).

In the case thatΩ ⊂ Rq, theEuclidean distancefunction is often used:

deuclid(v, w) := ‖v − w‖ :=
√

(v − w)T (v − w) , v, w ∈ Rq.

The basic idea of almost all geometrically driven cluster methods is the identifi-
cation of ak-cluster setC := {C1, . . . , Ck} so that

∑k
s=1 cost(Cs) is minimized,

wherecost : ℘(Ω) −→ R+
0 is a cost function based on the distance function. The

methods differ in the choice of the cost and the distance function and the several
possible optimization strategies lead to different cluster algorithms. Many popular
algorithms try to minimize thesum-of-squarescost function [20]:

cost(Cs) :=
1

f(Cs)

∑
v∈Cs

∑
w∈Cs

d(v, w)2f(v)f(w) → min .

The corresponding cluster problem can be formulated within our general defini-
tion:

Lemma 1.1.2 Let Ω be a metric space with a distance functiond : Ω −→ R+
0 .

Further let V := {v1, . . . , vn} ⊂ Ω, n ≥ 2, be any finite data set inΩ and
f : V −→ R+

0 be any frequency function forV . Finally suppose thatC is any
k-cluster set ofV .
(a) Thenhd : Ω × Ω −→ [0, 1], with

hd(v, w) := 1 − d(v, w)2

(max
ev, ew∈V d(ṽ, w̃))2

, v, w ∈ Ω.

is a homogeneity function forV .
(b) C is an optimalk-cluster set of(V, f, h), if and only if

k∑
s=1

1

f(Cs)

∑
v∈Cs

∑
w∈Cs

d(v, w)2f(v)f(w) → min .
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Proof: (a)hd is well defined, becausehd(v, w) ∈ [0, 1] for all v, w ∈ Ω. Sinced
is a distance function, i.e.d(v, w) = d(w, v) for anyv, w ∈ Ω, one further checks
thathd(v, w) = hd(w, v) and thereforehd is a homogeneity function.
(b) Sincemax

ev, ew∈V d(ṽ, w̃), f(V ) are constant and positive values, we have:

min

k∑
s=1

1

f(Cs)

∑
v∈Cs

∑
w∈Cs

d(v, w)2f(v)f(w)

⇐⇒ min

k∑
s=1

1

f(Cs)

∑
v∈Cs

∑
w∈Cs

d(v, w)2

(max
ev, ew∈V d(ṽ, w̃))2

f(v)f(w)

⇐⇒ max f(V ) −
k∑

s=1

1

f(Cs)

∑
v∈Cs

∑
w∈Cs

d(v, w)2

(max
ev, ew∈V d(ṽ, w̃))2

f(v)f(w)

⇐⇒ max
k∑

s=1

(
f(Cs) −

1

f(Cs)

∑
v∈Cs

∑
w∈Cs

d(v, w)2

(max
ev, ew∈V d(ṽ, w̃))2

f(v)f(w)

)

⇐⇒ max
k∑

s=1

1

f(Cs)

(
f(Cs)

2 −
∑
v∈Cs

∑
w∈Cs

d(v, w)2

(max
ev, ew∈V d(ṽ, w̃))2

f(v)f(w)

)

⇐⇒ max
k∑

s=1

1

f(Cs)

∑
v∈Cs

∑
w∈Cs

(
1 − d(v, w)2

(max
ev, ew∈V d(ṽ, w̃))2

)
f(v)f(w)

⇐⇒ max
1

k

k∑
s=1

1

f(Cs)

∑
v∈Cs

∑
w∈Cs

hd(v, w)f(v)f(w).

�

If d = deuclid, then the sum-of-squares cost function is equivalent to the cost
function used by algorithms based on thek-means method:

Lemma 1.1.3 LetC ⊂ V ⊂ Rq any non-void subset ofV andf : Ω −→ R+
0 any

frequency function for the data setV . Then we have∑
v∈C

‖v − m̄C‖2 f(v) =
1

2

1

f(C)

∑
v∈C

∑
w∈C

‖v − w‖2 f(v)f(w) ,

where

m̄C :=
1

f(C)

∑
v∈C

f(v)v

denotes the centroid ofC.
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Proof: ∑
v∈C

‖v − m̄C‖2 f(v)

=
∑
v∈C

vTvf(v) − 2

(∑
v∈C

f(v)vT

)
m̄C +

∑
v∈C

f(v)m̄T
Cm̄C

=
∑
v∈C

vTvf(v) − f(C)m̄T
Cm̄C

=
1

f(C)

(∑
v∈C

f(C)vTvf(v) − f(C)2m̄T
Cm̄C

)

=
1

f(C)

(∑
v∈C

∑
w∈C

vTvf(v)f(w)−
∑
v∈C

∑
w∈C

vTwf(v)f(w)

)

=
1

2

1

f(C)

(
2
∑
v∈C

∑
w∈C

vTvf(v)f(w) − 2
∑
v∈C

∑
w∈C

vTwf(v)f(w)

)

=
1

2

1

f(C)

∑
v∈C

∑
w∈C

(
vTvf(v)f(w)− 2vTwf(v)f(w) + wTwf(w)f(v)

)
=

1

2

1

f(C)

∑
v∈C

∑
w∈C

‖v − w‖2 f(v)f(w)

�

A combination of Lemma 1.1.2 and Lemma 1.1.3 guarantees that geometric
cluster problems, where thek-means method is suitable, can always be formulated
within the suggested general model. Figure 1.1 shows a simple example of such
a cluster problem inR2 with k = 3. In the following sections, we will use this
example for demonstration purposes.

A1
 2  4  6  8

A2

 2

 4

Cluster C1

Cluster C3

Cluster C2

Figure 1.1:Example: Clustering of data set inR2 with k = 3.
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1.1.2 Dynamic cluster problems

Recently new cluster methods have been suggested using homogeneity measures
not derived from a distance function or a more general data model [1, 5, 36]. The
reason for this conceptual change is the emergence of new fields of application for
cluster analysis, like e.g., the clustering of web-pages or of genomic data, where
a geometrically driven modeling is often not suitable.

One of these new fields of application is the the analysis of dynamic systems.
Here, an interesting problem is the identification of metastable sets of states, i.e.
sets of states with a high probability that the dynamic system moves between
states within the same set and a low probability of transitions between states of
different sets. Although the state space of a dynamic system might be modeled as
a geometric space, it is not advisable to equate metastable sets with geometrically
based clusters inside this space: The dynamics between different states may not
only depend on their geometric similarity. In the following we transform the iden-
tification of metastable sets of states of a dynamic system in a dynamic cluster
problem, which will be described within our general model.

Let Ω be the set of all possible states of a dynamic system and choose any
representative trajectoryX(1), . . . , X(T ) ∈ Ω. SetV := {X(t) | t = 1, . . . , T}
and define a frequency functionf := Ω −→ R+

0 via f(v) := |{t |X(t) = v, }|,
where|M | denotes the number of elements in a finite setM . Further define for
anyv, w ∈ V :

S(v, w) :=
|{t |X(t) = v,X(t+ 1) = w}|

f(v)
(1.3)

so thatS(v, w) is the conditional probability of transitions from statev to statew
in a single step. We can directly extendS on subsets ofV , if we define for any
non-void subsetsV1, V2 ⊂ V :

Ŝ(V1, V2) :=
∑
v∈V1

∑
w∈V2

f(v)S(v, w)

f(V1)
. (1.4)

One easily checks that̂S(V1, V2) is the conditional probability of the dynamic
system being in a state of setV1 to move to a state of setV2 in a single step.

The identification ofk metastable sets of states of a dynamic system corre-
sponds to the computation ofk disjoint subsetsCs ⊂ V so thatŜ(Cs, Cs) ≈ 1 for
s = 1, . . . , k. Since this is equivalent to a maximization of

∑k
s=1 Ŝ(Cs, Cs), the

identification ofk metastable sets is equivalent to the identification of an optimal
k-cluster set for(V, f, hS) wherehS is a suitable homogeneity function:
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Lemma 1.1.4 DefinehS : Ω × Ω −→ [0, 1] via

hS(v, w) :=

{
1
2

(
S(v,w)
f(w)

+ S(w,v)
f(v)

)
if v, w ∈ V

0 else

ThenhS is a homogeneity function ofV .

Proof: Since0 ≤ |{t |X(t) = v,X(t + 1) = w}| ≤ f(v) for all v, w ∈ V , we
haveS(v, w) ∈ [0, 1]. ThereforehS is well defined and one easily checks that
hS(v, w) = hS(w, v) for anyv, w ∈ V . �

Lemma 1.1.5 For anyk-cluster setC of V the weighted intra-cluster homogene-
ity with respect tof andhS is given by

Γf,hS
(C) =

1

k

k∑
s=1

Ŝ(Cs, Cs).

Proof:

Γf,hS
(C) =

1

k

k∑
s=1

1

f(Cs)

∑
v∈Cs

∑
w∈Cs

hS(v, w)f(v)f(w)

=
1

k

k∑
s=1

1

f(Cs)

∑
v∈Cs

∑
w∈Cs

1

2
(f(v)S(v, w) + f(w)S(w, v))

=
1

k

k∑
s=1

1

f(Cs)

1

2

(∑
v∈Cs

f(v)
∑
w∈Cs

S(v, w) +
∑
w∈Cs

f(w)
∑
v∈Cs

S(w, v)

)

=
1

k

k∑
s=1

1

f(Cs)

∑
v∈Cs

f(v)
∑
w∈Cs

S(v, w) =
1

k

k∑
s=1

Ŝ(Cs, Cs)

�

1.2 Problem reduction via representative clustering

A point very critical within the application of algorithms for the identification of
clusters in high-dimensional data is the computational complexity, i.e. the corre-
spondence between the time one needs to compute a solution and the number of
data objectsn, respectively the number of attributesq.

Suppose we have an algorithm that computes an optimalk-cluster setC of a
data setV of sizen and dimensionq with respect to a frequency functionf and
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a homogeneity functionh. One easily checks that we needO(n2) valuesh(v, w)
to compute the weighted intra-cluster homogeneityΓf,h(C). This usually makes a
direct optimization ofΓf,h(C) impossible, if the numbern is large. In the literature
several heuristic optimization approaches are suggested, but unfortunately, most
algorithms are designed for special applications and are therefore not generally
usable. Moreover a mathematical justification is very often missing. In the fol-
lowing, we will describe another way to deal with large data sets that is motivated
by principles of vector quantization and signal compression (see [35]) and that we
will call representative clustering.

The reduction of cluster problems to a handier size via representative cluster-
ing rests upon the following assumption:

Optimal cluster assumption

Let C be any optimalk-cluster set of a data setV ⊂ Ω with respect to a frequency
functionf and a homogeneity functionh. ThenC assigns nearly maximally ho-
mogeneous objects in a predominant portion to the same cluster, i.e. ifC ∈ C is
any cluster andv, w ∈ V are any data objects withh(v, w) ≤ hmax(V ) − ε for
smallε > 0, then usually we have:v ∈ C =⇒ w ∈ C.

Since each optimalk-cluster set of(V, f, h) maximizes the weighted intra-
cluster homogeneity, this assumption should be true for most cluster problems.

Suppose now that the homogeneity functionh meets the following two condi-
tions:

• Local maximum condition:Objectsv1, v2 ∈ V are nearly maximally ho-
mogeneous, if they have nearly the same properties.

• Global correspondence condition:The homogeneity functionh is nearly
identical for any two nearly maximally homogeneous objectsv1, v2 ∈ V :

h(v1, v2) ≈ hmax(V ) =⇒ h(v1, v) ≈ h(v2, v) for all v ∈ V.

In the case of geometric cluster problems, the possible homogeneity functions
should meet the first condition and usually also the second one. For dynamic
cluster problems, it is necessary that the state spaceΩ is build by a set of attributes.
In this case moves between states with identical values for most attributes are
usually very frequent, i.e. the local maximum condition holds, and typically, such
states have very common dynamic properties, i.e. also the global correspondence
condition holds.
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If we successively replace objectsvi1 , vi2, . . . that have nearly the same prop-
erties by a representative objectwi, e.g.,wi := vi1 , and define forwi a compressed
frequency valuef̌(wi) := f(vi1) + f(vi2) + . . . , we come out with a data set
W = {w1, w2, . . . } and a compressed frequency functionf̌ of W .

Let C := {C1, . . . , Ck} be any optimalk-cluster set of(W, f̌ , h), then we can
extendC onV , if we defineĈ := {Ĉ1, . . . , Ĉk} with Ĉs :=

⋃
wi∈Cs

{vi1 , vi2, . . . }.

ObviouslyĈ is ak-cluster set ofV . The local maximum condition assures thatwi

andv ∈ {vi1 , vi2, . . . } are nearly maximally homogeneous. Therefore the global
correspondence condition guarantees:

Γf̌ ,h(C)

=
1

k

k∑
s=1

1

f̌(Cs)

∑
wi∈Cs

∑
wj∈Cs

h(wi, wj)f̌(wi)f̌(wj)

=
1

k

k∑
s=1

1

f(Ĉs)

∑
wi∈Cs

∑
wj∈Cs

h(wi, wj)
∑

v1∈{vi1
,vi2

,...}
f(v1)

∑
v2∈{vj1

,vj2
,...}

f(v2)

=
1

k

k∑
s=1

1

f(Ĉs)

∑
wi∈Cs

∑
v1∈{vi1

,vi2
,...}

∑
wj∈Cs

∑
v2∈{vj1

,vj2
,...}

h(wi, wj)f(v1)f(v2)

≈ 1

k

k∑
s=1

1

f(Ĉs)

∑
v1∈Ĉs

∑
wj∈Cs

∑
v2∈{vj1

,vj2
,...}

h(v1, wj)f(v1)f(v2)

≈ 1

k

k∑
s=1

1

f(Ĉs)

∑
v1∈Ĉs

∑
v2∈Ĉs

h(v1, v2)f(v1)f(v2)

= Γf,h(Ĉ).

Suppose now that̂C is not nearly optimal for(V, f, h). Then the optimal cluster
assumption guarantees that there exist objectsv1, v2 ∈ V that are assigned to
different clusters in̂C, althoughh(v1, v2) is large. But this is a contradiction to the
fact that nearly homogeneous objects are replaced by the same representative and
therefore are assigned to the same cluster inĈ.

Let V (j) := {v∗,j | v = (v∗,1, . . . , v∗,q)T ∈ V } be the projection ofV on the
attributeAj. SetVΩ :=

⊗q
j=1 V (j) = {(a1, . . . , aq)

T | aj ∈ V (j) , j = 1, . . . , q}.
Obviously we haveV ⊂ VΩ ⊂ Ω andn = |V | ≤ |VΩ| ≤ nq. When analyzing
high-dimensional data one often observes thatVΩ is rather sparse with respect to
V , i.e. thesparsity factor |V |

|VΩ| is very small. This guarantees that|W | is smaller
thann, i.e. we have reduced our cluster problem.
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Figure 1.2 shows a reduction of our geometric cluster problem inR2 via rep-
resentative clustering in principle.

A1
 2  4  6  8

A2

 2

 4

Reduction

A1
 2  4  6  8

A2

 2

 4

Representatives

Figure 1.2:Example: Reduction of geometric cluster problem inR2.

A problem reduction via representative clustering is only efficient, if|W | is
significantly smaller than the numbern. Obviously the number of representatives
depends strongly on the criterion that is used for the identification of objects with
nearly the same properties. As a brute force approach one could think about using
a very weak criterion that allows to replace much objects by the same representa-
tive. In this case the local maximum condition only holds, if we call two objects
v1, v2 nearly maximal homogeneous, even ifh(v1, v2) is not so high. But then
we cannot be sure that their homogeneity in relation to all other objects is nearly
identical, i.e. thath(v1, v) ≈ h(v2, v) holds for allv ∈ V . If the global correspon-
dence condition is violated too often, this usually has negative consequences for
the quality ofĈ.

In chapter 2 we will describe a concept calleddecompositionthat can be used
as a basis for the development of methods for an efficient problem reduction via
representative clustering. We will replace the global correspondence condition
for h by the construction of a compressed homogeneity functionȟ and define a
more convenient condition that guarantees the optimality ofĈ, if C is an optimal
k-cluster set of(W, f̌, ȟ). Moreover in chapter 4 a multilevel approach is pre-
sented that uses decomposition based representative clustering for a fast cluster
identification.

1.3 Efficient cluster description

Besides the identification of clusters in high-dimensional data, also their efficient
description is very important for most practical applications (see chapter 5). We
want to know, which objects are homogeneous and also why they are homoge-
neous.
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Obviously such a description can be achieved via rules that allow to determine
the cluster membership of each object, based on its properties, i.e. rules like:

If v = (v∗,1, . . . , v∗,q)T ∈ V has the propertiesv∗,1 = a1 and. . . andv∗,q = aq,
thenv belongs to clusterCs.

A description based on such rules has to be consistent, i.e. it contains no rules
assigning the same objectv to different clusters.

Given anyk-cluster setC := {C1, . . . , Ck} of a data setV in Ω, we can always
generate rules for a cluster description in the following trivial way:

Define a functioncχ : V −→ {1, . . . , k} via

cχ(v) :=
k∑

s=1

s χCs(v) for all v ∈ V,

whereχCs denotes the characteristic function of clusterCs. Then for any object
vi := (vi,1, . . . , vi,q)

T ∈ V we can state a ruleri:
If v = (v∗,1, . . . , v∗,q)T has the propertiesv∗,1 = vi,1 and . . . andv∗,q = vi,q,

thenv belongs to clusterCcχ(vi).
Obviously then rulesr1, . . . , rn describe the clustersC1, . . . , Ck consistently,

but such a description is surely not efficient. We will demonstrate this by our
example of a geometric cluster problem inR2 (see Fig. 1.1):

ClusterC1 contains33 data objects, i.e. we need33 rules to describe this
cluster if we use our trivial approach. If we allow rules that are slightly more
complex, one easily checks that the following two rules are sufficient to describe
clusterC1:

If v = (v∗,1, v∗,2)T has the propertiesv∗,1 = a1 andv∗,2 = a2 with a1 ∈ [0, 2],
a2 ∈ [1, 5], thenv belongs to clusterC1.

If v = (v∗,1, v∗,2)T has the propertiesv∗,1 = a1 andv∗,2 = a2 with a1 ∈ [2, 4],
a2 ∈ [3, 5], thenv belongs to clusterC1.

This motivates the following definition of cluster membership rules:

Definition 1.3.1 For any setB := {B1, . . . , Bq} withBj ⊂ Aj for j = 1, . . . , q,
we callrB : Ω −→ {0, 1} with

rB(v) :=

{
1 if (∀j ∈ {1, . . . , q}) v∗,j ∈ Bj

0 else
, v := (v∗,1, . . . , v∗,q)T ∈ Ω,

a membership rule for clusterCs, if

rB(v) = 1 =⇒ v ∈ Cs for all v ∈ V.
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Usually we need a setrs := {rs,1, . . . , rs,ms} of ms ∈ N+ membership rules
for each clusterCs, to guarantee that each objectv ∈ Cs is assigned to clusterCs

by at least one rule, i.e. that we have

v ∈ Cs =⇒ (∃ r ∈ rs) r(v) = 1 for all v ∈ V.

We call such a setrs acomplete membership rule setfor clusterCs.
Based on complete membership rule sets for each clusterCs, we can easily

generate a description ofC:

Lemma 1.3.2 Suppose there exists for each ClusterCs of C a complete member-
ship rule setrs := {rs,1, . . . , rs,ms}. LetH0 denote the Heaviside function with

H0(t) :=

{
0 if t < 0
1 if t ≥ 0.

Then the functioncr : V −→ {1, . . . , k} with

cr(v) :=
k∑

s=1

sH0(−1 +
ms∑
j=1

rs,j(v)) for all v ∈ V.

is a consistent description forC, i.e. we have

cr(v) = s ⇐⇒ v ∈ Cs for all v ∈ V.

Proof: “⇐=”: Choose anys ∈ {1, . . . , k} and anyv ∈ Cs. Sincers is a complete
membership rule set, there exists ant ∈ {1, . . . , ms} so thatrs,t(v) = 1. Therefore
we haveH0(−1 +

∑ms

j=1 rs,j(v)) = 1. Suppose now that there exists another
p ∈ {1, . . . , k} with p 6= s andH(−1 +

∑mp

j=1 rp,j(v)) = 1. If this is the case,
there must exist ãt ∈ {1, . . . , mp} so thatrp,et(vi) = 1. Sincerp,et is a membership
rule for ClusterCp, this impliesv ∈ Cp. But this is a contradiction tov ∈ Cs.
Therefore we havecr(v) = s.
“=⇒”: Choose anys ∈ {1, . . . , k} and anyv ∈ V \ Cs. SinceC is ak-cluster set
of V there exists ap ∈ {1, . . . , k} with p 6= s andv ∈ Cp. As already proofed
above this guaranteescr(v) = p and thereforecr(v) 6= s. �

Let v = (v∗,1, . . . , v∗,q) ∈ V be any data object and letcr : V −→ {1, . . . , k}
be a consistent description ofC with corresponding complete membership rule
setsr1, . . . , rk. Then the determination of the cluster membership ofv is rather
simple: Find a membership rulerB ∈

⋃k
s=1 rs with rB(v) = 1, i.e, withv∗,j ∈ Bj

for j = 1, . . . , q. Sincecr is consistent, there exists exactly ones ∈ {1, . . . , k}



1.3 Efficient cluster description 19

with rB ∈ rs. Therefore data objectv belongs to clusterCs. Note that the exis-
tence of more than one membership ruler ∈ rs with r(v) = 1 is possible.

Obviously descriptions should be efficient in the sense that the correspond-
ing complete membership rule setsrs := {rs,1, . . . , rs,ms} are minimal. i.e. the
numbersms are as small as possible.

Often not all properties of a data object have to be considered to determine its
cluster membership. Especially in the case of high-dimensional data, with a great
numberq of attributesAj, a description based on a reduced set of attributes is of
great interest.

We will illustrate this again by our two-dimensional example. Suppose that
we restrict our data set to the data objects of clusterC1 and clusterC3. Then the
following two rules will be sufficient to describe the clusters:

If v = (v∗,1, v∗,2)T has the propertyv∗,1 = a1 with a1 ∈ [0, 4], thenv belongs
to clusterC1.

If v = (v∗,1, v∗,2)T has the propertyv∗,1 = a1 with a1 ∈ [4.5, 8], thenv belongs
to clusterC3.

Obviously we only need attributeA1 for a description of clusterC1 andC3,
i.e. attributeA2 has no influence on the discrimination of both clusters. Note that
this is not true, for a description that includes clusterC2.

We can easily extend our earlier definitions to work with reduced attribute sets:
Let J := {j1, . . . , jm} ⊂ {1, . . . , q} any index subset of lengthm and let

A(J) := {Aj | j ∈ J} be a reduced set of attributes ofΩ. SetΩ(J) :=
⊗

jt∈J Ajt

and forv := (v∗,1, . . . , v∗,q)T ∈ Ω denote byv(J) := (v∗,j1 , . . . , v∗,jm)T ∈ Ω(J)
the projection onΩ(J). Further setM(J) := {v(J) | v ∈ M} ⊂ Ω(J) for any
subsetM ⊂ Ω.

We can defineJ-reduced membership rulesas a special kind of membership
rules:

Definition 1.3.3 Let rB be any membership rule withB := {B1, . . . , Bq} and
Bj ⊂ Aj for j = 1, . . . , q. We callrB J-reduced, ifBj = Aj for j /∈ J . Let
furtherrs be a complete membership rule set of clusterCs. We callrs a complete
J-reduced membership rule set, if each membership ruler ∈ rs is J-reduced.

There exists an unique projection of anyJ-reduced membership rule on the
subspaceΩ(J):

Lemma 1.3.4 LetrB be anyJ-reduced membership rule withB := {B1, . . . , Bq}
andBj ⊂ Aj for j = 1, . . . , q. Then the function̄rB : Ω(J) −→ {0, 1} with

r̄B(v̄) :=

{
1 if (∀j ∈ J) v∗,j ∈ Bj

0 else
, v̄ := (v∗,j1, . . . , v∗,jm)T ∈ Ω(J)

is the unique projection ofrB onΩ(J).



20 Cluster Analysis in High-Dimensional Data

Proof: For anyv = (v∗,1, . . . , v∗,q)T ∈ Ω we havev∗,j ∈ Aj = Bj for j /∈ J , and
thereforerB(v) = r̄B(v(J)). �

Analogously to Lemma 1.3.2 we can achieve a description based on the re-
duced set of attributesA(J), if there exists for each cluster a completeJ-reduced
membership rule set:

Lemma 1.3.5 Let J ⊂ {1, . . . , q} be any index subset of lengthm. Suppose
there exists for each ClusterCs of C a completeJ-reduced membership rule set
rs := {rs,1, . . . , rs,ms} and r̄s,j denotes the unique projection of the membership
rule rs,j onΩ(J), then the functioncr : V −→ {1, . . . , k} with

cr(v(J)) :=

k∑
s=1

sH0(−1 +

ms∑
j=1

r̄s,j(v(J))) for all v ∈ V,

is a consistent description forC based on the reduced attribute setA(J), i.e. we
have

cr(v(J)) = s ⇐⇒ v ∈ Cs for all v ∈ V.

Obviously descriptions should be efficient in the sense that they are based on a
maximally reduced attribute setA(J), i.e. A(J) should contain as less attributes
as possible.

Efficient cluster description algorithm

Using the above definitions, the following general algorithm generates an efficient
cluster description for ak-cluster setC := {C1, . . . , Ck} of a data setV ∈ Ω:
(1) Find an index subsetJ = {j1, . . . , jm} ⊂ {1, . . . , q} of minimal size so that
there exists a functionc : V −→ {1, . . . , k} with

c(v(J)) = s ⇐⇒ v ∈ Cs for all v ∈ V.

(2) Compute for each clusterCs a minimally completeJ-reduced membership
rule setrs := {rs,1, . . . , rs,ms}.
(3) User := {r1, . . . , rk} to construct a consistent descriptioncr of C based on
the reduced attribute setA(J).

Since we are analyzing high-dimensional data, i.e. the dimensionq is large,
we obviously need heuristic solutions for step (1) and (2). For the development
of suitable methods the concept of decomposition is very helpful: In section 2.4
we will describe techniques for the computation of membership rule sets based on
approximate box decompositionsand we will introduce the concept ofdiscrim-
inating attributesthat allows the construction of heuristic algorithms to identify
optimally reduced attribute setsA(J).
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1.4 How many clusters?

Up to now, we have supposed that the number of clustersk is known a priori.
But in many real world applications this is not the case. Looking at Eq. (1.1) one
easily checks that the number of possiblek-cluster sets explodes, ifk is a further
unknown parameter of the cluster problem. Obviouslyk is the most important
parameter, i.e. with the words of cluster expert J. BEZDEK: “It is clearly more
important to be looking in the right solution space (within k) than it is to be com-
paring partitions across k because k specifies the number of clusters to look for,
while the other parameters control the search for these substructures.”[6].

The definition of a general model for cluster problems with unknown cluster
number is still an open problem. Usually it is not suitable to determine a correct
number of clusters by computing for differentk the optimalk-cluster setsC(k)
and comparing the weighted intra-cluster homogeneitiesΓf,h(C(k)), because most
homogeneity functions tend to prefer extreme clusterings withk = 1 or k = n.

Example: Cluster problem with unknown number of clusters

We will illustrate this by the following simple example: Suppose we want to com-
pute an optimal clustering of a data setV = {a, b, c, d, e, f, g, h, i} ⊂ R2 with
a frequency function so thatf(v) = 1 for all v ∈ V . We chooseh = hd (see
Lemma 1.1.2) based on the Euclidean distance functiond = deuclid. Figure 1.3
shows a plot ofV and the corresponding homogeneity matrix.
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Figure 1.3:Example: Cluster problem inR2 with unknown cluster number k.
Left hand side: Plot of data setV . Right hand side: Homogeneity matrix ofV
based on Euclidean distance.

In Table 1.1 the optimalk-cluster setsC(k) of (V, f, h) and their weighted
intra-cluster homogeneitiesΓf,h(C(k)) are presented for differentk. Obviously
one would expectk = 2, 3 or 4 as a correct number of clusters, but a maximization
of Γf,h(C(k)) leads always tok = 1. Therefore we cannot useΓf,h(C(k)) to judge
whichk is best.
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optimalk-cluster setC(k) Γf,h(C(k))

C(1) := V 6.17
C(2) := {{a, b, c, d, e, f}, {g, h, i}} 4.24
C(3) := {{a, b, c}, {d, e, f}, {g, h, i} 2.96

C(4) := {{a}, {b, c}, {d, e, f}, {g, h, i}} 2.23
C(9) := {{a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}} 1.00

Table 1.1:Example: Optimal k-cluster sets of(V, f, h) for different k.

In the literature [42, 6, 25, 51] several other measures are suggested to deter-
mine the validity of a givenk-cluster set and so to find the optimal clustering, but
all of these measures have the deficit that they first need the computation of opti-
mal k-cluster sets for differentk. In the worst scenario this requires the solution
of n optimization problems. Ifn is large, this is a really heroic task.

Another possibility to cope with the problem of the unknown number of clus-
ters might be to determine it in a pre-processing step. Via a projection of the
high-dimensional data on a two-dimensional plane, one hopes that the cluster
structure is not destroyed through the transformation and the number of clusters
can be determined by visual investigation. A very popular tool for such a pro-
jection aremultidimensional-scalingmethods [49], e.g., SAMMON ’ S non-linear
mapping algorithm [56]. The deficits of projection methods are obvious: For high-
dimensional data it is unlikely that the cluster structure on the two-dimensional
plane reflects the original structure. Moreover a visual investigation could be very
subjective.

For cluster problems with a special type of homogeneity functions, exhibiting
a stochastic property, we will present in chapter 4 a new method based on the
theory ofPerron Clusteranalysis that allows the computation of a correct number
of clusters. We will show that this method can be easily used together with the
suggested multilevel cluster identification approach.



Chapter 2

Decomposition

In different research fields, decomposition usually describes the process of split-
ting a problem in smaller problems with less complexity. As was already mo-
tivated in section 1.2, a suitable reduction of a cluster problem can be achieved
via a grouping of nearly maximally homogeneous objects and a representation of
each group by a single object with compressed frequency value. If this kind of
partitioning of the data setV exhibits a certain homogeneity property, we will call
it a decomposition. After giving a general definition, we will introduce a special
type of decomposition, the so calledapproximate box decomposition. Here the
objects are pre-grouped in a way that they build a special subspace inΩ that has
the shape of a multidimensional box ifΩ is a metric space. We will develop a
theory for an efficient reduction of cluster problems via representative clustering
based on decomposition and we will present a basic reduction algorithm that will
be refined in chapter 4. Finally we will show how an approximate box decom-
position can be used to derive an efficient cluster description based on a minimal
number of so calleddiscriminating attributes.

2.1 General Definition

Let V = {v1, . . . , vn} ⊂ Ω be any data set inΩ with frequency functionf and
homogeneity functionh.

Definition 2.1.1 Assumenk ∈ N with nk ≤ n and ε ∈ R+
0 with ε ≤ hmax(V ).

We callΘ := {Θ1, . . . ,Θnk
} an ε-decomposition of(V, h) with partitionsΘs, if

nk⋃
s=1

Θs = V , Θs 6= ∅ , Θs ∩ Θp = ∅ for 1 ≤ s < p ≤ nk

and h(v, w) ≥ hmax(V ) − ε for all v, w ∈ Θs, s = {1, . . . , nk}.
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We further call

ϑf,h(Θ) :=
1

f(V )

nk∑
s=1

1

f(Θs)

∑
v∈Θs

∑
w∈Θs

(hmax(V ) − h(v, w))f(v)f(w) → min

the decomposition error ofΘ with respect tof andh.

Since0 ≤ h(v, w) ≤ hmax(V ) for all v, w ∈ Ω, anynk-clustering ofV is an
ε-decomposition of(V, h) with ε = hmax(V ). The following Lemma guarantees
ϑf,h(Θ) ∈ [0, hmax(V )] for anyε-decomposition of(V, h):

Lemma 2.1.2 LetΘ anyε-decomposition of(V, h), then we have:ϑf,h(Θ) ≤ ε.

Proof: We have(hmax(V ) − h(v, w)) ≤ ε for all v, w ∈ Θs and therefore

ϑf,h(Θ) ≤ 1

f(V )

nk∑
s=1

1

f(Θs)

∑
v∈Θs

∑
w∈Θs

εf(v)f(w)

=
ε

f(V )

nk∑
s=1

1

f(Θs)

∑
v∈Θs

f(v)
∑
w∈Θs

f(w)

=
ε

f(V )

nk∑
s=1

1

f(Θs)

∑
v∈Θs

f(v)f(Θs)

=
ε

f(V )

nk∑
s=1

∑
v∈Θs

f(v) =
ε

f(V )

nk∑
s=1

f(Θs) =
ε

f(V )
f(V ) = ε

�

We will refer toΘ as a decomposition ofV , if there exists a homogeneity function
h and anε ∈ [0, hmax(V )] so thatΘ is anε-decomposition of(V, h).

If we use the homogeneity measureh = hd (see Lemma 1.1.2) based on a
distance functiond, one easily checks that we havehmax = 1 and

ϑf,h(Θ) =
1

f(V )

1

max
ev, ew∈V d(ṽ, w̃)2

nk∑
s=1

1

f(Θs)

∑
v∈Θs

∑
w∈Θs

d(v, w)2f(v)f(w).

Therefore, in this special case, we can use algorithms that try to optimize the sum-
of-squares cost function to compute a decomposition for givennk with minimal
decomposition error. Figure 2.1 shows two possible decompositions withnk := 6
partitionsΘs for our example of a geometric cluster problem inR2 using the Eu-
clidean distance functiond = deuclid. The decomposition on the left hand side
has been computed automatically via a simple hierarchical optimization method
and leads toε = 0.137 andϑf,h(Θ) = 0.019. The decomposition on the right
hand side has been additionally optimized manually and leads toε = 0.135 and
ϑf,h(Θ) = 0.018. Obviouslyε is only a very rough upper bound of the decompo-
sition error.



2.2 Approximate box decomposition 25

86420

5

4

3

2

1

0

  Theta_6

  Theta_5

  Theta_4

  Theta_3

  Theta_2

  Theta_1
86420

5

4

3

2

1

0

  Theta_6

  Theta_5

  Theta_4

  Theta_3

  Theta_2

  Theta_1

Figure 2.1:Example: Two possible decompositions with six partitions inR2.

2.2 Approximate box decomposition

In the following we call any subsetB ⊂ Ω a box in Ω, if there exist non-void
subsetsB1, . . . , Bq with Bj ⊂ Aj andB =

⊗q
j=1Bj . We setBOX(Ω) :=

{B |B box in Ω}.

Definition 2.2.1 Assumenk ∈ N with nk ≤ n. We call (Θ,∆) an approxi-
mate box decomposition ofV with respect tof , wheneverΘ := {Θ1, . . . ,Θnk

}
is a decomposition ofV and ∆ is a set ofnk boxes∆1, . . . ,∆nk

∈ BOX(Ω)
so thatoverlapf(∆) ≈ 0 and f(Θs ∩ ∆s) > 0 for s = 1, . . . , nk. The value
overlayf (Θ,∆) ∈ ]0, 1] indicates how good∆ approximatesΘ.

Herein we use the termsoverlapandoverlayin the following way:

Definition 2.2.2 LetM := {M1, . . . ,Mk} be any set ofnk ∈ N subsets ofΩ with
f(Ms) > 0 for s = 1, . . . , nk. LetΘ be a decomposition ofV with nk partitions
Θs. Then the overlay ofΘ andM with respect tof is given by

overlayf (Θ,M) :=
1

f(V )

nk∑
s=1

f(Ms ∩ Θs), (2.1)

whereas the overlap ofM with respect tof is given by

overlapf(M) :=
k∑

s=1

f(Ms ∩
⋃

p 6=sMp)

f(
⋃k

p=1Mp)
. (2.2)

If overlayf(Θ,∆) = 1, we call (Θ,∆) a perfect box decomposition ofV , Note
that if ∆(V ) := {∆1 ∩ V, . . . ,∆nk

∩ V } is a decomposition ofV , (∆(V ),∆) is
always a perfect box decomposition.
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Figure 2.2 presents two approximate box decompositions based on the decom-
positions shown in Figure 2.1. On the left hand side, the six boxes does not ap-
proximate the decomposition perfectly, because two boxes overlap each other and
four points are not covered, i.e. there is an insufficient overlay. On the right hand
side of Figure 2.2, the decomposition is approximated perfectly with six boxes.
Note that for the automatically computed decomposition, shown on the left hand
side of Figure 2.1, no perfect approximation with six boxes is possible at all.

 overlap

insufficient
overlay

Figure 2.2:Example: Approximate box decomposition (nk = 6) in R2. Left
hand side: Approximate box decomposition with insufficient overlay and overlap.
Right hand side: Perfect box decomposition.

Example: Uniform box decomposition

We can always construct a perfect box decomposition: Forj ∈ {1, . . . , q} choose
anymj ∈ N and any disjoint non-void subsetsB1,j, . . . , Bmj ,j ⊂ Aj so that⋃mj

i=1Bi,j = Aj . Setm :=
∏q

j=1mj and for any index tuple(i1, . . . , iq) with
1 ≤ ij ≤ mj choose an unique numberp = p(i1, . . . , iq) ∈ {1, . . . , m} and define
∆p :=

⊗q
j=1Bij ,j. Obviously we have∆p ∈ BOX(Ω) for eachp ∈ {1, . . . , m}.

If we setI(V ) := {p |∆p ∩ V 6= ∅} and∆I(V ) := {∆p | p ∈ I(V )}, then
one easily checks that(∆I(V )(V ),∆I(V )) is a perfect box decomposition ofV
because∆I(V )(V ) := {∆p ∩ V | p ∈ I(V )} is a decomposition ofV . Since the
construction of∆p is uniform in the sense that each attribute ofΩ is divided into
mj disjoint subsets, we call(∆I(V )(V ),∆I(V )) an uniform box decomposition of
Ω.

Note that the construction of the decomposition∆I(V )(V ) is independent of
the homogeneity functionh and so the decomposition error is not guaranteed to
be small. Further remember that, with increasingq, the numberm grows expo-
nentially, even if we split each attribute in only two subsets, i.e. if we setmj := 2
for j = 1, . . . , q. For exampleq = 20 leads tom > 106. So we usually have
m > n and therefore|I(V )| ≈ n. But this makes an uniform box decomposition
unsuitable for a reduction of high-dimensional cluster problems.
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Figure 2.3 shows an example of an uniform box decomposition for our geo-
metric cluster problem inR2.

Figure 2.3:Example: Uniform box decomposition inR2.

In chapter 3 we will present an adaptive method based on self-organized neural
networks that allows to compute approximate box decompositions without the
described shortages of an uniform procedure.

2.3 Decomposition based representative clustering

In section 1.2 we motivated the basic idea of a cluster problem reduction via repre-
sentative clustering. We have presented a simple way to compute representatives
wi ∈ Ω with compressed frequency valuef̌(wi). Further, we have shown that an
optimal clustering of the representatives corresponds to an optimal clustering of
the original data setV , if the homogeneity functionhmeets a local maximum and
a global correspondence condition for all objects that are compressed to the same
representative. Unfortunately this often leads to an unsatisfactory problem reduc-
tion, i.e. too many representatives are needed. The described conditions seems to
be too strong for practical applications.

In this section we will develop a theory for cluster problem reduction via de-
composition based representative clustering, without using any conditions forh.
The objects are grouped together so that they are building partitions of a decom-
position of the data setV . For the computation of an optimalk-cluster set of the
representative setW , the original homogeneity functionh is replaced by a com-
pressed functioňh. We will show that if the decomposition is suitably fine, i.e.
the decomposition error is small, thisk-cluster set can be extended to an optimal
k-cluster set ofV with respect tof andh.
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Definition 2.3.1 Assumenk ∈ N with nk ≤ n. LetW := {w1, . . . , wnk
} ⊂ V

any subset ofV and letΘ any decomposition ofV with nk partitionsΘs.
(i) We callW a codebook ofΘ, if ws ∈ Θs for s = 1, . . . , nk. We will refer to the
data objectsws as representatives or codebook vectors.
(ii) LetW any codebook ofΘ, then we call the functioňf : Ω −→ R+

0 with

f̌(ws) := f(Θs) for s = 1, . . . , nk and f̌(v) := 0 for v ∈ Ω \W,

the compression off onW . We seťf(M) :=
∑

w∈M f̌(m) for any subsetM ⊂ Ω.
(iii) LetW any codebook ofΘ, then we call the functioňhf : Ω −→ [0, 1] with

ȟf (ws, wp) :=
1

f̌(ws)f̌(wp)

∑
v∈Θs

∑
w∈Θp

h(v, w)f(v)f(w) for s, p = 1, . . . , nk

andȟf(v, w) := 0 for v, w ∈ Ω\W , the compression ofh onW with respect tof .
(iv) For anyk-cluster setC := {C1, . . . , Ck} of V , setCs(W ) := Cs ∩W . Then
we callC(W ) := {C1(W ), . . . , Ck(W )} the compression ofC onW .
(v) For anyk-cluster setC := {C1, . . . , Ck} of a codebookW of Θ, we define
Ĉ := {Ĉ1, . . . , Ĉk} with Ĉs :=

⋃
wp∈Cs

Θp and call Ĉ the extension ofC onV .

Lemma 2.3.2 Assumenk ∈ N with k ≤ nk ≤ n and letΘ be any decomposition
of V with nk partitionsΘs and a codebookW . Then we have:
(a) The compressioňf is a frequency function forW and the compressioňhf is a
homogeneity function forW .
(b) If C is ak-cluster set ofW then the extension̂C is ak-cluster set ofV .

Proof: (a) and (b) follow directly from Definition 2.3.1. �

A decomposition is fine enough for a givenk-cluster set, if each partition belongs
to only one cluster:

Definition 2.3.3 Let C := {C1, . . . , Ck} be anyk-cluster set ofV . Further as-
sumenk ∈ N with k ≤ nk ≤ n and letΘ := {Θ1, . . . ,Θnk

} be any decomposi-
tion ofV . We callΘ a covering ofC, if there exist non-void disjoint index subsets
I1, . . . , Ik with

⋃k
s=1 Is = {1, . . . , nk} so thatCs =

⋃
p∈Is

Θp.

ObviouslyΘV := {{v} | v ∈ V } andΘC := C are trivial coverings ofC. But
there exists also non-trivial coverings ifC meets a stronger version of the optimal
cluster assumption (see section 1.2):

Lemma 2.3.4 Let C be anyk-cluster set ofV and ε ∈ R+
0 with ε < hmax(V ).

If we have(v ∈ C =⇒ w ∈ C) for any clusterC ∈ C and all v, w ∈ V with
h(v, w) ≥ hmax(V ) − ε, then anyε-decompositionΘ of (V, h) is a covering ofC.
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Proof: Let nk ∈ N with k ≤ nk ≤ n and Θ := {Θ1, . . . ,Θnk
} be any

ε-decomposition of(V, h). For any clusterCs ∈ C setIs := {p |Θp ∩ Cs 6= ∅}.
Then we have

⋃k
s=1 Is = {1, . . . , nk} andCs ⊂

⋃
p∈Is

Θp. Obviously we are
ready, if we show:

(∀p ∈ Is) Θp ⊂ Cs.

But this follows directly: Sincep ∈ Is there exists an objectv ∈ Θp ∩ Cs. Then
for all w ∈ Θp we haveh(v, w) ≥ hmax(V ) − ε and therefore alsow ∈ Cs. �

The next Lemma shows that the weighted intra-cluster homogeneity of any
k-cluster setC of V and its compression onW are equal if there exists any cover-
ing of C. We will use this fact in combination with Lemma 2.3.6 within the proof
of the basic Theorem 2.3.7.

Lemma 2.3.5 Let C := {C1, . . . , Ck} be anyk-cluster set ofV and Θ be any
covering ofC with nk partitionsΘp and a codebookW := {w1, . . . , wnk

}. Then
the compressionC(W ) is ak-cluster set ofW with Γf̌ ,ȟf

(C(W )) = Γf,h(C).

Proof: ObviouslyC(W ) is ak-cluster set, ifCs(W ) 6= ∅ for s = 1, . . . , k. But
this follows immediately from the fact thatΘ is a covering ofC with codebook
W . Further it follows that the index subsetsI1, . . . , Ik with Is := {p |wp ∈ Cs}
are non-void and disjoint and that we haveCs =

⋃
p∈Is

Θp.

Sincef(Cs) = f̌(Cs(W )), this yields:

Γf,h(C) =
1

k

k∑
s=1

1

f(Cs)

∑
v∈Cs

∑
w∈Cs

h(v, w)f(v)f(w)

=
1

k

k∑
s=1

1

f(Cs)

∑
p1∈Is

∑
p2∈Is

∑
v∈Θp1

∑
w∈Θp2

h(v, w)f(v)f(w)

=
1

k

k∑
s=1

1

f(Cs)

∑
p1∈Is

∑
p2∈Is

ȟf(wp1, wp2)f̌(wp1)f̌(wp2)

=
1

k

k∑
s=1

1

f̌(Cs(W ))

∑
p1∈Is

∑
p2∈Is

ȟf (wp1, wp2)f̌(wp1)f̌(wp2)

=
1

k

k∑
s=1

1

f̌(Cs(W ))

∑
wp1∈Cs(W )

∑
wp2∈Cs(W )

ȟf(wp1, wp2)f̌(wp1)f̌(wp2)

= Γf̌ ,ȟf
(C(W ))

�

The covering property of a decomposition can be transmitted to its extension:
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Lemma 2.3.6 Let Θ be any covering of̃C with nk partitionsΘp and a codebook
W := {w1, . . . , wnk

}. If C := {C1, . . . , Ck} is a k-cluster set ofW , thenΘ is a
covering of the extension̂C of C onV .

Proof: SetJs := {p |wp ∈ Cs} for s = 1, . . . , k. SinceC is ak-cluster set ofW ,
we haveJs 6= ∅, Js ∩ Jp = ∅ for 1 ≤ s < p ≤ k and

⋃k
s=1 Js = {1, . . . , nk}. By

definition ofĈ, we further havêCs :=
⋃

wp∈Cs
Θp =

⋃
p∈Js

Θp and thereforeΘ is

a covering ofĈ. �

Using the previous lemmata we can proof the basic theorem of decomposition
based representative clustering:

Theorem 2.3.7 Let C̃ := {C̃1, . . . , C̃k} be any optimalk-cluster set of(V, f, h).
Further let Θ be any covering of̃C with nk partitions Θp and a codebookW .
If C is an optimalk-cluster set of(W, f̌ , ȟf), then the extension̂C is an optimal
k-cluster set of(V, f, h).

Proof: (i) Let C̃(W ) := {C̃1(W ), . . . , C̃k(W )} with C̃s(W ) := C̃s ∩W be the
compression of̃C. SinceΘ is an covering of̃C, we can apply Lemma 2.3.5 and
yield:

Γf,h(C̃) = Γf̌ ,ȟf
(C̃(W )).

(ii) Let Ĉ(W ) := {Ĉ1(W ), . . . , Ĉk(W )} with Ĉs(W ) := Ĉs∩W be the compres-
sion ofĈ. Then one easily checks thatĈ(W ) = C. Since Lemma 2.3.6 guarantees
thatΘ is a covering ofĈ, we can again apply Lemma 2.3.5 and yield:

Γf,h(Ĉ) = Γf̌ ,ȟf
(C).

(iii) SinceC is an optimalk-cluster set of(W, f̌ , ȟf) andC̃ is an optimalk-cluster
set of(V, f, h), we have

Γf̌ ,ȟf
(C) ≥ Γf̌ ,ȟf

(C̃(W )) and Γf,h(C̃) ≥ Γf,h(Ĉ).

Using(i) − (iii) we get

0 ≥ Γf,h(Ĉ) − Γf,h(C̃) = Γf,h(Ĉ) − Γf̌ ,ȟf
(C̃(W )) ≥ Γf,h(Ĉ) − Γf̌ ,ȟf

(C) = 0

and thereforeΓf,h(Ĉ) = Γf,h(C̃). SinceC̃ is an optimalk-cluster set, this guaran-
tees that̂C is also optimal. �

From Theorem 2.3.7 we can derive a basic algorithm for the reduction of clus-
ter problems via representative clustering based on decomposition:
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Basic reduction algorithm

Suppose we want to compute an optimalk-cluster set of a data setV with respect
to a frequency functionf and a homogeneity functionh.
(1) To reduce the complexity of the cluster problem, we have to compute first a
decompositionΘ := {Θ1, . . . ,Θnk

} of V and a codebookW so thatΘ is an cov-
ering of an optimalk-cluster set of(V, f, h).
(2) Next we compute an optimalrepresentative clustering, i.e. an optimalk-cluster
setC of (W, f̌, ȟf ).
(3) Finally we have to extendC onV . The resultingĈ is an optimalk-cluster set
of (V, f, h).

Obviously such an algorithm makes only sense if in step (1) the optimalk-cluster
set has not to be known a priori and the numbernk is much smaller than the num-
bern of objects inV .

Using the optimal cluster assumption (see section 1.2) and Lemma 2.3.4, we
can suppose that for sufficiently smallε, eachε-decomposition ofV is a covering
of each optimalk-cluster set of(V, f, h). This motivates the following assump-
tion:

Covering assumption

If a decompositionΘ of V is sufficiently fine, i.e. ifϑf,h(Θ) is small, then there
exists a nearly optimalk-cluster set of(V, f, h) so thatΘ is a covering of it.

Obviously the fineness ofΘ corresponds with the number of partitionsnk.
Therefore we need a method that — given an upper bound ofnk — tries to
compute a maximally fine decomposition, while using only a minimal number
of partitions. In chapter 3 we will present such a method based on KOHONEN’ S

Self-Organizing Maps (SOM). Since the choice of the upper bound fornk is rather
arbitrary, in chapter 4 we will refine our basic reduction algorithm to a multilevel
algorithm that iterates the steps (1) and (2) until a sufficiently fine decomposition
and corresponding optimal representative clustering is found.

Example: Representative clustering of a geometric cluster problem inR2

We will give a short demonstration of our basic reduction algorithm by our exam-
ple of a geometric cluster problem inR2.

Sincehmax(V ) = 1, any ε-decompositionΘ with ε = 0.05 should be fine
enough to use it within our algorithm. Figure 2.4 shows a suitableε-decomposition
of the100 points in the data setV with nk = 10 partitions.
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Figure 2.4:Example: Covering with nk = 10 partitions of 3-cluster set inR2.

Now we have to choose any codebookW := {w1, . . . , w10} of Θ and to com-
pute the compressed functionsf̌ andȟ according to Definition 2.3.1.

One easily checks that{{w1, w2, w3}, {w4, w5, w6, w7}, {w8, w9, w10}} is an
optimal3-cluster set of(W, f̌ , ȟ). An extension onV directly leads to the three
clustersC1, C2 andC3 (see Figure 1.1). Note that the3-cluster setC := {C1, C2, C3}
meets the condition(v ∈ C =⇒ w ∈ C) for any clusterC ∈ C and allv, w ∈ V
with h(v, w) ≥ hmax(V )− ε. Therefore Lemma 2.3.4 guarantees that our decom-
positionΘ is a covering ofC, i.e. that it was fine enough.

Decomposition clustering

Instead of clustering codebook vectors, we can also cluster a decomposition itself:
Let Θ := {Θ1, . . . ,Θnk

} be any decomposition ofV . ThenΘ can be interpreted
as a data set in̂Ω := ℘(Ω), where℘(Ω) := {M |M ⊂ Ω} denotes the power set
of Ω. We can extend the frequency functionf and the homogeneity functionh on
subsets ofΩ:

Definition 2.3.8
(a) We callf̂ : ℘(Ω) −→ N with f̂(M) :=

∑
v∈M f(v) for any subsetM ⊂ Ω,

the set extension off . We setf̂(M) :=
∑

M∈M f̂(M) for M ⊂ ℘(Ω).

(b) We callĥf : ℘(Ω) × ℘(Ω) −→ [0, 1], with

ĥf(V1, V2) :=

{
1

f̂(V1)f̂(V2)

∑
v∈V1

∑
w∈V2

h(v, w)f(v)f(w) if V1 ∩ V, V2 ∩ V 6= ∅
0 else

for any subsetsV1, V2 ⊂ Ω, the set extension ofh with respect tof .
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Note that we have0 ≤ ĥf (V1, V2) ≤ 1 and ĥf(V1, V2) = ĥf (V2, V1) for any
non-void subsetsV1, V2 ⊂ V .

The following Theorem guarantees that the computation of an optimalk-cluster
set of (W, f̌, ȟ) is equivalent to the computation of an optimalk-cluster set of
(Θ, f̂ , ĥ), if Θ is any decomposition ofV with codebookW . This makes it pos-
sible to replace the clustering of codebook vectors by a direct clustering of the
corresponding partitions of the decomposition within step (2) of the basic reduc-
tion algorithm.

Theorem 2.3.9 LetW := {w1, . . . , wnk
} be any codebook ofΘ.

(i) LetC := {C1, . . . , Ck} be anyk-cluster set ofΘ. Then there existk non-void
disjoint index subsetsIs with

⋃k
s=1 Is = {1, . . . , nk} so thatCs = {Θp | p ∈ Is}.

If we setČs(W ) := {wp | p ∈ Is}, then Č(W ) := {Č1(W ), . . . , Čk(W )} is a
k-cluster set ofW with Γf̂ ,ĥf

(C) = Γf̌ ,ȟf
(Č(W )).

(ii) LetC := {C1, . . . , Ck} be anyk-cluster set ofW . If we setIs := {p |wp ∈ Cs},
then the index subsetsI1, . . . , Ik are non-void and disjoint with

⋃k
s=1 Is = {1, . . . , nk}.

The extension̂C(Ω̂) := {Ĉ1(Ω̂), . . . , Ĉk(Ω̂)} with Ĉs(Ω̂) := {Θp | p ∈ Is} is a
k-cluster set ofΘ with Γf̌ ,ȟf

(C) = Γf̂ ,ĥf
(Ĉ(Ω̂)).

Proof: Since(ii) follows analogously, we only show(i):

(a) Γf̂ ,ĥf
(C) =

1

k

k∑
s=1

1

f̂(Cs)

∑
V1∈Cs

∑
V2∈Cs

ĥf(V1, V2)f̂(V1)f̂(V2)

=
1

k

k∑
s=1

1∑
p∈Is

f(Θp)

∑
p1∈Is

∑
p2∈Is

ĥf (Θp1,Θp2)f̂(Θp1)f̂(Θp2)

=
1

k

k∑
s=1

1∑
p∈Is

f̌(wp)

∑
p1∈Is

∑
p2∈Is

∑
v∈Θp1

∑
w∈Θp2

h(v, w)f(v)f(w)

=
1

k

k∑
s=1

1

f̌(Čs(W ))

∑
p1∈Is

∑
p2∈Is

ȟf (wp1, wp2)f̌(wp1)f̌(wp2)

= Γf̌ ,ȟf
(Č(W ))

�

We will use this equivalence of representative clustering and decomposition clus-
tering in the discussion of our main Theorem 4.3.9 in chapter 4.
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2.4 Efficient cluster description via approximate box
decomposition

In this section we will describe, how approximate box decompositions can be used
to generate efficient cluster descriptions according to section 1.3.

2.4.1 Computation of membership rules

We can easily determine cluster membership rules for ak-cluster setC, if we have
an approximate box decomposition ofV that is a covering ofC:

Lemma 2.4.1 Assumenk ∈ N with k ≤ nk ≤ n. Let C := {C1, . . . , Ck} be
anyk-cluster set ofV andΘ := {Θ1, . . . ,Θnk

} be any covering ofC with non-
void disjoint index subsetsI1, . . . , Ik so thatCs =

⋃
p∈Is

Θp. Further suppose
the existence of any∆ := {∆1, . . . ,∆nk

} so that(Θ,∆) is an approximate box
decomposition ofV with respect tof .
(i) For p ∈ {1, . . . , nk} there exist for eachj ∈ {1, . . . , q} a subsetBp,j ⊂ Aj so
that∆p =

⊗q
j=1Bp,j.

(ii) SetBp := {Bp,1, . . . , Bp,q} for p ∈ {1, . . . , nk} and definerBp : Ω −→ {0, 1}
with

rBp(v) :=

{
1 if (∀j ∈ {1, . . . , q}) v∗,j ∈ Bp,j

0 else
, v := (v∗,1, . . . , v∗,q)T ∈ Ω.

If p ∈ Is and f(∆p \ Cs) = 0, thenrBp is a membership rule for clusterCs.
(iii) If f(∆p\Cs) = 0 for all p ∈ Is andCs ⊂

⋃
p∈Is

∆p, thenrs := {rBp | p ∈ Is}
is a complete membership rule set of clusterCs.

Proof: (i) Follows directly from∆p ∈ BOX(Ω).
(ii) We have

f(∆p \ Cs) = 0 ⇐⇒ ∆p ∩ V ⊂ Cs

and therefore

rBp(v) = 1 =⇒ v ∈ ∆p ⊂ Cs for all v ∈ V.

(iii) From(ii) follows thatrBp is a membership rule ofCs for eachp ∈ Is. Since
Cs ⊂

⋃
p∈Is

∆p, we have

v ∈ Cs =⇒ (∃p ∈ Is) v ∈ ∆p ⇐⇒ (∃p ∈ Is) rBp(v) = 1 .

�

Note that the conditionf(∆p \ Cs) = 0 is only violated if boxes from different
clusters overlap each other. Therefore this condition is weaker than the condition
overlapf(∆) = 0.
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Membership rule set algorithm

From Lemma 2.4.1 we can derive an algorithm to compute complete membership
rule sets that are nearly minimal for ak-cluster setC:
(1) Compute an approximate box decomposition(Θ,∆) of V so thatΘ is a cov-
ering ofC, ∆ fits the conditions of Lemma 2.4.1 andnk � n.
(2) Construct thenk membership rulesrBp as described in Lemma 2.4.1. Since
for each cluster a minimally complete membership rule set must contain at least
one rule, we need at leastk membership rules to describe ak-cluster setC. If the
difference ofnk andk is not to large, the complete membership rule setsrs are
nearly minimal.

Example: Complete membership rule set for a3-cluster set inR2 based on
approximate box decomposition.

For our geometrically based cluster problem inR2 with k = 3, Figure 2.5 shows
an approximate box decomposition(Ω,∆) that covers the optimal3-cluster set.
Obviously the overlap between the boxes causes no problems and therefore we
can use∆ := {∆1, . . . ,∆nk

}, with boxes∆p = Bp,1×Bp,2 and subsetsBp,j ⊂ R
according to Table 2.1, to determine minimal membership rule set for the optimal
3-cluster set{C1, C2, C3}.

C1

C3

C2
∆1

∆

∆

∆

∆

∆3

4

5

6

2

A1
 2  4  6  8

A2

 2

 4

Figure 2.5:Example: Approximate box decomposition that is a covering of a
3-cluster set inR2. Unproblematic overlap between boxes of the same cluster.
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If we define the membership rulesrBp as described in Lemma 2.4.1, then
r1 := {rB1 , rB2} (respectivelyr2 := {rB3 , rB4}, r3 := {rB5, rB6}) is a complete
membership rule set of clusterC1 (respectivelyC2, C3). One easily checks that
r1, r2 andr3 are minimal.

p Bp,1 Bp,2

1 [0.25, 1.5] [1.25, 3.75]
2 [0.25, 3.5] [3.25, 4.75]
3 [2.5, 4.125] [0.25, 2.5]
4 [3.625, 6] [0.25, 1.5]
5 [ 4.25, 7.5] [2.25, 4]
6 [ 6.25, 8] [1, 4]

Table 2.1:Example: Approximate box decomposition that is a covering of a
3-cluster set inR2.

Instead of∆ we could also use the box decomposition that is shown on the
right hand side of Figure 2.2. But note that the approximate box decomposition on
the left hand side leads to an incomplete membership rule set for clusterC3. The
uniform box decomposition from Figure 2.3 is also suitable, but the corresponding
membership rule sets are not minimal.

2.4.2 Discriminating attributes

Since we are interested in efficient cluster descriptions, we have not only to de-
termine complete membership rule sets, we have also to reduce them as much as
possible (see section 1.3). Therefore we have to identify thediscriminating at-
tributesof the cluster problem, i.e. the attributes that are necessary to determine
the cluster membership of each data object.

Let V = {v1, . . . , vn} ⊂ Ω be any data set inΩ with frequency functionf
and homogeneity functionh. Further letC := {C1, . . . , Ck} be anyk-cluster
set ofV andΘ := {Θ1, . . . ,Θnk

} be any covering ofC with non-void disjoint
index subsetsI1, . . . , Ik so that

⋃k
s=1 Is = {1, . . . , nk} andCs =

⋃
p∈Is

Θp for
s = 1, . . . , k. Remember that for any index subsetJ ∈ {1, . . . , q}, v(J) denotes
the projection ofv ∈ Ω onΩ(V ), whereΩ(V ) is spanned by the attributesAj with
j ∈ J . Remember further that we have definedM(J) := {v(J) | v ∈ M} for any
subsetM ⊂ Ω.



2.4 Efficient cluster description via approximate box decomposition 37

Definition 2.4.2 LetJ ⊂ {1, . . . , q} be any non-void index subset and denote by
Jc := {1, . . . , q} \ I its complement.
(a) We call the attribute setA(Jc) := {Aj | j ∈ Jc} redundant forC if we have:

v ∈ Cs ⇐⇒ v(J) ∈
⋃
p∈Is

Θp(J) forall v ∈ V.

(b) We call the attribute setA(Jc) maximally redundant forC if there exists no
subsetJ̃ ⊂ {1, . . . , q} so thatA(J̃c) is redundant forC and|J | > |J̃ |.
(c) We call attributeAi an univariate discriminating attribute ofC, if A({j}) is
not redundant forC.
(d) We call the attributesAj ∈ A(J) multivariate discriminating attributes ofC if
A(Jc) is maximally redundant forC.

The following Lemma is an extension of Lemma 2.4.1:

Lemma 2.4.3 Suppose there exist any∆ := {∆1, . . . ,∆nk
} so that(Θ,∆) is an

approximate box decomposition ofV with respect tof . Choose anys ∈ {1, . . . , k}
and anyp ∈ Is. DefinerBp according to Lemma (2.4.1) and suppose further that
f(∆p \ Cs) = 0, then we have:
The functionrBp(J) withBp(J) := {Bp,1(J), . . . , Bp,q(J)} and

Bp,j(J) :=

{
Bj if j ∈ J
Aj else

, for j ∈ {1, . . . , q},

is aJ-reduced membership rule for clusterCs if A(Jc) is redundant forC.

Proof: We have

f(∆p \ Cs) = 0 ⇐⇒ ∆p ∩ V ⊂ Cs =
⋃
p∈Is

Θp ⇐⇒ ∆p(J) ⊂
⋃
p∈Is

Θp(J)

and therefore

rBp(V )(v) = 1 =⇒ v(J) ∈ ∆p(J) ⊂
⋃
p∈Is

Θp(J) ⇐⇒ v ∈ Cs.

�

Analogously to Lemma 2.4.1 one easily checks that{rBp(J) | p ∈ Is} is a
J-reduced complete membership rule set of clusterCs, if f(∆p \ Cs) = 0 for
all p ∈ Is andCs ⊂

⋃
p∈Is

∆p. Moreover ifA(Jc) is maximally redundant,
{rBp(J) | p ∈ Is} is optimally reduced.
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Discriminating attributes identification algorithm

Suppose thatC is any optimalk-cluster set of(V, f, h) and that there exist any
∆ := {∆1, . . . ,∆nk

} so that(Θ,∆) is an approximate box decomposition ofV
with respect tof . Then the following algorithm can be used to determine the
multivariate discriminating attributes ofC:
(1) Choose0 < δ � 1. SetJopt := {1, . . . , q} andδopt := 0.
(2) LetJ ⊂ {1, . . . , q} be any index subset of minimal size so that

overlapf(∆̂(J) ≤ overlapf (∆) + δ,

where∆̂(J) := {∆̂1(J), . . . , ∆̂nk
(J)} with

∆̂p(J) ⊂ Ω and v ∈ ∆̂p(J) ⇐⇒ v(J) ∈ ∆p(J) for all v ∈ Ω.

(3) If |J | < q, then goto step (5).
(4) If δopt = 0, then goto step (7), else stop.
(5) If A(JC) is not redundant forC, then decreaseδ and goto step (2).
(6) If |J | < |Jopt|, then setJopt := J andδopt := δ, else stop.
(7) If |J | > 1, then increaseδ and goto step (2), else stop.

For cluster problems with a special type of homogeneity function, that exhibits
a stochastic property, in chapter 4 we are going to present a method that allows to
proof quickly ifA(JC) is redundant forC.

Example: Discriminating attributes of cluster problem with unknown num-
ber of clusters

If we look again at our simple example from section 1.4, we can easily identify the
discriminating attributes corresponding to the optimalk-cluster sets for differently
chosenk.

Obviously for the clusteringsC(1) − C(4) we need for eachv ∈ V only the
value for attributeA1 to determine the cluster membership.

Formally spoken, if we setJ := 1 and choosek ∈ {1, . . . , 4}, then we have
for each clusterC ∈ C(k) and for allv ∈ V :

v ∈ Cs ⇐⇒ v(J) ∈ Cs(J).

SinceΘ := C(k) is always a trivial covering ofk-cluster setC(k), the attribute
setA(Jc) = {A2} is redundant. Further it is maximally redundant, because it
is not possible that a redundant attribute set contains all attributes. Therefore
A1 ∈ A(J) is a multivariate discriminating attribute ofC(k), k = 1, . . . , 4.
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To illustrate the working of the suggested identification algorithm, we use it to
determine the discriminating attributes ofC := C(2):

• At the beginning we setΘ := C and∆ := {∆1,∆2}, with boxes∆1 :=
B1,1×B1,2 := [0.5, 2]×[0.5, 3] and∆2 := B2,1×B2,2 := [5.5, 6]×[1.5, 2.5].
Then(Θ,∆) is an approximate box decomposition ofV .

• In step (1) we choose a smallδ, e.g.,δ := 0.01. We setJopt := {1, . . . , q}
andδopt := 0.

• Obviously in step (2) it is enough to investigateJ1 := {1} andJ2 := {2}.
Extending the projections∆s(J1) := Bs,1 and ∆s(J2) := Bs,2 we got
∆̂s(J1) := Bs,1 × R and ∆̂s(J2) := R × Bs,2 for s = 1, 2. This leads
to overlapf(∆̂(J)) := 0 and overlapf (∆̂(J2)) := 0.56. Since we have
overlapf(∆) = 0, we setJ := J1.

• At step (3) we have|J | = 1 < 2 = q and therefore we jump to step (5).

• Now we have to prove, ifA(JC) = {A2} is redundant. This is the case and
we go to step (6).

• Since|J | = 1 < 2 = |Jopt|, we setJopt := J andδopt := δ.

• At step (7) we stop, because|J | = 1. The result of the algorithm isJopt := 1
and determinesA1 as the only multivariate discriminating attribute ofC.
One easily checks, thatδopt is a kind of quality indicator of the computation.
If δopt is sufficiently small, we can be confident that we have identified the
correct multivariate discriminating attributes of clusteringC.
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Chapter 3

Adaptive Decomposition by
Self-Organized Neural Networks

In this chapter we will describe two methods, based on self-organized neural net-
works 1, that can be used to compute a decompositionΘ := {Θ1, . . . ,Θnk

} of
a data setV with homogeneity functionh. The decomposition is adaptive in the
sense that the numbernk is chosen automatically — only an upper bound|∈ N
has to be fixed a priori — so thatΘ is fine enough to use it within our basic reduc-
tion algorithm (see section 2.3). Moreover, the second method that is an recently
developed extension of the first one (see [29]), allows to compute non-uniform
approximate box decompositions.

Since each decomposition ofV is also a kind of clustering ofV , the computa-
tion of a decomposition with small decomposition error (see Eq. (2.1)) has to be
done heuristically in a shorter time thanO(n2). Otherwise there is no advantage
of our basic reduction algorithm in comparison with a direct computation of an
optimalk-cluster set ofV .

We suppose thatΩ ⊂ Rq is a metric space, otherwise we will extend it suffi-
ciently as described in the appendix. Further we assume that there exists a distance
functiondist : Ω×Ω −→ R so that for allv, w ∈ V the following local maximum
condition holds:

dist(v, w) ≈ 0 =⇒ h(v, w) ≈ hmax(V ) . (3.1)

Usually, this condition is given for geometric cluster problems and also for many
dynamic cluster problems (see the earlier discussion in section 1.2).

1For an introduction to neural networks see, e.g., [55]
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3.1 Self-Organizing Maps (SOM)

Let V any data set inΩ with frequency functionf . The following Lemma de-
scribes a way to compute an adaptive decomposition based on a given codebook:

Lemma 3.1.1 Assume|∈ N andW := {w1, . . . , w|} ⊂ Ω.
SetΘW := {Θw1, . . . ,Θw|} with partitionsΘwp ⊂ Ω so that for allv ∈ Ω:

v ∈ Θwp ⇐⇒ p = min{s | dist(v, ws) = min
i=1,...,|

dist(v, wi)}. (3.2)

Further setI := {p |Θwp(V ) 6= ∅, p = 1, . . . ,|}with Θwp(V ) := Θwp ∩ V . Then
ΘWI

(V ) := {Θwp(V ) | p ∈ I} is a decomposition ofV with nk := |I| partitions.

Since we havedist(v, w) ≤ dist(v, ws) + dist(w,ws) for all v, w ∈ Θws(V ),
each method that tries to compute aW so that forv ∈ Θws(V ) the distances
dist(v, ws) are minimized, can be used to generate a decomposition ofV with
small decomposition error.

At first, one might think of pure vector quantization (VQ) methods (see [35]).
These methods often try to minimize thedistortion valuewhich is defined as:

1

f(V )

|∑
s=1

∑
v∈Θws (V )

dist(v, ws)f(v). (3.3)

However, they have the tendency to produce codebook vectors that are maximally
different, to achieve a more uniform decomposition ofV . This might cause prob-
lems of so calledpseudo-clusters, i.e. clustersC with nearly zero frequency value
f(C). Therefore it seems better to use a method that tends to gather codebook
vectors in some more robust way. Here a powerful method are KOHONEN’ S Self-
Organizing Maps (SOM). The corresponding algorithm usually produces fast and
good solutions even for high-dimensionalΩ. It can be easily adapted to the case
of cyclic data which will be essential for using it within biomolecular data (see
chapter 5). Further it has the feature of topology approximation which avoids the
appearance of pseudo-clusters and leads to decompositions that are rather robust
under changes of the number|.

In the following we give a short general description of the SOM method. For
an exhaustive presentation see [48].

To be in correspondence with the usual notation in the literature, we suppose
that there exists a probability distributionPρ onΩ with a probability density func-
tion ρ : Ω → R+

0 so thatρ(v) = f(v)
f(V )

for v ∈ V . If this is not the case, one has to
replace all integral signs by sums and has to usef directly.

Each SOM is formed by aq-dimensional input-layer that is fully connected
with the two-dimensional Kohonen layer, which is a neuralmx ×my gridG with
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rectangular or hexagonal topology and| = mxmy grid neurons. The coordi-
nate tuple of each neurons on the grid is denoted byzs ∈ G and each neu-
ron s is uniquely related to aq-dimensional codebook vectorws. After a suit-
able initialization of the codebook vectors, the SOM is trained inL time steps
by a repeated presentation of vectors of theq-dimensional input spaceΩ ac-
cording to the probability distributionPρ. For each presented input vector the
SOM computes a so called winner neuron and its neighboring neurons on the grid
and adapts the related codebook vectors so that the distance to the input vector
is reduced. To achieve convergence, the learning rate of the distance reduction
α : {0, . . . , L} → [0, 1] and the width of the neighborhood of the winner neuron,
the so called neighborhood radius functionγ : {0, . . . , L} → R+

0 , shrink to zero
with time. After a suitable number of training steps the codebook vectors that are
related to neighboring neurons on the grid, are neighboring in the input space ac-
cording to the chosen distance function. Therefore the codebook vectors not only
determine via Eq. (3.2) a decomposition ofΩ, but also approximate the topology
of the input space via the neighborhood structure of the grid.

Algorithmic Realization In the following we describe the initialization of the
codebook vectors, the definition of the winner neuron together with its grid neigh-
borhood and the specification of the codebook adaptation rule.

Initialization. We suggest to choose the initial valuesw1(0), . . . , w|(0) as
approximatelyPρ-distributed random vectors withws(0) ∈ Ω.

Winner neuron and grid neighborhood.Let x = (x1, . . . , xq)
T ∈ Ω be an

any input vector andw1, . . . , w| ∈ Ω the actual codebook vectors of the
SOM. Then we call neuronp ∈ {1, . . . ,|} thewinner neuronfor inputx, if

p = min{s | dist(x, ws) = min
i=1,...,|

dist(x, wi)}. (3.4)

Note that Eq. (3.4) is equivalent tox ∈ Θwp, if Θwp is defined according to
Eq. (3.2).

To determine the neighboring neurons of the winner neuron, one has to
specify a grid distance functionη : G×G×R+ → [0, 1]. Usually one uses
either the bubble grid distance

ηbubble(zs, zp, γ) :=


0 if ‖zs − zp‖ ≤ γ

1 else,

or the Gaussian grid distance

ηgaussian(zs, zp, γ) := 1 − exp

(
−‖zs − zp‖2

2γ2

)
,
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whereγ denotes the actual neighborhood radius and‖·‖ the two-dimensional
Euclidean distance. A neurons belongs to the neighborhood of winner neu-
ron p if η(zs, zp, γ) < 1. If we chooseηgaussian, then the neighborhood of
each neuron coversall grid neurons.

Codebook adaptation rules.Let neuronp be the winner neuron for input
x(t) = (x1(t), . . . , xq(t))

T ∈ Ω at time t andw1(t), . . . , w|(t) ∈ Ω the
actual codebook vectors. Further letα(t) andγ(t) be two time-dependent
linear or log-linear functions that decrease to zero withα(0) ≤ 1 andγ(0) ≤
min{mx,my}

2
.

Then the new codebook vectorsw1(t+ 1), . . . , w|(t+ 1) are computed as

ws(t+ 1) := ws(t) + α(t) neigh(zs, zp, t) (x(t) − ws(t)) (3.5)

with neigh(zs, zp, t) := 1 − η(zs, zp, γ(t)).

In the case that we setγ(0) = 0, the SOM is a pure VQ algorithm and there-
fore optimizes the distortion value [48]. If we allow neighborhood learning, e.g.,
γ(0) > 0, the formulation of an energy function that is minimized by the SOM is
not possible [47]. Recently slight modifications of the adaptation rules have been
suggested that allows the formulation of an energy function without destroying the
essential features of the SOM [38, 40]. For further theoretical investigations of the
SOM algorithm, especially a comparison to pure VQ methods, see [54, 11, 12].

3.2 Self-Organizing Box Maps (SOBM)

The basic idea of the recently developed Self-Organizing Box Maps (SOBM)
method [29] is to computecodebook boxeŝWs := (Ŵs1 , . . . , Ŵsq) ∈ BOX(Ω)

with Ŵsi
= [lsi

, rsi
] ⊂ R instead of codebook vectorsws ∈ Ω. This is done in

such a way that each codebook box is a nearly optimal box approximation of its
corresponding partitionΘŴs

⊂ Ω:
We will call any setB =

⊗q
i=1[li, ri] ∈ BOX(Ω) with li, ri ∈ R an optimal

box approximation of a setM ⊂ Ω with respect toPρ, if

Pρ(B \M) + Pρ(M \B) → min .

Algorithmic Realization Obviously, this change of concept induces changes of
the SOM algorithm, which we arrange here:

Initialization. Let w1(0), . . . , w|(0) be different initial values for the code-
book vectors of the traditional SOM, e.g., approximatelyPρ-distributed ran-
dom vectors withws(0) ∈ Ω for s = 1, . . .|. For our extended algo-
rithm, we chooseŴs(0) :=

⊗q
i=1[lsi

(0), rsi
(0)] with lsi

(0) = Wsi
(0) and
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rsi
(0) = Wsi

(0) + ε in terms of a small positive valueε, the initial width of
the interval so that̂Ws ∩ Ŵp = ∅ for all s, p ∈ {1, . . . ,|}.

Winner neuron.We suppose that the problem specificq-dimensional dis-
tance functiondist(x, y) with x, y ∈ Ω can be written as a functionF of q
one-dimensional distance measuresdi(xi, yi), which means thatdist(x, y) =
F (d1(x1, y1), . . . , dq(xq, yq)). Note that many popular distance measures, as
e.g., the Euclidean distance, just exhibit this feature. Obviously we need a
distance measureDIST that permits to compute the distance between an
input vectorx ∈ Ω and codebook boxeŝWs ∈ BOX(Ω). For that purpose,
we suggest

DIST(x, Ŵs) := F (d̂1(x1, Ŵs1), . . . , d̂q(xq, Ŵsq))

with

d̂i(xi, Ŵsi
) :=

 0 if xi ∈ Ŵsi

min{di(xi, lsi
), di(xi, rsi

)} else.

Then the winner neuronp has to match a condition analogous to Eq. (3.4):

p = min{s |DIST(x, Ŵs) = min
i=1,...,|

DIST(x, Ŵi)}. (3.6)

Obviously we can use Eq. (3.6) to define for each codebook boxŴs the
corresponding partition̂Θs := ΘŴs

⊂ Ω analogously to Eq. (3.2).

Codebook adaptation rules.In analogy to the SOM algorithm, the SOBM
algorithm has to adapt the codebookboxes. This will be done by the fol-
lowing rules:

lsi
(t+ 1) := lsi

(t)

+ g(lsi
(t), rsi

(t), xi(t)) α(t) neigh(zs, zp, t) (xi(t) − lsi
(t))

−α(t) c(lsi
(t), rsi

(t))

rsi
(t+ 1) := rsi

(t)

+ g(−rsi
(t),−lsi

(t),−xi(t)) α(t) neigh(zs, zp, t) (xi(t) − rsi
(t))

+α(t) c(lsi
(t), rsi

(t))

with a linear functiong : R3 → [0, 1], g(a, b, x) :=


1 if x < a
0 if x > b

b−x
b−a

else
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and a functionc : R2 → R+
0 that is independent of the inputx(t) and will

be defined later.

Note that instead of the above functiong, also a smoother ”sigmoid” function
like g(a, b, x) := 1 − 1

1+exp(−x+ a+b
2

)
can be chosen in principle.

Suppose for the time being thatc = 0, then one easily verifies that the left
interval boundary is only adapted, if the input is left of the right interval boundary
and vice versa. Further one observes that inputs outside the interval have a greater
influence on the adaptation of the nearest interval boundary, as when they are
inside the interval. In the following we will motivate the suggested adaptation
rule.

One easily verifies, that after the initialization we haveŴs ⊂ Θ̂s for all
s = 1, . . . , k. Suppose now an inputx that belongs tôΘs. If xi /∈ Ŵsi

, we have
to widen the interval. Therefore the nearest interval boundary is “pulled” towards
xi. This is just the same method as in the original SOM algorithm. Ifxi ∈ Ŵsi

the
first strategy is to do nothing, because in this case the box seems to be all right.
This however, turns out to be not a good idea, because theΘ̂s change over time so
that we can observêWs \ Θ̂s 6= ∅ after several adaptation steps. If this difference
becomes larger, it is not only possible thatPρ(Ŵs \ Θ̂s) increases so that̂Ws is
no longer a good box approximation ofΘ̂s. Also the probability grows that one
observes overlaps between the boxes after the algorithm stops (see Figure 3.1).

Figure 3.1:Poor partitioning in the absence of interval shrinkage.

If, however the overlap between the boxes is too large,Ŵ and its correspond-
ing decomposition are no longer an approximate box decomposition. Therefore
it is necessary to shrink the intervals. This could be done by adapting the inter-
val boundaries when even the inputxi is inside the interval, the so called interior
adaptation. It is obvious that the adaptation of the nearest boundary should be
greater than that of the opposite side. By doing this a new problem arises: Usu-
ally after some time there are more inputsxi inside the interval than outside. As a
consequence, the interval shrinks faster than it grows, which implies that the value
Pρ(Ŵs) shrinks, too. But then the box approximation ofΘ̂s is not as good as it
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could be. Therefore one has to introduce something like a damping coefficient or
a correction term, which reduces the inter-interval adaptation. Such a parameter
will depend on the ratio of the inputs inside and outside the interval. A direct
computation would be impracticable, because it is very time consuming. So one
has to think about certain heuristics, which only consider the interval width. Our
approaches with a damping coefficient, appeared to supply unsatisfactory results.
Excellent results were obtained by another approach, which uses an analytically
derived correction term. This approach will be presented subsequently.

Correction term

Without loss of generality, we suppose that there existai, bi ∈ R so that we
haveΩρ := {x ∈ Ω| ρ(x) > 0} ⊂

⊗q
i=1[ai, bi]. Let Θ̂s(t) be the decomposition

that is defined viaŴs(t) and let∆s(t) :=
⊗q

i=1[l
∗
si
(t), r∗si

(t)] be an optimal box
approximation of̂Θs(t) with minimal volume, i.e.

boxvol(∆s(t)) :=

q∏
i=1

(r∗si
(t) − l∗si

(t)) → min .

For our further expositions we define forM ⊂ Ω with Pρ(M) > 0, the condi-
tional probability density functionρM onM via

ρM (ω) :=

{
ρ(ω)

Pρ(M)
if ω ∈M

0 else.

UsingρΘ̂s(t)
, we can compute the conditional expectation valueE(Ŵs(t+ 1))

for each actual codebook vector̂Ws(t) under the condition thats is the winner
neuron. Note that this implicitly ensuresPρ(Θ̂s(t)) > 0.

We haveE(Ŵs(t+ 1)) =
⊗q

i=1[E(lsi
(t+ 1)), E(rsi

(t+ 1))] with

E(lsi
(t+ 1)) :=

∫
Ωρ

lsi
(t+ 1)ρΘ̂s(t)

(X) dx =

∫ bi

ai

lsi
(t+ 1)ρΘ̂s(t),i

(xi) dxi ,

E(rsi
(t+ 1)) :=

∫
Ωρ

rsi
(t+ 1)ρΘ̂s(t)

(X) dx =

∫ bi

ai

rsi
(t+ 1)ρΘ̂s(t),i(xi) dxi

and
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ρΘ̂s(t),i
(xi) :=

∫ b1

a1

· · ·
∫ bi−1

ai−1

∫ bi+1

ai+1

· · ·
∫ bq

aq

ρΘ̂s(t)
((x1, . . . , xq)

T ) dx1 . . . dxi−1 dxi+1 . . . dxq .

Upon considering our above adaptation rule we obtain:

E(lsi
(t+ 1)) = lsi

(t)

+

∫ lsi(t)

ai

α(t)(xi − lsi
(t))ρΘ̂s(t),i

(xi) dxi

+

∫ rsi(t)

lsi (t)

(rsi
(t) − xi)

(rsi
(t) − lsi

(t))
α(t)(xi − lsi

(t))ρΘ̂s(t),i(xi) dxi

−α(t) c(lsi
(t), rsi

(t))

and

E(rsi
(t+ 1)) = rsi

(t)

+

∫ bi

rsi (t)

α(t)(xi − rsi
(t))ρΘ̂s(t),i(xi) dxi

+

∫ rsi(t)

lsi (t)

(xi − lsi
(t))

(rsi
(t) − lsi

(t))
α(t)(xi − rsi

(t))ρΘ̂s(t),i(xi) dxi

+α(t) c(lsi
(t), rsi

(t)) .

Since∆s(t) is an optimal box approximation of̂Θs(t), we may assume that

Pρ
Θ̂s(t)

(∆s(t)) =

∫
ω∈∆s(t)

ρΘ̂s(t)(ω) dω ≈ 1.

Therefore, for simplicity, we suppose that the i-th componentsxi of the inputs
X ∈ Θ̂s(t) are uniformly distributed over[l∗i (t), r

∗
i (t)] so that

ρΘ̂s(t),i(xi) :=

{ 1
r∗i (t)−l∗i (t)

if X = (x1, . . . , xq)
T ∈ ∆s(t)

0 else .
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Hence, we arrive at:

E(rsi
(t+ 1)) = rsi

(t)

+

∫ r∗i (t)

rsi (t)

α(t)

(r∗i (t) − l∗i (t))
(xi − rsi

(t)) dxi

+

∫ rsi(t)

lsi (t)

(xi − lsi
(t))

(rsi
(t) − lsi

(t))

α(t)

(r∗i (t) − l∗i (t))
(xi − rsi

(t)) dxi

+α(t) c(lsi
(t), rsi

(t))

= rsi
(t)

+
α(t)

(r∗i (t) − l∗i (t))
(r∗i (t) − rsi

(t))2

2

+
α(t)

(r∗i (t) − l∗i (t))

∫ rsi (t)

lsi(t)

(xi − lsi
(t))(xi − rsi

(t))

(rsi
(t) − lsi

(t))
dxi

+α(t) c(lsi
(t), rsi

(t))

= rsi
(t)

+
α(t)

(r∗i (t) − l∗i (t))
(r∗i (t) − rsi

(t))2

2

− α(t)

(r∗i (t) − l∗i (t))
(rsi

(t) − lsi
(t))2

6

+α(t) c(lsi
(t), rsi

(t)) .

For the left hand boundary, we analogously obtain:

E(lsi
(t+ 1)) = lsi

− α(t)

(r∗i (t) − l∗i (t))
(lsi

(t) − l∗i (t))
2

2

+
α(t)

(r∗i (t) − l∗i (t))
(rsi

(t) − lsi
(t))2

6

−α(t) c(lsi
(t), rsi

(t)) .
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By means of the intuitive choice

c(lsi
(t), rsi

(t)) :=
1

6
(rsi

(t) − lsi
(t)) (3.7)

we end up with

E(lsi
(t+ 1)) = lsi

− 1

2
α(t)

(lsi
(t) − l∗i (t))

2

(r∗i (t) − l∗i (t))

−α(t) (1 − ψsi
(t)) c(lsi

(t), rsi
(t))

and

E(rsi
(t+ 1)) = rsi

+
1

2
α(t)

(r∗i (t) − rsi
(t))2

(r∗i (t) − l∗i (t))

+α(t) (1 − ψsi
(t)) c(lsi

(t), rsi
(t))

in terms of some model quantity

ψsi
(t) :=

(rsi
(t) − lsi

(t))

(r∗i (t) − l∗i (t))
.

This quantity measures the deviation of the actual interval width from the op-
timal one.

In the following, we have to assure that the intervals are always well defined,
i.e. we always havelsi

(t) < rsi
(t) for all t ∈ {0, . . . , L}.

Lemma 3.2.1 For anys ∈ {1, . . . , q} and all t ∈ {0, . . . , L} we have

lsi
(t) < rsi

(t) =⇒ lsi
(t+ 1) < rsi

(t+ 1).
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Proof: Let p be the winner neuron for input X(t). Then one easily verifies:

(1) xi(t) < lsi
(t) =⇒

rsi
(t+ 1) − lsi

(t+ 1) =

(
1 +

α(t)

3

)
(rsi

(t) − lsi
(t))

− α(t)︸︷︷︸
≥0

neigh(zs, zp, t)︸ ︷︷ ︸
≥0

(xi(t) − lsi
(t))︸ ︷︷ ︸

<0︸ ︷︷ ︸
≤0

≥ rsi
(t) − lsi

(t)

(2) xi(t) > rsi
(t) =⇒

rsi
(t+ 1) − lsi

(t+ 1) =

(
1 +

α(t)

3

)
(rsi

(t) − lsi
(t))

+ α(t) neigh(zs, zp, t) (xi(t) − rsi
(t))︸ ︷︷ ︸

≥0

≥ rsi
(t) − lsi

(t)

(3) xi(t) ∈ [lsi
(t), rsi

(t)] =⇒

rsi
(t+ 1) − lsi

(t+ 1) =

(
1 +

α(t)

3

)
(rsi

(t) − lsi
(t))

+α(t) neigh(zs, zp, t)
(xi(t) − lsi

(t))

(rsi
(t) − lsi

(t))
(xi(t) − rsi

(t))

−α(t) neigh(zs, zp, t)
(rsi

(t) − xi(t))

(rsi
(t) − lsi

(t))
(xi(t) − lsi

(t))

=

(
1 +

α(t)

3

)
(rsi

(t) − lsi
(t))

− 2α(t) neigh(zs, zp, t)︸ ︷︷ ︸
≤1

(rsi
(t) − xi(t))(xi(t) − lsi

(t))

(rsi
(t) − lsi

(t))︸ ︷︷ ︸
≤ 1

4
(rsi(t)−lsi (t)) (∗)

≥
(

1 +
α(t)

3
− α(t)

2

)
(rsi

(t) − lsi
(t))

=

(
1 − α(t)

6

)
(rsi

(t) − lsi
(t))

(∗) max
l≤x≤r

(r − x)(x− l) =
1

4
(r − l)2 for all l, r ∈ R
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Becauseα(t) ≤ 1 for all t ∈ {0, . . . , L}, we have in all three cases:

(rsi
(t) − lsi

(t)) > 0 =⇒ (rsi
(t+ 1) − lsi

(t+ 1)) > 0.

�

Note that Lemma 3.2.1 is usually not true ifα(t) ≥ 6.

Hence iflsi
(0) < rsi

(0), Lemma 3.2.1 guarantees thatc(lsi
(t), rsi

(t)) > 0 and
ψsi

(t) > 0 for all t ∈ {0, . . . , L}.

Therefore we obtain

Ŵsi
(t) ⊂ [l∗i (t), r

∗
i (t)] =⇒ ψsi

(t) ∈]0, 1]

=⇒ E(lsi
(t+ 1)) < lsi

(t) and E(rsi
(t+ 1)) > rsi

(t)

and

Ŵsi
(t) = [l∗i (t), r

∗
i (t)] =⇒ E(lsi

(t+ 1)) = lsi
(t) and E(rsi

(t+ 1)) = rsi
(t).

If we chooseŴs(0) ∈ ∆s(0) we can be confident thatψsi
(L) ≈ 1 and there-

fore Ŵsi
(L) ≈ [l∗i (L), r∗i (L)], whenever we use our extended algorithm withL

time steps andL large enough. This means thatŴs(L) ≈ ∆s(L) and therefore
Ŵs(L) is nearly an optimal box approximation ofΘ̂s(L) with respect toρ. Obvi-
ously the chosen functionc is a suitable correction term for the interval shrinkage.

Using this correction term the presented SOBM algorithm is suitable to gen-
erate approximate box decompositions ofV (see Definition 2.2.1):

Lemma 3.2.2 AssumeŴ := {Ŵ1, . . . , Ŵ|} ⊂ Ω so thatŴp ∈ BOX(Ω) is
a nearly optimal box approximation ofΘŴp

for p = 1 . . . ,|. SetΘŴp
(V ) :=

ΘŴp
∩ V . ThenΘŴI

(V ) := {ΘŴp(V ) | p ∈ I} with I := {p |ΘŴp
(V ) 6= ∅}

is a decomposition ofV with nk := |I| ≤ | partitions and(ΘŴI
(V ), ŴI) with

ŴI := {Ŵp | p ∈ I} is an approximate box decomposition.

Proof: There exists a smallδ > 0 so that for anyp ∈ I we have

f(Ŵp \ ΘŴp
) + f(ΘŴp

\ Ŵp) < δf(V ).

This guaranteesf(ΘŴp
∩ Ŵp) > f(ΘŴp

) − δf(V ) for anyp ∈ I. SinceΘŴI
(V )

is a decomposition ofV by construction andf(M ∩ V ) = f(M) for any subset
M of Ω, this yields:

overlayf(ΘŴI
(V ), ŴI) > 1 − δnk.
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One easily verifies that for anyp ∈ I, we have

f(Ŵp ∩
⋃
ep 6=p

Ŵ
ep) ≤

∑
s∈I

f(Ŵs \ ΘŴs
) =

∑
s∈I

f(Ŵs) −
∑
s∈I

f(Ŵs ∩ ΘŴs
)

Since
∑

s∈I f(Ŵs) ≤ f(V ), this yields:

overlapf(ŴI) ≤
∑
s∈I

(
1 −

∑
s∈I f(Ŵs ∩ ΘŴs

)∑
s∈I f(Ŵs)

)
≤

∑
s∈I

(
1 − overlayf (ΘŴI

(V ), ŴI)
)
< δn2

k.

�

3.3 Comparison SOM - SOBM

Upon comparing codebooksW andŴ , computed by the original SOM and the
SOBM algorithm with the same parameters and initialization, one will observe
clear similarities. In most cases the orientation of the maps and the visually iden-
tifiable clusters are equal (see subsection 5.2.2 for an example).

For each codebook vectorwp ∈W one can usually find a codebook box̂Ws ∈
Ŵ with wp ∈ Ŵs. Therefore the SOBM algorithm will be at least as powerful
as the classical SOM algorithm. In the following, however, we will show that the
SOBM algorithm has important advantages.

For simplicity we suppose that we have only an one-dimensional input space
Ω = R. We want to compute a2 × 1 map with neuronss ands, the Euclidean
distance function andneigh(zs, zs, t) = 0 for t ∈ {0, . . . , L}.

For the purpose of illustration, we define two probability density functionsρ1

andρ2 (see Figure 3.2):

ρ1(x) :=


2.5 if x ∈ [0.8, 1]
0.5 if x ∈ [−1, 0]
0 else

ρ2(x) :=


2.5 if x ∈ [0.8, 1]

0.625 if x ∈ [−1, −0.6]
0.625 if x ∈ [−0.4, 0]

0 else.

We have used the original SOM algorithm and our extended algorithm with
c = 0 and c as defined in Eq. (3.7) to compute the codebooks forρ1 and ρ2.
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Figure 3.2:Probability density functions ρ1 and ρ2

Table 3.1 shows the results (random codebook initialization,α(0) = 0.9 and
L = 10000).

ρ1

SOM ws = −0.5, ws = 0.9

SOBM(c = 0) Ŵs = [−0.75,−0.25], Ŵs = [0.85, 0.95]

SOBM Ŵs = [−1.00, 0.00], Ŵs = [0.80, 1.00]
ρ2

SOM ws = −0.5, ws = 0.9

SOBM(c = 0) Ŵs = [−0.78,−0.22], Ŵs = [0.85, 0.95]

SOBM Ŵs = [−1.05, 0.07], Ŵs = [0.80, 1.01]

Table 3.1:Codebooks forρ1 and ρ2

Obviously, the following three observations are of interest:

• The probability density functionρ1 is positive on[−1, 0] and [0.8, 1]. Al-
though these intervals are of different width, we get no hint about this fact,
if we look at the codebook vectorsws andws.

• The codebook boxes are box approximations of the partitions, which they
implicitly define. These approximations are perfect if we use the correction
termc as defined in Eq. (3.7).

• The point codebooks are equal for both probability density functions, i.e.
althoughρ1 andρ2 are different, we cannot distinguish them by looking at
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the codebook vectors. The situation is quite different if we use the correc-
tion termc and look at the codebook boxes. Here we see that the interval
width of Ŵs in the case ofρ2 is larger then in the case ofρ1. If we look
deeper, we see that the difference is approximately the width of the hole
between−0.4 and−0.6 of ρ2. This is not surprising, because the correction
terms forŴs are equal in both cases, but the power of the interval shrink-
age forŴs is lower in the case ofρ2. Therefore the interval̂Ws can grow
stronger in this case. Although we cannot derive the differences betweenρ1

andρ2 from looking at the different̂Ws, we at least get a hint that there are
differences.

We have made similar observations for higher-dimensional input spaces and
larger maps.

Additionally we want to show an intriguing feature of the SOBM algorithm.
Look at he following probability density functionsρ3:

ρ3(x) :=
1

2σ
√

2π

(
exp(−1

2

(
(x− µ1)

σ

)2

+ exp(−1

2

(
(x− µ2)

σ

)2
)
.

One observes that̂Ws ≈ [µ1 − σ, µ1 + σ] andŴs ≈ [µ2 − σ, µ2 + σ]. The
approximation is the better, the larger the difference is betweenµ1 andµ2. Fig-
ure 3.3 showsρ3 with µ1 = −0.5, µ2 = 0.5 andσ = 0.27 and Table 3.2 gives the
corresponding computational results.
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Figure 3.3:Probability density functions ρ3
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ρ3

SOM ws = −0.5, ws = 0.5

SOBM(c = 0) Ŵs = [−0.67,−0.33], Ŵs = [0.31, 0.67]

SOBM Ŵs = [−0.85,−0.15], Ŵs = [0.13, 0.86]

Table 3.2:Codebook vectors forρ3

Although the concept of codebook boxes develops its full power still within
the computation of approximate box decompositions the advantages in compari-
son with point codebooks are already obvious.

A disadvantage of the SOBM algorithm is that it requires more computing
time than the classical SOM algorithm. Although the difference depends on the
chosen implementation, one easily checks that the number of variables that have
to be adapted and to be evaluated are doubled. Therefore in the worst case the
SOBM algorithm doubles the computing time of the original SOM algorithm.

3.4 Computational complexity

To speed up the computing time, one may think about a combination of the SOM
and the SOBM algorithm. In the following we suggest such a combination, which
has turned out to be quiet powerful in our first applications (see chapter 5).

As usual in the original SOM algorithm, we first compute inL1 := u · |steps
the codebook vectorsw1, . . . , w|with a suitable average number of codebook up-
datesu, e.g.,u = 100, a large learning rate at the beginning, e.g.,α(0) = 1, and
with neighborhood adaptation, i.e.neigh(zs, zp, t) > 0 for t < L1. This is often
called theordering phaseof the SOM algorithm.

After this ordering phase one usually passes on to another adaptation cycle
with L2 ≥ L1 adaptation steps, a low learning rateα and no neighborhood adap-
tation, i.e.neigh(zs, zp, t) = 0 for s 6= p andt ∈ [L1, L1+L2]. After this so called
convergence phaseof the SOM algorithm, the codebook vectors are rather stable
and good representatives of the input space and the used probability distribution.

To achieve convergence, in the classical SOM algorithmL2 is usually much
larger thanL1, e.g., a factor3 or more. In our combined approach, we setL2 ≈ L1

and use the SOBM algorithm for an additional convergence phase: We first ini-
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tialize the codebook boxeŝWs(0) by using the earlier computed representatives
ws(L2) within the described initialization routine. Then we adapt the codebook
boxes inL3 ≈ L2 time steps with a low learning rate and no neighborhood adap-
tation.

Summarizing, as a result of this combination — original SOM algorithm plus
additional convergence phase with SOBM algorithm — we obtain a shorter com-
puting time, as if we only use the SOBM algorithm, while getting comparable
results. Additionally we avoid possible negative effects of the neighborhood adap-
tation on the generation of the codebook boxes.

Up to now, we have not answered the question, if the SOM/SOBM algorithm
needs less thanO(n2) operations to compute a decomposition of any data set
V ⊂ Ω with n data objects and dimensionq.

Letu denote the average number of codebook updates that is sufficient to guar-
antee convergence of the SOM/SOBM algorithm, i.e. we needO(u ·|) adaptation
steps. Since we have to compute the winner neuron and to adapt the codebook
within each adaptation step, each of these steps costsO(q · |) operations. There-
fore we needO(u · q ·|2) operations to generate a suitable codebook. In addition,
the computation of a decomposition based on this codebook according to Eq. (3.2)
can be done withO(q · |· n) operations.

Since for large cluster problems we usually have

u · |≤ n and q � n,

we totally need

O(u · q · |2 + q · |· n) = O(|· n)

operations to compute a decomposition of the data setV via the SOM/SOBM
algorithm.

If we choose|significantly smaller thann, e.g.,|= O(log n), this guarantees
that we can compute a decomposition much faster thanO(n2).

Therefore the SOM/SOBM algorithm is a suitable heuristic for the computa-
tion of decompositions.

3.5 Practical extensions

In the following we shortly describe two practical extensions of the SOM and the
SOBM algorithm, whenever they are used for computing decompositions of a data
setV with frequency functionf and homogeneity functionh.
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3.5.1 Pruning

Neuron pruning is a classical technique in the field of neural networks, to simplify
the network architecture and therefore also the corresponding model. In our set-
ting each neuron of the Kohonen layer corresponds with one codebook vectorwp.
If now nk is too large after the convergence phase of the SOM, we eliminate those
neurons, whose associated codebook vectorws only represents a small number of
input objects, i.e.ws with f(Θwp) < δ1 for sufficiently largeδ1, e.g.,δ1 := f(V )

nk
.

Note that after such a neuron pruning, the corresponding decompositionΘ has
changed, especiallynk is smaller than before. Pruning has the additional advan-
tage that it prevents the appearing of pseudo clusters (see the earlier discussion in
section 3.1).

3.5.2 Early stopping

A main problem of the SOM algorithm is the fact that the number of training
steps of the convergence phase has to be fixed a priori and therefore must be set
to a large value, because otherwise we cannot be sure that we will reach conver-
gence. If we use our combined SOM/SOBM algorithm, the choice of the length
of the SOM convergence phase is rather uncritical, because we have an additional
convergence phase of the SOBM algorithm. At a first view, the determination of
the right number of convergence steps for the SOBM algorithm seems to be as
problematic as for the SOM algorithm. But if we look closer, we detect a nice
early stopping criterion for the SOBM algorithm:

To guarantee that(ΘŴ (V ), Ŵ ) is an approximate box decomposition, we have
to ensure thatoverlap(Ŵ ) is small. Therefore we have to stop the adaptation of
the codebook boxes, ifoverlap(Ŵ ) > δ2 with smallδ2, e.g.,δ2 = 0.001.



Chapter 4

Multilevel Representative Clustering

In this chapter we will extend the basic reduction algorithm (see section 2.3) to
a multilevel approach. The main idea is to iterate the decomposition based rep-
resentative clustering method until the decomposition is fine enough so that the
optimal solution of the reduced cluster problem determines an optimal clustering
of the original cluster problem.

We will present a general approach that can be always used if the number of
clustersk is known a priori. For special homogeneity functions we will addition-
ally describe a powerful extension based onPerron Clusteranalysis that can be
used for cluster problems, where the number of clusters is unknown.

4.1 General approach

Let V = {v1, . . . , vn} ⊂ Ω be any data set inΩ with frequency functionf and
homogeneity functionh. A point very critical within the application of the basic
reduction algorithm (see section 2.3) is the fulfillment of the condition that the
decomposition ofV has to be a covering of an optimalk-cluster set of(V, f, h).

Suppose now that we have any decompositionΘ of V with codebookW and
any optimalk-cluster setC of (W, f̌ , ȟf). We know that the extension̂C of C on
V is ak-cluster set of(V, f, h). SinceΘ is a covering ofC by construction, it is
also a covering of̂C. Therefore we haveΓf̌ ,ȟf

(C) = Γf,h(Ĉ). At the moment we
cannot be sure thatΘ is also a covering of an optimalk-cluster set of(V, f, h),
what would imply thatĈ is optimal. Therefore we try to refineΘ.

Let Θ‘ with codebook vectorW ‘ be the result of a suitable refinement process,
e.g., as it will be described in the next section. If we now compute an optimal
k-cluster setC‘ of (W ‘, f̌ , ȟf), we can extend it tôC‘ and compute the weighted
intra-cluster homogeneityΓf,h(Ĉ‘) = Γf̌ ,ȟf

(C‘). If Γf,h(Ĉ‘) > Γf,h(Ĉ), the new
clustering is better, i.e.Θ was definitely not a covering of an optimalk-cluster set
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of (V, f, h). With Θ‘ we have a new candidate that is a finer decomposition asΘ
and that is a covering of ak-cluster set with improved quality.

From the above reflections one easily derives the main idea of the new mul-
tilevel representative clustering approach: Refine iteratively the decomposition
Θ, until no further improvement of the corresponding representative clustering is
observable.

Multilevel Reduction Algorithm

The following algorithm embeds the basic reduction algorithm in a multilevel re-
finement process. Note thatk has to be known a priori.
(1) Compute a decompositionΘ (based on a codebookW ) with adaptive choice
of nk, k ≤ nk ≤ |� n.
(2) Compute an optimalk-cluster setC of (W, f̌, ȟf ).
(3) ExtendC onV : Ĉ is ak-cluster set of(V, f, h). SinceΘ is a covering ofĈ, we
haveΓf̌ ,ȟf

(C) = Γf,h(Ĉ).
(4) RefineΘ so that the new decompositionΘ‘ of V with codebookW ′ is also a
covering ofĈ.
(5) Compute an optimalk-cluster setC‘ of (W ‘, f̌ , ȟf).
(6) ExtendC‘ on V : Ĉ‘ is k-cluster set of(V, f, h). SinceΘ‘ is a covering ofĈ‘,
we haveΓf̌ ,ȟf

(C‘) = Γf,h(Ĉ‘).
(7) If Γf̌ ,ȟf

(C‘) > Γf̌ ,ȟf
(C) then setΘ := Θ‘ and go to step (4), else stop.

For the computation ofΘ with adaptive choice ofnk and the codebookW
we can use the algorithms described in chapter 3. In the following section we
will describe techniques for a refinement of an existing decomposition so that the
quality of the corresponding codebook clustering increases.

4.2 Adaptive decomposition refinement

Let C̃ be any optimalk-cluster set of(V, f, h) and Ĉ be any nearly optimalk-
cluster set of(V, f, h). Further letΘ := {Θ1, . . . ,Θnk

} any decomposition ofV
with codebookW = {w1, . . . , wnk

} so thatΘ is a covering ofĈ, but not ofC̃.
Then there exist clusters̃C1, C̃2 ∈ C̃, Ĉ1, Ĉ2 ∈ Ĉ and partitionsΘs,Θp ∈ Θ so
thatC̃1 ∩ Θs 6= ∅, C̃2 ∩ Θs 6= ∅, C̃1 ∩ Θp 6= ∅ andΘs ⊂ Ĉ1,Θp ⊂ Ĉ2.

Suppose now that̄Θ is a decomposition of̄V := Θs ∪ Θp. Then the refined
decompositionΘ‘ := Θ \ {Θs,Θp} ∪ {Θ̄i ∩ Θs | Θ̄i ∈ Θ̄} ∪ {Θ̄i ∩ Θp | Θ̄i ∈ Θ̄}
would be better fitting tõC, while still being a covering of̂C. The problem is how
to identify the partitionsΘs andΘp, without knowingC̃.
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The following qualitative observation offers a heuristic solution: SinceC̃ is
optimal, we havêhf(C̃1, C̃1) � 0 and thereforêhf (Θs ∩ C̃1,Θp ∩ C̃1) � 0.
But this givesĥf(Θs,Θp) � 0, which is equivalent tǒhf (ws, wp) � 0. So if
we refine all partitions witȟhf(ws, wp) � 0, we can be sure to refine also all
partitions which destroy the covering property ofΘ for C̃. Note that partitions that
are already fitting tõC, are also fitting after a refinement.

Decomposition refinement algorithm

Let Θ be any decomposition ofV with codebookW := {w1, . . . , wnk
}.

(1) Identify all indicess, p ∈ {1, . . . , nk} so thaťhf(ws, wp) > σ with σ � 0. Let
I be the resulting index subset.
(2) SetV̄ :=

⋃
s∈I Θs.

(3) Compute a decomposition̄Θ of V̄ with n̄k partitionsΘ̄i.
(4) SetΘ‘ := Θ \ {Θs | s ∈ I} ∪ {Θ̄i ∩ Θs | Θ̄i ∈ Θ̄ , s ∈ I}.

Obviously the above algorithm increases the number of partitions fromnk to
maximallynk +(n̄k −1)|I| partitions. Often several of the new partitionsΘ̄i∩Θs

are nearly empty. Therefore step (4) is improved by the following condition:Θs

is replaced only by thosēΘi∩Θs, with f(Θ̄i∩Θs) � 0. Note that in this case the
refinedΘ has to be adapted slightly to guarantee that it is still a decomposition.
This can be easily done, if we use the SOM algorithm for the computation of the
decomposition of̄V :

Let W̄ be the codebook of̄Θ generated by the SOM algorithm. For eachs ∈ I
we setIs := {i | f(Θ̄i ∩ Θs) � 0}. Then the reduced codebookWIs defines a
decomposition̄ΘWIs

of V̄ . If we replaceΘs by {Θ̄s,i ∩ Θs | Θ̄s,i ∈ Θ̄WIs
} for all

s ∈ I, the refinedΘ is still a decomposition ofV .
Instead of the suggested refinement algorithm, one could also think about us-

ing methods that tries to grow the SOM adaptively [26, 17]. In this case one has
to assure that the growing process is driven by the homogeneity functionh. If the
cluster problem is geometrically based, this should be no problem.

4.3 Approach based on Perron Cluster analysis

In this section, we will extend our general multilevel cluster approach by using
results and methods from the theory ofPerron Clusteranalysis that has been re-
cently developed by DEUFLHARD ET AL.. We will show that for cluster problems
with a stochastic homogeneity functions, this extended approach can be used for
a fast identification and efficient description of clusters, even if a correct number
of clustersk is not known a priori.
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4.3.1 Theoretical background

In the following, we will give a short description of the theory of Perron Cluster
analysis. For details and proofs see [16, 13].

Suppose we have a primitive stochasticn|× n|matrixS, i.e. there exist an
m ∈ N so thatSm > 0, the entriesSi,j are non-negative and the sum of each
row equals one. As a consequence, the constant vectore = (1, . . . , 1)T is an
eigenvector corresponding to the simple eigenvalueλ1 = 1 of S. For all other
eigenvaluesλi of S we have|λi| < 1.

Let π = (π1, . . . , πn|)
T any strictly positive distribution so thatπT e = 1 and

πTS = πT . We suppose thatS is reversible with respect toπ, i.e. D2S = STD2,
whereD := diag(

√
πi) is called aweighting matrixof S. If S is reversible, it

is self-adjoint with respect to the weighted scalar product< x, y >π:= xTD2y
and consequently, all eigenvalues are real. Additionally there exist a basis of
π-orthogonal right eigenvectors, which diagonalizesS and for every right eigen-
vectorY there is an associated left eigenvectorȲ = D2Y , which corresponds to
the same eigenvalue.

In the following letI1, . . . , Ik any disjoint index subsets withIp ⊂ {1, . . . , n|},
p ∈ {1, . . . , k}, and

⋃k
p=1 Ip = {1, . . . , n|}. Based on these index subsets we de-

fine a so calledcoupling matrixŜ := (SIs,Ip)1≤s,p≤k via

SIs,Ip :=
∑
i∈Is

∑
j∈Ip

πiS(i, j)∑
i∈Is

πi
. (4.1)

Lemma 4.3.1 The matrixŜ is stochastic and reversible with respect to the distri-
butionπ̂ := (π̂1, . . . , π̂k)

T whereπ̂p :=
∑

i∈Ip
πi.

Proof: SinceS is stochastic, i.e.
∑n|

j=1 S(i, j) = 1 for 1 ≤ i ≤ n|, we have

k∑
p=1

SIs,Ip =
∑
i∈Is

πi

π̂s

k∑
p=1

∑
j∈Ip

S(i, j)

=
∑
i∈Is

πi

π̂s

n|∑
j=1

S(i, j) =
∑
i∈Is

πi

π̂s

= 1

and thereforêS is stochastic. We further have

π̂sSIs,Ip =
∑
i∈Is

∑
j∈Ip

πiS(i, j) for 1 ≤ s, p ≤ k.

SinceS is reversible, i.e.πiS(i, j) = πjS(j, i) the reversibility ofŜ follows
immediately. �
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We are interested in index subsetsI1, . . . , Ik that lead to a nearly diagonal
coupling matrix:

Definition 4.3.2 Choosep ∈ {1, . . . , k}. Then we callIp an almost invariant
aggregate ofS, if SIp,Ip ≈ 1. If Ip is an almost invariant aggregate ofS for all
p ∈ {1, . . . , k}, we callI1, . . . , Ik a covering set of almost invariant aggregates of
S. In this case we callk an optimal number of almost invariant aggregates ofS.

One easily checks that almost invariant aggregates correspond to a permutation
of S so that the matrix is nearly block-diagonal:

Lemma 4.3.3 Let I1, . . . , Ik ⊂ {1, . . . , n|} any covering set of almost invariant
aggregates ofS. Then the indices{1, . . . , n|} can be ordered so that the matrix
S is of block-diagonally dominant form:

S = D + E =


D1,1 E1,2 . . . E1,k

E2,1 D2,2 . . . E2,k

. . . . . . . . . . . .
Ek,1 Ek,2 . . . Dk,k

 .

Herein the perturbation matrixE satisfiesE = O(ε) whereε is some perturbation
parameter.

Supposing that the conditions of Lemma 4.3.3 hold, we set:

S(ε) := S(0) + εS(1) + ε2S(2) + . . . ,

whereS(0) = D is the unperturbed part ofS.

It follows from perturbation theory [45] that the spectrum ofS(ε) can be di-
vided into two parts:

1. ThePerron Clusterincluding thePerron Rootλ1 = 1 and thek − 1 eigen-
valuesλ2(ε), . . . , λk(ε) approaching1 for ε→ 0.

2. The remaining part of the spectrum, bounded away from1 for ε→ 0.

The eigenvectors corresponding to eigenvalues of the Perron Cluster have a
useful property:

Lemma 4.3.4 Letλ1(ε), . . . , λk(ε) be the Perron Cluster ofS. Then there exits a
covering set of almost invariant aggregateI1, . . . , Ik ofS so that the eigenvectors
Y1, . . . , Yk ∈ Rn|, corresponding toλ1(ε), . . . , λk(ε), are almost constant on each
Is, i.e. we have for alls ∈ {1, . . . , k}:

i, j ∈ Is =⇒ (∀p ∈ {1, . . . , k}) Yp(i) ≈ Yp(j).
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The above theoretical results lead to a powerful method for the determination
of an optimal numberk of almost invariant aggregates ofS:

Suppose there exist — a priori unknown — index subsetsI1, . . . , Ik so that
the conditions of Lemma 4.3.3 hold. Then there exists anε∗ so thatS(ε∗) = S. If
ε∗ is sufficiently small, we can find a large gap within the spectrum ofS between
the eigenvaluesλk andλk+1 of S. In this casek is an optimal number of almost
invariant aggregates ofS.

But we cannot only determine an optimal number of almost invariant aggre-
gates, also the index subsets themselves can be computed based on Lemma 4.3.4:

Let Y1, . . . , Yk ∈ Rn|be the eigenvectors corresponding to the eigenvalues
λ1(ε), . . . , λk(ε) of S. Then the identification ofk groups of nearly identical
k-tupleY (i) := (Y1(i), . . . , Yk(i))

T of eigenvector components associated with
eachi ∈ {1, . . . , n|}, is sufficient to identify the covering set of almost invariant
aggregatesI1, . . . , Ik of S. Obviously such a grouping can be done via the com-
putation of ak-cluster set of the setVY := {Y (1), . . . , Y (n|)} with frequency
function fY (v) := 1 for v ∈ VY and a suitable homogeneity functionhY , e.g.,
hY = hd, whered is a distance function inRk.

4.3.2 Stochastic homogeneity functions

In the following we suppose that the homogeneity functionh is stochastic inV
with respect tof :

Definition 4.3.5 We call any homogeneity functionh : Ω×Ω −→ [0, 1] stochastic
in V with respect tof if we have∑

w∈V

h(v, w)f(w) = 1 forall v ∈ V. (4.2)

SetP (v, w) := h(v, w)f(w) for anyv, w ∈ V . We can directly extendP on
subsets ofV , if we define for any non-void subsetsV1, V2 ⊂ V :

P̂ (V1, V2) :=
∑
v∈V1

∑
w∈V2

f(v)P (v, w)

f(V1)
. (4.3)

Using earlier definitions (see section 2.3) we get:

Lemma 4.3.6 P̂ (V1, V2) = ĥf (V1, V2)f̂(V2) for any non-voidV1, V2 ⊂ V .
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Proof:

ĥf (V1, V2) =
1

f(V1)f(V2)

∑
v∈V1

∑
w∈V2

h(v, w)f(v)f(w)

=
1

f(V1)f(V2)

∑
v∈V1

∑
w∈V2

P (v, w)f(v)

=
1

f̂(V1)f̂(V2)
P̂ (V1, V2)f(V1) =

P̂ (V1, V2)

f̂(V2)

�

We have a sort of reversibility ofP with respect tof :

Lemma 4.3.7 f(v)P (v, w) = f(w)P (w, v) for all v, w ∈ V .

Proof: Sinceh is a homogeneity function, we haveh(v, w) = h(w, v) and there-
fore also

f(v)P (v, w) = f(v)h(v, w)f(w) = f(v)h(w, v)f(w) = P (w, v)f(w).

for all v, w ∈ V . �

From Lemma 4.3.7 directly follows:

f(V1)P̂ (V1, V2) = f(V2)P̂ (V2, V1)

for all non-void subsetsV1, V2 ⊂ V .

Based on̂P and a decomposition ofV we can define a stochastic and reversible
matrixS:

Lemma 4.3.8 Let Θ := {Θ1, . . . ,Θn|} be any decomposition ofV . Define the
n|× n|matrixS via S(i, j) := P̂ (Θi,Θj). Further setπ := (π1, . . . , πn|)

T with
πs := f(Θs)

f(V )
. Then we have:

(i) If for any i, j ∈ {1, . . . , nk} there existp1, . . . , pm, m ∈ N , so thatp1 = i,
pm = j andS(pt, pt+1) > 0 for 1 ≤ t ≤ m− 1, then the matrixS is primitive.
(ii) The matrixS is stochastic.
(iii) π is a strictly positive distribution withπT e = 1 andπTS = πT .
(iv) The matrixS is reversible with respect toπ.

Proof:
(i) is obvious and(ii) follows directly from the fact thath is stochastic andΘ is
a decomposition of the data setV .
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(iii) Obviously we haveπT e = 1. Further letS∗j := (S(1, j), . . . ,S(n|, j))
T be

thej-th column of the matrixS. Using Lemma 4.3.7 we have:

πTS∗j =
1

f(V )

n|∑
i=1

f(Θi)P̂ (Θi,Θj)

=
1

f(V )

n|∑
i=1

f(Θi)
∑
v∈Θi

∑
w∈Θj

f(v)P (v, w)

f(Θi)

=
1

f(V )

n|∑
i=1

∑
v∈Θi

∑
w∈Θj

f(v)P (v, w)

=
1

f(V )

n|∑
i=1

∑
v∈Θi

∑
w∈Θj

f(w)P (w, v)

=
1

f(V )

∑
w∈Θj

f(w)

n|∑
i=1

∑
v∈Θi

P (w, v)

=
1

f(V )

∑
w∈Θj

f(w) = πj .

(iv) For anyi, j ∈ {1, . . . , n|} we have:

πiS(i, j) =
f(Θi)

f(V )
P̂ (Θi,Θj)

=
1

f(V )

∑
v∈Θi

∑
w∈Θj

f(v)P (v, w)

=
1

f(V )

∑
v∈Θi

∑
w∈Θj

f(w)P (w, v)

=
f(Θj)

f(V )

∑
w∈Θj

∑
v∈Θi

f(w)P (w, v)

f(Θj)
= πjS(j, i).

�

Based onS we can use Perron Cluster analysis to determine an optimal num-
berk and to identify the almost invariant aggregates ofS. The following Theorem
shows that a covering set ofk almost invariant aggregates ofS corresponds to a
nearly optimalk-cluster set of(Θ, f̂ , ĥ) what we know is equivalent to a nearly
optimal representative clustering for any codebookW of Θ (see Theorem 2.3.9).
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Theorem 4.3.9 Letk be an optimal number of almost invariant aggregates of the
matrix S and letI1, . . . , Ik ⊂ {1, . . . , n|} be the corresponding covering set of
almost invariant aggregates. Then we have:
(i) 1

k

∑k
s=1 SIs,Is ≥ 1 − ε∗, with smallε∗ := 1 − mins SIs,Is

(ii) If we setC̄ := {C̄1, . . . , C̄k} with C̄s = {Θp | p ∈ Is}, thenC̄ is an nearly
optimalk-cluster set of(Θ, f̂ , ĥ), with Γf̂ ,ĥf

(C̄) = 1
k

∑k
s=1 SIs,Is

Proof:
(i) Since eachIs is almost invariant, we haveSIs,Is ≈ 1 for s = 1, . . . , k.
(ii) ObviouslyC is ak-cluster set ofΘ. We have:

Γf̂ ,ĥf
(C̄) =

1

k

k∑
s=1

1

f̂(C̄s)

∑
V1∈Cs

∑
V2∈Cs

ĥf(V1, V2)f̂(V1)f̂(V2)

=
1

k

k∑
s=1

1

f̂(C̄s)

∑
p1∈Is

∑
p2∈Is

ĥf (Θp1,Θp2)f̂(Θp1)f̂(Θp2)

=
1

k

k∑
s=1

1

f̂(C̄s)

∑
p1∈Is

∑
p2∈Is

P̂ (Θp1,Θp2)f̂(Θp1)

=
1

k

k∑
s=1

1

f̂(C̄s)

∑
p1∈Is

∑
p2∈Is

S(p1, p2)f(Θp1)

=
1

k

k∑
s=1

1

f̂(C̄s)

∑
p1∈Is

∑
p2∈Is

(
∑

p∈Is
f(Θp))S(p1, p2)f(Θp1)∑

p∈Is
f(Θp)

=
1

k

k∑
s=1

∑
p∈Is

f(Θp)

f̂(C̄s)

∑
p1∈Is

∑
p2∈Is

S(p1, p2)πp1∑
p∈Is

πp

=
1

k

k∑
s=1

SIs,Is.

Since 1
k

∑k
s=1 SIs,Is ≤ 1, we haveΓf̂ ,ĥf

(C̄) ≤ 1 and therefore(i) guarantees that

C̄ is nearly optimal. �

If we setC := {C1, . . . , Ck} with Cs :=
⋃

p∈Is
Θp, then using Theorem 2.3.9

and Lemma 2.3.5 we haveΓf,h(C) = Γf̂ ,ĥf
(C̄) and thereforeC is a nearly optimal

k-cluster set of(V, f, h).
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Note that it is possible that there exist differentk so thatk is an optimal number
of invariant aggregates. But this is not surprising, because cluster problems might
also have different correct numbers of clusters.

Multilevel Reduction Algorithm for stochastic homogeneity functions

We can use our results for a special version of the multilevel reduction algorithm
that can be used even if the number of clustersk is not known a priori:
(1) Compute a decompositionΘ (based on a codebookW ) with adaptive choice
of n|, n|≤ |� n.
(2a) Compute the matrixS.
(2b) Compute an optimal numberk of almost invariant aggregates ofS via Perron
Cluster analysis.
(2c) Compute an optimalk-cluster set of(VY , fY , hY ), leading to a covering set
of k almost invariant aggregatesI1, . . . , Ik ⊂ {1, . . . , n|} of S.
(3) SetC := {C1, . . . , Ck} with Cs =

⋃
p∈Is

Θp. ThenC is a k-cluster set of

(V, f, h) with Γf,h(C) = 1
k

∑k
s=1 SIs,Is.

(4) RefineΘ so that the new decompositionΘ‘ of V with codebookW ′ is also a
covering ofC.
(5) Repeat the steps (2a)-(2c) and (3) withΘ‘ instead ofΘ, leading to ak‘-clustering
C‘ of (V, f, h).
(6) If k‘ 6= k then setΘ := Θ‘ andk = k‘ and go to step (4)
(7) If Γf,h(C‘) > Γf,h(C), then setΘ := Θ‘ and go to step (4), else stop.

Identification of discriminating attributes based on Perron Cluster analysis.

In section 2.4.2 we have presented an algorithm for the identification of discrimi-
nating attributes. We now give a simple heuristic criterion to decide if an attribute
setA(JC) is redundant or not:

Let C := {C1, . . . , Ck} be any optimalk-cluster set of a data setV with a
coveringΘW that is defined based on a codebookW according to Eq. (3.2). Fur-
ther letW (J) be the projection ofW on Ω(J) and ΘW (J) := {Θ1, . . . ,Θnk

}
be the corresponding decomposition ofV (J). If the eigenvalue spectrum of the
matrix S corresponding toΘW , is nearly the same as the spectrum of matrixS‘
corresponding toΘW (J), then the attribute setA(JC) is redundant.

The above criterion uses the obvious fact that an attribute setA(JC) is redun-
dant, if the cluster structure of the cluster problem is independent of the attributes
in A(JC).
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Natural and artificial stochastic homogeneity functions

For a reversible dynamic system, the homogeneity functionhs, as defined in
Lemma 1.1.4, is stochastic:

Lemma 4.3.10 Let (X(t))t=1,...,T any representative trajectory of lengthT ∈ N
of a reversible dynamic system inΩ, i.e. |{t |X(t) = v,X(t + 1) = w}| =
|{t |X(t) = w,X(t+ 1) = v}| for all v, w ∈ Ω. Then the homogeneity function
hs is stochastic with respect to the frequency functionf that is given byf(v) :=
|{t |X(t) = v}|.

Proof: We havef(v)S(v, w) = f(w)S(w, v) and sohS(v, w) = S(v,w)
f(w)

for any
v, w ∈ V . Since

∑
w∈V S(v, w) = 1 for all v ∈ V , hS is stochastic. �

Note that the condition forS primitive (see Lemma 4.3.8) is true for any de-
composition ofV := {X(t) | t = 1, . . . , T} because one easily checks that for
all v, w ∈ V , there existv1, . . . , vm ∈ V , m ≤ T , so thatv = v1, w = vm and
S(vi, vi+1) > 0 for 1 ≤ i ≤ m− 1.

In addition to natural given stochastic homogeneity functions, we can also
construct them artificially: For each homogeneity functionh there exists a trans-
formation into a stochastic homogeneity functionh̃ with respect to a suitable fre-
quency function:

Lemma 4.3.11 Let V be any data set inΩ with homogeneity functionh and fre-
quency functionf . Setf̃(v) :=

∑
w∈V h(v, w)f(v)f(w) for all v ∈ Ω. Define

h̃ : Ω × Ω −→ [0, 1] via

h̃(v, w) :=
h(v, w)f(v)f(w)

f̃(v)f̃(w)
v, w ∈ Ω.

Thenh̃ is a stochastic homogeneity function with respect tof̃ .

For well structured simple cluster problems, i.e. cluster problems with clusters
of nearly identical size and a nearly identical homogeneity and a nearly constant
frequency function, we havẽf(v) ≈ const. and thereforẽh(v, w) ≈ c · h(v, w),
where c is a constant value. This guarantees that an optimalk-cluster set of
(V, f̃ , h̃) is nearly an optimalk-cluster set of(V, f, h). Note that in the case of ge-
ometric cluster problems with a distance functiond, we usually havehd(v, w) > 0
for nearly allv, w ∈ V , becausehd vanishes only for objects with maximal dis-
tance. Therefore the constructed matrixS will be primitive. We will use this
observation to compute an optimal number of clusters for our simple example
from section 1.4:
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Example: Determination of a correct number of clusters

Obviously the cluster problem for the data setV as given by Figure 1.3 is well
structured and the frequency functionf is constant withf(v) = 1 for all v ∈ V .
Forh = hd with d = deuclid we getf̃(v) ∈ [4.90, 7.24] for v ∈ V . To reduce the
variance we slightly modify our homogeneity function. We set

h(v, w) := 1 − d(v, w)

(maxv,w∈V d(v, w))
, v, w ∈ Ω.

Obviously this homogeneity function is still suitable for the computation of ge-
ometrically based clusters. Now we getf̃(v) ∈ [3.81, 5.78] for v ∈ V , i.e. the
variance has decreased. The modification ofh has no influence on the ranking of
optimalk-cluster sets for differentk. We still cannot use the valuesΓf,h(C(k)) to
determine the optimal number of clusters (see Table 4.1).

optimalk-cluster setC(k) Γf,h(C(k))

C(1) := V 4.85
C(2) := {{a, b, c, d, e, f}, {g, h, i}} 3.67
C(3) := {{a, b, c}, {d, e, f}, {g, h, i} 2.72

C(4) := {{a}, {b, c}, {d, e, f}, {g, h, i}} 2.10
C(9) := {{a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}} 1.00

Table 4.1: Example: Optimal k-cluster sets of(V, f, h) for different k with
modified homogeneity function.

Based oñh and the trivial decompositionΘV := {{v} | v ∈ V }, we can
compute the matrixS. The spectrum ofS is given in Table 4.2:

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9

1.000 0.577 0.165 0.046 0.041 0.025 0.018 0.015 0.010

Table 4.2:Example: Spectrum of matrix S.

Obviously the large gap between the Perron Cluster and the remaining part of
the spectrum is atk = 2, indicating thatS has two almost invariant aggregates.
Therefore the optimal number of clusters for our cluster problem is also2. The
fact that the distance between the Perron Root andλ2 is also very large, is a result
of the artificial construction of the stochastic homogeneity functionh̃. We will
see in chapter 5 that for natural stochastic homogeneity functions, as e.g., the
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dynamically based functionhS, the Perron Cluster is always approaching1, if at
least there exist two clusters within the data.

Since the eigenvector associated with the Perron Root is the constant vector
e = (1, . . . , 1)T , we only need the eigenvectorY2 associated withλ2, to compute
the almost invariant aggregates.

We haveY2 = (−0.35,−0.21,−0.20,−0.13,−0.13,−0.13, 0.54, 0.53, 0.42)T .
Comparing the components ofY2 we can directly identify the almost invariant ag-
gregatesI1 := {1, . . . , 6} and I2 := {7, . . . , 9}. One easily checks that this
solution corresponds to the optimalk-cluster setC(2) of (V, f, h).
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Chapter 5

Applications

5.1 Conformational analysis of biomolecules

5.1.1 Introduction

The analysis of biomolecular structure and function is one of the real challenges
of scientific computing nowadays. Advances in this area will have tremendous
impact on the design and identification process of new pharmaceutical drugs. The
enrichment of chemical databases with structural and functional information will
allow the use ofvirtual screeningprocedures, reducing time and costs of the phar-
maceutical research decidedly.

The key concept to characterizestructurehas become the characterization in
terms ofgeometric conformations, often just called conformations in the liter-
ature. In contradiction to structure,function, seems to depend on the dynamic
properties of the molecule and therefore should be rather characterized by what
has been calledmetastable conformations. Any type of conformations consists of
sets of possible molecular states. In geometric conformations such sets are de-
fined via the geometric similarity of different states. In metastable conformations
such sets are defined via the high probability of the molecule to stay in such a set,
once it is in such a set.

In classical molecular dynamics [2] a molecule is modeled by a Hamiltonian
function

H(q, p) = 1
2
pTM−1p + V (q),

whereq and p are the corresponding positions and momenta of the atoms,M
denotes the diagonal mass matrix, andV is a differentiable potential. The Hamil-
tonian functionH is defined on the phase space. The corresponding canonical
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equations of motion

q̇ = M−1p, ṗ = −gradV (5.1)

describe the dynamics of the molecule. The formal solution of (5.1) with initial
statex0 = (q(0), p(0)) is given byxt = (q(t), p(t)) = Φτ

V x0, whereΦτ
V denotes

the flow.
In [14] a first attempt had been made to identify metastable conformations

on the basis of the so-called Perron-Frobenius operator. That approach, though
principally opening the door to the new concept of conformation dynamics, had
been more or less restricted to toy molecules. In a further step, performing some
momenta averaging based on the Boltzmann distributionf0 for given heat bath
temperature, the Perron-Frobenius operator in phase space has been replaced by a
different Markov operator in position space [58, 59]. This new operator has much
nicer theoretical properties and it may be interpreted as the transfer operator of
an underlying Markov chainX(t). This Markov chain can be realized via Hybrid
Monte-Carlo (HMC) methods [22]:

• random choice of momenta from a Gaussian distribution,

• deterministic propagation of the molecular system by the flowΦτ
V with po-

tentialV and over short timeτ ,

• acceptance or rejection of new configurations by an appropriate transition
kernelK of the underlying Markov process, e.g., Metropolis-Hastings.

Like classical Monte-Carlo, HMC also suffers from possibletrappingin local
potential wells. In order to overcome this unwanted effect, an adaptive temper-
ature version has been worked out [22] that embeds the given problem into a
family of problems with flowΦτ,s

V in terms of an embedding parameters ∈ [0, 1].
At s = 0, only a few metastable subsets need to be identified, whereas ats = 1 a
rich structure of conformations might arise. Two types of embedding are in quite
common use:temperature embeddingandpotential embedding. Upon examin-
ing the equations of motion, one immediately sees that, in the context of HMC,
temperature embedding can be realized by the following flow:

Φτ,s
V = Φs−2τ

sV , (5.2)

which requires a scaling of the potential and the time step of propagation [58].
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Any kind of embedding stimulates the idea of a hierarchical algorithm con-
sisting of the following steps:

1. Simulate the molecular system for a specific parameter (say, high tempera-
ture), which causes the flow to overcome specific energy barriers.

2. Identify metastable subsets.

3. Increase the parameter (say, lower the temperature), but restrict the simula-
tion to one of the metastable subsets. Go to step 1.

This algorithm will generate a hierarchy of subsets that can be sampled indepen-
dently at each level. The restriction of an HMC-simulation to a given metastable
subsetCs requires only a slight modification of the Markov kernelK toKs [23].
The additional rule is that any configuration outside the subsetCs will be rejected.
Detailed balance still holds for this modified Markov kernel so thatKs is still
reversible. SinceCs is metastable, only a few rejections will be expected with
respect to the new rule. Moreover, trapping should thus be avoided, since energy
barriers towards all other metastable subsets can be ignored. A further exploita-
tion of this embedding structure is given in [23], where an uncoupling/coupling
technique has been suggested and worked out.

A schematic diagram of such a hierarchy is given in Figure 5.1. As can been
seen there, each cluster needs to be described by appropriate boundaries. To save
computer time over the whole simulation, one is interested in efficient descriptions
of the identified metastable subsets (see section 1.3).

s=0.30

s=0.20

76
5

1
2

3

4

Figure 5.1:Hierarchical scheme of clustering combined with parameter em-
bedding. The numbers denote metastable conformations at different levels of the
hierarchical embedding scheme.
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As described in section 1.1, the problem of finding metastable conformations
can be transformed into a cluster problem, if we use a sufficiently long Markov
chainX(t) as a representative trajectory. SinceX(t) is reversible (see [59]), we
can use Perron Cluster analysis to determine an optimal numberk of metastable
conformations (see section 4.3).

Based on an uniform box decomposition, the conformations of small molecules
like n-pentanehave been recently analyzed successfully [58]. For larger molecules
such a simple decomposition is not possible, because the number of boxes ex-
plode (see section 2.2). Therefore the use of approximate box decompositions,
computed via the SOBM algorithm, allows for the first time the conformational
analysis of molecules of practically relevant size.

5.1.2 Adaptation of SOM and SOBM to cyclic data

One easily checks that the computing time of the SOM and the SOBM algorithm
strongly depends on the dimension ofΩ. The dimension of the position space of
molecules is three times the number of atoms and therefore it is very large even
for small molecules. The following observation leads to a reduction of the di-
mension: For each molecule there exists a set of so calledtorsion angles, which
are sufficient for a rough reconstruction of the spatial position of each atom of
the molecule together with the corresponding equilibrium bonds and angles [39].
Without loss of generality we assume each torsion angle within[ − π, π]. Then
we defineΩ as the space spanned by the torsion angles of the molecule. Since the
analysis of cyclic data is different from non-cyclic data (see [24] for a compre-
hensive introduction), it is not surprising that we have to adapt the SOM and the
SOBM algorithm to cyclic data.

First one has to choose a suitable distance measure. We suggest to use the
distance on theq-dimensional unit circle, i.e. we definedist : Ω × Ω → R+

0 via

dist(x, y) := F (d1(x1, y1), . . . , dq(xq, yq)) := (

q∑
i=1

di(xi, yi))
1/2

with di(xi, yi) := (sin(xi) − sin(yi))
2 + (cos(xi) − cos(yi))

2

for x, y ∈ Ω, wherexi andyi denote the values of theith torsion angle.

Next we have to assure that the codebook is adapted in the right direction (see
Figure 5.2). For the SOM algorithm this requires that the input vectorx(t) or the
old codebook vectorws(t), respectively, may need to be transformed first, before
the new codebook vectorws(t+ 1) can be computed according to Eq. (3.5):
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 -180

 +180

 -180

 +180

Figure 5.2:Example: Adaptation of the codebook vector (grey) in direction
of the input vector (black) on the shortest way.

Cyclic Transformation Rules (SOM)

1. IF wsi
(t) ≥ 0 AND xi(t) < 0 AND abs(wsi

(t)) + abs(xi(t)) > π
THEN xi(t) := xi(t) + 2π

2. IF wsi
(t) < 0 AND xi(t) ≥ 0 AND abs(wsi

(t)) + abs(xi(t)) > π
THEN wsi

(t) := wsi
(t) + 2π

Note that we haveabs(x) :=
√
x2 for x ∈ R.

After the new codebook vector has been computed, eventually it must also
be transformed so that each componentWsi

(t + 1) is inside the interval[−π, π].
Figure 5.3 shows an one-dimensional example for the first case.

 -180  +180  +360 +270 0

3. Transformation

2. Adaptation

1. Transformation

Figure 5.3:Example: Transformations of the codebook vector (grey) and the
input vector (black) to guarantee correct adaptation.

To use cyclic data within the SOBM algorithm, we need more sophisticated
rules, because we have to distinguish between normal and complementary inter-
vals:

If lsi
< rsi

, we callŴsi
:= [lsi

, rsi
] a normal interval. But we allow also the

caselsi
> rsi

. In this case we havêWsi
:= [−π, π] \ [rsi

, lsi
], i.e. Ŵsi

is the
complementary interval of[rsi

, lsi
].

First we have to refine functiong : [−π, π]3 → [0, 1] used within the codebook
adaptation rules (see Eq. (3.7)):
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Case 1:a < b. Set

g(a, b, x) :=


1 if x /∈ [a, b] ∧ di(x, a) ≤ di(x, b)
0 if x /∈ [a, b] ∧ di(x, a) > di(x, b)

b−x
ι([a,b])

else

with ι([a, b]) := (b− a).

Case 2:a > b. Set

g(a, b, x) :=


1 if x ∈ [b, a] ∧ di(x, a) ≤ di(x, b)
0 if x ∈ [b, a] ∧ di(x, a) > di(x, b)

2π+(b−x)
ι([a,b])

if x /∈ [b, a] ∧ x ≥ a
b−x

ι([a,b])
else

with ι([a, b]) := 2π + (b− a).
Next we have to specify the necessary transformations to guarantee a correct

adaptation of the codebook boxes:

Cyclic Transformation Rules (SOBM)

If Ŵsi
(t) := [lsi

(t), rsi
(t)] with lsi

(t) > rsi
(t) or if xi(t) is not inside the comple-

mentary intervalŴsi
(t), i.e. xi(t) ∈ [rsi

(t), lsi
(t)], then we have to consider the

earlier defined cyclic transformation rules for the SOM algorithm, withlsi
(t) and

rsi
(t) instead ofWs(t). But if xi(t) is inside the complementary interval̂Wsi

(t),
i.e. xi(t) /∈ [rsi

(t), lsi
(t)], one has to consider slightly different transformation

rules to assure that the boundaries are adapted towards the correct direction:

IF g(lsi
(t), rsi

(t), xi(t)) > g(−rsi
(t),−lsi

(t),−xi(t)) THEN
Use the cyclic transformation rules (SOM) for the adaptation oflsi

(t).
IF xi(t) > rsi

(t) THEN
First setxi(t) := xi(t) − 2π, afterwards adaptrsi

(t) directly
(i.e. without further transformation).

ELSE
Adaptrsi

(t) directly.
ELSE

Use the cyclic transformation rules (SOM) for the adaptation ofrsi
(t).

IF xi(t) < lsi
(t) THEN

First setxi(t) := xi(t) + 2π, afterwards adaptlsi
(t) directly.

ELSE
Adaptlsi

(t) directly.
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If the width of the interval[lsi
(t), rsi

(t)] is nearly2π, then one observes some-
times the artifact that left and right boundaries interchange so that the interval
becomes “too small”. In this case the adaptation step has to be skipped and the
interval[−2π + ε, 2π − ε] has to be fixed as the new value ofŴsi

(t+ 1).

5.1.3 Numerical results: HIV protease inhibitor

The fact that the cleavage of the HIV polyprotein by HIV protease is essential for
viral propagation, has made the HIV protease a key target for the design of drugs
against AIDS. The recent development of HIV protease inhibitors has dramati-
cally improved the therapeutic outcome for many AIDS patients. Unfortunately,
these inhibitors are very expensive and the effectiveness of therapy can encounter
problems with drug-resistant viral strains. So there is further strong interest in the
development of other classes of HIV protease inhibitors [10]. It is obvious that
with a deeper understanding — including knowledge about the dynamic behavior
— of the existing inhibitor molecules, it becomes much easier and cheaper to find
and to design new inhibitor classes. In the following we present the numerical
results of the conformational analysis of the HIV-protease inhibitor VX-478.

The inhibitor VX-478 of the enzyme HIV protease consists of70 atoms. The
molecule was parameterized by the Merck molecular force field (MMFF) [37].
Figure 5.4 shows one possible state (configuration) of the molecule.

Figure 5.4:Possible configuration of the HIV-protease inhibitor.
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As noted in Eq. (5.2), the sampling of a thermodynamic distribution at vari-
ous temperatures within a temperature embedding can be realized by a correlated
scaling of time steps and potential [58].

The Hybrid Monte Carlo (HMC) simulations are performed with temperature
dependent time steps (fs = femtoseconds)

τ =
1.4√

300
T [K]

fs.

Each new configuration is generated by a propagation of the system over a random
length between40 and80 time steps and each simulation consists of5 independent
Markov chains. For every configuration34 torsion angles are stored which are
sufficient for a rough reconstruction together with the corresponding equilibrium
bonds and angles. Convergence of the HMC-simulation is reached, as soon as the
Gelman and Rubin quotientR [34, 9] is sufficiently close to the value1. Note
that the choice of what is “sufficiently close to1” is rather critical, because on the
one hand one is interested in fast simulations, but on the other hand a worse con-
vergence bears the risk of sampling not the whole configurational space. In [30]
the focus was definitely on fast simulations, leading to a sampling of only parts of
the configurational space. Together with a slight different choice of parameters1

this has led to a detection of conformations even at rather high temperatures. In
the following the results of simulations with much better convergence properties
are presented, where the Gelman and Rubin quotient accomplishes the rigorous
condition‖1 −R‖ ≤ 0.05.

Based on the five Markov chains we have constructed the data setV , the fre-
quency functionf and the homogeneity functionhS as described in section 1.1.
The computation of the approximate box decomposition ofV with respect tof
was done automatically via a combination of the SOM and the SOBM algorithm
with pruning and early stopping (see section 3.3+3.5). Note that the chosen pa-
rameters are comparable with the suggestions in the SOM literature [48]:

1. As an upper bound for the number of partitionsΘs we have chosen an upper
bound| := 600, what is large enough to guarantee robust results, i.e. nearly
equal results, if| is changed slightly.

2. The computation of a25 × 24 SOM was done by performingu ·|ordering
steps (withα(0) = 1.0, η := ηgaussian andγ(0) = 12) andu ·|convergence
steps (withα(0) := 0.1, η = ηbubble andγ(0) = 1), whereu := 50 denotes
the average number of codebook updates.

1In [30] shorter time steps and a propagation of fixed length were used. This has reduced the
flexibility of the molecular system.
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3. We have initialized the SOBM codebook by using only the codebook vec-
torswp with f(Θwp(V )) ≥ 2u. Then we have performed convergence steps
(with α(0) := 0.005, η := ηbubble andγ(0) := 1), until the overlap between
the codebook boxes has exceeded0.1%. We have used the final codebook to
derive an approximate box decomposition ofV according to Lemma 3.2.2.

Cluster identification

For the cluster identification, we have used our extended multilevel approach.
First we look at the results, without decomposition refinement (see Table 5.1):

T [K] N k spectrum coupling matrix overlay [%]

900 60000 53

1.000
0.830
0.805
0.791

1.000 26.5

700 31000 72

1.000
0.930
0.885
0.876
0.860
0.795
0.790

0.924 0.076
0.018 0.982

40.5

700-C0 RS 60000 65

1.000
0.890
0.820
0.798
0.768

1.000 35.5

700-C1 RS 42000 92

1.000
0.896
0.875
0.824
0.820

1.000 36.4

Table 5.1:Hierarchical temperature embedding for HIV protease inhibitor
with resimulation at level T = 700K (N = number of configurations per Markov
chain, k = final number of codebook boxes).

While for T ≥ 900K the Perron cluster analysis only identifies one confor-
mation, one observes a large spectral gap between the second (0.930) and the third
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(0.885) eigenvalue of the transition matrixS at levelT = 700K. To prove the
metastability of the identified clustersC0 andC1, a resimulation at the same level
was performed. As expected the gap between the1 and the second eigenvalue
grows for both clusters, but there are also large gaps between the second (0.890)
and the third eigenvalue (0.820) for the first cluster and between the third (0.875)
and the fourth (0.824) eigenvalue for the second cluster. But if one looks again
at the original spectrum at levelT = 700K, one finds another large gap between
the fifth (0.860) and the sixth (0.795) eigenvalue. Obviously the configurational
space at levelT = 700K decomposes into two strongly metastable clusters, but
also into five weaker metastable subsets (see Table 5.2).

T [K] spectrum coupling matrix overlay [%]

700

1.000
0.930
0.885
0.876
0.860
0.795
0.790

0.908 0.021 0.024 0.031 0.018
0.014 0.874 0.022 0.001 0.090
0.013 0.018 0.879 0.006 0.085
0.044 0.002 0.015 0.896 0.043
0.004 0.029 0.033 0.006 0.928

40.5

Table 5.2:Weaker metastability: Five conformations for HIV protease inhibitor
at levelT = 700K (31000 configurations,72 final codebook boxes).

Next we have refined the decomposition after step (2) and performed step (3),
until the decomposition was fine enough. At levelT = 700K, we have achieved
the results presented in Table 5.3.

The number of final codebook boxes has increased, leading to a larger second
eigenvalue (0.952), a larger gap size and a better coupling matrix. Additionally
the overlay has increased (47.7% in comparison with40.5%), while the overlap
still has remained near zero.

For a temperature embedded simulation at levelT = 500K inside the both
metastable clustersC0 andC1, our cluster method computes4 (C00, C01, C02, C03)
and3 conformations(C10, C11, C12) respectively (see Table 5.3). The seven iden-
tified conformations have weightsf(Ci) according to Table 5.4.

Figure 5.5 and Figure 5.6 show average configurations for always two out of
the seven conformations atT = 500K. To allow a better comparison the two
average configurations are aligned in a plane defined by three common atoms.
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T [K] N k spectrum coupling matrix overlay [%]

900 60000 53

1.000
0.830
0.805
0.791

1.000 26.5

700 31000 113

1.000
0.952
0.898
0.889
0.886
0.830
0.802
0.794

0.934 0.066
0.015 0.985

47.7

500-C0 60000 101

1.000
0.962
0.949
0.945
0.917
0.903
0.896

0.921 0.015 0.040 0.023
0.012 0.920 0.023 0.044
0.034 0.024 0.919 0.023
0.010 0.024 0.012 0.954

51.8

500-C1 60000 72

1.000
0.952
0.942
0.920
0.908
0.891

0.961 0.029 0.010
0.025 0.964 0.012
0.044 0.062 0.894

47.3

Table 5.3:Hierarchical temperature embedding for HIV protease inhibitor
with decomposition refinement (N = number of configurations per Markov
chain, k = final number of codebook boxes).

C00 C01 C02 C03 C10 C11 C12

3.3% 4.1% 3.9% 7.4% 33.8% 40.1% 7.5%

Table 5.4:Weights of the seven conformations for HIV protease inhibitor at
levelT = 500 K
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Figure 5.5: Visualization of conformations of HIV protease inhibitor:
Average configurations for two metastable conformations at temperature level
T = 500K (left: C00 andC02, right:C02 andC11).

Figure 5.6: Visualization of conformations of HIV protease inhibitor:
Average configurations for two metastable conformations at temperature level
T = 500K (left: C01 andC03, right:C01 andC10).

For comparison purposes, we have also used mere VQ instead of SOM. In
this case Perron Cluster analysis leads to four metastable clusters instead of the
three conformationsC10, C11, C12 atT = 500K. Upon careful examination of the
results, however, one observes that one of the four clusters is nearly empty — this
is the kind of pseudo-clusters already mentioned in chapter 3.
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Cluster description

Using the corresponding approximate box decomposition (see Figure 5.7 for a
projection of codebook boxes computed by the SOBM algorithm on two out of
the34 torsion angles), we have identified17 discriminating torsion angles for the
clusteringC := {C0, C1} atT = 700K. Further we have used the corresponding
113 codebook boxes to determine reduced membership rules ofC0 andC1. Here
is one of these membership rules for clusterC1:

IF v∗,3 /∈ [18.9, 151.8] AND v∗,4 /∈ [ − 169.4,−29.2] AND v∗,5 /∈ [ − 82.3, 58.5]
AND v∗,6 /∈ [29.3, 168.0] AND v∗,7 /∈ [ − 45.4, 94.6] AND v∗,8 /∈ [ − 103.7, 29.0] AND
v∗,15 /∈ [−36.4, 99.9] AND v∗,16 /∈ [−160.0,−22.5] AND v∗,17 /∈ [−138.5,−10.1] AND
v∗,18 /∈ [ − 52.1, 67.7] AND v∗,19 ∈ [ − 61.8, 177.7] AND v∗,26 ∈ [ − 148.1, 77.0] AND
v∗,27 ∈ [−158.1, 68.4] AND v∗,29 ∈ [−144.4, 89.2] AND v∗,30 ∈ [−110.5, 107.4] AND
v∗,31 ∈ [ − 152.7, 76.5] AND v∗,32 ∈ [ − 99.3, 121.3] THEN v = (v∗,1, . . . , v∗,34) ∈ C1

−180 −60 60 180
−180

−60

60

180

Figure 5.7:Example: Adaptive box decomposition for HIV protease inhibitor.
Visualized projection of codebook boxes on two out of34 torsion angles.
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5.1.4 Prospect: Virtual screening

Clustering techniques and especially self-organized neural networks have been
already used for the analysis of molecular dynamics [43, 41]. But all suggested
algorithms have the deficit that they use a geometric cluster model: They try to
group geometric conformations to metastable conformations by an investigation
of a suitable visualization of the transition probabilities between the geometric
conformations. Obviously such a procedure is only possible if the number of geo-
metric conformations is very small, as it is only the case for simple molecules. In
contradiction, the method described in the previous subsections is able to compute
metastable conformations also for large and complex molecules. Therefore it can
be used for a virtual screening of chemical databases.

Example: Virtual screening of CDK inhibitor

Virtual screening of chemical databases is a powerful tool for the identification of
derivatives of already known molecules with a function of pharmaceutical interest.
Figure 5.8 shows a virtual screening process for theCDK inhibitor indirubin in
principle: First we have to perform a conformational analysis of indirubin and also
of all molecules inside the database, to generate knowledge about their function.
Then we have to use suitable matching algorithms (see [52]) to identify molecules
inside the database with a similar structure and similar metastable conformations
as the indirubin molecule. For a first application of conformational analysis within
a virtual screening project see [30].

Figure 5.8:Virtual Screening of CDK inhibitor indirubin.
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5.2 Cluster analysis of insurance customers

Cluster analysis is a powerful tool for insurance companies to get a better under-
standing of their customer structure, e.g., to design new tariffs or services. In the
following we will present a successful applications of our new cluster approach
for the analysis of insurance data that has been done in cooperation with RISK-
CONSULTING, KÖLN. For a description of a further application see [31].

5.2.1 Modeling

Suppose that each insurance customer can be described by a set ofq attributes,
e.g., age, sex, occupation. As described in the appendix, we can easily transform
the correspondingΩ to a normalized metric space and therefore the customers
can be interpreted as points in a setV ⊂ Ω. Since we want to identify groups
of customers, who have similar properties with regard to the different attributes,
we have to solve a geometric cluster problem. If the data quality is good, i.e.
if we have for each customer valid values for nearly all attributes, we can use a
homogeneity measurehd based on the Euclidean distance functiond = deuclid.
Otherwise we have to use more sophisticated distance measures as, e.g., the Tani-
moto measure [48] or measures that use information levels [28]. Since each cus-
tomer is unique, we use a frequency functionf with f(v) = 1 for all v ∈ V .
If the number of clusters is unknown a priori, we transformhd into a stochastic
homogeneity functioñhd as described in Lemma 4.3.11 so that we can use our
extended multilevel approach based on Perron Cluster analysis. Since we cannot
be sure that the homogeneity functionh̃d corresponds to the same optimal clusters
as the original homogeneity functionh (see the earlier discussion in connection
with Lemma 4.3.11), we have to validate the identified clusters carefully. This is
especially necessary, if the artificial construction ofh̃d leads to a spectrum with
much noise, i.e. a spectrum where the separation between the Perron Cluster and
the remaining part is difficult. Obviously an efficient cluster description based on
an approximate box decomposition is a helpful tool for cluster validation.

5.2.2 Numerical results: Whiplash Injury Patients

Within our application we have clustered2153 customers of a German health in-
surance company with a diagnosis ofwhiplash2 during the observation years1996
and1997. The number of attributes after transformation ofΩ into a normalized
metric space was185.

2Whiplash (German: Schleudertrauma) is an injury to the cervical spine and its soft tissues
caused by forceful flection of the neck, especially that occurring during an automobile accident.
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The computation of an approximate box decomposition ofV was done with
a combination of the SOM and the SOBM algorithm as described in section 3.3.
We have used early stopping, but we have not pruned neurons to allow a visual
comparison with the results generated by using only the SOM algorithm.

1. As an upper bound for the number of partitionsΘs we have chosen| := 99,
what is large enough to guarantee robust results, i.e. nearly equal results, if
| is changed slightly.

2. The computation of a11 × 9 SOM was done by performing100|ordering
steps (withα(0) = 0.9, η := ηgaussian andγ(0) = 5) and300|convergence
steps (withα(0) := 0.1, η = ηbubble andγ(0) = 1).

3. Using the codebook vectorswp, we have initialized the SOBM codebook
boxes. Then we have performed convergence steps (withα(0) := 0.005,
η := ηbubble andγ(0) := 1), until the overlap between the codebook boxes
has exceeded the value0.1%.

In a first trial, we have stopped after step (2). We have used the codebook
vectorswp to determine a decomposition ofV and performed a Perron Cluster
analysis (see Table 5.5):

λ1 λ2 λ3 λ4 λ5 λ6 λ7 Γf,hd
(k = 3) Γf,hd

(k = 5)

1.00 0.81 0.72 0.60 0.51 0.38 0.34 0.71 0.60

Table 5.5:Whiplash Patients: Perron Cluster analysis using9 × 11 SOM.

Figure 5.9:Whiplash Patients: SOM gray-level visualization including cluster
borders computed via Perron cluster analysis (solid border: clusters fork = 3,
dashed border: two additional clusters fork = 5).
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The two largest gaps are betweenλ3 andλ4 and betweenλ5 andλ6 respec-
tively. Figure 5.9 shows the borders of the computed clusters within a SOM gray-
level visualization3.

Next we have performed additionally step (3). We have computed an approx-
imate box decomposition ofV based on the final codebook boxes and we have
used Perron Cluster analysis to determine an optimal clustering:

λ1 λ2 λ3 λ4 λ5 λ6 λ7 Γf,hd
(k = 3) Γf,hd

(k = 5)

1.00 0.81 0.73 0.62 0.54 0.43 0.35 0.69 0.62

Table 5.6:Whiplash Patients: Perron Cluster analysis using9 × 11 SOBM.

The algorithm suggests3 or 5 clusters. Since we have not pruned neurons
after step (2), we can visualize the SOBM with gray-levels (see Figure 5.10). The
borders computed via Perron Cluster analysis corresponds to the the borders indi-
cated by the dark-shades. Especially the right upper cluster is clearly identified.
This cluster contains customers that has been taken over by the insurance company
from another company many years ago. It is very interesting that these customers
have been grouped together, because we have not used the corresponding attribute
within our analysis, i.e. the information “customer has been overtaken” was not
given explicitly. Nevertheless there exists a strong relationship between these cus-
tomers, hidden inside the used attributes. Our cluster algorithm was able to detect
these relationship and therefore has generated knowledge.

Figure 5.10:Whiplash Patients: SOBM visualization including cluster borders
computed via Perron cluster analysis (solid border: clusters fork = 3, dashed
border: two additional clusters fork = 5).

3SOM gray-level visualization is used to determine the clusters by visual investigation (see
[48]). Dark shades represent low homogeneity between the codebook vectors, while light shades
represent a high homogeneity . Other techniques for cluster visualization are presented in [61]
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Conclusion

This thesis deals with a new and rather general multilevel approach for cluster
analysis in high-dimensional data. In contrast to known cluster methods it applies
not only for geometric, but also for dynamic cluster problems.

To guarantee the applicability to large cluster problems, the cluster identifica-
tion is done via a decomposition based representative clustering method. If the
underlying decomposition is fine enough, this method allows a problem reduction
without destroying the original cluster structure. Furthermore, an efficient cluster
description becomes possible if one uses a special decomposition variant, called
approximate box decomposition. The computation of a suitably fine decomposi-
tion is done by a self-organized neural network.

Upon using the theory of Perron Cluster analysis, the general multilevel cluster
approach can been extended: For cluster problems with a stochastic homogeneity
function it allows to compute a correct set of clusters, even if their number is un-
known a priori. Since traditional cluster methods need the number of clusters as
an input, this is a significant improvement. Furthermore, the extended approach
allows for the first time a conformational analysis of large biomolecules in com-
bination with hierarchical temperature embedding.

On the computational complexity side, the computation of a suitably fine de-
composition is still thebottleneck. Especially for an application within commer-
cial virtual screening projects, a speed-up will be necessary. In this respect, paral-
lelization and an improved convergence of the SOM/SOBM algorithm seem to be
promising.
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Appendix

Extension ofΩ to a normalized metric space

Let A := {A1, . . . , Aq} be a set of not necessarily ordered domains and define
Ω :=

⊗q
i=1Ai := {(a1, . . . , aq)

T | ai ∈ Ai , i = 1, . . . , q}. Further letV ⊂ Ω be
any finite subset ofΩ.

We suppose that any attributeAi is finite or at least bounded. Otherwise we
replace it byAi(V ) := {x ∈ Ai | (∃ v = (v∗,1, . . . , v∗,q)T ∈ V ) v∗,i = x}. We
define an unique projectionπ from Ω into a normalized metric space, as follows:

1. LetAi any attribute ofΩ with Ai = {xi,1, . . . , xi,mi
} * R, mi ∈ N. For

1 ≤ j ≤ mi setAi,j := {0, 1} and defineπi : Ai −→
⊗mi

j=1Ai,j ⊂ Rmi via

πi(xi,j) := (δi,1, . . . , δi,mi
)T for j = 1, . . . , mi

with

δi,j =

{
1 if i = j
0 else.

2. Let Ai any attribute ofΩ with Ai ⊂ [li, ri] ⊂ R and li, ri ∈ R. Set
Ai,1 := [0, 1],mi := 1 and defineπi : Ai −→ Ai,1 ⊂ R via

πi(x) :=
x− li
ri − li

forx ∈ Ai.

Thenπ := (π1, . . . , πq)
T is a projection fromΩ into a q̇ :=

∑q
i=1mi dimen-

sional normalized subspaceΩR :=
⊗q

i=1

⊗mi

j=1Ai,j ⊂ Rq̇.

Obviously we have:π(v) = π(w) ⇐⇒ v = w for all v, w ∈ Ω.
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Symbols

General Notation
|M | number of objects in a finite setM
|| · || Euclidean distance

Sets
N natural numbers
R,R+

0 real numbers, positive real numbers including zero
Aj,A attribute, finite set of attributes
Ω direct product of attributes
V data set
Ci, C cluster,k-cluster set (finite set of disjoint clusters)
℘(Ω) power set ofΩ
I, J index subset
A(J) reduced set of attributes (onlyAj with j ∈ J)
Ω(J) direct product of attributes inA(J)
V (J) canonical projection ofV onΩ(J)
Θs partition
Θ decomposition (finite set of disjoint partitions)
Bj subset of attributeAj

B,∆s box
∆,∆I set of boxes, reduced set of boxes (only∆s with s ∈ I)
W codebook
C(W ) compressed clustering
Ĉ extended clustering
ΘW decomposition based on SOM codebook
Ŵs codebook box

Matrices
S stochastic matrix
Ŝ coupling matrix
D weighting matrix
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Variables
q dimension ofΩ
v, vi data object inV
n number of data objects inV
k number of clusters
v(J) projection ofv onΩ(J)
nk number of decomposition partitions
ws codebook vector
T, L time steps
| upper bound ofnk

zs grid position of neurons
li, ri left and right boundaries of interval inR
X random variable
u average number of codebook updates
λi, Yi eigenvalue, eigenvector

Functions
f frequency function
h homogeneity function
hmax(V ) maximal value of homogeneity function inV
Γf,h weighted intra-cluster homogeneity
d distance function
hd homogeneity function based on distance function
S conditional transition probability function
Ŝ set extension ofS
hS homogeneity function based on transition probability function
χM characteristic function of setM
r membership rule (set)
ϑf,h decomposition error
f̌ compressed frequency function
ȟ compressed homogeneity function
f̂ set extension off
ĥ set extension ofh
ρ probability density function
Pρ probability function corresponding toρ
α learning rate
γ neighborhood radius function
η grid distance function
E(X) conditional expectation value ofX
P weighted homogeneity function
P̂ set extension ofP
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[58] Ch. Schütte. Conformational Dynamics: Modelling, Theory, Algorithm, and Ap-
plication to Biomolecules. Habilitation Thesis, Dept. of mathematics und com-
puter science, Free University Berlin, 1998. Available as ZIB-Report SC-99-18
via http://www.zib.de/bib/pub/pw/.



BIBLIOGRAPHY 101
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Zusammenfassung

Als Cluster Analyse bezeichnet man den Prozess der Suche und Beschreibung von
Gruppen (Clustern) von Objekten, so daß die Objekte innerhalb eines Clusters
bezüglich eines gegebenen Maßes maximal homogen sind. Die Homogenit¨at der
Objekte hängt dabei direkt oder indirekt von den Auspr¨agungen ab, die sie f¨ur eine
Anzahl festgelegter Attribute besitzen. Die Suche nach Clustern l¨aßt sich somit
als Optimierungsproblem auffassen, wobei die Anzahl der Cluster vorher bekannt
sein muß. Wenn die Anzahl der Objekte und der Attribute groß ist, spricht man
von komplexen, hoch-dimensionalen Cluster Problemen. In diesem Fall ist eine
direkte Optimierung zu aufwendig, und man ben¨otigt entweder heuristische Opti-
mierungsverfahren oder Methoden zur Reduktion der Komplexit¨at. In der Vergan-
genheit wurden in der Forschung fast ausschließlich Verfahren f¨ur geometrisch
basierte Clusterprobleme entwickelt. Bei diesen Problemen lassen sich die Ob-
jekte als Punkte in einem von den Attributen aufgespannten metrischen Raum
modellieren; das verwendete Homogenit¨atsmaß basiert auf der geometrischen
Distanz der den Objekten zugeordneten Punkte. Insbesondere zur Bestimmung
sogenannter metastabiler Cluster sind solche Verfahren aber offensichtlich nicht
geeignet, da metastabile Cluster, die z.B. in der Konformationsanalyse von Bio-
molekülen von zentraler Bedeutung sind, nicht auf einer geometrischen, sondern
einer dynamischen̈Ahnlichkeit beruhen.

In der vorliegenden Arbeit wird ein allgemeines Clustermodell vorgeschla-
gen, das zur Modellierung geometrischer, wie auch dynamischer Clusterprobleme
geeignet ist. Es wird eine Methode zur Komplexit¨atsreduktion von Clusterpro-
blemen vorgestellt, die auf einer zuvor generierten Komprimierung der Objekte
innerhalb des Datenraumes basiert. Dabei wird bewiesen, daß eine solche Reduk-
tion die Clusterstruktur nicht zerst¨ort, wenn die Komprimierung fein genug ist.
Mittels selbstorganisierter neuronaler Netze lassen sich geeignete Komprimierun-
gen berechnen. Um eine signifikante Komplexit¨atsreduktion ohne Zerst¨orung der
Clusterstruktur zu erzielen, werden die genannten Methoden in ein mehrstufiges
Verfahren eingebettet. Da neben der Identifizierung der Cluster auch deren ef-
fiziente Beschreibung notwendig ist, wird ferner eine spezielle Art der Kompri-
mierung vorgestellt, der eine Boxdiskretisierung des Datenraumes zugrunde liegt.
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Diese erm¨oglicht die einfache Generierung von regelbasierten Clusterbeschrei-
bungen. F¨ur einen speziellen Typ von Homogenit¨atsfunktionen, die eine stocha-
stische Eigenschaft besitzen, wird das mehrstufige Clusterverfahren um eine Per-
roncluster Analyse erweitert. Dadurch wird die Anzahl der Cluster, im Gegensatz
zu herkömmlichen Verfahren, nicht mehr als Eingabeparameter ben¨otigt. Mit dem
entwickelten Clusterverfahren kann erstmalig eine computergest¨utzte Konforma-
tionsanalyse großer, f¨ur die Praxis relevanter Biomolek¨ule durchgef¨uhrt werden.
Am Beispiel desHIV Protease Inhibitors VX-478wird dies detailliert beschrieben.
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