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Introduction

The present work is devoted to the investigation of extremal graphs with respect to a rich
and well-studied graph property: perfectness. We focus our study on perfect graphs that
lose their perfection by simply deleting one edge, a so-called critical edge. We first briefly
survey why so much attention has been payed to perfect graphs. Then we explain why
studying critical edges is of interest, and outline some questions that arise in this context.

Various challenging problems in algorithmic graph theory involve at least one of the fol-
lowing four graph parameters:

a(Q) : stability number, the maximum size of a stable set of G,

0(G) : clique covering number, the least number of cliques that cover all nodes of G,
w(G) : clique number, the maximum size of a clique of G, and

X(QG) : chromatic number, the least number of stable sets needed to cover all nodes of G.

Since the intersection of a stable set and a clique can be at most one node, the four
invariants are obviously related by

a(G) < 0(G) (1)
w(G) < x(G) (2)

for an arbitrary graph G. But requiring equality for these two min-max relations (1)
and (2) does not give much information about the structure of the graph: every graph G
augmented with a sufficiently large stable set and clique satisfies (1) and (2), respectively,
with equality. However, requiring equality in (1) and (2) not only for G but

a(G") = 0(G") (3)
w(G) = (@) (4)

for all of its induced subgraphs G’ yields a class of graphs with very interesting structural
properties. By a suggestion of Berge [3], graphs satisfying (3) and (4) have been termed
perfect and all other graphs imperfect. Since complementation transforms stable sets into
cliques and colorings into clique coverings, the inequalities (1), (2) and equalities (3),
(4) are dual to one another by a(G) = w(G) and x(G) = 6(G), where G denotes the
complementary graph of G. It is clear by this duality that a graph fulfills (3) if and only
if its complement satisfies (4), and vice versa. A much stronger relation was conjectured
by Berge [3] and proven by Lovész [42], namely that (3) and (4) are in fact equivalent
(for finite graphs). This fundamental result is nowadays known as Perfect Graph Theorem.
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Moreover, from an algorithmic point of view perfect graphs behave nicely with respect to
the graph parameters «, 8, w, and x. While these four invariants are difficult to evaluate
for arbitrary graphs, polynomial time algorithms solving the corresponding optimization
problems even in their weighted versions have been designed by Grotschel, Lovasz, and
Schrijver [21] for perfect graphs. In particular, determining a(G) corresponds to maximiz-
ing the linear function 17z over the stable set polytope STAB(G), a 0/1-polytope defined
as the convex hull of the incidence vectors of all stable sets in G. In order to calculate
172 over STAB(G), an explicit description of STAB(G) as the solution set of a system of
linear inequalities is required but, unfortunately, unknown for most graphs (see [22] for
a detailed account). Since a stable set and a clique have at most one node in common,
for every clique @ of G, the so-called clique constraint z(Q) < 1 is satisfied by every
incidence vector of a stable set in G. Hence, all clique constraints are valid for STAB(G)
and define, together with the nonnegativity constraints z(v) > 0 Vv € V(G), a polytope
QSTAB(G) which obviously contains the stable set polytope of G, i.e.,

STAB(G) C QSTAB(G) (5)

holds. The nonnegativity and maximal clique constraints define facets of STAB(G) for
every graph G and, thus, they are necessarily contained in any description of STAB(G)
by means of linear inequalities. Perfect graphs are polyhedrally characterized that these
two classes are even sufficient (see [9]): a graph G is perfect if and only if STAB(G) and
QSTAB(G) coincide, i.e., if and only if (5) is satisfied with equality.

For all those important properties and polynomial time algorithms for otherwise hard
combinatorial optimization problems, the recognition problem for perfect graphs is still
open. In particular, the characterization of perfect graphs via the famous Strong Perfect
Graph Congjecture of Berge [3] has not been verified so far. This conjecture states that a
graph is perfect if and only if it does not contain any subgraph isomorphic to a chordless
odd cycle of length at least five, termed odd hole, or to the complement of such a cycle,
an odd antihole. It is just a simple observation that odd holes and odd antiholes are
imperfect, but they are even more, namely minimally imperfect graphs: imperfect graphs
with the property that removing any of its nodes yields a perfect graph. Using this term
introduced by Padberg [50], the Strong Perfect Graph Conjecture reads that odd holes
and odd antiholes are the only minimally imperfect graphs. In order to give a characteri-
zation of minimally imperfect graphs (and so to verify or falsify the Strong Perfect Graph
Conjecture), many fascinating structural properties of such graphs have been discovered.
So, e.g., every minimally imperfect graph G = (V, F') admits an extraordinary symmetry
with respect to its maximum cliques and stable sets:

G has precisely |V| maximum cliques (stable sets), (6)

every node is contained in exactly w(G) such cliques (a(G) such stable sets). (7)

Furthermore, node pairs with certain neighborhood structures must not occur in mini-
mally imperfect graphs, e.g.,



INTRODUCTION 3

comparable pairs: two nodes z,y € V with N(z) —y C N(y),
twins: two nodes z,y € V with N(z) —y = N(y) — z, and
antitwins: two nodes z,y € V with N(z) —y =V — N(y) — {z,y},

to mention just a few of them. (Chapter 1 provides all graph theoretical notions and
presents further results on perfect and minimally imperfect graphs.)

The starting point of this thesis was the following consideration, my supervisor Professor
Grotschel focused my attention on in spring 1996. Imagine you are creating a graph on
a certain node set. You start with a complete graph and consecutively delete one edge
until you get a stable set, or you take a stable set and consecutively add one edge until
the complete graph is reached. So you create a sequence of graphs starting and ending
up with a perfect graph. But, if you choose the edges to be deleted or added randomly,
most graphs of your sequence will be imperfect. In order to avoid imperfect graphs in our
sequence, we face the following problems in this context.

Problem 0.1 If you have obtained a perfect graph by deleting or adding a certain edge
set, is there a rule to choose the next edge in order to keep perfectness?

Problem 0.2 For a perfect graph, is there an order of the edges to be deleted (added) so
that we get a sequence of perfect graphs ending up with a stable set (a complete graph)?

We have called an edge e of a perfect graph G critical if G — e is imperfect. The most
simple example of a critical edge is a single chord of a cycle of odd length > 5 which forms
a triangle with two edges of the cycle, called a short chord. So one rule in the sense of
Problem 0.1 is “never omit a single short chord of an odd cycle”. But could we obtain, by
removing a certain edge set from a complete graph, a perfect graph every of its edges is
such a chord? This graph would be a “dead end graph” for our procedure of consecutively
removing edges, so we ask:

Problem 0.3 Are there perfect graphs such that you cannot delete or add any edge with-
out losing perfectness?

Problem 0.4 If such “dead end graphs” exist, do they admit a structure similarly inter-
esting as that of minimally imperfect graphs?

Problem 0.5 In which classes of perfect graphs do such graphs appear?

We have termed perfect graphs that admit only critical edges critically perfect. The at-
tempt to construct a first example, e.g., a perfect graph all of its edges are single short
chords of an odd cycle, has yielded the graph depicted in Figure 3.17 on page 63. Further
examples followed soon (Figure 3.1 on page 30 shows the three smallest critically perfect
graphs, Figure 3.2 on page 31 further examples). Hougardy has discovered: all the first
examples are line graphs of bipartite graphs. It has turned out in the sequel that this was
not a pure chance: line graphs of bipartite graphs and their complements play a central
role in the context of critically perfect graphs.
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Problem 0.1 and Problem 0.2 are investigated in Chapter 2. As already mentioned, we
say that an edge e of a perfect graph G is critical if G — e is imperfect. Furthermore, we
call e anticritical with respect to the complementary graph G: every critical edge e of G is
a non-edge of G the addition of which yields the imperfect graph G + e due to the Perfect
Graph Theorem. In particular, whenever we delete and add a critical and anticritical edge
e of a perfect graph GG, we create in G — e and G + e, respectively, minimally imperfect
subgraphs. In order to attack Problem 0.1 the Sections 2.1 and 2.2 study those subgraphs
G' C G which yield the minimally imperfect subgraphs G' — e and G’ + e of G — e and
G + e, respectively. Many properties of those subgraphs rely on properties of minimally
imperfect graphs. So we obtain, e.g., that the endnodes of a critical or anticritical edge
must neither form a comparable pair, nor twins, nor antitwins. Moreover, the endnodes
of every critical (anticritical) edge are contained in a clique (stable set) of size three and
in an even hole (antihole).

Section 2.3 is dedicated to Problem 0.1 with respect to graphs that belong to a certain
subclass of perfect graphs. (The large abundance of classes of perfect graphs has led us
to confine our studies, besides some ”classical” ones, only to classes which seem to be
quite large.) In other words, we investigate in which classes perfect graphs may occur
that admit critical or anticritical edges at all. One answer gives a new characterization
of Meyniel graphs. They have been introduced in [45] as graphs all odd cycles of length
> 5 of which admit at least two chords. So critical edges in form of single short chords of
odd cycles do obviously not occur in Meyniel graphs. Actually, removing any edge from
a Meyniel graph keeps perfectness by [29] and even more holds: a graph is Meyniel if
and only if it does not admit any critical edge. Two further main results of this section
establish characterizations of critical and anticritical edges in line graphs. An edge of a
line graph is critical iff it is a single short chord of an odd cycle, non-edges between the
endnodes of even paths of length > 4 are precisely the anticritical edges.

Section 2.4 deals with Problem 0.2. We present several classes of perfect graphs for which
the answer is in the affirmative and we give specific rules how to delete or add the edges.
It turns out that it does not suffice to identify non-critical or non-anticritical edges: we
can, e.g., certainly remove an arbitrary edge from a Meyniel graph keeping perfectness
but, at present, we do not know anything about critical edges of the resulting graph. So
what we have to do is to look for edges the deletion or addition of which preserves mem-
bership within the corresponding subclass of perfect graphs. By this way, we provide the
studied ordering of edges to be deleted or added for, e.g., every bipartite, triangulated,
and weakly triangulated graph.

The subject of Chapter 3 is the investigation of “dead end graphs” for the procedure
of consecutively deleting or adding edges, i.e., we deal with Problem 0.3, Problem 0.4,
and Problem 0.5. We have already mentioned some examples of critically perfect graphs,
hence Problem 0.3 is solved. All non-edges of the complement of a critically perfect graph
are anticritical, we call the complements of critically perfect graphs anticritically perfect.
Thus the complements of all graphs shown in Figure 3.1, Figure 3.2, and Figure 3.17 are
anticritically perfect. Moreover, the first graph depicted in Figure 3.1 and all graphs from
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Figure 3.2 and Figure 3.17 (i.e., our first example!) are even both, critically and anticrit-
ically perfect, but not the second and the third graph in Figure 3.1. Hence the classes
of critically and anticritically perfect graphs intersect but do not coincide. Note further
that every graph which is critically and anticritically perfect is a singleton in the graph
of all perfect graphs. I.e., you cannot reach another perfect graph from such a graph by
the deletion or the addition of one edge.

Section 3.1 is devoted to properties of critically and anticritically perfect graphs in order
to tackle Problem 0.4. But looking for structures similarly interesting as that of min-
imally imperfect graphs has, unfortunately, not revealed such strong structural results.
Critically and anticritically perfect graphs do not admit any symmetry with respect to
their maximum cliques and stable sets (in contrast to the properties (6) and (7) of min-
imally imperfect graphs). The third graph depicted in Figure 3.1, e.g., has three nodes
which do not belong to any of its maximum stable sets. However, the results obtained in
Section 2.1 and Section 2.2 reveal that critically and anticritically perfect graphs share
some forbidden substructures with minimally imperfect graphs, e.g., they do not contain
comparable pairs, twins, or antitwins.

The next two sections provide the two known key tools to construct critically and anti-
critically perfect graphs. Section 3.2 studies several graph operations known to preserve
perfectness and the “behavior” of critical and anticritical edges under applying those op-
erations. Clearly, a graph operation preserving critical or anticritical perfectness enables
us to generate, from two critically or anticritically perfect graphs, new graphs belonging
to these two classes. E.g., if we construct a graph G by identifying two perfect graphs
G; and G, in a clique Q C G, G, then G is a perfect graph that “inherits” all critical
edges from G; and GG9. Thus, the class of critically perfect graphs is closed under applying
clique identification. But we have established an even stronger result: an edge e in () is
critical in G even if it is neither critical in G; nor in G9, but belongs to a triangle in
G1 and an even hole in G5 (then e is a single short chord of an odd cycle in G). This
observation provides the opportunity to create a critically perfect graph from two perfect
but non-critical graphs. The graph shown in Figure 3.9 on page 50 admits precisely one
non-critical edge. Taking two copies of this graph and identifying them in the endnodes
of their only non-critical edge yields a critically perfect graph which does not contain any
critically perfect proper subgraph.

Section 3.3 gives characterizations of critically and anticritically perfect line graphs, based
on the two main results of Section 2.3. Here we prove that every critically and anticrit-
ically perfect line graph is the line graph of a bipartite graph with a certain structure,
called H-graph and A-graph, respectively. (In the line graph of a bipartite H-graph, every
edge is a single short chord of an odd cycle, where every two non-adjacent nodes are the
endnodes of a chordless even path of length > 4 in the line graph of a bipartite A-graph.)
Moreover, the line graph of every 3-connected bipartite graph is both, critically and an-
ticritically perfect. The importance of the results obtained in these two sections is that
the only known critically or anticritically perfect graphs are line graphs or graphs created
by using line graphs and the operations considered in Section 3.2.
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Section 3.4 deals with Problem 0.5. First we study whether all critically perfect graphs
may belong to a certain subclass of perfect graphs. For that, we first observe that every
perfect graph F' may occur as subgraph of a critically perfect graph: cover all non-critical
edges of F' by cliques ()1, ..., @k, choose critically perfect graphs G4, ..., Gy with Q); C G;
for 1 < ¢ < k, and identify F' with all graphs G; in @); each. The arising graph contains
F' as subgraph and is critically perfect. Consequently, critically and anticritically perfect
graphs cannot be characterized by forbidden subgraphs (the only forbidden subgraphs are
minimally imperfect). Therefore, the classes of critically or anticritically perfect graphs
are not contained in any F-free class of perfect graphs for some perfect graph F' (the
uniquely colorable perfect graphs build the only subclass of perfect graphs known to the
author which is not characterized by forbidden subgraphs). Conversely, every proper sub-
graph F' C F is F-free and perfect but, if it has less than nine nodes, not critically perfect
(cf. the smallest critically perfect graphs in Figure 3.1). Hence, no inclusion relations exist
between the classes of critically or anticritically perfect graphs and the most other classes
of perfect graphs. So we study the intersections of the corresponding classes, using results
from Section 2.3 and Section 2.4. Clearly, the classes of Meyniel, bipartite, triangulated,
and weakly triangulated graphs do not contain any critically perfect graph.

Chapter 4 is dedicated to the investigation of a further aspect: how imperfect is a graph
that arises by deleting a critical edge e of a perfect graph G. In order to decide whether
G —e is still “almost perfect” or already “very imperfect”, we have to introduce a measure
for the imperfectness of a graph. For that, we make use of the polyhedral characterization
of perfect graphs [9]: a graph is perfect iff nonnegativity and clique constraints suffice to
describe its stable set polytope. An imperfect graph obtained from a perfect graph G by
deleting a critical edge e does not possess this property anymore. The stable set polytope
associated with G' — e admits facets of other types in addition.

In Section 4.1, we consider a hierarchy of inequalities valid for STAB(G), starting with
the clique constraints

z(Q,1) <1

where 1 stands for a node-weighting of the clique Q C G. By a(Q) = 1 for every clique
Q, all clique constraints are special rank constraints

z(G', 1) < a(G")

associated with subgraphs G’ C G which are obviously valid for STAB(G). Whenever G’
has |G'| stable sets of size a(G’) so that the incidence vectors are affinely independent,
the rank constraint z(G’, 1) < a(G’) is facet-defining for STAB(G') (this is true for, e.g.,
every minimally imperfect graph G' by Padberg [50]). In the case G' C G, the rank
constraint associated with G’ does not induce a facet of STAB(G) in general. But we may
strengthen z(G’, 1) < a(G") to a facet

z(G,a) < a(G")

of STAB(G), called weak rank constraint, by determining appropriate integer coefficients
a; for every node v; € G — G’ via sequential lifting [49]. (Note a; = 1 holds for v; € G’
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and, in particular, every rank constraint z(G',1) < «(G') is a weak rank constraint
z(G,a) < a(G") with a; =1Vv; € G and a; =0 Vv; € G — G'.)

Following a suggestion in [22], we consider two polytopes associated with the two inequal-
ity classes above: we define RSTAB(G) and WSTAB(G) as the polytope described by
rank constraints and weak rank constraints, respectively, together with the nonnegativ-
ity constraints. The two polytopes are obviously relaxations of STAB(G) refining (5) as
follows:

STAB(G) C WSTAB(G) C RSTAB(G) C QSTAB(G).

We call a graph G rank-perfect if STAB(G) and RSTAB(G) coincide and weakly rank-
perfect if STAB(G) = WSTAB(G). Clearly, every perfect graph is rank-perfect since, in
this case, even STAB(G) and QSTAB(G) coincide by [9], and every rank-perfect graph is
weakly rank-perfect in particular. So the classes of all rank-perfect and all weakly rank-
perfect graphs constitute super-classes of perfect graphs and yield the studied measure
for the imperfectness of a graph.

Le., in order to decide how imperfect a graph is that we obtain by deleting a critical
edge e from a perfect graph G means to decide whether G — e is rank-perfect or weakly
rank-perfect. For that, we have to study the facets of STAB(G — e).

Problem 0.6 Describe certain types of facet-defining inequalities of STAB(G — e) or
STAB(G +e)!

Problem 0.7 Which types of facets provide, together with the nonnegativity and clique
constraints, a complete description of STAB(G — e) or STAB(G +¢)?

In Section 4.2 and Section 4.3, we deal with Problem 0.6 and establish weak rank con-
straints of STAB(G — e) where G is a perfect line graph and the complement of such a
graph, respectively. The characterizations of critical and anticritical edges in line graphs
from Section 2.3 provide the knowledge of a/l minimally imperfect graphs which occur in
G — e. We give the weak rank constraints obtained by lifting rank constraints associated
with one or the union of some minimally imperfect subgraphs of G — e. If G is a perfect
line graph and e a critical edge, then odd holes are the only minimally imperfect sub-
graphs in G — e. One odd hole or the subgraph induced by some odd holes of G — e yield
the line graph of a hypomatchable graph which induces a rank constraint of STAB(G —e)
by Edmonds and Pulleyblank [17]. Each rank constraint associated with the line graph
of a hypomatchable graph distinct from an odd hole of length five is lifted to a weak
rank facet of STAB(G — e), where lifting coefficients equal to one or zero suffice. An odd
hole of length five in G — e may induce two different weak rank facets of STAB(G — e),
where a lifting coefficient equal to two may be needed additionally. In the special case
that G is the line graph of a bipartite graph we don’t have to distinguish between these
two cases, the corresponding facets of STAB(G — e) are particular rank constraints. If
G is the complement of a perfect line graph and e a critical edge, odd antiholes are the
only minimally imperfect subgraphs in G — e (due to the characterization of anticritical
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edges in line graphs). Here we lift rank constraints associated with one odd antihole or
the subgraph induced by two odd antiholes to weak rank facets of STAB(G — e). The
description of certain types of facet-defining inequalities for STAB(G — e) partially solves
Problem 0.6. The polyhedral consequences of the addition of anticritical edges have not
been studied so far.

Throughout Sections 4.2 and 4.3, we have studied weak rank facets in stable set polytopes
associated with certain perfect graphs G that become imperfect by removing a critical
edge e. All examples of such imperfect graphs G — e found by the author in this context
have the property that their stable set polytopes only admit weak rank facets besides
nonnegativity facets. This gives reason to conjecture that G' — e is weakly rank-perfect if
G 1s a perfect line graph or the complement of such a graph. In particular, since the cor-
responding facets of STAB(G — e) are rank constraints if G is the line graph of a bipartite
graph, G — e would be even rank-perfect in that case. In Section 4.4 we verify the above
conjecture for graphs G — e in the special case that G is the complement of the line graph
of a bipartite graph: we ensure that nonnegativity, maximal clique, and the weak rank
constraints studied in Section 4.3 suffice to describe STAB(G — e). This gives at least a
partial answer to Problem 0.7.

I am very grateful to Professor Dr. M. Grotschel for supervising my work. His fruitful
suggestions and stimulating remarks were the basis of the achieved results. Furthermore,
I thank Stefan Hougardy for many hours of helpful discussions about different aspects
of my work. Moreover, I am appreciative to Gabor Bacsé, Eva Benko, Ralf Borndorfer,
Stefan Hougardy, and Myriam Preissmann for proof reading different parts of this thesis.
The final version improved due to their critical remarks.



Chapter 1

Basics

This chapter provides the reader with all elementary graph theoretical notions and nota-
tions used throughout this thesis. Moreover, we summarize some known results on perfect
and minimally imperfect graphs which we will frequently make use of in later chapters.

1.1 Graph Theoretical Notions

A graph G consists of a pair of finite sets, the node set V(G) and the edge set E(G).
The elements of V(G) and E(G) are the nodes and edges of G, respectively. V(G) is
non-empty and |G| = |[V(G)| is the size of G, often referred by n. E(G) is a subset of
the set of all unordered pairs e = {z,y} of nodes z,y € V(G). The two nodes z and y
are then called the endnodes of ¢ and we briefly write e = zy. If the endnodes of an
edge coincide, it is called a loop, two distinct edges with the same endnodes are parallel.
Unless specified otherwise, we only deal with simple graphs that neither possess loops
nor parallel edges. If there is no danger of confusion, we define a graph by G = (V, E)
and use V and F instead of V(G) and E(G), respectively.

Every edge is incident to its endnodes. Two edges e, ¢’ are defined to be incident
if they share an endnode, otherwise e and e’ are called independent. A set of inde-
pendent edges is said to be a matching. The endnodes of an edge are adjacent or
neighbors. For a node set V' C V(G), the neighborhood of a node z € V(@) with
respect to V' is Ny (z) = {y € V' : 2y € E(G)} and the degree of x with respect to V'
is dy/(z) = |Ny/(x)|. If V! = V(G) holds, we write N(z) and d(z) instead of Ny (q)(z)
and dy(g)(z), respectively. Nodes z with d(x) = 0 are called isolated and universal if
d(z) = |V(G)| holds. Furthermore, §(G) = min{d(z) : x € V(G)} denotes the minimum
degree of G and A(G) = maz{d(z) : z € V(G)} its maximum degree. Every graph G
with §(G) = k = A(G) is k-regular.

Let G = (V,E) be a graph, V' C V and E' C E, then we call G' = (V', E') a partial
subgraph of G and write G' C G. G — E’ means the partial subgraph of G with node
set V and edge set E — E'; we briefly write G — e for G — {e}. G + e stands for the graph
(V,E U{e}). If G' C G where E(G") consists of all edges in F with both endnodes in
V' =V(G"), then G' = G[V'] is the subgraph of G induced by V'. When we are just

9
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talking of subgraphs or using G' C G, we will always mean induced subgraphs and refer to
G’ only using its node set V' and, conversely, identify V' with G[V']. The notation G — V'
means the subgraph of G induced by V' — V' and we write G — v instead of G — {v}. For
V' C V, we call G" = G[V'] a proper subgraph of G, denoted by G' C G.

A sequence of nodes v, v1, ..., v is a path (cycle) in G, if v; # v; holds for 0 <4,j < k
(1 <i,j <k and vy = vg) and v;_1v; is an edge of G for 1 < 4 < k. The number k
is the length of this path (cycle) which is called even and odd if k is even and odd,
respectively. Every edge v;v; in the subgraph of G induced by the nodes vy,. .., vy with
j # i+1is a chord of the path (cycle), a chord v;v; with j = i+2 is called short. Chord-
less paths (cycles) are also called induced. Every path P = vy, vy, ..., v, connecting the
nodes vy and vy is said to be a (vg, vx)-path. The nodes vy, vy are called the endnodes
of P, vy,...,vx_1 its internal nodes, and vyv;, vy 1v; its endedges. Referring to a
subpath of P, we use its endnodes and write Plv;, vj] = v;,...,v;, Plv;,vj) = v;,...,0,_1,
P(vi,vj] = viy1,...,v5, and P(v;,vj) = viy1,...,vj—1. Two paths P and P’ are open-
disjoint if they admit common endnodes but do not share any internal node. A graph
G is called k-connected if there are k open-disjoint (z,y)-paths in G for every pair z,y
of different nodes in G. For k£ = 1 we just say that GG is connected. If G is not con-
nected we call it disconnected. Every non-empty, maximal connected subgraph of G is
called a component. (Note that minimal and maximal always refer to set inclusion, but
minimum and maximum always refer to size.) A subset C' C V(G) is called a cutset of
G if the number of components in G — C' is strictly greater than in G, a cutset C' with
|C| =1 is just a cutnode. A block is a subgraph of G which is either a single edge or
a maximal 2-connected subgraph. Every block admitting only one cutnode is called an
endblock.

A stable set (clique) in a graph G = (V, E) is a set of nodes any two of which are
non-adjacent (adjacent). If a stable set (clique) has size k it is called a k-stable set
(k-clique). The size of a maximum stable set (maximum clique) of G is its stability
number «(G) (clique number w(G)). A coloring and a clique covering of G is a
partition of V' into disjoint stable sets, called color classes, and cliques, respectively.
We call a coloring (clique covering) using k stable sets (cliques) a k-coloring (k-clique
covering). The minimum number of stable sets (cliques) needed for such a partition of

V is the chromatic number x(G) (clique covering number 0(G
claw paw diamond bull
Figure 1.1

Graphs G of size n with w(G) = n are called complete and usually denoted by K,. P
and Cj denotes a chordless path and cycle, respectively, on k& nodes, Cj5 is also called a
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triangle and C}; with £ > 4 a hole. Every graph G admitting a k-coloring is k-partite,
we also say that G is bipartite for £ = 2. If a graph with color classes Vi, ..., V; has
the property that every node in V; is adjacent to every node in V; whenever ¢ # j holds,
it is complete k-partite. K,; stands for a complete bipartite graph with color classes
A, B and a = |A],b = |B|. K, is also called a star and the star K; 3 a claw. The only
node of degree b in a star K} is sometimes called its center. Adding an arbitrary edge
to a claw yields a paw, deleting an arbitrary edge in a K; a K4 — e or diamond (see
Figure 1.1). The graph on 5 nodes, called bull, is also shown in Figure 1.1.

For a graph G = (V, E), the unique graph G with the same node set V but {zy € V xV :
x # y,xy ¢ E} as edge set is defined to be the complementary graph or just the
complement or co-graph of G. Clearly, the edges of G become the non-edges of G and
vice versa. The operation to take the complement of a graph is said complementation.
Let C stand for a certain class of graphs, then we denote by co-C its complementary
class or co-class for short, i.e., the class of all graphs with G € co-C iff G € C.

A further graph operator frequently used in the sequel is the line operator. Applying it
to a graph G yields the line graph L(G) of G by taking the edges of G as nodes of L(G)
and joining two nodes of L(G) by an edge iff the corresponding edges of G are incident.
Note the opportunity to uniquely reconstruct the underlying graph G = L~!(L(G)) from
its line graph L(G) whenever G # K3, K 3.

Two graphs G; and Gy are isomorphic if there is a bijection ¢ : V(G;) — V(G3)
preserving adjacency, i.e., with ¢(z)¢(y) € E(G3) if and only if zy € E(G;) holds.
We then often write G; = Gy for G; 2 Gy. If F; C G; for + = 1,2 holds and a
graph isomorphism ¢ : F; — F, exists, then the identification of G; and G5 in
F; and F, means to identify every node z € V(F}) with ¢(z) € V(F3) and every edge
zz' € E(F)) with ¢(x)p(z') € E(Fy). Every graph isomorphic to its complement is called
self-complementary. If a graph G does not admit any subgraph G’ C G isomorphic to
a certain graph F', we say that G is F-free. A graph not containing any cycle as partial
subgraph is called a tree in particular.

An embedding of a graph G in a surface F is a mapping ¢ that assigns to each node of
G a point in F and to each edge of G a simple curve in F such that two curves meet in a
point z iff the corresponding edges share an endnode v and z = ¢(v) holds. The (topo-
logical) closures of the connected components of F — ¢(G) are the faces of ¢(G). A graph
embeddable in F is called a triangulation of F if all faces of ¢(G) are triangles. Every
graph is said to be planar (toroidal) if it admits an embedding in the plane (torus). To
subdivide an edge zy in a graph G means to replace it by a P; = xzy where z is a new
node only adjacent to z and y. A subdivision U(G) of G is any graph derivable from G
by recursively subdividing some of its edges. The contraction of two nodes x and y in
a graph is the operation that replaces x and y by a single node z, i.e., that adds a new
node z, joins it to all neighbors of x and y by an edge, and finally deletes z and y. Every
embedding is clearly invariant under any subdivision and under contraction of adjacent
nodes x and y if one of the nodes has degree two.
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Let p be a graph parameter and p(G) # (G — e), then the edge e is called p-critical
in G. We denote the set of all p-critical edges of G by E,(G). If the partial subgraph
G, = (V,E,) of G = (V,E) is connected, we call G p-connected and p-critical if
E,=E. A p-critical edge of G is p-anticritical in G.

1.2 Known Results on Perfect and Minimally Imper-
fect Graphs

In his classical paper [3], BERGE proposed to call a graph perfect if, for each of its sub-
graphs, the chromatic number equals the clique number, otherwise the graph is said to
be imperfect. At this time, the perfectness of a few graph classes was already known.
So it is obvious for bipartite graphs and is equivalent to a theorem of KoniG [40] for
co-bipartite graphs. KONIG [39] and [40] yield the perfectness of line graphs of bipartite
graphs and their complements, respectively. The same result for triangulated graphs,
defined to be Cy-free for k > 4, was established by BERGE [3] and for co-triangulated
graphs by HAJNAL and SURANYT [23]. The observation that, in all these cases, perfectness
holds for the graph class as well as for its co-class has made BERGE to conjecture that a
graph is perfect iff its complement is. This question was answered in the affirmative by
LovAsz in [42] and is known as Perfect Graph Theorem.

Another observation is that odd holes and their complements, termed odd antiholes,
are imperfect and so each graph containing an odd hole or an odd antihole as subgraph.
BERGE conjectured in [3] that a graph is perfect iff it contains neither odd holes nor odd
antiholes as subgraphs, such graphs are nowadays said to be Berge. This still outstand-
ing conjecture, famous as Strong Perfect Graph Conjecture (for short SPGC), has already
been verified for several classes of Berge graphs. To mention just a few of them, the
SPGC is known to be true for F-free Berge graphs where F' is a claw (PARTHASARATHY
and RAVINDRA [51]), a paw (OLARIU [48]), a P, (JUNG [38], SEINSCHE [53]), a diamond
(Tucker [61]), a K, (TUCKER [59]), or a bull (CHVATAL and SBIHI [11]), and also for
planar and toroidal Berge graphs due to TUCKER [58] and GRINSTEAD|20], respectively.

Since the occurrence of odd cycles with certain chords seems to be important with respect
to perfectness, several graph classes have been studied in this context. E.g., line-perfect
graphs, defined as graphs that do not admit any cycle of odd length > 5 as partial sub-
graph, are perfect due to TROTTER [57] (note that this class consists of all graphs whose
line graphs are perfect). A further important class of perfect graphs was introduced by
MEYNIEL [45] to contain all graphs whose cycles of odd length > 5 have at least two
chords, nowadays known as Meyniel graphs.

PADBERG [50] introduced the notion of minimally imperfect graphs, namely of im-
perfect graphs with the property that all of whose proper subgraphs are perfect. Clearly,
a graph is minimally imperfect iff its complement is, due to the Perfect Graph Theo-
rem [42]. In these terms, the SPGC states that the odd holes and the odd antiholes are
the only minimally imperfect graphs. Therefore, minimally imperfect Berge graphs are
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called monsters since the existence of this third type of minimally imperfect graphs would
contradict the SPGC. In order to characterize minimally imperfect graphs, many proper-
ties have been found, e.g., properties reflecting an extraordinary amount on symmetry of
their maximum cliques and stable sets.

Theorem 1.1 (LovAsz [42]) Fvery minimally imperfect graph G has ezractly ow + 1
nodes and, for every node x of G, the graph G — x can be partitioned into o cliques of
size w and into w stable sets of size a, where a = a(G) and w = w(G) holds.

Theorem 1.2 (PADBERG [50]) Every minimally imperfect graph G on n nodes has pre-
cisely n mazimum stable sets and precisely n mazximum cliques. Each node of G s con-
tained in precisely o(G) mazimum stable sets and in precisely w(G) mazimum cliques. For
every mazimum clique @ (stable set S) there is a unique mazimum stable set S (clique

Q) with QN S = 0.

BLAND, HUANG, and TROTTER suggested in [7] to call a graph partitionable if it sat-
isfies the conditions of Theorem 1.1 for some integers a, w and verified Theorem 1.2 for
all partitionable graphs.

Various forbidden substructures of minimally imperfect graphs have been discovered, we
will confine ourself to mention only these which we will frequently use in later chapters.
Let us start with results concerned to special cutsets. An immediate consequence of the
definition of minimally imperfect graphs is that they cannot contain a clique-cutset, i.e.,
any cutset with pairwise adjacent nodes. In particular, every minimally imperfect graph is
at least 2-connected. CHVATAL generalized this relation to cutsets C' containing one node
that is adjacent to all remaining nodes in C, termed star-cutsets, by proving that no
minimally imperfect graph contains a star-cutset (Star-Cutset Lemma [10]). Investigating
cutsets with pairwise non-adjacent nodes, called stable-cutsets, TUCKER [60] pointed
out that the odd holes are the only minimally imperfect graphs containing stable-cutsets.

Turning to some node pairs forbidden in minimally imperfect graphs, consider two distinct
nodes z and y of a graph G. We say that  dominates y if N(y) C N(z) U {z} holds
and call then z,y a comparable pair. A comparable pair z, y is said to be strict if z, y
are non-adjacent and weak otherwise. An easy consequence of Theorem 1.1 is that mini-
mally imperfect graphs neither contain strict nor weak comparable pairs. Hence minimally
imperfect graphs do also not admit nodes whose neighborhood induces a clique, called
simplicial nodes. The same is true for antisimplicial nodes, defined to be simplicial
nodes of the complement, by the Perfect Graph Theorem [42]. If all induced (z, y)-paths
in G have even length (odd length, length k), z and y are called an even pair (odd pair,
k-pair, respectively). An odd pair z,y is said to be strict if z,y are non-adjacent and
weak otherwise. MEYNIEL proved in [46] that minimally imperfect graphs do not contain
any even pair (Even Pair Lemma). A natural analogue, with "even” replaced by ”odd”,
is also conjectured but only proven for 3-pairs by HOANG [31] so far. Note that this
conjecture is equivalent for strict and weak odd pairs due to a result of HOUGARDY [32]:
a graph G' with a weak odd pair z,y is minimally imperfect iff G — xy is. Furthermore,
if every node in G — {z,y} is adjacent either to both or to none of z and y (to either z



14 CHAPTER 1. BASICS

or y) then z,y are called twins (antitwins). Twins (antitwins) x,y are said to be true
if x,y are adjacent and false otherwise. Minimally imperfect graphs neither admit twins
due to the so-called Replacement Lemma [42], the key lemma in the proof of the Perfect
Graph Theorem [42], nor antitwins due to OLARIU (Antitwin Lemma [47]).

The knowledge of forbidden substructures of minimally imperfect graphs has led to various
definitions and characterizations of classes of perfect graphs. The concept of star-cutsets
has been used by HAYWARD to prove the perfectness of weakly triangulated graphs
and murky graphs, which are C- and Cj-free for every k > 5 [25] and Cs-, Ps-, and
Pg-free [26], respectively. CHVATAL [10] defined the star-closure C* of a graph class
C to contain a graph G if and only if G € C or G —z € C* Vz € V(G) and G or G
has a star-cutset, and proved that C* is perfect if C is. Let TRIV stand for the class
of all graphs with at most two nodes, then TRIV* is the class of weakly triangulated
graphs [25]. Another interesting class of perfect graphs is BI P*  where BIP denotes the
class of bipartite graphs. BIP* contains all Meyniel graphs and some further classes of
perfect graphs (see [10]).

Applying the concept of even pairs, MEYNIEL [46] defined a graph to be in the class of
strict quasi parity graphs (for short SQP) if each of its non-complete subgraphs has
an even pair. Furthermore, the class of quasi parity graphs (QP for short) is defined
in [46] that for each subgraph G’ of a graph in QP should hold that G’ or G owns an
even pair. Meyniel established the perfectness of all graphs in SQP and QP as well
as several inclusion relations, e.g., that all Meyniel graphs are in SQP and SQP C QP
holds. HAYWARD, HOANG, and MAFFRAY proved in [28] that weakly triangulated graphs
are in SQP by characterizing them as graphs whose non-complete subgraphs contain a
2-pair. Another graph class concerned to even pairs was defined by BERTSCHI in [5]. He
said a graph G to be even contractile if there is a sequence of graphs Ggy, G4, ..., Gk
such that G = Gj holds, (G; is obtained via the contraction of an even pair in GG;_;
for 1 <1 < k, and Gy is complete. An even contractile graph need not to be perfect
but a graph each of its non-complete subgraphs is even contractile, called perfectly con-
tractile, is in SQP. Note that Meyniel graphs are shown to be perfectly contractile in [5].

A stable set of a graph GG has been termed strong if it has a non-empty intersection with
all maximal cliques of G. Since no minimally imperfect graph contains a strong stable
set by Theorem 1.2, strongly perfect graphs, introduced in [4] to be graphs all of
whose subgraphs admit a strong stable set, are perfect. The notion of strong stable sets
was generalized by HAMMER and MAFFRAY in [24]. They called a node set V! C V of
G = (V, E) absorbant if every node in V' — V' has at least one neighbor in V', and then
a graph absorbantly perfect if every of its subgraphs owns a minimal absorbant set
having a non-empty intersection with all its maximal cliques. Absorbantly perfect graphs
are a superclass of strongly perfect graphs by definition. The perfectness of absorbantly
perfect graphs was shown by characterizing them to possess either a strong stable set or
a weak comparable pair (see [24]). Finally, PREISSMANN [52] suggested to call a graph
G locally perfect if each of its subgraphs G’ C G admits a coloring which uses only
w(Ng(x)) colors in Ng(z) Vo € G' and proved the perfectness of these graphs.



Chapter 2

Critical Edges with Respect to
Perfectness

We introduce the notions of critical and anticritical edges in perfect graphs. In order to
tackle Problem 0.1 to find necessary conditions when an edge is not critical or anticritical,
we provide several properties of graphs admitting critical or anticritical edges through the
Sections 2.1 and 2.2. We use this knowledge in Section 2.3 to investigate the occurrence
of such edges in several classes of perfect graphs. Section 2.4 is devoted to Problem 0.2:
order the edges (non-edges) of a perfect graph such that deleting (adding) the edges in
this order yields a sequence of perfect graphs.

2.1 Ciritical Edges

We define an edge e of a perfect graph G to be critical if G —e is imperfect. In particular,
for every critical edge e of a perfect graph G there is necessarily at least one subgraph
G, C G such that G, — e is minimally imperfect. According to the three possible types
of minimally imperfect graphs, we distinguish between three different types of critical
edges. We say that an edge e of a perfect graph G is H-critical (A-critical, M-critical)
if there is a subgraph G, C G such that G, — e is isomorphic to an odd hole (an odd
antihole, a monster, respectively). To get familiarly with critical edges, let us make some
considerations on the corresponding subgraphs G..

For every H-critical edge e, there is a subgraph G, isomorphic to an odd cycle of length
> 5 which admits precisely one chord, namely e. Moreover, e has to be a short chord of
this cycle, forming a triangle with two of its edges, since G, must not contain an odd hole.
Unless it is defined otherwise, we always refer to a subgraph G, where G, — e is an odd
hole by the graph having {v1, ..., very1} with & > 2 as nodes, v;v;11 for 1 <i < 2k+1
(mod 2k 4+ 1) and e = vyvy, as edges. The nodes vy, vo, and ve1 form a triangle, the
only maximum clique of G, and vy, ..., vy induce an even hole.

If e is an A-critical edge there is a subgraph G, isomorphic to a ﬁ2k+1 with k£ > 2. There-
fore, it is natural to use the convention that G, has {vi,...,ver 1} as nodes and v;v;11

as non-edges for 1 < ¢ < 2k, i.e., we have e = vv9,41. Then all nodes with odd index

15
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form the only maximum clique of G, with size £+ 1. Since F2i+1 C ﬁ2k+1 holds whenever
1 < k, the subgraph G, contains other A-critical edges than e for £ > 2. In the case
G. = P;, the edge e is A-critical as well as H-critical since Pj is precisely a cycle on 5
nodes with just one short chord.

Of course, such a description cannot be given for M-critical edges and, if the SPGC is
true, there are no M-critical edges at all. Hence we are interested in general properties of
G, caused by properties of all the minimally imperfect graphs G, — e.

Lemma 2.1 Let G be a perfect graph, e = xy a critical edge of G, and G.—e a minimally
imperfect subgraph of G — e, then the following conditions are simultaneously satisfied.

(i) The edge e is w-critical but not x-critical with respect to G.; © and y are contained
in the unique maximum clique of G.

(ii) The edge e is O-critical but not a-critical with respect to G, deleting e destroys every
minimum clique covering of G..

(iii) There is a mazimum stable set of G — e containing x and y.

Proof. Consider a critical edge e = zy of the perfect graph G and a minimally im-
perfect subgraph G, — e C G — e corresponding to e. We have w(Ge) = x(G¢) but
w(Ge — ) < x(G, — e). Because the removal of an edge cannot increase the chromatic
number, x(Ge) = x(Ge — €) and, therefore, w(G.) > w(G,. — e) follows. Moreover, the
deletion of e does not only destroy all maximum cliques in G, but there is only one such
clique by [55] and (i) is shown. Due to the Perfect Graph Theorem [42], a(G.) = 0(G,)
but a(G. —e) < 8(G, — e) holds. Since the stability number cannot be decreased by the
removal of an edge, a(G.) = a(G, — e) yields 0(G,) < 0(G, — e). Thus, deleting e must
destroy every minimum clique covering of G, and we have obtained (ii). In order to prove
(iii) consider the graph G, + e and assume the edge e = zy of G + e to be not contained
in any maximum clique of G, +e. Then the graph G, is partitionable by TUCKER [59] in
contradiction to G, perfect due to [42]. Hence, r and y lie in a maximum clique of G + e
and, therefore, in a maximum stable set of G, —e. O

Remark. If G, — e is an odd hole or antihole, both endnodes of e appear in precisely one
maximum stable set each. But it is unknown whether this is true for all critical edges,
i.e., if this property applies to M-critical edges.

The deletion of e causes only local changes on the subgraphs G.. Hence, we can certainly
state that e is w-critical, #-critical and not x-critical or a-critical with respect to GG, but
not provide a similar result with respect to GG. That the occurrence of a critical edge can
also have an effect on G itself is shown by the next two lemmas. The first one is concerned
to forbidden substructures in G, the other one gives some further properties, which we
will frequently make use of in the sequel.

Lemma 2.2 Suppose e = xy to be a critical edge of a perfect graph G. Then x and y
are neither true twins, true antitwins, a weak comparable pair, nor a weak odd pair of G.
Moreover, neither x nor y is a universal or a simplicial node in G.
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Proof. Consider a perfect graph G, a critical edge e = xy of G, and a subgraph G, C G
such that G, — e is minimally imperfect. Then x and y do not form a weak comparable
pair, true twins, and true antitwins of GG, else they would be a strict comparable pair,
false twins, and false antitwins in G, — e leading to a contradiction to a well-known fact,
the Replacement Lemma [42], and the Antitwin Lemma [47], respectively. Now, neither
2 nor y can be a universal or a simplicial node, since = or y had to form either a weak
comparable pair or true twins with one of its neighbors in G' otherwise. Suppose finally
x and y to be a weak odd pair, then they would be a strict odd pair in G, — e. Due to a
result of HOUGARDY [32], G — e can be minimally imperfect only if G, is, hence we have
a contradiction to G, perfect. O

Lemma 2.3 Let e = xy be a critical edge of the perfect graph G and G. —e C G — ¢
manimally tmperfect.

(1) Ng,-e(z) N Ng,—e(y) # 0 holds, hence the nodes x and y occur in a triangle of G.
(ii) There is an odd induced (z,y)-path in G, — e, thus an even hole through x, y in G.
(iii) If e is M-critical, it is the middle edge of a diamond and belongs to a K5 in G, C G.

Proof. Suppose e = xy to be a critical edge of a perfect graph G and G, — e to be a
minimally imperfect subgraph of G — e corresponding to e. Since x and y must not form
an even pair in G, — e according to the Even Pair Lemma [46] and G, — e is connected,
an odd induced (z,y)-path exists in G, — e and yields (ii). We know from Lemma 2.1.(i)
that = and y are contained in the only maximum clique of G.. Hence w(G. —¢) = 1
would be the consequence of Ng, _.(z) N Ng, _(y) = 0 and we get assertion (i). Similarly,
w(Ge — €) < 4 follows if e is not contained in a K3 and, therefore, G, — e cannot be a
monster in this case due to a result of TUCKER [59]. In order to complete the proof of
assertion (iii), consider a node z € Ng, .(z) N Ng, (y). The nodes z, z, and y induce a
P3 in G, — e, hence a hole C is running trough them in G, — e by HoANG [30]. If G, — e
is supposed to be a monster, C' is even. G[V(C) — z] is a chordless cycle of odd length in
G, hence |C| = 4 follows. O

2.2 Anticritical Edges

We define a critical edge e of the perfect graph G to be anticritical with respect to G,
i.e., the addition of an anticritical edge e ¢ E(G) to G yields an imperfect graph. Clearly,
there is a subgraph G, C G for every anticritical edge e of a perfect graph G such that
G, + e is minimally imperfect. According to the three types of critical edges, we say
that e is an H-anticritical (A-anticritical, M-anticritical) edge of G if e is H-critical
(A-critical, M-critical, respectively) in G. Looking at this close relation between critical
and anticritical edges, it is not surprising that most of the results concerned to critical
edges can be easily translated to properties with respect to anticritical edges.

Investigating the subgraphs G, corresponding to an anticritical edge e, let us make use of
the conventions already given for (G, in the previous section. If G, + e is an odd antihole,
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the endnodes v; and vy, of e form together with v9r,; the only maximum stable set of
Ge, and vy, ..., vy induce an even antihole. For every A-anticritical edge e, there is a
subgraph G, isomorphic to Py with k£ > 2. Again, other A-anticritical edges occur in
G, for k > 2, while e is A-anticritical as well as H-anticritical for £ = 2. In analogy to
M-critical edges, no detailed description can be given for M-anticritical edges. Hence we
are interested in properties of GG, caused by properties of the minimally imperfect graph
Ge+ e C G + e again.

Lemma 2.4 Let G be a perfect graph, e = zy & E(G) an anticritical edge, and G, + € a
minimally tmperfect subgraph of G + e corresponding to e.

(i) The edge e is x-anticritical but not w-anticritical with respect to G.; x and y admit
the same color in every minimum coloring of G..

(ii) The edge e is a-anticritical but not 8-anticritical with respect to Ge; x and y are
contained in the unique mazimum stable set of G,.

(iii) = and y appear in a mazimum clique of G + e.

Proof. All assertions of this lemma are immediate consequences of Lemma 2.1 by the

duality of x(G), w(G) and 0(G), a(G) and the Perfect Graph Theorem [42]. O

Remark. The addition of e also causes only local changes on the subgraph G., so we
cannot provide results similar to (i) and (ii) with respect to G. Furthermore, if G, + e is
an odd hole or antihole, the endnodes of e appear in precisely one maximum clique of G,
each. But, again, it is unknown whether this property applies to M-anticritical edges.

The occurrence of anticritical edges leads, in analogy to critical edges, to the following
forbidden substructures in (G, which are immediate consequences of some properties of
the minimally imperfect graphs G, + e.

Lemma 2.5 Let e = zy be a critical edge of the perfect graph G, then x and y are neither
false twins, false antitwins, a strict comparable pair, a strict odd pair, nor a 2-pair of G.
Moreover, neither x nor y is an isolated or an antisimplicial node in G, i.e., a simplicial
node in G.

Proof. Consider a perfect graph G, an anticritical edge e = zy ¢ F(G), and a subgraph
G, C G such that G, + e C G — e is minimally imperfect. Then Lemma 2.2 implies that
z and y does not form a strict comparable pair, false twins, and false antitwins of G and
neither x nor y can be an isolated or an antisimplicial node. If z and y are supposed to be
a strict odd pair, they would be a weak odd pair in G, + e, a contradiction to HOUGARDY
[32]. Now assume z and y to form a 2-pair. In the case Ng,(z) — Ng,(y) = 0, the node
y would dominate z in G, + e, hence there is a node =’ € Ng_ (x) — Ng,(y). Since z
and y are a 2-pair in G, and z' and y are non-adjacent, all (z',y)-paths in G, + e must
contain x or a node in Ng, ()N Ng, (y) in contradiction to the Star-Cutset Lemma [10]. O
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We can establish a result concerned to 2-pairs and anticritical edges, while nothing similar
is known for critical edges. Clearly, the reason is that, in the context of anticritical edges,
pairs of non-adjacent nodes are of interest. So we also obtain an additional property
besides these related to Lemma 2.3.

Lemma 2.6 Suppose e = zy to be a critical edge of the perfect graph G.
(i) The nodes x and y belong to a stable set of size 3 in G.
(ii) G admits an even antihole containing x and y.

(iii) If e is M-anticritical, then x and y are the nodes of degree 0 of a K4 — e, and are
contained in a stable set of size 5.

(iv) The edge e is only A-anticritical, if x and y form an even pair.

Proof. Consider a perfect graph G and an anticritical edge e = zy ¢ E(G). Then
the assertions (i), (ii), and (iii) follow directly from the corresponding statements of
Lemma 2.3. Hence suppose z and y to form an even pair. Since x and y must neither be
a 2-pair in G nor in G, by Lemma 2.5, there is an induced (z,y)-path P in G, of even
length > 4. Then P + e is an odd hole and P = G, follows, hence e is A-anticritical. O

2.3 Which Graph Classes admit Critical Edges?

This section is devoted to the investigation of Problem 0.1. We focus on subclasses of
perfect graphs and try to find out whether membership in such a subclass makes it easier
to characterize critical or anticritical edges.

The first question is, of course: In which perfect graphs do critical or anticritical edges
occur? More precisely, are there classes of perfect graphs so that no graph in this class
has a critical or anticritical edge? For some graph classes, this follows immediately using
some of the properties concerned with critical edges that are established in the previous
sections. By Lemma 2.3.(i), e.g., every critical edge is contained in a triangle, so bipartite
graphs do not possess any critical edge. That the same is true for triangulated graphs is
an immediate consequence of Lemma 2.3.(ii), stating that every critical edge has to occur
in an even hole. Both properties together yield the existence of an odd cycle of length at
least 5 in the union of the triangle and the even hole, so line-perfect graphs cannot admit
critical edges, too. The next theorem provides the characterization of perfect graphs with-
out any critical edge. 1t also yields a new characterization of Meyniel graphs. The proof
of this theorem relies on the perfectness of a superclass of Meyniel graphs, namely slim
graphs introduced by HErRTZ [29]. If G = (V, E)) is Meyniel and V' C V| the slim graph
G (V") is obtained by deleting every edge of G with both endnodes in V".

Theorem 2.7 (HOUGARDY, WAGLER [37]) A perfect graph does not admit any critical
edge iff it is Meyniel.
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Proof. (Only if) Let G be a perfect graph without any critical edge. Assume G to be not
a Meyniel graph then G admits an odd cycle C' with length > 5 which has at most one
chord. Since G is perfect, C' cannot be chordless, hence C' possess precisely one chord e.
If e were not a short chord of C';, an odd hole would be contained in G. Thus e has to be a
short chord of C' and so it is an H-critical edge of GG in contradiction to the precondition. <&

(If) Suppose G = (V, E) to be a Meyniel graph. Then, for every subset V' C V, the
graph G(V') generated from G by deleting every edge of G with both endnodes in V' is a
slim graph, still perfect by HERTZ [29]. Thus, if we choose an arbitrary pair of adjacent
nodes in a Meyniel graph and delete the edge connecting them, we get a perfect graph
again, i.e., a Meyniel graph cannot admit any critical edge. O

Remark. It is obvious that H-critical edges do not occur in Meyniel graphs by defini-
tion. Furthermore, in Section 2.1 it is observed that, for every A-critical edge e, there is
a subgraph G, isomorphic to Py,,q with & > 2. Since then P5 C Py, holds, we im-
mediately see that A-critical edges cannot be contained in Meyniel graphs. But no proof
independent from HERTZ’s result in [29] is known so far showing that Meyniel graphs do
not possess any M-critical edge.

Making use of this new characterization of Meyniel graphs, a perfect graph does not admit
any anticritical edge if and only if it is co-Meyniel. Hence a graph is free of critical as well
as anticritical edges iff it is contained in the intersection of the class of Meyniel graphs
and its complementary class. The next theorem proves that all complete k-partite graphs
are contained in the intersection of these two graph classes.

Theorem 2.8 No complete k-partite graph contains a critical or anticritical edge.

Proof. Suppose G to be a complete k-partite graph with color classes S, ..., Sk. Assume
e = zy to be a critical edge of G and G, a subgraph with G, — e minimally imperfect.
Then G, is complete k'-partite for some k' < k and z € S;, y € S; holds with i # j
and 4,7 < k’. Since xz and y occur in the intersection of all maximum cliques of G, by
Lemma 2.1.(i), we conclude S; = {z} and S; = {y}. Thus z and y are true twins of G, in
contradiction to Lemma 2.2 and G does not admit any critical edge. Now, consider two
non-adjacent nodes z,y € S; for one i € {1,...,k}. Due to N(z) = N(y) = G — S;, the
nodes x and y are false twins. Hence xy cannot be an anticritical edge of G by Lemma 2.5
and the assertion of the lemma is true. O

Theorem 2.7 implies that critical edges occur in all perfect graphs GG not contained in the
class of Meyniel graphs. Our aim is to characterize the critical edges e in these perfect
graphs G, i.e., to find out which minimally imperfect subgraphs G. — e may occur in
G — e. Our main tools of investigation are properties of the graphs G, C G discussed
throughout Section 2.1 and knowledge about forbidden subgraphs in the classes of perfect
graphs under consideration.

Lemma 2.9 Let G be a perfect graph and e a critical edge of G.
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(i) Is G a Ps, Ks-free Berge graph, then G — e has Cs and C; as the only minimally
imperfect subgraphs.

(ii) If G is diamond-free Berge, Ky-free Berge, or planar Berge, then G — e neither
contains a Cop1 with k > 3 nor a monster.

(iii) Is G toroidal Berge, G — e has odd holes and C; as the only minimally imperfect
subgraphs.

(iv) For every locally perfect graph G, the graph G —e cannot contain a Copy1 with k > 3.
(v) Is G weakly triangulated or bull-free Berge, no Cory1 with k > 3 appears in G — e.

(vi) If G is murky, G—e has Cs and monsters as the only minimally imperfect subgraphs.

Proof. Let G be perfect, e a critical edge of G, and G, — e C G — e minimally imperfect.

Every Ps, K5-free Berge graph G is perfect due to MAFFRAY and PREISSMANN [44]. We
observe that G obviously neither admit any H-critical edge with |G| > 5 nor any A-
critical edge with |G¢| > 7. M-critical edges do not occur by Lemma 2.3.(iii) and (i) is
true.

Lemma 2.3.(iii) also shows that neither diamond-free Berge graphs nor Kj-free Berge
graphs admit M-critical edges. Since a diamond is contained in Py, for k > 2, we ob-
tain G, = P5 for every odd antihole G, — e corresponding to an A-critical edge e and we
infer that diamond-free Berge graphs only have H-critical edges. That w(Pg,1) =k + 1
holds, completes the assertion for K4-free Berge graphs. Now, let G be planar Berge, then
G cannot possess any U (K5), a subdivision of the K3, as subgraph by the characterization
of planar graphs of KURATOVSKY [41]. Thus G has no M-critical edge by Lemma 2.3.(iii)
again. Furthermore, K5 C Py, for k > 3 and U(K5) C Poryy for k = 3 implies that
all A-critical edges e in planar Berge graphs have to yield a Cs in G — e, i.e., they are
H-critical. This shows (ii).

Let G be toroidal Berge, we prove that G — e does not admit any minimally imperfect
subgraph G, — e with w(G, — e) > 4. First note that G — e is still toroidal. Since
every minimally imperfect toroidal graph either has clique number < 4 or is 6-regular
and triangulates the torus, due to GRINSTEAD [20], we have to show that every such
triangulation is maximal with respect to the addition of edges. Following ALTSHULER [1],
every 6-regular triangulation of the torus can be represented as the graph 7T'(r, s,t) shown
in Figure 2.1. The nodes v;,;; have to be identified with v;; for 1 < 7 < r, but the
nodes v,41; with vy ;_;, where the second subscript is taken modulo s, and ¢ is fixed.
Then the neighborhood of every node v;; € T(r,s,t) contains a cycle C of length 6 as
partial subgraph, encircling v; ; as is emphasized by bold lines in Figure 2.1. Obviously,
v;; cannot be linked to a node in T'(r, s,t) — (C' U {v; ;}) without crossing one edge of C.
Thus, there is no toroidal graph G, C G such that the deletion of e results in a minimally
imperfect toroidal graph G, — e which is 6-regular and triangulates the torus. By [20] we
get, therefore, w(G, — €) < 4 for all minimally imperfect subgraphs G, —e C G — e if G
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is toroidal Berge. A result of TUCKER [59] states that every monster must contain a K.
Thus minimally imperfect graphs with clique number < 4 are the odd holes and the C';
which completes the proof of assertion (iii).

Figure 2.1: T(r, s, t) representing every 6-regular triangulation of the torus.

In order to show (iv), note that the P; is minimally non-locally perfect. P; C Poyyy
for £ > 3 implies that locally perfect graphs cannot possess any A-critical edge e with
Ge| > 7.

If G is weakly triangulated, we can easily exclude H-critical edges e with |G| > 7, since
Cr € G holds for k£ > 5 by definition. Furthermore, if e is H-critical and |G¢| > 7, then
the nodes vy, Vg, Vog_1, Vo, Vor 1 induce a bull in G, thus we can exclude H-critical edges
in bull-free Berge graphs, too, and (v) is true.

Finally, murky graphs do not contain any Cs, P, and Pg. Thus, they do not possess H-
critical and A-criﬁcal edges e with |G| > 7, since the nodes vog 1,01, ...,vs5 and vq,. .., Vg
induce a Ps and Pg, respectively, for £ > 3. O

Remark. The absence of M-critical edges in planar and toroidal Berge graphs can also
be directly inferred from the results of TUCKER [58] and GRINSTEAD [20] that establish
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the perfectness of planar and toroidal Berge graphs, respectively. Moreover, it is not
necessary to check separately which kinds of anticritical edges appear in certain classes of
perfect graphs. If all graphs G belonging to a graph class C must not admit any H-critical,
A-critical, and M-critical edge, then all graphs G in co-C do not possess any H-anticritical,
A-anticritical, and M-anticritical edge, respectively.

The previous lemma provides all results concerning critical edges in certain subclasses
of perfect graphs that we can infer from the present knowledge of their forbidden sub-
graphs. There is only one further subclass of perfect graphs for which we are able to
characterize even both critical and anticritical edges: the class of all perfect line graphs.
That characterization bases on the special structure of line graphs and of the opportunity
to uniquely reconstruct the underlying graph from its line graph [66] (provided the line
graph is different from Kj).

It is well-known that the line graph G of a graph F' is perfect iff F' is line-perfect, i.e.,
iff F' does not contain any odd cycle of length at least 5 as partial subgraph. Note that
every partial subgraph F' of F' corresponds to an induced subgraph L(F') of L(F) = G.
Furthermore, every node v; € V(G) corresponds to an edge e; € E(F), we refer to this
by using the corresponding index ¢ for 1 <i <n = |V(G)| = |E(F)]|.

@ (b) (© (d)

Figure 2.2

In order to characterize critical and anticritical edges in L(F'), we define two structures
in the underlying line-perfect graphs F'. We say that two incident edges x and y form an
H-pair in F if there is an edge e, incident to the common node of z and y and if there
is a (not necessarily induced) even cycle C, , containing « and y but only one endnode of
ez y (see Figure 2.2(a)). Then L(C,,) is an even hole and the node in L(F') corresponding
to ey, has precisely two neighbors on L(C,,), namely z and y (see Figure 2.2(b)).

Two non-incident edges = and y are called an A-pair if they are the endedges of a (not
necessarily induced) odd path P,, with length at least five (see Figure 2.2(c)). Then
L(P,,) is an even, chordless path of length at least four with endnodes = and y or, in
other words, L(P,,) is an odd hole where the edge between z and y is missing (see
Figure 2.2(d)). It is straightforward that the deletion and addition of the edge zy in
L(CyyUeyy) and L(P,,), respectively, yields a minimally imperfect graph. The next two
theorems even establish that zy is a critical and anticritical edge in L(F') only if z, y form
an H-pair and A-pair, respectively, in F'.
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Theorem 2.10 Let G be the line graph of a line-perfect graph F. An edge e = xy of G
s critical iff x and y form an H-pair in F.

Proof. (If) Let « and y form an H-pair in the line-perfect graph F', then there is an edge
ez incident to both and an even cycle C,, containing = and y but only one endnode of
sy In G = L(F), the edge e = xy belongs to the even hole L(Cy,) and the node of G
corresponding to e, , has only z and y as neighbors on L(Cy,), i.e., e is H-critical in G. <

(Only if) Suppose G to be the line graph of a line-perfect graph F' and e to be a critical
edge of GG. In order to show that the edges corresponding to the endnodes of e form an H-
pair in F', we prove the following three claims according to the three types of critical edges.

Claim 1: For all H-critical edges e = xy of G, the edges x and y form an H-pair in F.
Claim 2: Ife is A-critical and G, — e a corresponding odd antihole, |G| =5 must hold.
Claim 3: G cannot admit any M-critical edge.

Then the assertion of the theorem is clear for H-critical edges by Claim 1. For A-critical
edges, it follows by Claim 2 and Claim 1 (since A-critical edges e with |G.| = 5 are H-
critical, too), and is irrelevant for M-critical edges by Claim 3.

Proof of Claim 1. Let e = zy and G, — e be an odd hole corresponding to e which is
isomorphic to Coryq with £ > 2. Then, by convention, x = v; and y = vy holds and the
nodes {v1, ..., ve} induce an even hole C in G with Ng(vegy1) = {z,y}. In F, the nodes
v1, ...,V correspond to the edges of an even cycle L~ (C) containing the incident edges
e1 and ey, i.e., we have L™(C) = C,,. By No(var+1) = {z,y}, the edge egy1 is incident
to e; and eg in F', but does neither form a triangle with them, nor has both endnodes
on Uy, hence eg11 = €,y and z, y form an H-pair in F.

Proof of Claim 2. Let e = zy be an A-critical edge of G and consider G, = Pojy1
with £ > 2. Then, by convention, G, has the nodes vy,..., vyt Where z = v; and
Yy = V911 holds, and v;v;11 are the non-edges of G, for 1 <1 < 2k. For k£ > 3, the nodes
V1, U, U3, Ugg, Ug+1 induce a subgraph of G which is forbidden according to BEINEKE’s
characterization of line graphs [2]. Hence, we conclude k¥ = 2 and, therefore, |G.| = 5
follows.

Proof of Claim 3. Suppose e = xy to be an M-critical edge of G and G, — e to be a corre-
sponding monster. Due to [2], G, is K; 3-free but G, — e is not since the SPGC is true for
K, 5-free graphs by a result of PARTHASARATHY and RAVINDRA [51]. So let us consider
a K13 = {w,z,y; 2} with center z in G, — e. The nodes z,z,w and y, z,w induce Ps’s
which have to be contained in two holes C, and Cy, respectively (see HOANG [30]). Let
T = Zg, ..., Tk, W, 2z and Y = Yo, ..., Y1, w, z be the nodes of C, and C,, respectively. Assume
yr1 € E(G.) and consider the partial subgraph L='(C, U {y}) of F. Then L~!(C;) is an
even cycle (otherwise C, would be an odd hole in G,) and the edge y has both endnodes
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on L™'(C,), forming a triangle with z and z; (note zy is not a critical edge of G if y is
parallel to z in F). Hence ( L7'(C,) — {z,7:}) U {y} is an odd cycle of length > 5 in
F (since yw ¢ F(G.)), and (C, — {z,z:} U {y} is an odd hole in G, a contradiction.
Therefore, we have yz, ¢ E(G.) and, analogously, zy; ¢ E(G.). Choose i,j with i+j > 2
smallest possible and z;y; € E(G.) (note at least 2y, € E(G.) else xx, yi, z and w would
induce a K;3 in G.) and let C = z...2;y;...y. Then C is a chordless cycle different from
a triangle (by yx1,zy; & E(G,)), i.e., C has to be an even hole. The definition of C, and
C, implies N¢(z) = {z,y}, thus (C U {z}) — e is an odd hole in G, — e, a contradiction
to G, — e Berge by assumption. O

The above theorem implies that every perfect line graph only admits H-critical edges. The
next theorem shows that perfect line graphs only have A-anticritical edges and, therefore,
complements of perfect line graphs only possess A-critical edges (see also [63]).

Theorem 2.11 Let G be the line graph of a line-perfect graph F. An edge vy ¢ E(QG) is
anticritical iff x and y form an A-pair in F.

Proof. (If) Let z and y form an A-pair in the line-perfect graph F', then = and y are the
endedges of an odd path P, , of length at least 5. Applying the line operator to P, ,, we get
an even induced path L(P,,) of length at least 4 with endnodes z and y. The addition of
the edge zy to L(P,,) yields an odd hole in L(F), i.e., the edge e = zy is A-anticritical. <
(Only if) Let G be the line graph of a line-perfect graph F' and e ¢ E(G) an anticritical
edge. In order to show that the edges corresponding to the endnodes of e form an A-pair
in F', we prove the following three claims according to the three types of anticritical edges.

Claim 1: For all A-anticritical edges e = xy of G, the edges x and y form an A-pair in F.
Claim 2: If e is H-anticritical and G +e C G + e an odd antihole, |G.| = 5 must hold.
Claim 3: G cannot admit any M-anticritical edge.

The assertion of the theorem is clear for A-anticritical edges by Claim 1, follows for H-
anticritical edges by Claims 2 and 1, and is irrelevant for M-anticritical edges by Claim 3.

Proof of Claim 1. Consider an A-anticritical edge e = zy and a corresponding odd hole
G + e isomorphic to Cy, 1 with £ > 2. Then we have G, = Py1 where x and y are the
endnodes of this path. Thus L' (Py, ) must be a path of length 2k + 1 with endedges
z and y, i.e., L7 (Pay41) = Py and the edges z, y form an A-pair in F.

Proof of Claim 2. Let e = xy be an H-anticritical edge of G and G, + e C G + e an odd
antihole Cgy1 with k& > 2 corresponding to e. Then, by convention, G, has the nodes
V1, ...,VUsks1 Where £ = vy and y = wvg, holds, while zy and v;v;41 for 1 < ¢ < 2k +1
mod (2k + 1) are the non-edges of G.. For k > 3, the nodes vy, v3, vox, Vor+1 induce a K 3
with center v3 in G, a contradiction to [2]. Hence & = 2 and, therefore, |G| = 5 must hold.
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Proof of Claim 3. Suppose e = xy to be an M-anticritical edge of G and G, +e C G + e
a corresponding monster. G, is as line graph K 3-free [2], but G, + e is not, since the
SPGC is true for K, 3-free graphs by [51]. Consider a K, 3 = {w, z, 2; y} with center y in
G + e. The nodes w,y, 2z and z,y, z induce Ps’s in G, + e contained in two even holes
Cy and Cy, respectively (cf. [30]). Hence we have the hole C,, and the path P, = C, — e
in Ge; let w = wy, ..., wg, 2,y be the nodes of C, and = = xy,...,x;, 2,y be the nodes
of P,. Consider the smallest index i such that Ng, (z;) # 0 and choose j minimal with
z;w; € E(G.) (note that at least wyz; € E(G.)). Then we have Ng, (zy) = 0 Vi' < i
and Ng¢, (z;) = {w;,w;41} (since G, is a line graph). Therefore, P = yww;...w;z;...x
and () = y2wg...w;412;...x are induced paths where either P or () has even length, since
either yww;...w; or yzwyg...w;41 is even (note that C,, — w;w;41 has an odd number of
edges). Due to zw ¢ F(G,) and 2z € E(G,), neither P nor () has length 2. Hence one of
them has even length > 4 and GG, + e contains one of the odd holes P + e and ) + e in
contradiction to G, + e Berge by assumption. O

Remark. Two operators similar to the line operator are the Gallai operator I' and the
wing operator W, where I'(F') and W (F') are defined to take the edges of F' as nodes and
to join two nodes by an edge if the corresponding edges of F' are the endedges of a P3 and
Py, respectively. We can certainly determine for all graphs F' whether I'(F) and W (F),
respectively, contains critical edges. But conversely, we cannot describe all the possible
structures in the underlying graph F' similar to H-pairs and A-pairs. The reason is that
we are able to uniquely reconstruct F' from L(F) if F' # K3, K; 3 by WHITHNEY [66], but
not from I'(F') or W (F'). Here different graphs F' have the same image in I'(F') or W (F).

All results with respect to the occurrence of the three kinds of critical edges investigated
in this section are summarized in Appendix A.2.

2.4 Perfect Edge Orders

After considering the occurrence of critical edges in several classes of perfect graphs, we
turn to Problem 0.2: we are interested whether it is possible, for certain perfect graphs,
to successively delete or add edges keeping perfectness until a stable set or a complete
graph is reached. For that, we use knowledge from the previous sections.

Let G = (V, E) be a perfect graph. We call a numbering of its edge set E = {e1,..., e} a
perfect edge order if, for G = G, all graphs G; := G;_ — ¢; are perfect for 1 < < m.
Clearly, e; has to be a non-critical edge of G;_; for 1 <1 < m, and G,, is a stable set.
Analogously, we say that a perfect graph G admits a co-perfect edge order iff its com-
plement G has a perfect edge order. Here we simply use the numbering of the edges of G
for the non-edges of G and get finally a complete graph.

Note that it does not always suffice to identify non-critical or non-anticritical edges in sev-
eral kinds of perfect graphs. E.g., we can certainly delete an arbitrary edge of a Meyniel
graph keeping perfectness by [29], but we may obtain a slim graph that is not Meyniel.



2.4. PERFECT EDGE ORDERS 27

Hence, we cannot provide perfect edge orders of Meyniel graphs, although the graphs in
this class are even characterized that they do not contain any critical edge due to Theo-
rem 2.7. So we mainly have to look for edges such that their deletion or addition preserves
the membership to the corresponding subclass of perfect graphs.

Starting with the simplest example of graphs having this property, we first mention that
bipartite graphs obuviously admit perfect edge orders and, therefore, co-bipartite graphs
co-perfect edge orders. The same is true for line-perfect graphs and every other class of
perfect graphs defined by some forbidden partial subgraphs. In the case of line-perfect
graphs we have even more: that are precisely those perfect graphs such that every of its
edge orders is perfect.

Theorem 2.12 A graph is line-perfect iff all edge orders are perfect.

Proof. (If) A line-perfect graph G does not contain any odd cycle of length > 5 as
partial subgraph. Obviously, G — e does also not contain any odd cycle of length > 5
Ve € E(G) and, therefore, is still line-perfect. Thus every ordering of F(G) is perfect. <&

(Only if ) Assume G to be perfect but not line-perfect. Then G admits a cycle C of odd
length at least 5 as partial subgraph. C' cannot be chordless and every edge order of G
that deletes all chords of C before an edge of C' is not perfect. O

Next, consider a triangulated graph G = (V, E). According to a well-known character-
ization of triangulated graphs, G admits a simplicial node x, hence no edge e incident
to x is critical by Lemma 2.2. The graph G — e is not only still perfect, but even still
triangulated, since x is also simplicial in G — e and G[V — z] remains unchanged. Thus G
admits a perfect edge order E = {ey, ..., e, } where e; is incident to a simplicial node of
G;_1 for 1 < i < m. Analogously, we can add an edge incident to an antisimplicial node of
every complement of a triangulated graph keeping the graph co-triangulated. This yields
a co-perfect edge order of triangulated graphs.

It is natural to ask for perfect edge orders in weakly triangulated graphs, defined as a com-
mon generalization of triangulated and co-triangulated graphs. Let G' be non-complete
and weakly triangulated. Then a 2-pair x, y occurs in G due to a characterization of
weakly triangulated graphs given by HAYWARD, HOANG, and MAFFRAY in [28]. The
graph G + xy is not only perfect by Lemma 2.5 but still weakly triangulated by a result
of SPINRAD and SRITHARAN [56] where a co-perfect edge order for weakly triangulated
graphs is presented.

That the class of weakly triangulated graphs is closed under complementation yields par-
ticularly a perfect edge order for every weakly triangulated graph as studied by HAYWARD
in [27]. Clearly, that provides also perfect and co-perfect edge orders for triangulated
graphs and enables us in addition to establish that bipartite graphs G admit co-perfect
edge orders: either there are non-adjacent nodes a, b in different color classes of G and
G + ab is still bipartite, or G is as complete bipartite graph weakly triangulated.
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Nothing is known so far to the author about perfect or co-perfect edge orders in other
subclasses of perfect graphs. In contrast to results concerning the occurrence of critical
edges, where only local properties are used, we here need structural knowledge about the
subclass of perfect graphs under consideration. Only if the deletion or the addition of an
edge lets this special structure unchanged, we can ensure the existence of such perfect
orders for all graphs in this class.

All results with respect to the occurrence of perfect and co-perfect edge orders investi-
gated in this section are summarized in Appendix A.2.



Chapter 3

Critical and Anticritical Perfectness

This chapter is dedicated to the investigation of perfect graphs where we cannot delete
or add one edge without losing perfectness. Problem 0.3 asks for the existence of such
graphs: the answer is yes. Section 3.1 introduces perfect graphs such that the deletion
and addition of any edge yields an imperfect graph as critically and anticritically perfect
graphs, respectively. We study their properties in order to tackle Problem 0.4 whether
they admit a structure similarly interesting as that of minimally imperfect graphs. The
answer seems to be no: in contrast to minimally imperfect graphs, e.g., critically and
anticritically perfect graphs have no symmetry with respect to their maximum cliques
and stable sets. However, we establish some common forbidden substructures.

In view of Problem 0.5, in which classes of perfect graphs critically and anticritically per-
fect graphs appear, we first provide a large range of example graphs. In Section 3.2, graph
operations known to preserve perfectness are studied to figure out whether the classes of
critically and anticritically perfect graphs are closed under applying them. Section 3.3
characterizes critically and anticritically perfect line graphs, using the characterization
of critical and anticritical edges of line graphs in Section 2.3. It is natural to ask for a
constructive characterization of the classes of all critically or anticritically perfect graphs:
every critically or anticritically perfect graph is either a basic graph (e.g., a line graph or a
co-line graph) or can be decomposed into smaller critically or anticritically perfect graphs
using the operations investigated in Section 3.2. The attempt to give such a characteri-
zation failed: there are critically perfect graphs constructed by taking non-critical graphs
as a starting point. However, no critically and anticritically perfect graphs are known so
far created without using one of the techniques presented in Section 3.2 and 3.3.

Moreover, we establish in Section 3.4 that critically and anticritically perfect graphs do not
admit any perfect forbidden subgraph. Consequently, neither critically nor anticritically
perfect graphs can be characterized by forbidden subgraphs, and the classes of critically
and anticritically perfect graphs are incomparable to all classes of perfect graphs having a
perfect forbidden subgraph. Hence, investigating Problem 0.5, in which classes of perfect
graphs critically and anticritically perfect graphs occur, mainly means to consider the
intersections of the corresponding classes. (Note that we study, besides some ”classical”
classes of perfect graphs, only those which seem to be quite large.) This is done in
Section 3.4 using results obtained in the Sections 2.3 and 2.4.

29
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3.1 Definitions and Properties

We define a graph to be critically perfect if it is perfect and has only critical edges
but, for convenience, no isolated node. Let C-PERF stand for the class of all critically
perfect graphs. Analogously, we call G anticritically perfect if it is a perfect graph
where the addition of an arbitrary edge e ¢ E(G) yields an imperfect graph, and no node
of GG is universal. The class of anticritically perfect graphs is denoted by A-PERF in the
sequel. Clearly, a graph G belongs to A-PERF iff G € C-PERF. As we will see later in
this chapter, critically and anticritically perfect graphs are not rare, taking the “strange”
requirements to be satisfied into account. A computer search of HOUGARDY [33] provides
a description of small critically perfect graphs.

Lemma 3.1 (HOUGARDY [33]) There are no critically perfect graphs with fewer than 9
nodes. Precisely 8 and 10 critically perfect graphs on 9 and 10 nodes, respectively, exist.

Clearly, Lemma 3.1 remains true if “critically perfect” is replaced by “anticritically per-
fect”. Figure 3.1 shows the three critically perfect graphs on nine nodes. The first graph
is self-complementary and, therefore, also anticritical. The other two graphs are not anti-
critical, but their complements are. Every of the critically perfect graphs with ten nodes
contains one of the three smallest examples as subgraph; how to add the corresponding
nodes is described in Section 3.3. These ten critically perfect graphs are not anticritical
(but, of course, their complements are).

Figure 3.1

Especially, we have obtained A-PERF N C-PERF # 0 but A-PERF # C-PERF.
Even the strong requirement that the deletion as well as the addition of an arbitrary
edge yields an imperfect graph is satisfied by many graphs. Figure 3.2 shows only a few
graphs belonging to A-PERF N C-PERF. Note that the graphs in the first and third
row are the complements of the graphs contained in the second and fourth row, respec-
tively; moreover, all graphs in the first column are isomorphic to the first graph shown
in Figure 3.1. Many further examples of critically and anticritically perfect graphs are
presented later in this chapter.

Turning to Problem 0.4 whether critically and anticritically perfect graphs admit a struc-
ture similarly interesting as that of minimally imperfect graphs, we study properties of
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Figure 3.2: Examples for graphs which are critically and anticritically perfect.
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a graph caused by its critical and anticritical perfectness. We first observe that, in con-
trast to Theorem 1.2, critically and anticritically perfect graphs have no symmetry with
respect to their maximum cliques and stable sets: while every node of the first graph in
Figure 3.1 occurs in the same number of maximum cliques and stable sets, three nodes
of the third graph in Figure 3.1 are not contained in any maximum stable set. However,
critically and anticritically perfect graphs share some forbidden structures with minimally
imperfect graphs which are immediate consequences from the results given in Section 2.1
and Section 2.2. Furthermore, the connectivity, the minimum as well as the maximum
degree are considered.

Lemma 3.2 Let G be a critically perfect graph, then the following conditions are satisfied.
(i) G has no true twins, true antitwins, a weak comparable pair, or a weak odd pair.

(ii) G contains no simplicial node, i.e, every node of G belongs to at least two mazimal
cliques. There is no node v in G such that N(v) —v' is a clique for one v' € N(v).

(iii) All edges of G occur in a triangle and in an even hole.
(iv) Ewvery block of G is critically perfect.

(v) G has minimum degree 6(G) > 4 and mazimum degree A(G) < n — 3.

Proof. Consider a graph G € C-PERF and let denote n = |V(G)|. Then (i) follows by
Lemma 2.2 and G does not admit any simplicial node. Thus every node of G must belong
to two maximal cliques of G. Condition (iii) is a consequence of Lemma 2.3. To prove
the remaining assertion of (ii), suppose that N(v) — ¢ is a clique for a node v of G and
v" € N(v). Then every common neighbor of v and ¢, existing by (iii), would dominate v
in contradiction to (i).

In order to show (iv), assume in contrary that G admits a critical edge e such that
G.N B; # 0 holds for 7 = 1,2 where G, —e C G — e is minimally imperfect and B;, B, are
blocks of G. Then G, would be at most 1-connected in contradiction to G, — e at least
2-connected. Hence for all critical edges e of G, G, C B; must hold for one block B;, i.e.,
B; itself is critically perfect.

Now, let us come to the minimum degree §(G) > 4. Edges incident to nodes with
degree < 3 are not critical according to (iii). Assume that there is z € V(G) with
N(z) = {x1,z9,23}. Condition (iii) implies that the edge xzz; belongs to a triangle.
Without loss of generality, let z;2o be an edge, then N(z) — {z3} would be a clique in
contradiction to (ii). Finally, turn to the bound for the maximum degree A(G) < n — 3.
A node of degree n — 1 would dominate all other nodes in contradiction to (i). Consider
u € V(G) with d(u) =n — 2 and w € N(u). Since vw € E,v € N(u) would imply that
u dominates v, we have N(u) = N(w). Let e be an edge incident to u and G, — e a
corresponding minimally imperfect subgraph. Then w ¢ G, — e holds (otherwise w would
dominate v in G — €), and u is contained in exactly one stable set of size two in G, — e,
again a contradiction to [50], and condition (v) is satisfied. O
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Lemma 3.3 FEvery anticritically perfect graph G fulfills the following conditions.

(i) G does not admit false twins, false antitwins, a strict comparable pair, a strict odd
pair, or a 2-pair.

(ii) G has no antisimplicial node, i.e., every node of G belongs to two mazimal stable
sets. There is no node v in G so that Ng(v) — v’ is a stable set for one v' € Ng(v).

(iii) Ewvery two non-adjacent nodes occur in a stable set of size 8 and in an even antihole.
(iv) G is 2-connected.

(v) G has minimum degree 6(G) > 2 and mazimum degree A(G) < n — 5.

Proof. Consider a graph G € A-PERF'. Then (i), (ii), (iii), and (v) follows by Lemma 2.5
and 3.2. We only have to show the 2-connectivity of G. If G is disconnected, no edge e
linking two nodes in different components of G can be anticritical, since every subgraph
of G 4 e containing both endnodes of e is at most 1-connected. Now assume G to be
1-connected and z € B;,y € By to be neighbors of the cutnode ¢ belonging to two blocks
B, and B; of G. Then every subgraph of G+ zy containing x and y has one of the sets
{z,y} or {c,z,y} as clique-cutset or one of the nodes x or y as simplicial node. Thus
G + zxy is perfect and zy not an anticritical edge of G. O

Remark. The two previous lemmas provide some necessary conditions for a graph to
belong to C-PERF or A-PERF'. In particular, that every two adjacent and non-adjacent
nodes must admit a common neighbor and non-neighbor in critically and anticritically
perfect graphs, respectively, is easy to check. The same is true for the occurrence of twins,
comparable pairs, and for the bounds of the minimum and maximum degree.

Let us investigate further parameters of graphs in C-PERF and A-PERF'. The following
lemma gives bounds of the stability number in critically perfect graphs (hence also for
the clique covering number by [42]). Clearly, this implies bounds for the clique number
and the chromatic number of graphs in A-PERF.

Lemma 3.4 Every critically perfect graph G fulfills 3 < a(G) < |V(G)| — 6.

Proof. Consider a critically perfect graph G = (V, E) and let |V| = n. In order to prove
3 < a(@G), assume in contrary w(G) < 2 for the anticritically perfect graph G. Then G
must be bipartite, let A and B denote its color classes. If there are non-adjacent nodes
a € A,b € B the graph G + ab is still bipartite. Consequently, G is a complete bipartite
graph. But now, every two nodes in the same color class form a 2-pair (see also the
co-perfect edge order for bipartite graphs given in Section 2.4). Hence, we have either a
contradiction to Lemma 2.5 or to Lemma 3.1 and infer 3 < a(G).

In order to show a(G) < n—6, consider a maximum stable set S of G. By §(G) > 4 follows
|S| < n— 4 immediately. If |S| = n—4, we have N(w) =V — S = {v1,v3,v3,v4} Yw € S.
Due to Lemma 3.2.(iii), w € S and v; have to admit a common neighbor in V' — S, say
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v9. Since vy, vo must neither form true twins nor a comparable pair by Lemma 3.2.(i), we
obtain vyvs3, v9v4 € E but vivy, vovs € E. Furthermore, vsvy € E follows, since otherwise
v; and vy would dominate vz and vy, respectively. Hence, G[V — S] = C4 holds and it is
straightforward to check by Lemma 3.2.(iii) that none of the edges in G[V — 5] is critical.
Now assume |S| =n—>5and let V-5 = {vq,...,v5}, S = {ws,...,w,}. Consider a node
v; € V —S. We obtain dy_g(v;) < 4, because v; must not dominate its neighbors in S by
Lemma 3.2.(i) (note: v; has at least one neighbor in S since S is maximal in particular).
Moreover, dy_g(v;) > 1 holds, otherwise there is at least one edge incident to v; which
is not contained in a triangle or the only neighbor of v; in V — S dominates v; in con-
tradiction to Lemma 3.2. Thus G[V —S] is isomorphic to one of the following three graphs.

(2
@ (3
& V@

Let Ny_g(vs) = {v1,v3} and Ny_g(v3) = {ve, v4,vs} using a suitable numbering of the
nodes in V — S. The edge vyvs is not contained in a triangle in G[V — S|, hence vyv;
is H-critical due to Lemma 2.1.(i), v, and vs possess a common neighbor wg € S, and
we have to look for an even hole C' with Ng(wg) = {ve,v3}. If Neg(va) = {v1,vs},
then N(ws) = {wvy,vs,v4,vs5} follows, hence v3 would dominate wg in contradiction to
Lemma 3.2.(i). Thus, we get N¢(v2) = {vs, w7} and N(w;) = {v1,ve,v4,v5}. Then C has
the nodes vy, wr, v4, v3 where vy € N(v1) holds (for vy & N(v1), the nodes vy, wr, vy, v3, we
induce a Cs in the first graph shown above). Now consider the edge vswg. It is H-critical
by Lemma 2.1.(i) since v3ws is not contained in any K,. The only neighbor of wg not
adjacent to vs is the node vy, and Lemma 3.2.(iii) yields an even hole through vswg that
contains v;. Thus, there is a common neighbor of v3 and wg not linked to v; by an
edge. Hence vvs ¢ E follows and G[V — S| is the first graph shown above. But the nodes
1, U3, Wy, We, Vg, Vo, Us induce a C7 in G. This final contradiction provides a(G) < n—>5. O

The next lemma is concerned to bounds of the clique number of critically perfect graphs.
Clearly, these results give also bounds for the chromatic number and, furthermore, can
easily be translated for the stability number and the clique covering number of anticriti-
cally perfect graphs.

Lemma 3.5 Critically perfect graphs G satisfy 3 < w(G) < |V(G)| — 5.

Proof. Consider a critically perfect graph G = (V, E) and let |V| = n. The lower bound
for the clique number is an immediate consequence of Lemma 3.2.(iii). Turning to the
upper bound for the clique number, let () denote a maximum clique of G. A(G) <n—3
implies |@Q| < n — 2 (see Lemma 3.2.(v)). For |Q| = n — 2, all nodes of @) are simplicial
in contradiction to Lemma 3.2.(ii). In the case |Q| = n — 3, every node w € @ is either
simplicial or has a neighbor v € N(w) — @ such that N(w) — v is a clique, again a con-
tradiction to Lemma 3.2.(ii). Hence assume |Q| =n — 4, let V — Q = {1, v, v3,v4}, and



3.2. OPERATIONS PRESERVING CRITICAL PERFECTNESS 35

consider a node w € Q. Due to Lemma 3.2.(ii), dy_g(w) > 1 follows and, together with
A(G) < n— 3, we obtain dy_g(w) = 2 Vw € Q. Furthermore, two nodes w,w’ € ) with
Ny_g(w) = Ny_g(w') are true twins of G in contradiction to Lemma 3.2.(i). Denote
w;; € Q for Ny_g(wi;) = {vi,v,}, then |Q| < 6 follows by |V — Q| = 4 particularly. Every
edge w;;w; has to be critical, hence it is contained in an even hole C' by Lemma 3.2.(iii).
Obviously, C N Q = {w;j, wi;} holds. Since both nodes w;; and w;; admit only one com-
mon non-neighbor C' = w;;v;vyw;, follows. Especially, we get vjv, € E from every edge
wiwir, € E(Q). Hence, |Q| > 5 due to Lemma 3.1 yields G[V — Q] = K, and G is,
therefore, the complement of a bipartite graph. Obviously, G — v;w;; is still co-bipartite
Vv; € V — @ and Yw;; € Q. The contradiction to G critically perfect finally implies
w(@)<n—4. 0

Note that the bounds for all the graph parameters presented throughout this section are
best possible as is shown by the three graphs in Figure 3.1. All results concerned to the
forbidden substructures and graph parameters of graphs in C-PERF or A-PERF are
summarized in Appendix A.2.

3.2 Operations Preserving Critical Perfectness

A graph operation transforms graphs G4, ...,G; into a new graph G. If an operation
transfers a common property P of G, ..., G; to G, this operation preserves the property
P and the class of all graphs admitting P is closed under this operation. In order to
find graph operations the classes C-PERF and A-PERF of critically and anticritically
perfect graphs, respectively, are closed under applying them, we check known perfect-
ness preserving operations. Since we know A-PERF # (C-PERF from the previous
section, complementation neither preserves critical nor anticritical perfectness. So let us
concentrate on those perfectness preserving operations that take two graphs G; and Gs
as arguments. To describe a basic relation between operations preserving critical and
anticritical perfectness, let us define the operation * with

G1¥ GQZG_l*G_Q

to be the antioperation of the graph operation * (note Gi¥ Gy =G %Gy and ¥ = *).
We observe the following relation between a graph operation and its antioperation.

Proposition 3.6 A graph operation preserves critical perfectness iff its antioperation pre-
serves anticritical perfectness.

Proof. Consider two critically perfect graphs GG, G,. If the graph operation * preserves
critical perfectness G1, G2, G1 * G5 € A-PERF follows. Since the definition of ¥ implies
G *Gy = G1 * Gy, so * preserves anticritical perfectness. Conversely, let A-PERF be
closed under applying *. Then G;* G5 is anticritically perfect, hence G| * Gy € A-PERF.
Thus G * G5 is critically perfect, i.e., x preserves critical perfectness. O
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As first example, consider the disjoint union of two graphs G; = (V4, E;) and Gy =
(Va, Ey). The arising graph G = (V, E) with V. = V; UV}, E = E, U E, is obviously
critically perfect iff G; and G, are. The complementary graph G has the edge set

{zy:z,y e Vi,oy & E1}U{zy:x,y € Vo,ay & Ex} U{xy 1z € Vi,y € W}

The antioperation of the disjoint union is the complete join preserving anticritical per-
fectness by Proposition 3.6. To figure out whether it also preserves critical perfectness can
be done by checking whether A-PERF is closed under applying the disjoint union. Since
anticritically perfect graphs have to be 2-connected following Lemma 3.3.(iv), the disjoint
union neither preserves anticritical perfectness, nor the complete join critical perfectness
by Proposition 3.6.

The next graph operation under consideration is the substitution, introduced in [42].
Let v be a node of a graph G; = (Vi, Ey) (see Figure 3.3(a)), then substituting v by
another graph Gy = (V4, Ey) means to delete v and to join every node of Ng, (v) to every
node of Go. The arising graph G has node set V] UV, with V] = V] — {v} and edge set

{zy:z,ye V] ,zy € BE1} U{ay: z,y € Vo,zy € By} U{ay: x € Ng,(v),y € Va}
(see Figure 3.3(b)). Investigating G, we point out that
{ey 2,y e Vi,oy € E\} U{zy -2,y € Vo,zy € By} U{zy : 2 € Ng, (v),y € Va}

is the edge set of G. Hence, G is generated by substituting v in G; by G, i.e., the
substitution equals its antioperation (the substitution is the only graph operation known
to the author with this property). Turning to the investigation of critical edges in G, first
note that G[V,] =2 G2 and G[V] U {u}| =2 G, holds Yu € V,. Every subgraph G, with
GG, — e minimally imperfect is, consequently, contained in G for every critical edge e of G;
for one i € {1,2}. The following lemma states that a graph G obtained by substitution
cannot admit any critical edge not inherited from one of the original graphs.

e

! A
; @ ¥ (b) v

Figure 3.3

Lemma 3.7 Let G be perfect and the graph generated from G1 = (Vi, E1) by substituting
a node v € Vi by Gy = (Va, Es). If e € E(QG) is a critical edge and G, C G a subgraph
such that G, —e is minimally imperfect, then either G, C G[V]U{u}] holds for one u € V3
or G, C G[Va] with V! = Vi — {v}.
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Proof. Consider the perfect graph G generated from G, by substituting a node v € V(G1)
by another graph Go, and let V! = V(G;) — {v}, Vo = V(G;). If e is intended to be a
critical edge of GG, there is a subgraph G, C G such that G, — e is minimally imperfect.
In order to show the assertion of this lemma, assume in contrary V(G.) NV} # 0 and
u,u’ € (V(Ge) N'V). Then V(G.) N Ng, (v) # 0 holds, since otherwise G — e cannot
be 2-connected (note: G, — e is even disconnected if both endnodes of e are contained in
Ng, (v) or none of them) and, therefore, neither G, — e nor G, — e is minimally imperfect.
But now, G, — e contains a star-cutset C' in contradiction to CHVATAL’s Star-Cutset
Lemma [10]: if u is not an endnode of e, then C' consists of {u} U (Ng,(v) N V(G.)),
otherwise we have C' = {u'} U (Ng,(v) NV (G,)). O

With the help of the above lemma, the following theorem yields a characterization when
a graph obtained by substitution is critically perfect.

Theorem 3.8 Let G; and Gy be disjoint graphs and v € V(G1). The graph obtained
from G by substituting v by G is critically perfect iff one of the following conditions is
satisfied.

(i) Gy is critically perfect, Go is perfect and admits only critical edges.

(ii) G1 — v and Gy are critically perfect, and Ng,(v) = 0 holds.

Proof. Consider G; = (V1, E1), the graph G generated from G; by substituting one of
its nodes v by another graph Gy = (V4, E5), and let V/ = V; — {v}.

(If ) G is perfect due to LovAsz’s Replacement Lemma [42], since G; and G5 are perfect
in both cases. Thus, we have to show that G has only critical edges but no isolated node,
if (i) or (ii) is satisfied. Let condition (i) be fulfilled, then G' does not admit any isolated
node, since GG; does not have one. The existence of subgraphs G, C G such that G, — e
is minimally imperfect can be inherited from G; and G for every edge e = zy of G: if
xz € V/, then G, C G[V{ U {u}| holds either for an arbitrary node u € V, (if y € V/) or
for u = y otherwise, while G, C G[V3] follows from z,y € V5. The case that G; and G
satisfy (ii) is trivial since G is the disjoint union of the critically perfect graphs Gy — v
and GQ. &

(Only if ) We show that G' cannot be critically perfect if both conditions (i) and (ii) fail.
First, if one of the graphs G; and G, is imperfect, G is imperfect since G; C G holds
for ¢ = 1,2. Hence, assume G; and G4 to be perfect. In the case that v is an isolated
node of Gy, condition (i) is violated. The assertion follows since G is the disjoint union
of Gy — v and G,. If G; does not admit any isolated node, condition (ii) fails. Since (i)
is also supposed to be violated, there must be a non-critical edge e = xy in G; or Gy. If
e is intended to be a critical edge of GG, we have to look for a subgraph G, C G such that
G¢ — e is minimally imperfect and G, ¢ G; holds for + = 1,2. But we can conclude by
Lemma 3.7 that there is no such subgraph G.. Hence, one of the conditions (i) and (ii) is
necessary for G to be critically perfect. O
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Consequently, substitution preserves critical perfectness. Moreover, it also preserves anti-
critical perfectness by Proposition 3.6, since the substitution is its own antioperation.

Remark. Theorem 3.8 is stronger than the result that C-PERF is closed under applying
substitution, since condition (i) in Theorem 3.8 is a relaxation of G;,Gy, € C-PERF. To
satisfy condition (i), the graph G5 can even be a stable set. In other words, condition (i)
of Theorem 3.8 states particularly that the multiplication, introduced in [42], preserves
critical perfectness. The antioperation of the multiplication is the special case that v in
(i, is substituted by a clique G5. Hence, both conditions (i) and (ii) are violated, so the
multiplication cannot preserve anticritical perfectness.

Now, we turn to the composition introduced by BixBY in [6]. Consider two disjoint
graphs G = (W4, Ey), G2 = (Va, E») and two nodes v; € Vi, vy € V5 (see Figure 3.4(a)).
Then composing G; and G5 in v; and vy means to remove vy,v, and to add an edge
between every node of Ng, (v1) and of Ng,(v2). The arising graph G = (V, E) has node
set V =V U V] with V/ =V; — {v;} for i = 1,2 (see Figure 3.4(b)) and edge set

E={zy:z,yeV/ zye E;,i=1,2}U{zy:x € Ng,(v1),y € Ng,(v2)}

P

Figure 3.4

Considering G, we immediately see that the composition cannot equal its antioperation.
Thus, we have to ask separately whether composition and anticomposition preserve critical
perfectness. Investigating critical edges in a graph G generated by composition, first note
that G[V] U{us}] = G; holds Vu, € Ng,(ve) and G[VyU{u1}] = Gy Yu; € Ng, (v1). Every
subgraph G, with G, — e minimally imperfect is, in analogy to the substitution, contained
in G for every critical edge e of G; for one i € {1,2}. The following lemma is concerned
to this relation of critical edges in G and G; for i =1, 2.

Lemma 3.9 Let G be a perfect graph generated from disjoint graphs G1 = (Vi, E1) and
Gy = (Va, Ey) by composition with respect to v; € V; and let V! = V; — {v;} fori € {1,2}.
If e € E(G) is a critical edge and G, C G such that G, — e is minimally imperfect, then
Ge C G[V]U{us}] holds for one uy € Ng,(vs) or Ge C G[VyU{u1}] for one uy € Ng, (v1).

Remark. If e € E(G) is a critical edge joining Ng, (v1) and Ng,(vs), there may be graphs
Ge C G[V/ U{us}] for uy € Ng,(v2) and G, C G[V4 U{uy}] for uy € Ng, (v1), while either
G. C GIV/ U{us}] or G, C G[V] U {u1}] must hold for all other critical edges e of G.
Thus, G' cannot admit any critical edge not inherited from the original graphs G; and Gos.
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Proof. Suppose G to be the graph composed from perfect graphs G; and G, in two
nodes v; € V(G;) and v, € V(G;) and denote V] = V(G;) — {v;} for i = 1,2. Let
e = xy be a critical edge of G and G, C G a subgraph such that G, — e is minimally
imperfect. In order to show the assertion of this lemma, assume in contrary G, ¢ G; for
i =1,2. In the case G. N Ng, (v;) =0 for i = 1 and i = 2, G, is disconnected by G, ¢ G;
for i = 1,2. Hence GG, — e cannot be 2-connected and, therefore, G, — e not minimally
imperfect. Without loss of generality, let w; € G, N Ng, (v1). Since G, is disconnected
by G, ¢ G; if G, N Ng,(vy) = 0, there is a node uy € G, N Ng,(v2). Furthermore,
GV U{up}] & Gy but Ge ¢ G; provides the existence of a node wy € G, NV, with
wy # ug. Now, C' = {us} U (G, N Ng,(v1)) is a star-cutset of G, separating w; from ws.
If Ge N Ng,(v1) C Ng,_e(u2), then C is also a star-cutset of G, — e separating w; and
wy in contradiction to CHVATAL’s Star-Cutset Lemma [10]. Thus, we conclude uy = =
and y € Ng,(v1). In the case G. N Ng,(v2) = {uy}, C is still a star-cutset of G, — e,
hence there is a node ul, € G, N Ng,(v2) with ul), # uy. But now, {ub} U (G, N Ng, (v1))
is a star-cutset of G, — e separating w; from us, yielding the final contradiction to [10].
Therefore, G, C G; or G, C Gy must hold for every critical edge e of G. O

With help of the above lemma, the following theorem implies a characterization when a
graph obtained by composition is critically perfect.

Theorem 3.10 Let G and Gy be disjoint graphs and v; € V(G;) for i =1,2. The graph
G obtained from G1 and G by composition in v and vy s critically perfect iff one of the
following conditions s satisfied.

(i) G1 and Gy are perfect graphs without isolated nodes, every edge vy of G with z,y €
V(G;) —{v;} is a critical edge of G; fori € {1,2}, while for every edge xy of G with
x € Ng,(v1), y € Ng,(v2) holds that xv, is a critical edge of G1 or vay of Gs.

(il) G; — v; s critically perfect for i = 1,2 and Ng,(vi) = 0 or Ng,(vs) = 0.

Proof. Consider Gy = (V4, E1), Go = (V, Es), the graph G generated from G; and G
by composing them in v; € Vi, vy € Vo, and let V! =V, — {v;} for i =1, 2.

(If ) G is perfect due to BIXBY [6], since G and G are perfect graphs in both cases.
Thus, we have to show that G has only critical edges but no isolated node, if (i) or (ii) is
satisfied. In the case that condition (i) is fulfilled, G does not admit any isolated node,
since neither Gy nor G has one. In order to show that every edge e = zy of G is critical,
we must find a subgraph G, C G with G, — e minimally imperfect for every e € E(G). If
z,y € V], then G, C G[V]UNg,(v2)], since e is a critical edge of G; and G[V/U{us}| = G,
holds Yuy € Ng,(v9). Analogously, e is critical for z,y € V;. Now, suppose z € V/ and
y € V3, then © € Ng,(v1) and y € Ng,(ve) holds particularly. If zv; is a critical edge
of Gy, then G, C G[V] U {y}] follows, since every node in Ng,(v2) replaces v; of Gy in
G. A symmetric argument yields G, C G[V5 U {z}] in the case that vey is a critical
edge of G2. On the other hand, if G; and G5 satisfy condition (ii), G is critically per-
fect since it is the disjoint union of the two critically perfect graphs G; —v; and Gy —v,. &
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(Only if ) We show that G' cannot be critically perfect if both conditions (i) and (ii) are
failed. First, if one of the graphs G'; and (G is imperfect, it is obvious that G is imperfect
since G; C G holds for ¢+ = 1,2. Hence, assume (G; and G5 to be perfect. If v; is an
isolated node of Gy or v, is an isolated node of Go, condition (i) is violated. G is the
disjoint union of G; — v; and G5 — w9, hence G cannot be critically perfect if one of the
graphs G; —v; and G — v is not. If neither G; nor G, admit any isolated node, condition
(ii) fails. Supposing that (i) is also violated, there is either a non-critical edge e = zy
with z,y € V/ in G; for one i € {1,2}, or there are two non-critical edges e; = zv; and
es = vy in G and (9, respectively. In both cases, the edge xy of G cannot be critical
since otherwise, a subgraph G, C G' with G5, — 2y minimally imperfect had to exist with
Gy ¢ G, for i = 1,2 in contradiction to Lemma 3.9. Hence, one of the conditions (i) and
(ii) is necessary for G to be critically perfect. O

As a consequence, since both conditions (i) and (ii) in Theorem 3.10 are relaxations of
G1,Gy € C-PERF, we can conclude that the composition preserves critical perfectness. In
order to figure out whether the composition also preserves anticritical perfectness, we first
establish for graphs G generated by composition which minimally imperfect subgraphs
occur in GG+ zy for non-adjacent nodes z, y of G. Then we state, with help of this lemma,
a theorem characterizing when a graph obtained by composition is anticritically perfect.

Lemma 3.11 Let G be a perfect graph obtained by composition of disjoint graphs G, =
(Vi, Ev) and Gy = (Va, Es) inwv; € Vi, VI = Vi —{v;} fori e {1,2}, e =2y & E(G) an
anticritical edge of G, and G, C G a subgraph such that G, + e is minimally imperfect.
Then G, is an even chordless (x,y)-path of length > 2 in G for x € Ng (v1) and y €
Ng,(v2). Otherwise, G, C G[V} U {uz}] holds for one us € Ng,(v2) or Ge C G[V5 U {u1}]
for one u; € Ng, (v1).

Proof. Assume G to be a perfect graph arising from disjoint graphs G; and G5 by
composition in v; € V(G1), v2 € V(G3) and write V] = V(G;) —{v;} for i = 1, 2. Suppose
e = zy ¢ FE(G) to be an anticritical edge and G, C G with G+ e minimally imperfect. In
order to prove the assertion of this lemma, let G.NV/ # () for i = 1,2. If GeN Ng, (v;) = 0
for one ¢ € {1,2}, then G, is disconnected and G, + e can never be 2-connected, hence
there is a node u; € G, N Ng,(v;) for i = 1,2. In the case G, N V] = {us}, G. C G holds
by G = G[V/ U {uy}| and, analogously, G, C G, for Ge N V) = {u;}. So we conclude
|G.NV/| >2fori=1,2and let u), € G. N (V4 — {uy}) particularly. Furthermore, G, is
disconnected if G, N Ng, (v;) = @ for i = 1,2 holds, hence let G. N Ng, (v1) # 0 without
loss of generality. Now, {us} U (Ge N Ng, (v1)) is a star-cutset of G, separating u}, from
every node in G, N Ng (v1). Since G, + e must not admit any star-cutset due to [10],
x € Ng (v1) and y € V5 — {ug} follows. Especially, we even have y € Ng (v2), otherwise
{y} U(GeN Ng, (v1)) is a star-cutset of G, + e separating x and u,. We are done if there is
an induced (z,y)-path P of even length in G, since P must have even length > 4, hence
P + e is an odd hole contained in G, 4+ e and P = GG, follows. Otherwise, x and y would
be a strict odd pair in G, and Lemma 2.5 yields the final contradiction. O

Theorem 3.12 Let the composition of two disjoint graphs Gi = (V1,E1) and Gy =
(Va, E3) in v; € V; for i = 1,2 generate the graph G, then G is anticritically perfect
iff one of the following conditions is satisfied.
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(i) G; is perfect but G; + xy imperfect Voy & E; for i = 1,2. One of the nodes v; does
not occur in an even pair of G, Ng,(v;) = V; —{v;} holds for at most one i € {1,2}
and, if v1 is universal in G, there is no universal node in Gy, and vice versa.

(il) G; — v; is anticritically perfect and v; is a universal node of G; fori=1,2.

Remark. The properties required in (i) and (ii) necessarily cause the connectivity of G,
and Go. If Ng,(v1) = Vi — {v1} holds for precisely one i € {1,2}, condition (i) means
that G5 has to be anticritically perfect, and vice versa.

Proof. Consider disjoint graphs Gy, Gy, the graph G = (V, E) generated from G; and
Gy by composing them in v; € V(G;), and let V) = V(G;) — {v;} for i =1, 2.

(If ) G is perfect by [6], since G; and G5 are perfect if one of the above conditions is ful-
filled. Thus, we have to show that G' + zy is imperfect for every of its non-edges xy ¢ E
but no universal node exists in G, if (i) or (ii) is satisfied. In the case that condition
(ii) is true, G simply corresponds to the complete join of G; — v; and Go — vo. Hence G
is anticritical since Gy — v; and Gy — vy are. Turning to the other case, let G; and Gs
fulfill condition (i) and Ng (v1) # 0. If vy is universal in Gy, then G, is anticritical and
G obtained by substituting v; in G; by G5 — vo. Thus, Theorem 3.8.(i) is satisfied by G
and Gy — vy, hence G critically perfect and G anticritically perfect. So we can assume
Ng,(v2) # 0 and get A(G) < [V| — 1, since no node in Ng (v;) is linked by an edge to
any node in Ng, (v2). In order to show that every edge e = zy ¢ FE is anticritical, we
must find a subgraph G, C G such that G, + e is minimally imperfect Ve ¢ E. We simply
can inherit G, from Gy or G in the cases that x,y € V; for one i € {1,2}, 2 € Ng, (v1)
and y € Ng,(v2), or £ € Ng,(v1) and y € Ng,(v2). Thus, we only have to find G, where
T € Ng, (v1) and y € Ng, (v2).

According to Lemma 3.11, we look for an even, chordless (z,y)-path in G. Assume in
contrary that all chordless (z,y)-paths in G have odd length. We investigate chord-
less (z,u;)-paths P,, with P,, N Ng,(v1) = {u1} and chordless (us,y)-paths P,, with
P,,NNg,(vg) = {us}. Then every chordless (z,y)-path P is of the form P,, U{ujus}UP,,
and, since every P is supposed to have odd length, all paths P,, and P,, must have the
same parity. If all these paths were even then x,v; and y, v, would be strict odd pairs of
G1 and G in contradiction to Lemma 2.5 since zv; and yvo are anticritical edges of G
and G, respectively. Otherwise, all these paths are odd, hence z,v,; and y, vy even pairs
of G; and G, respectively, in contradiction to (i). (Note that every chordless (x, v1)-path
and (y,vq)-path in G; has the form P, U {u;v;} with u; € Ng,(v;) for i =1 and i = 2,
respectively.) Therefore, at least one even, chordless (x, y)-path exists in G and has length
> 4, because z and y do not admit any common neighbor in G. Thus G + xy is also
imperfect for every two non-adjacent nodes z,y of G if condition (i) is true. <

(Only if ) We show that G' cannot be anticritically perfect if both conditions (i) and (ii)
are failed. Assume (G; and G5 to be perfect, since G is clearly imperfect if one of the
graphs G; and G is. Condition (i) is violated if Ng,(v;) = V; — {v;} holds for i = 1,2.
Then the arising graph G equals the complete join of G; —v; and G5 — v,, hence G cannot
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be anticritical if G — vy or G — v is not. Now assume Ng, (v1) # 0, ie., let (ii) fail. If
vy is universal in G, then G is the result of substituting v, in G; by G — vo. Accord-
ing to Theorem 3.8, G' can never be anticritical if G; is not or G5 admits non-adjacent
nodes x,y such that Gy + xy is still perfect. We finally have to investigate the case
Ng, (v1), Ng,(v2) # 0. Since no node in Ng (v1) is linked to any node in Ng, (v2) by an
edge, A(G) < |V|—1 holds and we must find non-adjacent nodes z,y € V such that G+zy
is still perfect. If a non-anticritical edge occurs in (G; or (G, this assertion follows from
Lemma 3.11. Hence, suppose z,v; and y, vy to be even pairs of G; and (5, respectively.
For every chordless (z,y)-path P in G follows P N Ng, (v;) = {u;} for i = 1,2. Plz,u]
and Plug,y] are chordless paths of odd length, since x, v; and y, vy are even pairs. Thus,
every chordless (z,y)-path P = Pz, u;] U {ujus} U Plug, y] has odd length, i.e., z and y
form a strict odd pair in G' and zy cannot be an anticritical edge of G due to Lemma 2.5
or Lemma 3.11. This proves G ¢ A-PERF if G and G fail both conditions (i) and (ii). O

Remark. The above characterization when a graph obtained by composition is anticriti-
cally perfect does not provide that A-PERF is closed under composition. Theorem 3.12.(i)
is not a relaxation of G1, Gy € A-PERF, since one of the nodes v, v, must not appear in
an even pair to insure that the graph obtained by composition with respect to v; and v,
is anticritical. This difficulty is caused by the fact that, in contrast to substitution and
composition, the anticomposition creates edges which are originally neither contained in
G1 nor in G. Figure 3.5 shows two anticritically perfect graphs G| and G5 (complements
of the third graph in Figure 3.1), which contain even pairs x,v; and y, vy, respectively
(the neighbors of v; and v, are emphasized by grey filled nodes). Indeed, the graph ob-
tained by composing them with respect to v; and v, admits the strict odd pair x, y and,
therefore, does not belong to A-PERF by Lemma 2.5.

G G,

@ (b)

Figure 3.5

It is noticeable that in the previous theorems, compositions reduces to substitution or
even to disjoint union in some special cases. So it seems natural to wonder whether
there is a graph operation generalizing all of them. CORNUEJOLS and CUNNINGHAM
introduced such a general operation ®;;, in [13]. Consider two disjoint graphs G, and
G, cliques Q; U Q; C G of size k + j with |Q;] = &, V(Q;) = {v},...,v}}, and denote
V(G;) =V (Q; U@ by V! for i = 1,2. Let every node v € V be adjacent to at most one
node in @} and, if vv} € E(G;) for one [ € {1,...,75}, let v be adjacent to all nodes in Q;
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for i = 1,2 (see Figure 3.6(a)). Then the graph G;®;,G> is obtained by identifying the
cliques @; and Q., joining every neighbor of v} in V] to every neighbor of v? in Vj, and
deleting @} and @), (see Figure 3.6(b)).

Ql QZ

Ny, (V)] D) (&) |Ny; (v)

v QA ¢ Vv
@ (b)

Figure 3.6

Obviously, ®gq is the disjoint union and ®;, the composition. ®; is a generalization of
the composition known as amalgam. BURLET and FONLUPT [8] introduced the amal-
gam and established that it preserves not only perfectness but even the property to be a
Meyniel graph. CORNUEJOLS and CUNNINGHAM [13] proved that the 2-amalgam &y
is perfectness preserving, while this property seems not to be true for ®;, with j > 2.
Actually, an example that ®3, can create an imperfect graph from two perfect graphs is
given in [13]. On the other hand, it is well-known that the clique-identification ®
preserves perfectness for every k£ > 1.

Of course, we are interested when C-PERF or A-PERF is closed under applying one
of the perfectness preserving ®;;-operations. The first step is to figure out if at all a
critically or anticritically perfect graph fulfills the conditions that enable applying @
to it. First, let us look at the situation in Gy and G5 described in the definition of ®j;
with respect to critical perfectness. @; U @} is a clique where every neighbor in V; of a
node in @)} has to be adjacent to every node in @, i.e., every node v € (); dominates
every node v} € Q). Thus vv} cannot be a critical edge due to Lemma 2.2, so ®;; can
be applied to graphs in C-PERF only for j = 0 or £k = 0. Hence, the amalgam ®; is
applicable to critically perfect graphs only in its special case @, the already investigated
composition. Similarly, a 2-amalgation ®4; of critically perfect graphs is possible if at
all for ¥ = 0. But then the nodes v!,v% € @ would not possess any common neighbor
and the edge connecting v! and v could never be critical by Lemma 2.3.(i). Thus, you
cannot apply any 2-amalgam to a graph in C-PERF. But ®j,-operations with j = 0,
i.e., identifications in k-cliques, are possible for critically perfect graphs.

Consider the graph G = G PG, created from G and G, by identification in k-cliques
Qi, let V! =V, — @, for i € {1,2}, and denote Q; C G just by (). In order to check when
G is in C-PERF, we first consider the critical edges in GG. Recall for that the convention
concerned to these graphs GG, which correspond to an H-critical edge e and yield an odd
hole G, — e. Here G, — e is isomorphic to Cyyq with node set {vy,...,vop 11}, where
e = v1Vy holds and vy, ..., vy, induce an even hole, but vy, vog, Vor+1 a triangle.
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Lemma 3.13 Let G = G1Pg Gy be a perfect graph, e = xy a critical edge of G, and
G. C G a subgraph such that G, — e is minimally imperfect. Then G, C G[V/ U Q] holds
fori € {1,2} or, in the case x,y € Q, G, has {v1,...,vo41} as node set, GeNQ = {z,y},
x = v and y = v holds; Gi[vy, ..., ve] s an even hole where vy, vox, Vogy1 induce a
triangle in Gy or vice versa.

Remark. If e is a critical edge of G which has one endnode in V/, then G, C G; follows,
since G, — e must not contain a clique-cutset. In the case =,y € @), all three possibilities
described in the lemma may occur simultaneously.

Proof. Consider a perfect graph G arising by identification of two disjoint graphs G; and
G in a clique @ and let V/ denote V(G;) — @ for i = 1,2. If e = xy is supposed to be a
critical edge of G, there must be a subgraph G, C G such that G, — e is minimally imper-
fect. In order to prove the assertion of this lemma, we can confine ourself to considering
the case Ge NV, # () for i = 1,2. G, cannot be disconnected, hence G, N Q # () holds and
G.NQ is a clique-cutset of G.. Since GG, — e must not possess any clique-cutset, we have
z,y € Q. Now, (G, —e)NQ is a star-cutset of G, — e if it contains more than two nodes,
thus (Ge —e) N Q = {z,y} follows due to [10]. Therefore, G, — e has the stable-cutset
{z,y} and is, consequently, an odd hole by TUCKER [60]. Taking into account that no
node in V] is linked by an edge to any node in Vj, the assertion follows immediately. O

With help of this lemma, we can easily characterize when a graph obtained by clique-
identification is critically perfect.

Theorem 3.14 Let G be the graph created by identifying two disjoint graphs G1 and G,
in a clique Q), then G is critically perfect iff one of the following conditions is satisfied.

(i) |Q| > 2 holds, Gy and Gy are perfect graphs without isolated nodes. For i = 1,2,
every edge of G; with one endnode in V(G;) — Q is critical in G;, while e = xy with
z,y € Q is critical in Gy, in G, or x and y are contained in an even hole in Gy
and have a common neighbor in V(Gs) — Q or vice versa.

(ii) |@| < 2 holds, Gy and Go are critically perfect.

Proof. Consider disjoint graphs Gy, Ga, the graph G = (V, E) generated from G; and
G by identification in a clique @, and let V/ =V (G;) — Q@ for i = 1, 2.

(If ) Since G and G+ are perfect graphs without isolated nodes in both cases, G is perfect
with minimum degree §(G) > 0. We have to check whether all edges e € E are critical,
i.e., whether there is G. C G such that G, — e is minimally imperfect. If |Q| < 2 and
G, G4 are critically perfect, this is obviously true. So let us consider an edge e = xy
in the case that condition (i) is satisfied. For z € V/, the edge e is critical in G;, hence
G. C G[V/ U Q)] for i = 1,2. Otherwise, e has both endnodes in ) and G, C G; holds for
one ¢ € {1,2} or e is H-critical in G by (i). <

(Only if ) We show that G' cannot be critically perfect if both conditions (i) and (ii) are
failed. G is imperfect and contains isolated nodes, if one of the graphs GG; and G5 is
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imperfect and has minimum degree 6(G;) = 0, respectively, since G[V/ U Q] = G; holds
for i = 1,2. Hence, let G; and G, be perfect graphs without isolated nodes. If |Q| < 2
holds, G is obviously not critically perfect if one of the graphs G; and Gy is not. So let
|@Q| > 2 but condition (i) fail. Either, there is a non-critical edge e = zy in G; with z € V
for one ¢ € {1,2}. Then e is not critical in G, since none of the subgraphs G, described
in Lemma 3.13 can occur by G, € G; and = ¢ Q). Otherwise, there is an edge e = zy
with both endnodes in (), which is neither critical in Gj, nor in Gy, nor x and y are
contained in an even hole in one of the graphs G; and G5 and have a common neighbor
in the other graph. Thus, e cannot be a critical edge of G due to Lemma 3.13 again and
we have shown that G is not critically perfect if both conditions (i) and (ii) are violated. O

As a consequence, since both conditions (i) and (ii) in Theorem 3.14 are relaxations of
G1,Gy € C-PERF, we have obtained that the clique-identification ®q, and its antioper-
ation preserve critical and anticritical perfectness, respectively.

Now, let us turn to the question whether A-PERF is closed under one of the operations
® ;. In contrary to the case of critically perfect graphs, no restrictions are known for ap-
plying ®;; to anticritically perfect graphs. We have already shown that A-PERF is not
closed under the disjoint union ®y; and the composition ®143. So it seems natural to expect
that the same is true for ®;, with £ > 0. Indeed, for every £ > 0 we can easily construct
anticritically perfect graphs G and G, such that G| ®.,G, ¢ A-PERF holds. Consider
two anticritically perfect graphs G; and G5 with even pairs x,v; and y, vy, respectively.
Duplicating v; and vy by k-cliques @); and @)y with £ > 0, respectively, i.e., substituting
v; in G; by a (k + 1)-clique @; U {v;} for i = 1 and ¢ = 2, yields G!|,G, € A-PERF
by Theorem 3.8 and Proposition 3.6. The amalgam ®; can be applied to G} and G
with respect to vy, @1 and vy, Q2. But in G| ®;GY, the nodes x and y form a strict odd
pair, hence zy cannot be an anticritical edge of G| ®1,G', by Lemma 2.5 and, therefore,
G ®1,Gy ¢ A-PERF follows.

Figure 3.7 shows two anticritically perfect graphs G| and GY, which are constructed from
the graphs GG; and G5 in Figure 3.5 by duplicating v; and v, by the nodes ¢; and gs,
respectively. Applying the amalgam ®; to G| and G, with respect to vi,¢ and v, go
yields the graph in Figure 3.7. G|®;,;G} admits the strict odd pair z,y and, therefore,
does not belong to A-PERF by Lemma 2.5.

We can neither prove that A-PERF is closed under applying ®o; nor present a counterex-
ample to this statement. So let us close our investigations concerned to ®;;-operations
with the clique-identification ®(,. In order to check when a graph G, created from G,
and G4 by identification in a k-clique @, is in A-PERF', we first consider the anticritical
edges in G.

Lemma 3.15 Let G = G1PoG2 be a perfect graph, Q its clique-cutset, V! =V (G;) — Q
fori € {1,2}, e = zy & E(G) an anticritical edge, and G, C G a subgraph such that
G, + e is minimally imperfect. Then either G, C G[V; U Q] holds for i € {1,2} or, if
zeV/ andy eV, G, is an induced (x,y)-path of even length > 4 in G.
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Figure 3.7

Proof. Consider a perfect graph G arising by identification of two disjoint graphs G
and G in a clique @ and let V/ denote V(G;) — @ for : = 1,2. Since e = zy is supposed
to be an anticritical edge of GG, there must be a subgraph G, C G such that G, + e is
minimally imperfect. In order to prove the assertion of this lemma, consider the case
GeNV! #( for i =1,2. G, cannot be disconnected, hence G, N Q # @ holds. For z € V/
and y € V(G;) for one i, we have G, N Q as clique-cutset of G + e. Hence assume z € V/
and y € Vj and denote Q, = N¢, (2) N Q, @y = Ng.(y) N Q. First, suppose there is a
node ¢ € ;. Then G, N V) = {z} follows, since otherwise {z} U (G. N Q) would be a
star-cutset with center g of G, + e in contradiction to [10]. But now, z is contained in at
most two maximal cliques {z} U@, and {z,y} U (Q, N Q) of G +e. Hence x appears in
at most two maximum cliques of G, + e and w(G. + €) = 2 follows by PADBERG [50] (see
Theorem 1.2). Finally, suppose @, = @), then x and y cannot admit any common neighbor
in G, +e. If there is an even, induced (z, y)-path P in G, it must have length > 4. Then
P+ e is an odd hole contained in and, therefore, isomorphic to G, +e. Otherwise, if z and
y are connected in G, only by odd induced paths, xy cannot be an anticritical edge due to
Lemma 2.5 in contradiction to the assumption. Thus G.+e is an odd hole in both cases. O

Now, for every k£ > 0 we can easily construct anticritically perfect graphs G and G,
such that G| @G ¢ A-PERF holds. Consider two anticritically perfect graphs G and
Go. Substituting two nodes v; and v, in G; and G5 by (k + 1)-cliques @1 U {z} and
Q> U {y}, respectively, yields G,G, € A-PERF by Theorem 3.8 and Proposition 3.6.
But in G| ®GY, the graph obtained by identifying G; in @);, the nodes x and y form a
2-pair, i.e., there is no induced path of even length > 4 connecting x € V(G;) — Q1 and
y € V(G2) — Q9. Hence zy cannot be an anticritical edge of G} ®o,GY by Lemma 3.15 and
G PG, ¢ A-PERF follows. Note that the identification of two anticritically perfect
graphs in cliques which are non-maximal with respect to both of them never yields a
graph in A-PERF due to the above Lemma 3.15. Especially, ®;; does never preserve
anticritical perfectness.

Let us finally investigate the stable set-identification ®5. Since the identification of
two graphs in one node is a clique-identification as well as a stable set identification, we
already know that the stable set-identification does not preserve anticritical perfectness.
Actually, the identification in stable sets of size > 2 may create odd holes, hence it is
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even not perfectness preserving in general, but CORNEIL and FONLUPT proved in [12] a
sufficient condition for that. Consider two disjoint perfect graphs G, G5 and stable sets
S C G; for 1 = 1,2. The graphs G; and G5 satisfy the strong chain condition on S,
introduced in [12], if G; is connected, for every pair of nodes v, v’ € S, there is an induced
path P C G; with PN S = {v,v'}, and all induced (v,v')-paths in G; have the same
parity for i = 1,2. (Note that all v,v" € S either form strict odd pairs or even pairs by
this definition.) Then the graph G = G1®sG4 generated from Gy and G, by identification
in S is perfect due to [12]. Although we know that A-PERF is not closed under stable
set-identification, let us start with a lemma concerned to anticritical edges in a perfect
graph generated by this operation.

Lemma 3.16 Let G, and G4 be disjoint perfect graphs, S C G; a stable set for i = 1,2
satisfying the strong chain condition, and denote V! = V(G;)—S. Consider G = G1P5G,,
an anticritical edge e = xy ¢ E(G), and G. C G a subgraph such that G, + e is minimally
imperfect. Then G. C G[V; U S| holds for one i € {1,2} or e is A-anticritical.

Proof. Consider the graph G obtained by identifying G; and G5 in a stable set S and
denote V! = V(G;) — S for i = 1,2. Since Gy and G; are supposed to fulfill the strong
chain condition on S, G is perfect. If e = zy ¢ F(G) is intended to be an anticritical
edge, there is a subgraph G, C G such that G+ e is minimally imperfect. We can confine
ourself to considering subgraphs G, with G, NV # 0 for i = 1,2 again and show that
G, + e must be an odd hole in every case.

If z € V! for one i € {1,2} and y € V}, then G, N S is a stable-cutset of G, + e separating
G, NV/ from G, N Vj, hence G, + e is an odd hole due to TUCKER [60]. For z € V/
and y € VJ, consider a maximum clique of G, + e containing x and y (such a clique
exists by Lemma 2.4.(iii)). If at all z and y possess common neighbors, they belong to S
and w(G.+e) < 3 follows. G.+e % C7 and TUCKER [59] imply that G, +e is an odd hole.

So let us finally turn to the case z,y € S. The nodes x and y would form a strict odd
pair of G in contradiction to Lemma 2.5, if all induced (z, y)-paths were odd. Thus, the
strong chain condition yields that all induced paths of G' connecting two nodes of S must
have even length. In particular, if G, contains an induced (x, y)-path of even length > 4,
G + e must be isomorphic to an odd hole. Hence suppose all induced (z,y)-paths to
have length 2. Furthermore, there is z € G, N (S — {xz,y}), because z and y would be a
clique-cutset of GG, + e otherwise. Now x, z and y, z are even pairs of GG.. Since G, + e
must not possess any even pair due to [46], there is an induced (z, z)-path P in G, which
neither admits y nor a node adjacent to y and, analogously, an induced (y, z)-path P’ in
G. which neither contains z nor one of its neighbors. If there were an edge connecting
P and P' in G., consider the first node v € P (seen from z) linked to a node in P’ and
let w be the first node in Npi(v) (seen from y). Then P[z,v] U {vw} U P'[w,y] is an
induced (z,y)-path in G, and we would yield a contradiction either since every induced
(z,y)-path in G, has length 2 or due to Ng,(y) N P = () and Ng, (x) N P' = (). Hence, no
edge between the induced paths P and P’ exists in G,. Consequently, PU {xy} U P’ is an
odd hole in G.+e and is, therefore, isomorphic to G.+e. lL.e., e is an A-anticritical edge. O
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According to the above lemma, a graph G = G1PsG, can be anticritically perfect only if
all of its anticritical edges zy with z € V/, y € V(G;) for one i € {1,2} are inherited from
G; and z, y are connected by an induced path of even length > 4 if x € V] and y € Vj
holds. For z,y € S and |S| > 3, zy is not required to be an anticritical edge of G; for one
i € {1,2}, since there is an induced (z,y)-path of even length > 4 in G running through
anode z € S — {z,y}, compound from an even (z, z)-path in G; and an even (y, z)-path
in G, existing due to the strong chain condition. (Note that z,y € S must not form a
strict odd pair if G is intended to be anticritically perfect due to Lemma 2.5.)

But this fact does not provide the opportunity to create an anticritically perfect graph G
by substituting nodes v; and v, in two anticritically perfect graphs G; and G5, respec-
tively, by stable sets S of the same size > 3 and identifying the arising graphs in these
stable sets. Then every edge added between two nodes in S is certainly anticritical, but
no edge zy with z € Ng, (v1) and y € Ng,(v2). More generally, there must not be nodes
r € G1 and y € (G, that are adjacent to all nodes in S if G = G1P5G, is intended to
be anticritically perfect. In this case, x and y were a 2-pair in GG, hence xy not an anti-
critical edge of G due to Lemma 2.5 or 3.16. Consider, e.g., the two anticritically perfect
graphs G; and G5 shown in Figure 3.5. The nodes z,v; and y, v, form even pairs in G
and G, respectively, and the strong chain condition is satisfied for {z,v;} and {y,v.},
respectively. But identifying G; and GG, in these even pairs does not yield an anticritically
perfect graph @G, since there are two nodes in G; and G5 which are adjacent to {z,v;}
and {y, vs}, respectively. Indeed, to insure that zy is an anticritical edge of G in the case
z € V) and y € Vj is the difficulty.

Now, let us turn to the relation of stable set-identification and critically perfect graphs.
We again provide a lemma concerned to critical edges in a graph generated by ®g.

Lemma 3.17 Let G = G, ®sG4 arise from disjoint perfect graphs G and Gy, S C G; be
a stable set for i = 1,2 satisfying the strong chain condition, e = xy a critical edge of G,
and G, C G such that G, — e is minimally imperfect. Then G, C G[V; U S| holds for one
i €{1,2} and V; =V (G;) — S or e is H-critical.

Proof. Consider the graph G obtained by identifying G; and G2 in a stable set S and
denote V; = V(G;) — S for i = 1,2. G is perfect if G; and G, fulfill the strong chain
condition on S. If e = zy € E(G) is intended to be a critical edge, there is a subgraph
G. C G such that G, — e is minimally imperfect. In order to prove the assertion of this
lemma, it suffices to consider the case G.NV/ # () for i = 1,2 since G[V; U S] = G; holds.
Ge N S is non-empty (otherwise G, is disconnected). Hence G, N S is a stable-cutset of
G, — e separating G, N V/ from G, NV and G, — e is an odd hole by TUCKER [60]. O

We see that an edge of G = G1Ps(G5 can be critical even it is not critical in Gy or G,. But
the effort to characterize all the cases creating critical edges in G' seems to be hopeless.
Too many possibilities for such subgraphs G, C G with G.NV; # (§ for i = 1,2 may
occur. Figure 3.8 lists only the cases for G, — e = C7 (here the grey ellipses mark G, N S
and the bold lines the critical edges e), while subgraphs G, — e isomorphic to odd holes
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Cs,11 appear in a much larger abundance for £ > 4. But we can, of course, insure that
identifying two critically perfect graphs in a stable set yields a critically perfect graph
if it is perfect at all. This is immediately seen since we can inherit the critical edges of
G195G, from G and Go (recall that every subgraph-identification does not create any

edge which is neither contained in G; nor in Gs).

Figure 3.8

Finally, two observations are worth noting. On the one hand, Lemma 3.7, 3.9, and 3.13
do not only enable us to characterize when a graph G obtained by the corresponding
graph operations substitution, composition, and clique-identification is critically perfect.
Moreover, Lemma 3.7, 3.9, 3.13, and 3.17 provide that all critical edges of G which are
not inherited from the underlying graphs GGy and G, are H-critical. To obtain analogous
results for anticritical edges is more difficult, because the corresponding antioperations
create edges which are originally neither contained in G; nor in G5. But Lemma 3.11, 3.15,
and 3.16 state similar facts. Hence, we can even insure that, except for amalgam and 2-
amalgam, none of the investigated graph operations creates any M-critical or M-anticritical
edge. In other words, if the graphs GG; and GG, are free of M-critical or M-anticritical edges,
so is the arising graph G x G5 if * stands for the substitution, composition, clique-, or

stable set-identification. Looking at the Strong Perfect Graph Conjecture [3], this result
is welcome.

On the other hand, Theorem 3.8, 3.10, 3.14, and Lemma 3.17 provide the opportunity
to create critically perfect graphs from graphs GG; and G that do not necessarily belong
to C-PERF. Most notably, the clique-identification enables us to construct critically
perfect graphs from graphs G, Gy ¢ C-PERF. Consider the graph shown in Figure 3.9
(it is the line graph of the bipartite graph shown in Figure 3.10 where the edges ac and
ad are added). The graph admits precisely one non-critical edge, emphasized by a bold
line in the picture. Taking two copies of this graph and identifying them in the endnodes
of their only non-critical edge, i.e., in the grey nodes, yields a critically perfect graph due
to Theorem 3.14. The resulting graph is even minimally critical perfect, since it does not
contain any critically perfect graph as proper subgraph.
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Figure 3.9

All results when C-PERF or A-PERF is closed under applying one of the operations
investigated in this section are summarized in Appendix A.2.

3.3 Critically and Anticritically Perfect Line Graphs

We start with the investigation of critically perfect line graphs. For this, recall the struc-
ture of H-pairs in the underlying graphs F' introduced on page 23 in Section 2.3, which
guarantees that edges of L(F) are critical. Two incident edges x and y are defined to be
an H-pair, if they are contained in a K3 with edges z,y,e;, and in an even cycle C,,
that admits only one endnode of the edge e, , (see Figure 2.2(a)). By Theorem 2.10, an
edge zy of L(F) is critical iff  and y form an H-pair in F. Hence, if L(F) is intended
to be critically perfect, every pair of incident edges in F' must form an H-pair. We call
graphs with this property H-graphs if they are connected and admit more than one edge.
Recall that every disconnected critically perfect graph only admits critically perfect com-
ponents (since it does not admit any isolated node by definition), i.e., it can be created
from connected critically perfect graphs by taking their disjoint union. Hence, it suffices
to consider connected graphs. The next theorem yields a characterization of critically
perfect line graphs.

Theorem 3.18 Let G be the line graph of F'. G is critically perfect if and only iof F' is a
bipartite H-graph.

Proof. (If) Let F be a bipartite H-graph, then its line graph G is perfect due to KONIG
[39]. Every edge of G is critical by Theorem 2.10, and G is connected since F is, thus G
is critically perfect. &

(Only if) Let G be critically perfect and the line graph of F. We know from the char-
acterization of critical edges in G by Theorem 2.10 that every two incident edges of F'
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form an H-pair, consequently, F' is an H-graph. Furthermore, F' is line-perfect since its
line graph G is perfect. Thus, in order to prove that F' is bipartite, we only have to show
that the occurrence of a triangle in F' violates its line-perfectness. Suppose F' to admit a
triangle with nodes a, b, c. Since F' is an H-graph, ab and ac form an H-pair, i.e., there is
an even cycle Cgp 4¢, running through them, and an edge egp4c With €gpac N Capoe = {a}-
We obtain |Copec| = 4, since Cypoc — a together with the edge bc would form an odd
cycle of length > 5, otherwise. Let a,b, c,d be the nodes of Cgpqc and egp o = ae with
e & {b,c,d}. Since ab, ae form an H-pair, too, they are contained in an even cycle Cip ge
and we get an odd cycle C' C F of length > 5 in any case: First, assuming ¢ &€ Cyp q¢, We
yield C from Cgp o, replacing the edge ab by ac and cb. Supposing ¢ € Cgp 4. in contrary,
then we have, as part of Cgp e, @ path P = a,e,...,c with b ¢ P. If P has odd length,
then C' consists of P and the edges ab and bc. In the case that P has even length > 2,
we obtain C from P and the edge ac between its endnodes. Otherwise, P = a,e,c and
C =a,e,c,d,bholds. Since the existence of an odd cycle in F' contradicts the perfectness
of G, we conclude that F' is bipartite. O

Finding examples of critically perfect line graphs means looking for bipartite H-graphs
according to the above theorem. In order to get familiar with the notion of H-graphs, we
investigate some properties and examples. Let F' = (AU B, E) be a bipartite H-graph
with color classes A, B and, without loss of generality, let |A| < |B| hold in the sequel.
Directly from the definition of H-graphs, 6(F) > 3 follows and, consequently, 3 < |A]|
and 3|B| < |E|. Furthermore, since F' is connected and a cycle runs through every two
of its incident edges, an H-graph must be 2-connected. Figure 3.10 shows a 3-regular, 2-
connected, bipartite graph. Since the node b appears on every cycle containing the other
two neighbors of a, it is not an H-graph. Thus, minimum degree > 3 and 2-connectivity
are necessary, but not sufficient for a bipartite graph to be an H-graph. A sufficient, but
not necessary condition is provided by the next lemma.

Figure 3.10

Lemma 3.19 FEvery 3-connected, bipartite graph is an H-graph.

Proof. Consider a 3-connected, bipartite graph F' = (AUB, E) and two arbitrary incident
edges aby, aby of F with a € A and by,by € B. We show that ab; and abs; form an H-pair
in F. Since F' is 3-connected, §(F') > 3 implies that there is a node b3 € N(a) — {b1, b2}
and F' — {a,bs} is still connected. In particular, b; and by are linked by a path P in
F —{a,b3}. Hence, we obtain Cyp, b, = P U{b2a,ab,} and egp, 4, = abs, i.e., ab; and aby
form an H-pair in F. O
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For example, every complete bipartite graph K, with 3 < a, b is 3-connected, hence an H-
graph by the previous lemma. On the other hand, every bipartite H-graph F' = (AUB, E)
with 3 = |A| has to be a complete bipartite graph, since every node in B must be adjacent
to all three nodes in A by 3 < §(F). Thus, we have obtained the following characterization
of bipartite H-graphs with only three nodes in one color class.

Lemma 3.20 Let ' = (AU B, E) be a bipartite graph, |A| = 3, and |B| =b > 3. Then
F is an H-graph iff it is isomorphic to Ksp.

Indeed, K33 is the smallest bipartite H-graph and the only one with |B| = 3. Its line
graph is the first of the three smallest critically perfect graphs on nine nodes shown in
Figure 3.1, the first column of Figure 3.2 contains four different representations of this
graph, too. Furthermore, the second smallest critically perfect line graph must admit 12
nodes, since |E| > 3|B| = 12 follows for every bipartite H-graph with |B| = 4, i.e., there
cannot be any critically perfect line graph on 10 or 11 nodes. The line graph of K34
admits 12 nodes and is shown as the middle graph in the first row of Figure 3.2.

In view of Lemma 3.20, we are mainly interested in non-complete, bipartite H-graphs with
|A| > 4 in the sequel. In order to find the smallest examples of such graphs, let us consider
graphs with |B| = 4,5. Every bipartite graph F' with |A| = |B| = 4 and 6(F') > 3 must
satisfy 3|B| = 12 < |E| < 16 = 4|B|. The only such graph with least number of edges is
the 3-regular graph H; in Figure 3.11. H; is an H-graph since it is 3-connected, its line
graph is the middle graph in the third row of Figure 3.2. For |A| = |B| = 4 and each
number of edges 13 < |E| < 16, there is precisely one bipartite graph, arising from H; by
adding a respective number of edges. These graphs are H-graphs in each case, because
they are 3-connected since H; is.

Ak
QPP

Figure 3.11: Examples of bipartite H-graphs.

Every bipartite graph with |B| = 5 and minimum degree 3 must admit at least 15 edges.
The line graph of K35 admits 15 nodes and is the last graph shown in the first row of
Figure 3.2. For |A| = 4, the graphs Hs and Hj in Figure 3.11 are the only graphs with
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minimal number of edges. Hs and Hj are H-graphs since they are 3-connected. Again,
all bipartite H-graphs with |A| = 4, |B| = 5, and |E| > 15 arise from H, and Hj by
successively adding of edges, until K, 5 is reached. For |A| = 5, there are two 3-regular,
3-connected graphs H,, Hs shown in Figure 3.11. The line graph of H, is presented as
last graph in the third row of Figure 3.2. With |E| = 16, we find two further H-graphs Hg
and H; which do not contain any H-graph as proper partial subgraph. All other bipartite
H-graphs with |A| = |B| = 5 arise from Hy,..., H; by successively adding edges. Note
that Hg is not 3-connected, but we show in the next lemma that the addition of an edge
keeping the graph bipartite preserves the property of being an H-graph in general.

Lemma 3.21 Let F = (AU B, E) be a bipartite H-graph and a € A, b € B non-adjacent,
then F' + ab is an H-graph.

Proof. Consider a non-complete, bipartite H-graph F' = (AUB, E) and two nodes a € A,
b € B with ab ¢ E. We show that ab,ab’ is an H-pair in F' + ab for an arbitrary node
b' € Np(a) (a symmetric argument applied to all neighbors of b in F yields then the asser-
tion of the lemma). If there is an a-free (b, b’)-path P in F' and a node " € Np(a)—b" with
V' & P, we are ready with Cyp vy = P U {0'a,ab} and eq oy = ab”. Otherwise, all nodes
of Np(a) — b belong to every a-free (b,b')-path in F', a contradiction to F' 2-connected
because F' cannot admit two open-disjoint (b, b')-paths in that case: one of the paths
contains the whole set Ng(a) —b' (note |[Np(a) —0'| > 2 by 6(F) > 3), but the other path
contains a and, therefore, also a neighbor of a in Ng(a) — 0. O

Thus, in order to find all bipartite H-graphs, it suffices to know these H-graphs F' such
that F'— e is not an H-graph Ve € E(F). Let us call H-graphs with this property critical.
H-graphs that do not possess another H-graph as proper partial subgraph must be critical.
Hence, the graphs Hi, ..., H; are examples of critical H-graphs. The first graph shown
in Figure 3.12 is a further graph with this property. Even all complete bipartite graphs
K3, with b > 3 are critical, since 6(K3, — e) = 2 holds Ve € E(Kjy), although we have
K3,3 C K3,b for b > 3.

Figure 3.12

It is immediately seen that every H-graph, all edges of which are incident to a node of
degree 3, is critical. Unfortunately, this condition is only sufficient, it does not provide a
characterization of critical H-graphs. For example, consider the 3-regular graph F' shown
in Figure 3.10 again. Add an arbitrary edge a'd’ to F', keeping the graph bipartite, where
a' and b’ appear in different components of F' — {a,b}. It is easy to check that the re-
sulting graph F’ is an H-graph, one graph constructed in this way is the second graph
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shown in Figure 3.12. Furthermore, F" is critical since 0(F' — e) = 2 holds Ve # d'b’, and
F'—d'b = F is known to be not an H-graph. Hence, F’ is a critical H-graph and has two
adjacent nodes of degree > 3, namely o' and b’. The third graph in Figure 3.12 is a critical
H-graph as well: it contains even two edges e, e’ with endnodes of degree > 3 (empha-
sized by bold lines in the picture). But removing e or e’ destroys the 2-connectivity, and
deleting an arbitrary edge distinct from e and €’ yields a node of degree two. Therefore,
non-critical H-graphs cannot be characterized as H-graphs admitting an edge, for which
both of its endnodes have degree > 3.

Now, let us turn to anticritically perfect line graphs. Analogously to the previous in-
vestigations of line graphs in C-PERF', we make use of the structure of A-pairs in the
underlying graphs F', introduced on page 23 in Section 2.3. Recall that two non-incident
edges z and y form an A-pair if they are the endedges of an odd path P,, with length
at least five (see Figure 2.2(c)). Theorem 2.11 shows that zy is an anticritical edge of
L(F) iff z,y form an A-pair in F. Hence, in order to describe anticritically perfect line
graphs, we are interested in these graphs F' where every pair of non-incident edges is an
A-pair. We call graphs F' with this property A-graphs if they are connected and admit
non-incident edges. Note that this definition excludes, besides the occurrence of isolated
nodes in F, only the cases F' = K3 and F' = K, for some £ > 1. The next theorem
yields a characterization of A-graphs whose line graphs are anticritically perfect.

Theorem 3.22 The line graph of a graph F is anticritically perfect if and only iof F' is a
bipartite A-graph.

Proof. (If) Let F be a bipartite A-graph, then its line graph G is perfect by KONiG [39].
Every edge e ¢ E(G) is anticritical by Theorem 2.11 and A(G) < |[V(G)| — 1 holds by
the definition of A-graphs, thus G is anticritically perfect. <

(Only if ) Let G be anticritically perfect and the line graph of F. We know from the
characterization of anticritical edges in G by Theorem 2.11 that every two non-incident
edges of F' form an A-pair, consequently, F'is an A-graph. Furthermore, F' is line-perfect
since its line graph G is perfect. Thus, in order to prove that F' is bipartite, we only have
to show that the occurrence of a triangle in F' violates its line-perfectness. Suppose F'
to contain a triangle with nodes a,b,c. There must be a further node d, adjacent to a
node of the triangle by the definition of A-graphs, let ¢ be adjacent to d. Then ab and
cd are non-incident edges of F, i.e., they have to be the endedges of an odd path Py .4
of length at least 5. We get an odd cycle C' C F' of length > 5 in any case: Without
loss of generality, let a be one endnode of Py cq. If Popca = a,0b,...,c,d holds, F' admits
the cycle C = Py cqa, c] U {ac}. Otherwise, i.e., in the case Py q = a,b,...,d, c, we
obtain C' = Py, q[b, c| U {bc}. The existence of an odd cycle in F' yields an odd hole in G
contradicting its perfectness, hence F' has to be a bipartite graph. O

According to the above theorem, complements of line graphs are obviously critically per-
fect if and only if the underlying graph is a bipartite A-graph. Hence we are only inter-
ested in analyzing bipartite A-graphs F' = (AUB, F)), analogously to the case of H-graphs.
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Without loss of generality, let |A| < |B| hold again. By the definition of A-graphs, F’
contains a pair of non-incident edges and an odd path of length > 5. Thus, we obtain
3 < |A| again. The smallest example of an A-graph is the graph A; = K33 shown in

Figure 3.13. Recall that Kj 3 is also the smallest H-graph and L(Kj33) = L(K33) holds.

Figure 3.13

Many H-graphs are A-graphs as well, e.g., all complete bipartite graphs with |A| > 3 and
the graphs in Figure 3.11. But the graphs in Figure 3.12 show the existence of H-graphs
which are not A-graphs. The non-incident edges, emphasized by bold lines in the picture,
do not form an A-pair. Actually, A-graphs occur in a larger abundance than H-graphs
since a graph has to satisfy weaker requirements to be an A-graph than to be an H-graph.
A-graphs have not necessarily minimum degree 3, see the A-graphs A, and Aj in Fig-
ure 3.13. Note that L(A;), L(As), and L(A3) shown in Figure 3.1 are the only critically
perfect graphs on nine nodes. Figure 3.14 contains five A-graphs with 10 edges, arising

from Ay, As, or Az by the addition of one edge and, in three cases, the addition of one node.

SAGINAINAR

Figure 3.14

These five graphs are the only simple, bipartite A-graphs with nine edges. Note that the
graph, generated from As by joining its nodes of degree 3 by an edge, is not an A-graph.
Hence, F'+ ab is not necessarily an A-graph for arbitrary non-adjacent nodes a € A,b € B
of F if F'is an A-graph. But it seems to be true that there is at least one non-edge in
every non-complete bipartite A-graph such that its addition yields a bipartite A-graph
again. Hence, it is also interesting to know critical A-graphs F' with the property that
F — e is not an A-graph anymore Ve € E(F). Obviously, the graphs A;, Ao, and Aj
are critical A-graphs, but the graphs shown in Figure 3.14 are not. Further examples of
critical A-graphs are presented in Figure 3.15; note that they are critical with respect to
deletion of an arbitrary edge although A, C As and A3 C Ay, Ag, Ag holds.
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Figure 3.15

But if, in contrast to the case of H-graphs, the addition of an arbitrary non-edge to an
A-graph F' does not necessarily yield an A-graph, a similar result is true for /' + ab if a
and b are adjacent. Then F' + ab is a bipartite multigraph, the parallel edges in F' + ab
correspond to true twins in L(F + ab). Thus, L(F + ab) arises from L(F") by substituting
its node ab by a K, and the next lemma is a consequence of Theorem 3.8.(1).

Lemma 3.23 Is F' a bipartite A-graph and ab € E(F), then F + ab is an A-graph.

There are five A-graphs, generated from A;, Ay, and A3 by duplicating one edge. The
complements of their line graphs are the remaining five critically perfect graphs on 10
nodes. Thus, all critically perfect graphs on at most 10 nodes are complements of line
graphs of bipartite A-graphs. Note that the addition of parallel edges to an H-graph F'
does not yield an H-graph again, since the corresponding nodes of L(F) are true twins,
hence the edge connecting them cannot be critical by Lemma 2.2. Since the line graphs
of bipartite multigraphs can be obtained by substitution as described above, we are only
interested in simple, bipartite A-graphs in the sequel.

The three A-graphs with minimum degree 1 in Figure 3.14 are examples that A-graphs
do not necessarily possess a further property which is required for H-graphs, namely the
2-connectivity. The following lemma yields a characterization of all A-graphs which are
not 2-connected.

Lemma 3.24 Let F' be a connected, bipartite graph, different from a star K. F is an
A-graph iff it satisfies the following three conditions.

(1) Ewery block of F is an A-graph or a single edge.
(2) At most one cutnode appears in every color class.

(3) Ifa € F is a cutnode and b € N(a), then there is no a; € N(b) —a such that {a,a;}
separates b from N(a) — b.
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Remark. A consequence of condition (3) is that no neighbor of any cutnode in F' can
have degree 2. Furthermore, no block of F' can consist of the edge connecting two cut-
nodes a € A, b € B of F since even {a} would separate b from N(a) — b in this case.
The non-incident edges bya, ba; with by € N(a) — b and a; € N(b) — a could never be an
A-pair by (3). Thus, a block of F' can be a single edge only if it is an endblock, and every
cutnode has degree > 3.

Proof. Suppose F' = (AUB, F) to be a connected, bipartite graph admitting non-incident
edges; let a,a; € A, and b,b; € B.

(If ) In order to show that F' is an A-graph if it fulfills the conditions (1), (2), and (3),
we prove the following two claims.

Claim 1. Let By, By are two blocks of F with By N By = {a}. Then every two non-
incident edges e; € By and ey € By form an A-pair.

Consider two blocks By, By of F' with BjN By = {a} and two non-incident edges a;b, € By,
asby € By. If both B; and B, were single edges, they would not admit any pair of non-
incident edges. Without loss of generality, let B, be different from a single edge and
assume a # ap. In By, there is an odd path P, = by, a1, ...,a of length > 1 (note: a # a;
does not hold necessarily). We have to find an even path P, =a, ..., by, ay of length > 4
in By. The existence of an odd, as-free (a, by)-path of length > 3 follows for ab, & E by
the 2-connectivity of By, and for ab, € E by condition (3). Thus, P, exists and we obtain
Pa1b1,a2b2 =P UP,.

Claim 2. Let By, By are two blocks of F with By By = (). Then every two edges e; € By
and ey € By form an A-pair.

If F' admits two blocks By, By with B; N By, = ), then two cutnodes a, b appear in F. By
condition (2), they are contained in different color classes, i.e., a € A and b € B hold. Let
a € By and b € B,. Moreover, there is a further block B; of F' with a,b € Bs. Now consider
two edges a1by € By, asby € By and find the corresponding path P, 4, 4,,. Since Bs # {ab}
holds as consequence of condition (3), there is an odd (a, b)-path Py C Bs of length > 3.
Furthermore, there are two odd paths P, = by,a1,...,a C By and P, =b,...,by, a9 C By
of length > 1, and we obtain P, j, 4op, = P1 U P3 U Ps.

If F does not possess any cutnode, it is an A-graph by condition (1). In the case that
F admits precisely one cutnode, the assertion follows by (1) and Claim 1. Otherwise,
precisely two cutnodes appear in F' by condition (2), and we deduce the assertion from
condition (1), Claim 1, and Claim 2. <

(Only if ) In order to show that (1), (2), and (3) are necessary for F' to be an A-graph,
we distinguish three cases, where F' is supposed to fail condition (i) in Case i.
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Case 1. Assume, F' admits a block B which is neither a single edge nor an A-graph. Then
B contains two non-incident edges e; and ey, not forming an A-pair in B. There is no
path of odd length > 5 with e; and e; as endedges in B and, therefore, in F.

Case 2. Suppose F' to contain two cutnodes aq,as € A. Consider components F; of F'—a;
with ao & Fy, F5 of F' — ay with a; € F3, and neighbors b; € F; of a; for i = 1,2. The
edges bia; and asby are non-incident, but not an A-pair since every path with b;a; and
asbs as endedges must possess the endnodes b; and bo, i.e., it must be even.

Case 3. Let there be a cutnode a € A, components Fi, Fy of F —a, by € Np,(a), and
a; € Np,(by) — a such that {a,a;} separates b; from N(a) — b;. Consider a neighbor
by, € F, of a. Then the non-incident edges bya, bia; do not form an A-pair: every path P
with endedges bya, bya; must start in by, thus every such path of odd length ends in a;.
But, by assumption, the only path P = byab;a; with this property has length 3. O

Thus, we have seen that two properties required for H-graphs, namely 2-connectivity and
minimum degree 3, are not needed for A-graphs. However, H-graphs and A-graphs share
some properties. The 3-connectivity is a common sufficient condition for a graph to be
an H-graph as well as an A-graph.

Lemma 3.25 FEvery 3-connected, bipartite graph is an A-graph.

Proof. Consider a 3-connected, bipartite graph F' = (AU B, E) and two non-incident
edges a1b; and agby of F' with a; € A, b; € B. We show that a,b; and asby form an A-pair
in F. Since F is 3-connected, there are open-disjoint, odd (a1, by)-paths Py, ..., P, with
k > 3. At most two paths among P, . .., P can contain as or by; without loss of generality,
let Ps, ..., P be ag, by-free. If there is a path P; with 3 < ¢ < k of length > 3, then b; P;as
is the studied path Py, 4,5, Otherwise, the only as, bi-free (a1, bg)-path is the edge a;b,,
we obtain k£ = 3 and let b; € P;, ay € P,. By the 3-connectivity of F' again, there must be
an a, by-free (ag, by)-path @ of odd length > 3 and we get Py p, 46, = b2Qa;. Otherwise,
if the edge ayb; were the only aq, bo-free (ag, by)-path, {a1,as} would be a cutset of size
two, separating the nodes of P; (by, bo) from Ps(ay, az) in contradiction to F' 3-connected. O

Consequences. We summarize the results established in this section. Due to Theo-
rem 3.18 and Theorem 3.22, respectively, we know that a graph L(F) is critically and
anticritically perfect if and only if F is a bipartite H-graph and A-graph. The reverse
results are true for complements of line graphs, here L(F) belongs to C-PERF and A-
PERF iff F is a bipartite A-graph and H-graph, resp. (a characterization of critically
perfect complements of line graphs independent of Theorem 3.22 can be found in [63]).
Moreover, L(F) is contained in A-PERF N C-PERF iff F is an H-graph as well as an
A-graph. This is satisfied at least for all 3-connected bipartite graphs due to Lemma 3.19
and Lemma 3.25. Especially, every line graph of a 3-connected bipartite graph is a single-
ton in the graph of perfect graphs, i.e., you cannot reach another perfect graph from such
a graph by adding or deleting one edge.
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Finally it is worth noting that all graphs in C-PERF and A-PERF known to the author
so far are related to line graphs of bipartite H- and A-graphs in some way. Most of the
known critically perfect graphs are line graphs of bipartite H-graphs, complements of line
graphs of bipartite A-graphs, or can be generated by applying the operations investigated
in the previous section to them. Even the graph presented in Figure 3.9 is the line graph
of a bipartite graph which is almost an H-graph: only the two edges corresponding to
the grey nodes do not form an H-pair. Particularly, it is unknown to the author whether
there is another way to construct a non-critically perfect graph, admitting no critically
perfect subgraph, with the property that all of its non-critical edges belong to one clique
(this property is obviously needed to construct a critically perfect graph from graphs not
belonging to C-PERF by clique-identification).

3.4 Which Graph Classes Contain Critically Perfect
Graphs?

This section deals with Problem 0.5 in which subclasses of perfect graphs do critically
and anticritically perfect graphs appear. We first show that both classes C-PERF and
A-PERF are incomparable to all classes of perfect graphs whose members admit forbid-
den subgraphs different from minimally imperfect graphs.

Theorem 3.26 Let C be a class of perfect graphs. If there is a perfect graph F such that
no graph in C can admit F as (induced) subgraph, then neither C-PERF nor A-PERF
contains or is contained in the class C.

Proof. Consider a class C of perfect graphs and a perfect graph F' which is a minimal
forbidden subgraph for all graphs contained in C. First, we construct a critically perfect
graph G with F' C (. For this cover all non-critical edges and all isolated nodes of F' by
cliques @1, ..., Qk, choose graphs G1,...,Gy € C-PERF with Q; C G; for 1 < i < k,
and identify F' with all graphs G; in ); each. The arising graph G contains F' as subgraph
and is critically perfect by Theorem 3.14 (in the case that isolated nodes occur in F, re-
call that the disjoint union preserves critical perfectness). Hence C-PERF ¢ C follows.
Conversely, consider a proper subgraph F’' C F with |V (F')| < 9 to insure F' ¢ C-PERF
due to Lemma 3.1. The graph F’ belongs to C since F' is minimal forbidden for C, hence
C-PERF cannot contain this class. Applying the same construction to F yields that
there is no inclusion relation between C-PFERF and the class containing the complements
of all graphs in C. Thus we can finally conclude that A-PERF and C are incomparable. O

The proof of Theorem 3.26 yields particularly that the only forbidden subgraphs of crit-
ically and anticritically perfect graphs are minimally imperfect. Since the whole class
of perfect graphs consists of all graphs without any minimally imperfect subgraph, we
cannot characterize critically and anticritically perfect graphs by giving a complete list of
forbidden subgraphs.

Corollary 3.27 C-PERF and A-PERF cannot be characterized by forbidden subgraphs.
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For most of the classes C of perfect graphs there is a perfect graph F' which is a minimal
forbidden subgraph for all graphs in C, hence C-PERF and A-PERF are incomparable
to all these graph classes C. But there are some classes of perfect graphs not defined
by forbidden subgraphs, e.g., the class of uniquely colorable perfect graphs (such graphs
admit a unique minimum coloring).

In order to answer Problem 0.5 we study, therefore, the intersection of C-PERF or A-
PERF and other subclasses of perfect graphs. Actually, there are some graph classes
with an empty intersection with C-PERF or A-PERF. Clearly, the class of Meyniel
graphs does not contain any critically perfect graph by Theorem 2.7. All graph classes
contained in the intersection of all Meyniel and all co-Meyniel graphs must even have
an empty intersection with C-PERF and A-PERF'. All graph classes whose members
are perfect and admit perfect edge orders and co-perfect edge orders have obviously an
empty intersection with C-PERF and A-PERF, respectively, too (see Section 2.4). The
following theorem establishes this result for a further class of perfect graphs. Clique
separable graphs have been defined by GAVRIL [19] as these graphs whose connected
subgraphs without any clique-cutset are all complete k-partite or the complete join of a
connected bipartite graph and a clique.

Theorem 3.28 Clique separable graphs are neither critically nor anticritically perfect.

Proof. Assume G to be clique separable. Every graph can be decomposed into con-
nected subgraphs Gy, ..., G, not admitting any clique-cutset, and can be reconstructed
from these graphs Gy, ..., G by successively clique identification as described in [65]: Let
G° = Gy and G* arise from G*~! and G; by identification in a clique @; such that G' = G
holds, G' is connected, and G; # Q; for 1 < i < I. Then Gy, ..., G, are complete k-partite
or the complete join of a connected bipartite graph and a clique since G is clique separable.

We first show that G cannot be critically perfect. Due to G; # @Q;, every graph G; par-
ticularly contains an edge e = zy with y &€ Q; (note: G; is connected). If e is intended
to be a critical edge of G and G, to be a subgraph with G, — e minimally imperfect,
then G, C G; follows from Lemma 3.13, i.e., e is a critical edge of GG;. Since complete
k-partite graphs do not possess any critical edge due to Theorem 2.8, we conclude that
G, is the complete join of a bipartite graph and a clique ). Every node of () dominates
all remaining nodes in G;, hence no edge incident to a node in @) is critical by Lemma 2.2.
But for Q = ), the graph G; is bipartite and without any critical edge making use of
Lemma 2.3. Hence G admits at least one non-critical edge.

Now, we prove the assertion that G is not anticritically perfect. First suppose G; to
contain non-adjacent nodes z, y and Gy, + xy to be a minimally imperfect subgraph of
G + vy. Then G,y C G, holds by Lemma 3.15, hence zy is an anticritical edge of Gj.
Because complete k-partite graphs do not admit any anticritical edge due to Theorem 2.8,
G,; must be the complete join of a bipartite graph F' and a clique. If there are non-adjacent
nodes z and y in different color classes of F', then F' + zy is still bipartite and G; + xy
still perfect. Otherwise, F'is a complete bipartite graph, thus every two of its non-adjacent
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Figure 3.16(a)

Figure 3.16(Db)
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nodes x and y are false twins and G; +xy is perfect following Lemma 2.5. Hence G cannot
be anticritically perfect if one of the graphs GG; is non-complete and we finally assume G;
to be a clique for 1 <4 < [. Consider a node x € G; — Q; and note G~ # @, otherwise
G would be a clique (because G is) and not anticritically perfect by definition. Then
there is a node y € G' 1 — Q; with @; N Ng(y) # 0 such that Q; N Ng(y) is a clique-cutset
separating = and y in G (note: every z € Q; — Ng(y) belongs to another G; than vy, i.e.,
all (y, z)-paths of G run through @, N Ng(y) and, therefore, z is not contained in any
induced (z,y)-path of G by @, N Ng(y) C Ng(z)). Hence z and y form a 2-pair and
G + zy cannot be imperfect by Lemma 2.5. O

So we were able to prove that C-PERF has an empty intersection with the classes of
Meyniel graphs, weakly triangulated graphs, and clique separable graphs. No similar re-
sult has been established so far for BI P*, the class of bull-free Berge graphs, slim graphs,
strict quasi-parity graphs, and strongly perfect graphs but there are no critically perfect
graphs known to the author belonging to one of these classes. Note that absorbantly per-
fect graphs are characterized in [24] to possess either a strong stable set (that meets all
maximal cliques of the graph) or a weak comparable pair (a node that dominates one of
its neighbors). Hence the class of absorbantly perfect graphs cannot contain any critically
perfect graph that is not strongly perfect due to Lemma 2.2.

Next, the classes of weakly triangulated and clique separable graphs also have an empty
intersection with A-PERF, and no anticritically perfect graphs are known belonging to
BIP*, the class of bull-free Berge graphs, Ks-, Ps-free Berge graphs, and slim graphs.
(For an overview, see also the corresponding charts and tables in Appendix A.1 and A.2,
respectively.)

In order to give some examples of critically or anticritically perfect graphs contained in
certain classes of perfect graphs, recall on the one hand the results in Section 2.3 concern-
ing the occurrence of different kinds of critical edges and on the other hand the significance
of line graphs mentioned in the previous section.

First, we have observed in Lemma 2.9(ii) that diamond-free, K,-free, or planar Berge
graphs only admit H-critical edges. So we expect by Theorem 2.10 and Theorem 2.11 a
relation of line graphs and critically or anticritically perfect graphs in these three classes.
Indeed, all critically or anticritically perfect line graphs are diamond-free by Theorem 3.18
and Theorem 3.22. A line graph L(F') is obviously K,-free, critically, and anticritically
perfect iff F' is a bipartite H-graph and A-graph, respectively, with A(F') = 3. Moreover,
the line graphs of H; (cf. Figure 3.11) and of Ay, A3, A4, A7, Ag, and Ay (see Figure 3.13
and Figure 3.15) admit an embedding in the plane. But not all critically or anticriti-
cally perfect graphs contained in these three graph classes are line graphs. Figure 3.16(a)
shows a diamond-free, K,-free, and planar graph. It is obtained by identifying one copy
of L(H;) in its internal triangle (grey filled in the picture) with the external triangle of a
further copy of L(H;). This graph belongs to C-PERFNA-PERF but is not a line graph.
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All mentioned planar graphs and in addition L(A;), L(As), L(A4g), and L(Ay) are toroidal
as well as locally perfect. A further graph embeddable in the torus and locally perfect is
presented in Figure 3.17; it was the first example of a critically perfect graph found by the
author. With respect to Lemma 2.9(iii), the question arises whether there is a toroidal
graph in C-PERF that admits an A-critical edge the deletion of which yields a C;. The
graph G in Figure 3.16(b) answers this question in the affirmative. G is generated from a
perfect graph on nine nodes by covering its non-critical edges (emphasized by bold lines
in the picture) by the grey filled triangles and identifying four copies of L(H;) in these
cliques. The arising graph G is critically perfect due to Theorem 3.14 and the nodes
v1,...,v; induce a P; in G. This graph and L(Ajs) are toroidal but not locally perfect,

while L(A3) is locally perfect but not toroidal.

The remaining classes of perfect graphs mentioned in Section 2.3 are only known to admit
A-critical edges. But hoping for a similar relation of co-line graphs and critically or anti-
critically perfect graphs in these classes is unmet. The class of weakly triangulated graphs
cannot admit any critically or anticritically perfect graph (see the perfect edge order and
co-perfect edge order described for weakly triangulated graphs in Section 2.4). It is easy
to check that there are at least no bull-free complements of line graphs in C-PERF' or
A-PERF. Furthermore, L(A;) is the only co-line graph in the class of murky graphs,
L(A3) and L(A;) the only Ps- and Kj-free complements of line graphs.

Figure 3.17

Turning to other examples of critically or anticritically perfect graphs contained in cer-
tain classes of perfect graphs, note that L(A3) and L(Ayg) are strongly perfect (thus also
absorbantly perfect) and perfectly contractile. These two graphs together with L(A,),
L(A7), and L(Ag) belong to the class SQP. Consequently, they are also quasi-parity and
the complements of them are examples of critically perfect graphs in the class QP.
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A complete list of all these graph classes considered here together with the information
whether or not we know examples of critically or anticritically perfect graphs belonging
to them is provided in Appendix A.1 and A.2.

Finally, we mention that certain graphs in A-PERF and C-PERF are minimal coun-
terexamples for classes of perfect graphs concerned to even pairs and for preperfect graphs
(see the definition below). Even pairs play an important role in conjunction with perfect-
ness and not only the definition of many classes of perfect graphs relies on MEYNIEL’s
Even Pair Lemma [46]. HOUGARDY established in [34]: proving that minimally imperfect
graphs are minimally even pair-free implies the SPGC. Concerning the description of all
minimally even pair-free graphs, he conjectured in [32] the following relation.

Conjecture 3.29 (HOUGARDY [32]) Every minimally even pair-free graph is either an
odd hole, an antihole of length at least seven, or the line graph of a bipartite graph.

By a computer search [33], HOUGARDY proved this conjecture for all graphs on less than
17 nodes. Checking his list, we have found anticritically perfect graphs among these min-
imally even pair-free graphs. E.g., the line graphs of Ay, A4+ ab, Ag, A7+ ab, Ag+ab, A
(see Figure 3.15 for the edges to be inserted), and of the bipartite A-graphs depicted in
Figure 3.18 range among these example graphs. Furthermore, note that the complements
of their line graphs are also even pair-free. Hence all these graphs, their complements,
and in addition L(A4+bc) and L(A4 + be) (see Figure 3.15) are even minimally non-quasi

R
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Figure 3.18

The list of HOUGARDY [33] only contains line graphs L(F') such that F is either
(1) the K2’3,
(ii) a bipartite A-graph, or

(iii) a graph obtained from another bipartite graph with minimally even pair-free line
graph by a simple operation (replace one edge by a C; and an edge with precisely
one endnode on the Cy).
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The operation in (iii) creates graphs, the complements of their line graphs admit an even
pair, so the minimally even pair-free line graphs known to be in A-PERF' coincide with
the minimally non-quasi parity graphs mentioned above. Unfortunately, a general rela-
tion between minimally even pair-free line graphs and anticritically perfect graphs has
not been established so far.

Another subclass of perfect graphs having minimal counterexamples in A-PERF and
C-PERF is the class of preperfect graphs, introduced by HAMMER and MAFFRAY [24].
They defined a node z of a graph GG to predominate a node y of GG if one of the following
situations occurs:

(i) V(G) =A{z} = {u},
(ii) = # y, zy € E(G), every maximum clique containing y also contains z,
(i) z # vy, zy € E(G), every maximum stable set containing z also contains y.

HAMMER and MAFFRAY proved in [24] that no minimally imperfect graph can own a
node predominating another one. Hence preperfect graphs, defined to be graphs each
of whose subgraphs has a predominating node, are perfect. The class of preperfect graphs
seems to be quite large (see the inclusion relations of several classes of perfect graphs
shown in Appendix A.1).

HAMMER and MAFFRAY presented in [24] an infinite sequence of perfect but minimally
non-preperfect graphs. A different sequence of such graphs was found (but not published)
by HOUGARDY, MAFFRAY, and SEBO [36]. All these graphs are line graphs of special
bipartite graphs, including the graphs shown in the two rows below in Figure 3.2. Moti-
vated by this observation, minimally non-preperfect graphs with small maximum degree
have been investigated in [62] and characterized for A < 4 as follows.

Theorem 3.30 (TuzA and WAGLER [62]) A graph of mazimum degree 4 is minimally
non-preperfect iff it is either an odd hole, the C7, or the line graph of a 3-reqular, 3-
connected bipartite graph.

cgecheah

Figure 3.19

We already know from Lemma 3.19 and Lemma 3.25 that every 3-connected bipartite
graph is an H-graph as well as an A-graph. So the perfect graphs among the examples
of minimally non-preperfect graphs described in Theorem 3.30 belong to A-PERF N C-
PERF, e.g., the line graphs of K33, Hy, Hy, Hs (see Figure 3.11), and the line graphs
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of the 3-connected, bipartite graphs shown in Figure 3.19. It is worth noting that all the
perfect, minimally non-preperfect graphs known so far admit a maximum degree equal to
four, so all of them belong to A-PERF N C-PERF.

Note finally that there are also critically and anticritically perfect graphs known to belong
to the class of preperfect graphs. E.g., the line graphs of A,, ..., Ajg are preperfect, hence
their complements, too.



Chapter 4

Some Polyhedral Consequences

This chapter investigates how imperfect a graph is that arises by deleting a critical edge of
a perfect graph. Section 4.1 introduces a measure for the imperfectness of a graph using
the polyhedral characterization of perfect graphs [9]: the polytope QSTAB(G) given by
nonnegativity and clique constraints coincides with the stable set polytope STAB(G) iff
the associated graph is perfect. We examine several classes of inequalities valid for the
stable set polytope of an imperfect graph, in particular rank constraints and weak rank
constraints. Following a suggestion in [22], we consider the polytopes RSTAB(G) and
WSTAB(G) given by rank constraints and weak rank constraints, respectively, together
with the nonnegativity constraints. That clique constraints are special rank constraints
and weak rank constraints are obtained from certain rank constraints by PADBERG’s lift-
ing procedure [49] implies STAB(G) € WSTAB(G) € RSTAB(G) C QSTAB(G). We
introduce the graph classes where RSTAB(G) and WSTAB(G) coincide with STAB(G),
and term them rank-perfect and weakly rank-perfect graphs, respectively. Thus the classes
of all rank-perfect and all weakly rank-perfect graphs constitute superclasses of perfect
graphs and yield the studied measure for the imperfectness of a graph.

Deciding how imperfect a graph is that arises by deleting a critical edge e of a perfect
graph G means, therefore, to figure out whether G — e is rank-perfect or weakly rank-
perfect. For that, we have to study the facets of STAB(G — e). In Section 4.2 and 4.3,
we deal with Problem 0.6 and investigate STAB(G — e) where G is a perfect line graph
and the complement of such a graph, respectively. The characterizations of critical and
anticritical edges in line graphs from Section 2.3 provide the knowledge of a/l minimally
imperfect graphs which occur in G — e. We give the weak rank constraints obtained by
lifting rank constraints associated with one or the union of some minimally imperfect
subgraphs of G — e.

In view of Problem 0.7, we conjecture that the facets of STAB(G — e) described in Sec-
tion 4.2 are the only new facets resulting from the deletion of an edge in a perfect line
graph GG. Then, all these graphs G — e would be weakly rank-perfect and, graphs arising
from line graphs of bipartite graphs, even rank-perfect. We are able to show in Section 4.4
that all graphs generated from the complement of the line graph of a bipartite graph by
the deletion of an arbitrary edge are contained in the class of weakly rank-perfect graphs.
This gives at least a partial answer to Problem 0.7.

67
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4.1 Rank-Perfect and Weakly Rank-Perfect Graphs

Let G = (V,E) be a graph and n = |V|. For every subset V! C V, let x¥" denote its
incidence vector, i.e., the vector defined by

VI L ]_ if /Uz E V’
Xi "= 1 0 otherwise.

The stable set polytope
STAB(G) := conv{x® € R" : S C Vis a stable set}

is defined as the convex hull of the incidence vectors x° off all stable sets S of the graph
G. A linear inequality a’z < b is said to be valid for STAB(G) if it holds for all
z € STAB(G), ie., if STAB(G) C {z € R" : a2z < b}. Since STAB(G) is a full-
dimensional polytope there is a unique minimal set of valid inequalities for STAB(G) (up
to positive scalar multiplication) that defines STAB(G). A valid inequality belongs to
this minimal set, called the set of facets of STAB(G), iff it is satisfied as an equality by
n affinely independent incidence vectors of stable sets of G. Among these facets are, of
course, the "trivial” facets demanding nonnegativity:

All remaining ”nontrivial” facets are of the form

Zaixi S b

v, €EG

where a4, ..., a, are nonnegative integers and b is a positive integer (see [54]). We often
write (G, a) < b for such an inequality, where we interpret the vector a = (ay, ..., a,) to
be a node weighting of G associating the weight a; to the node v; for 1 < 4 < n and denote
the weighted graph by (G,a). Since x? cannot satisfy any inequality with b > 0 with
equality, there actually have to be n stable sets of G with linearly independent incidence
vectors satisfying the corresponding nontrivial facet with equality. Let V' = {v; € V(G) :
a; > 0}, then we say that the facet a”x < b is associated to V' and G[V’], or that V'
and G[V'] are facet-inducing. Since the determination of the facets of STAB(G) is very
difficult in general, one often tries to find classes of valid inequalities for STAB(G) and to
investigate when such inequalities yield facets of STAB(G). One natural way to obtain a
class of valid nontrivial inequalities is to consider rank constraints of the form

Z z; < a(G) (4.1)

v, €G’

for G' C G (note a(G") is said to be the rank of V(G")). For convenience, we often write
(4.1) as z(G", 1) < a(G") with 1= (1,...,1) or 2(G") < a(G"). Clearly, a rank constraint
is satisfied by the incidence vector of every stable set of G, so it is valid for STAB(G). In
particular, whenever G’ has a(G")-stable sets Si, ..., Sj¢| the incidence vectors of which



4.1. RANK-PERFECT AND WEAKLY RANK-PERFECT GRAPHS 69

are linearly independent, z(G") < a(G") is facet-inducing for STAB(G) at least if G' = G.
PADBERG [49] showed that special rank constraints, the clique constraints,

Z r; <1 (4.1a)

vEQ

are facet-inducing for STAB(G) iff @ is a maximal clique of G. Further classes of rank
constraints are the odd hole constraints

doowm <k (4.1b)

;€ Cog1

where Cyr41 C G and the odd antihole constraints

Z z; <2 (4.1c)

v; € 62k+1

where Coxy1 C G. The inequalities (4.1b) and (4.1c) are facets of STAB(G) at least for
G = Cyy1 and G = Cypy, respectively. PADBERG showed in [50] that z(G) < a(G) is
facet-inducing for STAB(G) for every minimally imperfect graph G. BLAND, HUANG, and
TROTTER [7] generalized this result to all partitionable graphs. Furthermore, CHVATAL
established in [9] this property for a-connected graphs (the partial subgraph on all nodes
with only the a-critical edges is connected), EDMONDS and PULLEYBLANK [17] via match-
ing theory for line graphs of 2-connected hypomatchable graphs. A graph H is called
hypomatchable if Vv € V(H), the subgraph H — v admits a matching meeting all of its
nodes. The matchings of H correspond to the stable sets of its line graph L(H), hence

Y < VIS (4.1d)

2
v;€L(H)

defines a rank constraint and is facet-inducing for STAB(L(H)) iff H is 2-connected [17].
(Note that the odd hole constraints (4.1b) are special cases of the rank constraints of type
(4.1d)). But in all these cases, a rank constraint 2(G’) < «(G’) does not need to provide
a facet of STAB(G) if G’ C G. However, (4.1) can be strengthened to a facet

Z z; + Z a;r; < alG) (4.2)

v; €G’ v, €EG—G'

of STAB(G) by determining appropriate integer coefficients a; for v; € G — G’ using
sequential lifting (see [49]). Let us call every facet of the form (4.2) a weak rank con-
straint of STAB(G) iff it is obtained by lifting the rank constraint z(G') < «(G’) and G’
has |G'| stable sets of size a(G’) the incidence vectors of which are affinely independent.
Thus, every lifting of a constraint (4.1b) or (4.1c) is a weak rank constraint by [50], every
lifting of a constraint (4.1d) by [17]. Note that the facet obtained by lifting may depend
on the order in which the nodes are lifted. Hence a rank constraint z(G') < a(G’) as-
sociated with a subgraph G’ C G that is facet-inducing for STAB(G’) may give rise to
several weak rank facets of STAB(G), one for each valid lifting. In the next two sections,



70 CHAPTER 4. SOME POLYHEDRAL CONSEQUENCES

we describe weak rank facets of STAB(G — e) basing on rank constraints (4.1b) or (4.1d)
and (4.1c) where G and G, respectively, is a perfect line graph. In the latter case we are
even able to prove that these special weak rank constraints yield the only facets besides
(4.0) and (4.1a) (see Theorem 4.11 in Section 4.4).

As an example of a weak rank facet, consider the 5-wheel G shown in Figure 4.1(a). The
facet > ;o5 i + 226 < 2 is a weak rank facet of STAB(G) since z(G — vs) < 2 is a
rank facet of STAB(G — vg). However, STAB(G) may admit nontrivial facets that are
not weak rank constraints. Consider, e.g., the graph G shown in Figure 4.1(b). The
inequality D, ;.2 + 227 < 3 is a facet of STAB(G), but not a weak rank constraint
since no proper subgraph G’ C G induces a rank facet z(G") < 3 of STAB(G’) that could
be lifted to the above facet. Note that z(G — v7) < 3 is a rank constraint, but not a facet
of STAB(G — vr).

€Y (b)

Figure 4.1

Let us consider the vector a of coefficients of an arbitrary nontrivial facet a’z < b of
STAB(G) to be a node weighting of G. Define the weighted stability number of (G, a)
by a(G,a) = max{) ], cga;: S C G is a stable set}, then b = a(G, a) holds and we get

z(G,a) < a(G,a). (4.3)

We obtain a hierarchy of inequalities by stepwise refinement of this general nontrivial
facet. As a first special case, we may rewrite the weak rank constraints (4.2) in the form

z(G,a) < a(G' 1)

where G' C G with V(G') C {v; € V(G) : a; = 1} holds. Further, the rank constraints
(4.1) can be expressed as a’z < (G, 1) where G' C G and a = V() holds, i.e., as

z(G, 1) < a(G', 1).
The previous inequality can finally be restricted to a clique constraint (4.1a) by
z(G',1) <1

where G' C G is a clique.
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In [22], the following concept is studied. Given an inequality class (£) valid for STAB(G),
define the polyhedron £STAB(G) described only by nonnegativity constraints and in-
equalities in (£). Then investigate L-perfect graphs, i.e., all graphs with LSTAB(G) =
STAB(G). Following this suggestion, we get by the hierarchy of the inequality classes
above a chain of polytopes associated with a graph G and define classes of graphs for
which these polytopes coincide with STAB(G). By definition, the stable set polytope of
every graph is entirely described by all "trivial” facets (4.0) and all "nontrivial” facets
(4.3). With the above inequality classes, we analogously define three further polytopes
associated with G: WSTAB(G) as the polytope described by facets of type (4.0) and (4.2),
RSTAB(G) defined by the inequality classes (4.0) and (4.1), and QSTAB(G) to be the
polytope with (4.0) and (4.1a) as facet system. Then, by the relations of the inequality
classes (4.3), (4.2), (4.1), and (4.1a) mentioned above, we immediately see the following
inclusion relations of these polytopes:

QSTAB(G) 2 RSTAB(G) D WSTAB(G) 2 STAB(G).

Each of the polytopes QSTAB(G), RSTAB(G), and WSTAB(G) is a relaxation of STAB(G)
and, very often, these inclusions are proper. In a few important cases, however, equality
holds. Most notably, perfect graphs are characterized in [9] to be precisely the graphs G
with

QSTAB(G) = STAB(G).
Let us call all graphs G' with
RSTAB(G) = STAB(G)

rank-perfect. The smallest not rank-perfect graph is the 5-wheel shown in Figure 4.1(a).
But, obviously, every perfect graph is rank-perfect, and there are further interesting classes
of rank-perfect graphs. SHEPHERD [55] proposed to call a graph G near-perfect if
its stable set polytope has, besides facets of type (4.0) and (4.1a), only the rank facet
z(@) < a(G) associated with G itself. He strengthened the result of PADBERG [50], that
every minimally imperfect graph is near-perfect, to the following characterization: the
minimally imperfect graphs are precisely these imperfect graphs G where both G' and
G are near-perfect. Further examples of rank-perfect graphs are t-perfect graphs, by
CHVATAL [9] defined to be the graphs whose stable set polytopes admit only rank facets
induced by edges and chordless odd cycles. (Note that ”t” stands for ”trou”, the French
word for hole, and that every Cyyq with £ > 1 is here considered to be a hole.) By
definition [22], a generalization of t-perfect graphs is the class of h-perfect graphs (from
hole-perfect) where (4.0), (4.1a), and (4.1b) suffice to describe the associated stable set
polytopes. Although h-perfect graphs do not seem to occur in such abundance as perfect
graphs, there are some interesting classes of such graphs known (see [22]). Line graphs
are another class of rank-perfect graphs since every nontrivial facet of their stable set
polytope different from (4.1a) is a rank facet of type (4.1d) induced by the line graph of
an induced 2-connected hypomatchable graph by EDMONDS and PULLEYBLANK [17].
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As a natural generalization of rank-perfect graphs, we analogously define graphs G with
WSTAB(G) = STAB(G)

to be weakly rank-perfect. Note that the graph shown in Figure 4.1(b) is the smallest
graph with WSTAB(G) D STAB(G). We will prove in Section 4.4 that the class co-
L(BIP) — e, obtained from complements of line graphs of bipartite graphs by the deletion
of an arbitrary edge, is one subclass of weakly rank-perfect graphs. A similar result is
conjectured for the class L(LINFE) — e, obtained from line graphs of line-perfect graphs
by the deletion of an arbitrary edge.

weakly rank-
perfect graphs
4 A
L(LINE) - e co-L(BIP) - e
rank-perfect
graphs
A
h-perfect line near-perfect
graphs graphs graphs
A A
t-perfect min. imperfect
graphs graphs
perfect
graphs

Figure 4.2: Classes of weakly rank-perfect graphs.

The classes of all rank-perfect and all weakly rank-perfect graphs constitute superclasses
of perfect graphs and yield, thereby, a measure for the imperfectness of a graph. All inclu-
sion relations of the graph classes mentioned in this section are summarized in Figure 4.2.
All these graph classes are defined in terms of polyhedral theory. Even a polyhedral char-
acterization of perfect [9] and minimally imperfect graphs [55] is known whereas their
graph theoretical characterization concerned with BERGE’s Strong Perfect Graph Con-
jecture [3] still remains open.
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The stability number «(G) may be calculated as the maximum value of the linear function
172 over STAB(G). Since RSTAB(G) and WSTAB(G) approximate STAB(G) ”locally”
in the neighborhood of the maximum stable sets of GG, the knowledge of the structure
of RSTAB(G) and WSTAB(G) would immediately imply a min-max characterization of
a(@G). Actually, in [22] it was shown that the stable set problem for perfect, t-perfect, and
h-perfect graphs can be solved in polynomial time. For line graphs, this property follows
from matching theory [16]. But it is unknown whether the polynomial solubility of the
stable set problem extends to the class of rank-perfect or weakly rank-perfect graphs.

4.2 Facets of STAB(G—e) with G a Perfect Line Graph

Let e stand for a critical edge in the line graph G of a simple line-perfect graph F. The
main objective of this section is to study those facets of STAB(G — e) that are neither
nonnegativity nor maximal clique constraints. The graphs G — e are imperfect but, in
general, no line graphs anymore, so the result of EDMONDS and PULLEYBLANK [17] does
not give a description of STAB(G — e). However, it turns out that the “new” facets of
STAB(G — e) are related to hypomatchable graphs as considered in [17]: the line graphs
of some hypomatchable graphs H appear in G — e, and weak rank facets of STAB(G —e)
base on rank constraints of type (4.1d) associated with L(H). We will see that those
graphs L(H) C G — e are odd holes or the union of some odd holes of G — e. (Recall
that every minimally imperfect subgraph of G — e is an odd hole, since the line graph G
can only admit H-critical edges e by Theorem 2.10, cf. Section 2.3.) Further, the studied
hypomatchable graphs H with L(H) C G — e do not occur in the line-perfect graph F,
so we have to identify those subgraphs Fy C F with L(Fy) — e = L(H).

First, we provide some general properties of hypomatchable graphs. Recall that a graph
H is called hypomatchable if it does not admit a perfect matching but H — v does for all
v € V(H), where a matching is perfect if it meets all nodes of the graph. LOVASZ [43]
proved the following characterization of hypomatchable graphs which we will frequently
use in the sequel. A graph H is hypomatchable if and only if there is a sequence
Hy,H,,... ,H, = H of graphs such that H, is an odd cycle and for 1 < i < k, H;
is obtained from H;_; by adding an odd path that joins two (not necessarily distinct)
nodes of H;_; and has all internal nodes outside H;_;. The odd path in H; having its
endnodes in H;_; but all internal nodes outside H;_; is called the ear F;, and the sequence

Hy, Hy,...,H, = H of graphs an ear decomposition of H. Every ear decomposition
Hy, H,,..., H, = H defines a sequence Ey, E, ..., Ej of corresponding ears with £y = H,.
Hence, we may also characterize H by this ear sequence Ey, F1, ..., Ey and use both se-

quences to describe the same ear decomposition.

Hypomatchable graphs have an odd number of nodes, are non-bipartite and connected,
but not necessarily 2-connected. By definition, an ear may be an odd cycle attached to a
single node of the previous graph. However, these degenerated ears can be avoided if H is
2-connected: CORNUEJOLS and PULLEYBLANK proved in [14] that every 2-connected
hypomatchable graph H admits an ear decomposition Hy, Hy,...,H, = H with H;
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2-connected for 0 < 7 < k. The next lemma provides an even stronger assertion for
2-connected hypomatchable graphs on more than four nodes.

Lemma 4.1 Let H be a 2-connected hypomatchable graph and |V (H)| > 5. Then there
is an ear decomposition Hy, Hy,...,H, = H of H such that each H; is 2-connected and
Hy is an odd cycle of length at least five.

Proof. Since H is 2-connected, it admits an ear decomposition Hy, Hy, ..., H, = H with
H; 2-connected for 0 < i < k by [14]. We are ready if Hy is an odd cycle of length > 5,
hence assume Hj is a triangle. From |V(H)| > 3 follows that there is an ear # H, with
at least three edges, let i € {1,...,k} be the smallest index such that F; has length > 3.
Then V(H;—1) = V(H,) holds and E; has two distinct nodes v,v" € V(H,) as endnodes
(since H; is 2-connected). Hence (Hy—vv')U E;, v, Ey, ..., E;_4 is an ear decomposition
of H; starting with an odd cycle of length > 5 and defining only 2-connected graphs. The
ears F;.1,..., Ey complete this ear decomposition to the studied decomposition of H. O

We observe the following: let Hy, Hy, ..., H, = H be an ear decomposition of a hypo-
matchable graph H and E; with 1 < j < k an ear of length one. So V(H;) = V(H,_1)
holds and the endnodes of each ear F; with j <7 < k are contained in H; ; — E;. Thus
the ear sequence Ey,...,E;_1, Eji1,..., Ey, Ej also characterizes H. In other words, we
can always reorder the ears F1, ... E} such that the ear decomposition starts with all ears
of length > 3 and ends up with all ears of length one. In the sequel, we call an ear decom-
position Hy, Hy, ..., H, = H of a 2-connected hypomatchable graph H with |V(H)| > 5
proper if each H; is 2-connected, Hj is an odd cycle of length > 5, and there is an in-
dex j € {1,...,k} such that E,..., E; have length > 3 and E;,,..., Ej have length one.

Now let us study those hypomatchable graphs the line graphs of which may occur in
G — e where G is the line graph of a simple line-perfect graph F' and e is a critical edge
of GG. First, we observe that we are only interested in hypomatchable graphs H which are
2-connected (otherwise the rank constraint associated with L(H) is never facet-inducing
by [17]) and have at least five nodes (otherwise H = K3 holds and the rank constraint
associated with L(H) is a clique constraint). Thus, we only consider hypomatchable
graphs H that possess a proper ear decomposition by Lemma 4.1 and contain an odd
cycle of length > 5 in particular. Consequently, H € F and L(H) Z G holds. Let z and
y denote the endnodes of the critical edge e of G, then z,y € E(H) and z,y € V(L(H))
follows immediately. Let Fj stand for the subgraph of F' with L(Fy) —e = L(H). Then
E(H) = E(Fy) clearly holds by V(L(H)) = V(L(Fy)), i.e., we deduce z,y € E(Fy) in
particular. By E(L(H)) = E(L(Fy)) — xy, the edges x and y are not incident in H but
incident in Fy, and every pair of edges e, e’ distinct from z,y is incident in H iff e, e
are incident in Fy. In addition to these simple observations, we point out five further
technical properties of H and Fy which we will frequently make use of in the sequel.

Lemma 4.2 Consider the line graph G of a simple line-perfect graph F and a critical
edge e = zy of G. Let H be a 2-connected hypomatchable graph with |V (H)| > 5 and Fy
the subgraph of F' with L(Fy) —e = L(H). Let uy, z; denote the endnodes of z and uz, 2,
the endnodes of y in H and Fy and assume z; = zo in Fg. Then we get the following.
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(i) H is simple.
(ii) Every odd cycle of length at least five in H contains x and y.

(ili) Ewery cycle C C H running through x and y contains the edge ey, = z122. The path
T = U121, gy = 2122, Y = ZoUs n H corresponds to the edges x = u121, €y = U321,
Yy = ugz1 in Fy (note: uz is a new node not contained in V(H)), all remaining
edges of C form with x and y a cycle in Fg. Moreover, C has either length 4 or
odd length > 5.

(iv) If a cycle of length four runs through x and y in H, then all other cycles of H
containing x and y have length 5.

(v) Let Hy,Hy,...,Hy = H be a proper ear decomposition of H. Then none of the ears
Ey,...,Ey has z; or z9 as an endnode (i.e., d(z1) = d(z9) = 2 holds in H).

Proof. In order to show assertion (iii), let C' C H be a cycle with z,y € E(C). Since z
and y are non-incident in H, we may represent C' as shown in Figure 4.3(a) with 4, j > 0.
In Fy, the edges * = u12; and y = 29uy are incident and z; = 2, holds by assumption.
For zo = z (see Figure 4.3(b)), e; and f; would become incident in Fy, a contradiction.
So we deduce z, = 2’ (see Figure 4.3(c)). Here ¢; is incident to x in Fy only for i = 1, we
have to insert a new node u3 in Fy in order to keep Fy loop-less, and get e; = e, ,. The
edges y, fi,..., fj,x form a cycle in Fyz and, therefore, j is either equal to 1 or is even
(since Fy is line-perfect). Thus C has either length 4 or odd length > 5 and (iii) is true.

@ (b) ©
Figure 4.3

Now, let a cycle C' of length 4 run through = and y in H. Then C has the edges x = u; 21,
€ry = 2122, Y = ZoUg, and f = uouy by (iii). Since Fy is simple, C is the only cycle
of even length running through z and y in H by (iii). Suppose H admits a cycle with
edges x,€54,Y, f1,-.-,f; and j > 4 even. Then the odd cycle fi,..., f;,u1us of length
> 5 appears in Fy in contradiction to Fiy line-perfect. Thus every cycle through x and y
in H distinct from C has length 5 and (iv) is true.

If there is an odd cycle C' C H with length > 5 but x ¢ E(C) or y ¢ E(C), then
L(C) = L(C) — zy would imply that L(F) contains the odd hole L(C). The line-
perfectness of F yields assertion (ii).
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H is simple because F' is and edges parallel to x or y in H are forbidden: H contains
by Lemma 4.1 an odd cycle C of length > 5 with z,e,,,y € E(C) by (ii),(iii) and let
C" denote the even cycle with edges E(C) — e;, in Fy. An edge 2’ in H parallel to
x would have u;,uz as endnodes in Fy (otherwise the incidence is not preserved) and
(C"—z)U{2', ez} is an odd cycle of length > 5 in Fj, a contradiction to Fjy line-perfect.
A symmetric argument applied to edges parallel to y yields assertion (i).

Figure 4.4

Finally, turn to the prove of assertion (v). According to Lemma 4.1 H admits a proper
ear decomposition Hy, Hq,...,H, = H such that each H; is 2-connected and Hj is
an odd cycle of length at least 5. Let Fy, denote the partial subgraph of Fy with
L(H;) = L(Fy,) — zy for 0 < i < k. H, contains = and y by (ii) and also e, , = 2122 by
(iii). Chose i € {1,...,k} minimal such that z; or z is an endnode of E;. Let, without
loss of generality, z; and v be the endnodes of F; and e; be the edge of E; incident to z;.
Then the only edges incident to z; in H;_; are e, , and z, the only edges incident to 2, in
H,;_; are e,, and y. H;_; is 2-connected, so two open-disjoint (z1,v)-paths P, and P, ,
exist in H;_; with € E(FP,) and e,y € E(P,,,). (In Figure 4.4, the paths P, and P,_,
are depicted with solid lines, the ear E; with dashed lines.) If v # 25, us holds, e; has to
be incident to e;, and x but not to y in Fy,. Hence e; = uzu; follows (see Figure 4.4(a))
and implies e; = zyuy in H. Thus e; would be an edge parallel to x in contradiction to
(i). For v = uy (see Figure 4.4(b)), E; consists of the single edge e;, otherwise E; U P,,
is an odd cycle of length > 5 in H; that does not contain z in contradiction to (ii). Thus
e1 = z1ug is an edge in Fy, parallel to y and we get a contradiction to Fiy simple. In the
remaining case v = z, (see Figure 4.4(c)), E; U P, is a cycle in H; running through z and
y. So E; is the single edge e; = 212, in H; according to (iii). Hence e; becomes an edge
of Fy, parallel to e;, and we have a contradiction to Fz simple again. O
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Remark. Every cycle C C H of odd length > 5 yields an odd hole in L(H) C G — xy.
Since G is perfect and each minimally imperfect subgraph of G — xy is an odd hole by
Theorem 2.10, it is straightforward that every such cycle C' C H has to contain z and y.
Moreover, an edge zy of G is critical if and only if it corresponds to an H-pair z and y in
F according to Theorem 2.10 again. Recall the definition of an H-pair on page 23: two
incident edges = and y form an H-pair iff there is a K, 3 with edges z,y, e, , and an even
cycle C,, that contains z and y but only one endnode of e, , (see Figure 2.2(a)). Then
L(CypyUegy) —xy is an odd hole of G —zy (see Figure 2.2(b)) and it is not surprising that
every cycle C' C H of odd length > 5 corresponds to e, 4, and such an even cycle C, , in Fy.

To accumulate some findings of the above lemma, we introduce the following notions for
later convenience.

Agreement. Let H stand for a simple 2-connected hypomatchable graph with z,y,e;, €
E(H), |V(H)| > 5 and Fy for the simple line-perfect graph with z,y,e,, € E(Fy) and
L(H) = L(Fg) — zy. Denote the endnodes of the edges z,y, e,, as follows: z = u;z,
Y = ZoUs, €5, = 2122 in H and & = w12, y = ugz, €5, = uzz in Fy (all other edges have
the same endnodes in H and Fy). Further, if Hy, Hy,..., H, = H is an ear decomposi-
tion of H, write Fy, for the partial subgraph of Fy with L(H;) = L(Fy,)—zy for 0 < i < k.

The next two lemmas provide descriptions of ear decompositions of H in the two cases
that H does not contain and contains, respectively, a cycle of length 4 through x and y.

Lemma 4.3 If H has no cycle of length four running through x and y, then H admits a
proper ear decomposition Hy, Hy, ..., H, = H with x,y € E(H,) such that

i) for every ear E; with 1 < i < j of length > 3, there is no even path between its
Y J g
endnodes in Fy, , — z,

(ii) for every ear E; with j < i < k of length 1, there is no edge and no even path
between its endnodes in Fy, | — z,

(iii) H is triangle-free, and Fy is bipartite.

Remark. Note that the edge u;us must not occur in H since H has no cycle of length
four running through z and y. The assertions (i) and (ii) include that the endnodes of ev-
ery ear F, ..., B} are distinct from z; and 2,. In other words, Fy consists of e;, and the
union of some even cycles C,,. We say in the sequel that Fy — u3 admits a pseudo-ear
decomposition Ej, Ey, ..., Ej starting with one of those even cycles C,, as Ej where
the endnodes of every ear Ei,..., E} are distinct from z.

Proof. Let H does not admit a cycle of length 4 through x and y. Then H does not have
any cycle through x and y with even length by Lemma 4.2(iii). Since H is 2-connected
with [V (H)| > 5 (according to the above agreement), it admits a proper ear decomposi-
tion Hy, Hy,...,Hy = H by Lemma 4.1. l.e., H; is 2-connected for 0 < ¢ < k, Hy is an
odd cycle of length > 5, and there is an index j € {1,...,k} such that Fi,..., E; have
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length > 3 and Ej,1,..., E; have length one. In order to prove the assertions of this
lemma we show the following two claims.

Claim 1. H s triangle-free.

Hj is triangle-free. So if H contains a triangle, there is an index ¢ > 0 with H;_; triangle-
free but H; not. Let A denote a triangle in H;, so AN E; # () holds. F; has two
distinct endnodes v, v’ and odd length, so A N E; # () implies E; = vv'. Let v” denote
the third node of A. In particular, we know that v,v’, and v"” are distinct from 2z, 29
according to Lemma 4.2(v). Since H; is 2-connected, there is a cycle running through
the edges ey, = 212 and Ej, let C denote the shortest such cycle. For v" ¢ C let
C'= (CU{v"}) —vv'. It v" € C, the choice of C implies that v" is a neighbor of either v
or v in C, and so define either C' = (C'—{v})Uv'v" or C' = (C — {v'}) Uwvv"”, respectively.
In every case, the cycle C' also contains the edge e, ,, so both cycles C' and C’ run through
z and y by Lemma 4.2(v). That either C' or C' has even length contradicts the condition
on H and Lemma 4.2(iii). <

Claim 2. For every ear E;, there is no even path between its endnodes in Fy, , — z.

Lemma 4.2(v) implies that the endnodes v,v" of E; are distinct from zi, 2. If there
is an even (v,v')-path P in H; 1 — ey, then P U E; is an odd cycle in H; and Fjy,.
Since Fy, is line-perfect, we deduce that P U E; is a triangle. The contradiction to Claim
1 yields that every (v, v')-path in H; ; —e,, and, therefore, in Fj, , —z has odd length. <

Since there is no ear with z; or z; as endnode by Lemma 4.2(v), every ear Fy,...Ey is
determined by Claim 2. The endnodes v,v" of an ear F; with length one must not be
adjacent in H,_; since H is simple. Hence the assertions (i) and (ii) are true. Finally, H
is triangle-free by Claim 1 and, therefore, Fgz — 2z is so. Since there is no cycle of length
4 containing z and y in H, Fp is triangle-free. This proves assertion (iii). O

Lemma 4.4 If H has a cycle of length four running through x and vy, then H admits a
proper ear decomposition Hy, Hy = H with x,y € E(H,) such that

(i) Hy is an odd cycle of length 5 and
(ii) E; is the edge ujus.

Proof. Let a cycle of length 4 run through x and y in H and Hy, H,,...,H, = H be a
proper ear decomposition of H. Hy has length 5 by Lemma 4.2(iv), this proves assertion
(i). Moreover, since each H; is 2-connected every ear E; # FEy has two distinct endnodes
which are different from z; and zy according to Lemma 4.2(v). Assume there is an ear
E; with ¢ € {1,...,k} minimal such that E; has length > 3. Then V(H;_,) = V(H,)
holds. Hence, there is a cycle in H; that contains all edges of E; and z,e,,, v, since z;
and zy are distinct from the endnodes of E;. This cycle has length > 6 and we get a
contradiction to Lemma 4.2(iv). Thus every ear Ej,..., E; of H must be just an edge.
Parallel edges to edges of Hy are forbidden since H is simple by Lemma 4.2(i), chords of
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Hj incident to z; and zo must not occur by Lemma 4.2(v). So the only possible ears con-
nect u; and us. We have at least one ear u,us since H contains a cycle of length 4 through
x and y, and at most one ear u;uy since H is simple and, therefore, assertion (ii) is true. O

The result of EDMONDs and PULLEYBLANK [17] characterizes hypomatchable graphs H
which are facet-inducing for matching polytopes. Hence, the line graphs L(H ) induce rank
constraints (4.1d) of the stable set polytope associated with G — zy. The two previous
lemmas describe the hypomatchable graphs H with L(H) C G —zy and the corresponding
subgraphs Fy C F. This enables us to show how to lift the rank constraint associated
with L(H) = L(Fg) — xy to a weak rank facet of STAB(G — zy). We distinguish the two
cases |V(H)| > 5 and |V(H)| = 5. The first theorem treats the case |V (H)| > 5 where H
is given by Lemma 4.3. Again, we use the agreement for H and Fy from page 77.

Theorem 4.5 Let G be the line graph of a simple line-perfect graph F and xy be a critical
edge of G. Then every subgraph Fg C F induces in STAB(G — zy) the (weak) rank facet

Z T + Z z; < a(L(Fy) — zy) (4.2a)

UleL(FH V;ENg Y
with Ny y = {v; € (G —zy) — L(Fy) :vi € N(x) " N(y)} if
(i) z,y € E(Fg) but ujus & E(Fy) holds,
(ii) Fy — {z,us} is an induced subgraph of F', and

(iii) there is a 2-connected, hypomatchable graph H with |V (H)| > 5, ujus ¢ E(H), and
L(H) = L(Fy) — xy.

Proof. Let F' be simple and line-perfect, G = L(F'), and Fyg C F fulfill the condi-
tions (i), (ii), and (iii). In order to prove the assertion of the theorem, we essentially
make use of the correspondence between stable sets in L(Fy) — zy and matchings in H.
First, we show that the inequality (4.2a) is valid for STAB(G — zy) by the following claim.

Claim 1. There is no mazimum stable set S of L(Fy) — xy such that S U {v;} is a
stable set in G — zy for any v; € Ny,.

Assume in contrary there is a maximum stable set S of L(Fy) — zy and some v; € Ny,
adjacent to none of the nodes in S. Let e; be the edge of F' corresponding to the node
v; of G — zy and S correspond to a maximum matching M of H. By v; € N,, but
wuy ¢ E(F), the edge e; is incident to the common endnode z of z, e;,, and y in F,
hence M must neither contain z, e;,, nor y. So M does not meet the two nodes z; and
zo of H by Lemma 4.2(v) in contradiction to M maximum. <

According to the definition of N,, C V(G — zy), the corresponding edges in E(F’) are all
incident to z by ujus & E(F). Hence N, induces a clique in G — zy and Claim 1 yields
that (4.2a) is valid for STAB(G — zy) by a(G[L(Fg) U Nyy| — 2y) = a(L(Fg) —zy). In
order to find |V (G)| many stable sets in G — zy that satisfy (4.2a) with equality and have



80 CHAPTER 4. SOME POLYHEDRAL CONSEQUENCES

affinely independent incidence vectors, we use the result of EDMONDS and PULLEYBLANK
[17] as starting point. They showed that a hypomatchable subgraph is facet-inducing for
the matching polytope of the whole graph iff it is 2-connected and induced. By the
conditions (ii), (iii), Lemma 4.2(iii), and Lemma 4.2(v), Fy corresponds to an induced,
2-connected, hypomatchable graph H (recall u3 ¢ V(H) by Lemma 4.2(iii), z; and z
have degree two in H by Lemma 4.2(v)). We explicitly give here a construction similarly
to that done in [17], since we will need it for the proof of Claim 3.

Claim 2. There is a set M of |E(H)| mazimum matchings of H the incidence vectors
of which are affinely independent.

H satisfies the conditions of Lemma 4.3 and has a proper ear decomposition Hy, Hy, ..., Hy
as described there, especially, H; is 2-connected for 0 < ¢ < k. By induction each H; has
|E(H;)| maximum matchings whose incidence vectors are affinely independent: The as-
sertion is obviously satisfied by the odd cycle Hy. Suppose the result is true for H;_; and
consider H;. Let v and v' be the endnodes of the ear E; (recall: v # v’ by H; 2-connected).
By induction there are |E(H;_;)| independent maximum matchings of H;_;. Each can be
extended to a maximum matching of H; by adding the 2nd, 4th, ... edges of E;. Then
|E(E;)| — 1 additional matchings can be obtained by considering each internal node w of
E;, if one constructs a matching of F; which does not meet w and w’ € {v,v'} such that
the (w,w’)-path in F; has odd length. We extend this matching of E; to a maximum
matching of H; by adding a matching of H; ; which does not meet only the endnode
of E; distinct from w'. This is the only matching constructed so far not meeting w, so
it is independent of all others. We get the last matching by starting with the 1st, 3rd,
. edges of E; and combining it with a perfect matching of H; ; — v from which the
edge incident to v’ has been removed (if the ear E; has length one, this is the only new
matching to construct). The last matching contains one edge of H;_; less than the others,
so it is independent of all others. By this construction, we obtain the studied set M of
|E(H)| maximum matchings of H whose incidence vectors are affinely independent. <&

For later convenience, let M, denote the set of matchings belonging to M which do not
meet v € V(H), i.e., which are perfect matchings of H — v. Since matchings of H corre-
spond to stable sets of L(H) = L(Fy)—xy, M represents aset of |E(H)| = |E(Fy)| = ny
many stable sets, say Si,...,S,, of G — zy. In order to show that (4.2a) is a facet of
STAB(G — zy), we construct the remaining stable sets S,,1,...,S5, of G — zy with
n = |E(F)| = |V(G)| such that Si,..., S, satisfy (4.2a) with equality and have affinely
independent incidence vectors. For that, we partition the edge set E(F) — E(Fy) with

respect to Fg as follows:

Ny = {e €EF)—E(Fy):e=vv" withov,o' & V(Fy)}

Ny = {e; € E(F)—E(Fy):e;=vw withv &V (Fy),w € V(Fy)— z}
Ny = {6Z'GE(F)—E(FH)Z6Z':U3TU WlthwEV(FH)—Z}

Ngy = {ei € E(F)—E(Fy) :e; = 2w}

(note that edges in E(F) — E(Fg) with both endnodes in V(Fy) are incident to either
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ug or z by (ii), hence those edges are contained in either N, or N;,). We have to find,
for each e; € Ny U N7 U Ny, a matching M € M such that M U {e;} corresponds to a
stable set of G — zy. Clearly, we cannot find such a matching for any e; € N, by Claim
1. But Ve; € N, ,, we have to look for a matching M € M such that (M — {e;,}) U {e;}
corresponds to a stable set of G — xy. For that, we provide the following claim (note: it
is easy to find some appropriate maximum matching M of H, but we have to look for a
suitable one which is a member of M).

Claim 3. Letw € V(Fy)—{z,us}. If w has the same color as z in Fy, then there is a
matching M € M,, with x,y € M. Otherwise, there is M € M,, with e, € M.

Fy is bipartite by Lemma 4.3 and H admits a proper ear decomposition Hy, Hy, ..., Hy =
H as described there. We inductively construct a maximum matching M; of that H; for
j €{0,...,k} minimal with w € V(H,). The assertion is satisfied for j = 0 in both cases
by Lemma 4.2(iii). Assume the assertion is true for j = ¢ — 1 and consider the case j = i.
Then w is an internal node of the ear E;. Let v’ be the endnode of F; with the same
color as w and let v be the other one. (Note: F; connects nodes of different colors in Fy
by Lemma 4.3(i).) Then by induction there is a perfect matching M; ; of H;, ; — v that
fulfills the assertion. We extend M; ; to M; by a maximum matching of E; that contains
the edge of E; incident to v and does not meet w and v. We yield the studied matching
M of H by extending M; if we choose the 2nd, 4th, ... edges of every ear E;1,..., Ex: M
contains either z,y or e, it does not meet w but all other nodes of H, and by comparing
the constructions used here and in Claim 2, M belongs to M. <

Now, we are prepared to construct the stable sets S, +1, ..., S, of G —zy which we need,
one for each e; € E(F) — E(Fpg):

([ {e;}UM if e, € Ny with M € M
{e;} UM if e, € Ny with M € M,, for w # us,
g — 4 with M € M, for w = ug
' {e;}UM if ; € Ny with M € M, and z,y € M
{e;}U(M —e,y) ife; € Ny, with M € M and e,y € M for w & V(Fy),
with M € M,, and e, , € M for w € V(Fpy).

(For each e; = ugw € Ny, the node w has the same color as z in Fy since F is line-perfect,
hence Claim 3 yields the existence of the above matching in M,,. For each ¢; = zw € N,
with w € V(Fy), the node w is distinct from u3 and not contained in the same color class
of the bipartite graph Fig as z, otherwise we have a contradiction either to F' line-perfect
or to |V(H)| > 5. Again, Claim 3 yields the existence of the studied matching in M,,.)

The incidence vectors x*»a+1, ... x* are affinely independent, since Xf ‘ is the only non-
zero entry of Xfl, ...,Xf" Ve, € E(F)— E(Fg) and \; = 0 follows for ng +1 <i < n by
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1<i<n

The vectors x°, ..., x>z are affinely independent by Claim 2. Finally, the stable sets
S1, ..., Sp, are chosen such that [S;NG[L(Fy)UN, || = a(L(Fg)—2y) holds for 1 <i < n,
ie., x%,...,x° satisfy (4.2a) with equality and so the constraint induces a facet of

STAB(G — zy). O

Remark. At the beginning of this section, we have mentioned that the graphs L(H) C
G — zy are odd holes or the union of some odd holes. From Theorem 2.10 we know
that odd holes are the only minimally imperfect subgraphs of G — xy and every criti-
cal edge xy of G corresponds to an H-pair z,y in F'. We have remarked to Lemma 4.3
that Fy consists of an edge e,, and the union of some even cycles C,,. Recall that
L(Cyy U egy) — xy is an odd hole in G — xy for every of those cycles Cy, (cf. Fig-
ure 2.2(a),(b) on page 23). So it is worth to study the relationship of the H-pair z,y in F’
and the subgraphs L(Fy) — xy C G — zy the rank constraints (4.1d) are associated with.
Let MV, = {e € E(F) : e = zw, w # uy, us} be the set of all edges incident to z and y in z
(we still use the agreement for Fiy on page 77). Furthermore, let C,, denote the set of all
even cycles Cy, C F' through z and y such that there is an edge zw € N, with w ¢ Cy .
Then Fp — ug corresponds to a subset CJf, C Cyy (cf. the remark to Lemma 4.3), and
2ugU Ny t0 Npy. Le., FygUNgy = CJI UN,, holds and constraint (4.2a) can be read as

YSat Y w< %W(c;{y)y

e;€CH, € €Nz y

We may combine CH with every suitable e, , € N, to a graph Fy, and we always get the
above facet as hftlng In order to find the facets (4.2a) in STAB(G — zy) we look for the
subsets CY, C C;, with a pseudo-ear decomposition such that there is an edge zw € Ny,
with w ¢ ny (cf. the remark to Lemma 4.3). Hence, using the notions introduced above,
we can specify Theorem 4.5 as follows: Let G be the line graph of a simple line-perfect
graph F and z,y an H-pair in F. Then every subset C,., C Cyy with |V(C[)| > 4 induces
in STAB(G — zy) the rank facet

sz+zxz__‘v )|

e;€CH, € €N,y

if CH vy admits a pseudo-ear decomposition, there is an edge zw € Ny with w & Czy, and
CI{ — z is an induced subgraph of F. lLe., all graphs L(Fy) — zy € G — zy that base on
the same CJ, C C,, with [V(C})| > 4 yield the same rank facet of STAB(G — zy). In
order to illustrate that, look at the line-perfect graph F' and its line graph G shown in

Figure 4.5.
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Figure 4.5

The edges x = e; and y = eg form an H-pair in F'. We get Nm,y = {ey4, €15} and find in F’

Cézz = {e1, e, €3,¢€4, €5, ¢, €7, €5}
03(333 = {ela €2, €3, €4, €9, €10, €11, 68}
CS’& = {e1, e, €12, €9, €5, €6, €7, €8}
Ci‘,‘; = {e1, €2, €12, €10, €11, €38}

C:S:?gz = {61, €13, €4, €3, €12, €190, €11, 68}
C;(E(E = {61, €13, €5, €4, €7, 68}

Cs(vg = {61, €13, €9, €10, €11, 68}

as cycles that run through z and y. Since the two edges in N , have only one endnode on
each of those cycles, C,E};, ceey C’g(c?; built the set C,,. Eight subsets of C,, are suitable: the
cycles C’,(f;, C’é?;, 03(672, as cases (a),(b),(c) and the five subsets in Figure 4.6(d), ... ,(h).

The next table lists, for the five non-trivial cases (d), ... ,(h), of which cycles those sub-
sets consist and gives a pseudo-ear decomposition Ej, E, ..., Ey.
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(d) C:fy = 05(52 U 05(5(2’ E(I) = C 5y5 El {613}

(e) ng = Cﬂ(’/‘?@) U 03(7’2’ E(I) = C ,y; El {697 €10, 611}

(f) ¢ =ciuck), Ej = c 0, B = {e1}

(9) CI =CEUCH)UCE)UCH), By = CE) By = {ewn}, By = {e1s}

(h) Cfly = Cury, Ey = Cw,y, Ey = {eg, €10, €11}, Ba = {e1n}, B3 = {ei3}

Hence STAB(G — zy) admits the following eight facets of type (4.2a).

((L) T +.’132 +$8 +l‘10+$11 +£E12 +.’E14+.T15 S 3
(b) T +$5+$6+$7+$8 +$13 +.’E14+.T15 S 3
(C) T +2g+2Tg+T10+ 211 +213+T14+ 215 S 3
(d) $1+.’E2+$3+.’E4+$5+$6+.’E7+$8 +3713+.’1714+.’1715 S 4
(e) = +x5+x6+T7+Ts+T9 Tio+T11 +ri3t+2utrs < 4
(f) x4+ +x5+x6+T7+ T8+ T9+ +Ti+Ti3+rTutrs < 4
(9) z1i+zo+a3+as +x8+Tg+T1o+T11 + T2+ T3+ Ta+T1s <4
(h) xi+zo+ar3t+zst+as+ae+r7+as+T9+T10+T11+T1o+T13+Tu+z15 < 5

If we consider another H-pair = e1, y = ey in F, we get M, = {e13} and there are the
following four even cycles in F' containing x and y.
C(l) _
Ty = {61, €s, €7, €6, €5, €4, €3, 62}
(2) _
Cx:y - {61, €s, €7, €6, €5, €9, €12, 62}
(3) _
Cz,y = {61; €8, €11, €10, €9, €4, €3, 62}

(4) _
Cuy = {617 €3, €11, €10, 612,62}

Since the only edge in N, , is a chord of Cg(c};, ng}, and C’f’; (see Figure 4.5), these three

cycles do not belong to C,, by definition. Hence C,, = C’g(cfl; holds and, therefore, 0152
is the only subset of C;, which fulfills all the conditions above. Thus STAB(G — zy)
admits only one facet of type (4.2a) which is a zero-lifted odd hole constraint (4.1b) in
particular.

X1+ X9 +.’L’8 +$10+$11 +$12+.’E13 S 3

Let us consider another H-pair in F, namely z = e, and y = e5. Here N, = {ey, €13}
holds and two even cycles run through x and y.

1
Cﬂ(ﬂa; = {647 €3, €2, €1, €3, €7, €6, 65}

2 _
T,y — {645 €3, €12, €10, €11, €7, €6, 65}
Since eg € N, has only one endnode on C’Sg, and e;3 € N, has only one endnode on
Oi?;, the set C;, consists in those two cycles. We find three subsets of C,, which admit
a pseudo-ear decomposition Ej, E1, ..., Ey, namely CS; as case (a), C’(,y as case (b), and

(c) ng =Cyy Ey = Ca(clz)/ E; = {e11, €10, €12}
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There is no edge in A, with only one endnode in the whole set C,,, hence the latter
case (c) does not fulfill the conditions above. STAB(G — zy) admits, therefore, only two
facets of type (4.2a).

(@) x1+xo+x3+24+T5+T6+T7+ T3+ g + T3
(b) $3+$4+$5+J36+$7 +$9+$10+$11+$12+(E13

IAIN

We have studied how to lift the rank constraints (4.1d) basing on a graph L(H) C G —xy
with |[V(H)| > 5 to a weak rank facet (4.2a) of STAB(G — zy). Now, let us turn to
the second case where |V(H)| = 5 holds (we still use the agreement from page 77). If
H does not admit any cycle of length 4 running through z and y, i.e., if ujus ¢ E(H),
H admits a proper ear decomposition Hy, Hy,..., Hy = H as given by Lemma 4.3. We
deduce Hy = C5 and k = 0, since H admits only five nodes and is simple. Otherwise, for
uug € E(H), the only possible ear decomposition Hy, H; = H is given by Lemma 4.4.
Then Hy = C5 and E; = ujus follows. In the latter case, a weak rank facet may appear
in STAB(G — xy) which does not base on L(H) but only on L(Hy), i.e., on the odd hole
of length five itself. Thus we concentrate our attention on this C5 C G — zy. To state
and prove the following theorem, we make use of the convention to number the nodes of
Cs C G — zy introduced in Section 2.1 for convenience: let vy, ...,v5 be the nodes of Cj5
and v;v;41 for 1 < ¢ < 5(mod 5) its edges, where e = vyv, is the critical edge and viv4vs5
the triangle in Cs +e (i.e., we have x = €1, y = €4, and e, = e5). Furthermore, we define
in (G — e) — C5 three node sets with respect to Cs by

N3 ={v; € (G—¢e)—Cs: Ng,(v;) = {v1,v4,05}},

Ny ={v; € (G—¢e)—Cs5: Ng,(v;) = {v1,v9,v3,04}},
Ns ={v; € (G —¢e) — Cs: Ng,(v;) = {v1, v, v3, 04,05} }
(Note that N3 U N5 corresponds to the set N, , from Theorem 4.5, Ny is either empty or
contained in L(Fy), and the sets N, and Nj consist of at most one node.)

Theorem 4.6 Let G be the line graph of a simple line-perfect graph F' and e = viv4 a
critical edge of G. Every Cs C G — e yields in STAB(G — e) the facet

Z T + Z z; < 2 (4.2a)

v, €C5 v;€N3UN4UN3

except Ny = () but N5 # 0 and, except the case Ny # () but N5 = (), in addition the facet

v,€C5 v;EN3 v;EN5

Remark. To illustrate the assertion of this theorem, look at the odd holes with nodes
v1, ..., Vs that arise in the line graphs in Figure 4.7 by the deletion of the critical edge
v1v4. Both facets (4.2a) and (4.2b) appear only in the case Ny # () and N5 # 0 (see
Figure 4.7(a), here the facet of type (4.2b) does not base on the rank constraint (4.1d)
associated with the Cs U Ny, but only on the odd hole constraint (4.1b) associated with
the C5). For Ny = () but N5 # () (see Figure 4.7(b)), the Cs only induces a facet of type
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Figure 4.7

(4.2b). For N, # 0 but N5 = () (see Figure 4.7(c)), the C;5 defines only a rank facet of
type (4.2a). In the case Ny = N5 = () shown in Figure 4.7(d), the facets (4.2a) and (4.2b)
coincide.

Proof. Let G be the line graph of a simple line-perfect graph F', e = wvyvs a critical
edge of G, and n = |E(F)| = |V(G)|. Consider the corresponding odd hole C5 C G — e

with nodes vq,...,v5. We partition the nodes v; in (G — e) — C5 with respect to their
neighborhood on C5. Looking at the underlying graph F', we know by Theorem 2.10 that
Cs + e is the image of an even cycle C' C F with edges ey, ..., e, and of e5 that is incident

to e; and ey but has only one endnode on C. Listing all possibilities for edges e; with
6 <i < mnin F to be incident to the edges ey, ..., e5 yields the studied partition of the
nodes in (G —e) — Cs:

Ny = {’UZ' € (G — 6) —Cy: NC5 (Uz) @}

N = {v,€(G—¢€)—C5:Ng,(v;) = {vs}}

Ny = {’UZ' € (G - 6) —Cy: NC5(U2') {’l)j,Uj+1} with 1 < j<3or
{’Uj, Vj+1, U5} with j = 2}

Ny = {v;€(G—e)—Cs5:Ng,(v;)) = {v1,v4,05}},

Ny = {v;€(G—e€)—Cs5:N¢g,(v;)) = {vi,v9,v3,04}},

N5 = {v;€(G—e€)—Cs5: Ng,(v) {v1, v9,v3, V4,5 } }.

(Since F' is line-perfect, it cannot admit any odd cycle of length > 5 as partial sub-
graph. Hence F' cannot contain an edge e; incident to ey, e3, e5 and an edge e; incident
to e1, ez, €3, e4, otherwise the odd cycle ey, e;, e3, €;, €5 appears in F'. For an edge e; in-
cident to ej,ejy1,e5 with 1 < 5 < 3 follows j = 2, otherwise either e;, es, €3, €4, €5 or
e1, s, €3, €;, €5 is an odd cycle in F.)
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Define A; = {v;, v;42} (the indices are considered modulo 5), then Aq, ..., A5 are the max-
imum stable sets of C5. In order to show that (4.2a) and (4.2b) are facet-inducing for
STAB(G — e) we prove the following two claims for both of them.

Claim 1. The constraint is valid for STAB(G — e).

Claim 2. In G — e there are stable sets Si, ..., S, whose incidence vectors are affinely
independent and satisfy the constraint with equality.

Proof of Claim 1 for (4.2a). Checking the validity of (4.2a) for STAB(G — e), it suffices
to show a(Cs U {v;,vy}) = 2 for v;, vy € N3 U Ny U N5 with v;vy ¢ E(G — e). The nodes
in N3 U N5 correspond to edges of F' that are incident to the common endnode of e; and
eq, hence N3 U N5 induces a clique in G —e. So let v; € Ny and vy € N3 U N5 (recall that
N, contains at most one node since F' is simple). The only non-neighbor of v; on Cs is

vs, which is a neighbor of vy, so Cs U {v;, v» } has only stable sets of size two, and (4.2a)
is valid for STAB(G — ¢). ©

Proof of Claim 2 for (4.2a). In order to exhibit that the inequality (4.2a) induces a facet
of STAB(G — e), we define the following stable sets Sy,...S, of G —e.

( A; if v; € Cy
AU {Uz} if v; € NgUN;
Aj+2 U {Uz} if v; € Ny
{’Ug, Uz’} if v; € N3
{’U5, Uz’} if v; € N4
N4U{’Ui} if v; € N3

(Recall, j € {1,...,5} is determined by N¢,(v;) for each v; € Ny. Furthermore, by the
assumption N5 = @ if Ny = @, we do not need the stable set S, = N, U N5 in the case
Ny = ().) The incidence vectors X, ..., x" are affinely independent: Due to

Z )\ZXSI = Oa

1<i<n

A, = 0 is immediately seen. Then Xfi is the only nonzero entry of Xfl, ey Xf’” for each
v; € NgUN; UN, U N3 UN; and )\; = 0 follows V v; € (G —e) — Cs. The vectors
X1, ..., x5 are obviously affinely independent. Furthermore, the stable sets S, ..., S, are
chosen such that |S; N (C5 U N3 U Ny U N5)| = 2 holds for 1 < i < n. lLe., (4.2a) is sat-

isfied with equality by x1, ..., x°* and is, consequently, facet-inducing for STAB(G —e). ©

Now, let us turn to constraint (4.2b). Corresponding to the coefficients in this constraint,
define a weighting on the nodes of G — e as follows
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if v; € Cy
if ’UZ'EN()UNlLJNQ
if v; € N3
if v; € Ny
if v; € Nj

a(v;) =

N O = O =

Proof of Claim 1 for (4.2b). We have clearly a(Cs, a) = 2. The only nodes of G — e with
a(v;) > 0, not adjacent to any node in N3, are the adjacent nodes v, and v3. The node
v, € N3 (if it exists at all) is adjacent to all nodes v; € G — v, with a(v;) > 0. We have
a(S) < 2 for all stable sets S C G — e and (4.2b) is valid for STAB(G —e¢). <

Proof of Claim 2 for (4.2b). Recall that the maximum stable sets of the C5 are denoted
by Ay, ..., As and define the following stable sets of G — e.

( Az if v; € 05
AU {Uz} if v; € NgU Ny
SZ' — Aj+2 U {Uz} if v; € Ny

{'UQ,'UZ'} if v; € N3
N5 U {’Uz} if v; € N4
L {Uz} if v; € N5

(Again, j € {1,...,5} is determined by N, (v;) for each v; € Ny. Furthermore, according
to the assumption that N5 # ) holds if Ny # (), we are able to built the stable set
S; = N5 U {v;} with v; € Ny.) The incidence vectors X, ..., x°» are affinely independent:

Z )\z'XSi =0

1<i<n

immediately implies A, = 0, then Xfi is the only nonzero entry of Xf ' ...,X;-q”‘l for
5 < i < n and, therefore, \; = 0 follows for 5 < i < n. The vectors x°!, ..., x5 are
obviously affinely independent again. Finally, the stable sets Si,...,.S, are chosen such
that a(S;) = 2 holds for 1 < i < n. Thus x*', ..., x° satisfy (4.2b) with equality, i.e., the
constraint is facet-inducing for STAB(G —e). O

Remark. Similar to Theorem 4.5, let us reinterpret Theorem 4.6 by looking at the H-pair
x = e,y = ey in F that gives rise to the C5 C G — xy. According to Theorem 2.10, every
(5 in G — zy corresponds in F' to an edge e, = e5 and a cycle C,, = ejesezes. In the
special case considered here, we have to split the set NV, , = {e € E(F) : e forms a K 3
with z and y} (see the remark to Theorem 4.5) with respect to the studied cycle C;,, as
follows:

N5(Cpy) = {e € N,y : e has both endnodes in C, ,}
N3(Coy) = Naoy— N5(Cy)

(note that N, does not depend on the special choice of C,,). Then e,, € N3(C;,),
Cs U N3 = Cy U N3(Cyy) and N5 = N;3(Cy,) holds. Moreover, the set Cy, U N3(Cy,)
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corresponds to the union of |N3(Cy )| many Cs’s in G—zy, hence all C5’s in G—zy basing
on the same C,, in F yield the same facets. Thus, using the notions introduced above
Theorem 4.6 may be restated as follows. Let G' be the line graph of a simple line-perfect
graph F' and x,y be an H-pair in F. Then every Cy, with |Cyy| = 4 and N3(Cy,) # 0
induces, if N5(Cyy) =0 for Ny =0, in STAB(G — zy) the rank facet

in-i-z $i+z.’ljz’§2

€;€Czy €iE€Nz,y e;€Ny

and, if N5(Cyy) # 0 for Ny # 0, in addition the facet

Zl‘i'i-Zl'i-FQZ(EiSQ.

€;€Czy €;EN3(Ca,y) v;EN5(Ca,y)

For illustration, look at the line-perfect graph F' and its line graph G shown in Figure 4.8.

Figure 4.8

The edges * = e4 and y = eg form an H-pair in F'. There is only one even cycle in F'
through x and y, namely

Cz,y = {64,63, €10, 69}, N3(Cz,y) = {65,68}, Ny = {61}, N5(Cw,y) = {62}-

By |N3(Cy,y)| = 2 two odd holes {v4, v3, v10, V9, V5 } and {va, v3, v10, V9, Vs } appear in G—zy
basing on C,, and yield common liftings of type (4.2a) and (4.2b).

331+.’L'2+5E3+$4+$5 +338+Z'9+5E10
29+ T3+ 14+ 75 +Ts+T9+ 10

ININA
b

Next, choose the H-pair x = e5 and y = e¢ in F'. Then we have in F' only one even cycle
that contains x and y, namely

Cx,y = {65768: €7, 66}; NS(Cm,y) = {612}, Ny = @, N5(Cm,y) = {611}-
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Hence G' — zy contains only one odd hole {vs,vs, vz, vg, v12} by |N3(Cy,)| = 1. The rank
constraint associated with this odd hole is lifted to only one facet

T5+Te+T7+ T8 +2111+ 210 < 2

of type (4.2b) in STAB(G — zy), since Ny = 0 but N;5(C;,) # 0 holds.

Now, consider the H-pair x = e5 and y = eg in F'. Two cycles C,, appear in F, and we
have to consider the following two cases:

(a) Chy={es.coeresl,  N3(Ciy) = {es,ense0}, Na={en}, Ns(Ciy) =0,
(b) CJ(;; {6556127613768}: N3(Cﬂ(')?33) {62564769} N4 {611} N5( (2)) - @
For i € {1,2}, \N3(0§ZL)| = 3 implies that each ngz)y causes three different odd holes of

length five in G —xzy. All three odd holes basing on the same cycle Cg(g'y 1nduce one facet of
type (4.2a) in STAB(G — xy) for i = 1,2 (note that N5(Cy) = Ns(CE) = 0 but N, # 0

holds). So we obtain the following two rank facets in STAB(G — zy).
(a) Ty +Ti+T5+Te+T7+HTs+ g + 21 < 2
(b) T2 +24+ 25 +2s+ 29 +Z1+T12+ 213 < 2

Turning to the case with Ny = N;5(C,,) = 0, look at the line-perfect graph F' and its line
graph G shown in Figure 4.5 again. The edges x = e; and y = e3 form an H-pair. We
find three cycles C,, that run through = and y.

(1)
Cry = {62,61,68,67,6&65,€4a€3}
2)
C,y {62,61,68,611,610,69,64;63}

(3) _
Cz,y - {627 €13, €4, 63}

The only edge e;5 incident to z and y has both endnodes on ng, hence C;(f; does not
belong to C,, by definition and we get C,, = {C’S;, Cf;} We have to apply Theorem 4.6
to handle the odd hole basing on CS) (see case (a)) and we have to look for subsets
Cl, C Cyy with |CfL | > 4 that satisfy the conditions of Theorem 4.5 (there is only one
such subset, see case (b)).

(a) 0g2={€2,€3;€4,€13} N3( ) {e12} N4:N5(Cag?g)/) 0

(b) CI, =Cqy = C:ﬁ Ey = {e3}

)

So Cg induces by Theorem 4.6 a zero-lifted odd hole constraint (N, = N5(CE2,) =0
implies that the two facets (4.2a) and (4.2b) coincide in that case). The whole set C,,
induces a facet of type (4.2a) by Theorem 4.5, because e;s is incident to = and y but has
only one endnode in C}/,. Thus STAB(G — wy) admits the following two rank facets of
type (4.2a).

(a) ZI9 +$3+.T4 +3312 +.’E13
(b) .’E1+$2+$3+$4+$5+$6+.’L‘7+.’L’8 +$12+.’E13

IAIN
NN
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Finally, the following observations are worth noting in order to figure out in which situa-
tion we have to apply Theorem 4.5 and when Theorem 4.6. Let £ = u;2 and y = zuy be
an H-pair in the simple line-perfect graph F' and G be the line graph of F.

First, let F' contain a cycle Cy,, = ujzusw of length four through = and y. For N5(C,,) # 0
(i.e., Cyy has the chord zw), Cy, is the only even cycle through z and y in F, otherwise
F would possess one of the odd cycles of length at least five emphasized by bold lines in
Figure 4.9. Thus, if there is a cycle Cyp, = ujzusw in F and zw € E(F), then Cyy = Cyy
holds (since z and y form an H-pair in F') and STAB(G — zy) has precisely one facet of
type (4.2b) and, if uyu, € E(F), in addition precisely one facet of type (4.2a) according
to Theorem 4.6.

Figure 4.9

For Ny # 0 (i.e., F' contains the edge ujus), C;, does not contain any cycle of length > 4
according to Lemma 4.2(iv). Thus, STAB(G — zy) has |C, | facets of type (4.2a) and, for
each C,, € C,,, with N5(Cy,) # 0, one facet of type (4.2b). Hence, for N5(C,,) # 0 for
one cycle Cy,, € C,, or Ny # 0, all weak rank facets of STAB(G — zy) are described only
by the latter Theorem 4.6.

Moreover, C;, admits cycles Cy, of length 4 as well as cycles of length > 4 only if
Ny = 0 and N5(Cy,) = 0 holds for all C,,, € C,, of length 4. Then every odd hole of
length five in G — zy induces in STAB(G — zy) only one rank facet since the two facets
described in Theorem 4.6 coincide in that case. Hence, for Ny = () and N5(C,,) = 0 for
all Cy, € C,,y of length 4, STAB(G — zy) has precisely one facet of type (4.2a) for every
subset O} € Cy,y such that CJf —z is an induced subgraph of F', there is an edge incident
to r and y with only one endnode in C  and CH admits a pseudo-ear decomposition.
We have the situation N, = () and N5(Cw ) = (Z) for all Cy, € C;, of length 4 at least
if F'is a bipartite graph, hence we get the following corollary (using the agreement from
page 77 and all the notions introduced above).

Corollary 4.7 Let G be the line graph of a simple bipartite graph F and © = w12,y = zuy
be an H-pair in F'. Then every subset ng C Cyy induces in STAB(G — zy) the rank facet

dowi+ Y m < —|v ci)l

Cq,ec ezENm y
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iof ng admits a pseudo-ear decomposition, there is an edge zw € Ny, with w ¢ ng, and
Cll, — z is an induced subgraph of F (where Ny, = {e € E(F) : e = zw,w # uy,us} and
Cy,y stands for the set of all even cycles Cy, through x and y such that there is an edge
2w € Ny with w & Cypy).

A proof of Corollary 4.7 independent of Theorem 4.5 and 4.6 can be found in [64].

4.3 Facets of STAB(G—e) with G a Perfect Line Graph

Through this section, let Gr denote the complement of the line graph of a line-perfect
graph F and the node v; € V(GF) correspond to the edge e; € E(F) for 1 < i <n =
|[V(Gr)| = |E(F)|. Again, our main objective is to study facets of STAB(Gr — e) that
are neither nonnegativity nor maximal clique constraints. The graph Gr — e has odd
antiholes as only minimally imperfect subgraphs: Theorem 2.11 characterizes anticritical
edges in perfect line graphs. Consequently, we obtain a characterization of critical edges
in complements of line graphs. By Theorem 2.11 we know, therefore, that Gz only admits
A-critical edges e, i.e., every minimally imperfect subgraph G, — e C G — e is an odd
antihole. The following theorem shows how to lift the rank constraint (4.1c) associated
with an odd antihole of Gy — e to a weak rank facet of STAB(Gy — e).

Theorem 4.8 Let Gp = L(F), F be a line-perfect graph, and e = xy a critical edge of
Gr. Then every minimally imperfect subgraph G, — e C Gr — e induces the facet

doomi+ Y 21 <2 (4.2¢)

v €EG pr vi€G 1
in STAB(GF — e) for every pair of partial subgraphs F', M' C F such that

(i

) F' is connected and has mazimum degree A(F') =2,
(ii) Ge C Ggr and no edge of F incident to the edges x and y is contained in F',
(iii) M' is a matching in F — V(F"), and
)

(iv) every edge in F' — E(F'U M') is incident to x and y, to two incident edges of F',
or to one edge of M'.

Remark. A-critical edges e = xy in G correspond to A-pairs z,y in F' by Theorem 2.11.
Hence recall from page 23 that, for every A-pair z and y, there is a path P, C F' of odd
length > 5 with z and y as endedges. The edges of P, , correspond to the nodes of the
odd antihole G, — e C Gy — e (cf. Figure 2.2(c),(d) on page 23). In order to find the
weak rank facets (4.2c) of STAB(GFr — e) associated with G, — e, we first have to find the
partial subgraph F' C F' containing P, , by condition (ii). Since F' is line-perfect, F"' is
either a chordless path, a triangle, or an even hole by condition (i), hence a path of length
> 5 or a hole of even length > 8 by (ii) (if F” is an even hole, G is the union of two odd
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antiholes in Gr — e). Then we have to find a matching M’ in the remaining part of F'
(see condition (iii)) such that condition (iv) is satisfied. Since there may be several such
paths P, , in F, each of them corresponding to the nodes of an odd antihole in G — e,
we have to apply this procedure to all these paths P, in order to get the whole set of
facets (4.2c) of STAB(Gp — e).

Before we prove Theorem 4.8, let us illustrate how the partial subgraphs F’, M" C F look
like. For that, consider the line-perfect graph F' shown in Figure 4.10 and the complement
of its line graph Gp.

SIS
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Figure 4.10

The edges x = e; and y = e4 form an A-pair in F'. Hence e = vyv4 is a critical edge of
Grp. If we delete e from G, the following facets different from nonnegativity and clique
constraints occur in STAB(GFr — e). All lifting coefficients are included.

z1+ Z2 +zi+ 5+ T+ TT+ T3+ T+ T10 +1z1o <2 (1)
T+ X9 +x4+ 5+ T + 2xg + x10 + 1x19 + z15<2 (2)
T + 23+ T4 + 2z4 + 2x9 +x11+ 19 <2 (3a)
T +x3+ x4 + 2x¢ + 2xg +T11+ T2 <2 (3b)
T +x34+ x4+ 125 + 2xg +x11+ Z12 + 2215 <2 (30)
I +x3 + x4+ 1.’1)5 + 2.’1)7 + 2:179 +x11 + T19 S 2 (3d)
T +x3+ x4+ 15 + 124 + 2zg +x11+ Z12 +1z15<2 (36)
x1 +x34+ x4+ lag + lzg + 127 + 2x9 +x11+ 2192 <2 (3f)
T +x3+ x4+ lzs + 124 + lzg + 1xg +x11+ x12 +1z15 <2 (39)
T +x3+ T4+ 15 + 1xg + 127 + 1l2g + 1229 +x11+ 19 <2 (3h)
z1 + x4+ 1z5 + 27+ w5+ zT9tT10 TN+ T12 + 714 <2 (4)
x1 +xz4+ 125 + 2xg +z10+T11+ T12 +z14+ 215<2 (5)
Il +xT4+ 5+ T+ T7T+ T+ T9+ T1p + Z13 S2 (6)
T +zi+ x5+ T + 28 +z10 +z13 + z15<2 (7)
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The numbering of these constraints is concerned to the odd antiholes Ggl) —€,..., Gg) —e

that appear in Gz —e. GO e yields a zero-lifted odd antihole constraint (4.1c), the rank

constraints associated with Ggl) —e, 09 —e, G§4) —e, Gg’) —e, Gg) — e admit a unique

lifting, while we obtain eight different weak rank constraints (4.2c) from G —e. The
(

odd antiholes result from the seven different paths P;S,ly), cee Pg:) of odd length > 5 with
endedges r = e; and y = e4 in F"

(1) _
Pw,y = €1€2€10€9€g€7€6€E564,
P(Q) _

z,y — €1€2€10€15€6€5€4,

3
Pag,y) = €1€12€11€3€4,
P(4) _

z,y — €1€12€11€10€9€8€7€14€4,
p(5) _

z,y — €1€12€11€10€15€14€4,
P(ﬁ) _

z,y — €1€13€10€9€8€7€6€5€4,
P(7) _

z,y — €1€13€10€15€6€5€4.

The partial subgraphs F(’Z.) and M(’Z.) of F, satisfying the conditions of Theorem 4.8 and
corresponding to the facets of STAB(Gr — xy) above, are

F(Il) = {eie} U Pm(,lﬁa M(Il) = 0 (see(1)),
Fy = {en} U Py, My = {es}  (see(2)),
Flygy = PLY), M,y = {es,eot (see(3a)),
Flan Py Miy, = {esesh (see(3b),
F(I?,c) Pzg??) U {es}, M('3C) = {es,e15} (see(3c)),
F(lsd) ng?’l} U {es}, M('3d) = {er,e9} (see(3d)),
Flse) PY) U {es e, e}, My = {es} (see(3e)),
Flsp) ch?)y) U {es,es,e7}, My = {eo} (see(3f)),
F(I?)g) Pz(?’z) U {es,es,€15,€9,€8}, M('3g) =0 (see(3g)),
Flgpy PY) U {eses er,es e}, My, = 0 (see(3h)),
F(,4) = Pzg??) U {es}, M(I4) = 0 (see(4)),
Fis Py U fesh, My = {es}  (ee(s)),
Fie Py, Mg = 0 (see(©)),
Fiy = Piy) My = fes}  (see(T).

In order to see in which abundance the different liftings of a rank facet associated with
only one odd antihole may occur, let us consider the A-pair x = e4, y = eg in F

and the Cs = vyvsvgv7vg in Gg — zy. The following weak rank constraints appear in
STAB(GF — zy):
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2x1 + x4+ 25+ 26+ 27+ 28 + 219 <2
+ x4+ x5+ 26+ 17+ T8 + 2x19 + 2310 <2

211 + x4+ x5+ 26+ 27+ 28 + 129 + 2211 <2
+2z9 + x4+ 25+ 6+ 7+ 28 + 119 + 21190 <2

+ x4+ x5 +26+ 7+ 28+ 129 + 2113 <2

2z +1lzs4+ 24 +25+265+ 27 +28+ 129 + 1219 <2
+ 13+ x4+ 25+ 26+ 27+ 28+ 129 + 12219 + 2x19 <2

2z + x4+ x5 +26+ 27+ 28+ 1lxg+ 1z10 + 1211 <2
211 +1lxs+ x4+ x5+ 26 + 27 + 28 + L9 +1z11 <2
+ 1z, + T4+ x5 + 6 + 7 + 28 + L9 + 1219 + 2112 <2
+1zo + laxs + x4+ 25 + x5 + 7 + 28 + 129 + 2219 <2
1z + x4+ x5 +26+ 27 +28+ 129+ 1219 +1z13<2
1xq + x4+ x5 +26+ 27+ 28+ 1lxg + 1210 + 1211 + 1212 <2
lz1 4+ 1z9 + x4+ x5 +26+T7 +28+ 129 + 12219 + 119 <2
+ x4+ 25 +x6+ 27+ 28+ 1lxg + 119 + 1lx10 + 1213 <2

1z +1lxs+ x4+ x5+ 26 + 27 + 28 + L9 +1z13<2
lzq +1z3 + x4 + x5 + T6 + 7 + T8 + 179 +1z11 + 1z12 <2
lzy + 1z + 13+ x4+ 25+ 26 + 27 + 28 + 129 + 1219 <2

+1lxg+ T4+ 25 + 26 + 27 + 28 + L9 + 1z10+ 1213 <2
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All these facets come from the odd antihole of G — xy corresponding to the path P, , =
€4, €5, €6, €7,€3 C F. The partial subgraphs F(’Z.) and M(’Z.) of F, satisfying the conditions
of Theorem 4.8 and corresponding to the facets of STAB(Gr — zy) above, are

_ Pyy, M('a) = {ei, e}
= Py y, M('b) = {ew,e12}
= Pz,y U {69}a M(Ic) = {61, 611}
= P:c,y U {69}, M(Id) = {32’ 612}
= Pz,y U {69}a M(Ie) = {613}

— Py U {eg,e10,e3}, My = {e}

— Pry U {eg,ei,e3}, My, = {ew}

= Pry U {eg, e, e}, M(Ih) = {ei}

_ {eies} U Py U {eg), My = Aea}

— P;C,y U {69, €10, 62}, M(Ij) = {612}

- {es,es} U Poy U {eg), My = feiz}

= Pry U {eg,e10,e13,€1}, My =0

= Py U {eg,e10,e11,€12,€1}, M('m) =0

= Py U {eg,e10,e2,e1,e12}, M(In) = 0

= Pry U {eg,ew0,e13,e12},  Mj, = 0

= {er,e13,e3t U Py U {eg}, My =0

= {en,ez,e,e3 U Poy U {eg}, M(Iq) =0

= {612, €1, €2, 63} U P;c,y U {69}’ M(Ir) =0

= {e12,e13,e3} U Pry U {eo}, M(IS) 0
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In most cases, the graph F(’_) C F'is an odd or an even path. F(’_) is sometimes identical
with P, (see (a),(b)), extends P, on one end (see (c),(d),(e)), or on both ends (see
(p),(a),(r),(s)). In a few cases, F(, is an even cycle as in (f) and (g). Note that two
different paths P, , and P, , complement one another to this cycle. In that case, the facet
of type (4.2¢) of STAB(GFr — zy) bases on a subgraph of Gr — xy which is the union of
two odd antiholes.

Proof of Theorem 4.8. Let Gy be the complement of the line graph of a line-perfect
graph F' and e a critical edge of Gr. Consider two partial subgraphs F', M’ C F that
satisfy the conditions (i),...,(iv) of the theorem. Let Gp = L(F') and Gy = L(M')
denote the corresponding subgraphs of Gr and let the node v; of G correspond to the
edge e; of F for 1 < ¢ < n = |E(F)| = |V(Gr)|. According to Theorem 2.11, e is
an A-critical edge of G, i.e., every minimally imperfect subgraph G, — e C Gr — e is
an odd antihole. We make use of the convention from Section 2.1 to number the nodes
of Go —e = Cory1, k > 2 by vy,...,vop41 With vv;1 & E(Copyq) for 1 < i < 2k +1
(mod 2k + 1) and e = v vy41. Then condition (ii) implies E(F') = {ey,...,ex} with
2k +1 < k" and E(M') = {ep,-..,en} with k' < m/ follows from (iii). By (i), F" is a
chordless path or a chordless cycle, let the edges e; and e; ;1 be incident for 1 <i < k' —1.
Furthermore, let {eg11,...,ey} be the edges of F' that are incident to e; and egyq or to
the common node of e; and e;;; for some j € {1,...,k" — 1}. Denote by {ej, ..., €1}
the edges of F' that are incident to some e; for j € {m/,...,n} (note | < ' +1 holds by
condition (iv)).

In order to show that the inequality (4.2c)
S ne Y <o
v, €G pr Vi €G 1

induces a facet of STAB(Gr — e) we prove the following two claims.
Claim 1. (4.2¢) is valid for STAB(GF — e).

Claim 2. In G — e there are stable sets S, ..., S, whose incidence vectors are affinely
independent and satisfy (4.2¢) with equality.

Corresponding to the coefficients in (4.2¢), define a weighting on the nodes of Gy — e as
follows

1 if v; € GF’
a(v;) =< 2 if v; € Gy
0 otherwise.

Proof of Claim 1. In order to check the validity of (4.2c) for STAB(Gr — e) it suffices
to show a(S) < 2 for all stable sets S C Gy — e. The conditions (i) and (ii) imply
a(Gp — e) = 2, therefore a(S) < 2 for all stable sets S C G — e. Due to (iii), Gy is
a clique, thus a(Gr) = 1 holds and a(S) = 2 for all (non-empty) stable sets S C G-



4.4. A CLASS OF WEAKLY RANK-PERFECT GRAPHS 97

Furthermore, every node in Gy is adjacent to every node in Gy by (iii), i.e., there is
no stable set with nodes from G and from G. Thus (4.2¢) is valid for STAB(Gr—e). <&

Proof of Claim 2. By (i) and (ii), Ao = {v1, vor41} and A; = {v;,v41} for 1 <i <k —1
are maximum stable sets of G — e. Define the following stable sets of G — e

Ai—l if 1§ZS]€,
AU{v} R +1<i<l
{Uj,?)z'} if l’+1§l§ml—1
{vi} if m'<i<n

Si=

(For v; withi € {k'+1,..,0I'} and i € {I' + 1,...,m' — 1}, choose the smallest j < k' — 1
and j > m' such that {vj,v;11} C N(v;) and {v;} C N(v;), respectively, holds.) The
incidence vectors x, ..., x°» of these stable sets are affinely independent: x;* is the only
non-zero entry of Xfl, e Xi" fori € {k'+1,...,m' —1}. By

Z )\ZXSZ =Y,

1<i<n
Ai = 0 holds therefore for i € {k' + 1,....,m' — 1} and \; = 0 follows for i > m/,
too. Furthermore, from A\; + \jy; = 0 for 26 +2 < ¢ < k' — 1 and Ny = 0 we
know \; = 0 Vi € {2k + 2,...,k'}. Finally, x*1,...,x%%+1 are affinely independent by
PADBERG [50]. The stable sets Si,...,S, are chosen such that a(S;) = 2 holds for
1 < i < n, thus X', ..., x°" satisfy (4.2c) with equality and the constraint is facet-
inducing for STAB(Gp —e). O

In the special case that G'r is the complement of the line graph of a bipartite graph F|
we obtain precisely the same facets as described in the theorem above. A proof of this
fact independent of Theorem 4.8 can be found in [64].

4.4 A Class of Weakly Rank-Perfect Graphs

In the last two sections, we have studied facets of STAB(G — e) where G is a perfect
line graph or the complement of such a graph. The stable set polytopes of all these
graphs G — e that appeared during this investigations admit only weak rank facets be-
sides nonnegativity facets. In view of Problem 0.7 this gives reason to state the following
conjectures.

Conjecture 4.9 Let G be the line graph of a line-perfect graph F and e an edge of G.
Then a description of STAB(G — e) is given by the nonnegativity constraints (4.0), the
mazimal clique constraints (4.1a), and the weak rank constraints of type (4.2a) and (4.2b).

Conjecture 4.10 Let G be the complement of the line graph of a line-perfect graph F
and e an edge of Gp. Then STAB(GF — e) is entirely described by the nonnegativity
constraints (4.0), the mazimal clique constraints (4.1a), and the weak rank constraints of
type (4.2c).
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Thus we conjecture that G — e is weakly rank-perfect if G' is a perfect line graph or
the complement of a perfect line graph. By Corollary 4.7, the first conjecture can be
strengthened that G — e is even rank-perfect if G is the line graph of a bipartite graph.
For complements of line graphs we are able to prove the second conjecture in the special
case that ”line-perfect” is replaced by ”bipartite”.

Theorem 4.11 Let G be the complement of the line graph of a bipartite graph F and e
an edge of Gp. A description of STAB(Gr — e) is given by the nonnegativity constraints
(4.0), the mazimal clique constraints (4.1a), and the lifted odd antihole constraints (4.2c).

Proof. Consider a bipartite graph F', the complement of its line graph G'r, and an edge
e of Gr. By KONIG’s Matching-Theorem [40], G is perfect. If e is not a critical edge of
G, then Gy — e is perfect by definition, i.e., the constraints (4.0) and (4.1a) suffice to
describe STAB(Gr — €). Thus let e be a critical edge and

Z a;x; < b

v, €EGF
be a facet of STAB(G — e) different from (4.0) and (4.1a). Then we have to show that it
is a lifted odd antihole constraint of STAB(Gr—e) as described in Theorem 4.8, i.e, that it
is a facet of type (4.2¢). Consider a to be a node weighting of G, then b = a(GF, a) holds
and there are |Gr| maximum weighted stable sets of (G, a) whose incidence vectors are
linearly independent. Let B denote the non-singular matrix with those vectors as rows.
Consider the subgraph Gg« of Gr induced by {v; € GF : a; > 0} and let B* be the matrix
with all columns of B that correspond to nodes in Gp- (i.e., to all nodes with non-zero
weight). The columns of B* are linearly independent since B has full column rank and,
therefore, B* has |Gp«| linearly independent rows. Furthermore, a(Gp,a) = a(Gp~,a*)
holds where a* is a restriction of a to Gp+. Hence, the facet ax < b of STAB(Gr — €) can

be read as

UiEGF*

(the nodes v; of G with a; = 0 do not play an important role in the study of the facet).
In other words, it suffices to exhibit that () is a facet of type (4.2c) of STAB(Gp+ — e).
Let F* be the partial subgraph of F' with V(F*) = {w € V(F) : w incident to an
e; € E(F) with a; > 0} and E(F*) = {e; € E(F) : a; > 0} (i.e., Gp- = L(F*)) and let
n* = |Gp+| = |E(F*)|. Since (*) is particularly a facet of STAB(Gg+ — €), there have
to be maximum weighted stable sets Sy, ..., Sy« in (Gp« — e,a) with «(S;,a) = b, whose
incidence vectors x°!, ..., x°»* are linearly independent. If we count, in the sequel, the
numbers of maximal stable sets, maximum weighted stable sets, or maximum weighted
stable sets with linearly independent incidence vectors in any subgraph G’ of G, let us
use the following abbreviations for convenience:

MSS(G’%) : number of maximal stable sets in G
MWSS(G%,a) : number of maximum weighted stable sets in (G, a)
MWSSind(G'%,a) : number of maximum weighted stable sets in (G', a)
whose incidence vectors are linearly independent
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(we still use a as the node weighting restricted to G%> C Gpr). Then MSS(G%) >
MWSS(G%,a) > MWSS;;,4(G%, a) holds and MWSS;,4(Gp+ — e,a) > n*, since (%) is
a facet of STAB(Gp~ — €) by assumption. Note that stable sets S C G« correspond to
edge sets Eg C E(F*) with the property that there is a node in V(F™*) all edges in Fg
are incident to. Consequently, if F; and F} are different components of F* and S is a
stable set in GFquj, we either have S C Gp, or S C GFJ.. Hence, in order to determine
MSS(Gr,ur;), MWSS(Grur;, a), ot MWSSy;,4(GFur;, a), we often count the correspond-
ing numbers with respect to G, and GF, separately. Furthermore, we write v; for the
node of G corresponding to e; € F(F') and use

Sw = {v; € V(Gp+) : e; € E(F*) is incident to w € V(F*)}
Vo(F) = {weV(F):dp(w)>2}

to denote a stable set in G~ corresponding to the set of all edges in F* incident to
w € V(F*) and to denote the set of all nodes in F' with degree at least 2, respectively.
Finally, let e = zy, then we have z,y € V(Gp+) and z,y € E(F*), since (x) is neither of
type (4.0) nor of type (4.1a). Furthermore, by Theorem 2.11 follows that = and y form
an A-pair in F* and, therefore, are non-incident edges of F™.

The proof that (x) is a facet of type (4.2c) of STAB(GF — e) is organized in the following
claims which show that F* satisfies the conditions (i), (ii), and (iii) of Theorem 4.8.

Claim 1. |V,(F;)| = MSS(GFr,) > MWSS(Gp,, a) is satisfied by every component F; of
F* with |E(F;)| > 1.

Claim 2. Every component F; of F* with MWSS(Gp,,a) = |Gg,| is either isomorphic to
a single edge or to an even hole.

Claim 3. The edges x and y are contained in the same component F' of F*. Further-
more, MWSSina(Gp — zy,a) > |Gpr| and MWSSina(Gps—pr — xy,a) < |Gps_pr| hold.

Claim 4. F' is either isomorphic to a chordless path or to an even hole of length > 6;
we obtain MWSS,;,4(Gpr — xy,a) = |Gp|.

Claim 5. In F', every path between x and y has an odd number of edges > 3; all edges
of F' have weight b/2.

Claim 6. The subgraph M' C F* induced by V(F*) — V(F") is a matching; all edges of
M' have weight b.

Proof of Claim 1. Let F; be a component of F* with |E(F;)| > 1. Suppose the edge
ep = ww' of F; is the only edge incident to w € V(F;). Then the node vy € V(Gg,) is
contained in the stable sets S,,, Sy of Gp,. Since Fj is connected and we have |E(F;)| > 1
by precondition, dp,(w') > 2 and, therefore, S,, = {vy} C S,y must hold. Thus S,, cannot
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be a maximal stable set of G, for all w € V(F;) — V,(F;) and, as a consequence,
Va(Fy)| = MSS(Gr,).

MSS(GE,) > MWSS(GF,, a) obviously holds since a is a nonnegative node weighting. <

Proof of Claim 2. Suppose F; to be a component of F* with MWSS(Gp,,a) = |G|
In the case |E(F;)| = 1, F; is isomorphic to a single edge. Now, assume |E(F;)| > 1.
By MWSS(GF,,a) = |Gr,| and Claim 1, we get |Vo(F;)| > MWSS(Gg,,a) = |[V(Gr)| =
|E(F;)|. On the other hand, |E(F;)| > |Va(F;)| obviously holds by |E(F;)| > 1. Thus
|E(F;)| = |Va(F;)| follows and F; has to be a chordless cycle. Since F* is bipartite, F; is
isomorphic to an even hole. &

Proof of Claim 3. Let Ii,..., F; be the components of F*. In the case |E(F;)| = 1,
MWSS(GF,,a) < |V(GF,)| = 1 obviously holds. If |[E(F;)| > 1, then |V(GFr,)| = |E(F;)| >
|Vo(F;)| > MWSS(GFE,, a) follows on account of |E(F;)| > |Va(F;)| and Claim 1, i.e.,

[V(GEr)| > MWSS(GF,, a)

holds. Now, assume x € E(F};) and y € E(F)) for j # (. Then {z,y} is the only stable set
of Gp+—zy containing = and y, thus we have MWSS(G -, a) > MWSS;4(G g+, a) > n*—1.

Y MWSS(Gra) > Y MWSSina(Groa) > > [E(F)| -1 =Y |[V(Gr)| -1

1<i<k 1<i<k 1<i<k 1<i<k

holds particularly and, by |V (GFg,)| > MWSS(GF,,a) for 1 < i < k, we have equality for
at least £ — 1 components. Without loss of generality, let |V (GF,)| = MWSS(GF,, a) for
Fy,...,F; 4. Then Fi,..., F} | are either isomorphic to single edges or to even holes by
Claim 2. MWSS;;,4(Cax, @) < 2k —1 implies F1, ..., F, 1 have to be single edges. Without
loss of generality, let j € {1,...,k — 1} (i.e., let F; = {«}). Then we certainly have

> MWSS(GR,a) =k —1

1<i<k—1

but one of these maximum weighted stable sets of G« is {} which cannot be a maximum
weighted stable set of G« — zy. Therefore it must also hold |V(GFr,)| = MWSS(GF,, a).
In the case of |E(Fy)| = 1, the maximum weighted stable sets of Gy« corresponding to
F; and F; are {z} and {y}, respectively. Thus {z} and {y} are contained in precisely one
maximal stable set of Gp« —xy, namely {z,y}. Then MWSS(Gp« —zy,a) < |V(Gp+)| —1
would contradict the precondition that (k) is a facet of STAB(Gp« — zy). Hence we
have |E(Fy)| > 1. But now, Fj has to be isomorphic to an even hole by Claim 2 and
MWSS}ina(Car,a) < 2k leads to a contradiction. Thus x and y have to appear in the
same component of F*, let us denote this component by F’. We have

MWSS(GF*,FI - Ty, U,) S |V(GF*,FI)| and MWSSlmd(GFI -y, G,) Z |V(GFI)|

since (x) is a facet of STAB(Gp~ — zy). <
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Proof of Claim 4. Consider the component F’ C F* containing x and y. Decompose
F' into a set C = {C}, ..., Cy} of node disjoint holes and a set T = {71,..., T} of node
disjoint trees such that the subgraph of F' induced by V(F') — V(C) admits precisely
Ty, ..., Ty as its components. Denote by

I : the number of edges in F(F') — E(C) with both endnodes in V/(C),
1§ the number of edges linking the tree 7; with C.

Let T;¢ stand for the union of the tree T; and the I edges connecting T; with C and

[; : the number of nodes of degree 1 in 7; which are adjacent to some node in C,
li : the number of nodes of degree 1 in 7; which are not linked to any node in C.

In particular, [S > I; holds for 1 < ¢ < k' by definition and /; > 0 since F' is connected.
Moreover, we observe

=Y [ECHI+€+ > (BT +1f) (i)

1<j<k 1<i<k!

We know from Claim 3 that MWSS;,4(Gp — zy,a) > |Gp/| = |E(F")| holds. In order to
estimate MWSS,;,4(G g, a) with respect to |E(F")|, first recall that every maximal stable
set of Gy is a stable set S, with w € Vo(F’). Because the sets C and 7 define a node
partition of F’, let us count the number of maximal stable sets of G corresponding
to nodes in C and T separately. Consider C; € C and let C} stand for Cj together
with all edges incident to C; (i.e., together with all edges ww' € E(F') with w € Cj,

'€ (C—Cj)UT). Then V5(C7) = V5(Cj) implies MSS(GC;_) = |V(C})| by Claim 1. Let
M be the matrix with the incidence vectors of the |V (C})| maximal stable sets of Ger as
rows. Choose the columns of M such that the first |[E(C;)| columns correspond to the
edges of C;. Then the remaining columns of M, corresponding to the edges incident to

Cj, do not play any role for determining the rang of M. The maximal stable set matrix
of the even antihole G¢, (and so M) has rang |E(Cj)| — 1, therefore

MWSSiina(Ge,a) < Y (|E(Cy)| = 1) =1 = |E(FC])| — k — 1€ (i)

1<j<k

follows. Particularly, the edges connecting some hole in C and some tree in 7 do not
belong to E(F[C]). Turn now to the remaining part of F' consisting of 7', ..., T}5. First
note that Tic is not necessarily a tree for 1 < i < k' since two edges may link 7; with
the same node w € C. But the maximal stable set S,, of G is already included in
MWSS;ina(Ge, a) (see (ii)), so only maximal stable sets S, of Gg with w' € T are left to
count. Hence, in order to estimate MWSSn4(Gre,a) with respect to |E(TF)|, we may
T consider to be a tree for 1 <7 < k’. Suppose T;¢ yields |E(T;)| +1f maximum weighted
stable sets in G'pr, we get

Va(T)| = MWSS(Gre, a) = |E(T})| + 1 (iii)
by Claim 1. The assumption for 7;¢ implies |Vo(T6)| = |V (T;)| — I, so we infer
V(T)| = I = [Va(T)| 2 |B(T)| + 1 = [V(T)| = 1 +1f > [V(T)| =1 +1;
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by inequality (iii), |E(T;)| = |V(T;)] — 1 (recall that T} is a tree), and [ > I;. Hence, we
obtain [; + I < 1. That F’ is connected yields /; > 0, so we conclude /; = 1 and I} = 0.
Thus 7T; consists of precisely one node. But now, |V,(T,¢)| = 0 holds in contradiction to
(iii) and, therefore, T;¢ cannot yield |E(T;)| + If maximum weighted stable sets in Gp.
We obtain

MWSSiina(Gre, a) < MWSS(Gre,a) < |E(T3)| + 1£f -1 (iv)
for 1 <4 < k’. So we combine (ii) and (iv) to
MWSSlmd(GFI, a) S ‘GF/‘ - (k + lc + kl) (V)

Since F’ is bipartite, there are at most two edges z, 2’ of F’ which are incident to both
x and y. Thus only if there is a C, with edges {z, z,y, 2’} in F’, there can be two stable
sets in G'p» — xy containing x and y. Therefore

MWSSiina(Gr — xy, a) — MWSSi4(Grr,a) < 2

must hold and we get k + ¢ + k' < 2 by Claim 3 and (v). Provided k + (¢ + k' = 2, F'
would be disconnected for &k = 2 or k' = 2. Hence assume k, k' = 1 and refrain from using
indices for the only hole C' € C and the only tree T € T. By MWSS;a(Gr — zy,a) —
MWSSina(Grr,a) = 2, F' contains a Cy with edges z, 2, y, 2. Without loss of generality,
let E(C) = {z,z,y,2'}. Since {z,z}, {2,y}, {y, 7'}, and {2/, z} are not maximal stable
sets in G —zy, at least three nodes of C' are linked to T (then the edges incident to these
three nodes may yield maximum weighted stable sets) and [© > 3 follows. Estimating
MWSSina(Gr — xy, a), we get on one hand

|E(F’)‘ MWSSlmd(GFI — 2y, a) = MWSSlmd(GF/, a) + 2
(E(C)| = 1) + V(1) + 2
E(O) — 1+ (V(T)| = 1) +2
|E(C)|+ |E(T)| —1I'+2

IIVANIVAN

by Claim 3, our assumption, (i) and Claim 1, the definition of 7¢, and T tree. On the
other hand, |E(C)| +1° + |E(T)| < |E(F')| holds by (i), we deduce I° + ' < 2, and get
a contradiction to [ > 3 and I’ > 0. So k + k' = 1 follows by z,y € E(F'). In the
case of k = 1 and k' = 0, F' is isomorphic to an even hole. If F' were a C, with edges
{z,2,y,2'}, G — xy would have at most the maximum weighted stable sets {z,z,y}
and {z,z',y} in contradiction to Claim 3. Hence F’ is an even hole of length > 6 and
MWSSiina(Gp — zy,a) < |Gpr| holds by (v). In the case of K = 0 and &' = 1, F' is
isomorphic to a tree. So I’ cannot contain a Cy with edges {z, z,y, 2’} in particular and
MWSSina(Gp — zy,a) < MWSS}in4(Grr,a) + 1 follows. Let I stand for the number of
nodes with degree 1 in F', then

|E(F)+1=0'=|V(F)| =1 = |Va(F')| > MWSS(Gpr,a) > |E(F')| — 1

holds since F' is a tree, by the definition of [, Claim 1, and Claim 3. From ' < 2 follows
I' =2. Le., F' is a chordless path and we obtain MWSS;;,,4(Gr — zy,a) < |V(Gg)| by
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(iv). Therefore, MWSS;na(Grr — xy,a) < |V(G)| is true in both cases, if F’ is an even
hole of length > 6 or a chordless path, and the assertion of the claim follows by Claim 3. &

Proof of Claim 5. Consider the component F' C F* containing = and y. By Claim 4, F’
is either an even hole of length > 6 or a chordless path. Let E(F') = {ei, ..., e, }, where
e; and e;;1 are incident edges for 1 <4 < m — 1 (and e, and e; if F' is an even hole).
Let Sy, ..., Sp—1 with S; = {v;, v;41} be these maximal stable sets that yield |V (Gp)| —1
maximum weighted stable sets with linearly independent incidence vectors in G — xy.
Furthermore, let S,, denote this stable set of G — xy containing = and y (recall that
there is only one such stable set by Claim 4). Then, the incidence vectors of Sy, ..., Sy, 1
and Sz, have to be linearly independent. Without loss of generality, let x = e; with
1<j<m-—1andy=e¢ with j+1 <1 <m (actually, y # e, if z = e; and F' even
hole). Assume [ = j + 2k + 1 with £ > 0, then S;,...,S;_1,S;, would be the maximal
stable sets of an even antihole in G — zy, i.e., their incidence vectors x, ..., x5-1, xyJ=v
could not be linearly independent. Thus we have | = j 4+ 2k with £ > 0. For k£ = 1,
S; = {x,vj11} and Sj11 = {v;41,y} are certainly maximal stable sets in G, but not in
Gp — xy. Thus Claim 1 implies MWSS;;,,4 (G — xy, a) < |[V(Ggr)| — 1 but Claim 4 lead
us to a contradiction. Hence k£ > 1 yields that every path between x and y has an odd
number of edges > 3 and, therefore, S,, = {z,y} must hold.

Now turn to the edge weights in F’. Since Sy, ..., Sm—1, Sgy have to be maximum weighted
stable sets in G — xy, we obtain a; + a;41 = b for 1 <7 <m —1 and a; + a; = b. Fur-
thermore, a; = ay holds whenever i and ' have the same parity. In particular, we have
aj = a; = b/2 by a(Syzy) = band | = j+2k, so we finally obtain a; = b/2for 1 < i <m. <&

Proof of Claim 6. Consider the subgraph M’ C F* induced by V(F*) — V(F'). Claim
3 and Claim 4 imply MWSS;;,q(Grr — 2y, a) = |[V(Gar)|. Since M’ is defined to be the
union of all components F; of F* neither containing = nor y, MWSS;;,4(Grr — 2y, a) =
MWSS,ina(Gar, a) follows. Thus we infer MWSS;;,,4(GF,,a) = |V (GF,)| for all F; C M.
By Claim 2, every F; has to be isomorphic to a single edge (note MWSS;,4(Gc,,, a) =
2k — 1), i.e., M’ is a matching in F*. Therefore, every G, consists of a single node
v;. Since G, have to yield an maximum weighted stable set of Gp- for all F; C M' by
MWSSina(Gar — zy, a) = |V (Gar)|, {vi} must be this maximum weighted stable set. We
obtain that every node v; € G and every edge e; € M', respectively, has the weight b. <

Thus, F’ satisfies Theorem 4.8.(i) by Claim 4 and Theorem 4.8.(ii) by Claim 5, where M’
satisfies Theorem 4.8.(iii) by Claim 6. Le., (*) has the form

ngi-l—beigb

V;€G v €G 1

and is obviously a facet of type (4.2¢) in STAB(G g+ — zy).

In order to establish this statement for STAB(Gr — xy), recall that the inequality

Z a;T; Sb

v, €GR
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is supposed to be a facet of STAB(Gr — xy). With scaling 2 = 1, we have shown
a; =1 Yv; € Gg and a; = 2 Yv; € Gp. For all remaining nodes v; with a; = 0, The-
orem 4.8.(iv) must also hold since the above inequality is a facet of STAB(GF — zy) by
assumption. Thus every facet of STAB(Gp — e) different from (4.0) and (4.1a) is indeed
a facet of type (4.2c). O

Since the facets of type (4.2c) are weak rank constraints, the following corollary is an
immediate consequence of Theorem 4.11 and gives at least a partial answer to Problem 0.7.

Corollary 4.12 All graphs, arising from complements of line graphs of bipartite graphs
by deletion of an arbitrary edge, are weakly rank-perfect.

As already mentioned in Section 3.2 and Section 3.3, all critically perfect graphs known so
far are line graphs of bipartite graphs, their complementary graphs, or created by the dis-
joint union, the multiplication, the substitution, the composition, the clique-, or the stable
set-identification of suitable graphs. If Conjecture 4.9 turns out to be true for line graphs
of bipartite graphs, we are able to describe STAB(G —e) whenever G is a critically perfect
line graph or a critically perfect co-line graph (cf. Theorem 3.18 and Theorem 3.22). Then
we would obtain the whole facet system of STAB(G — e) for all critically perfect graphs
G which are generated from line graphs or co-line graphs G, G5 only using the disjoint
union, the multiplication, the substitution, or the composition: since all critical edges of
G must be inherited from one of the original graphs G or G, in that case (cf. Lemma 3.7
and Lemma 3.9), we just have to use the results concerning the effect on the stable set
polytopes under applying those operations due to CHVATAL [9] and CUNNINGHAM [15].
Moreover, if e is a critical edge of either G; or GG, and G is created from G; and G4y by
clique- or stable set-identification, we would obtain the whole facet system of STAB(G —e)
by a result of FONLUPT and HADJAR [18]. E.g., if all minimally imperfect subgraphs of
G — e are contained in Gy, the descriptions of STAB(G; — e) and STAB(G:) would yield
one for STAB(G — e) by [18]. But Lemma 3.13 and Lemma 3.17 show that G — e may
admit minimally imperfect subgraphs G, — e with G, Z G; for i € {1,2}. In that case,
the results provided in [18] does not suffice for finding all facets of STAB(G — e). But
looking for a complete description of STAB(G — e) seems to be hopeless if we take into
account in which abundance minimally imperfect subgraphs G, —e of G —e with G, Z G;
for i € {1,2} may occur (see Section 3.2).

Finally, FONLUPT and HADJAR studied in [18] also which effect the addition of an edge to
a perfect graph on the stable set polytope has. But [18] gives a description of STAB(G +e¢)
only for some special cases, where e is not an anticritical edge of G. So further efforts are
needed to study the stable set polytopes associated with graphs obtained from anticriti-
cally perfect graphs by the addition of an edge.



Appendix A

A.1 Charts of Inclusion Relations

Many classes of perfect graphs are mentioned throughout this thesis. The following two
charts give an overview on their inclusion relations. Every class of perfect graphs occuring
in this thesis, except for C-PERF and A-PERF, appears in the two charts (the deno-
tation ”graphs” is omitted in every name of a graph class). All inclusion relations not
mentioned in the chapters above are quoted from HOUGARDY [35]. A solid arrow stands
for a proven inclusion relation, a dotted arrow for a conjectured one.

As a consequence of Theorem 3.26 we know that C-PERF and A-PERF are incompara-
ble with the most classes of perfect graphs, in particular, there are no inclusion relations
to any of the classes C in the charts. But these two charts illustrate the knowledge on the
intersection of C-PERF and A-PERF, respectively, and every of these classes C obtained
in Section 3.4 as follows. If C appears in the chart in a not filled rectangle, then there are
graphs in C N C-PERF and C N A-PERF, respectively (see Section 3.4 for examples).
Otherwise, i.e., if the corresponding rectangle is filled with grey color, we do not know
any graph in C N C-PERF and C N A-PERF, respectively. Here a rectangle edged in
solid lines stands for a proven empty intersection again, a rectangle edged in dotted lines
if this fact has not been established so far.
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Intersections of C-PERF and classes of perfect graphs.
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claw-free locally toroidal
Berge perfect preperfect Berge murky
PUNTTIRNT O
K,-free K, .R-free op (K,-e)-free planar
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(BIP) SQP e
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| BIP ; perfect
R S ‘
VVVVVVVVVVVVVVVVVV o »
gim 1 clique- weakly strongly
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Intersections of A-PFERF' and classes of perfect graphs.
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A.2 Tables Summarizing the Results
We provide the reader a brief overview on the results established through Chapters 2 and 3.
Occurrence of Critical Edges

The following table summarizes all results about which kinds of critical edges may occur
in the graph classes investigated in Section 2.3.

H-critical A-critical M-critical
bull-free Berge graphs k=2 k>2 ?
co-L(LINE) k=2 k>2 -
diamond-free Berge graphs k>2 k=2 —
K -free Berge graphs k>2 k=2 —
L(LINE) k>2 k=2 —
locally perfect graphs k>2 k=2 ?
Meyniel graphs — — —
murky graphs k=2 k=2 ?
P5, Ks-free Berge graphs k=2 k<3 —
planar Berge graphs k>2 k=2 —
toroidal Berge graphs k>2 k<3 —
weakly triangulated graphs k=2 k>2 ?

— the corresponding kind of critical edges must not occur
? it is unknown whether M-critical edges occur here
else the possible size of £ > 2 for G, — e =2 Coyy1, Copy1 is given

Perfect Edge Orders and Perfect Non-Edge Orders

We give an overview on graph classes which possess perfect edge orders (PEO) or co-
perfect edge orders (CEO) due to Section 2.4.

PEO CEO
bipartite graphs + +
line-perfect graphs + ?
triangulated graphs + +
weakly triangulated graphs + +
+ the corresponding graph class admits such an order

)

it is unknown whether the corresponding graph class admits such an order
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Forbidden Substructures

We sum up all aspects of forbidden substructures for critical and anticritical edges in
Section 2.1 and 2.2, as well as for critically and anticritically perfect graphs in Section 3.1.

xy critical | G € C-PERF | xy anticritical | Ge A-PERF

2-pair

weak odd pair

strict odd pair

true (anti)twin

false (anti)twin

weak comparable pair
strict comparable pair
universal node
isolated node
simplicial node
antisimplicial node

~

I~ ~ | ~ | ~ | ~
+

+

+

|
P~ ~ 1 ~ 1 ~ | ~ |
+

~~

+ the corresponding substructure may occur
— the corresponding substructure must not occur
/ x and y does not have this property by definition

Operations Preserving Critically and Anticritically Perfectness

This table summarizes the results obtained in Section 3.2, whether or not the considered
graph classes are closed under the following perfection preserving operations.

C-PERF | A-PERF | C-PERF N A-PERF

multiplication

substitution

disjoint union

composition g

amalgam @4, £ >0
2-amalgam Py

clique identification ®gx, £ > 0
stable set identification

_|_
_|_

~
|~~~ |

+ o ~~++ + +
|

+ the graph class is closed under applying this operation

the graph class is not closed under applying this operation
? it is unknown whether the class is closed under this operation
/ this operation cannot be applied to any graph in the class
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Graph Parameters for Critically and Anticritically Perfect Graphs

The bounds for the graph parameters investigated in Section 3.1 are listed in the next

table. Recall that all these bounds are tight by the graphs shown in Figure 3.1.

G € C-PERF G € A-PERF
minimum degree 4<6(G) <n—-3|2<4G) <n-5
maximum degree 4<AG)<n-3|3<AG)<n-=5
clique number 3<w(@ <n—-5|3<w(l@<n-6
stability number 3<a(@G)<n—-6|3<a(G)<n-5

Occurrence of Critically and Anticritically Perfect Graphs

This table provides the summarized information obtained in Section 3.4, which classes of
perfect graphs are known to contain critically or anticritically perfect graphs.

C-PERF A-PERF C-PERF N A-PERF

~
~

absorbantly perfect graphs
BIP*

clique separable graphs
co-L(LINE)

diamond-free Berge graphs
K ,-free Berge graphs
L(LINE)

locally perfect graphs
Meyniel graphs

murky graphs

Ps5, Ks-free Berge graphs
perfectly contractile graphs
planar Berge graphs
preperfect graphs
quasi-parity graphs

strict quasi-parity graphs
strongly perfect graphs
toroidal Berge graphs
weakly triangulated graphs

++ A+
|
|

++ 4+ + +

I ol S S I S I S S o

+ oo+ 4+ o

+ the intersection of these graph classes is known to be non-empty
- the intersection of the two graph classes is known to be empty
? no graph contained in the intersection of these graph classes is known



Notation Index

V(G) 9 node set of the graph G

E(G) 9 edge set of the graph G

|G| 9 equals |V(G)|

e=21xy 9 edge with endnodes x and y

G=(V,E) 9 graph with node set V and edge set F

Ny () 9 set of neighbors of z in V' C V(G)

dy (z) 9 number of neighbors of z in V' C V(G)

N(z) 9 set of neighbors of z in V(QG)

d(z) 9 number of neighbors of z in V(G)

I(Q) 9 minimum degree of the graph G

A(G) 9 maximum degree of the graph G

G'CGqG 9 G'is a subgraph of G

G- F 9 graph with node set V(G) and edge set E(G) — E'
G-—e 9 graph with node set V(G) and edge set E(G) — {e}
G+e 9 graph with node set V(G) and edge set E(G) U {e}
G[V'] 9 subgraph of G induced by the set V' C V(G)
G-V 10 equals G[V(G) — V|

G—-v 10 equals G[V(G) — {v}]

G'cG 10 @' is a proper subgraph of G

Plv;, vj] 10 path with nodes v;,...,v;

Plv;, v;) 10 path with nodes v;,...,v;_4

P(v;,v;] 10 path with nodes v;y1,..., v,

P(v;,v;) 10 path with nodes v;y1,...,v;_1

a(@) 10 stability number of G

w(Q) 10 clique number of G

x(Q) 10 chromatic number of G

0(G) 10 clique covering number of G

K, 10 complete graph on n nodes

Py 10 chordless path on k£ nodes

Cy 10 chordless cycle on £ nodes

K. 11 complete bipartite graph with color classes of size a and b
Kip 11 star

K3 11  claw

Ky—e 11 diamond
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z(Q)
a(G,a)
WSTAB(G)
RSTAB(G)
QSTAB(G)
LINE

11
11
11
11
11
11
12
14
14
14
14
14
21
23
23
23
30
30
35
42
43
43
43
43
43
46
51
52
95
o6
68
68
68
68
68
68
70
71
71
71
72

NOTATION INDEX

complementary graph of G
line graph of GG

reconstruction of the original graph from the line graph G

(1 is isomorphic to G4

equals G1 = Gy

subdivision of G

Strong Perfect Graph Conjecture
star-closure of the graph class C

class of all graphs with at most two nodes
class of all bipartite graphs

class of all strict quasi parity graphs

class of all quasi parity graphs

6-regular triangulation of the torus

edge incident to the common node of an H-pair z,y

even cycle running through an H-pair z,y

odd path of length > 5 with the A-pair z,y as endedges

class of all critically perfect graphs

class of all anticritically perfect graphs
antioperation of the graph operation x
graph operation introduced in [13]

disjoint union

composition

amalgam

2-amalgam

clique-identification

stable set-identification

bipartite graph with color classes A and B
critical bipartite H-graphs

critical bipartite A-graphs

critical bipartite A-graphs

incidence vector of V' C V(G)

stable set polytope associated with the graph G
equals Zvi cc @;7; where a; is the weight of v;
graph G with a node weighting «

vector with only 1-entries

equals z(G, 1)

weighted stability number

polytope solely defined by (4.0) and (4.2)
polytope solely defined by (4.0) and (4.1)
polytope solely defined by (4.0) and (4.1a)
class of all line-perfect graphs



Subject Index

2-amalgam 43

A-anticritical edge 17
A-critical edge 15
A-graph 54
A-pair 23
absorbant set 14
absorbantly perfect graph 14
adjacent nodes 9
amalgam 43
anticritical edge 17
anticritically perfect graph 30
antihole 12
antioperation 35
antisimplicial node 13
antitwins 14

false, true 14

bipartite graph 11
Berge graph 12
block 10

bull 11

chord 10
short, 10
chromatic number 10
class
co-, complementary 11
color, 10
claw 11
clique 10
clique constraint 69
clique covering 10
clique covering number 10
clique number 10
clique-identification 43
clique-cutset 13
clique separable graph 60
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co-class 11
co-graph 11
co-perfect edge order 26
color class 10
coloring 10
comparable pair 13

strict, weak 13
complement 11
complementary class 11
complementary graph 11
complementation 11
complete graph 10
complete join 36
complete k-partite graph 11
component 10
composition 38
connected graph 10
constraint

clique, 69

odd antihole, 69

odd hole, 69

rank, 68

weak rank, 69
critical edge 15
critically perfect graph 30
cutnode 10
cutset 10

clique- 13

stable- 13

star- 13
covering

clique, k-clique 10
cycle 10

even, 10

induced, 10

odd, 10

degree 9
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maximum, 9

minimum, 9
diamond 11
disconnected graph 10
disjoint union 36
dominating node 13

ear 73

ear decomposition 73
proper, 74
pseudo- 77

edge 9
A-anticritical, 17
A-critical, 15
anticritical, 17
critical, 15
H-anticritical, 17
H-critical, 15
incident to a node, 9
incident to an edge, 9
independent, 9
M-anticritical, 17
M-critical, 15
p-anticritical, 12
gp-critical, 12
parallel, 9

edge set 9

embedding 11

endblock 10

endedge of a path 10

endnode of a path, 10

endnode of an edge, 9

even contractile graph 14

even pair 13

F-free graph 11

facet of a polytope 68
false antitwins 14
false twins 14

graph 9
A- 54
absorbantly perfect, 14
anticritically perfect, 30
Berge, 12
bipartite, 11

SUBJECT INDEX

clique separable, 60
co-, complementary 11
complete, 10

complete k-partite, 11
connected, 10
critically perfect, 30
disconnected, 10

even contractile, 14
F-free, 11

H- 50

h-perfect, 71
hypomatchable, 69
imperfect, 12
k-connected, 10
k-partite, 10
k-regular, 9

line, 11

line-perfect, 12

locally perfect, 14
Meyniel, 12

minimally imperfect, 12
murky, 14
near-perfect, 71
g-connected, 12
gp-critical, 12
partitionable, 13
perfect, 12

perfectly contractile, 14
planar, 11

preperfect, 65

quasi parity, 14
rank-perfect, 71
self-complementary, 11
simple, 9

size of, 9

slim, 19

strict quasi parity, 14
strongly perfect, 14
t-perfect, 71

toroidal, 11
triangulated, 12
weakly rank-perfect, 72
weakly triangulated, 14
weighted, 68



SUBJECT INDEX

H-anticritical edge 17
H-critical edge 15
H-graph 50

H-pair 23

h-perfect graph 71

hole 10

hypomatchable graph 69

identification

clique- 43

in subgraphs, 11

stable set- 46
imperfect graph 12
incidence vector 68
incident edge 9
independent edge 9
induced cycle 10
induced path 10
induced subgraph 9
internal node of a path 10
isolated node 9
isomorphic 11

join, complete 36

k-clique 10

k-clique covering 10

k-coloring 10

k-connected graph 10

k-pair 13

k-partite graph 10
complete, 11

k-regular graph 9

k-stable set 10

length of a cycle, 10
length of a path, 10
line graph 11
line-perfect graph 12
locally perfect graph 14
loop 9

M-anticritical edge 17
M-critical edge 15
matching 9

perfect, 73
maximum degree 9

115

Meyniel graph 12

minimally imperfect graph 12
minimum degree 9

monster 13

multiplication 38

murky graph 14

near-perfect graph 71

neighbor 9

neighborhood 9

node 9
adjacent, 9
antisimplicial, 13
dominating, 13
isolated, 9
predominating, 65
simplicial, 13
universal, 9

node set 9

number
chromatic, 10
clique, 10
clique covering, 10
stability, 10
weighted stability, 70

odd antihole constraint 69
odd hole constraint 69
odd pair 13

open-disjoint path 10

p-anticritical edge 12
gp-connected graph 12
p-critical edge 12
gp-critical graph 12
pair
A- 23
comparable, 13
even, 13
H- 23
k- 13
odd, 13
strict comparable, 13
strict odd, 13
weak comparable, 13
weak odd, 13
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parallel edge 9
partial subgraph 9
partitionable graph 13
path 10

endedge of, 10

endnode of, 10

even, 10

induced, 10

internal node of, 10

odd, 10

open-disjoint, 10

(v,v")- 10
paw 11
perfect edge order 26
perfect graph 12
perfect matching 73
perfectly contractile graph 14
polytope

facet of, 68

stable set, 68
planar graph 11
predominating node 65
preperfect graph 65
proper ear decomposition 74
proper subgraph 10
pseudo-ear decomposition 77

quasi parity graph 14

rank constraint 68
rank-perfect graph 71

self-complementary graph 11
set
absorbant, 14
k-stable, 10
stable, 10
strong stable, 14
short chord 10
simple graph 9
simplicial node 13
size of a graph 9
slim graph 19
stable set 10
strong, 14
stable set polytope 68

SUBJECT INDEX

stable set-identification 46
stable-cutset 13
stability number 10

weighted, 70
star 11

center of, 11
star-closure 14
star-cutset 13
strict comparable pair 13
strict odd pair 13
strict quasi parity graph 14
strong chain condition 47
strong stable set 14
strongly perfect graph 14
subdivision of a graph 11
subgraph 9

identification in, 11

induced, 9

partial, 9

proper, 10
substitution 36

t-perfect graph 71
toroidal graph 11
tree 11
triangle 10
triangulated graph 12
triangulation 11
true antitwins 14
true twins 14
twins 14

false, true 14

union, disjoint 36
universal node 9

(v,v")-path 10
valid inequality 68
vector, incidence 68

weak comparable pair 13
weak odd pair 13

weak rank constraint 69
weakly rank-perfect graph 72
weakly triangulated graph 14
weighted graph 68

weighted stability number 70
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