
Routing and Capacity Optimization
for IP Networks

vorgelegt von
Dipl.-Math.oec. Andreas Bley

Dessau

Von der Fakultät II — Mathematik und Naturwissenschaften
der Technischen Universität Berlin

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

Dr. rer. nat.

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Volker Mehrmann

1. Berichter: Prof. Dr. Dr. h.c. Martin Grötschel

2. Berichter: Prof. Dr. Daniel Bienstock

Tag der Wissenschaftlichen Aussprache: 7. Februar 2007

Berlin 2007

D83

i

Abstract

This thesis is concerned with dimensioning and routing optimization prob-
lems for communication networks that employ a shortest path routing pro-
tocol such as OSPF, IS-IS, or RIP. These protocols are widely used in the
Internet. With these routing protocols, all end-to-end data streams are
routed along shortest paths with respect to a metric of link lengths. The
network administrator can configure the routing only by modifying this met-
ric. In this thesis we consider the unsplittable shortest path routing variant,
where each communication demand must be sent unsplit through the net-
work. This requires that all shortest paths are uniquely determined.

The major difficulties in planning such networks are that the routing can
be controlled only indirectly via the routing metric and that all routing
paths depend on the same routing metric. This leads to rather compli-
cated and subtle interdependencies among the paths that comprise a valid
routing. In contrast to most other routing schemes, the paths for different
communication demands cannot be configured independent of each other.

Part I of the thesis is dedicated to the relation between path sets and rout-
ing metrics and to the combinatorial properties of those path sets that com-
prise a valid unsplittable shortest path routing. Besides reviewing known
approaches to find a compatible metric for a given path set (or to prove that
none exists) and discussing some properties of valid path sets, we show that
the problem of finding a compatible metric with integer lengths as small as
possible and the problem of finding a smallest possible conflict in the given
path set are both NP-hard to approximate within a constant factor.

In Part II of the thesis we discuss the relation between unsplittable short-
est path routing and several other routing schemes and we analyze the
computational complexity of three basic unsplittable shortest path routing
problems. We show that the lowest congestion that can be obtained with
unsplittable shortest path routing may significantly exceed that achievable
with other routing paradigms and we prove several non-approximability re-
sults for unsplittable shortest path routing problems that are stronger than
those for the corresponding unsplittable flow problems. In addition, we
derive various polynomial time approximation algorithms for general and
special cases of these problems.

In Part III of the thesis we finally develop an integer linear programming
approach to solve these and more realistic unsplittable shortest path rout-
ing problems to optimality. We present alternative formulations for these
problems, discuss their strength and computational complexity, and show
how to derive strong valid inequalities. Eventually, we describe our im-
plementation of this solution approach and report on the numerical results
obtained for real-world problems that came up in the planning the Ger-
man National Research and Education Networks G-WiN and X-WiN and
for several benchmark instances.

ii

iii

Zusammenfassung

Die Arbeit befasst sich mit der Kapazitäts- und Routenplanung für Kom-
munikationsnetze, die ein kürzeste-Wege Routingprotokoll verwenden. Diese
Art von Protokollen ist im Internet weit verbreitet. Bei diesen Routingver-
fahren wird für jede Verbindung im Netz ein Längenwert festgelegt, diese
Längen formen die sogenannte Routingmetrik. Die Routingwege der Kom-
munikationsbedarfe sind dann die jeweiligen kürzesten Wege bezüglich dieser
Metrik. Bei der in der Arbeit untersuchten Variante dieser Routingprotokolle
wird zusätzlich verlangt, dass es je Kommunikationsbedarf genau einen ein-
deutigen kürzesten Weg gibt.

Die Schwierigkeit bei der Planung solcher Netze besteht darin, dass sich
die Routingwege einerseits nur indirekt über die Routingmetrik beeinflussen
lassen, andererseits aber alle Routingwege von der gleichen Metrik abhängen.
Dadurch können die Wege der verschiedenen Kommunikationsanforderungen
nicht wie bei anderen Routingverfahren unabhängig voneinander gewählt
werden.

Im erstem Teil der Arbeit werden der Zusammenhang zwischen gegebenen
Wegesystemen und kompatiblen Routingmetriken sowie die Beziehungen der
Wege eines zulässigen eindeutige-kürzeste-Wege-Routings untereinander un-
tersucht. Dabei wird unter Anderem gezeigt, dass es NP-schwer ist, eine
kompatible Metrik mit kleinstmöglichen Routinglängen zu einem gegebe-
nen Wegesystem zu finden. Es wird auch bewiesen, dass das Finden eines
kleinstmöglichen Konfliktes in einem gegebenen Wegesystem, zu dem keine
kompatible Metrik existiert, NP-schwer ist.

Im zweiten Teil der Arbeit wird die Approximierbarkeit von drei grundle-
genden Netz- und Routenplanungsproblemen mit eindeutige-kürzeste-Wege-
Routing untersucht. Für diese Probleme werden stärkere Nichtapproximier-
barkeitsresultate als für die entsprechenden Einwege-Routing Probleme be-
wiesen und es werden verschiedene polynomiale Approximationsverfahren
für allgemeine und Spezialfälle entworfen. Ausserdem wird die Beziehung
zwischen eindeutige-kürzeste-Wege-Routing und anderen Routingverfahren
diskutiert.

Im dritten und letzten Teil der Arbeit wird ein (gemischt-) ganzzahliger
Lösungsansatz für Planungsprobleme mit eindeutige-kürzeste-Wege-Routing
vorgestellt. Für die im zweiten Teil diskutierten grundlegenden Netz- und
Routenplanungsprobleme werden verschiedene (gemischt-) ganzzahlige lin-
eare Modelle vorgestellt und es wird deren Lösbarkeit und die Stärke ihrer
LP Relaxierungen untersucht. Es wird auch gezeigt, wie sich starke gültig
Ungleichungen aus den in diesen Modellen enthalten Substrukturen ableiten
lassen. Schließlich werden am Ende der Arbeit die Software-Implementierung
dieses Lösungsverfahrens für eine praxisrelevante Verallgemeinerung der Pla-
nungsprobleme sowie die damit erzielten numerischen Ergebnisse vorgestellt
und diskutiert.

iv

v

Acknowledgments

This work could not have been written without the help and encouragement
of many people. I am extremely fortunate to be surrounded by a truly
wonderful ensemble of fellow researchers and friends.

The greatest thanks goes to my supervisor Prof. Martin Grötschel for
giving me the chance to work on this very interesting topic. His steady
support and motivation gave me the freedom and the time I needed to finish
my research.

My colleagues and the staff at the Konrad–Zuse–Zentrum für Informa-
tionstechnik Berlin (ZIB) have provided a supportive and friendly working
environment and I wish to express my gratitude to all of them. I am particu-
larly grateful to Roland Wessäly, Adrian Zymolka, Arie M.C.A. Koster, An-
dreas Eisenblätter, Sebastian Orlowski, and Volker Kaibel for proof-reading
several parts of the manuscript. Their feedback helped me to put things
into the right perspective and made this thesis immeasurably better. Spe-
cial thanks also go the entire Discnet team at ZIB and at Atesio GmbH
for the effective cooperation in software development.

I would also like to thank my fellow researchers and friends at the Tech-
nical University Berlin, especially those in the Combinatorial Optimization
and Graph Algorithms group, for lots of interesting mathematical seminars
and discussions and many exciting basketball games.

This thesis was motivated by the problems arising in the planning and
operation of the German national research and education network operated
by the DFN-Verein. I have to thank all the people at the DFN-Verein and
in particular Marcus Pattloch for an excellent cooperation in this research
project. They ensured that the mathematics developed in line with the
practical needs and they provided access to the real problems.

And last, but certainly not least, a very big thankyou to my family and
all my friends for their understanding and encouragement throughout the
course of this PhD.

vi

Contents

1 Introduction 1
1.1 Focus of this Thesis . 1
1.2 Contributions of this Thesis 3
1.3 Organization . 4

2 Mathematical Preliminaries 7
2.1 Linear Algebra . 7

2.2 Linear and Integer Linear Programming 8

2.3 Graphs and Hypergraphs . 10

2.4 Walks, Paths, and Connectivity 11

2.5 Independence systems and Matroids 13

2.6 Computational Complexity and Approximation 14

3 Internet Routing and Planning Problems 21

3.1 History of the Internet . 21

3.2 Architecture and Basic Functionality 22

3.3 Shortest Path Routing . 24

3.4 Optimization Problems in IP networks 28

3.5 Mathematical Model . 31

I Metrics and Routing Paths 37

4 The Inverse Unique Shortest Paths Problem 39

4.1 Related Work . 40
4.2 Problem Definition . 41
4.3 Finding Real-Valued Lengths 44

4.4 Inapproximability Results for Integer Lengths 47

4.5 An LP-Rounding Algorithm 56

4.6 Unique Shortest Path Forwardings 60

4.7 Concluding Remarks . 66

5 Unique Shortest Path Systems 69

5.1 Related Work . 70

vii

viii CONTENTS

5.2 Basic Definitions and Observations 71
5.3 Properties of Unique Shortest Path Systems 75

5.4 Finding Irreducible Non-Unique Shortest Path Systems . . . 81

5.5 Finding Maximum Unique Shortest Path Systems 90

5.6 Undirected Unique Shortest Paths Systems 96

5.7 Unique Shortest Path Forwardings 103

II Hardness and Approximability 111

6 Approximability of Unsplittable Shortest Path Routing 113

6.1 Related Work . 115
6.2 Unsplittable Shortest Path Routing Problems 117

6.3 Relation to Other Routing Schemes 120

6.4 Inapproximability Results . 124

6.5 General Approximation Algorithms 137

6.6 Special Cases . 144

6.7 Concluding Remarks . 153

III An Integer Programming Solution Approach 155

7 Integer Linear Programming Models 157

7.1 Related Work . 158
7.2 Basics . 161
7.3 Path Routing Formulations 164

7.4 Arc Routing Formulations . 167

7.5 Solving the LP Relaxations 174

7.6 Strength of the LP Relaxations 186

8 Valid Inequalities 193

8.1 Routing Inequalities . 194

8.2 Superadditive Metric Inequalities 201

8.3 Precedence Constrained Knapsack Inequalities 209

9 Implementation and Computational Results 221

9.1 Modeling the Real Problem 222

9.2 Implementation . 237

9.3 Computational Results . 247

9.4 Conclusions and Future Work 259

Bibliography 261

Index 277

Chapter 1

Introduction

The work presented in the following was motivated by an ongoing cooper-
ation between the Konrad-Zuse-Zentrum für Informationstechnik and the
DFN-Verein zur Förderung eines Deutschen Forschungsnetzes e.V . The
DFN-Verein is a non-profit organization established to promote computer-
based communication and information services for research, development,
and education in Germany. Among other activities, the DFN-Verein op-
erates the Deutsches Forschungsnetz DFN, which is Germany’s national
research and education network. Connecting universities, research centers,
schools, libraries and other institutions from all over Germany, it provides
high-performance communication infrastructure for the German research
and education community. Being connected to the global Internet and to
the European backbone network Géant, the DFN is an integral part of the
worldwide system of research and education networks. Between 2000 and
2006 the national backbone of the DFN was the Gigabit Wissenschaftsnetz
G-WiN, since 2006 it is the so-called X-WiN.

One of the main tasks of the DFN is to provide IP connectivity of proven
high quality among the participating institutions. The network must not
only be able to handle the large data streams arising in scientific applica-
tions, it must also meet the high Quality-of-Service standards required for
multimedia applications such as video lectures or video conferences. For
this reason, G-WiN and X-WiN have been implemented as (virtual) private
networks and are managed directly by the DFN-Verein.

1.1 Focus of this Thesis

In this thesis, we investigate optimization problems that arise in the plan-
ning and operation of IP networks such as G-WiN or X-WiN. In principle,
these are the same problems that arise in planning of other communication
networks: In the very long-term strategic network planning, the network
provider or operator must decide about the future node locations, network
hierarchies if necessary, and transmission technologies. In long- to mid-term

1

2 1. Introduction

planning, the provider typically wishes to find an optimal (re)design of the
network. This involves decisions concerning the network topology, the hard-
ware and capacity installation, and the routing of the traffic demands. The
goal of these long-term problems usually is to minimize (an estimation of)
the total network cost. Finally, in the short-term operational planning, the
network operator’s goal is to make the best possible use of the available net-
work resources. Usually, this means to reconfigure the traffic flows according
to performance objectives – often in response to traffic demand changes –
but leaving the network’s topology and hardware configuration unchanged.
In practice, this task is called traffic engineering.

A particular issue in IP networks is the way the traffic is routed through
the network and the way this routing can be controlled by the network
operator. Frankly, each data packet is sent along a shortest path towards
its destination. Depending on the technical implementation of the routing
protocol, all packets sent from one origin to one destination have to follow
the same path or may be distributed among all shortest paths. The only
mechanism to control this routing is to modify the metric that is used to
compute the shortest paths. The main advantages and reasons for the pop-
ularity of this routing scheme are its simplicity and its robustness. It can be
implemented in a distributed fashion, it is inherently robust against network
failures, and it requires no centralized routing management. Because packet
forwarding decision depend only on the destination address, it also scales
much better with the network size than routing schemes that are based on
pre-configured end-to-end paths. On the other hand, shortest path routing
is less bandwidth efficient than other routing schemes and it is extremely
complicated from the network planning perspective. Because all routing
paths are based on the same shortest path metric, the attempt to change
one end-to-end routing path by fiddling around with this metric will affect
other routing paths, too. In contrast to many other routing schemes, there
are strong and rather complicated interdependencies among the end-to-end
paths that comprise a valid routing. Therefore, the routing paths in an IP
network can be controlled and modified only together as a whole. Finding
a metric that induces a set of globally efficient paths is one of the most
important and most difficult problems in IP networks.

In this thesis, we consider the unsplittable shortest path routing variant.
In this shortest path routing version, each traffic demand shall be sent un-
split via a single path from its origin to its destination. Accordingly, the
metric must be chosen such that the shortest paths are uniquely determined
for all demand node pairs. This routing version is used in the G-WiN and
in the X-WiN.

1.2. Contributions of this Thesis 3

1.2 Contributions of this Thesis

The main contributions in this thesis can be summarized as follows:

1. We prove that the problem of finding an integer-valued metric that in-
duces a prescribed set of unique shortest paths and minimizes the longest
arc or the longest path length is APX -hard. Previously, it was even open
if these problems are NP-hard or not. The proof is given Chapter 4.

2. We introduce an independence system characterization for unsplittable
shortest path routings. For every digraph, the family of all path sets
that comprise an unsplittable shortest path routing forms an indepen-
dence system. The circuits in this independence system are inclusion-
wise minimal path sets that cannot be realized as an unsplittable short-
est path routing. We present a simple greedy algorithm that finds such
an inclusion-wise minimal conflict in a given path set that is not an un-
splittable shortest path routing in polynomial time. Furthermore, we
show that the problem of finding a minimum cardinality or minimum
weight such conflict is NP-hard to approximate within a constant factor
less than 7/6. Analogous results are shown for an alternative indepen-
dence system characterization of unsplittable shortest path routings by
so-called forwardings. The two independence system characterizations
and the related results are contained in Chapter 5.

3. We thoroughly analyze the computational complexity of the basic net-
work design and traffic engineering problems with unsplittable shortest
path routing in Chapter 6. We show that, for a given capacitated digraph
and a given set of commodities, the minimal congestion that is achievable
with unsplittable shortest path routing may be a factor of Ω(|V |2) larger
than the minimum congestion that is achievable with unsplittable flow
routing, with shortest multi-path routing, or with fractional multicom-
modity flow routing in general. We also prove several inapproximability
results for unsplittable shortest path routing problems that are harder
than the best known results for the corresponding unsplittable flow prob-
lems. For example, we show that it is NP-hard to a approximate the
minimum congestion that is is achievable with unsplittable shortest path
routing within a factor of O(|V |1−ǫ) for any ǫ > 0. Several polynomial
time approximation algorithms are discussed as well.

4. We develop a practically useful mixed-integer linear programming ap-
proach to solve real-world network design and traffic engineering prob-
lems with unsplittable shortest path routing. Our approach decomposes
the problem of finding an optimal unsplittable shortest path routing into
the two subproblems of finding the optimal end-to-end routing paths and,
afterwards, finding a routing metric that induces exactly these paths. The
formulations we propose to compute the end-to-end routing paths do not

4 1. Introduction

involve the routing lengths, but instead rely on the independence sys-
tem characterization of unsplittable shortest path routings. This leads to
mixed-integer linear programs that are smaller and stronger than those
obtained with the traditional formulations involving also variables for the
routing metric. The integer programming models, valid inequalities, and
our implementation of this approach are described in Chapters 7 to 9.

1.3 Organization

This thesis is divided into three major parts. Part I is concerned with
the combinatorial properties of those path sets that comprise unsplittable
shortest path routings and with problems that are related to these path sets.
In Part II, we study the computational complexity of basic network design
and traffic engineering problems. In Part III, we finally develop an integer
linear programming approach to solve network design and routing planning
problems with unsplittable shortest path routings to optimality.

The two Chapters 2 and 3 precede these three parts. Chapter 2 serves
as reference to the basic mathematical notions and notations used in this
thesis. In Chapter 3, we describe the practical background, introduce the
mathematical notions related to unsplittable shortest path routing, and for-
mally define three basic planning problems that are considered throughout
this thesis.

Part I is dedicated to the combinatorics of unsplittable shortest path
routings and their compatible metrics. It comprises the two Chapters 4
and 5. Chapter 4 deals with the problem of finding a metric that induces a
set of prescribed unique shortest paths or proving that no such metric exists.
A problem version where the entire end-to-end paths are given and another
version where only some arcs on these paths are given are considered. We
review two linear programming formulations that can be used to solve these
problems, provided the arc lengths of the metric are allowed to be fractional
or arbitrarily large. We also show that the problems become computational
hard if the arc lengths must be small integers, which is required in practice.
Both the problem variant of finding integer arc lengths that minimize the
longest arc length as well as the variant of finding integer arc lengths that
minimize the longest path length are proven to be APX -hard.

In Chapter 5, we study the combinatorial properties of unsplittable short-
est path routings and discuss some related problems. We introduce an inde-
pendence system which completely describes all those paths sets that corre-
spond to an unsplittable shortest path routing. All previously known prop-
erties of these path sets, which are also reviewed (and generalized) in this
section, are insufficient to characterize unsplittable shortest path routings.
The independence system description cannot be represented by a finite list of
forbidden path configurations of finite size (as most of the previously known

1.3. Organization 5

properties), but algorithmically it can be verified efficiently. We present a
simple polynomial time algorithm that, given an arbitrary path set, either
asserts that these paths form an unsplittable shortest path routing or finds
an inclusion-wise minimal conflict among these paths. This result allows us
to model and solve unsplittable shortest path routing problems the way we
do in Part III of this thesis. The related optimization problems of finding
an cardinality or weight minimal conflict in a given path set are both shown
to be NP-hard to approximate within a factor of 7/6− ǫ. We also consider
the opposite problem of finding a maximal set of paths that form an un-
splittable shortest path routing. We present a polynomial time algorithm
to find an inclusion-wise maximal such set in a given path set, and we show
that the corresponding maximum cardinality and maximum weight versions
are NP-hard to approximate within a factor of 8/7 − ǫ. Analogous results
are obtained for the arc-flow representation of unsplittable shortest path
routings.

Part II of this thesis consists of Chapter 6 only. In this part, we discuss
the relation between unsplittable shortest path routing and several other
routing schemes and we study the computational complexity of the three
basic unsplittable shortest path routing problems introduced in Chapter 3.
We construct examples where the lowest possible link congestion that can
be obtained with unsplittable shortest path routing exceeds the congestion
achievable with multicommodity flow routing, shortest path routing with
traffic splitting, or unsplittable flow routing by an arbitrarily large factor.
We also show that the congestion minimization problem Min-Con-USPR is
NP-hard to approximate within a factor of O(|V |1−ǫ), that the fixed charge
network design problem FC-USPR is NPO-complete, and that the capaci-
tated network design problem Cap-USPR is inapproximable within a factor
of O(2log1−ǫ|V |) in the directed and a factor of 2 − ǫ in the undirected case.
These results indicate that network design and routing optimization prob-
lems are indeed harder for unsplittable shortest path routing than for other
routing schemes – both from the theoretical and from the practical point of
view. In addition, we derive polynomial time approximation algorithms for
various general and special cases of the considered problems.

In Part III of this thesis, we finally present a mixed–integer linear pro-
gramming approach to solve network design and routing planning problems
with unsplittable shortest path routing to optimality. This part consists of
the three Chapters 7, 8, and 9. In Chapter 7, the basic mixed–integer linear
programming models are introduced. In contrast to previous integer pro-
gramming models for these (and similar) problems, our formulations contain
no variables for the routing lengths. Instead, we introduce new inequalities
to describe the valid routings in terms of arc or path routing variables only.
For any feasible end-to-end routing computed with these models, a compat-
ible routing metric can be easily computed in a post-processing step. We
present two different formulation types – one based on path-flow variables

6 1. Introduction

and the other one based on arc-flow variables, discuss the strength of their
linear relaxations, and analyze the computational complexity of the respec-
tive separation and pricing problems. Several classes of valid inequalities for
these models are discussed in Chapter 8.

In Chapter 9, we finally describe our implementation of the integer linear
programming approach. Here we extend the basic mixed–integer linear pro-
gramming models presented in Chapter 7 to the more realistic ones that have
been used to solve the network design and traffic engineering problems for
the DFN networks, describe the algorithm used to solve the problems, and
finally report on the computational results obtained for the DFN networks
G-WiN and X-WiN and for several benchmark instances.

Chapter 2

Mathematical Preliminaries

In the following, we review the basic definitions and concepts in linear alge-
bra, graph theory, and computational complexity that are used throughout
this thesis. This description does not serve as an introduction to these ar-
eas, it is meant only as a reference for the notions and notations used in
the following chapters. We expect the reader to be familiar with the basic
concepts treated here.

For an introduction into linear algebra, integer linear programming, and
polyhedral combinatorics we recommend the books of Grötschel et al. [103],
Nemhauser and Wolsey [146], and Schrijver [175]. The concepts in graph
and hypergraph theory needed in this thesis are very basic and can be found
in the textbooks of Berge [29] or Bondy and Murty [39], for example. For an
introductory survey on independence systems and matroid theory see Welsh
[189] or Bixby and Cunningham [32]. The basic concepts and notions in the
field of computational complexity date back to Karp [121] and Garey and
Johnson [96]. Papadimitriou [154] and Ausiello et al. [10] introduced the
notions and complexity classes related to the approximability of problems,
which are used throughout this thesis.

2.1 Linear Algebra

We denote the sets of real, rational, and integer numbers by R, Q, and Z,
respectively. For the non-negative real, rational, and integer numbers, we
use the symbols R+, Q+, and Z+. The set of natural numbers without zero is
denoted by N. Given a real number x ∈ R+, ⌊x⌋ denotes the largest integer
number not larger than x and ⌈x⌉ denotes the smallest integer number not
smaller than x.

For a base set K and a finite index set E, KE is the set of vectors consisting
of |E| components with values in K. Each component of a vector x ∈ KE is
indexed by an element e ∈ E, i.e., x = (xe)e∈E. For [n] := {1, . . . , n} with
n ∈ N, we simply write Kn for K[n]. Given a set F ⊆ E, the vector χF ∈
{0, 1}E defined as χF

e = 1 for all e ∈ F and χF
e = 0 for all e ∈ E \F is called

7

8 2. Mathematical Preliminaries

the incidence vector (or characteristic vector) of F . Conversely, the set
Fx := {e ∈ E : xe = 1} is called the incidence set (or characteristic set)
of a vector x ∈ {0, 1}E. More generally, we say that Sx := {e ∈ E : xe 6= 0}
is the support of a vector x ∈ RE . The vectors of all 0’s and of all 1’s are
denoted by 0 := χ∅ and 1 := χE, respectively.

Unless states otherwise, each vector is considered as a column vector and
the superscript ‘T’ denotes the transposition of a vector. Addition of vec-
tors, multiplication of vectors with scalars, and inner and outer products of
vectors are defined as usual. For any finite set E, RE and QE are vector
spaces over the fields R and Q, respectively. Given two vectors x, y ∈ RE,
we write x ≤ y if xe ≤ ye for all e ∈ E, and x 6= y if xe 6= ye for some e ∈ E.

A vector x ∈ RE is a linear combination of the vectors x1, x2, . . . , xk ∈
RE, if there exists some λ ∈ Rk with x =

∑k
i=1 λixi. If, in addition,

λ ≥ 0

λT 1 = 1

λ ≥ 0, λT 1 = 1











we call x a











conic

affine

convex











combination

of the vectors x1, x2, . . . , xk. These combinations are proper, if λi > 0 for
all i = 1, . . . , k. Given a non-empty set X ⊆ RE , the symbols

lin(X)

cone(X)

aff(X)

conv(X)























denote the























linear

conic

affine

convex























hull of the elements in X.

We say that a set X ⊆ RE is linearly or affinely independent, if none
of its members is a proper linear or affine combination of the elements in
X, respectively, otherwise X is called linearly or affinely dependent. The
linear or affine rank of a set X ⊆ RE is the maximum number of linearly or
affinely independent vectors in X. The dimension dim(X) of a set X ⊆ RE

is the affine rank of X minus 1. A set X ⊆ RE with dim(X) = |E| is called
full-dimensional.

2.2 Linear and Integer Linear Programming

Any vector a ∈ Rn, a 6= 0, and any scalar α ∈ R together define a linear
inequality aT x ≤ α with variables x ∈ Rn. The set of all solutions x ∈ Rn

to this inequality is the half-space {x ∈ Rn : aT x ≤ α} in Rn. The set
of all solutions to the corresponding linear equality aT x = α defines the
hyperplane {x ∈ Rn : aT x = α}.

A matrix A ∈ Rm×n and a vector b ∈ Rm define a system of linear
inequalities Ax ≤ b for the variables x ∈ Rn. Its solution set PA,b :=

2.2. Linear and Integer Linear Programming 9

{x ∈ Rn : Ax ≤ b} is called a polyhedron. Every polyhedron is the
intersection of finitely many half-spaces. A polyhedron that is bounded
(i.e., is contained in the convex hull of finitely many vectors) is called a
polytope. A polyhedron that is also a cone is called a polyhedral cone.

An inequality aT x ≤ α is valid for a polyhedron P if P ⊆ {x ∈ Rn :
aT x ≤ α}. For any valid inequality aT x ≤ α, the set F (P, a, α) := {x ∈
P : aT x = α} is the face of P defined (or induced) by aT x ≤ α. If
F (P, a, α) 6= ∅, then the inequality aT x ≤ α is called tight with respect to
P . If F (P, a, α) = {v}, then v is called a vertex of P . If F (P, a, α) 6= ∅
and dim(F (P, a, α)) = dim(P) − 1, then F (P, a, α) is a facet of P and
aT x ≤ α is said to be a facet-defining inequality for P . The facets of
a polyhedron are its inclusion-wise maximal faces. If P is full-dimensional,
then the inequality defining a facet is unique up to scaling by a non-negative
factor, i.e., if aT x ≤ α and bT x ≤ β are both facet defining for P and
F (P, a, α) = F (P, b, β), then a = λb and α = λβ for some λ ∈ R+.

Whether or not a system of linear inequalities has a solution can be char-
acterized by the following lemma.

Lemma 2.1 (Farkas [87]) A system of linear inequalities Ax ≤ b with
A ∈ Rm×n and b ∈ Rm has a solution x ∈ Rn, if and only if there does not
exist a vector y ∈ R+ with yT A = 0T and yT b < 0.

Given a matrix A ∈ Rm×n, a vector b ∈ Rm, and a vector c ∈ Rn, the linear
programming problem (in standard form) is to find a vector x∗ ∈ PA,b

that maximizes the linear function cT x. This problem is written as

max{cT x : Ax ≤ b, x ∈ Rn} . (P)

A vector x ∈ Rn satisfying Ax ≤ b is called a feasible solution of (P). A
feasible solution x∗ is an optimal solution of (P), if cT x∗ ≥ cT x for all
feasible solutions x of (P). The set of all optimal solutions of (P) is a face
of the polyhedron PA,b.

With every linear program (P) one can associate the so-called dual linear
program

min{yT b : yT A = cT , y ∈ Rm
+} (D)

with variables y ∈ Rm
+ . The original linear program (P) is also called the

primal program. The following fundamental theorem describes the connec-
tion between the primal and the dual linear program

Theorem 2.2 (Linear Programming Duality) Let A ∈ Rm×n, b ∈ Rm,
and c ∈ Rn, and consider the corresponding primal and dual linear programs
(P) and (D).

10 2. Mathematical Preliminaries

(i) If both (P) and (D) have feasible solutions, than both (P) and (D)
have optimal solutions and the optimal primal and the optimal dual
objective function values are equal.

(ii) If one of the programs (P) or (D) has no feasible solution, then the
other is either unbounded or has no feasible solution.

(iii) If one of the programs (P) or (D) is unbounded, then the other has no
feasible solution.

If both (P) and (D) have feasible solutions, then the following theorem
provides a useful characterization of optimal solutions.

Theorem 2.3 (Complementary Slackness) Let A ∈ Rm×n, b ∈ Rm,
and c ∈ Rn, and suppose that the corresponding primal and dual linear
programs (P) and (D) both have a feasible solution. Then x ∈ Rn

+ and
y ∈ Rm

+ are optimal solutions of (P) and (D), respectively, if and only if
yT (b − Ax) = 0 and xT (yT A − c) = 0.

Given a matrix A ∈ Rm×n, a vector b ∈ Rm, and a vector c ∈ Rn, the
integer linear programming problem (in standard form) is to find an
integer vector x∗ ∈ Zn ∩ PA,b that maximizes the linear function cT x over
all vectors in Zn ∩ PA,b. This problem can be written as

max{cT x : Ax ≤ b, x ∈ Zn} . (IP)

Relaxing the integrality restriction x ∈ Zn in (IP) to x ∈ Rn, one obtains
the linear programming relaxation (P) of (IP).

Applying several simple transformations, a linear or integer linear maxi-
mization problem can be turned into minimization problem, the underlying
inequality system can be turned into an equality system (and vice versa),
and a system with unbounded variables can be turned into a system with
non-negative variables.

2.3 Graphs and Hypergraphs

A finite graph is a triple G = (V, E, Ψ) consisting of a non-empty finite set
V , called the nodes (or vertices), a finite set E, called the edges (or links),
and a relation of incidence Ψ : E → V (2) that associates with each edge
two nodes, called its ends or terminals. Usually, we just write G = (V, E)
and assume that the incidence relation is given implicitly in E.

Two nodes, which are the ends of an edge, are adjacent to one another
(neighbors). A node that has no neighbors is isolated. The degree |δ(v)|
of a node v is the number of edges incident to v. An edge with identical
ends is called a loop. If two edges join the same pair of ends, they are called
parallel. A graph is simple if it has neither loops nor parallel edges.

2.4. Walks, Paths, and Connectivity 11

A finite digraph (directed graph) is a triple D = (V, A, Ψ) consisting of a
non-empty and finite set V called the nodes, a finite set A called the arcs,
and a relation of incidence Ψ : A → V 2 that associates with each arc an
ordered pair of nodes called its ends or terminals. Usually, we just write
D = (V, A) and assume that the incidence relation is given implicitly in A.

For each arc a = (v, w), we call v the tail and w the head of a. Parallel
arcs and loops are defined as for graphs. Two arcs a = (v, w) and b = (w, v)
are called anti-parallel. We call the graph G = (V, E) the underlying
graph of the digraph D = (V, A) if there is a bijection between the arcs of
D and the edges of G, such that for each arc a = (v, w) ∈ A there is an
edge e = (v, w) ∈ E and for each edge e = (v, w) ∈ E the arc a = (v, w) or
the arc a′ = (w, v) is in A. The associated digraph D(G) of a graph G
is the digraph obtained from G by replacing each edge by two antiparallel
arcs with the same ends.

A finite hypergraph is a triple H = (V, C, Ψ) consisting of a non-empty
finite set V , called the nodes, a finite set C, called the (hyper-)edges,
and a relation of incidence Ψ : E → 2V that associates with each edge a
subset of at least two nodes, called its terminals. Usually, we just write
H = (V, C) and assume that the incidence relation is given implicitly in C.

A graph Ĝ = (V̂ , Ê) is a subgraph of G = (V, E) if V̂ ⊆ V and Ê ⊆ E.
For a graph G = (V, E) and node set W ⊆ V , we denote by G − W the
graph constructed by removing all nodes v ∈ W and all edges incident to
at least one of these nodes from G. Analogously, for F ⊆ E, we denote by
G − F the graph constructed by removing all edges e ∈ F from G. The
subgraph induced by a node set W ⊆ V is G[W] := G − (V \ W). The
corresponding definitions and notions for directed graphs are analogous.

For a hypergraph H = (V, C) and a node set W ⊆ V , the expression G−W
denotes the hypergraph that is obtained by removing all nodes v ∈ W from
the node set V and all edges that contain v and finally removing all edges
that contain only one residual terminal. For F ⊆ C, the sub-hypergraph
G−F is obtained by removing all edges e ∈ F from H. The sub-hypergraph
induced by a node set W is G[W] := G − (V \ W).

A subset S ⊆ V of the nodes of a graph G = (V, E) is called stable (or
independent) if no edge e ∈ E is fully contained in S. In a hypergraph
H = (V, C), a node set S ⊆ V is called (weakly) stable (or independent)
if no hyperedge e ∈ C is fully contained in S.

2.4 Walks, Paths, and Connectivity

A (directed) walk in the (directed) graph G is a sequence W=(v0e1v1 . . . elvl)
of nodes v0, . . . , vl and edges (arcs) e1, . . . , el of G, such that the nodes vi−1

and vi are the ends of edge ei (are head and tail of ei, respectively) for each
1 ≤ i ≤ l. We write e ∈ W or v ∈ W to indicate that some edge (or arc) e

12 2. Mathematical Preliminaries

or some node v occur in the walk W . Vertex v0 is called the source of W ,
vertex vl is called the target of W , and all other nodes are called internal
nodes of W .We say that W is a (directed) (v0, vl)-walk or that W con-
nects v0 and vl. Given a walk W , we also refer to its source node by sW and
to its target node by tW .

Given a vector c = (ce)e∈E ∈ RE (or c = (ca)a∈A ∈ RA in the directed
case), the length of a walk W with respect to c is c(W) :=

∑

e∈W ce.

A (directed) walk W is called a (directed) path if all its nodes v0, . . . , vl

are distinct. A (directed) walk W with v0 = vl is closed. A closed (directed)
walk, whose edges (or arcs) are distinct, is a (directed) circuit. If the
underlying (directed) graph is simple (i.e, contains neither loops nor parallel
edges or arcs), then we refer to a path P = (v0, a1, v1, . . . , al, vl) with only
its node sequence P = (v0, v1, . . . , vl) for notational simplicity. Otherwise,
we usually omit the nodes and write P =

(

e1 . . . el

)

.

The (u,v)-subpath of a path P is denoted by P [u, v]. If P contains
no (u, v)-subpath (or, in the directed case, the nodes u and v occur in
reverse order in P), we let P [u, v] := ∅. The concatenation of two paths
P1 = (v1

0 , a
1
1, . . . , v

1
l) and P2 = (v2

0, a
2
1, . . . , v

2
k) with v1

l = v2
0 is P1 ⊕ P2 :=

(v1
0, a

1
1, . . . , v

1
l = v2

0, a
2
1, . . . , v

2
k).

Given a (directed) graph G, we denote the set of all paths in G by PG.
The set of all (s, t)-paths between two nodes s, t ∈ V is denoted by PG(s, t).
For notational simplicity, we also write PG(K) :=

⋃

(s,t)∈K PG(s, t) for any
set K ⊆ V × V . If is clear from the context which (directed) graph G we
refer to, the subscript G is typically omitted and we just write P , P(s, t),
and P(K), respectively.

A collection of (directed) (s, t)-paths is called node disjoint (or inter-
nally disjoint) if no two paths have an internal node in common. We say a
collection of (directed) (s, t)-paths is edge disjoint (or arc disjoint) if no
two paths in the collection have an edge (an arc) in common.

An undirected graph G = (V, E) is a forest if it contains no circuit. If
in addition G is connected, then it is called a tree. For each pair of nodes
s, tV , s 6= t, there is exactly one (s, t)-path in a tree. We say that an edge
set F ⊂ E forms a forest or a spanning tree in G if the subgraph (W, F)
is a forest or a tree, respectively.

A directed graph D = (V, A) is said to be an arborescence with root
node r if its underlying undirected graph is a tree and there is a directed
(r, t)-path in D for all t ∈ V \ {r}. If the underlying undirected graph is a
tree and D contains a directed (s, t)-path for all nodes s ∈ V \{r}, then D is
an anti-arborescence with root r. Similar to the undirected case, we say
that an arc set F ⊂ A defines a spanning arborescence or a spanning
anti-arborescence with root r in D if the subgraph (V, F) is a spanning
arborescence or anti-arborescence with root r, respectively.

An undirected graph G = (V, E) is said to be connected if there is a
path between any two nodes. A graph G is k-connected if |V | > k and

2.5. Independence systems and Matroids 13

for any W ⊆ V with |W | ≤ k − 1 the graph G − W is connected. This is
equivalent to saying that there are at least k node disjoint paths between
any pair of nodes of G. Analogously, G is called k-edge-connected if the
deletion of any set of at most k − 1 edges leaves a connected graph.

A directed graph D is said to be strongly connected if there is a directed
path from any node to any other node. D is strongly k-connected if
|V | > k and G−W is strongly connected for any W ⊆ V with |W | ≤ k − 1.

The components of a graph G = (V, E) are the (inclusion) maximal
connected subgraphs of G. The strong components of a digraph D =
(V, A) are the maximal strongly connected subgraphs of D.

For any undirected graph G = (V, E) and any node set W ⊆ V the set of
edges δ(W) := {(w, v) ∈ E : w ∈ W, v ∈ V \W} is a cut. If s ∈ W and t 6∈ W
we call δ(W) an (s,t)-cut. For a digraph D = (V, A) and a node set W ⊆ V
we let δ+(W) := {(w, v) ∈ A : w ∈ W, v 6∈ W}, δ−(W) := δ+(V \ W), and
δ(W) := δ+(W)∪ δ−(W). The arc-set δ+(W) is called a directed cut. For
U, W ⊆ V we define [U, W] := {(u, w) ∈ A : u ∈ U, w ∈ W}.

Analogously, if G = (V, E) is a graph and U, S, W is a partition of V with
U, W 6= ∅ and there is no edge between U and W , we call S a node cut
(or an articulation set). Equivalently, S is a node cut if and only if G − S
is disconnected. If s ∈ U and t ∈ W , then we call S an (s,t)-node cut or
say that S separates s and t.

2.5 Independence systems and Matroids

A (finite) independence system (or hereditary family) is a pair (S, I) of
a finite ground set S and a collection of subsets I ⊆ 2S that satisfies the
following conditions:

(i) ∅ ∈ I, and

(ii) I ∈ I and J ⊆ I imply J ∈ I.

The elements of I are called independent sets. The subsets of S not
in I are called dependent sets. The rank of a subset J ∈ S is defined
as r(J) := max{|I| : I ⊆ J, I ∈ I}, i.e., the maximum cardinality of an
independent set contained in S. The rank of the entire independence system
(S, I) is r(S).

An independence system can be characterized alternatively by

(i) its independent sets I,

(ii) its maximal independent sets, the so-called bases,

(iii) its dependent sets,

(iv) its minimal dependent sets C, the so-called circuits,

14 2. Mathematical Preliminaries

(v) its rank function r : 2S → N.

Here, maximal and minimal are meant with respect to set-inclusion. All
these characterizations are equivalent, i.e., each description can be computed
from any other. The equivalences between (i) and (ii) and between (iii) and
(iv) are obvious. The remaining ones follow easily from the following three
observations.

(i) I ⊆ S is independent if and only if r(I) = |I|.

(ii) I ⊆ S is independent if and only if it contains no circuit.

(iii) C ⊆ S is dependent if and only if it is not contained in any base.

In many cases it is helpful to represented independence systems by hyper-
graphs. Given independence system (S, I), its associated circuit hyper-
graph is H(I) = (S, C), that is, H(I) contains a node for every element
i ∈ S and a hyperedge for every circuit C ∈ C. The (weakly) stable sets
I in the associated hypergraph H(C) of an independence system (S, I) are
exactly its independent sets I ∈ I.

A well studied class of independence systems with nice algorithmic and
structural properties are the so called matroids. A matroid is an indepen-
dence systems (S, I) that satisfies one of the following equivalent conditions:

(i) For each I, J ∈ I with |I| = |J | − 1, there is some j ∈ J \ I such that
I ∪ {j} ∈ I.

(ii) For each I, J ∈ I with |I| < |J |, there is some K ⊆ J \ I such that
|I ∪ K| = |J | and I ∪ K ∈ I.

(iii) For each I ⊆ S, all bases of I have the same size.

Matroids, as the name suggests, first appeared as an abstract generaliza-
tion of matrices and much of the language in matroid and independence
system theory is based on that of linear algebra. However, matroid and
independence system theory proved to be a very useful unification of funda-
mental concepts of many different areas, e.g., lattice theory, graph theory,
combinatorial optimization, partially ordered sets, and abstract simplicial
complexes.

2.6 Computational Complexity and Approxima-

tion

In order to analyze the complexity of algorithms and problems, we need a
formal description of problems, solutions, and algorithms.

Given a problem, a binary encoding scheme represents each instance
and each solution as a string of symbols in the alphabet Σ = {’0’, ’1’}.

2.6. Computational Complexity and Approximation 15

With Σ∗ we denote the set of all finite strings of symbols of the alphabet Σ.
Formally, a problem Π (over an alphabet Σ) is a pair Π = (I,S) where

• I ⊂ Σ∗ is the set of instances, and

• S : I → 2Σ∗
is a function that associates to any input instance I ∈ I

the set of feasible solutions.

The encoding size 〈I〉 of a problem instance I w.r.t. an encoding scheme is
the length of the string I. We assume that numbers are represented in the
binary base and that the encoding scheme is reasonable, i.e., it provides a
concise description of each instance and solution. In particular, the encoding
size of a vector c ∈ Zk

+ is not only its dimension k but the entire space
required to encode its entries.

An algorithm is a program to solve a problem in some computer model.
The most commonly used computer model is the Turing machine. In this
model, an algorithm ALG is nothing but a finite deterministic m-tape Tur-
ing machine. We say that ALG solves the problem Π if it recognizes the
admissible inputs I ∈ I and computes feasible solutions in a finite number
of steps, i.e., for each input string I ∈ Σ∗ on the first tape and starting from
a given beginning state B,

• ALG halts after a finite number of steps,

• if I 6∈ I, then ALG halts in end state E0, and

• if I ∈ I, then ALG writes a string s ∈ S(I) onto the second tape and
halts in end state E1.

With respect to polynomial time solvability of problems, this model is equiv-
alent to other computer models, like the random access memory machine
(RAM) model, for example. (However, it is usually more convenient to
analyze an algorithm in the RAM model.)

The time required by an algorithm ALG on input I ∈ Σ∗ is the num-
ber of elementary steps that ALG (i.e., the corresponding Turing machine)
takes until it halts. If ALG does not halt, this time is ∞. The time com-
plexity function TALG : Z+ → Z+ of an algorithm ALG is TALG(n) :=
max{time of ALG on input I : I ∈ Σ∗ with 〈I〉 ≤ n}. If ALG halts on all (fi-
nite) inputs and there is a polynomial q with TALG(n) ≤ q(n) for all n ∈ Z+,
we call ALG a polynomial algorithm. Analogously, the space complex-
ity function MALG : Z+ → Z+ of an algorithm ALG expresses the maximum
space MALG(n) required by ALG on any input I ∈ Σ∗ of size 〈I〉 ≤ n.

A decision problem is a problem that has either “yes” or “no” as solu-
tion. Each decision problem Π has an associated language

L(Π) =
{

I ∈ I : I is a “yes” instance
}

.

16 2. Mathematical Preliminaries

A decision problem Π (or, more precisely, its associated language L(Π))
belongs to the class DTIME(f) for some function f : Z+ → Z+, if there
exists an algorithm ALG with time complexity TALG ≤ f that solves Π
(i.e., decides L(Π)). The problem Π belongs to the class P (polynomially
solvable) if there exists a polynomial time algorithm that solves Π.

A decision problem problem Π belongs to the class NP (non-deterministic
polynomially solvable), if there exists another decision problem Π′ ∈ P and
a polynomial q such that, for each I ∈ Σ∗,

I ∈ L(Π) ⇔ ∃s ∈ Σ∗ with 〈s〉 ≤ q(〈I〉) such that (I, s) ∈ L(Π′) .

The string s is a polynomial size certificate if the answer to an instance I
of Π is affirmative. (Often the certificate s is also called a solution for the
problem instance I, although formally “yes” or “no” is the solution.) It is
clear that P ⊆ NP, but whether P = NP or P 6= NP is still one of the
major open questions in mathematics and computer science.

Let Π1 and Π2 be two decision problems (encoded in the same scheme
on the same alphabet). Then Π1 is said to be (Karp-)reducible to Π2, or
short Π1 ≤K Π2, if a function f : Σ∗ → Σ∗ exist such that

(i) I1 ∈ L(Π1) if and only if f(I1) ∈ L(Π2) and

(ii) f is computable in polynomial time.

The function f is called a (Karp-)reduction (or a polynomial transforma-
tion).

A decision problem Π is called NP-hard if Π′ ≤K Π for every problem
Π′ ∈ NP . If Π is NP-hard and Π ∈ NP , then Π is called NP-complete.

An optimization problem (over an alphabet Σ) is a quadruple Π =
(I,S, w, goal), where

• I ⊂ Σ∗ is the set of instances,

• S : I → 2Σ∗
is a function that associates to any input instance I ∈ I

the set of feasible solutions I,

• w : I ×Σ∗ → Q+ is the objective function, defined only for pairs (I, s)
with I ∈ I and s ∈ S(I). For every such pair, w(I, s) provides a strictly
positive number which is the value of the solution s.

• goal ∈ {min, max} specifies whether Π is a minimization of a maxi-
mization problem.

Given an instance I ∈ I, the set of optimal solutions is denoted by S∗(I)
and the optimal solution value by w∗(I).

An optimization problem Π = (I,S, w, goal) belongs to the class NPO ,
if the following holds:

2.6. Computational Complexity and Approximation 17

(i) the set of instances I is recognizable in polynomial time;

(ii) there exists a polynomial q such that, given an instance I ∈ I,

• 〈s〉 ≤ q(〈I〉) for each s ∈ S(I), and

• for any s ∈ Σ∗ with 〈s〉 ≤ q(〈I〉), it is decidable in polynomial
time whether s ∈ S(I);

(iii) the objective function w is computable in polynomial time (for each
pair (I, s) with I ∈ I and s ∈ S(I)).

An NPO problem is said to be polynomially bounded, if there is a
polynomial q such that w(I, s) ≤ q(〈I〉) for all pairs (I, s) with I ∈ I and
s ∈ S(I). The class NPO−PB is the set of all polynomially bounded NPO
problems.

An optimization problem belongs to the class PO if it is in NPO and
there exists a polynomial time algorithm ALG that, for any instance I ∈ I,
returns an optimal solution s ∈ S∗(I). Optimization problems in PO are
polynomially solvable.

For each optimization problem Π = (I,S, w, goal), we can define its as-
sociated decision problem ΠD by fixing a target objective value w̄ ∈ Q+

as follows: “Is there a feasible solution s ∈ S(I) with w(I, s) ≥ w̄?” if
goal = max or “Is there a feasible solution s ∈ S(I) with w(I, s) ≤ w̄?” if
goal = min. The optimization problem Π is called NP-hard if its associated
decision problem ΠD is NP-hard.

Clearly, if an NPO problem can be solved in polynomial time, then its
corresponding decision problem can also be solved in polynomial time. As
a consequence, if P 6= NP, then any NPO problem whose corresponding
decision problem is NP-complete is not solvable in polynomial time. In these
cases we sacrifice optimality and start looking for approximate solutions
computable in polynomial time.

Given an instance I and a feasible solution s ∈ S(I), we define the per-
formance ratio (or approximation ratio) of s with respect to I as

R(I, s) = max

{

w(I, s)

w∗(I)
,

w∗(I)

w(I, s)

}

.

The performance ratio is always a number greater than or equal to 1 and is
as close to 1 as s is close to the optimum solution.

Let Π be an NPO problem and let ALG be an algorithm that, for any
instance I of Π with S(I) 6= ∅, returns a feasible solution ALG(I) ∈ S(I).
Given an arbitrary function r : Z+ → (1,∞), we say that ALG is an r(n)-
approximation algorithm for Π if

R(I, ALG(I)) ≤ r(〈I〉) ,

18 2. Mathematical Preliminaries

for any instance I ∈ I. If Π admits a polynomial time r(n)-approximation
algorithm we say that it is approximable within (a factor of) r(n).
Given a class of functions F , F -APX is the class of all NPO problems Π
that admit a polynomial time r(n)-approximate algorithm for Π for some r ∈
F . In particular, APX , log–APX , poly–APX , and exp–APX denote the
classes F -APX with F equal to the set of functions O(1), the set O(log(n)),

the set ∪k>0O(nk), and the set ∪k>0O(2nk
), respectively.

An algorithm ALG is said to be an approximation scheme for Π if, for
any instance I of Π and for any rational r > 1, ALG returns a feasible solution
ALG(I, r) of I whose performance ratio is at most r. An NPO problem Π
belongs to the class PTAS if it admits a polynomial time approximation
scheme, that is, an approximation scheme whose time complexity is bounded
by q(〈I〉) where q is a polynomial. Observe that the time complexity of an
approximation scheme may be exponential in r. Thus, computations with
values r very close to 1 may turn out to be practically infeasible. This leads
to the notion of a fully polynomial time approximation scheme.

An NPO problem Π belongs to the class FPTAS if it admits a fully
polynomial time approximation scheme, that is, an approximation
scheme whose time complexity is bounded polynomially in both 〈I〉 and

1
r−1 . Clearly, the following inclusions hold:

PO ⊆ FPTAS ⊆ PTAS ⊆ APX ⊆ log–APX ⊆ poly–APX
⊆ exp–APX ⊆ NPO .

It is also easy to see that these inclusions are strict if and only if P 6= NP.
Similar to the decision problems, there is a notion of completeness for opti-

mization problems. This notion is based on approximation preserving based
reductions. Let Π1 = (I1,S1, w1, goal1) and Π2 = (I2,S2, w2, goal2) be two
optimization problems in NPO. Then Π1 is said to be AP-reducible to
Π2, or short Π1 ≤AP Π2, if two functions f and g and a positive constant
α ≥ 1 exist such that:

(i) for any instance I1 ∈ I1 and for any rational r > 1, f(I1, r) ∈ I2,

(ii) for any instance I1 ∈ I1 and for any rational r > 1 with S1(I1) 6= ∅,
S2(f(I1, r)) 6= ∅,

(iii) for any instance I1 ∈ I1, for any rational r > 1, and for any s2 ∈
S2(f(I1, r)), g(I1, s2, r) ∈ S1(I1),

(iv) both functions f and g are computable in polynomial time for any
fixed rational r > 1, and

(v) for any instance I1 ∈ I1, for any rational r > 1, and for any s2 ∈
S2(f(I1, r)),

R(f(I1, r), s2) ≤ r implies R(I1, g(I1, s2, r)) ≤ 1 + α(r − 1) .

2.6. Computational Complexity and Approximation 19

I1 ∈ I1
ALG1−−−−→ g(I1, s2, r) ∈ S1

f





y

g

x





f(I1, r) ∈ I2 −−−−→
ALG2

s2 ∈ S2

Figure 2.1 Reducibility between problems

The triple (f, g, α) is called an AP-reduction (approximation preserving
reduction) from Π1 to Π2. If Π1 ≤AP Π2, then any r(n)-approximate algo-
rithm ALG2 for Π2 carries over to an (1−α(r(n)−1))-approximate algorithm
ALG1 for Π1, see Figure 2.1. Hence, if Π1 ≤AP Π2 and Π2 ∈ APX (respec-
tively Π2 ∈ PTAS), then Π1 ∈ APX (respectively Π1 ∈ PTAS).

Another type of approximation preserving reducibility is the so called L-
reducibility introduced by Papadimitriou and Yannakakis [155, 156]. This
notion is based on showing both a linear relation between the optimal objec-
tive values and a linear relation between the absolute errors of corresponding
solutions. An NPO problem Π1 is said to be L-reducible to another NPO
problem Π2, in symbols Π1 ≤L Π2, if two functions f and g and two positive
constants β and γ exist such that:

(i) for any instance I1 ∈ I1, f(I1, r) ∈ I2,

(ii) for any instance I1 ∈ I1 with S1(I1) 6= ∅, S2(f(I1)) 6= ∅,

(iii) for any instance I1 ∈ I1 and for any s2 ∈ S2(f(I1)), g(I1, s2) ∈ S1(I1),

(iv) both functions f and g are computable in polynomial time,

(v) for any instance I1 ∈ I1,

w∗
2(f(I1)) ≤ β · w∗

1(I1) , and

(vi) for any instance I1 ∈ I1 and for any s2 ∈ S2(f(I1)),

|w∗
1(I1) − w1(I1, g(I1, s2))| ≤ γ · |w∗

2(f(I1)) − w2(f(I1), s2)| .

The quadruple (f, g, β, γ) is called an L-reduction (linear reduction) from
Π1 to Π2. Although the notion of L-reducibility is not as powerful as that
of AP-reducibility, it is very useful. Within APX , the existence of an L-
reduction implies the existence of an AP-reduction. If Π1 ≤L Π2 and Π2 ∈
APX , then any r(n)-approximate algorithm ALG2 for Π2 carries over to an
1 + βγ(1 − r(n))-approximate algorithm ALG1 for Π1, i.e., also also Π1 ∈
APX .

Given a class C of NPO problems, a problem Π is C-hard (with respect to
AP-reducibility) if Π′ ≤AP Π for any Π′ ∈ C. A C-hard problem C-complete
(with respect to AP-reducibility) if it belongs to C.

20 2. Mathematical Preliminaries

It can be shown that, unless P = NP , if an NPO problem Π is APX -
hard, then it does not belong to PTAS, i.e., there is a threshold value ǫ > 0
such that Π cannot be approximated within a factor of 1 + ǫ. Similar,
if Π is NPO-complete, then it does not belong to APX and cannot be
approximated within a factor of 2nǫ

, for some ǫ > 0.

Chapter 3

Internet Routing and

Planning Problems

In recent years, the Internet has evolved to the most dominant world-wide
communication network. The main design principles that made it such a
success are robustness, simplicity, and decentralization. Internet technology
was designed to “do its best” to handle the data traffic, not to guaranty a
particular level of end-to-end performance or Quality-of-Service. Especially
the rather simple and decentralized routing mechanisms with automatic re-
configuration in case of topology changes or network failures made it possible
to interconnect and operate many heterogeneous networks with a minimum
of administrative overhead.

The aim of this chapter is to introduce the reader to the main functional
aspects of networks that are based on Internet Protocol (IP) routing (or
other shortest-path routing protocols) and to illustrate the problems that
typically arise in planning and operating such networks. We will avoid
daunting specifications and technicalities in our description as far as possible.
A more detailed description of the protocols and networking concepts can
be found in the books of Perlman [159] or Stevens [181].

We begin with a brief glimpse into the history of the Internet in Section
3.1. After describing the general architecture of the Internet in Section 3.2,
we discuss the shortest path routing mechanisms that are employed within
its autonomous subnetworks in Section 3.3. In Section 3.4, we describe
the main planning tasks that arise in the design and operation of such a
network. Finally, in Section 3.5, we present a mathematical description of
these problems.

3.1 History of the Internet

The history of the Internet dates back to 1962, when the RAND Corpora-
tion started research on robust distributed computer networks. Two years
later, the Advanced Research Project Agency ARPA began sponsoring re-

21

22 3. Internet Routing and Planning Problems

search on “interconnecting time-sharing computers”, and in 1969 the net-
work Arpanet connecting Stanford University, UCLA, UCSB, and Univer-
sity of Utah was created. In 1971, Arpanet connected 23 sites all over
the United States. The Royal College in the United Kingdom was the first
European institution that joined the network in 1973. The first network
discussion board Usenet, a predecessor of todays World-Wide-Web, was
invented in 1973.

The years 1983 and 1984 can be regarded as the birth of the Internet. In
these years, the TCP/IP routing mechanisms and the Domain Name System
(DNS) were introduced. These new automated routing protocols together
with the name-based addressing of the hosts admitted the rapid growth of
the network. By 1987, already more than 10,000 hosts were connected to
the Internet.

After 1990, when the Hyper-Text Markup Language (HTML) and the
World-Wide-Web (WWW) were established, the large scale commercializa-
tion of the Internet started. The number of connected hosts and available
services increased rapidly. Over the last decade, the traffic volume transmit-
ted via the Internet approximately doubled every year [60]. In the 1995–1996
boom, when the first graphic-intensive web browsers emerged, the Internet’s
traffic volume even doubled every three months.

Nowadays, the Internet is the most dominant communication network,
connecting about 400 million hosts (in January 2006) and providing a uni-
form infrastructure for diverse applications that previously have been served
by dedicated networks.

3.2 Architecture and Basic Functionality

The Internet is a huge, heterogeneous, virtual network. It is comprised
of more than 13, 000 distinct networks, so-called Autonomous Systems
(AS) or routing domains. Each AS is an independently managed net-
work consisting of its own routers and links. Traditionally, each AS was an
individual provider’s network, such as a national research and educational
network, a company’s private network, or the network of some public In-
ternet service provider, but nowadays many large Internet service providers
operate more than one AS. Connectivity between different ASes is provided
by so-called peering (or uplink) connections. In each AS, there are one ore
more dedicated gateway (or border) routers that are linked either directly
to gateway routers in other ASes or to public Internet exchange points, as
illustrated in Figure 3.1. Since the decommission of the National Science
Foundation Network (NSFNet), which was the national scientific research
and educational network in the USA, in 1995 the Internet has no central
core network. All ASes in the Internet use the Internet Protocol (IP)
[166, 167] for data transmission. The different application data streams to

3.2. Architecture and Basic Functionality 23

Autonomous System

Internal Router

Gateway router

Internet Exchange Point

Figure 3.1 Global architecture of the Internet.

be transmitted are broken up into standardized IP packets (or datagrams)
at their origin, sent through the network packet by packet, and reassembled
to the original data streams at their respective destinations. Each IP packet
consists of a header and the body (or payload). The header contains the
source and the destination addresses, the length of the packet, and several
other attribute fields. The packet body contains the application data. The
splitting-up of the application data and the reassembling of the packets is
done by a transport layer protocol, typically the Transport Control Protocol
(TCP) [168] or the User Datagram Protocol (UDP) [165]. These protocols
also are responsible for all quality and reliability issues of the transmission,
such as controlling the transmission rate or requesting the re-transmission
of lost packets. The IP network layer is only responsible for routing the
individual packets through the network “at its best”, meaning that there is
no guarantee that all packets indeed reach their destination or even arrive
within a given time or in the same order they were sent.

According to its decentralized architecture, the Internet has a two-level
routing mechanism. The inter-domain routing across several ASes is
controlled by an Exterior Gateway Protocol (EGP). Currently, the Bor-
der Gateway Protocol (BGP) [171, 170] is the only used and de-facto
standard EGP in the Internet.1) BGP is a policy based protocol. Peering
gateway routers exchange information on the paths to the different ASes
and, based on the paths reported by its neighbors, every gateway router
then selects its preferred route to each destination. Which routes are an-
nounced to or accepted from peering routers is controlled by the router’s
list of policies. Every BGP router can filter and modify the information it
announces to its neighbors. This allows Internet service providers to con-
figure the inter-AS routing that affects their AS according to national and
international laws, their own security and safety policies, and the transit or
service agreements they made with other providers. BGP announces only
the AS-path to a destination, that is, only the identifiers of the different
ASes along the path. The internal topology of an AS is not visible to the
routers in other ASes. By default, a gateway router chooses the shortest
AS-path that fulfills all policy rules as the preferred route to a destination.

1)The names Autonomous System and Gateway router are BGP terminology, in fact.

24 3. Internet Routing and Planning Problems

It is also important to note that BGP only standardizes the data formats
to automatically announce routes and network failures. It neither defines a
minimal set of information a gateway router must transmit to its peers nor
does it specify how the inter-domain routes are computed from this infor-
mation. In particular, BGP cannot guarantee that the network converges
to a stable inter-AS routing, see Griffin and Wilfong [100].

The intra-domain routing within a single AS is controlled by so-called
Interior Gateway Protocols (IGP). In principle, each network provider can
use her favorite IGP and can configure the routing within her own AS as
she likes. The most commonly used IGPs today are Open Shortest Path
First (OSPF) and Intermediate System to Intermediate System (IS-IS).
These protocols are so-called shortest path routing protocols, which send
each IP packet along a shortest path from its source to its destination. In
the following section, we describe their routing mechanisms in more detail.

3.3 Shortest Path Routing

The basic functionality of all shortest path routing protocols is the same:
Given a metric of administrative link lengths, they compute shortest end-
to-end paths with respect to this metric and send each packet along a short-
est path to its destination. The various protocols differ mainly in the way
this functionality is realized.

The Routing Information Protocol (RIP) [114] used in the very first
version of the Internet is a so-called distance vector protocol, where
neighboring routers regularly exchange information about the distance to
all known destinations. The shortest path computation is performed by all
routers together with a distributed Bellman-Ford algorithm [22, 91]. RIP
is a very restricted shortest path routing protocol. It always uses unit-
lengths for the link metric, no other metric can be supplied. Furthermore,
RIP admits only distances between 1 and 15 with respect to this unit-length
metric, so routers that are 16 or more hops apart seem to be disconnected. In
the small Arpanet network of the 1970s these restrictions were tolerable,
but when the Internet started to grow in the 1980s this routing protocol
needed to be replaced.

The protocols Open Shortest Path First (OSPF) [143] and Interme-
diate System to Intermediate System (IS-IS) [54] used nowadays are
link state protocols. Here, each router periodically advertises the state
of its adjacent links to all other routers in the AS. In a converged state,
each router has full knowledge about the topology of the AS and computes
its shortest paths to all other destinations locally using Dijkstra’s algorithm
[73]. Both protocols OSPF and IS-IS use a directed model of the underlying
network. Figure 3.2 illustrates the graph model used in OSPF. By assign-
ing a routing length (or routing weight) to each outgoing link interface of

3.3. Shortest Path Routing 25

R1 R2 R3 R4 R5

R6 R7Domain2

(a) Example AS. The routers R1 to
R4 are connected by a broadcast link,
all other connections are bidirectional
point-to-point links. Router R6 is con-
nected by a bidirectional point-to-point
link to another AS.

B

R1 R2 R3 R4 R5

R6 R7D2

(b) Directed OSPF graph model. The
routing lengths of the solid arcs can be
set by the administrator at the respective
router-to-link interfaces in the network. The
dashed arcs represent link-to-router inter-
faces, whose routing lengths are fixed to 0.

Figure 3.2 Example AS and its directed OSPF graph model. Point-to-
point links between two routers are represented by pairs of anti-parallel
arcs between the corresponding router vertices. Broadcast link is modeled
by an artificial vertex and all routers are connected to this vertex by a pair
of anti-parallel arcs.

each router, the network operator can supply an individual routing metric.
OSPF admits arbitrary routing lengths between 1 and 216 − 1 = 65535 for
the link interfaces, while the original version of IS-IS admits only lengths
between 1 and 63. In principle, both protocols admit asymmetric routing
metrics with different lengths for the different interfaces (i.e., directions)
of a link. In order to simplify the network management, however, several
network providers allow only symmetric routing metrics in their ASes.

Traditionally, IP networks operate in a single path routing mode without
traffic splitting, which means that all packets from one origin to one destina-
tion follow the same path. Since neither OSPF nor IS-IS explicitly specify
how to resolve ambiguities if multiple shortest paths exist, the routing met-
ric should be chosen such that all shortest paths are unique. Otherwise, it
would depend on the actual implementation of the routing protocol which
of the shortest paths is used and the network provider would lack control
over the routing, as illustrated in Figure 3.3.

OSPF also supports a multi-path variant of shortest path routing called
equal cost multi-path (ECMP) routing. If there are multiple shortest
paths towards a particular destination at the current router, then the traffic
towards this destination is split (almost) equally among the outgoing links
contained in these paths.2) Figure 3.4 illustrates such a routing. Compared

2)Perfectly equal traffic splitting is not achievable in practice. If packets with the same
destination were distributed equally among the corresponding outgoing links in a packet-
by-packet round robin manner, packets belonging to the same application data stream
might be sent via different paths and arrive at the destination in reverse order. To avoid

26 3. Internet Routing and Planning Problems

t

s1

s2

s3

s4

(a) Routing with balanced traffic flows.

t

s1

s2

s3

s4

(b) Routing with unbalanced traffic flows.

Figure 3.3 Example for an ambiguous shortest path routing. Suppose there
is a traffic stream from each of the four routers si, i = 1, . . . , 4, to router
t. If all routing lengths are 1, then it is not clear along which paths the
corresponding packets are routed. Both the left or the right routing might
be chosen by the routers.

to the traditional single shortest path routing variant, ECMP routing pro-
vides enhanced possibilities to balance the traffic flows within an AS. On the
other hand, however, it also complicates network monitoring and manage-
ment. Therefore, some network providers insist on using traditional single
shortest path routing without traffic splitting in their ASes.

The two main advantages of shortest path routing are that its decentral-
ized concept requires no central control intelligence and that the real-time
packet forwarding operations can be implemented very efficiently. In prac-
tice, every router maintains a local forwarding table, which maps the
possible destination addresses to its outgoing links. Because each packet is
sent along a shortest path towards its destination, all packets with the same
destination address leave the router via the same link(s),3) independent of
their origin.4) In order to decide to which of its neighbors to forward a
packet, a router only needs to inspect the destination address in the packet
header and look-up the right outgoing link in its forwarding table. The
routing protocols OSPF or IS-IS run as asynchronous processes that co-

such packet disordering problems, most router vendors implement ECMP such that either
all packets sent to the same host or all packets belonging to the same communication
session follow the same path, which leads to non-uniform traffic splitting. Furthermore,
IP packets have variable size. So even a packet-by-packet round robin approach would
yield a non-uniform split.

3)For ECMP routing, the forwarding table may contain several outgoing links per des-
tination address.

4)Recent protocols, such as Multi-Protocol Label Switching (MPLS) [173], as well as tra-
ditional connection-based protocols, like Private Network to Network Interface (PNNI)
[164], allow routing and forwarding decisions to depend on both the source and the desti-
nation addresses and further header fields.

3.3. Shortest Path Routing 27

s

t

(1, 1/2)

(1, 1/2)

(2, 0)

(1, 1/2)

(1, 1/4)

(2, 0)
(2, 1/4)

(1, 0)

(1, 3/8)

(1, 3/8)

(5, 0)

(1, 3/8)

(1, 5/8)

Figure 3.4 ECMP routing example. The first value at each arc is the routing
length, the second value is the fraction of the (s, t)-flow across this arc.

ordinate the forwarding tables of the routers in the AS. As the forwarding
table sizes grow only linearly with the number of possible destination ad-
dresses, the table lookup operation requires very little computational effort
per packet even in huge network.5) Modern high-speed routers have the
packet forwarding functionalities implemented in specialized hardware and
achieve enormous throughput rates.

Another important advantage of shortest path routing is its inherent ro-
bustness against network failures. The routers exchange network state infor-
mation and recompute the shortest paths in regular time intervals and upon
critical events. If a router detects that one of its adjacent links (or neigh-
boring routers) fails or becomes functional again, it propagates this infor-
mation to all other routers in the AS. Each router then updates its network
topology database, recomputes its shortest paths in the residual network,
and updates the forwarding tables accordingly. This way, the shortest path
routing mechanism automatically provides functional backup paths for all
origin-destination pairs that are still connected in the residual network and
automatically restores the original routing paths as soon as the failing com-
ponents become operational again, see Figure 3.5. As it takes some time
to propagate the failure information through the network, recompute the
shortest paths, and update forwarding tables accordingly, this restoration
mechanism has a relatively high latency compared to methods based on pre-
computed backup paths. It nevertheless is very popular in practice, because
it requires no additional configuration overhead.

The most important drawback of shortest path routing is that it is usu-
ally less bandwidth efficient than other routing schemes. Because all traffic
streams are sent along shortest paths with respect to the same global rout-
ing metric, there are strong interdependencies among the routing paths for

5)In fact, only the shortest possible address prefixes necessary to determine the outgoing
link by a longest matching prefix search are stored in the forwarding tables. In order
to further improve the forwarding efficiency, both protocols OSPF and IS-IS also have
(slightly different) concepts of areas and hierarchies within an AS.

28 3. Internet Routing and Planning Problems

t

1

2

2

1

2

3
2

1

1

1

4

2

1

(a) Routing paths towards t when
all links are operational.

t

1

2

2

3
2

1

4

2

1

2 1

1

∞

(b) Routing paths towards t when
the dashed link fails.

Figure 3.5 Automatic restoration with shortest-path routing. The failing
link is removed from the routers’ network databases (or its length is implic-
itly set to infinity) and the shortest paths are recomputed in the residual
network.

different traffic streams. Once two streams merge on their way to a com-
mon destination, they cannot be separated from each other anymore, for
example.

Several questions that arise in the planning and operation of IP networks
are concerned with the installation or the efficient use of network resources
and lead to complex optimization problems. In the following, we describe
the planning problems addressed in this thesis.

3.4 Optimization Problems in IP networks

One of the most basic basic planning task is the construction of the network
itself. This network design task involves two types of decisions, those con-
cerning the dimensioning of the network and those concerning the routing.

The dimensioning specifies what equipment is installed where in the
network. Thereby, it also determines the network topology and the capac-
ities available on the links. The planning of the dimensioning involves all
decisions related to the installation of hardware, including which type of
router and which interface cards to deploy at each node and which links to
establish between the nodes, for example.

The routing specifies via which paths the data packets are sent through
the network. For the routing within the network, this means to choose an
appropriate metric, which then is supplied to the routing protocol for the
shortest path computations. In principle, also the gateway routers’ policies
for the handling of external traffic must be determined. Due to the flexibility
of the BGP protocol, however, this is more an issue of finding appropriate
agreements with the peers than an issue of engineering and optimization.

The design of a network is a long-term strategic planning tasks. There-

3.4. Optimization Problems in IP networks 29

fore, the network should be constructed such that it meets with future traffic
demands. Since these demands are usually unknown, the network’s dimen-
sioning and routing is typically planned on basis of a traffic forecast, which
gives an estimate of the expected end-to-end traffic. Because of the TCP
flow control mechanisms, individual IP traffic streams are extremely bursty
on short time scale. Therefore, only average flows or demands within 1 to
5 minute intervals are considered in traffic accounting and forecasting in
practice. Typically, forecasts based on the peak-traffic 5-minute interval or
on the 95-percentile of all 5-minute intervals are used for network planning
purposes.

Given a traffic forecast and the set of possible topology and hardware con-
figurations, the task in the network design problem is to find a dimensioning
and a corresponding routing metric, such that the resulting traffic flows do
not exceed the provided capacities. The goal is to minimize the total cost
of the dimensioning.

Depending on the actual routing protocol and the desired routing variant,
several additional restrictions must be taken into account when choosing the
routing metric. If each traffic stream shall be sent unsplit via single path,
then the link metric must be chosen such that all shortest paths are uniquely
determined. Otherwise it is unclear whether the traffic flows in the real
network will exceed the link capacities or not. If ECMP is used, the metrics
may be chosen such that there are multiple shortest paths between any pair
of nodes, but the traffic splitting among these paths must be properly taken
into account. Similarly, the network operator may allow an asymmetric
metric or insist on a symmetric one for operational reasons. It is also very
common to restrict the hop length or the geographical length of the routing
paths in order to guarantee low transmission delays.

Often, operators wish to design their network such that it remains opera-
tional also in case of link or router failures. Even though the reconfiguration
mechanisms of the dynamic shortest path routing protocols automatically
establish backup routes in the remaining network, the impact of a failure
may be severe. A routing metric that is optimal for the normal state, where
all network elements are fully functional, may be inappropriate in a failure
situation. In order to protect the network at least against those failures
that statistically occur frequently, the dimensioning and the metric must be
chosen in such a way, that the capacities suffice for the traffic flows not only
in the fully operational network, but also in these failure scenarios.

If the dimensioning and the routing have been planned based on good
traffic estimates, the users will typically observe good service quality in
the newly deployed network. Over time, however, new applications and
services will emerge and old ones will disappear. This may lead to rapid and
unforeseen traffic changes, and the routing that would have been optimal for
the predicted traffic demands then might provide very poor service quality
for the actually observed traffic streams. The task of re-establishing good

30 3. Internet Routing and Planning Problems

0.2 0.4 0.6 0.8 1.0 1.2

2
4
6
8

10
12
14

Congestion

P
en

al
ty

Figure 3.6 Link penalty function used by Fortz and Thorup [92, 93] and
Ericsson et al. [81]. This function is a piecewise-linear approximation of
the average packet delay on a link.

service in response to such traffic changes is called traffic engineering. Its
goal is to find a new routing metric for the new (observed) traffic demands,
such that the resulting flows fit into the capacities again or the service quality
improves. The dimensioning of the network thereby remains unchanged.
Traffic engineering is one of the most important short-term planning tasks in
IP networks. By reconfiguring only the routing in the network, operators can
react on changes in the traffic demands quickly and without costly changes
to the hardware configuration.

Besides the packet loss-rate, the packet delay and the jitter (i.e., the
variation of the packet delays) are the most important measures for the
service quality in IP networks. Modern real-time streaming applications,
such as audio or video broadcasts or interactive network games, require low
and nearly constant packet delays. Objectives like minimizing the average
packet delay or minimizing the average packet loss-rate are commonly used
in traditional traffic engineering. Using standard results from queuing the-
ory, these objective functions can be (approximately) expressed as the sum
over all links of a penalty function that depends on the link congestion. The
penalty (i.e., the packet loss-rate or delay) on a single link is small as long
as the congestion is low, but it rapidly increases if the flow gets close to the
capacity, see Figure 3.6. Fortz and Thorup [92, 93], Ericsson et al. [81],
and others use such an objective function for traffic engineering in the IP
network of AT&T, for example.

Another commonly used objective in traffic engineering is to minimize
the maximum congestion over all links in the network. This yields a so-
called max-min fair routing with respect to all three quality measures loss-
rate, delay, and jitter. The factor by which all demands can be increased
simultaneously without exceeding the given capacities is maximal for such
a routing. Deploying a max-min fair routing thus not only improves the
service quality in the network, it also makes the network more robust against
unforeseen future traffic changes.

When the traffic demands change too much and the existing network does

3.5. Mathematical Model 31

not provide adequate capacities for any routing anymore, a redimensioning
of the network becomes necessary. The network operator must decide how to
modify the current dimensioning in order to satisfy the new traffic demands.
Both the installation of new node devices or links as well as the removal of
no longer needed ones are possible options.

Traditionally, the objective in network redimensioning is to minimize the
expenses that are necessary to provide sufficient capacities again. Given the
current network dimensioning and a traffic forecast, the goal is to find both
a new dimensioning and a new routing, such that the traffic flows do not
exceed the new capacities and the cost of the expansion is minimized.

Alternatively, network redimensioning can be considered as a generaliza-
tion of traffic engineering, where a given budget can be spent to change the
dimensioning of the network. In this case, the goal is to find a new dimen-
sioning and a new routing, such that the given reconfiguration budget is not
exceeded and the traffic engineering objective is optimized.

In practice, it is impossible to change the dimensioning of the entire net-
work at once. Typically, operational needs lead to restrictions concerning
the number of new installations, removals, or reconfigurations of hardware
elements, which must be considered in the network redimensioning plan-
ning. Also, the costs of the transition to the new network design involve
not only the cost for new devices or links but also the expenses of carrying
out the reconfiguration. In particular, there may be costs for the removal
or reconfiguration of devices or links.

3.5 Mathematical Model

As we have seen in the previous section, building and operating an IP net-
work involves various complex planning tasks. In this section, we introduce
the notation that is necessary to describe these tasks mathematically as op-
timization problems. We restrict our attention to those technical variants
that arise in the planning of backbone networks and confine our definitions
to the traditional single shortest path routing version without traffic split-
ting, which is used in the German national research and education network
DFN. In order to keep the mathematical notation as neat as possible, we
will also simplify the real-world hardware installation possibilities and ig-
nore several operational routing constraints, such as path length restrictions
through most parts of this thesis. Mathematical models including all these
real-world technical and operational details are presented in Chapter 9 at
the end of this thesis.

As the traffic demands and flows in IP networks typically are highly asym-
metric and, furthermore, most routing protocols admit the configuration of
asymmetric end-to-end routings, the network can be modeled adequately

32 3. Internet Routing and Planning Problems

only in a directed context.

Notation 3.1 The (potential) topology of the communication network is
modeled as a directed supply graph D = (V, A).

The nodes of the supply graph correspond to the locations where a router is
or may be installed, its arcs represent all existing or potentially installable
directed links between these routers. At most one router may be installed
at each node. Multiple (independently configurable) routers at one location
need to be modeled by multiple nodes. Broadcast link technologies connect-
ing more than two routers via a single shared capacity link are very unusual
in high speed backbone networks. Therefore, they are not considered in this
thesis. Without loss of generality we may assume that D is connected and
contains no loops.

Although the use of multicast applications such as video and audio broad-
cast is steadily increasing, the fraction of real multicast traffic in nowadays
IP networks is still negligible. For the sake of simplicity, we therefore also
ignore multicast traffic in this thesis and assume that every communication
demand has a single source and a single destination node.

Notation 3.2 The traffic demands in the network are given as a set of
directed commodities K ⊆ V × V . Each commodity (s, t) ∈ K has an
associated demand value ds,t ∈ Z+. The nodes s and t are called the
source and the target (or destination) of commodity (s, t), respectively.
Both s and t together are called the terminals of (s, t).

Note that we implicitly assume in this definition that there are no parallel
commodities, i.e., K ⊆ V × V . As we are interested in unsplittable shortest
path routings only, this assumption can be made without loss of generality.
If there were two parallel commodities from s to t with demand values
d1 and d2, then both commodities would be routed along the same unique
shortest (s, t)-path in any unsplittable shortest path routing. So, they can be
aggregated into one commodity with demand value d1+d2. Furthermore, we
may assume without loss of generality that K contains no loop commodities
(v, v), that ds,t > 0 for all (s, t) ∈ K, and that there exists at least one
(s, t)-path in D for each (s, t) ∈ K.

Let P denote the set of all simple directed paths in D. The set of all simple
directed (s, t)-paths between two nodes s, t ∈ V is denoted by P(s, t). For
the set of all paths among the node pairs of a commodity set K ⊆ V × V ,
we write P(K) :=

⋃

(s,t)∈K P(s, t).

In general, a (multi-path) routing is an assignment of the demand values of
the commodities to end-to-end transportation paths. For each commodity,
it determines which fraction of the demand is sent via which path from the
source to the destination. Within an IP routing domain, these paths are
computed by some shortest path routing protocol according to the routing

3.5. Mathematical Model 33

lengths assigned to the link interfaces. In the digraph D = (V, A), these
routing weights correspond to arc lengths.

Notation 3.3 A (routing) metric 6) is a vector λ = (λa)a∈A ∈ RA
+. The

individual arc lengths λa are also called routing lengths.

In practice, the routing lengths must be small integers that fit into the data
format of the routing protocol. Depending on the specific protocol, the range
of admissible values for individual link lengths or for the total length of the
resulting end-to-end paths is bounded. The OSPF protocol, for example,
admits only routing lengths up to 216−1 = 65535. In principle, it thus might
happen that a shortest path routing that is given by some unbounded real-
valued routing metric λ ∈ RA

+ cannot be realized by the real-world routing
protocol in practice. In modern routing protocols, however, the ranges of
admissible routing lengths are sufficiently large. All possible shortest path
routings can be realized in a network of realistic size and the range restriction
thus can be safely ignored. We address this issue in detail in Chapter 4.

Once the routing metric is set, the routers autonomously compute the
shortest paths. If there were multiple equally-long shortest paths between
some routers, then it depends on the version and the actual implementation
of the routing protocol whether traffic is split or not and how ambiguities
are resolved. To obtain a well-defined unsplittable shortest path routing,
the metric must be chosen such that the shortest path is unique for each
commodity. If a metric λ ∈ RA

+ defines a unique shortest path from s to t in
the digraph D, then (and only then) we denote this path by P ∗

(s,t)(λ). For
brevity, we also write P ∗

(s,t) if it is clear which metric λ we refer to.

Definition 3.4

(i) A routing metric λ ∈ RA
+ is said to be valid for the commodity set

K ⊆ V × V if, for each commodity (s, t) ∈ K, the shortest (s, t)-path
P ∗

(s,t)(λ) is uniquely determined.

(ii) Given a valid metric λ ∈ RA
+ for the commodity set K, the path set

S(λ) :=
{

P ∗
(s,t)(λ) : (s, t) ∈ K

}

is the unsplittable shortest path routing (USPR) induced by λ
for K.

Note that a valid metric needs to induce unique shortest (s, t)-paths only
for those node pairs (s, t) that comprise commodities. For all other node
pairs, ambiguous shortest paths are allowed. Nevertheless, each valid metric

6)Throughout this thesis, we will use the term metric for any vector of routing lengths,
independent of whether or not the triangle inequality holds. Although mathematically
imprecise, this notion is the de-facto standard in the IP routing literature.

34 3. Internet Routing and Planning Problems

can be easily turned into a metric that induces unique shortest paths not
only for the given commodities but for all node pairs.

Given a valid metric or its induced USPR, the total traffic flows across
the arcs can be easily computed.

Notation 3.5 Let λ ∈ RA
+ be a valid metric for the commodity set K.

The induced flow (or total flow) on arc a then is

fa(λ) :=
∑

(s,t)∈K: a∈P ∗
(s,t)

(λ)

ds,t for each a ∈ A. (3.1)

For a given a path set S ⊆ P(K) containing exactly one (s, t)-path for each
commodity (s, t) ∈ K, we define the induced arcs flows equivalently as

fa(S) :=
∑

P∈S: a∈P

dsP ,tP for each a ∈ A. (3.2)

If λ ∈ RA
+ is a valid metric for the commodity set K and S is its induced

USPR, then we clearly have fa(λ) = fa(S) for all a ∈ A.

With this notation, we now can formalize the three network design and
routing planning problems that we consider throughout this thesis.

One of the most common short-term planning tasks for IP networks is
traffic engineering. Its goal is to improve the service quality of an existing
network by (re-)optimizing the routing of the traffic demands, while leaving
the network’s topology and hardware configuration unchanged. An impor-
tant measure for the service quality is the link congestion. The loss-rate, the
average delay, and the jitter (the variation of delays) highly depend on the
congestion of the links the packets traverse. A typical objective in traffic
engineering therefore is to minimize the maximum link congestion in the
network.

Mathematically, this task can be formulated as the minimum congestion
unsplittable shortest path routing problem, denoted briefly as Min-Con-
USPR. Given a digraph D = (V, A) with fixed arc capacities ua ∈ Z+,
a ∈ A, and a set of commodities K ⊆ V ×V with demand values ds,t ∈ Z+,
(s, t) ∈ K, the task is to find a metric λ ∈ ZA

+ that defines an USPR for the
given commodity set K and minimizes the maximum congestion fa(λ)/ua

over all arcs.

Problem: Min-Con-USPR

Instance: A digraph D = (V, A) with arc capacities ua ∈ Z+, a ∈ A,
and a commodity set K ⊆ V ×V with demands ds,t ∈ Z+,
(s, t) ∈ K.

Solution: A valid metric λ ∈ ZA
+, i.e., a metric λ such that the

shortest (s, t)-path w.r.t. λ is unique for each (s, t) ∈ K.

Objective: min{L ∈ R+ : fa(λ) ≤ L ua for all a ∈ A}.

3.5. Mathematical Model 35

An important strategic planning task is to design or to redimension a
network such that it can accommodate some forecasted traffic demands.
This involves decisions about the network topology, the dimensioning and
configuration of the router and link hardware, and the routing of the traffic
demands within the planned network. The objective typically is to minimize
(an estimate of) the total network costs, which are assumed to be the sum
of all installed hardware component costs plus maybe some fixed charge
costs accounting for the set-up of the nodes and links. In Chapter 9 we
present a mathematical model for the network design task that captures
the possible hardware configurations in IP networks at a very detailed level.
Until then, however, we restrict our attention to only two very basic cases —
the capacitated network design problem Cap-USPR and the fixed charge
network design problem FC-USPR.

In both problems, we are given a digraph D = (V, A) with arc capacities
ua ∈ Z+ and arc costs wa ∈ Z+ for all a ∈ A and a set of commodities
K ⊆ V × V with demand values ds,t ∈ Z+ for all (s, t) ∈ K. In the
capacitated network design problem with unsplittable shortest path routing,
called Cap-USPR, the given capacities wa are interpreted as basic capacity
units that can be installed in integer multiplicities on the arcs. In this
problem, we seek non-negative integer capacity multipliers za ∈ Z+ for all
arcs a ∈ A and a valid metric λ ∈ ZA

+ for the commodities K (i.e., a metric
inducing a unique shortest (s, t)-path in D for each (s, t) ∈ K), such that
the induced arc flows fa(λ) do not exceed the installed capacities uaza. The
objective is to minimize the total capacity installation cost

∑

a∈A waza.

Problem: Cap-USPR

Instance: A digraph D = (V, A) with arc capacities ua ∈ Z+, a ∈ A,
and arc costs wa ∈ Z+, a ∈ A, and a commodity set
K ⊆ V × V with demands ds,t ∈ Z+, (s, t) ∈ K.

Solution: Capacity multipliers z ∈ ZA
+ and a valid metric λ ∈ ZA

+,
such that fa(λ) ≤ uaza for all a ∈ A.

Objective: min
∑

a∈A zawa.

Cap-USPR is one of the simplest non-trivial network design problems with
unsplittable shortest path routing that allows the installation of arbitrarily
large capacities.

In the fixed charge network design problem with unsplittable shortest path
routing FC-USPR, the given capacities are regarded as fix. Here the task
is to find a minimum cost arc set B ⊆ A and a valid metric λ ∈ ZB

+, such
that λ defines an USPR for the commodities K within the subgraph (V, B)
and the induced arc flows fa(λ) do not exceed the capacities ua (on the arcs
a ∈ B). This problem is the simplest version of a network design problem
with unsplittable shortest path routing admitting only bounded capacities.

36 3. Internet Routing and Planning Problems

Problem: FC-USPR

Instance: A digraph D = (V, A) with arc capacities ua ∈ Z+, a ∈ A,
and arc costs wa ∈ Z+, a ∈ A, and a commodity set
K ⊆ V × V with demands ds,t ∈ Z+, (s, t) ∈ K.

Solution: An arc set B ⊆ A and a valid metric λ ∈ ZB
+, such that

(i) for each (s, t) ∈ K, λ induces a unique shortest
(s, t)-path P ∗

(s,t)(λ) in the subgraph (V, B) and

(ii) fa(λ) ≤ ua for all a ∈ B.

Objective: min
∑

a∈B wa.

In all three problems Min-Con-USPR, Cap-USPR, and FC-USPR, we
may assume without loss of generality that ua > 0 for all a ∈ A and ds,t > 0
for all (s, t) ∈ K.

In Part II of this thesis, we analyze the computational complexity of these
three problems and present polynomial time approximation algorithms for
several special cases. An exact (but non-polynomial) integer programming
solution approach for these problems is developed in Part III. In this ap-
proach, we decompose the problem of finding an unsplittable shortest path
routing for the given commodity set into the two subproblems of finding
the end-to-end routing paths for the commodities and, afterwards, finding
a valid metric that induces exactly these paths. This approach requires a
good (algorithmic) characterization of those end-to-end routings that in-
deed correspond to unsplittable shortest paths routings and (practically)
efficient methods for finding a valid metric afterwards. These two aspects
are discussed in the following.

Part I

Metrics and Routing Paths

37

Chapter 4

The Inverse Unique Shortest

Paths Problem

In this chapter, we study Inverse Unique Shortest Paths problems that
arise in the context of shortest path routing planning. Given a collection
of paths in a directed graph D = (V, A), the general task is to find a com-
patible metric for the paths, i.e., a metric of non-negative arc lengths such
that the given paths are uniquely determined shortest paths between their
respective terminals. In the basic problem version IUSP we admit arbitrary
fractional arc lengths, which is equivalent to allowing arbitrarily large inte-
ger arc lengths. This problem corresponds to the task of deciding whether
the given routing paths can be realized at all with the abstract shortest
path routing paradigm, ignoring all possible obstacles of a routing protocol
implementation. In the second problem version Min-Path-IUSP we seek
for an integer-valued compatible metric that minimizes the length of the
longest of the prescribed paths. Similarly, the third problem version Min-
Arc-IUSP seeks for an integer-valued compatible metric where the length
of the longest arc is minimal. The later two problems Min-Path-IUSP and
Min-Arc-IUSP arise in practice, if the prescribed routing paths shall be
realized with some real, implemented shortest path routing protocol, such
as OSPF, IS-IS, PNNI, or RIP. Each of these protocols admits only a
bounded range of arc and/or path lengths.

In Section 4.2 we formally introduce the three IUSP problems. After a
review of the related literature in Section 4.1, we show in Section 4.3 that
the problem of finding a fractional compatible metric (or proving its non-
existence) is solvable in polynomial time by linear programming techniques.

In Section 4.4, the two problem variants Min-Path-IUSP and Min-Arc-
IUSP seeking for small integer lengths are proven to be APX -hard. More
precisely, we show that the minimal longest path length cannot be approxi-
mated within a factor less than 8/7 and the minimal longest arc length not
within a factor less than 9/8, unless P = NP . This answers the (previously)
open question whether these problems are NP-hard or not. Furthermore,

39

40 4. The Inverse Unique Shortest Paths Problem

these inapproximability results imply that it is NP-hard to decide whether
a prescribed set of paths can be realized with any real shortest path routing
protocol such as OSPF, IS-IS, PNNI, or RIP.

A simple algorithm that achieves an O(|V |)-approximation guarantee for
both integer-valued IUSP variants by rounding the optimal solution of the
corresponding linear programming relaxations is presented in Section 4.5.

In Section 4.6 we finally discuss a variant of the Inverse Unique Short-
est Paths problem where the potential routing is not given in terms of its
end-to-end paths but in terms of the arcs that lead from each node towards
the different destinations – similar to the forwarding tables used by the net-
work routers in practice. This alternative representation is very useful if
the potential routing is given in terms of the forwarding tables anyway, or
if not the complete end-to-end paths but only some of the flow-arcs shall be
prescribed, as in intermediate steps of a routing optimization process, for
example.

4.1 Related Work

Computing shortest paths in a weighted digraph is one of the classical com-
binatorial optimization problems. Various algorithms are known to solve
this problem efficiently. The inverse problem of finding arc lengths that in-
duce a prescribed set of paths or node-to-node distances has received only
little attention in the mathematical literature.

Several groups studied the inverse shortest paths problem in the context
of data engineering where the task is to reconstruct data from inaccurate
measurements or observations. Typical applications are the estimation of the
average travel times on road segments from total end-to-end travel times,
the recovery of the densities of earth crust layers from observed seismic
waves, or the reconstruction of relationship degrees in genetic sequencing
[49, 142]. In these settings, the goal is to find edge or arc lengths that match
as closely as possible the observed distances and shortest paths. Neither
the uniqueness of the observed shortest paths nor the integrality of the
lengths are required in these problem variants. Burton and Toint [51, 50]
apply a quadratic programming approach to estimate the arc lengths when
the perceived shortest paths are known. For the same problem, Tong and
Lam [185] propose a conjugate gradient method. The case with additional
upper bounds on the shortest paths’ lengths is discussed by Burton et al.
[52]. Fekete et al. [89] study the complexity of a problem variant where
the lengths are to be reconstructed from observed distances in the network,
but the shortest paths are not known. Cai and Li [53] show that the more
general Inverse Matroid Intersection problem can be transformed into
a minimum cost flow problem and can be solved in strongly polynomial time.

In a similar application context, Ahuja and Orlin [2, 3] study the Inverse

4.2. Problem Definition 41

Linear Programming problem, which subsumes the Inverse Network
Flow and the Inverse Shortest Path problem; see also Zhang et al. [195,
198]. Given a linear programming problem min{cT x : Ax ≤ b}, the task is to
find a perturbed cost vector d such that a prescribed solution x∗ is optimal
with respect to d and the L1 or the L∞ norm of c − d is minimized. Ahuja
and Orlin show that both inverse problem variants can be formulated as
linear programming problems, too, and can be solved efficiently with linear
programming or combinatorial techniques. However, neither the uniqueness
of the prescribed optimal solution nor the integrality of the perturbed cost
vector are addressed.

Inverse shortest path problems with integer lengths and unique shortest
paths has been rarely addressed. Farago et al. [85, 86] study a special
case where the given paths are known to be shortest paths with respect
to the number of edges and where the task is to find lengths such that
all these paths are unique shortest paths. Ben-Ameur and Gourdin [27]
discuss structural properties of (undirected) path sets where all paths are
uniquely determined shortest paths for some common edge lengths. Ben-
Ameur and Gourdin present several linear programming formulations for
finding fractional edge lengths that are compatible with the given paths.
Based on these formulations, they also propose heuristics for finding small
integer edge lengths that are compatible with the given paths, but they
leave open whether the problem of finding the smallest possible such lengths
is NP-hard or not. The approximation algorithm for Min-Path-IUSP
and Min-Arc-IUSP we present in Section 4.5 and the linear programming
formulation for IUSP we present in the following are (variants of) those
proposed by Ben-Ameur and Gourdin [27].

4.2 Problem Definition

A major difficulty in planning of shortest path networks is to find a link
metric that induces a set of globally efficient end-to-end routing paths. In
this chapter, we are concerned with the problem of finding a metric that
induces a prescribed set of paths. In addition, we typically want the metric
to satisfies the technical restrictions of the used routing protocol, mainly
limiting the range of the admissible routing lengths. Given a collection of
paths in a directed graph, the we wish to find small positive integer arc
lengths for which the prescribed paths are uniquely determined shortest
paths between their respective terminals. This problem naturally arises
when the end-to-end routing paths are provided by a prior dimensioning
or routing optimization process, or if the paths are predetermined by some
technical or operational reasons.

The uniqueness of the prescribed shortest paths as well as the range of
admissible length values are very important concerns for shortest path rout-

42 4. The Inverse Unique Shortest Paths Problem

ing in telecommunications. The routers in a network calculate the shortest
paths autonomously. Thus, the metric must be chosen such that for any pair
of nodes only the prescribed paths are shortest paths. Otherwise, the traffic
flows in the real network might differ from those computed during network
planning. For unsplittable shortest path routing, this means that each pre-
scribed path must be the uniquely determined shortest path between its
terminals.

In practice, the arc lengths furthermore must be small integers that fit
into the data format of the routing protocol. For link-state protocols like
OSPF or IS-IS, this means that each single link length is bounded by some
protocol-dependent constant. With a distance-vector protocol such as RIP,
the total length of each routing path is bounded. Real network routing
domains typically range from 10 to 1000 nodes. Thus, the limited size of
the lengths typically is not relevant for OSPF, which admits link lengths
between 1 and 216−1. However, it becomes an important issue for (the initial
version of) IS-IS, which admits values up to 63 only. For RIP (Release 1),
where the link lengths must be chosen such that the total length of the
longest routing path does not exceed 15, the restricted range of admissible
lengths is one of the major difficulties in practice. Therefore, it is natural
to seek integer lengths that either minimize the largest link length or the
length of the longest path.

Let D = (V, A) be a directed graph. We denote the set of all simple paths
in D by P and the set of all simple (s, t)-paths between two nodes s and t
by P(s, t). Given a directed path P , we refer to its source node by sP and
to its target node by tP . By P [u, v] we denote the (u, v)-subpath of a path
P . For notational simplicity, we also write λ(P) :=

∑

a∈P λa for any metric
λ = (λa)a∈A ∈ RA

+ and any path P ∈ P .
Throughout this section, we are not concerned about some specific com-

modity set or its associated demand values. In a very general setting, we
simply say that a path set S ⊆ P comprises a unique shortest path system
if and only if there exists exists a metric such that each path in S is the
unique shortest path between its terminals.

Definition 4.1

(i) A metric λ = (λa)a∈A ∈ RA
+ is said to be compatible with a given

path set S ⊆ P, if each path P ∈ S is the unique shortest (sP , tP)-path
with respect to λ.

(ii) A path set S ⊆ P is a unique shortest path system (USPS) if
there exists a compatible metric λ ∈ RA

+ for S. Otherwise S is called a
non-USPS .

Clearly, each unsplittable shortest path routing S for a specific commodity
set K ⊆ V ×V is a USPS. Vice versa, each USPS S defines an unsplittable

4.2. Problem Definition 43

shortest path routing for the commodity set K := {(sP , tP) : P ∈ S} and
each metric that is compatible with S is valid for the commodity set K.

The most basic problem related to unique shortest path systems is to de-
cide whether some path set S ⊆ P is a USPS and, if so, to find some com-
patible metric. Formally, this Inverse Unique Shortest Paths problem
is given as follows:

Problem: IUSP

Instance: A digraph D = (V, A) and a path set S ⊆ P .

Task: Find a metric λ ∈ RA
+ that is compatible with S or prove

that none exists.

The problem of finding an integer-valued metric that uniquely induces the
prescribed shortest paths and minimizes the length of the longest of these
paths can be formally defined as follows:

Problem: Min-Path-IUSP

Instance: A digraph D = (V, A) and a path set S ⊆ P .

Solution: Integer metric λ ∈ ZA
+ with λa ≥ 1 for all a ∈ A that is

compatible with S.

Objective: min max{λ(P) : P ∈ S}.

The problem variant, where we wish to minimize the maximum arc length,
is given as:

Problem: Min-Arc-IUSP

Instance: A digraph D = (V, A) and a path set S ⊆ P .

Solution: Integer metric λ ∈ ZA
+ with λa ≥ 1 for all a ∈ A that is

compatible with S.

Objective: min max{λa : a ∈ A}.

The IUSP problem corresponds to task of finding some maybe fractional (or,
equivalently, arbitrarily large integer) arc lengths that realize the prescribed
routing paths with an abstract unsplittable shortest path routing protocol.
The Min-Path-IUSP problem corresponds to the task of finding admissible
arc lengths for a real distance-vector protocol that induce the given paths in
practice, while Min-Arc-IUSP corresponds to the same task for a link-state
protocol.

Without loss of generality, we can assume in both problems Min-Path-
IUSP and Min-Arc-IUSP that the given path set S is a USPS, i.e., there
exists at least some metric that is compatible with S. With the linear pro-
gramming approach presented in Section 4.3, it can be decided in polynomial
time whether this is the case or not.

All results presented in the following also hold for the undirected problem
versions, where we seek for edge lengths that uniquely induce a given set of

44 4. The Inverse Unique Shortest Paths Problem

prescribed shortest paths or destination-arc pairs in an undirected graph.

4.3 Finding Real-Valued Lengths

Suppose we are given a path set S ⊆ P and we wish to find some maybe
fractional metric λ ∈ RA

+ such that each path P ∈ S is the unique shortest
(sP , tP)-path with respect to λ, or prove that no such metric exists. As a
path P is the unique shortest (sP , tP)-path if and only if λ(P) < λ(P ′) for
all P ′ ∈ P(sP , tP)\{P}, this problem is equivalent to the problem of finding
a solution for the following linear inequality system:

∑

a∈P ′

λa −
∑

a∈P

λa > 0 ∀ P ∈ S, P ′ ∈ P(sP , tP) \ {P} (4.1)

λa ≥ 0 ∀ a ∈ A (4.2)

Observation 4.2 A path set S ⊆ P is a USPS if and only if the linear
inequality system (4.1)–(4.2) has a solution.

For each path set S ⊆ P , the set of metrics that are compatible with S
form an open polyhedral cone: A metric λ ∈ RA

+ is compatible with S if
and only if, for any c > 0, the metric cλ = (cλa)a∈A is compatible with
S and, furthermore, any convex combination of two metrics that both are
compatible with S is compatible with S, too. The faces of this cone are
defined by the inequalities (4.1) and (4.2). As the faces corresponding to
the strict inequalities (4.1) are not fully contained within this cone, one
cannot (naively) apply a standard linear programming algorithm for finding
a compatible metric for S or proving its non-existence.

Yet, as (for now) we are only interested in finding some metric λ that is
compatible with S, we may tighten the strict inequalities (4.1) to some non-
strict inequalities, provided that the entire linear system remains feasible
after the tightening if it was before. In fact, one easily observes that any
metric that is compatible with a given path set S can be transformed into a
metric with strictly positive and integer arc lengths that is compatible with
S, too, by scaling and rounding.

Proposition 4.3 A path set S ⊆ P is a USPS if and only if there exists a
compatible metric λ ∈ ZA

+ with λa ≥ 1 for all a ∈ A.

Proof. If there there exists a metric with strictly positive integer arc lengths
that is compatible with S, then S is a USPS by definition.

To prove the other implication, let S ⊆ P be a USPS and let λ ∈ RA
+ be

an arbitrary metric that is compatible with S. We define

α(λ) := min
{

λ(P ′) − λ(P) : P ∈ S, P ′ ∈ P(sP , tP) \ {P}
}

.

4.3. Finding Real-Valued Lengths 45

Since each path P ∈ S is the unique shortest (sP , tP)-path with respect to
λ, we have α(λ) > 0. Multiplying all arc lengths by the factor of |V |/α(λ),
we obtain the metric λ′ ∈ RA

+ with λ′
a := |V |/α(λ) · λa for all a ∈ A, which

satisfies

α(λ′) =min
{

λ′(P ′) − λ′(P) : P ∈ S, P ′ ∈ P(sP , tP) \ {P}
}

≥ |V |.

This means that, for each path P ∈ S, the length of the prescribed shortest
(sP , tP)-path P and of the second shortest (sP , tP)-path with respect to λ′

differ by at least |V |. As no simple path contains more than |V | − 1 arcs,
each path P ∈ S will remain the shortest (sP , tP)-path even if we round up
all arc length of this metric to an integer and set all zero lengths to one.
More formally, the metric λ′′ ∈ ZA

+ given by

λ′′
a :=

{

1, if λ′
a = 0, and

⌈λ′
a⌉, otherwise

is compatible with S. �

Proposition 4.3 implies that unique shortest path systems could have been
defined equivalently by requiring the existence of a compatible metric with
only strictly positive and integer arc lengths instead of non-negative frac-
tional ones. Furthermore, it immediately leads to a linear programming
formulation of the IUSP problem with only non-strict linear inequalities.

Theorem 4.4 (Ben-Ameur and Gourdin [27]) A path set S ⊆ P is a
USPS if and only if the linear inequality system

∑

a∈P ′

λa −
∑

a∈P

λa ≥ 1 ∀ P ∈ S, P ′ ∈ P(sP , tP) \ {P}, (4.3)

λa ≥ 1 ∀ a ∈ A (4.4)

has a solution. Furthermore, any solution λ ∈ RA
+ of (4.3)–(4.4) is a com-

patible metric for S.

Proof. Follows directly from Proposition 4.3. �

Since (4.3)–(4.4) contains only non-strict inequalities, standard linear pro-
gramming techniques can be applied to find a solution or prove that none
exists. In general, however, this linear system may contain exponentially
many (non-redundant) inequalities of type (4.3). In order to solve it effi-
ciently, we must solve the following separation problem:

46 4. The Inverse Unique Shortest Paths Problem

Problem: Sep-IUSP

Instance: A digraph D = (V, A), a path set S ⊆ P , and a metric
λ ∈ RA

+.

Task: Find two paths P ∈ S and P ′ ∈ P(sP , tP) \ {P}, such
that (4.3) is violated for P and P ′, or to prove that no
such paths exist.

The problem Sep-IUSP can be solved in polynomial time by algorithm
CheckTwoShortestPaths illustrated at the bottom of this page. For each P ∈
S, algorithm CheckTwoShortestPaths computes the two shortest (sP , tP)-
paths P 1 and P 2 with respect to λ and compares their respective lengths
with the length of P .

Lemma 4.5 (Ben-Ameur and Gourdin [27]) Algorithm CheckTwo-
ShortestPaths solves the separation problem Sep-IUSP in polynomial time.

Proof. Let P ∈ S and consider the shortest and the second shortest
(sP , tP)-path P 1 and P 2, respectively.

If P is the shortest path and the length of the second shortest path P 2 is
greater or equal to λ(P) + 1, then inequality (4.3) clearly holds for P and
all other (sP , tP)-paths P ′ 6= P as well.

If this is not the case, then we have P 6= P 1 or λ(P 2) < λ(P) + 1. If
P 6= P 1, i.e., the actual shortest (sP , tP)-path w.r.t. λ is not the prescribed
shortest (sP , tP)-path P , then the inequality λ(P 1)− λ(P) ≥ 1 is obviously
violated. Otherwise, if P = P 1 but λ(P 2) < λ(P) + 1, then the inequality
λ(P 2) − λ(P) ≥ 1 is violated, which concludes the proof of the correctness
of algorithm CheckTwoShortestPaths.

It is also very easy to see that algorithm CheckTwoShortestPaths runs
polynomial in the size of the given problem instance. It performs at most |S|

Algorithm 4.1 CheckTwoShortestPaths

Input: Digraph D = (V, A), path set S ⊆ P , and metric λ ∈ RA
+

Output: A pair (P, P ′) for which (4.3) is violated or assertion that no
such pair exists.

1. For each P ∈ S do

2. Compute the shortest and the second shortest (sP , tP)-paths
P 1 and P 2 with respect to λ (with Yen’s algorithm [196] f.e.)

2.1 If P 1 6= P then

Return (P, P ′ := P 1).

2.2 If P 1 = P and λ(P 2) < λ(P 1) + 1 then

Return (P, P ′ := P 2).

3 Return ’All inequalities (4.3) are satisfied.’

4.4. Inapproximability Results for Integer Lengths 47

many 2-shortest path computations, and each of these computations can be
performed in polynomial time using any of the k-shortest paths algorithms
of Yen [196], Katoh et al. [122], Azevedo et al. [12], Eppstein [78], Martins
and Santos [139], or Skiscim and Golden [178], for example. �

It follows from the polynomial time equivalence of separation and optimiza-
tion that one can find a solution of prove the infeasibility of (4.3)–(4.4) in
polynomial time using a standard cutting plane algorithm, see Grötschel
et al. [103], Grötschel and Lovász [101], or Wolsey [194]. With Theorem 4.4
we immediately obtain the following theorem.

Theorem 4.6 (Ben-Ameur and Gourdin [27]) The IUSP problem is
solvable in polynomial time.

Another linear programming formulation for the IUSP problem with only
polynomially many variables and inequalities is discussed in Section 5.7.

If the given path set S is a USPS, then any solution of (4.3)–(4.4) is a
compatible metric for S. Using Cramer’s rule (or some variant of the scaling
and rounding technique used in the proof of Proposition 4.3), any such met-
ric can be easily transformed into a compatible metric with integer values.
However, the arc lengths produced by these approaches may be extremely
large. In the following section we show that the problems Min-Arc-IUSP
and Min-Path-IUSP of finding a compatible metric with integer arc lengths
as small as possible are computationally hard.

4.4 Inapproximability Results for Integer Lengths

In the first part of this section, we show that the problem Min-Path-IUSP
is APX -hard.

Theorem 4.7 For any ǫ > 0, it is NP-hard to approximate Min-Path-
IUSP within a factor of 8/7 − ǫ.

Proof. We construct a polynomial reduction from the NP-complete de-
cision problem Set Partition(3) to the problem of computing a solution
of value strictly less than 8 for Min-Path-IUSP. Set Partition(3) is a
restricted variant of the Set Partition problem introduced by Karp [121]
(also called Exact Set Cover by Garey and Johnson [96]). Given a finite
set I and a collection C ⊂ 2I with |{C ∈ C : i ∈ C}| = 3 for all i ∈ I, the
task is to decide whether there exists a subcollection C ′ ⊆ C which forms a
partition of I. In Set Partition(3), each element occurs in exactly three
sets of the collection. It was shown by Papadimitriou and Yannakakis [156]
that this restricted variant of Set Partition remains NP-complete.

Suppose we are given an instance of Set Partition(3) that consists of
the set I and the collection C =

{

Cj ⊂ I : j ∈ J
}

. For each element i ∈ I, we

48 4. The Inverse Unique Shortest Paths Problem

aα
aβ aγ

(a) Gadget I

e1 en

en+1 e2n

a b
. . .

. . .

(b) Gadget II

e1 e2 e3 e4 e5 e6 e7

(c) Gadget III

Figure 4.1 Gadgets used in the proof.

let J(i) :=
{

α(i), β(i), γ(i)
}

= {j ∈ J : i ∈ Cj} be the indices of the three
sets in C that contain i. We construct a Min-Path-IUSP instance consisting
of a digraph D = (V, A) and a shortest path system S that consists of the
three basic gadgets illustrated in Figure 4.1. Each gadget corresponds to a
small digraph containing a single prescribed shortest path. Gadget I is used
to force the length of at least one of the arcs aα, aβ , and aγ to two (or more)
by prescribing a unique shortest path of only three arcs that is parallel to
the path (aα, aβ, aγ). Gadget II is used to ‘propagate’ the length of some
arc a to some other arc b. If λei = 1 for all i in the graph of Gadget II, then
λb ≥ λa. Gadget III is used to ensure λei = 1 for all i in any solution where
the longest prescribed path length is 7.

The idea of our construction is the following. For each element i ∈ I, we

prescribe two shortest paths. The first path is parallel to the arcs a
α(i)
i , a

β(i)
i ,

and a
γ(i)
i , as in Gadget I. These three arcs correspond to the three sets Cα(i),

Cβ(i), and Cγ(i) that contain i. The unique shortest path requirement forces
the length of at least one of these arcs to two (or more), which corresponds
to the condition that i is contained in at least one set of a feasible partition.

The second prescribed shortest path for i consists of three arcs b
α(i)
i , b

β(i)
i ,

and b
γ(i)
i . Also these arcs correspond to the three sets containing i. Several

gadgets of types II and III are used to ensure that the lengths of of bj
i

and aj
i are chosen coherently for all elements i and sets j such that λ

bj
i
≥

λ
aj

i
+1. By requiring that the length of the second prescribed shortest path

(bα(i), bβ(i), bγ(i)) does not exceed 7, we then can enforce that element i is
contained in at most one set of a feasible collection.

We construct the digraph D = (V, A) as follows. For each element i ∈ I,
we introduce 22 nodes

Vi :=
{

rj
i , sj

i , tji , uj
i , vj

i wj
i : j ∈ J(i)

}

∪
{

pi, qi, v̄
γ(i)
i , w̄

γ(i)
i

}

.

Some of these nodes receive multiple names. For every i ∈ I, we also denote

v̄
α(i)
i := v

β(i)
i , v̄

β(i)
i := v

γ(i)
i , w̄

α(i)
i := w

β(i)
i , and w̄

β(i)
i := w

γ(i)
i . Among these

nodes, we add the 21 arcs

Ai :=
{

(vj
i , v̄

j
i) , (wj

i , w̄
j
i) , (wj

i , r
j
i), (rj

i , s
j
i), (sj

i , t
j
i), (tji , u

j
i) : j ∈ J(i)

}

∪
{

(v
α(i)
i , pi) , (pi, qi) , (qi, v̄

γ(i)
i)

}

.

4.4. Inapproximability Results for Integer Lengths 49

pi qi

v
α(i)
i v

β(i)
i = v̄

α(i)
i v

γ(i)
i = v̄

β(i)
i v̄

γ(i)
i

w
α(i)
i w

β(i)
i = w̄

α(i)
i w

γ(i)
i = w̄

β(i)
i w̄

γ(i)
i

r
α(i)
i

s
α(i)
i

t
α(i)
i

u
α(i)
i

r
β(i)
i

s
β(i)
i

t
β(i)
i

u
β(i)
i

r
γ(i)
i

s
γ(i)
i

t
γ(i)
i

u
γ(i)
i

Figure 4.2 Nodes Vi and arcs Ai introduced for any i ∈ I in bold.

These nodes and arcs are illustrated in Figure 4.2.

We introduce further nodes and arcs for pairs of elements that occur
together in some set of the collection. For every set Cj ∈ C and every
ordered pair (i, k) ∈ C2

j , we introduce the nodes and the arcs

V j
i,k :=

{

xj
i,k, x̄j

i,k, yj
i,k, ȳj

i,k

}

and

Aj
i,k :=

{

(vj
i , x

j
i,k), (xj

i,k, y
j
i,k), (yj

i,k, w
j
k), (v̄j

i , x̄
j
i,k), (x̄j

i,k, ȳ
j
i,k), (ȳj

i,k, w̄
j
k)

}

as illustrated in Figure 4.3. For pairs (i, k) with i 6= k, we may assume
without loss of generality that i and k occur together in only one set Cj ∈ C.
For the pairs (i, i) of identical elements, which do occur ‘together’ in the

three sets Cα(i), Cβ(i), and Cγ(i), we identify the vertices x̄α
i,i(i) = x

β(i)
i,i ,

x̄β
i,i(i) = x

γ(i)
i,i , ȳα

i,i(i) = y
β(i)
i,i , and ȳβ

i,i(i) = y
γ(i)
i,i . This ensures that there

are a unique (vj
i , w

j
k)-path and a unique (v̄j

i , w̄
j
k)-path in the constructed

digraph for all Cj ∈ C and i, k ∈ Cj ; see Figure 4.5.

Together, these sets form the simple digraph D = (V, A) with

V :=
⋃

i∈I

Vi ∪
⋃

j∈J, (i,k)∈C2
j

V j
i,k and A :=

⋃

i∈I

Ai ∪
⋃

j∈J, (i,k)∈C2
j

Aj
i,k .

Figure 4.2 illustrates the subgraph of all nodes and arcs that are introduced
for a single element i ∈ I. Figures 4.3 and 4.4 illustrate nodes and arcs that
are introduced for the pairs (i, k) ∈ C2

j with i 6= k, and Figure 4.5 illustrates

the nodes and arcs that are introduced for pairs (i, i) ∈ C2
j .

50 4. The Inverse Unique Shortest Paths Problem

...
...

...

...
...

...

vj
i v̄j

i

wj
i w̄j

i

vj
k v̄j

k

wj
k w̄j

k

xj
i,k

yj
k,i

xj
k,i

yj
i,k

x̄j
i,k

ȳj
k,i

x̄j
k,i

ȳj
i,k

Figure 4.3 Nodes V j
i,k ∪ V j

k,i and arcs Aj
i,k ∪ Aj

k,i introduced for a pair

(i, k) ∈ C2
j with i 6= k and j = β(i) = β(k) in bold.

In this digraph D, we prescribe various shortest paths. For each single
element i ∈ I, we prescribe the two paths

Si :=
{(

v
α(i)
i , pi, qi, v̄

γ(i)
i

)

,
(

w
α(i)
i , w

β(i)
i , w

γ(i)
i , w̄

γ(i)
i

)}

.

For each ordered pair (i, k) ∈ I2, with i, k ∈ Cj for some Cj ∈ C (including
the pairs with i = k), we prescribe the two paths

Sj
i,k :=

{(

vj
i , v̄

j
i , x̄

j
i,k, ȳ

j
i,k, w̄

j
k

)

,
(

vj
i , x

j
i,k, y

j
i,k, w

j
k, r

j
k, s

j
k, t

j
k, u

j
k

)}

.

Figures 4.6 and 4.7 illustrate these paths. The set of all prescribed paths is

S :=
⋃

i∈I

Si ∪
⋃

j∈J, (i,k)∈C2
j

Sj
i,k .

It is obvious that this construction is polynomial.

In the first part of this proof, we show that the constructed Min-Path-
IUSP instance is solvable for any given Set Partition(3) instance, i.e.,
S is a USPS. Furthermore, we show that the value of any solution of the
Min-Path-IUSP instance is at least 7. Consider the arc lengths λ ∈ ZA

+

defined as

λa :=























3, for all a = (wj
i , w̄

j
i) with j ∈ J and i ∈ Cj ,

2, for all a = (vj
i , v̄

j
i) with j ∈ J and i ∈ Cj ,

2, for all a = (pi, qi) with i ∈ I, and

1, otherwise.

It is straightforward to verify that each path in S is the uniquely determined
shortest path between its terminals for these lengths:

4.4. Inapproximability Results for Integer Lengths 51

...
...

...

...
...

...

...
...

...

v
γ(l)
l v̄

γ(l)
l

v
β(k)
k v̄

β(k)
k

v
β(i)
i v̄

β(i)
i

w
γ(l)
l w̄

γ(l)
l

w
β(k)
k w̄

β(k))
k

w
β(i)
i w̄

β(i)
i

Figure 4.4 All nodes and arcs introduced for pairs of different elements in
a set Cj = {i, k, l} ∈ C with j = β(i) = β(k) = γ(l) in bold, i.e., the

nodes V j
i,i ∪ V j

k,k ∪ V j
l,l ∪ V j

i,k ∪ V j
k,i ∪ V j

i,l ∪ V j
l,i ∪ V j

k,l ∪ V j
l,k and the arcs

Aj
i,i ∪ Aj

k,k ∪ Aj
l,l ∪ Aj

i,k ∪ Aj
k,i ∪ Aj

i,l ∪ Aj
l,i ∪ Aj

k,l ∪ Aj
l,k.

Let P =
(

v
α(i)
i , pi, qi, v̄

γ(i)
i

)

for some i ∈ I. The only other (v
α(i)
i , v̄

γ(i)
i)-

path in D is P ′ =
(

v
α(i)
i , v

β(i)
i , v

γ(i)
i , v̄

γ(i)
i

)

. Since λ(P) = 4 < 6 =

λ(P ′), the path P is the unique shortest (v
α(i)
i , v̄

γ(i)
i)-path w.r.t. λ.

Let P =
(

w
α(i)
i , w

β(i)
i , w

γ(i)
i , w̄

γ(i)
i

)

for i ∈ I. Since P is the only

(w
α(i)
i , w̄

γ(i)
i)-path in D, is also is the uniquely determined shortest

one.

Let P =
(

vj
i , v̄j

i , x̄j
i,k, ȳj

i,k, w̄j
k

)

for some j ∈ J and some pair (i, k) ∈ C2
j

(including the pairs with i = k). The only other (vj
i , w̄

j
k)-path in D is

P ′ =
(

vj
i , xj

i,k, yj
i,k, wj

k, w̄j
k

)

. Because λ(P) = 5 < 6 = λ(P ′), the path

P is the unique shortest (vj
i , w̄

j
k)-path w.r.t. λ.

Finally, let P =
(

vj
i , xj

i,k, yj
i,k, wj

k, rj
k, sj

k, tjk, uj
k

)

for some j ∈ J and

(i, k) ∈ C2
j . As P is the only path from vj

i to uj
k, it also is the uniquely

determined shortest one.

Since each path in S is the unique shortest path between its terminals, the
lengths λ are compatible with S.

Let P =
(

vj
i , xj

i,k, yj
i,k, wj

k, rj
k, sj

k, tjk, uj
k

)

for some j ∈ J and (i, k) ∈ C2
j .

As P ∈ S and |P | = 7, we have max{λ(P) : P ∈ S} ≥ 7 for all arc lengths
that are compatible with S and satisfy λa ≥ 1 for all a ∈ A.

52 4. The Inverse Unique Shortest Paths Problem

v
α(i)
i v

β(i)
i = v̄

α(i)
i v

γ(i)
i = v̄

β(i)
i v̄

γ(i)
i

x
α(i)
i,i

y
α(i)
i,i

x
β(i)
i,i = x̄

α(i)
i,i

y
β(i)
i,i = ȳ

α(i)
i,i

x
γ(i)
i,i = x̄

β(i)
i,i

y
γ(i)
i,i = ȳ

β(i)
i,i

x̄
γ(i)
i,i

ȳ
γ(i)
i,i

w
α(i)
i w

β(i)
i = w̄

α(i)
i w

γ(i)
i = w̄

β(i)
i w̄

γ(i)
i

Figure 4.5 All nodes V
α(i)
i,i ∪ V

β(i)
i,i ∪ V

γ(i)
i,i and arcs A

α(i)
i,i ∪ A

β(i)
i,i ∪ A

γ(i)
i,i

introduced for any i ∈ I in bold.

In the second part of the proof, we show that the constructed Min-Path-
IUSP instance has a solution of value 7 if the given Set Partition(3)
instance is solvable. Assume there is a subcollection C ′ ⊆ C that forms a
partition of I. We define the arc lengths λ = λ(C ′) ∈ ZA

+ as

λa :=























3, for all a = (wj
i , w̄

j
i) with Cj ∈ C′ and i ∈ Cj ,

2, for all a = (wj
i , w̄

j
i) with Cj 6∈ C′ and i ∈ Cj ,

2, for all a = (vj
i , v̄

j
i) with Cj ∈ C′ and i ∈ Cj , and

1, otherwise.

(4.5)

Analogous to the first part, we now verify that each path in S is a unique
shortest path between its terminals and its length is at most 7. For this, we
again consider each of the four path types in S individually.

Let P =
(

v
α(i)
i , pi, qi, v̄

γ(i)
i

)

for some i ∈ I. By (4.5), we have λa = 1 for
all a ∈ P , and thus λ(P) = 3. According to our construction, the only

other (v
α(i)
i , v̄

γ(i)
i)-path in D is P ′ =

(

v
α(i)
i , v

β(i)
i , v

γ(i)
i , v̄

γ(i)
i

)

. Since C′

defines a partition, the element i is contained in some set Cj ∈ C′. By
(4.5), this implies λ(vj

i ,v̄j
i) = 2 and, therefore, λ(P ′) ≥ 4.

Let P =
(

w
α(i)
i , w

β(i)
i , w

γ(i)
i , w̄

γ(i)
i

)

for i ∈ I. As C ′ defines a partition of I,
the element i is contained in exactly one set Cj ∈ C′. W.l.o.g., suppose
this set is Cα(i). According to (4.5), we then have λ(w

α(i)
i ,w̄

α(i)
i) = 3 and

λ(w
β(i)
i ,w̄

β(i)
i) = λ(w

γ(i)
i ,w̄

γ(i)
i) = 2. Thus, λ(P) = 7. Since P is the unique

(w
α(i)
i , w̄

γ(i)
i)-path in D, it also is the unique shortest such path.

4.4. Inapproximability Results for Integer Lengths 53

pi qi

v
α(i)
i v

β(i)
i v

γ(i)
i v̄

γ(i)
i

x
α(i)
i,i

y
α(i)
i,i

x
β(i)
i,i

y
β(i)
i,i

x
γ(i)
i,i

y
γ(i)
i,i

x̄
γ(i)
i,i

ȳ
γ(i)
i,i

w
α(i)
i w

β(i)
i w

γ(i)
i w̄

γ(i)
i

r
α(i)
i

s
α(i)
i

t
α(i)
i

u
α(i)
i

r
β(i)
i

s
β(i)
i

t
β(i)
i

u
β(i)
i

r
γ(i)
i

s
γ(i)
i

t
γ(i)
i

u
γ(i)
i

Figure 4.6 Prescribed shortest paths Si ∪ S
α(i)
i,i ∪ S

β(i)
i,i ∪ S

γ(i)
i,i for any i ∈ I.

Let P =
(

vj
i , v̄j

i , x̄j
i,k, ȳj

i,k, w̄j
k

)

for j ∈ J and (i, k) ∈ C2
j (including

pairs with i = k). If Cj ∈ C′, then (4.5) implies λ(vj
i ,v̄j

i) = 2,
otherwise λ(v̄j

i ,v̄j
i) = 1. All other arcs in P have a length of one.

Consequently, λ(P) ≤ 5. The only other (vj
i , w̄

j
k)-path in D is

P ′ =
(

vj
i , xj

i,k, yj
i,k, wj

k, w̄j
k

)

. If Cj ∈ C′, then λ(vj
i ,v̄j

i) = 2 and
λ(wj

k,w̄j
k) = 3. Otherwise, λ(vj

i ,wj
i) = 1 and λ(wj

k,w̄j
k) = 2. Indepen-

dent of whether Cj ∈ C′ or not, it follows that λ(P) < λ(P ′).

Finally, let P =
(

vj
i , xj

i,k, yj
i,k, wj

k, rj
k, sj

k, tjk, uj
k

)

for some j ∈ J and

(i, k) ∈ C2
j . By (4.5), all arcs in P have length one. Hence, λ(P) = 7.

Furthermore, P is the solitary (vj
i , k

j
k)-path.

Summarizing these arguments, it follows that the arc lengths λ = λ(C ′) are
compatible with S and that max{λ(P) : P ∈ S} = 7. This concludes the
second part of the proof.

In the following third part, it remains to show that the constructed Min-
Path-IUSP instance has a solution of value 7 only if the given Set Parti-
tion(3) instance is solvable. For this, we prove that any arc length vector
λ ∈ Za

+ with λa ≥ 1 for all a ∈ A that is compatible with S and satisfies
max{λ(P) : P ∈ S} = 7 can be transformed into a subcollection C ′ ⊆ C
that defines a partition of I. So, suppose we are given such arc lengths and
define the subcollection C′ = C′(λ) as

C′ :=
{

Cj ∈ C : λ
(vj

i ,v̄j
i)
≥ 2 for some i ∈ Cj

}

. (4.6)

54 4. The Inverse Unique Shortest Paths Problem

vj
i v̄j

i

wj
i w̄j

i

vj
k v̄j

k

wj
k w̄j

k

uj
i

uj
k

Figure 4.7 Prescribed shortest paths Sj
i,k ∪ Sj

k,i for some elements i, k ∈ I
with i 6= k and j = β(i) = β(k).

Note that P =
(

vj
i , xj

i,k, yj
i,k, wj

k, rj
k, sj

k, tjk, uj
k

)

∈ S for all j ∈ J and (i, k) ∈
C2

j . Since |P | = 7, all arcs in P must have length 1. In particular,

λ
(vj

i ,xj
i,k)

= λ
(xj

i,k,yj
i,k)

= λ
(yj

i,k ,wj
k)

= 1 for all j ∈ J and (i, k) ∈ C2
j (4.7)

First, we show that C ′ covers all elements in I. Let i ∈ I and

consider the two (v
α(i)
i , v̄

γ(i)
i)-paths P =

(

v
α(i)
i , pi, qi, v̄

γ(i)
i

)

and P ′ =
(

v
α(i)
i , v

β(i)
i , v

γ(i)
i , v̄

γ(i)
i

)

. Since P ∈ S and the lengths λ are compatible
with S, the inequality λ(P ′) ≥ λ(P) + 1 must hold. With λa ≥ 1 for all
a ∈ A, it follows that λ(P ′) ≥ 4. This, in turn, implies λ(vj

i ,v̄j
i) ≥ 2 for some

j ∈ J(i). According to (4.6), Cj then belongs to C ′ and the element i is
covered by C′.

Secondly, we show that the sets in C ′ are pairwise disjoint. Suppose C ′

contains two non-disjoint sets Cj and Ck, j 6= k. Then there exists an
element i ∈ Cj ∩ Ck. Since Cj belongs to C′, there must be some h ∈
Cj with λ(vj

h,v̄j
h) ≥ 2. For this h, consider the two (vj

h, w̄j
i)-paths P1 =

(

vj
h, v̄j

h, x̄j
h,i, ȳj

h,i, w̄j
i

)

and P2 =
(

vj
h, xj

h,i, yj
h,i, wj

i , w̄j
i

)

. As λ is compatible
with S and P1 ∈ S, the lengths λ must satisfy λ(P2) ≥ λ(P1) + 1. With
(4.7) and λ(vj

h,v̄j
h) ≥ 2, this implies λ(wj

i ,w̄j
i) ≥ 3. Analogously, Ck ∈ C′

implies λ(wk
i ,w̄k

i) ≥ 3. For the third index l with {j, k, l} = J(i), a similar
argument yields λ(wl

i,w̄
l
i)
≥ 2.

Now consider the path P =
(

w
α(i)
i , w

β(i)
i , w

γ(i)
i , w̄

γ(i)
i

)

∈ S. Since all

arcs (wj
i , w̄

j
i), (wk

i , w̄k
i), and (wl

i, w̄
l
i) are contained in P , we have λ(P) ≥ 8.

4.4. Inapproximability Results for Integer Lengths 55

This, however, conflicts with our assumption max{λ(P) : P ∈ S} = 7.
Consequently, all sets in C ′ are pairwise disjoint and form a partition of I.

Together, the three parts of the proof imply that our construction maps
any given Set Partition(3) instance to a solvable Min-Path-IUSP in-
stance. Furthermore, the optimum solution value of the constructed Min-
Path-IUSP instance is 7 if and only if the given Set Partition(3) in-
stance is solvable, and is at least 8 otherwise. As Set Partition(3) is
NP-complete and the above construction is polynomial, it is NP-hard to
approximate Min-Path-IUSP within a factor strictly less than 8/7. �

The same inapproximability bound of 8/7 can be shown for the correspond-
ing undirected problem variant of Min-Path-IUSP: Let G = (V, E) be the
undirected graph obtained by replacing each arc (v, w) of D = (V, A) with
an undirected edge vw and consider S as a set of undirected paths in G in
the above construction. For any arc length vector λ ∈ ZA

+ examined for the
directed graph D, now consider the corresponding undirected edge length
vector λU ∈ ZE

+ with λU
uv := λ(u,v) for all (u, v) ∈ A. One easily verifies that

the undirected paths in S are unique shortest paths between their respective
terminals also in the undirected graph G with respect to the corresponding
undirected lengths constructed in the first and in the second part of the
proof. The third part of the proof carries over literally to the undirected
case.

In the remainder of this section, we show that also the second problem
Min-Arc-IUSP is APX -hard. This follows in a straightforward manner
from the constant inapproximability threshold for Min-Path-IUSP.

Theorem 4.8 For any ǫ > 0, it is NP-hard to approximate Min-Arc-
IUSP within a factor of 9/8 − ǫ.

Proof. Suppose we are given a Min-Path-IUSP instance consisting of
a digraph D = (V, A) and a shortest path system S. Consider the Min-
Arc-IUSP instance with the same path set S, but in an extended digraph
D∗ := (V, A ∪ A∗) with A∗ := {aP = (s, t) : P ∈ S, P is an (s, t)-path },
as illustrated in Figure 4.8: In D∗, we introduce a new arc aP = (s, t) for
each (s, t)-path in S, even if there already exists a parallel arc (s, t) in A.

Clearly, the constructed Min-Arc-IUSP instance is solvable. Further-
more, for any arc length vector λ ∈ ZA

+ that is compatible with S in D, the
arc lengths λ∗ = (λ∗

a)a∈A∪A∗ ∈ ZA∪A∗

+ defined as

λ∗
a :=

{

λa , for all a ∈ A, and

λ(P) + 1 , for all aP ∈ A∗,

are compatible with S in D∗. Conversely, all arc lengths λ∗ ∈ ZA∪A∗

+ in D∗

that are compatible with S define arc lengths λ = (λ∗
a)a∈A in D that are

compatible with S and satisfy λ(P) ≤ λ∗
aP

− 1 for all P ∈ S.

56 4. The Inverse Unique Shortest Paths Problem

s t

aP = (s, t)

D

P ∈ S

Figure 4.8 Extension of digraph D to digraph D∗.

As it is NP-hard to find lengths λ in D such that the longest path in S
is strictly less than 8, it is also NP-hard to find lengths λ∗ in D∗ such that
all arc lengths (in particular those of the arcs in A∗) are strictly less than 9.
Therefore, it is NP-hard to approximate Min-Arc-IUSP within a factor
less than 9/8. �

Analogously, one can show the same inapproximability threshold of 9/8 for
the corresponding undirected problem.

4.5 An LP-Rounding Algorithm

A path P is the unique shortest (s, t)-path with respect to some integer arc
lengths λ ∈ RA

+ with λa ≥ 1 for all a ∈ A if and only if λ(P ′)−λ(P) ≥ 1 for
all P ′ ∈ P(s, t)\{P}. This leads to the following integer linear programming
formulation for Min-Arc-IUSP:

min λmax (Arc-IUSP)
∑

a∈P ′

λa −
∑

a∈P

λa ≥ 1 ∀ P ∈ S, P ′ ∈ P(sP , tP) \ {P} (4.8)

1 ≤ λa ≤ λmax ∀ a ∈ A

λa ∈ Z+ ∀ a ∈ A

The correctness of this formulation follows immediately from Theorem 4.4.

Formulation (Arc-IUSP) contains exponentially many (non-redundant)
inequalities of type (4.8), but these inequalities can be separated in poly-
nomial time using algorithm CheckTwoShortestPaths presented in Section
4.3, for example. Hence, the linear programming relaxation of (Arc-IUSP)
can be solved (or proven to be infeasible) in polynomial time by a standard
cutting plane algorithm.

Clearly, the optimal solution value λ∗
max of the linear programming re-

laxation of (Arc-IUSP) is a lower bound for the optimal solution value
of Min-Arc-IUSP. An optimal solution λ∗ of the linear relaxation corre-

4.5. An LP-Rounding Algorithm 57

sponds to an optimal ‘fractional’ solution of Min-Arc-IUSP, i.e., a real-
valued metric that are compatible with the given path set S and minimize
the largest arc length (among all those factional metrics with λa ≥ 1 for all
a ∈ A and with λ(P ′) − λ(P) ≥ 1 for all prescribed shortest paths P ∈ S
and all non-shortest paths P ′ ∈ P(sP , tP) \ {P}). Using standard scaling
and rounding techniques, such as Cramer’s rule or iterative rounding, one
can easily transform such a fractional solution into an integer solution of
(Arc-IUSP), which then defines a feasible solution for Min-Arc-IUSP.

The currently best known approximation ratio is achieved by algorithm
MIP-Rounding shown below. This algorithm first solves the linear program-
ming relaxation of (Arc-IUSP) and then, depending on the length of the
longest path in S, simultaneously scales all fractional arc lengths and rounds
the outcome to the nearest integer. A variant of this algorithm was originally
proposed by Ben-Ameur and Gourdin [26, 27] for the undirected version of
the Min-Arc-IUSP problem.

Theorem 4.9 (Ben-Ameur and Gourdin[27]) Algorithm MIP-Rounding

has a worst-case approximation ratio of min (|V |/2, maxP∈S |P |) for Min-
Arc-IUSP.

In order to prove Theorem 4.9, we first need to analyze some redundancies
among the inequalities in (Arc-IUSP). A large portion of the redundant
inequalities can be characterized by the notion of weak disjointness.

Definition 4.10 We say that two (s, t)-paths P1 and P2 are weakly dis-

joint if there are two distinct nodes u and v that occur in this order in both
paths (i.e., P1[u, v] 6= ∅ and P2[u, v] 6= ∅) and

(i) P1[s, u] = P2[s, u],

Algorithm 4.2 MIP-Rounding

Input: Digraph D = (V, A) and path set S ⊆ P .

Output: Integer metric λ ∈ Za
+ with λa ≥ 1 for all a ∈ A that is

compatible with S.

1. Solve the linear relaxation of (Arc-IUSP) for S.

2. If (Arc-IUSP) is not solvable, then

return ‘S is no USPS’.

3. Let (λ∗, λ∗
max) be the optimal fractional solution of (Arc-IUSP).

4. Let M := maxP∈S |P |.
5. If M < |V |/2, then

5.1. return metric λa := ⌈λ∗
a · M⌉ for all a ∈ A,

else

5.2 return metric λa := ⌈λ∗
a · |V |/2 − 1/2⌉ for all a ∈ A.

58 4. The Inverse Unique Shortest Paths Problem

s t

P1

P2

s t

P1

P2

Figure 4.9 Examples for weakly disjoint paths (left) and not weakly disjoint
paths (right).

(ii) P1[v, t] = P2[v, t], and

(iii) P1[u, v] and P2[u, v] are (internally) node disjoint.

For an (s, t)-path P , the set WD(P) ⊂ P(s, t) denotes all weakly disjoint
paths for P .

Two weakly disjoint paths must be disjoint except for a common subpath
at the start and a common subpath at the end. These subpaths may be
empty, i.e., a pair of disjoint (s, t)-paths is also weakly disjoint. Figure 4.9
illustrates the weak disjointness of paths.

Lemma 4.11 In (Arc-IUSP), inequality (4.8) is redundant for all paths
P ∈ S and P ′ ∈ P(sP , tP) \ {P} that are not weakly disjoint.

Proof. Let P ∈ S and P ′ ∈ P(sP , tP) \ {P} be not weakly disjoint. Then
there exists a node v ∈ P , such that ∅ 6= P [sP , v] 6= P ′[sP , v] 6= ∅ and
∅ 6= P [v, tP] 6= P ′[v, tP] 6= ∅. Summing inequalities (4.8) for the path pair
P and P ′[sP , v] ⊕ P [v, tP] and for the path pair P and P [sP , v] ⊕ P ′[v, tP]
yields

∑

a∈P ′

λa −
∑

a∈P

λa ≥ 2 ,

which dominates inequality (4.8) for the paths P and P ′. �

By Lemma 4.11, the integer linear program (Arc-IUSP) is equivalent to

min λmax (Arc-IUSLP’)
∑

a∈P ′

λa −
∑

a∈P

λa ≥ 1 ∀ P ∈ S, P ′ ∈ WD(P), (4.9)

1 ≤ λa ≤ λmax ∀ a ∈ A, and

λa ∈ Z+ ∀ a ∈ A,

and the linear relaxation (Arc-IUSP) is equivalent to the linear relaxation
(Arc-IUSLP’). In order to prove Theorem 4.9, it therefore is sufficient to

4.5. An LP-Rounding Algorithm 59

show that algorithm MIP-Rounding rounds any optimal fractional solution
of (Arc-IUSLP’) to an integer solution of (Arc-IUSLP’).

Proof [Theorem 4.9]. Consider an Min-Arc-IUSP instance given by the
digraph D and the path set S. If S is not a USPS, then the linear relaxation
of (Arc-IUSLP’) has no solution and the algorithm returns infeasibility.
So, assume S is a USPS and denote by (λ∗, λ∗

max) the optimal fractional
solution of (Arc-IUSLP’). Clearly, ⌈λ∗

max⌉ is a lower bound for the optimal
integer solution value.

First, consider the case where M := maxP∈S |P | < |V |/2. Let λ̄a :=
λ∗

a · M , for all a ∈ A. MIP-Rounding returns arc lengths λa = ⌈λ̄a⌉, for all
a ∈ A. Because λ∗ satisfies all inequalities (4.9), we have λ̄(P ′)− λ̄(P) ≥ M
for all P ∈ S and P ′ ∈ WD(P). With λ̄a ≤ λa < λ̄a + 1, it follows that
λ(P ′)−λ(P) > 0 for all P ∈ S and P ′ ∈ WD(P). This implies that all paths
in S are indeed unique shortest paths w.r.t. λ. Hence, λ is a compatible arc
length function for S with

λmax = max
a∈A

λa ≤ ⌈M · λ∗
max⌉ ≤ M · ⌈λ∗

max⌉ .

Now, consider the case where M ≥ |V |/2. Let λ̄a := λ∗
a · |V |/2, for all

a ∈ A. Analogous to the first case, we observe that λ̄(P ′)− λ̄(P) ≥ |V |/2 for
all P ∈ S and P ′ ∈ WD(P). Because P and P ′ are weakly disjoint, there
are at most |V | many arcs in P ∪ P ′. With λ̄a − 1/2 ≤ λa < λ̄a + 1/2, we
therefore have λ(P ′) − λ(P) > 0 for all P ∈ S and P ′ ∈ WD(P). Hence, λ
is a compatible with S and

λmax = max
a∈A

λa ≤
⌈ |V |

2
· λ∗

max −
1

2

⌉

≤ |V |
2

· ⌈λ∗
max⌉.

This concludes the proof. �

Analogously, we can compute approximate solutions for the Min-Path-
IUSP problem. The corresponding integer linear programming formulation
for Min-Path-IUSP is

min λmax (Path-IUSP)
∑

a∈P ′

λa −
∑

a∈P

λa ≥ 1 ∀ P ∈ S, P ′ ∈ P(sP , tP) \ {P}
∑

a∈P

λa ≤ λmax ∀ P ∈ S

λa ≥ 1 ∀ a ∈ A

λa ∈ Z+ ∀ a ∈ A.

Applying algorithm MIP-Rounding to the linear relaxation of (Path-IUSP),
we obtain the same worst-case approximation guarantee for Min-Path-
IUSP as for Min-Arc-IUSP.

60 4. The Inverse Unique Shortest Paths Problem

Theorem 4.12 Algorithm MIP-Rounding achieves a worst-case approxima-
tion ratio of min (|V |/2, maxP∈S |P |) for Min-Path-IUSP, if applied to the
linear relaxation of (Path-IUSP).

Proof. Analogous to Theorem 4.9. �

The same approximation ratio is also achieved for the corresponding undi-
rected problem versions.

Remark 4.13 The approximation algorithm MIP-Rounding presented in
this section are mainly of theoretical interest. For instances arising in real-
world telecommunication network planning, the integer linear programming
models for Min-Arc-IUSP and Min-Path-IUSP usually can be solved to
optimality very efficiently with state-of-the-art integer linear programming
solvers.

4.6 Unique Shortest Path Forwardings

In this final section we consider an alternative representation of unsplittable
shortest path routings. Instead of the end-to-end routing paths themselves,
we are now given a set of so-called forwarding arcs.

Definition 4.14 A forwarding arc is a pair (t, (u, v)) of a destination
node t ∈ V and an arc (u, v) ∈ A, and a given forwarding arc (t, (u, v))
means that arc (u, v) is the only arc emanating from node u that is contained
in any shortest (u, t)-path. A forwarding is a set F ⊆ V ×A of forwarding
arcs.

The forwarding representation of unsplittable shortest path routings corre-
sponds to the representation that is used internally by the routers in a real
network. Recall that each router maintains a local forwarding table describ-
ing via which arc it has to forward the packets to which destination. For
an unsplittable shortest path routing or, more general, for an unsplittable
source invariant routing, this table assigns exactly one emanating link to
each possible destination.

Prescribing a forwarding F ⊂ V ×A corresponds to prescribing some of the
forwarding table entries at the routers. A given forwarding arc (t, (u, v)) ∈ F
forces the forwarding table of router u to map destination t to the emanat-
ing link (u, v) and thereby ensures that all traffic from or via router u to
destination t is send via this link.

Note that a forwarding not necessarily prescribes entire end-to-end paths.
A single forwarding arc (t, (u, v)) with t 6= v, for example, only enforces that
the (u, t)-routing path(s) leave node u via arc (u, v), but it does not define
how the path(s) continue after node v on.

4.6. Unique Shortest Path Forwardings 61

As the forwarding representation allows this partial prescription of end-to-
end paths, it is very useful in optimization models for unsplittable shortest
path routings. Several types of conflicts in a given non-unique shortest
path routing (i.e., substructures proving that the given routing is no un-
splittable shortest path routing) can be recognized already when only some
forwarding arcs have been determined. Optimization methods based on the
forwarding representation thus can recognize these types of infeasibilities
more efficiently than methods based on the end-to-end path representation.
Of course, the forwarding representation is also very handy if the routing is
given in terms of the routers’ forwarding tables anyway.

In this thesis, we are interested in those forwardings that correspond or
can be extended to unsplittable shortest path routings. Analogous to path
sets, we therefore introduce the notion of a compatible metric and a unique
shortest path forwarding.

Definition 4.15

(i) A metric λ ∈ RA
+ is said to be compatible with a forwarding F ⊆ V ×A

if, for each (t, (u, v)) ∈ F , arc (u, v) is contained in all shortest (u, t)-
paths with respect to λ.

(ii) A forwarding F ⊆ V ×A is called a unique shortest path forward-
ing (USPF) if there exists a compatible metric for F . Otherwise F
is called a non-USPF .

Note that, according to this definition, a metric λ that is compatible with
a forwarding F not necessarily induces unique shortest paths, not even for
those node pairs (u, t) for which F contains a forwarding arc (t, (u, v)).
Definition 4.15 only enforces that the given forwarding arcs (t, (u, v)) are
uniquely determined for every compatible metric, that is, all shortest (u, t)-
paths contain arc (u, v). Yet, if the given forwarding corresponds to a set
of complete end-to-end paths, then each metric that is compatible with the
forwarding also uniquely induces these end-to-end paths.

Definition 4.16 For each path set S ⊆ P its associated forwarding is

F(S) :=
⋃

P∈S

{

(tP , a) : a ∈ P
}

=
{

(t, a) ∈ V × A : a ∈ P for some (s, t)-path P ∈ S
}

.

Observation 4.17 A metric is compatible with a path set S ⊆ P if and
only if it is compatible with its associated forwarding F(S).

Observation 4.17 implies that a path set S ⊆ P is a USPS if and only if its
associated forwarding F(S) is a USPF. Note, however, that if S is a USPS

62 4. The Inverse Unique Shortest Paths Problem

and F ⊂ F(S) but F 6= F(S), then a metric that is compatible with S is not
necessarily also compatible with F .

The task of finding a compatible metric for a given forwarding F and,
thereby, deciding whether F is a USPF is formalized as the Inverse Unique
Shortest Path Forwarding problem:

Problem: IUSPF

Instance: A digraph D = (V, A) and a forwarding F ⊆ V × A.

Task: Find a metric λ ∈ RA
+ that is compatible with F or prove

that none exists.

The IUSPF problem is closely related to the IUSP problem. By Obser-
vation 4.17, a IUSP instance consisting of a digraph D and a path set S
is equivalent to the IUSPF instance consisting of D and the associated
forwarding F(S).

Like the IUSP problem, also the IUSPF problem can be solved using
linear programming techniques. In the following, we present a formulation of
IUSPF as a linear inequality system with only polynomially many variables
and inequalities. Variants of this formulation have been used by Ben-Ameur
and Gourdin [27], Bley and Koch [33, 36], and Prytz [169] to find compatible
metrics for both unsplittable shortest path systems and unsplittable shortest
path forwardings. Broström and Holmberg [44, 45, 46] used a modification
of this formulation for finding metrics that induce a prescribed shortest
multi-path routing.

We begin by reviewing some well known facts about shortest paths and
shortest path (anti-)arborescences in digraphs. For notational simplicity we
assume that the digraph D is simple and strongly connected in the remainder
of this section.

Definition 4.18 Let D = (V, A) be a simple digraph and let λ ∈ RA
+.

(i) A potential π = (πv)v∈V ∈ RV is called feasible if

λ(u,v) + πu − πv ≥ 0 for all (u, v) ∈ A. (4.10)

(ii) An arc (u, v) ∈ A is called tight for the metric λ and the feasible
potential π if (4.10) holds with equality for (u, v).

It is well known that an (s, t)-path P is a (not necessarily unique) shortest
(s, t)-path with respect to λ if and only if there exist a feasible potential π
such that all arcs in P are tight, see Bellman [21], Dijkstra [73], or Tarjan
[183], for example.

A characterization of the metric for which an arc (u, v) is contained in all
shortest (u, t)-paths is given by the following proposition.

4.6. Unique Shortest Path Forwardings 63

P

Figure 4.10 Arc set P̄ for a path P : Arcs in P are solid, arcs in P̄ are
dashed.

Proposition 4.19 An arc (u, v) is contained in all shortest (u, t)-paths with
respect to λ if and only if there exist a feasible potential π such that (u, v)
is tight and all arcs in δ+(u) \ {(u, v)} are not tight with respect to π.

Proof. Let λ ∈ RA
+. First, we show that there exists a feasible potential

with the required properties if (u, v) is contained in all shortest (u, t)-paths.
For each node v ∈ V , let πv be the negative length of a shortest (v, t)-

path, i.e., πv := −min{λ(P ′) : P ′ ∈ P(v, t)}. One easily verifies that π is a
feasible potential.

For any shortest (u, t)-path P , all arcs a ∈ P are tight. Since it is con-
tained in all shortest (u, t)-paths, arc (u, v) is tight.

Now suppose one of the arcs (u, w) ∈ δ+ \ {(u, v)} was tight. Let P ∗
w,t

be some shortest (w, t)-path with respect to λ. As all arcs in P ∗
w,t are

tight as well, it follows that the path (u, w) ⊕ P ∗
w,t is a shortest (u, t)-path.

This, however, contradicts with the assumption that all shortest (u, t)-path
contain the arc (u, v). Hence, the potential π constructed above has the
required properties.

Next, we show that there exists no feasible potential with the required
properties if (u, v) is not contained in all shortest (u, t)-paths. So, suppose
that there are two arcs (u, v) and (u, w) that are contained in the shortest
(u, t)-paths P ∗

1 and P ∗
2 , respectively. Since both P ∗

1 and P ∗
2 are shortest

(u, t)-paths, all arcs that are contained in either path must be tight with
respect to any feasible potential π for λ. In particular, both arcs (u, v) and
(u, w) must be tight. Hence, the exists no feasible potential π with respect
to λ such that (u, v) is tight but (u, w) ∈ δ+ \ {(u, v)} is not. �

The uniqueness of a shortest path P with respect to a metric λ can be
characterized by applying Proposition 4.19 iteratively to all arcs of P . Let
P be an (s, t)-path and let P̄ ⊂ A be the set of all those arcs that emanate
from the nodes {u ∈ P : u 6= t} but that are not contained in P , i.e.,

P̄ :=
⋃

(u,v)∈P

(

δ+(u) \ {(u, v)}
)

.

An illustration of the set P̄ is given in Figure 4.10.

Proposition 4.20 The path P is the unique shortest (s, t)-path with respect
to λ if and only if there exist a feasible potential π such that all arcs in P

64 4. The Inverse Unique Shortest Paths Problem

are tight and all arcs in P̄ are not tight with respect to π.

Proof. Follows immediately from Proposition 4.19. �

More important in out context, Proposition 4.19 leads straightforward to
a characterization of all those metrics that are compatible with a given
forwarding. Let F ⊆ V × A be the given forwarding and denote

F̄ :=
⋃

(t,(u,v))∈F

{

(t, a) : a ∈ δ+(u) \ {(u, v)}
}

.

Proposition 4.21 A metric λ ∈ RA
+ is compatible with a forwarding F ⊆

V × A if and only if there exists a feasible potential πt = (πt
v)v∈V ∈ RV

+ for
each node t ∈ V such that

(i) arc (u, v) is tight with respect to πt and λ for each (t, (u, v) ∈ F , and

(ii) arc (u, v) is non-tight with respect to πt and λ for each (t, (u, v) ∈ F̄ .

Proof. Follows directly from Proposition 4.19. �

Proposition 4.21 provides a complete characterization of all those metrics
(and the corresponding feasible potentials) that are compatible with a given
forwarding.

This characterization, however, uses the non-tightness of arcs, which cor-
responds to strict inequalities to be satisfied. In order to obtain a standard
linear programming formulation with only non-strict linear inequalities for
the IUSPF problem, we apply the same scaling argument as in Section 4.3
for the path case.

Clearly, the potential π is a feasible with respect to the metric λ if and
only if cπ is a feasible with respect to cλ, for any c > 0. Furthermore, an arc
a is tight with respect to λ and π if and only if it is tight with respect to cλ
and cπ. Hence, there exists a factor c > 0 such that after scaling the metric
λ and the feasible potential π by c each tight inequality (4.10) remains tight
and the slack of each non-tight inequality (4.10) is at least 1. (With the
same arguments as in Proposition 4.3, we can even ensure that the metric
λ and the feasible potential π are integer-valued.)

Together with Proposition 4.21, it follows that the IUSPF problem is
equivalent to the problem of finding a solution of the following linear in-
equality system:

λ(u,v) + πt
u − πt

v = 0 ∀ (t, (u, v)) ∈ F (4.11)

λ(u,v) + πt
u − πt

v ≥ 1 ∀ (t, (u, v)) ∈ F̄ (4.12)

λ(u,v) + πt
u − πt

v ≥ 0 ∀ (t, (u, v)) ∈ (V × A) \ F \ F̄ (4.13)

λa ≥ 0 ∀ a ∈ A (4.14)

4.6. Unique Shortest Path Forwardings 65

The variables λa, a ∈ A, describe the metric we wish to find and, for each
t ∈ V , the variables πt

s ∈ R, s ∈ V , describe a feasible potential for the
shortest paths towards node t.

Theorem 4.22 A forwarding F ⊆ V ×A is a USPF if and only if the linear
system (4.11)–(4.14) has a solution. Furthermore, each solution (λ, π) of
(4.11)–(4.14) defines a compatible metric λ for F .

Proof. Follows straightforward from Proposition 4.21. �

The number of variables and linear constraints in the system (4.11)–(4.14) is
linear in |V |·|A|. With the ellipsoid method [103], for example, (4.11)–(4.14)
thus can be solved in polynomial time.

Theorem 4.23 The IUSPF problem is solvable in polynomial time.

Remark 4.24 Note that the given forwarding F is not required to have
the Bellman property or any other of the properties discussed in Chapter 5.
In fact, we do not even require that F and F̄ are disjoint. In principle, the
linear system (4.11)–(4.14) may be formulated for any forwarding F ⊆ V ×A.
Of course, (4.11)–(4.14) is infeasible if the sets F and F̄ are not disjoint,
because it then contains the conflicting constraints λ(u,v) + πt

u − πt
v = 0 and

λ(u,v) + πt
u − πt

v ≥ 1 for any (t, (u, v)) ∈ F ∩ F̄ .

Together with Observation 4.17, Theorems 4.22 and 4.23 also yield an al-
ternative, polynomial time solvable linear programming formulation for the
IUSP problem discussed in Section 4.3.

Corollary 4.25 A path set S ⊆ P is a USPS if and only if the linear system
(4.11)–(4.14) has a solution for its associated forwarding F(S). Furthermore,
each solution (λ, π) of (4.11)–(4.14) defines a compatible metric λ for S.

Corollary 4.26 The IUSP problem is solvable in polynomial time.

Remark 4.27 The fact that (4.11)–(4.14) contains only polynomially many
variables and constraints might suggest that it is better suited for solving
the IUSP problem than the exponentially large formulation (4.3)–(4.4) dis-
cussed in Section 4.3. In our computational experiments with real-world
IUSP problems, however, solving the compact linear system (4.11)–(4.14)
usually was more time consuming than solving the exponentially large sys-
tem (4.3)–(4.4) by a cutting plane algorithm that iteratively separates vio-
lated inequalities of type (4.3).

As for the path case, one might be interested in optimization versions of
the Inverse Unique Shortest Path Forwarding problem, where the
task is to find a metric of strictly positive integer arc lengths that are compat-
ible with a given forwarding and that minimize an objective function such

66 4. The Inverse Unique Shortest Paths Problem

as the maximum arc length, the maximum implied distance between two
nodes, or the sum of all arc lengths, for example. With Observation 4.17,
the 9/8 − ǫ inapproximability threshold for Min-Arc-IUSP carries over
immediately to the problem Min-Arc-IUSPF of finding a metric that min-
imizes the largest arc length. Min-Arc-IUSPF also can be approximated
easily within a factor of |V | applying a variation of the scaling rounding
approach of MIP-Rounding to the optimal solution of linear relaxation of the
following integer programming formulation of Min-Arc-IUSPF:

min λmax (Arc-IUSPF)

λ(u,v) + πt
u − πt

v = 0 ∀ (t, (u, v)) ∈ F

λ(u,v) + πt
u − πt

v ≥ 1 ∀ (t, (u, v)) ∈ F̄

λ(u,v) + πt
u − πt

v ≥ 0 ∀ (t, (u, v)) ∈ (V × A) \ F \ F̄

1 ≤ λa ≤ λmax ∀ a ∈ A

λa ∈ Z+ ∀ a ∈ A

From the practical point of view, however, these optimization versions of
the IUSPF problem are not very important. For forwardings that corre-
spond to complete end-to-end path sets, they are equivalent to the corre-
sponding inverse unique shortest path problem versions. Forwardings that
do not correspond to end-to-end path sets, on the other hand, only arise in
intermediate steps of the network and routing planning process, where the
integrality and the boundedness of the routing lengths is of no concern.

4.7 Concluding Remarks

Another problem variant Min-Sum-IUSP, where the objective is to min-
imize the sum of all arc lengths, can be shown to be APX -hard with an
approximation preserving reduction from the Minimum Vertex Cover
problem. Because of the lesser practical relevance of the Min-Sum-IUSP
problem we omit this proof here.

Theorem 4.28 For any ǫ > 0, it is NP-hard to approximate Min-Sum-
IUSP within a factor of 91/90 − ǫ.

The same inapproximability bound also holds for the corresponding Min-
Sum-IUSPF problem, where a forwarding instead of a path set is given.

It remains open whether there are constant factor approximation algo-
rithms for Min-Path-IUSP, Min-Arc-IUSP, Min-Sum-IUSP, or the cor-
responding IUSPF problem versions. The currently best know algorithms
are based on linear programming and rounding and achieve a worst-case
approximation ratio of O(|V |) for all three objective functions.

4.7. Concluding Remarks 67

In this chapter, we discussed only the case of unique shortest paths and
unique shortest path forwarding. All problems can be defined analogously
for the case where multiple shortest (s, t)-paths or multiple arcs emanating
from s to destination t may be prescribed for some or all node pairs (s, t) ∈
V × V and we seek for a metric such that exactly the prescribed paths or
forwarding arcs are induced, but no more parallel paths or forwarding arcs.
These problem variants arise in the planning of OSPF networks with traffic
splitting among equally long shortest paths, so-called ECMP routing, for
example. The results presented in this chapter carry over straightforward
to these problem variants.

68 4. The Inverse Unique Shortest Paths Problem

Chapter 5

Unique Shortest Path

Systems

One of the major difficulties with unsplittable shortest path routing is that
the different commodities’ end-to-end routing paths cannot be chosen in-
dependent of each other. The unsplittable shortest path routing paradigm
enforces many rather subtle and complicated interdependencies among the
paths that comprise a valid routing. Given a digraph D = (V, A), we say
that a path set S ⊆ P is a unique shortest path systems (USPS) if there
exist a compatible metric λ ∈ RA

+ for S, i.e., a metric λ such that each
path P ∈ S is the unique shortest path between its terminals. The family
of USPSs corresponds to exactly those routings that are realizable as an
unsplittable shortest path routing when ignoring the limited range of the
admissible routing lengths in real shortest path routing protocols.

In this chapter, we discuss the combinatorial properties of these unique
shortest path sets and study the problems of finding a maximal USPS or a
minimal non-USPS within a given path set.

After reviewing the relevant literature in Section 5.1, we introduce some
basic notions and notations related to unique shortest path systems in Sec-
tion 5.2. In Section 5.3, we examine the Bellman property and some other
properties of unique shortest path systems. These properties can be re-
garded as necessary conditions for a path set to be a USPS, but they are
not sufficient to completely characterize the family of USPSs in a general
digraph.

In Section 5.4 is dedicated to the problem of finding an irreducible non-
USPS within a given path set. An irreducible non-USPS is an inclusion-
wise minimal set of conflicting paths, and finding these minimal conflicts in
a given path set provides useful information on how to modify the paths
in order to obtain a valid unsplittable shortest path routing. We review
the standard greedy algorithm for computing such non-USPSs and present
some simple but effective improvements of this algorithm. We also show
that the problem of finding a minimum cardinality or minimum weight such

69

70 5. Unique Shortest Path Systems

non-USPS is NP-hard to approximate within a factor less than 7/6.

The reverse problem of finding an inclusion-wise maximal USPS in a given
path set is addressed in Section 5.5. Again, we review the standard greedy
algorithm for solving this problem and prove that the problem of finding a
maximum cardinality or maximum weight such set is computationally hard.

In Section 5.6, we consider unique shortest path systems in undirected
graphs and review a special class of undirected graphs where the Bellman
property alone completely characterizes the family all USPSs.

Section 5.7 finally is dedicated to unique shortest path forwardings, an
alternative representation of unsplittable shortest path routings. Similar to
the forwarding tables used by the routers in practice, a forwarding describes
via which arcs the traffic streams leave the different nodes on the ways
to their respective destinations. Most combinatorial properties, complexity
results, and algorithms carry over straightforward from unique shortest path
systems to unique shortest path forwardings (USPF). The problem of finding
a minimal non-USPF that is contained in a given forwarding is discuss in
detail, because it is relevant in later chapters of this thesis. As for the
path-set variant of the problem, we present a polynomial time greedy-like
algorithm for finding an inclusion-wise minimal such non-USPF, and we
show that the problem of finding a minimum cardinality or minimum weight
such non-USPF is NP-hard to approximate within a factor strictly less than
7/6.

5.1 Related Work

The Bellman or sub-optimality property was first observed by Bellman et
al. [21, 23, 24], Dijkstra [73], and Tarjan [183] in the context of shortest
path algorithms and dynamic programming: Every subpath of a shortest
path is a shortest path as well. As a fundamental property of unique short-
est path systems it was discussed later by Ben-Ameur and Gourdin [27],
Bley and Koch [36], Staehle et al. [180], Milbrandt [141], and Prytz [169],
often referred to as sub-path property or sub-optimality of paths. Fortz and
Thorup [92], Broström and Holmberg [45, 46], de Giovanni et al. [69], and
Tomaszewski et al. [184, 197] considered a multi-path variant of the Bell-
man property for path sets that arise from multi-shortest path routing with
equal traffic splitting.

Ben-Ameur and Gourdin [27] introduced the notion of a compatible metric
and discussed the Bellman property, the cyclic comparability property, and
the generalized cyclic comparability property for undirected unique shortest
path systems. They also proposed several linear and integer linear program-
ming formulations for finding a compatible metric for a given path set, which
we discussed in the previous chapter.

5.2. Basic Definitions and Observations 71

Broström and Holmberg [44, 45, 46] derived a further property of unique
shortest path systems by analyzing a special case of infeasibilities that may
arise in the linear programming formulation of the corresponding inverse
(unique) shortest paths problem. This property corresponds to the non-
existence of an augmenting cycle in some related multicommodity flow prob-
lem, it is stronger than the Bellman property, and it still can be verified for
a given path set in polynomial time.

The problem of finding an inclusion-wise minimal conflict in a given rout-
ing was first considered by Bley and Koch [33, 36], who computed small
(but not necessarily irreducible) conflicts within a given candidate shortest
path routing from irreducible inconsistent subsystems of the corresponding
inverse unique shortest path problem’s LP. Bley and Koch used the found
conflicts to generate violated inequalities in a Branch-and-Cut algorithm for
some (survivable) network design problem with unique shortest path rout-
ing. Prytz [169] generalized this approach to solve an unsplittable shortest
path routing problem with multicast commodities.

5.2 Basic Definitions and Observations

Again, let D = (V, A) be a directed graph and P be the set of all simple
paths in D. As in the previous chapter, we denote the set of all (s, t)-paths
between two nodes s and t by P(s, t) and the source and the target of a
given path P by sP and by tP , respectively.

Throughout this chapter, we are interested in the combinatorial properties
of unique shortest path systems. Recall that

(i) a metric λ = (λa)a∈A ∈ RA
+ is said to be compatible with a given path

set S ⊆ P , if each path P ∈ S is the unique shortest (sP , tP)-path with
respect to λ, and that

(ii) a path set S ⊆ P is called a unique shortest path system (USPS) if
there exists a compatible metric λ ∈ RA

+ for S. Otherwise S is called
a non-USPS .

The family of USPSs corresponds to exactly those routings that are realiz-
able as unsplittable shortest path routings if ignoring the limited range of
admissible routing lengths in real shortest path routing protocols.

In the previous chapter, we have already shown that the Inverse Unique
Shortest Paths problem of finding a compatible metric for a given path
set S ⊆ P or proving that no such metric exists can be solved in polynomial
time. Thus, we can decide in polynomial time whether a given path set S
is a USPS or not.

It is a trivial observation that any subset of a USPS is a USPS as well:
Every metric λ ∈ RA

+ that is compatible with some path set S is also com-
patible with any subset R ⊂ S of these paths. Thus, the family of all USPSs

72 5. Unique Shortest Path Systems

P1 P2

P3v1 v3 v5

v2 v4

P1 =
(

v1, v2, v3

)

P2 =
(

v3, v4, v5

)

P3 =
(

v1, v3, v5

)

Figure 5.1 Example showing that IUSPS is not a matroid.

in a digraph D forms an independence system (or hereditary family). In the
terminology of independence systems, each USPS is an independent set and
each non-USPS is a dependent set. Accordingly, we denote the family of all
USPSs by IUSPS , i.e.,

IUSPS :=
{

S ⊆ P : S is a USPS
}

⊆ 2P .

The following example shows that this independence system is not a matroid
in general.

Example 5.1 Consider the digraph D = (V, A) with V = {v1, . . . , v5}
and A = {(v1, v2), (v2, v3), (v3, v4), (v4, v5), (v1, v3), (v3, v5)}, and the three
paths P1 =

(

v1, v2, v3

)

, P2 =
(

v3, v4, v5

)

, and P3 =
(

v1, v3, v5

)

shown in
Figure 5.1.

Obviously, each of the two path sets S1 := {P1, P2} and S2 := {P3} is a
USPS. If IUSPS were a matroid, then {P1, P3} or {P2, P3} would have to be
USPSs, too. Yet, P1 and P3 contain different (v1, v3)-(sub)paths. As these
cannot both be unique shortest paths for the same metric, {P1, P3} is not a
USPS. For the same reason, {P2, P3} is no USPS either. △

As for any independence system, the maximal independent and minimal
dependent sets (with respect to set-inclusion) are of special interest.

Definition 5.1

(i) A path set S ⊆ P is a maximal USPS if S ∈ IUSPS and if there
exist no USPS R ∈ IUSPS with S ⊂ R, S 6= R.

(ii) A path set S ⊆ P is an irreducible non-USPS if S 6∈ IUSPS and
R ∈ IUSPS for every proper subset R ⊂ S, R 6= S.

The maximal USPSs are the bases of the independence system (P , IUSPS)
and the irreducible non-USPSs are its circuits. We denote the family of all
irreducible non-USPSs by CUSPS, i.e.,

CUSPS :=
{

S ⊆ P : S is an irreducible non-USPS
}

⊆ 2P .

As no irreducible non-USPS contains another, the family CUSPS forms a so
called clutter.

Sometimes it is helpful to think of the independence system of unsplittable
shortest path routings in its hypergraph representation.

5.2. Basic Definitions and Observations 73

v1

v2 v3

v4

v5v6

Paths:

P1 =
(

v1, v2, v3

)

P2 =
(

v1, v6, v5

)

P3 =
(

v2, v5, v4

)

P4 =
(

v6, v3, v4

)

P5 =
(

v1, v2, v3, v4

)

P6 =
(

v1, v6, v5, v4

)

P7 =
(

v1, v6, v3, v4

)

P1P2

P3 P4

P5 P6

P7

Irreducible non-USPS:

S1 = {P1, P6}
S2 = {P3, P5}
S3 = {P4, P6}
S4 = {P5, P6}
S5 = {P5, P7}
S6 = {P6, P7}
S7 = {P1, P2, P3, P4}

Figure 5.2 Path set (left) and associated conflict hypergraph (right).

Definition 5.2 The hypergraph HUSPS := (P , CUSPS) is called the conflict
hypergraph of unique shortest path systems in D.

The conflict hypergraph HUSPS is just the circuit hypergraph associated
with the independence system (P , IUSPS). It contains a vertex for every
path P ∈ P and a hyperedge for every irreducible non-USPS S ∈ CUSPS.
Figure 5.2 shows an example of a digraph with some paths and the cor-
responding subgraph of the associated conflict hypergraph. The (weakly)
stable sets in the conflict hypergraph HUSPS are exactly the unique shortest
path systems in D. (A subset of nodes in a hypergraph is called (weakly)
stable if it contains no hyperedge.) The stable set problem in graphs and
hypergraphs is well-understood and various practically efficient algorithms
for solving maximum (weight) stable set problems are available. Via the
hypergraph representation of USPSs, many of these results and algorithms
carry over straightforward to the corresponding problems on unique shortest
path systems.

From the independence system representation of unique shortest path
systems we inherit a straightforward notion of the rank of a path set.

Definition 5.3 The rank r(S) of a path set S ⊆ P (with respect to the
independence system of USPSs) is the cardinality of the largest USPS R
that is fully contained in S, i.e.,

r(S) := max
{

|R| : R ⊆ S and R ∈ IUSPS

}

.

74 5. Unique Shortest Path Systems

As the paths in a USPS are unique shortest paths with respect to some
metric, any USPS contains at most one (s, t)-path for each node pair (s, t) ∈
V × V . With

Kmax :=
{

(s, t) ∈ V × V : P(s, t) 6= ∅
}

,

this implies that

|S| ≤ |Kmax| for each USPS S ∈ IUSPS . (5.1)

Clearly, (5.1) holds with equality if and only if S contains an (s, t)-path for
every pair of nodes s, t that are connected in D. It is not difficult to see
that any USPS with less paths can be extended to a USPS of size |Kmax|
by adding appropriate paths for missing (s, t) pairs.

Proposition 5.4 Let S ⊆ P be a USPS with |S| < |Kmax|. Then there
exists a USPS R with S ⊂ R and |R| = |Kmax|.

Proof. Let λ ∈ ZA
+ be an integer-valued metric that is compatible with S

and satisfies λa ≥ 1 for all a ∈ A. By Proposition 4.3 on page 44, such a
metric exists for any USPS. Furthermore, let idx : A ↔ {0, . . . , |A| − 1} be
an arbitrary bijection. We define a new integer-valued metric λ′ ∈ ZA

+ by
scaling and perturbing the original metric λ in such a way, that all shortest
paths are unique. This can be easily achieved by setting

λ′
a := 2|A|λa + 2idx(a) for all a ∈ A.

One easily observes that λ′(P) < λ′(P ′) for all paths P, P ′ ∈ P with λ(P) <
λ(P ′). Thus, the scaled and perturbed metric λ′ is still compatible with
S. On the other hand, the binary perturbation breaks all ties that might
have existed with respect to the original metric λ. More precisely, we have
λ′(P) 6= λ′(P ′) for all pairs of paths P, P ′ ∈ P , P 6= P ′.

Consequently, there is a unique shortest (s, t)-path P ∗
(s,t) with respect to

λ′ for all (s, t) ∈ Kmax. We denote the set of these paths by

R :=
{

P ∗
(s,t) : (s, t) ∈ Kmax

}

.

Clearly, |R| = |Kmax| and S ⊆ R. �

Proposition 5.4 implies that the rank of the entire independence system
(P , IUSPS) is equal to |Kmax| and that all inclusion-wise maximal USPSs
have the same cardinality, i.e.,

|S| = r(S) = r(IUSPS) = |Kmax| for each maximal USPS S.

In Section 5.5, we will show that computing the rank of an arbitrary path
set S ⊆ P is NP-hard in general.

5.3. Properties of Unique Shortest Path Systems 75

5.3 Properties of Unique Shortest Path Systems

One easily observes that each single path is a unique shortest path system.
It is also obvious that, in a digraph D that contains only one path between
each pair of nodes, any path set is a USPS. In general digraphs, however,
not every path set is a USPS.

In this section, we discuss some fundamental properties of unique short-
est path systems — the so-called Bellman property, which expresses the
compatibility between pairs of paths, and some of its extensions.

5.3.1 The Bellman Property

For a path P and two distinct nodes u, v ∈ P , we denote by P [u, v] the
(u, v)-subpath of P . For simplicity, we also define P [u, v] = ∅ if u or v do
not occur in P at all or if u or v occur in P in reverse order.

Let P ∈ P and consider a metric λ ∈ RA
+ with respect to which P is

the unique shortest (sP , tP)-path. Then clearly every (u, v)-subpath of P is
the unique shortest (u, v)-path with respect to λ in D. The general princi-
ple that the optimality of some structure implies the optimality of certain
substructures is often referred to as the Bellman principle or Bellman prop-
erty. It was introduced by Bellman in the context of dynamic programming
[21, 23, 24]. For unique shortest path systems, this principle implies a very
fundamental property.

Definition 5.5

(i) Two paths P1, P2 ∈ P are said to have the Bellman property (B-
property) if P1[u, v] = P2[u, v] holds for any pair of nodes u, v ∈ V
with P1[u, v] 6= ∅ and P2[u, v] 6= ∅. Otherwise, the paths P1 and P2 are
called conflicting.

(ii) A path set S ⊆ P is said to have the B-property if it contains no pair
of conflicting paths.

The Bellman property for pairs of paths is illustrated in Figure 5.3. In the
literature, this property is also called sub-path property or sub-optimality of
paths, c.f. [27, 180, 46].

Proposition 5.6 Any USPS has the B-property.

Proof. Suppose that a USPS S ⊆ P contains a pair of conflicting paths
P1 and P2. Then there are two nodes u and v such that P1 and P2 contain
different (u, v)-subpaths P1[u, v] and P2[u, v]. Let λ be a compatible metric
for S. As P1 is the unique shortest (sP1 , tP1)-path, we have

λ(P1) = λ(P1[sP1 , u]) + λ(P1[u, v]) + λ(P1[v, tP1])

< λ(P1[sP1 , u]) + λ(P2[u, v]) + λ(P1[v, tP1]) ,

76 5. Unique Shortest Path Systems

s1

s2

u v

t1

t2

P1

P2

(a) Paths P1 and P2 are conflicting.

s1

s2

u v

t1

t2

P1

P2

(b) Paths P1 and P2 have B-property.

Figure 5.3 Bellman property for paths.

and consequently λ(P1[u, v]) < λ(P2[u, v]).
Analogously, the optimality of P2 implies λ(P1[u, v]) > λ(P2[u, v]). As

these two inequalities contradict each other, S cannot contain a pair of
conflicting paths. �

In general, the B-property is not sufficient to characterize all USPSs in an
arbitrary digraph. It imposes a necessary condition for the existence of
a compatible metric for a given path set S, but for path sets |S| ≥ 4 this
condition is not sufficient. An example of a path set that has the B-property
but that is no USPS is shown in Figure 5.4. USPSs with no more than three
paths, however, are completely characterized by the B-property.

Theorem 5.7 A path set S ⊆ P with |S| ≤ 3 is a USPS if and only if S
has the B-property.

Proof. In Proposition 5.6, we have already shown that any USPS has the
B-property. Thus, it only remains to show that any path set S with |S| ≤ 3
that has the B-property is indeed a USPS.

For |S| = 1 and |S| = 2, it is obvious that the metric

λa :=

{

1, if a ∈ P for some P ∈ S, and

|V |, otherwise,

is compatible with S.
So, consider the case where S = {P1, P2, P3} and let

A′ := {a ∈ A : a ∈ P1 ∪ P2}, and

A′′ := {a ∈ A : a ∈ P1 ∪ P2 ∪ P3} .

Since S has the B-property, so does {P1, P2}. Consequently, P1 is the only
(sP1 , tP1)-path and P2 the only (sP2 , tP2)-path in the subgraph (V, A′).

Next, assume that the nodes in D are labeled v1, . . . , v|V | in such a way,
that the nodes v1 to v|P3| appear in P3 in this order. In other words, P3 =
(

v1, . . . , v|P3|

)

, as shown in Figure 5.5. Because S has the B-property, any
subpath P1[vi, vj] of P1 and any subpath P2[vi, vj] of P2 with 1 ≤ i < j ≤ |P3|

5.3. Properties of Unique Shortest Path Systems 77

v3 v4

v1v2

P1 =
(

v1, v2, v3

)

P2 =
(

v3, v4, v1

)

P3 =
(

v2, v1, v4

)

P4 =
(

v4, v3, v2

)

Figure 5.4 Non-USPS with B-property.

is a subpath of P3, too. Hence, P3 is the only simple (v1, v|P3|)-path in the
subgraph (V, A′′). With these two observations, it now is easy to verify that
the metric λ∈ZA

+ given by

λa :=











1, a ∈ A′,

|V |, a ∈ A′′, and

|V |2, otherwise

is compatible with S. Consequently, S is a USPS. �

Remark 5.8 If a path set S ⊆ P has the B-property, then, for any v ∈ V ,
the paths P ∈ P with source v form an arborescence rooted at v and, anal-
ogously, all paths with destination v form an anti-arborescence rooted at v.
Path sets where all paths with the same destination form anti-arborescences
(but which not necessarily have the B-property) correspond to so-called un-
splittable source-invariant routings, a routing variant that is less restrictive
than unsplittable shortest path routing and arises in data networks where
the routers’ forwarding tables are managed manually. In Chapter 6, we
discuss this routing paradigm and its relation to unsplittable shortest path
routing in more detail.

5.3.2 The Generalized Bellman Property

A stronger condition than the Bellman property can be derived by requiring
the existence of a compatible path also for those node pairs for which no
shortest path is prescribed and, furthermore, considering also the removal
of arcs and nodes in the underlying digraph.

For any subgraph D′ of D, we denote by PD′ the set of all simple paths
in D′ and by PD′(s, t) the set of all simple (s, t)-paths in D′.

Definition 5.9 Let S ⊆ P be a path set in D.

(i) The set S has the generalized Bellman property (GB-property)

with respect to a subgraph D′ of D if, for each pair of nodes s, t
with PD′(s, t) 6= ∅, there exists a path P ∗

(s,t) ∈ PD′(s, t) that does not
conflict with any of the paths in S ∩ PD′.

78 5. Unique Shortest Path Systems

v1 v2 v|P3|

P1

P3

P2

Figure 5.5 Path set of size 3 with B-property.

(ii) We say that S has the GB-property if it has the GB-property with
respect to any subgraph D′ of D.

The following example illustrates the generalized Bellman property.

Example 5.2 Consider the digraph D = (V, A) with

V :=
{

v1, . . . , v6

}

and

A :=
{

(v1, v2), (v2, v3), (v3, v4), (v1, v6), (v6, v5),

(v5, v4), (v1, v4), (v2, v5), (v6, v3)
}

and the paths P1 :=
(

v1, v2, v3

)

, P2 :=
(

v1, v6, v5

)

, P3 :=
(

v2, v5, v4

)

, and
P4 :=

(

v6, v3, v4

)

, as illustrated in Figure 5.6.

One easily finds that the path set S = {P1, . . . , P4} has the B-property.
Even more, in the entire digraph D, there exists a (v1, v4)-path that does
not conflict with the four paths P1, . . . , P4, namely P5 = (v1, v4).

In the subgraph D′ := D−(v1, v4), however, there exists no such path; any
(v1, v4)-path in D′ conflicts with at least one of the four paths P1, . . . , P4.
Hence, the path set S does not have the generalized Bellman property with
respect to the subgraph D′. △

One easily observes that the GB-property implies the Bellman property,
but — as shown in the above example — the Bellman property does not
imply the GB-property. Any path set that has the GB-property (even if only
with respect to the entire digraph D) also has the B-property, but not vice
versa. Removing the arc (v1, v4) from the digraph D in the above example
yields a simple example where already the GB-property with respect to the
entire digraph D is stronger than the Bellman property.

For undirected path sets, the GB-property is equivalent to the generalized
cyclic comparability introduced by Ben-Ameur and Gourdin [27], see also
Section 5.6.

Proposition 5.10 Any USPS has the GB-property.

Proof. Let S ⊆ P be a USPS in D, let D′ be a subgraph of D, and let s and
t be two nodes with PD′(s, t) 6= ∅. Applying Lemma 5.4 to the subgraph D′,
we find that there exists a metric λ ∈ ZA

+ that is compatible with S ∩ PD′

5.3. Properties of Unique Shortest Path Systems 79

v1

v2 v3

v4

v5v6

P1 =
(

v1, v2, v3

)

P2 =
(

v1, v6, v5

)

P3 =
(

v2, v5, v4

)

P4 =
(

v6, v3, v4

)

In the subgraph D−(1, 4), any
(v1, v4)-path P ′ conflicts with
some P ∈ {P1, P2, P3, P4}.

Figure 5.6 Path set with B-property but without GB-property.

and, furthermore, induces a unique shortest path (s, t)-path P ∗
(s,t) within

the subgraph D′ for all node pairs (s, t) with PD′(s, t) = ∅.
To prove Proposition 5.10, it is sufficient to show that none of the paths

P ∈ S ∩ PD′ conflicts with P ∗
(s,t).

Suppose there is a path P ∈ S ∩ PD′ that conflicts with P ∗
(s,t). Then

there are two nodes u and v such that P [u, v] 6= ∅, P ∗
(s,t)[u, v] 6= ∅, and

P [u, v] 6= P ∗
(s,t)[u, v]. Since P ∗

(s,t) is the unique shortest (s, t)-path in D′

with respect to λ, we have λ(P ∗
(s,t)[u, v]) < λ(P [u, v]). On the hand, the

fact that λ is compatible with S implies that λ(P [u, v]) < λ(P ∗
(s,t)[u, v]). As

these two inequalities contradict each other, P ∗
(s,t) cannot conflict with any

of the paths in P ∈ S ∩ PD′. �

Also the GB-property is not sufficient to characterize the family of all USPSs,
in general. For example, the path set shown in Figure 5.4 has the GB-
property but is no USPS.

Both the B-property and the GB-property of unique shortest path systems
correspond to structural properties of the independence system (P , IUSPS)
and the conflict hypergraph HUSPS.

Each circuit of size two in (P , IUSPS) and each simple edge (i.e., hyper-
edge of size two) in HUSPS corresponds to a pair of conflicting paths, and
vice versa. Theorem 5.7 implies that there are no circuits of size three in
(P , IUSPS) and, equivalently, no hyperedges of size three in HUSPS .

Similarly, the GB-property characterizes a class of larger circuit and hy-
peredges in (P , IUSPS) and HUSPS. Any irreducible non-USPS with the
B-property but without the GB-property is a circuit of size at least four
in (P , IUSPS) and corresponds to a non-simple hyperedges in HUSPS . The
path set shown in Figure 5.4, for instance, is such an irreducible non-USPS.

80 5. Unique Shortest Path Systems

5.3.3 Further Properties

Further properties of unique shortest path systems can be derived by analyz-
ing the infeasibilities that may potentially arise in the linear programming
formulations of the Inverse Unique Shortest Paths problem.

According to Theorem 4.4 in Chapter 4, a path set S ⊆ P is a non-USPS
if and only if the corresponding linear inequality system

∑

a∈P ′

λa −
∑

a∈P

λa ≥ 1 ∀ P ∈ S, P ′ ∈ P(sP , tP) \ {P}, (4.3)

λa ≥ 1 ∀ a ∈ A (4.4)

is infeasible. Applying Farkas’ lemma [87, 88, 175] to this linear system,
one finds that S is a non-USPS if and only if there exist dual multipliers
µP,Q ≥ 0 for all P ∈ S and Q ∈ P(sP , tP) \ {P} that satisfy

∑

P∈S, Q∈P(sP ,tP):
Q 6=P, a∈P

µP,Q −
∑

P∈S, Q∈P(sP ,tP):
Q 6=P, a∈Q

µP,Q ≤ 0 ∀ a ∈ A, and

∑

P∈S, Q∈P(sP ,tP):
Q 6=P

µP,Q > 0 .

A vector µ of such multipliers is called a (dual) Farkas ray for (4.3)–(4.4).
In principle, the combinatorial properties of unique shortest path systems

can be deduced from the Farkas rays for (4.3)–(4.4) (or, equivalently, the
Farkas rays for the linear system (4.11)–(4.14) discussed in Section 5.7).
Since any path set S that is not a USPS leads to an infeasible system (4.3)–
(4.4), all irreducible non-USPSs can be derived from the possible extremal
Farkas rays.

Alternatively, the potentially arising irreducibly inconsistent subsystems
of (4.3)–(4.4) (or (4.11)–(4.14)) may be analyzed. An irreducible incon-
sistent subsystem (IIS) of a linear program is a subset of the inequalities,
such that this set of inequalities has no solution but every proper subset of
it has. An inclusion-wise minimal such infeasible set of inequalities can be
computed efficiently using a combination of Greedy and linear programming
techniques, but computing a minimum cardinality such set however is NP-
hard. A comprehensive survey on IISs and related problems can be found
in [161], for example.

One easily observes that each irreducible path set that violates the B-
property corresponds to an IISs of size two or, equivalently, to a Farkas
ray with only two non-zero entries in (4.3)–(4.4), and vice versa. Similarly,
any irreducible non-USPS that satisfies the B-property but violates the GB-
property corresponds to an IIS consisting of more than two inequalities and
to a Farkas ray with more than two non-zero entries.

Broström and Holmberg [46] derived another property of USPS by an-
alyzing a special class of infeasibilities that may occur in (a variation of)

5.4. Finding Irreducible Non-Unique Shortest Path Systems 81

the linear system (4.11)–(4.14). This so-called valid-cycle property can be
expressed as the non-existence of an augmenting cycle in a related multicom-
modity flow problem. It is stronger than the B-property and can be verified
in polynomial time for any given path set. However, also this property is
not sufficient to completely characterize the family of all USPSs in general
digraph. (Originally, Broström and Holmberg derived the valid-cycle prop-
erty for path sets that correspond to multi-shortest path routings, but their
results carry over to unique shortest path systems straightforward.)

Remark 5.11 It follows from Lemma 4.5 in Chapter 4 and the polynomial
time equivalence of optimization and separation [103], that the linear system
(4.3)–(4.4) can be either solved or proven to be infeasible in polynomial time.
Thus, for any non-USPS S, there exist a Farkas ray with only polynomially
many non-zero entries and an IIS with only polynomially many inequalities.

5.4 Finding Irreducible Non-Unique Shortest Path

Systems

A dual Farkas ray or an irreducible inconsistent system of (4.3)–(4.4) are
adequate proofs that a given path set S ⊆ P is no USPS. In practical
applications, however, these certificates are not very helpful. Typically, we
are more interested in finding an irreducible non-USPS that is contained
in the given non-USPS. Such a set describes an (inclusion-wise) minimal
conflict among the given paths and thereby tells which paths have to be
modified to turn the path set into a USPS.

Often, we not only seek for an inclusion-wise minimal such non-USPS, but
we wish to find a non-USPS of minimum cardinality or minimum weight.
The first task can be formulated as the following optimization problem:

Problem: Min-Non-USPS

Instance: A digraph D = (V, A) and a non-USPS S ⊆ P .

Solution: An irreducible non-USPS R ⊆ S.

Objective: min |R|.

The more general task of finding an irreducible non-USPS of minimum
weight within a given set of paths can be formalized as follows:

Problem: Min-Weight-Non-USPS

Instance: A digraph D = (V, A), a non-USPS S ⊆ P , and strictly
positive weighs w ∈ ZS

+.

Solution: An irreducible non-USPS R ⊆ S.

Objective: min
∑

P∈S wP .

82 5. Unique Shortest Path Systems

Clearly, both problems Min-Non-USPS and Min-Weight-Non-USPS be-
long to the class of NP optimization problems NPO.

Note that in both problems we seek for an irreducible non-USPS that
is contained within a given path set S. The weight function λ in Min-
Weight-Non-USPS is defined only for those paths that are contained in S
(which is equivalent to saying that λ is given as a sparse-vector that defines
a weights value only for the paths in S, and all other weights are assumed
to be infinity). For both problems the encoding size of an instance and the
encoding size of a solution thus depend on the size of the given path set S,
but neither the size of an instance nor the size of a solution is necessarily
exponential in the size of the underlying digraph.

We also assume that that the given path set S is a non-USPS and that
all weights are strictly positive in the weighted case. These restrictions are
necessary only to ensure that the optimal solution value is always strictly
positive, which is technically important when discussing approximation al-
gorithms.

The weighted problem version Min-Weight-Non-USPS will be of spe-
cial interest later in this thesis. It is closely related to the separation prob-
lem for (irreducible) non-USPS inequalities for an integer linear program-
ming formulation of unsplittable shortest path routing problems, which is
discussed in Chapter 7.

5.4.1 Greedy Approaches

The most natural approach to solve Min-Non-USPS and Min-Weight-
Non-USPS is to use the greedy algorithm for finding circuits in indepen-
dence systems. Starting with the given non-USPS S, this algorithm itera-
tively tries to remove each path from the current path set. If the remaining
path set still is a non-USPS, the current path is removed permanently and
the algorithm continues with the next path and the reduced path set. If
removing a path from the current path set would yield a USPS, then this
path remains in the set and the algorithm continues with the next path to be
removed. Whether the removal of a path yields a USPS or a non-USPS can
be determined by solving the corresponding Inverse Unique Shortest
Paths (IUSP) problem. The algorithm finishes after all paths have been
tried for removal and returns the remaining path set.

Clearly, the path set finally returned by the greedy algorithm is an irre-
ducible non-USPS. It is also easy to see that this algorithm can be imple-
mented to run in polynomial time: It performs only |S| iterations, and each
iteration’s IUSP problem can be solved in polynomial time with respect
size of the underlying digraph and the candidate path set using the linear
programming techniques discussed in Chapter 4.

The standard version of this greedy algorithm removes only one path in
each iteration. Independent of the size of the irreducible non-USPS returned

5.4. Finding Irreducible Non-Unique Shortest Path Systems 83

in the end, the algorithm performs |S| many iterations, each involving the
solution of a linear inequality system. This is not very efficient in practice,
because the size of an irreducible non-USPS is typically very small com-
pared to the size of the given given path set. A substantial speed-up can
be achieved by exploiting the information encoded in the dual Farkas rays
computed as a by-product when solving the (infeasible) linear system.

Observation 5.12 Let S ⊆ P be a non-USPS and let µ be a dual Farkas
ray for the corresponding linear system (4.3)–(4.4). Then the path set

con(µ) :=
{

P ∈ S : µP,Q > 0 for some Q ∈ P(sP , tP) \ {P}
}

is a non-USPS.

Algorithm Greedy-Non-USPS shown below demonstrates how Observation
5.12 can be used to improve the standard greedy approach: Whenever the
linear system (4.3)–(4.4) is infeasible for the current path set, we replace the
current path set by the non-USPS R := con(µ) for the corresponding dual
Farkas ray µ.

Theorem 5.13 Algorithm Greedy-Non-USPS computes an irreducible non-
USPS R ⊆ S or proves that S is a USPS in polynomial time.

Proof. Follows immediately from Observation 5.12. �

In practice, the Farkas ray based substitution proved to be very effective. It
often leads to a drastic reduction of the candidate path set in the first few
iterations of the algorithm and, thereby, to much fewer iterations in total.
However, the worst case number of iterations of algorithm Greedy-Non-USPS

remains |S|.

Algorithm 5.1 Greedy-Non-USPS

Input: Path set S ⊆ P .

Output: An irreducible non-USPS R ⊆ S or assertion that S is a USPS.

1. If (4.3)–(4.4) is feasible for path set S then

Return ’S is a USPS’.

2. Let µ be a dual Farkas ray of (4.3)–(4.4) for S.

Set R := con(µ).

3. For each P ∈ R do (in order of non-increasing weights wP)

3.1 If (4.3)–(4.4) is infeasible for R \ {P} then

3.2 Let µ be a corresponding dual Farkas ray.

Set R := con(µ).

4. Return R.

84 5. Unique Shortest Path Systems

Analogously, one can exploit the information encoded in an irreducible
inconsistent subsystem (IIS) of the infeasible linear system (4.3)–(4.4) to re-
duce the size of the candidate path set in Step 2 and in Step 3.2 of algorithm
Greedy-Non-USPS using the following observation.

Observation 5.14 Let S ⊆ P be a non-USPS and let I be an (irreducible)
inconsistent subsystem of inequalities of the corresponding linear system
(4.3)–(4.4). Then the path set

con(I) :=
{

P ∈ S : I contains inequality (4.3) for P and

some Q ∈ P(sP , tP) \ {P}
}

is a non-USPS.

Note that the path set con(I) defined in Observation 5.14 is only a “normal”
non-USPS in general. Even if I is an irreducible inconsistent subsystem of
rows, the corresponding path set con(I) is not necessarily an irreducible
non-USPS.

Algorithm Greedy-Non-USPS can be turned into an approximation algo-
rithm for the weighted problem version Min-Weight-Non-USPS by con-
sidering the paths in Step 3 in order of non-increasing costs wP . One easily
observes that this algorithm achieves a worst-case performance ratio of |S|
for both problem versions Min-Non-USPS and Min-Weight-Non-USPS.
It is also not difficult to construct classes of examples where a ratio of Θ(|S|)
is attained.

5.4.2 Inapproximability Results

For any fixed k ∈ Z+, we can easily decide in polynomial time whether there
exists an irreducible non-USPS R ⊆ S with |R| ≤ k or find a minimum
weight such non-USPS by checking all subsets R ⊆ S with |R| ≤ k. In the
special case where the size of the possible irreducible non-USPSes is bounded
by some constant, Min-Non-USPS and Min-Weight-Non-USPS thus are
solvable in polynomial time.

In general, however, it is already computational hard to approximate these
problems within a factor less than 7/6.

Theorem 5.15 For any ǫ > 0, it is NP-hard to approximate Min-Non-
USPS within a factor of 7/6 − ǫ. This holds even if each path P ∈ S is a
shortest (sP , tP)-path (w.r.t. the number of arcs) with |P | = 2.

Proof. We construct an approximation preserving reduction from the op-
timization problem Minimum Vertex Cover to Min-Non-USPS. The
problem Minimum Vertex Cover is defined a follows: Given an undi-
rected graph H = (W, F), find a minimum cardinality set C ⊆ W such that,
for each edge uv ∈ E, at least one of the nodes u and v belongs to C. This

5.4. Finding Irreducible Non-Unique Shortest Path Systems 85

v1
1

v̄1
1

v1
2

v̄1
2

v1
m

v̄1
m

v2
1

v̄2
1

v2
2

v̄2
2

v2
m

v̄2
m

u0
i u1

i u2
i uα

i

ū0
i ū1

i ū2
i

ūα
i

Figure 5.7 Subgraph of D corresponding to the edges f1, . . . , fm, node
wi ∈ W , and incidences f1, f2 ∈ δ(wi).

problem was shown to be APX -complete by Papadimitriou and Yannakakis
[155, 156] and to be inapproximable within 7/6− ǫ for any ǫ > 0 by H̊astad
[112]. Its associated decision problem Vertex Cover is one of classical
NP-complete problems introduced by Karp [121] and Garey and Johnson
[96].

Suppose we are given an instance H = (W, F) of Minimum Vertex
Cover consisting of the nodes wi with i ∈ I := {1, . . . , n} and the edges fk

with k ∈ K = {1, . . . , m}. Let α ∈ Z+ be a large integer number. At the
end of the proof, we discuss how to choose α appropriately. We construct
a Min-Non-USPS instance consisting of a digraph D = (V, A) and a path
set S ⊆ PD as follows.

For each i ∈ I, we introduce 2α+2 nodes u0
i , . . . , u

α
i and ū0

i , . . . , ū
α
i . These

nodes are connected by the arcs (ul
i, ū

l
i) and (ūl

i, u
l
i) with l = 0, . . . , α, and

by the arcs (ul
i, u

l+1
i) and (ūl

i, ū
l+1
i) with l = 0, . . . , α − 1.

For each k ∈ K, we add four nodes v1
k, v2

k, v̄1
k, and v̄2

k. These are inter-
connected by the arcs (v1

k, v
2
k), (v2

k, v
1
k), (v̄1

k, v̄2
k), (v̄2

k, v̄
1
k), (v1

k, v̄1
k), (v̄1

k, v
1
k),

(v2
k, v̄

2
k), and (v̄2

k, v2
k) for all k ∈ K. Furthermore, we add two arcs (v̄1

k, v1
k+1)

and (v̄2
k, v

2
k+1) for each k = 1, . . . , m− 1, and two arcs (v̄1

m, v2
1) and (v̄2

m, v1
1)

for k = m.

Finally, we introduce arcs for the node-edge incidences in H. For all i ∈ I
and all k with fk ∈ δ(wi), we add the four arcs (v2

k, u0
i), (v̄2

k, ū0
i), (uα

i , v1
k),

86 5. Unique Shortest Path Systems

and (ūα
i , v̄1

k). The resulting digraph D is illustrated in Figure 5.7.
The path set S consists of four different types of paths. For each i ∈ I, it

contains the 2α many paths

S1
i :=

{

(ūl
i, u

l
i, u

l+1
i), (ul

i, ū
l
i, ū

l+1
i) | l = 0, . . . , α − 1

}

.

For each k ∈ K, S contains four paths. For k 6= m, it contains the paths

S2
k :=

{

(v̄1
k, v1

k, v
2
k), (v2

k, v
1
k, v̄

1
k), (v̄1

k, v̄
2
k, v

2
k+1), (v̄2

k, v̄
1
k, v

1
k+1)

}

,

while for k = m it contains

S2
m :=

{

(v̄1
k, v1

k, v
2
k), (v2

k, v
1
k, v̄

1
k), (v̄1

k, v̄
2
k, v

1
k+1), (v̄2

k, v̄1
k, v

2
k+1)

}

.

Finally, S contains four more paths for each node-edge incidence in H. For
each i ∈ I and each k with fk ∈ δ(wi), these paths are

S3
i,k := {(v2

k, v̄
2
k, ū

0
i), (v̄2

k, v2
k, u

0
i)} and

S4
i,k := {(uα

i , ūα
i , v̄1

k), (ūα
i , uα

i , v1
k)} .

The path set S is the union of these sets, i.e.,

S :=
⋃

i

S1
i ∪

⋃

k

S2
k ∪

⋃

i,k: fk∈δ(wi)

S3
i,k ∪ S4

i,k .

Figure 5.8 illustrates these paths. Note that each path in S contains exactly
two arcs and is a shortest path between its terminal nodes w.r.t. the number
of arcs.

In the first part of the proof, we show that any vertex cover C ⊆ W
in H can be transformed into a non-USPS R := R(C) ⊆ S in D with
|R| = 2α |C| + 8m. As a byproduct, this also proves that the constructed
path system S is indeed a non-USPS.

Let C ⊆ W be a vertex cover in H. For each edge f = wiwj ∈ F , we
denote c(f) := wi, if i < j and wi ∈ C, and c(f) := wj , otherwise. Since C is
a vertex cover, c(f) ∈ C for all f ∈ F . We define the path set corresponding
to C as

R = R(C) :=
⋃

k

S1
k ∪

⋃

i: wi∈C

S2
i ∪

⋃

i,k: wi=c(fk)

S3
i,k ∪ S4

i,k .

The size of this path set is

|R| = 2α · |C| + 8m . (5.2)

It follows from Proposition 4.2 in Chapter 4 that R is a USPS if and only if
the linear system (4.1)–(4.2) has a feasible solution for R. In order to show

5.4. Finding Irreducible Non-Unique Shortest Path Systems 87

v1
k

v̄1
k

v2
k

v̄2
k

u0
i u1

i u2
i uα

i

ū0
i ū1

i ū2
i

ūα
i

Figure 5.8 Union of the path sets S2
k for all k ∈ K and the path sets S1

i ,
S3

i,k, and S4
i,k for some i, k with fk ∈ δ(wi).

that R is a non-USPS, it therefore is sufficient to show that the following
sub-system of (4.1)–(4.2) has no solution:

λ(v̄1
k
,v1

k
) + λ(v1

k
,v2

k
) < λ(v̄1

k
,v̄2

k
) + λ(v̄2

k
,v2

k
) ∀ k (5.3)

λ(v1
k
,v̄1

k
) + λ(v2

k
,v1

k
) < λ(v̄2

k
,v̄1

k
) + λ(v2

k
,v̄2

k
) ∀ k (5.4)

λ(v̄1
k
,v̄2

k
) + λ(v̄2

k
,v2

k+1
) < λ(v̄1

k
,v1

k+1
) + λ(v1

k+1
,v2

k+1
) ∀ k 6= m (5.5)

λ(v̄2
k
,v̄1

k
) + λ(v̄1

k
,v1

k+1
) < λ(v̄2

k
,v2

k+1
) + λ(v2

k+1
,v1

k+1
) ∀ k 6= m (5.6)

λ(v̄1
m

,v̄2
m

) + λ(v̄2
m

,v1
1
) < λ(v̄1

m
,v2

1
) + λ(v2

1
,v1

1
) (5.7)

λ(v̄2
m

,v̄1
m

) + λ(v̄1
m

,v2
1
) < λ(v̄2

m
,v1

1
) + λ(v1

1
,v2

1
) (5.8)

λ(ūl

i
,ul

i
) + λ(ul

i
,ul+1

i
) < λ(ūl

i
,ūl+1

i
) + λ(ūl+1

i
,ul+1

i
) ∀ i, l : wi ∈ C, l 6= α (5.9)

λ(ul

i
,ūl

i
) + λ(ūl

i
,ūl+1

i
) < λ(ul

i
,ul+1

i
) + λ(ul+1

i
,ūl+1

i
) ∀ i, l : wi ∈ C, l 6= α (5.10)

λ(v̄2
k
,v2

k
) + λ(v2

k
,u0

i
) < λ(v̄2

k
,ū0

i
) + λ(ū0

i
,u0

i
) ∀ k, i : wi = c(fk) (5.11)

λ(v2
k
,v̄2

k
) + λ(v̄2

k
,ū0

i
) < λ(v2

k
,u0

i
) + λ(u0

i
,ū0

i
) ∀ k, i : wi = c(fk) (5.12)

λ(uα

i
,ūα

i
) + λ(ūα

i
,v̄1

k
) < λ(uα

i
,v1

k
) + λ(v1

k
,v̄1

k
) ∀ k, i : wi = c(fk) (5.13)

λ(ūα

i
,uα

i
) + λ(uα

i
,v1

k
) < λ(ūα

i
,v̄1

k
) + λ(v̄1

k
,v1

k
) ∀ k, i : wi = c(fk) (5.14)

Inequalities (5.3) ensure that, for each k, the path (v̄1
k, v

1
k, v

2
k) is strictly

shorter than the other two-arc path (v̄1
k, v̄

2
k, v

2
k) from v̄1

k to v2
k. Together,

(5.3)–(5.8) express that each path in
⋃

k S2
k is strictly shorter than its alter-

native other two-arc path. Analogously, inequalities (5.9) and (5.10) enforce
that each path in

⋃

i:wi∈C S1
i is shorter than its respective alternative two-

88 5. Unique Shortest Path Systems

arc path, and inequalities (5.11)–(5.14) ensure this property for all paths in
⋃

k,i: wi=c(fk) S3
i,k ∪ S4

i,k.

To verify that this system of strict linear inequalities has no solution, we
apply Farkas’ Lemma. For each i with wi ∈ C, let µ(i) := |{f ∈ F : wi =
c(f)}|. The dual multipliers µ(i) for all inequalities (5.9) and (5.10) and 1
for all other inequalities certify that (5.3)–(5.14) is infeasible: Multiplying
each inequality (5.9) and (5.10) with µ(i) and then adding up these and all
other inequalities of (5.3)–(5.14) yield a strict inequality that contains each
variable λa, a ∈ A, with the same coefficient on the left and on the right
hand side. Consequently, R is not a USPS.

In the second part of the proof, we show that any irreducible non-USPS
R ⊆ S in D can be transformed back into a vertex cover C := C(R) ⊆ W
in H with 2α |C| ≥ |R| − 8m. It is sufficient to define such a backward
transformation only for irreducible non-USPSs, because any non-USPS R′ ⊆
S in D can be reduced to an irreducible non-USPS R ⊆ R′ in polynomial
time using the greedy algorithm presented at the beginning of this section.

In order to define the backward transformation properly, we first need to
show that all irreducible non-USPSs in D have a structure that is similar to
that of the non-USPSs R(C) constructed in the first part of the proof. So,
let R ⊆ S be an irreducible non-USPS.

First, observe that all paths in
⋃

k S2
k must be contained in R. Suppose

there is some k′ such that the path (v2
k′ , v1

k′ , v̄1
k′) does not belong to R.

W.l.o.g., we may assume that k′ = 1. Let M ≥ 2|A| and consider the metric

λa :=



















































































M + l + 1, if a = (ul
i, ū

l
i) or a = (ūl

i, u
l
i),

M + α + 2, if a = (v1
k, v̄

1
k) or a = (v̄1

k, v
1
k),

M + 1, if a = (v̄1
k, v

1
k+1) or a = (v̄2

k, v
2
k+1)

M + 1, if a = (v̄1
m, v2

1) or a = (v̄2
m, v̄1

1)

M + (2m − 1)(α + 4) + 1, if a = (v2
1, v

1
1),

M + (k − 2)(α + 4) + 1, if a = (v2
k, v

1
k) for k 6= 1,

M + (k − 1)(α + 4), ,if a = (v̄2
k, v̄

1
k),

M + (m + k − 2)(α + 4) + 1, if a = (v1
k, v

2
k),

M + (m + k − 1)(α + 4), if a = (v̄1
k, v̄

2
k), and

M, otherwise.

One easily finds that M ≤ λa < 3/2M for all a ∈ A. Since all paths in S
contain two arcs, no path with three or more arcs in D can be shorter than
any path in S. For each path P ∈ S \ {(v2

1, v
1
1, v̄

1
1)}, however, there is only

one alternative (sP , tP)-path with only two arcs, and it is straightforward
to verify that each path in S \{(v2

1, v
1
1, v̄

1
1)} is indeed shorter than the corre-

sponding alternative path. Hence, S \{(v2
1 , v

1
1, v̄

1
1)} is a USPS, which implies

5.4. Finding Irreducible Non-Unique Shortest Path Systems 89

that the path (v2
1, v

1
1, v̄

1
1) must be contained in the (irreducible) non-USPS

R ⊆ S. Analogously, it follows that any other path P ∈ ⋃

k S2
k is contained

in R.
With the same technique, we can show that, for any k ∈ K, there exist

some i := c(k) with fk ∈ δ(wi) such that S3
i,k ⊂ R: W.l.o.g. let k = 1

and f1 = wiwj, and suppose that none of the two paths (v2
1, v̄

2
1, ū

0
i) and

(v̄2
1, v

2
1, u

0
j) belongs to R. Then, with λ defined as above, the metric

λ′
a :=

{

λa + 2m(α + 4) , if a = (v2
1, v̄

2
1) or a = (v2

1, u
0
j),

λa , otherwise,

is compatible with S \ {(v2
1, v̄

2
1, ū

0
i), (v̄2

1 , v
2
1, u

0
j)}. Hence, the non-USPS R

must contain both paths in S3
i,1 or both paths in S3

j,1.

Analogously, one can show that S1
i ⊂ R for each k ∈ K and i = c(k) and,

furthermore, that for any k ∈ K there exist some j = c′(k) with fk ∈ δ(wj)
such that S4

j,k ⊂ R.1)

Now we can define the vertex set corresponding to the irreducible non-
USPS R as

C = C(R) := {wc(k) : k ∈ K}.

Because c(k) is either i or j for any edge fk = wiwj ∈ F , the set C is a
vertex cover in H. The above observations imply that

|R| ≥
∑

k∈K

(

|S2
k | + |S3

c(k),k| + |S4
c′(k),k|

)

+
∑

i∈I:wi∈C

|SW
i |

≥ 8m + 2α |C| . (5.15)

Now, it follows straightforward that Min-Non-USPS is at least as hard
to approximate as Minimum Vertex Cover. Suppose there is an (r − ǫ)-
approximation algorithm ALG for Min-Non-USPS with ǫ > 0 and (r−ǫ) ≥
1. Then we choose α := ⌈8m(r − 1 − ǫ)/ǫ⌉. With this choice of α, both
the construction of the Min-Non-USPS instance as well as the backward
transformation of an irreducible non-USPS to a vertex cover are polynomial
in the encoding size of H.

Due to (5.2) and (5.15), we have |R∗| = 8m + 2α|C∗| for any minimum
vertex cover C∗ in H and any minimum non-USPS R∗ ⊆ S in D. Further-
more,

2α|C(R)| + 8m

2α|C∗| + 8m
≤ |R|

|R∗| ≤ r − ǫ

1)Note that i = c(k) and j = c′(k) may be different. There may exist an irreducible
non-USPS R ⊂ S in the constructed digraph D that contains only one of the two path
sets S3

i,k and S4
i,k for each fk ∈ δ(wi).

90 5. Unique Shortest Path Systems

implies that

2α|C(R)| ≤ 2α |C∗|(r − ǫ) + 8m(r − 1 − ǫ) ,

and, further on,

|C(R)|
|C∗| ≤ r − ǫ +

8m(r − 1 − ǫ)

2α|C∗| ≤ r − ǫ +
ǫ

2|C∗| ≤ r − ǫ

2
.

Put in words, any (r − ǫ)-approximate solution R ⊆ S for the con-
structed Min-Non-USPS instance can be transformed back to a (r − ǫ/2)-
approximate solution C(R) of the given Minimum Vertex Cover instance.
Thus, any (r − ǫ)-approximation algorithm for Min-Non-USPS yields an
(r − ǫ/2)-approximation algorithm for Minimum Vertex Cover. Since
Minimum Vertex Cover is NP-hard to approximate within a factor
strictly less than 7/6, so is Min-Non-USPS. �

The constant inapproximability threshold for Min-Non-USPS carries over
directly to the weighted problem Min-Weight-Non-USPS.

Corollary 5.16 For any ǫ > 0, it is NP-hard to approximate Min-Weight-
Non-USPS within a factor of 7/6 − ǫ.

One easily verifies that Corollary 5.16 also holds if the path weights are
given implicitly by an arc weight vector c ∈ ZA

+ as wP :=
∑

a∈P ca for each
path P ∈ P .

In terms of the independence system (P , IUSPS) and conflict hypergraph
HUSPS, Corollary 5.16 states that the problem of finding a minimum weight
circuit in (P , IUSPS) that is contained in a given (dependent) set and, equiv-
alently, the problem of finding a minimum weight hyperedge in HUSPS that
is contained in a set of hypergraph nodes set are NP-hard to approximate
within a factor less than 7/6 (assuming that IUSPS or HUSPS are given by
an independence oracle and the weights w are encoded polynomial in the
size of the given path set).

5.5 Finding Maximum Unique Shortest Path Sys-

tems

The opposite problem to finding an irreducible non-USPS in a given path set
S ⊆ P is to find a maximum USPS in S. Again, we are not only interested
in finding an inclusion-wise maximum such set, but a maximum cardinality
or maximum weight one.

These problems have an interesting direct application in telecommunica-
tion network planning: Several routing protocols allow to specify for each
commodity independently whether it shall be routed along an individually

5.5. Finding Maximum Unique Shortest Path Systems 91

pre-configured path or along a default route, which typically is a short-
est path with respect to some global routing metric. The most prominent
examples of such protocols are MPLS, PNNI, and BGP. The possibility
to configure individual routing paths as substitutes for the default routes
makes these protocols more flexible and powerful than standard shortest
path routing protocols such as OSPF or IS-IS. Network operators however,
are very reluctant to set up such individual paths, because this involves ad-
ditional configuration and management overhead. An interesting problem in
such networks is to find a maximum USPS in a set of prescribed end-to-end
routing paths, which may be the result of some previous routing optimiza-
tion process. The paths in the USPS then can be managed by the default
shortest path routing mechanism and only the remaining ones need to be
configured manually.

The task of finding a maximum cardinality USPS within a given path set
can be formalized as the Max-USPS problem:

Problem: Max-USPS

Instance: A digraph D = (V, A) and a path set S ⊆ P .

Solution: A USPS R ⊆ S.

Objective: max |R|.

The more general task of finding a USPS of maximum weight leads to the
following optimization problem:

Problem: Max-Weight-USPS

Instance: A digraph D = (V, A) and non-negative weighs w ∈ ZP
+.

Solution: A USPS R ⊆ P .

Objective: max
∑

P∈R wP .

Again, we assume that the weights in given as a sparse-vector in Max-
Weight-USPS, that is, only those weights with λP > 0 are actually en-
coded in a Max-Weight-USPS instance.

Clearly, both Max-USPS and Max-Weight-USPS are NPO problems.
To unify the notation in the following, we let S := {P ∈ P : wP > 0} for

any given instance (D, w) of Max-Weight-USPS. Clearly, each instance
(D, w) of Max-Weight-USPS has an optimal solution R with R ⊆ S.
(Note that we do not require that R is maximal with respect to set-inclusion
in the entire path set P .) So, in both problems we are looking for a USPS
R within the (implicitly) given path set S.

5.5.1 Greedy Approaches

As the family of all unique shortest path systems in the given digraph forms
an independence system, the most natural approach for computing solutions

92 5. Unique Shortest Path Systems

of Max-USPS and Max-Weight-USPS is to use the standard primal or
dual greedy algorithm for finding a maximum cardinality or a maximum
weight independent set in a general independence system, see Edmonds [77]
or Korte et al. [126] for example.

Starting with R := ∅, the primal greedy algorithm iteratively tries to add
the paths P ∈ S (in order of decreasing weight) to R. If the augmented
path set R ∪ P is a USPS, the path P is added permanently to R and the
algorithm continues with the next path in R. Otherwise the primal greedy
algorithm proceeds with the next path in R without adding P .

The dual greedy algorithm, on the other hand, starts with R := S and
iteratively removes a (minimum weight) path from R until the remaining
path set becomes a USPS.

Clearly, both algorithms run polynomial in the problem’s encoding size.
Each executes at most |S| many iterations and, in each iteration, the test
whether the current path set is a USPS or not can be performed in polyno-
mial time using the linear programming techniques discussed in Section 4.3.

As the constructed USPS R ⊆ S will contain at least one path which, in
the weighted case, is a maximum weight path, both algorithms achieve a
worst-case performance ratio of |S|.

To see that this worst-case performance guarantee is tight, we consider
the rank quotient [118, 113, 125] of the underlying independence system
IUSPS. For each path set S, we denote its lower rank by

lr(S) := min
{

|R| : R ⊆ S is a USPS and

there is no USPS R′ with R (R′ ⊆ S
}

and its upper rank by

ur(S) := max
{

|R| : R ⊆ S is a USPS
}

, respectively.

The rank quotient for the family of shortest path systems then is

q(IUSPS) := min
{

lr(S)/ur(S) : S ⊆ P and ur(S) 6= 0
}

.

It was shown by Jenkyns et al. [118, 113, 125] that the inverse rank quotient
is a tight bound for the worst case approximation ratio achieved by both the
primal and the dual greedy algorithm for the problem of finding a maximum
weight independent set in a general independence system.

For an independence system that is the intersection of finitely many ma-
troids, the rank quotient is bounded from below by a constant that depends
on the number of intersecting matroids. Unfortunately, the independence
system IUSPS of unique shortest path systems cannot be described as an
intersection of finitely many matroids in general. The following example
shows that the quotient between the lower and the upper rank can be as
small as 1/(|S| + 1) for a path set S ⊆ P .

5.5. Finding Maximum Unique Shortest Path Systems 93

v0 v1 v2 vk−1 vk

u1 u1 uk

P1 P2 Pk

P0

P0 =
(

v0, v1, . . . , vk

)

Pi =
(

vi−1, ui, vi

)

, i = 1, . . . , k

Figure 5.9 Path set with rank quotient 1/k.

Example 5.3 Let k ∈ Z+. Consider the digraph Dk = (Vk, Ak) given by

Vk := {v0, . . . , vk, u1, . . . , uk} and

Ak := {(vi−1, vi), (vi−1, ui), (ui, vi) : i = 1, . . . , k}

and the path set Sk = {P0, . . . , Pk} consisting of the path

P0 :=
(

v0, v1, . . . , vk

)

and

Pi :=
(

vi−1, ui, vi

)

for i = 1, . . . , k.

Figure 5.9 illustrates Dk and Sk.

For any i = 1, . . . , k, the paths P0 and Pi contain different (vi−1, vi)-
(sub)paths. Thus, either P0 or Pi but not both can be uniquely determined
shortest paths between their respective terminals for the same metric λ. One
easily verifies that the pairs {P0, Pi} are the only irreducible non-USPSs
contained in Sk and that the path set {Pi : i = 1, . . . , k} as well as the
path set {P0} are (inclusion-wise) maximal USPSs contained in Sk. Hence,
Sk has a rank quotient of (at most) 1/k. △

It now follows immediately from the results of Jenkyns et al. [118, 113,
125] that for both the primal and the dual greedy algorithm the worst-case
approximation guarantee of |S| is (asymptotically) tight for both problems
Max-USPS and Max-Weight-USPS.

In the remainder of this section we show that it is hard to approximate
these two problems within a small constant factor.

5.5.2 Inapproximability Results

If the path set S given as input in the problems Max-USPS or Max-
Weight-USPS is a USPS, then S itself is an optimal solution. If S is
an irreducible non-USPS, then one of the |S| many subsets R ⊂ S with
|R| = |S|−1 is a optimal solution. With the methods presented in Chapter 4
both cases can be recognized and solved in polynomial time.

In general, however, the problems Max-USPS and Max-Weight-USPS
are not only hard to solve to optimality, but also hard to approximate within
a constant factor less than 8/7.

94 5. Unique Shortest Path Systems

s

t1

t2

t3

v1

v2

v3v4

v5

v6

Figure 5.10 Path set S in D corresponding to the clauses C1 = (x̄1∨x2∨x̄3),
C2 = (x3 ∨ x̄4 ∨ x5), and C3 = (x4 ∨ x5 ∨ x6).

Theorem 5.17 For any ǫ > 0, it is NP-hard to approximate Max-USPS
within a factor of 8/7 − ǫ. This holds even if each path P ∈ S is a shortest
(sP , tP)-path (w.r.t. the number of arcs) with |P | = 2.

Proof. We construct an approximation preserving reduction from the op-
timization problem Max-3-Sat to Max-USPS. The problem Max-3-Sat
is defined as follows: Given a set X of boolean variables, a collection C of
disjunctive clauses of at most three literals (i.e., a negated or unnegated vari-
able) per clause, find a truth assignment for X that maximizes the number
of clauses evaluating to true. This problem was shown to be APX -complete
by Papadimitriou and Yannakakis [156]. H̊astad [112] proved that it is NP-
hard to approximate Max-3-Sat within a factor strictly less than 8/7.

Suppose we are given an instance of Max-3-Sat with variables x1, . . . , xq

and clauses C1, . . . , Cr. W.l.o.g., we may assume that no clause contains the
same boolean variable twice. We construct a Max-USPS instance consisting
of a digraph D = (V, A) and a path set S ⊆ PD as shown in Figure 5.10.

The node set V consist of one center node s, the nodes vi for all i ∈
{1, . . . , q}, and the nodes tl for all l ∈ {1, . . . , r}. The arcs set A consists of
two parallel arcs ai and āi from s to vi for each i ∈ {1, . . . , q}, and of one
arc (vi, tl) for all i ∈ {1, . . . , q} and l ∈ {1, . . . , r}.

The path set S contains one path for each occurrence of a boolean variable
in a clause. If the boolean variable xi occurs in clause Cl unnegated, i.e.,
Cl = (xi ∨ . . .), then S contains the path

Pl,i := (s, ai, vi (vi, tl), tl) .

If xi occurs in Cl negated, i.e., Cl = (x̄i ∨ . . .), then S contains the path

P̄l,i := (s, āi, vi (vi, tl), tl) .

5.5. Finding Maximum Unique Shortest Path Systems 95

In the following, we show that each truth assignment for the boolean
variables that satisfies c clauses corresponds to a USPS R ⊆ S with |R| = c
and, in the other direction, any USPS R ⊆ S can be transformed into a
truth assignment x that satisfies at least |R| many clauses.

First, consider a truth assignment x which satisfies c clauses. W.l.o.g.,
we may assume that these are the clauses C1 through Cc. We define the
corresponding path set R = R(x) ⊆ P as follows: For each clause Cl with
l ∈ {1, . . . , c}, at least one of its literals must evaluate to true. (If two or
more literals evaluate to true, we choose the lexicographically first one.) If
this literal is an unnegated variable xi, then the path Pl,i belongs to R.
Otherwise, if the literal evaluating to true in Cl is a negated variable x̄i,
then R contains the path P̄l,i. For clauses Cl with l ≥ c+1, there is no path
in R.

Clearly, R ⊆ S and |R| = c.

To see that R is a USPS, note that the same value true or false is assigned
to all occurrences of a boolean variable xi. Thus, the path set R cannot
contain two path P and P̄ with ai ∈ P and āi ∈ P̄ . Furthermore, R contains
exactly one (s, tl)-path for each l ∈ {1, . . . , c}. Consequently, the paths in
R form an arborescence with root s, which implies that R is a USPS.

Now, secondly, let R ⊆ S be a USPS with |R| = c. We construct a
truth assignment x := x(R) ∈ {true, false}q for the boolean variables as
follows: If Pl,i ∈ R for some l ∈ {1, . . . , r} and i ∈ {1, . . . , q}, then we set
xi = true. If P̄l,i ∈ R, we assign xi = false. All boolean variables that are
not determined by this procedure are set to true.

Since R is a USPS, it contains no pairs of conflicting paths. In particular,
either arc ai or āi or none of both is contained in the paths of S. This
implies that there are no two paths Pk,i and P̄l,i in S and, therefore, the
truth assignment x is well-defined.

Furthermore, x satisfies at least all those clauses Cl where R contains an
(s, tl)-path. Because R is a USPS, it contains at most one (s, tl)-path for
each l = 1, . . . , r, which implies that the truth assignment x satisfies at least
|R| = c many clauses.

Clearly, the construction of D and S as well as the construction of x =
x(R) from R are polynomial in the size of the given Max-3-Sat instance.
Therefore, any polynomial time approximation algorithm for Max-USPS
carries over to a polynomial time approximation algorithm for Max-3-Sat
with the same approximation ratio. Consequently, Max-USPS cannot be
approximated within a factor less than 8/7, unless P = NP. �

Note that the optimal solution value of Max-USPS is exactly the rank of
the given path set S. Thus, computing a close approximation of the rank of
a non-USPS is NP-hard in general.

96 5. Unique Shortest Path Systems

Corollary 5.18 For any ǫ > 0, it is NP-hard to approximate the rank of
an arbitrary path set within a factor of 8/7 − ǫ.

Theorem 5.17 carries over straightforward to the more general, weighted
problem version Max-Weight-USPS.

Corollary 5.19 For any ǫ > 0, it is NP-hard to approximate the problem
Max-Weight-USPS within a factor of 8/7 − ǫ.

Again, it is not difficult to verify that Corollary 5.19 also holds if the path
weights are given implicitly as an additive function of some arc weights
c ∈ ZA

+, i.e., wP :=
∑

a∈P ca for each path P ∈ P .

Remark 5.20 The only particular feature of unique shortest path systems
used in the proof of Theorem 5.17 is the Bellman property. Therefore,
Theorem 5.17 and its corollaries hold also for the problem of finding a max-
imum cardinality or a maximum weight path set R ⊆ S that satisfies only
the Bellman property, but which is not necessarily a USPS. In particular,
Theorem 5.17 holds for the problem of finding a maximum cardinality or
a maximum weight so-called unsplittable source invariant routing within a
given path set, see also Chapter 6.

In the language of independence systems and stable sets Corollary 5.19
states that the problem of finding a maximum weight independent set in
(P , IUSPS) and, equivalently, the problem of finding a maximum weight
stable set in HUSPS are NP-hard to approximate within a factor strictly less
than 8/7 (provided that the independence system IUSPS or the hypergraph
HUSPS are given implicitly by an independence oracle and the encoding size

of the weights w is polynomial in the size of the underlying digraph).

5.6 Undirected Unique Shortest Paths Systems

Although traffic demands and flows are typically asymmetric in real net-
works, also undirected unique shortest path systems are of practical rele-
vance. For operational reasons network administrators often require that
the routing lengths for both directions of a bidirectional link are equal. In
this case, the routing can be modeled by path systems in an undirected
graph, which reduces the size and the complexity of the models enormously.

The definitions, properties, algorithms, and complexity results discussed
above carry over immediately to the undirected case. Given an undirected
graph G = (V, E) and letting P denote the set of all undirected simple paths
in G, a metric λ ∈ RE

+ is said to be compatible with a given path set S ⊆ P
if each path P ∈ S is the uniquely determined shortest (sP , tP)-path with
respect to λ. A path set S ⊆ P is an undirected USPS if there exists a
compatible metric λ ∈ RE

+ for S.

5.6. Undirected Unique Shortest Paths Systems 97

v4 v5 v6

v1 v2 v3

P1 =
(

v1, v2, v6

)

P2 =
(

v1, v5, v3

)

P3 =
(

v4, v2, v3

)

P4 =
(

v4, v5, v6

)

Figure 5.11 Undirected non-USPS with B-property.

As in the directed case, any metric that is compatible with a given path set
can be transformed to an integer-valued one and any undirected USPS can
be extended to an USPS containing an (s, t)-path for node pair (s, t) ∈ V (2)

where s and t are connected in G. The B-property, the GB-property, and
the valid-cycle property are fulfilled by any undirected USPS, but none of
these properties is sufficient to completely characterize all undirected USPS
in general. An example of an undirected path set that has the B-property
but is no USPS is shown in Figure 5.11.

Undirected USPS containing three or less paths are completely character-
ized by the B-property, too. Yet, the proof of this fact is more complicated
than in the directed case.

Theorem 5.21 An undirected path set S ⊆ P with |S| ≤ 3 is an USPS if
and only if S has the B-property.

Proof. The cases |S| = 1 and |S| = 2 follow analogous to the directed
variant in Theorem 5.7. It remains to prove Theorem 5.21 for |S| = 3.

Let S = {P1, P2, P3} be a path set in the undirected graph G = (V, E)
such that S has the B-property. Define G′ := (V, E′) with E′ := {e ∈ E :
e ∈ P1 ∪ P2 ∪ P3}. If two of the three paths do not intersect or all three
paths have one node in common, then G′ is a forest, see Figure 5.12. In this
case, the claim follows immediately.

Otherwise all three paths intersect pairwise but share no common node.
Then G′ contains exactly one cycle, see Figure 5.13. Furthermore, this cycle
contains at least one edge, say f = uv, that is contained in only one of the
paths, say P3. As G′ − f is a tree, there is exactly one path between u and

(a) Two paths do not intersect. (b) All paths have a node in common.

Figure 5.12 Undirected path sets of size three with B-property that form a
forest.

98 5. Unique Shortest Path Systems

u v

(a) Paths do not intersect on the cycle.

u v

(b) Paths intersect on the cycle.

Figure 5.13 Undirected path sets of size three with B-property where all
paths intersect pairwise.

v in G′ − f . We denote the distance between u and v in G′ − f by d(u, v).
Then

λe :=











1 , if e ∈ P1 ∪ P2 ∪ P3 \ {f},
d(u, v) − 1

2 , if e = f , and

|V | , otherwise,

is a compatible edge length function for S. �

For undirected path sets, Ben-Ameur and Gourdin [27] introduced the prop-
erties cyclic comparability and generalized cyclic comparability. The gener-
alized cyclic comparability property is equivalent to the GB-property. The
cyclic comparability property corresponds to a weaker variant of the GB-
property, where only the removal of single edges is considered. For the
sake of completeness, we review the definition of cyclic comparability and is
relation to the other properties here.

Definition 5.22 (Ben-Ameur and Gourdin [27]) Let G = (V, E) be an
undirected graph. A path set S ⊆ P has the cyclic comparability property
if, for every f ∈ E that is not a bridge of G, there exists a cycle C in G
with f ∈ C such that either P [u, v] = ∅ or P [u, v] ⊂ C holds for all pairs of
distinct nodes u, v ∈ C and for all paths P ∈ S, .

Theorem 5.23 (Ben-Ameur and Gourdin [27]) Any undirected USPS
has the B-property.

Observation 5.24 (Ben-Ameur and Gourdin [27])

(i) If an undirected path set has the GB-property, then it also has the cyclic
comparability property.

(ii) If an undirected path set has the cyclic comparability property, then it
also has the B-property.

5.6. Undirected Unique Shortest Paths Systems 99

v1

v2 v3

v4

v5v6

P1 =
(

v1, v2, v3

)

P2 =
(

v1, v6, v5

)

P3 =
(

v2, v5, v4

)

P4 =
(

v6, v3, v4

)

The cyclic comparability is
violated for F = {(1, 4)}.

Figure 5.14 Undirected path set with B-property, but without cyclic com-
parability property.

In general, the cyclic comparability property is stronger than the B-property
and weaker than the GB-property. Figure 5.14 shows an undirected path
set with the B-property but without the cyclic comparability property and
Figure 5.15 shows a path set that with the cyclic comparability property
but without the GB-property.

The linear programming techniques presented in Chapter 4 can be applied
analogously to find a compatible metric λ ∈ RE

+ for an undirected path set or
to prove that none exists. The greedy algorithms for finding an irreducible
non-USPS or a maximum USPS within a given path set carry over to the
undirected problem versions and achieve the same approximation ratios as in
the directed case. The inapproximability results presented in Sections 5.4.2
and 5.5 for Min-Non-USPS, Min-Weight-Non-USPS, Max-USPS, and
Max-Weight-USPS hold for the corresponding undirected problem ver-
sions as well. For Max-USPS and Max-Weight-USPS the proof carries
over literally to the undirected case, while for Min-Non-USPS and Min-
Weight-Non-USPS a similar construction yields the same inapproxima-

v1

v2 v3

v4

v5v6

v7 v8

P1 =
(

v1, v2, v3

)

P2 =
(

v1, v6, v5

)

P3 =
(

v2, v7, v5, v4

)

P4 =
(

v6, v8, v3, v4

)

The generalized cyclic compa-
rability is violated for
F = {(1, 7), (7, 8), (8, 4)}.

Figure 5.15 Undirected path set with cyclic comparability but without GB-
property.

100 5. Unique Shortest Path Systems

bility threshold.

As in the directed case, the structural properties of undirected unique
shortest path systems may become rather complicated. For undirected cy-
cles and some related graphs, however, the family of all undirected USPSs
can be easily characterized.

Definition 5.25 A hat-cycle is an undirected graph G = (V1∪V2, E1∪E2)
consisting of an elementary cycle C = (V1, E1) plus some additional nodes
V2 and edges E2, such that

(i) each extra node u ∈ V2 is adjacent to exactly two nodes v1, v2 ∈ V1

with v1v2 ∈ E1, and

(ii) for each edge v1v2 ∈ E1, there is only one node u ∈ V2 that is adjacent
to both v1 and v2.

It was shown by Ben-Ameur and Gourdin [27] that, in a hat-cycle graph,
each path set with the B-property is an USPS. This result can be generalized
as follows.

Theorem 5.26 (Ben-Ameur and Gourdin [27]) Let G = (V, E) be an
undirected graph and G′ its associated simple graph where all loops are re-
moved and all sets of parallel edges are replaced by a single edge. If each
block of G′ is a cycle or a hat-cycle, then each path set S ⊂ P with the
B-property is an USPS.

Proof. For the case where G itself is a cycle or a hat-cycle graph, the
claim was shown by Ben-Ameur and Gourdin [27]. From this, it follows
immediately that the B-property sufficiently describes the family of all USPS
if all blocks of G are cycle or hat-cycle graphs.

Loops clearly cannot be contained in any simple path. Furthermore, if G
has parallel edges e1, . . . , ep between two of its nodes, then any two paths
P1 and P2 such that w.l.o.g. e1 ∈ P1 and e2 ∈ P2 are conflicting. Hence, at
most one of the parallel edges e1, . . . , ep can be contained in the paths of a
path set that has the B-property. This yields the claim. �

The class of undirected graphs whose associated simple graphs’ blocks are
cycle or hat-cycle graphs generalizes several other graph classes, for example
cactus graphs. Figure 5.16 shows an example of a graph where the B-
property sufficiently characterizes all USPS.

Remark 5.27 Note that there is no directed correspondence of Theorem
5.26. The B-property is not even sufficient to characterize all directed USPSs
in a bidirected ring. Figure 5.4 shows an example of a non-USPS with the
B-property in a bidirected ring.

5.6. Undirected Unique Shortest Paths Systems 101

Figure 5.16 In this graph, the B-property completely characterizes all USPSs.

If the B-property is sufficient to characterize the family of all USPS, like it
is the case for the undirected graphs described in Theorem 5.26, then each
irreducible non-USPS contains exactly two conflicting paths and the conflict
hypergraph HUSPS is a simple graph. In this case, the Min-Non-USPS and
Min-Weight-Non-USPS problem are trivially solvable.

Theorem 5.28 The problems Min-Non-USPS and Min-Weight-Non-
USPS are polynomially solvable if the underlying graph G belongs to the
class of undirected graphs described in Theorem 5.26.

Proof. The only irreducible non-USPSs in G are pairs of conflicting paths.
These can be enumerated in polynomial time. �

For the case where the underlying graph G is an undirected cycle, also
the problems Max-USPS and Max-Weight-USPS become polynomially
solvable.

Theorem 5.29 The problems Max-USPS and Max-Weight-USPS are
polynomially solvable if the underlying graph G is an undirected cycle.

Proof. It is sufficient to show that Max-Weight-USPS is polynomially
solvable.

102 5. Unique Shortest Path Systems

P1

P2

P1

P2

(a) Original paths

P̄2

P̄1

P̄2

P̄1

(b) Opposite paths

Figure 5.17 Opposing paths in an undirected cycle.

Let G be an undirected cycle and w ∈ ZP
+ be a non-negative weight

function on the paths in G. W.l.o.g., we may assume that wP ≥ 0 for each
P . Since each subset of an USPS is an USPS again, no path P with wP < 0
will be contained in an optimal solution.

Clearly, for each path P ∈ P , there is a unique opposite path P̄ between
sP and tP in G with P̄ 6= P . For each path system S in G, we denote by
S̄ := {P̄ : P ∈ S} the system of opposite paths. Furthermore, let w̄ ∈ ZP

+

be the path weights defined by w̄P := wP̄ .

By Theorem 5.26, the B-property sufficiently describes all USPS in G.
Hence, the problem of finding a maximum weight USPS and the problem of
finding a maximum weight path system that contains no pairs of conflicting
paths are equivalent.

Now, consider the circular arc graph HCA defined by all paths P in G.
The nodes of this graph are the paths in G and there is an edge P1P2 in HCA

if and only if the paths P1 and P2 intersect in at least one arc. Two paths
P1 and P2 conflict if and only if they cover the entire cycle G. And this
is the case is and only if their complements P̄1 and P̄2 are arc disjoint, see
Figure 5.17. In other words, there is an edge P̄1P̄2 in HCA if and only if P1

and P2 do not conflict with each other. Consequently, each clique S̄ in HCA

is the opposite path system of the path system S without conflicting paths.
Finding a maximum weight unique shortest path system for the weights w
therefore is equivalent to finding a maximum weight clique in HCA with
respect to the opposite weights w̄.

The Maximum Weight Clique problem can be solved polynomially for
circular arc graphs with the algorithms of Gavril [97] or Wilfong and Win-

5.7. Unique Shortest Path Forwardings 103

kler [191], for example. Hence, also Max-Weight-USPS is polynomially
solvable in undirected cycles. �

Note that Theorem 5.29 does not carry over to the larger class of undirected
graphs described in Theorem 5.26. Even though HUSPS is a simple graph,
it may contain non-trivial substructures such as odd holes. It is not difficult
to show that Max-USPS and Max-Weight-USPS on cactus graphs are
at least as hard to approximate as the Maximum Cut problem.

5.7 Unique Shortest Path Forwardings

In this section, we finally consider the forwarding representation of unsplit-
table shortest path routings where, instead of the end-to-end routing paths
themselves, we are given a set of forwarding arcs that describe via which
arcs the traffic streams must leave the nodes.

The basic notions for this routing representation have been introduced in
Chapter 4, page 60ff. A forwarding is a set F ⊆ V × A. Each forwarding
arc (t, (u, v) ∈ F) ∈ F means that the traffic from or via node u towards
destination t must leave node u via the arc (u, v). We say that

(i) a metric λ ∈ RA
+ is compatible with a forwarding F ⊆ V × A if, for

each (t, (u, v)) ∈ F , arc (u, v) is contained in all shortest (u, t)-paths
with respect to λ, and

(ii) a forwarding F ⊆ V × A is a unique shortest path forwarding (USPF)
if there exists a compatible metric for F . Otherwise F is called a
non-USPF .

Note that a forwarding not necessarily prescribes complete end-to-end rout-
ing paths, but only some arcs that must be contained in these paths. Accord-
ingly, a compatible metric need not induce unique shortest end-to-end paths,
it only must ensure that the given forwarding arcs are uniquely induced. A
forwarding therefore is a USPF if it either corresponds to a unique shortest
path routing or if it can be extended to a unique shortest path routing, for
whichever commodity set.

As for the path set representation, we are interested in the combinatorial
properties of unique shortest path forwardings and in the problems of finding
a minimal non-USPF or a maximal USPF within a given forwarding.

Clearly, any subset of an USPF is an USPF as well. Thus, the family of all
USPF in D forms an independence system. The circuits of this independence
system are the irreducible non-USPFs. We denote the families of all
USPFs and of all irreducible non-USPFs by

IUSPF := {F ⊆ V × A : F is an USPF } ⊆ 2V ×A and

CUSPF := {F ⊆ V × A : F is an irreducible non-USPF } ⊆ 2V ×A ,

104 5. Unique Shortest Path Systems

respectively.

Most of the properties, algorithms, and complexity results discussed in
the previous sections for unique shortest path system carry over directly to
unique shortest path forwardings.

As we have already shown in Chapter 4, the Inverse Unique Shortest
Path Forwarding problem (IUSPF) of finding a compatible metric for a
given forwarding F ⊆ V × A or proving that no such metric exists can be
solved in polynomial time. Thus, one can decide in polynomial time whether
a given forwarding F is a USPF or not.

Using the same techniques and examples as for the path-set representa-
tion, one immediately finds that all inclusion-wise maximal USPFs have the
same cardinality and that the rank quotient of the independence system
(V × A, IUSPF) may become arbitrarily small. Also, the Bellman-property,
the generalized Bellman property, and the valid-cycle property of Broström
and Holmberg [46] can be easily formulated in terms of forwarding arcs. As
in the path-case, the Bellman property yields a complete characterization
of unique shortest path forwardings in undirected graphs that belong to
the graph class described in Theorem 5.26, but none of the aforementioned
properties is sufficient in the general case.

The problem of finding an inclusion-wise maximum USPF within a given
forwarding can be solved in polynomial time with a standard greedy al-
gorithm that uses the linear programming techniques discussed in Chap-
ter 4 to check if the intermediate candidate forwardings are USPFs or not.
On the other hand, the maximum cardinality or the maximum weight of
such a USPF cannot be approximated within a factor less than 8/7, unless
P = NP. The proof of Theorem 5.17 literally carries over to the forwarding
problem version by replacing each path P = (v0, a1, v1, . . . , vk) by its first
forwarding arc (v0, a1).

The only interesting problems are the problem of finding some irreducible
non-USPF within a given forwarding and the problems of finding a minimum
cardinality or a minimum weight such non-USPF. Also for these problems we
obtain exactly the same results as for the corresponding path-set problems.
The algorithms and proofs are very similar to those for the corresponding
path-set problems, but they do not carry over as easily as those for the
opposite maximum USPF problems. In the following, we therefore discuss
these problems in more detail.

Formally, the two problems of finding a minimum cardinality or a mini-
mum weight non-USPF within a given forwarding are defined as follows.

Problem: Min-Non-USPF

Instance: A digraph D = (V, A) and a non-USPF F ⊆ V × A.

Solution: An irreducible non-USPF E ⊆ F .

Objective: min |E|.

5.7. Unique Shortest Path Forwardings 105

Problem: Min-Weight-Non-USPF

Instance: A digraph D = (V, A) and strictly positive weights w ∈
ZV ×A

+ .

Solution: An irreducible non-USPF E ⊆ V × A.

Objective: min
∑

(t,a)∈E wt,a.

Because the size of a forwarding is polynomial in the size of the underlying
digraph anyway, we do not need to restrict the domain of the weight func-
tion to a subset of V × A in Min-Weight-Non-USPF like in the path-set
version. To ensure that the optimal solution value is strictly positive, we
require that the given forwarding in Min-Non-USPF is a non-USPF and
that the weights in Min-Weight-Non-USPF are strictly positive.

The simplest solution approach to these problems is to greedily remove for-
warding arcs. Starting with the given forwarding E := F , or with E := V ×A
in the weighted case, we iteratively tries to remove each forwarding arc from
E. If the remaining forwarding still comprises a non-USPF, the forward-
ing arc is removed permanently and the algorithm continues with the next
path. Otherwise we proceeds with the next forwarding arc without remov-
ing the current one. Whether or not removing the current forwarding arc
would yield a USPF can be checked by solving the corresponding Inverse
Unique Shortest Path Forwarding (IUSPF) problem. If all forward-
ing arcs have been considered for removal, the algorithm finishes returning
the residual forwarding. In the weighted problem version, the forwarding
arcs are considered for removal in order of non-increasing weights.

Obviously, this simple greedy algorithm returns an irreducible non-USPF.
Each intermediate IUSPF problem can be solved in polynomial time by
solving the corresponding linear system (4.11)–(4.14) discussed in Chapter 4.
Hence, the entire algorithm can be implemented to run in polynomial time.

Analogous to the procedure for finding an irreducible non-USPS in a given
path set, the practical performance of this algorithm can be improved sig-
nificantly by reducing the forwarding in each iteration based on the dual
Farkas ray that is computed for each infeasible linear system (4.11)–(4.14).

Observation 5.30 Let F ⊆ V × A be a non-USPF and let (µ, η, . . .) be
a dual Farkas ray for the corresponding linear system (4.11)–(4.14) with
µ being the dual multipliers for the equalities (4.11) and η being the dual
multipliers for the inequalities (4.12). Furthermore, let

conT (µ) :=
{

(t, (u, v)) ∈ F : µ(t,(u,v)) 6= 0
}

, and

conN (η) :=
{

(t, (u, v)) ∈ F : η(t,(u,v′)) 6= 0 for some (t, (u, v′) ∈ F̄

with v 6= v′.
}

.

Then the set con(µ, η) := conT (µ) ∪ conN (η) is a non-USPF.

106 5. Unique Shortest Path Systems

The set conT (µ) contains a set of pairs (t, (u, v)) ∈ F where the requirement
that arc (u, v) is on the shortest (u, t)-path is relevant in the infeasibility
proof given by the dual Farkas ray. The other set conN (η) contains pairs
(t, (u, v)) ∈ F where the indirectly implied requirement that some arc (u, v′)
with v′ 6= v is not in the shortest (u, t)-path is relevant.

Observation 5.30 leads to the improved dual Greedy algorithm Greedy-

Non-USPF shown below: Whenever during the dual Greedy algorithm the
linear system (4.11)–(4.14) is infeasible for the current forwarding, we take
the dual Farkas ray µ computed by the LP solver and replace the current
forwarding by con(µ).

Theorem 5.31 Algorithm Greedy-Non-USPF computes an irreducible non-
USPF E ⊆ F or states that F is a USPF in polynomial time.

Instead of the dual Farkas ray, we could also use irreducible inconsistent
subsystems of (4.11)–(4.14) to reduce the size of the candidate forwarding
in algorithm Greedy-Non-USPF. If F ⊆ V × A is a non-USPF and I is an
(irreducible) inconsistent subsystem of (in)equalities of the corresponding
linear system (4.11)–(4.14), then the forwarding

con(I) :=
{

(t, (u, v)) ∈ F : I contains equality (4.11) for (t, (u, v))
}

∪
{

(t, (u, v)) ∈ F : I contains inequality (4.12) for some

(t, (u, v′)) ∈ F̄ with v 6= v′
}

.

is a non-USPF. However, note that con(I) is not necessarily irreducible, even
if I is an irreducible inconsistent subsystem.

One easily observes that algorithm Greedy-Non-USPF achieves a worst
case performance ratio of |F | for Min-Non-USPF and of |V | · |A| for Min-

Algorithm 5.2 Greedy-Non-USPF

Input: Min-Non-USPF: Forwarding F ⊆ V × A

(Input Min-Weight-Non-USPF: Weights w ∈ ZV ×A
+ and F := V × A)

Output: Irreducible non-USPF E ⊆ F .

If (4.11)–(4.14) is feasible for F then

Return ’F is a USPF’.

Let (µ, η, . . .) be a dual Farkas ray of (4.11)–(4.14) for F .

Set E := con(µ, η).

For each (t, a) ∈ E do (in order of non-increasing weights w(t,a))

If (4.11)–(4.14) is infeasible for E \ {(t, a)} then

Let (µ, η, . . .) be a corresponding dual Farkas ray.

Set E := con(µ, η).

Return E.

5.7. Unique Shortest Path Forwardings 107

Weight-Non-USPF. It it also not difficult to construct examples where
ratios of Θ(|F |) and Θ(|V | · |A|) are attained.

In the remainder of this section, we prove that it is computationally hard
to approximate Min-Non-USPF or Min-Weight-Non-USPF within a
factor strictly less than 7/6.

Theorem 5.32 For any ǫ > 0, it is NP-hard to approximate Min-Non-
USPF within a factor of 7/6 − ǫ.

Proof. Except for some minor details, the proof is analogous to the proof
of Theorem 5.15. For this reason, we only discuss the differences in the
problem reduction and in the main proof steps here.

Again, let H be a given instance of Minimum Vertex Cover with nodes
wi, i ∈ I := {1, . . . , n}, and edges fk, k ∈ K := {1, . . . , m}, and let α ∈ Z+

be a sufficiently large integer number.
We construct a digraph D = (V, A) and a path set S ⊆ PD exactly as in

the proof of Theorem 5.15. Recall that S consists of four different types of
paths, i.e.,

S :=
⋃

i∈I

S1
i ∪

⋃

k∈K

S2
k ∪

⋃

i∈I, k∈K: fk∈δ(wi)

S3
i,k ∪ S4

i,k .

To define an instance of Min-Non-USPF, we now construct a forwarding
F ⊆ V ×A that corresponds to the paths in S but which is only a subset of
F(S).

For each path P ∈ ⋃

S1
i , we only add the (tP , a) pair corresponding to

the first arc a ∈ P to F . For each other path P ∈ ⋃

S2
k ∪

⋃

S3
i,k ∪

⋃

S4
i,k, the

set F contains all (tP , a) pairs with a ∈ P . More formally, we let

F 1 :=
{

(ul+1
i , (ūl

i, u
l
i)), (ūl+1

i , (ul
i, ū

l
i)) : i ∈ I, l = 0, . . . , α − 1

}

,

F 2 :=
⋃

k∈K

F
(

S2
k

)

∪
⋃

i∈I, k∈K: fk∈δ(wi)

F
(

S3
i,k

)

∪ F
(

S4
i,k

)

, and

F :=F 1 ∪ F 2 .

Figure 5.18 illustrates this forwarding.
Clearly, this construction is polynomial in the size of the given graph H.
For any path set R ⊆ S, we denote by E(R) := F ∩F(R) the subset of the

constructed forwarding that corresponds to R. In the reverse direction, we
denote for each E ⊆ F by R(E) ⊆ S the smallest path set R with E ⊆ F(S).

The following argumentation bases on a simple observation:

Observation (5.32a): Let i ∈ I, l ∈ {0, . . . , α − 1},and λ ∈ RA
+. Then

path (ul
i, ū

l
i, ū

l+1
i) is the unique shortest (ul

i, ū
l+1
i)-path with respect to λ if

and only if arc (ul
i, ū

l
i) is contained in the (unique) shortest (sP , tP)-path

108 5. Unique Shortest Path Systems

v1
k

v̄1
k

v2
k

v̄2
k

u0
i u1

i u2
i uα

i

ū0
i ū1

i ū2
i

ūα
i

Figure 5.18 Constructed forwarding F : For each shown path P , all pairs
(tP , a) with solid drawn arcs a ∈ P belong to F . Those pairs (tP , a) with
dashed drawn arcs a ∈ P do not belong to F .

with respect to λ.

Observation 5.32a implies that a metric λ is compatible with a path set
R ⊆ S if and only if it is compatible with the corresponding forwarding
E(R). Thus, most parts of the proof of Theorem 5.15 carry over immedi-
ately.

First, suppose C ⊆ W is a vertex cover in H. Then the path set R(C)
constructed in the proof of Theorem 5.15 is a non-USPS. By Observation
5.32a, the corresponding forwarding E(R(C)) then is a (not necessarily ir-
reducible) non-USPF. The size of E(R(C)) clearly is

|E(R(C))| = 2α |C| + 16m .

For the minimum vertex cover C∗ and the minimum cardinality non-USPF
E∗ ⊆ F we therefore have

|E∗| ≤ 2α |C∗| + 16m . (5.16)

For the other direction of the proof, suppose E ⊆ F is an irreducible
non-USPF. Then Observation 5.32a implies that R(E) is a non-USPS. Fur-
thermore, it follows that for each i ∈ I either F 1

i ⊂ E or F 1
i ∩ E = ∅:

5.7. Unique Shortest Path Forwardings 109

If E contained some but not all (t, a) pairs of some set F 1
i , then also the

corresponding path set R(E) would contain some but not all paths of S1
i .

In the proof of Theorem 5.15, however, it was shown that if this were the
case then either R(E) is a USPS or R(E) is reducible. This, in turn, would
implies that also E is either a USPF or reducible, which contradicts our
assumption.

Hence, for each irreducible non-USPF E ⊆ F we can properly define a
corresponding vertex cover as

C(E) := {wi : F 1
i ⊂ E} .

One easily observes that this vertex cover C(E) is exactly the vertex cover
C(R(E)) defined for the corresponding path set R(E) in the proof of The-
orem 5.15. From the above definition of C(E) we get that

|E| ≥ 2α |C(E)| . (5.17)

With α → ∞, it now follows analogous to the proof of Theorem 5.15 from
(5.16) and (5.17) that approximating Min-Non-USPF is at least as hard
as approximating Minimum Vertex Cover. �

Theorem 5.32 carries over immediately to the weighted problem version.

Corollary 5.33 For any ǫ > 0, it is NP-hard to approximate Min-Weight-
Non-USPF within a factor of 7/6 − ǫ.

In Chapter 7 of this thesis we discuss an integer linear programming for-
mulation for unsplittable shortest path routing problems that is based on
binary arc routing variables for each commodity and the independence sys-
tem characterization of unique shortest path forwardings. Corollary 5.33
will be important in this context, because the separation problem for one
type of the original model inequalities in these formulations reduces to Min-
Weight-Non-USPF.

110 5. Unique Shortest Path Systems

Part II

Hardness and

Approximability

111

Chapter 6

On the Approximability of

Unsplittable Shortest Path

Routing Problems

Many data networks presently employ shortest path routing protocols such
as OSPF or IS-IS [54, 143]. With these routing protocols, all end-to-end
traffic streams are routed along shortest paths with respect to some admin-
istrative link lengths. The simplicity of this policy offers many advantages
in practice: It admits the use of decentralized and distributed routing al-
gorithms, it has very good scaling properties with respect to the network
size, and it typically leads to less administrative overhead than connection
oriented routing schemes. On the other hand, the shortest path routing pol-
icy has an inherent drawback: It is not possible to configure the end-to-end
routing paths between different terminal pairs individually. The routing
paths can be controlled only jointly and only indirectly by changing the
administrative routing lengths of the network links.

Finding routing lengths that induce a set of globally efficient end-to-end
routing paths is a major difficulty in such networks. The shortest path
routing paradigm enforces rather complicated and subtle interdependencies
among the paths that comprise a valid routing. Additional difficulties arise
if each communication demand must be sent unsplit through the network –
a requirement that is often imposed in practice to ensure traceability of end-
to-end traffic flows and to prevent package reordering and other unwanted
effects of multi-path routing. In this case, the lengths must be chosen such
that the shortest paths are uniquely determined for all communication de-
mands. In practice, these routing restrictions may lead to unbalanced traffic
flows with some highly congested network links. As this has severe effects on
the overall service quality, network providers put much effort into reducing
and balancing the congestion and into (re-)designing their networks with
respect to this routing policy.

In this chapter, we discuss the relation between unsplittable shortest path

113

114 6. Approximability of Unsplittable Shortest Path Routing

routing (USPR) and other routing schemes and we study the approximabil-
ity of the three USPR network planning problems Min-Con-USPR, Cap-
USPR, and FC-USPR introduced in Chapter 3.

The congestion minimization problem Min-Con-USPR corresponds to
the task of finding an efficient USPR in an existing network. In this problem,
we are given a digraph D = (V, A) with fixed arc capacities and a set
K ⊆ V ×V of directed commodities with associated demand values, and we
seek for a USPR that minimizes the maximum congestion (i.e., the flow to
capacity ratio) over all arcs. The maximum congestion is a good measure
for the overall network service quality.

The fixed charge network design problem FC-USPR and the capacitated
network design problem Cap-USPR model the tasks of designing the topol-
ogy and of dimensioning the link capacities of a USPR network, respectively.
In Cap-USPR we wish to install integer multiples of some basic arc capacity
units such that the resulting capacities admit a USPR of the given commodi-
ties and the total capacity installation cost is minimized, while in FC-USPR
the goal is to find a minimum cost subgraph of D such that the given arc
capacities admit a USPR in this subgraph.

All three problems are of great practical interest in the planning of net-
works that employ shortest path routing protocols.

This chapter is organized as follows. In Section 6.1, we briefly review
some previous work concerning shortest path routing in general and the
approximability of shortest path routing problems in particular. A (review of
the) formal definition of the three USPR problems Min-Con-USPR, Cap-
USPR, and FC-USPR and a discussion of their basic properties follows in
Section 6.2.

Section 6.3 contains a comparison of USPR with several other routing
schemes. We construct examples where the minimum congestion that can
be obtained with USPR is a factor of Ω(|V |2) larger than the minimum
congestion that is achievable with unsplittable flow routing, with shortest
multi-path routing, or with fractional multicommodity flow routing, and a
factor of Ω(|V |) larger than the congestion of an optimal unsplittable source-
invariant routing. Furthermore, we show that the so-called no-bottleneck
condition, which is typically assumed in unsplittable flow problems, has no
effect on the complexity of unsplittable shortest path routing problems. This
gives theoretical evidence for the practical experience that routing planning
is harder for USPR than for the other routing schemes.

New strong hardness results for the three USPR problems are presented
in Section 6.4. We prove that it is NP-hard to approximate the mini-
mum congestion problem Min-Con-USPR within a factor of O(|V |1−ǫ) for
any ǫ > 0 and that the fixed charge network design problem FC-USPR is
NPO-complete. Furthermore, we show that the capacitated network de-
sign problem Cap-USPR is NP-hard to approximate within a factor of
O(2log1−ǫ|V |) in the directed case or within a factor of 2− ǫ in the undirected

6.1. Related Work 115

Problem Hardness Approximability

Min-Con-USPR Ω(|V |1−ǫ) general: min{|A|, |K|}
undir. cycle: 2

bidir. ring: 3

Cap-USPR undir.: 2 − ǫ general: —

directed: Ω(1log1−ǫ |V |) undir. cycle: 2

bidir. ring: 4

uniform: |K|
single-source: |K|

undir. uniform: O(log|V |)
FC-USPR NPO-complete, —

i.e., Ω(2|V |1−ǫ

)

Table 6.1: Approximability of USPR problems.

case.

In Section 6.5, we discuss polynomial time approximation algorithms for
Min-Con-USPR and Cap-USPR that are applicable for general underly-
ing graphs and digraphs. In the first part of this section we devise simple
|A|- and |K|-approximation algorithms for Min-Con-USPR. In the sec-
ond part we show how to approximate the uniform and the single-source
Cap-USPR problem within a factor O(|K|) and the undirected uniform
Cap-USPR problem within a factor of O(log |V |), using techniques that
have been proposed in the literature for other capacitated network design
problems.

In Section 6.6, we finally present constant factor approximation algorithms
for Min-Con-USPR and Cap-USPR for the special cases where the under-
lying graph is a bidirected ring or an undirected cycle. FC-USPR remains
NPO-complete even in these special cases.

Table 6.1 summarizes the results of this chapter. Unless stated otherwise,
the hardness results also hold and the approximation algorithms also apply
for the undirected problem versions, where both the underlying graph and
the commodities are undirected.

6.1 Related Work

In spite of its long history in practice, unsplittable shortest path routing has
received attention in the mathematical literature only recently.

Ben-Ameur and Gourdin [26, 27] and Broström and Holmberg [45, 46]
studied structural properties of (undirected) path sets where all paths are
uniquely determined shortest paths for edge metric. Ben-Ameur and Gour-
din also devised integer linear programming models to find a metric that
induces a prescribed set of shortest paths (or prove that no such metric ex-

116 6. Approximability of Unsplittable Shortest Path Routing

ists). Farago et al. [85, 86] studied a special case of this Inverse Shortest
Paths problem where the given paths are known to be shortest paths with
respect to the number of edges and the task is to find lengths such that all
these paths are unique shortest paths. Bley [35] proved that finding such
a metric is computationally hard if the range of admissible link lengths is
bounded.

Algorithms based on local search techniques, Lagrangian relaxation, and
integer programming methods as well as computational results for real-
world network design and congestion minimization problems with USPR
and multi-shortest path routing have been discussed in [28, 34, 37, 36, 48,
81, 85, 92, 93, 115, 133, 163, 169]. Results concerning the approximabil-
ity of USPR problems have not been published so far (to our knowledge).
However, several related problems have already been studied.

Fortz and Thorup [93] proved that it is NP-hard to approximate the
minimum congestion that can be obtained with a multi-shortest path routing
that splits traffic according to the ECMP rule (see Chapter 3) within a
factor less than 3/2. Dinitz et al. [74], Kolliopoulos and Stein [124], and
Skutella [179] studied the approximability of (variants of) the unsplittable
flow problem, while Lorenz et al. [134] discussed the relation of source-
invariant routing to several other routing schemes.

Dodis and Khanna [75] proved that the directed Generalized Steiner
Network problem, which is closely related to the fixed charge network de-
sign problem FC-USPR, is not approximable within a factor of O(2log1−ǫ|V |),
unless NP ⊆ DTIME(npolylog(n)).

Based on the result of Bartal [19], Fakcharoenphol et al. [84], and Charikar
et al. [57], Awerbuch and Azar [11] proposed an O(log|V |)-approximation
algorithm for the undirected uniform Buy-at-Bulk Network Design
problem. This algorithm can be applied directly to the undirected Cap-
USPR problem with uniform capacities, where is achieves the same ap-
proximation guarantee. Similar, the approximation algorithms proposed by
Guha et al. [108], Gupta et al. [110], Talwar [182], and Meyerson et al. [140]
for the single-source Buy-at-bulk network design problem carry over to the
corresponding Cap-USPR problem version.

Cosares and Saniee [63] and Schrijver et al. [177] proposed approximation
algorithms for the undirected Ring Loading problem, which is equivalent
to the minimum congestion unsplittable flow problem on a cycle with unit
capacities. These algorithms are based on rounding the optimal solution of
a linear relaxation of the problem. With an appropriate tie-breaking rule in
the rounding stage and some extension to handle non-uniform capacities and
the directed case, the same approach can be applied also to the unsplittable
shortest path routing problems and leads to constant factor approximation
algorithms for Min-Con-USPR and Cap-USPR on undirected and bidi-
rected rings.

6.2. Unsplittable Shortest Path Routing Problems 117

6.2 Unsplittable Shortest Path Routing Problems

Let D = (V, A) be a directed graph with arc capacities ua ∈ Z+, a ∈ A, and
let K ⊆ V × V be a set of directed commodities with demand values ds,t ∈
Z+, (s, t) ∈ K. For each commodity (s, t) ∈ K, let P(s, t) denote the set
of all (s, t)-paths in D. Furthermore, let P(K) :=

⋃

(s,t)∈K P(s, t). For any
path P , we write a ∈ P or v ∈ P to indicate that the arc a ∈ A or the node
v ∈ V occurs in P . The concatenation of two paths P1 = (v1

0 , a
1
1, . . . , v

1
l) and

P2 = (v2
0, a

2
1, . . . , v

2
k) with v1

l = v2
0 is denoted by P1 ⊕P2 := (v1

0 , a
1
1, . . . , v

1
l =

v2
0, a

2
1, . . . , v

2
k). For simplicity, we refer to a path P = (v0, a1, v1, . . . , al, vl)

with only its node sequence P = (v0, v1, . . . , vl) if the underlying digraph D
is simple. For any path P and any arc length vector λ = (λa)a∈A ∈ RA

+, we
denote λ(P) :=

∑

a∈P λa.

Recall that a metric λ ∈ RA
+ is said to be valid for the commodity set

K if, for each commodity (s, t) ∈ K, the shortest (s, t)-path P ∗
(s,t)(λ) with

respect to λ is uniquely determined. Given such a valid metric, the set of
these induced shortest paths forms an an unsplittable shortest path routing
(USPR) for the commodity set K, see Definition 3.4 on Page 33. The
demand of each commodity (s, t) ∈ K is routed unsplit along the respective
shortest path P ∗

(s,t)(λ) in a USPR. Given a valid metric λ, the total flow
through an arc a ∈ A in the induced USPR is

fa(λ) :=
∑

(s,t)∈K: a∈P ∗
(s,t)

(λ)

ds,t . (6.1)

The task in the minimum congestion unsplittable shortest path routing prob-
lem Min-Con-USPR is to find a valid metric λ ∈ ZA

+ for the given com-
modity set K, such that the induced flows minimizes the maximum of the
congestion values fa(λ)/ua over all arcs. Formally, this problem has been
defined as follows:

Problem: Min-Con-USPR

Instance: A digraph D = (V, A) with arc capacities ua ∈ Z+, a ∈ A,
and a commodity set K ⊆ V ×V with demands ds,t ∈ Z+,
(s, t) ∈ K.

Solution: A valid metric λ ∈ ZA
+ for the commodity set K, i.e.,

such that the shortest (s, t)-path w.r.t. λ is uniquely
determined for each commodity (s, t) ∈ K.

Objective: min{L ∈ R+ : fa(λ) ≤ L ua for all a ∈ A}.

In the network design and dimensioning problems, we are not only given arc
capacities ua ∈ Z+, a ∈ A, but also arc costs wa ∈ Z+, a ∈ A.

In the capacitated network design problem Cap-USPR, we seek for inte-
ger capacity multipliers za ∈ Z+, a ∈ A, and for a valid metric λ ∈ ZA

+ for

118 6. Approximability of Unsplittable Shortest Path Routing

the commodity set K, such that fa(λ) ≤ uaza for all a ∈ A. The objective
is to minimize the total capacity installation cost

∑

a∈A waza.

Problem: Cap-USPR

Instance: A digraph D = (V, A) with arc capacities ua ∈ Z+, a ∈ A,
and arc costs wa ∈ Z+, a ∈ A, and a commodity set
K ⊆ V × V with demands ds,t ∈ Z+, (s, t) ∈ K.

Solution: Capacity multipliers z∈ZA
+ and a valid metric λ ∈ ZA

+

for the commodity set K such that fa(λ) ≤ zaua for all
a ∈ A.

Objective: min
∑

a∈A zawa.

In the fixed charge network design problem FC-USPR, the given capacities
are regarded as fix. The task is to find a minimum cost arc set B ⊆ A
and a metric λ ∈ ZB

+, such that λ defines a USPR for the commodities K
in the subgraph (V, B) and the induced arc flows fa(λ) do not exceed the
capacities ua (on the arcs a ∈ B).

Problem: FC-USPR

Instance: A digraph D = (V, A) with arc capacities ua ∈ Z+, a ∈ A,
and arc costs wa ∈ Z+, a ∈ A, and a commodity set
K ⊆ V × V with demands ds,t ∈ Z+, (s, t) ∈ K.

Solution: An arc set B ⊆ A and a metric λ ∈ ZB
+ that is valid in

the subgraph (V, B) for the commodity set K, such that
fa(λ) ≤ ua for all a ∈ B.

Objective: min
∑

a∈B wa.

In all three problems, we may assume without loss of generality that D
contains an (s, t)-path for each commodity (s, t) ∈ K, that D contains no
loops, that ua > 0 for all a ∈ A, and that ds,t > 0 for all (s, t) ∈ K.
Also, we assume that there are no parallel commodities: If there were two
or more parallel commodities from s to t, these would have to use the same
(uniquely determined shortest) flow-path in any unsplittable shortest path
routing and, therefore, could be aggregated into one commodity.

For notational simplicity, we also assume in the following that the routing
metric λ in a solution of the fixed charge problem FC-USPR is defined not
only on the arc set B describing the solution’s topology but on the entire arc
set A. Clearly, any metric λ ∈ ZB

+ that induces a unique shortest (s, t)-path
in (V, B) for all (s, t) ∈ K can be extended to a metric λ ∈ ZA

+ that induces
exactly the same (s, t)-path for all (s, t) ∈ K in D = (V, A) by setting
λa =

∑

b∈B λb + 1 for all a ∈ A \ B.

One easily observes that, for any bijection idx : A ↔ {1, . . . , |A|}, the
metric λa := 2idx(a) induces unique shortest paths between all connected

6.2. Unsplittable Shortest Path Routing Problems 119

. . .

. . .

s1 s2 s3 sk

tk t3 t2 t1

Figure 6.1 Reduction from Partition to Min-Con-USPR: Solid lines are
arcs, dashed lines are commodities.

node pairs. Hence, any instance of Min-Con-USPR or of Cap-USPR has
a feasible solution, provided that the underlying digraph D contains at least
one (s, t)-path for each (s, t) ∈ K.

If the underlying graph D contains only one (s, t)-path for each (s, t) ∈ K,
then all metrics λ ∈ ZA

+ define the same USPR. In this case, any met-
ric defines an optimal solution for Min-Con-USPR and Cap-USPR, and
FC-USPR is trivially solvable. The simplest non-trivial case is when the
underlying digraph contains two paths for each commodity. Already in this
case all three USPR problems become (weakly) NP-hard.

Theorem 6.1 Min-Con-USPR, FC-USPR, and Cap-USPR are NP-
hard, even if the underlying digraph is a bidirected ring.

Proof. We present a polynomial reduction from the Partition problem to
the problem of solving Min-Con-USPR to optimality. The NP-hardness
of FC-USPR and Cap-USPR follows analogously. A similar construction
also can be used to show the (weak) NP-hardness of the more general un-
splittable flow and ring loading problems, see Skutella [179] and Cosares
and Saniee [63] for example. Given a set of items i ∈ {1, . . . , k} with sizes
di ∈ Z+, the Partition problem is to find a subset S ⊆ {1, . . . , k} with
∑

i∈S di = 1/2
∑k

i=1 di or to prove that no such subset exists. This problem
is known to be NP-complete; see Karp [121] or Garey and Johnson [96].

Given a Partition instance consisting of the items i ∈ {1, . . . , k} with
sizes di ∈ Z+, the instance of Min-Con-USPR is built as shown in Figure
6.1. For each item i ∈ {1, . . . , k}, we introduce two nodes si, ti and a com-
modity (si, ti) with a demand value dsi,ti = di. The arc set consists of the
arcs (si, si+1), (si+1, si), (ti, ti+1), and (ti+1, ti) for all i = 1, . . . , k − 1, as
well as (s1, tk), (tk, s1) (sk, t1), and (t1, sk). The arc capacities are set to

ua :=

{

1/2
∑k

i=1 di , if a ∈
{

(s1, tk), (tk, s1), (sk, t1), (t1, sk)
}

,
∑k

i=1 di , otherwise.

It is not difficult to verify that any unsplittable flow routing of these com-
modities is also an unsplittable shortest path routing. Therefore, any feasible
partition of the items corresponds to an unsplittable shortest path routing

120 6. Approximability of Unsplittable Shortest Path Routing

of the commodities such that the flows do not exceed the arc capacities, and
vise versa. The commodities routed across arc (s1, tk) form one set of the
partition, those routed across (sk, t1) the other set. �

One easily observes that all three USPR problems also contain the Disjoint
Paths problem as a special case. For general directed graphs, these prob-
lems therefore are actually NP-hard in the strong sense, even if all demands
and capacities are equal to one.

6.3 Relation to Other Routing Schemes and the

No-Bottleneck Condition

The unsplittable shortest path routing model is very restrictive and inherits
structural properties of several other routing models. In this section, we
compare USPR to four closely related but less restrictive routing models.
We show that the minimal congestion that can be obtained with USPR for
a given commodity set may exceed the congestion achievable with the other
routing models by an arbitrarily large factor.

The most flexible routing model is (fractional) multicommodity flow rout-
ing. With this routing model, the demand of each commodity may be dis-
tributed arbitrarily and independent of the other commodities onto several
flow paths. It thus admits the best possible use of the available capacities.
In order to implement MCF routing in practice, the network must admit the
configuration of arbitrary end-to-end routing paths and flow distributions
for each commodity individually. This introduces many practical difficulties
and complicates the network management. Therefore, many telecommuni-
cation network protocols are based on routing models that are less capacity
efficient but easier to implement in practice.

With shortest multi-path routing, the traffic that is sent from a node s
to a node t is distributed equally to all neighbors of s that are contained in
any shortest (s, t)-path with respect to some metric λ. This routing model
adequately describes so-called equal cost multi-path traffic splitting policies
in shortest path routing protocols. Fortz and Thorup [93] show that the
minimum congestion achievable with shortest multi-path routing cannot be
approximated within a factor less than 3/2.

The unsplittable flow routing model requires that each commodity is sent
unsplit via a single path through the network. In contrast to the USPR
model, the commodities’ flow paths may be chosen independent of each
other. Kolliopoulos and Stein [124] prove that it is NP-hard to approximate
the minimum congestion unsplittable flow routing within 2−ǫ, for any ǫ > 0.

The fourth routing model that is closely related to USPR is unsplittable
source-invariant routing. With this routing model, each commodity is routed
on a single flow path. All flow paths with the same destination must form an

6.3. Relation to Other Routing Schemes 121

anti-arborescence directed towards this destination. Once two flows meet on
their way to a common destination, they cannot split anymore. This model
describes the routing possibilities of packet networks with independently
configurable store-and-forward routers. Lorenz et. al. [134] show that finding
a minimum congestion unsplittable source-invariant routing is NP-hard.
They also show that the minimum congestion may be factor Ω(|V |) higher
for unsplittable source-invariant routing than for unsplittable flow routing.

Given a digraph D = (V, A) with arc capacities ua ∈ Z+, a ∈ A, and
commodities K ⊆ V × V with demand values ds,t ∈ Z+, (s, t) ∈ K, we de-
note the optimal solution value of the Min-Con-USPR problem by LUSPR.
With LMCF , LUFP , LSMPR, and LUSIR we refer to the minimal congestion
values that can be obtained with fractional multicommodity flow routing
(MCF), an unsplittable flow routing (UFP), a shortest multi-path routing
(SMPR), and an unsplittable source-invariant routing (USIR) on the same
instance, respectively. It is obvious that

LUSPR ≥ LUFP ≥ LMCF ,

LUSPR ≥ LSMPR ≥ LMCF , and

LUSPR ≥ LUSIR ≥ LMCF ,

since every unsplittable shortest path routing is also a valid shortest multi-
path routing, a valid unsplittable flow routing, and a valid unsplittable
source-invariant routing of the given commodities. In the following we con-
struct instances where the gap between USPR and the other routing models
becomes arbitrarily large.

Proposition 6.2 There is a family of instances with

(i) LUSPR ≥ Ω(|V |2) · LSMPR,

(ii) LUSPR ≥ Ω(|V |2) · LUFP , and

(iii) LUSPR ≥ Ω(|V |2) · LMCF .

Proof. Let α ∈ N and consider the digraph D = (V, A) illustrated in
Figure 6.2. It consists of the nodes V := {s, t}∪ {si, ti, ui, vi : i = 1, . . . , α}
and the arcs A := A1 ∪ A2, where A1 := {(ui, vj) : i, j = 1, . . . , α} and
A2 := {(si, s), (s, ui), (vi, t), (t, ti) : i = 1, . . . , α}. The arc capacities are
ua = 1 for all a ∈ A1 and ua = α for all a ∈ A2. In this graph, consider the
commodities K := {(si, tj) : i, j = 1, . . . , α} with demands dsi,tj = 1 for all
(si, tj) ∈ K.

The congestion of any unsplittable shortest path routing is LUSPR = α2,
since all commodities’ routing paths must follow the same subpath between
the nodes s and t in an unsplittable shortest path routing, and therefore
share some arc (ui, vj) of capacity 1.

122 6. Approximability of Unsplittable Shortest Path Routing

s1 sα

u1 uα

v1 vα

t1 tα

s

t

Figure 6.2 Instance with LUSPR = α2 and LUFP = LSMPR = LMCF = 1.
Arcs with capacity α are bold, arcs with capacity 1 are thin. For each node
pair (si, tj) there is a commodity with demand 1.

On the other hand, the congestion is 1 for an optimal shortest multi-path
routing (where all arc lengths are chosen equal), as well as for an optimal
unsplittable flow routing or an optimal multicommodity flow routing. For
α → ∞, we obtain the claimed relations. �

Proposition 6.3 There is a family of instances with

LUSPR ≥ Ω(|V |) · LUSIR.

Proof. Let α ∈ Z+ and consider the digraph illustrated in Figure 6.3.
It contains the nodes V := {s, t} ∪ {ti, vi : i = 1, . . . , α} and the arcs
A := {(s, vi), (vi, t), (t, ti) : i = 1, . . . , α}. All arcs have capacity 1. In this
network, consider the commodities K := {(s, ti) : i = 1, . . . , α} with de-
mands ds,ti = 1. In any unsplittable shortest path routing, all commodities
are routed via the same subpath between s and t. The minimal congestion
value for USPR therefore is LUSPR = α. With source-invariant routing, the
commodities may be routed via different s, t-subpaths, as they have different
destinations. The optimal congestion for this routing model therefore is 1,
and with α → ∞ we obtain the claim. �

The presented worst-case gaps between the different routing paradigms hold
for the corresponding undirected routing variants, too. (In the undirected
shortest multi-path routing policy and the undirected unsplittable source
invariant routing policy, we arbitrarily choose s as the source and t as the
destination for each undirected commodity (s, t) ∈ K.)

An assumption commonly made for unsplittable flow problems is that the
maximum demand value does not exceed the minimum capacity. Typically,

6.3. Relation to Other Routing Schemes 123

s

t

v1 v2 . . . vα

t1 t2 . . . tα

Figure 6.3 Instance with LUSPR ≥ Ω(|V |) LUSIR. The solid lines are arcs,
the dashed lines are the commodities. All capacities and demand values
are one.

unsplittable flow problems are easier to approximate if this additional con-
dition holds than in the general case; see Dinitz et al. [74], Kolliopoulos
and Stein [124], or Skutella [179], for example. For unsplittable shortest
path routing problems, however, this so-called no-bottleneck condition has
no effect on the approximability.

Proposition 6.4 For any instance I = (D, u, K, d) of Min-Con-USPR
with dmax > umin, there exists an equivalent instance I′ = (D′, u′, K ′, d′)
with d′max ≤ u′

min (i.e., any solution for I with objective value L can be
transformed into a solution for I′ with objective value L, and vice versa).

Proof. Suppose we are given a Min-Con-USPR instance (D, u, K, d)
with dmax > umin. Let r := dmax/umin and q := ⌈√r ⌉. For each node
v ∈ V , we introduce q additional nodes vj and 2q arcs (v, vj) and (vj , v),
j = 1, . . . , q, see Figure 6.4. The capacities u′ are given as u′

a := ua for
all a ∈ A, and u′

(v,vj)
= u′

(vj ,v) :=
∑

a∈A ua for all j = 1, . . . , q. Each

commodity (s, t) ∈ K is replaced by q2 new commodities (si, tj) with
demand values d′si,tj ≃ ds,t/q2. (Or more precisely, with demand values

d′si,tj ∈ {⌊ds,t/q2⌋, ⌈ds,t/q2⌉} such that
∑q

i,j=1 d′si,tj = ds,t.)

Clearly, d′max ≤ u′
min holds.

Now, consider the set of all commodities (si, tj), i, j = 1, . . . , q, for some
(s, t) ∈ K. Since all nodes si have only one neighbor s and all nodes tj have
only one neighbor t, all these q2 commodities (si, tj) must be routed via the
same (s, t)-subpath in an unsplittable shortest path routing. Therefore, any
unsplittable shortest path routing of the commodities K in D corresponds
to an unsplittable shortest path routing of the commodities K ′ in D′, and
vice versa. As the corresponding routings induce the same flows on the arcs
of D, the maximum congestion values are equal for both routings. �

124 6. Approximability of Unsplittable Shortest Path Routing

s t

D

s t

s1

sq

t1

tq

D

Figure 6.4 The no-bottleneck condition is irrelevant for USPR problems:
The large commodity (s, t) can be replaced by many small commodities
(si, tj), which must share the same (s, t)-path.

Analogously, any instance of FC-USPR or of Cap-USPR can be trans-
formed into an equivalent instance with dmax ≤ umin. However, note that in
general this transformation is not polynomial in the strong sense, because
the size of the underlying digraph grows by a factor of Θ(dmax/umin).

6.4 Inapproximability Results

In the following section, we analyze how hard it is to approximate the three
unsplittable shortest path routing problems.

6.4.1 Congestion Minimization

We begin by showing that Min-Con-USPR is not approximable within a
factor of O(|V |1−ǫ), unless P = NP . As a first step, we show that there is
no constant factor approximation.

Lemma 6.5 Let α ∈ Z+ be an arbitrary number. It is NP-hard to approx-
imate Min-Con-USPR within a factor less than α + 1.

Proof. We construct a reduction from the NP-complete decision problem
Fully Disjoint Paths to Min-Con-USPR. Fully Disjoint Paths is
a restricted variant of the classical Disjoint Paths problem [96]. Given
a directed graph H = (W, F) and a set of node pairs (si, ti), i = 1, . . . , k,
the task is to find (si, ti)-paths Pi in H that are not only internally disjoint
but share no nodes at all (including the paths’ first and last nodes), i.e.,
{v ∈ W : v ∈ Pi and v ∈ Pj} = ∅ for all i, j = 1, . . . , k with i 6= j. It is easy
to verify that the Disjoint Paths problem remains NP-complete even
with this stronger notion of disjointness. Note that the directed version of
Fully Disjoint Paths remains NP-hard even if the number k ≥ 2 of
nodes pairs is not part of the problem input. Yet, we assume that k is part
of the input of Fully Disjoint Paths, because then our construction
carries over literally to the undirected problem version.

Suppose we are given a Fully Disjoint Paths instance consisting of the
digraph H = (W, F) and the node pairs (si, ti), i = 1, . . . , k. W.l.o.g., we

6.4. Inapproximability Results 125

r

vα
1

v1
1

t1

s1

uα
1

u1
1

vα
2

v1
2

t2

s2

uα
2

u1
2

H

(a) Digraph with indicated arc capacities:
Arcs with capacity α are bold, arcs with
capacity 1 are thin.

r

vα
1

v1
1

t1

s1

uα
1

u1
1

vα
2

v1
2

t2

s2

uα
2

u1
2

H

(b) Commodities with demand values:
commodities with demand α are bold,
commodities with demand 1 are thin.

Figure 6.5 Constructed Min-Con-USPR instance.

may assume that there is an (si, ti)-path in H for each i = 1, . . . , k and that
{si, ti} ∩ {sj , tj} = ∅ for all i 6= j.

We construct a Min-Con-USPR instance (D, u,K, d) as follows. The
digraph D = (V, A) contains all nodes and arcs of H. Furthermore, D
contains one extra node r and 2kα additional nodes ul

i and vl
i with l =

1, . . . , α and i = 1, . . . , k, i.e.,

V := W ∪
{

r
}

∪
{

ul
i, vl

i : i = 1, . . . , k , l = 1, . . . , α
}

.

For each pair i, j = 1, . . . , k with i 6= j we add α2 new arcs. These arcs form
the set

A1 :=
{

(ul
i, v

m
j) : i, j = 1, . . . , k , i 6= j , l, m = 1, . . . , α

}

.

Additionally, we introduce 2α + 1 arcs for each i = 1, . . . , k, which together
comprise the arc set

A2 :=
{

(uα
i , si), (ti, v

1
i), (vα

i , r) : i = 1, . . . , k
}

∪
{

(ul
i, u

l+1
i), (vl

i, v
l+1
i) : i = 1, . . . , k , l = 1, . . . , α − 1

}

.

We let A := F ∪ A1 ∪ A2. The arc capacities are defined as

ua :=

{

1, if a ∈ A1, and

α, otherwise.

The commodity set K contains two types of commodities. For each i =
1, . . . , k, there is a commodity (u1

i , r) with demand value du1
i ,r = α. For

126 6. Approximability of Unsplittable Shortest Path Routing

r

vα
1

v1
1

t1

s1

uα
1

u1
1

vα
2

v1
2

t2

s2

uα
2

u1
2

Figure 6.6 USPR in D if fully disjoint (si, ti)-paths exist in H.

each pair i, j = 1, . . . , k with i 6= j and each pair l, m = 1, . . . , α, there is a
commodity (ul

i, v
m
j) with dul

i,v
m
j

= 1. Figure 6.5 illustrates the constructed

Min-Con-USPR instance for the case where k = 2.
It is obvious that this transformation is polynomial in the encoding size

of the given Fully Disjoint Paths instance and α. Furthermore, any
metric λ ∈ ZA

+ that induces unique shortest paths for the commodities in K
defines a feasible solution for the constructed Min-Con-USPR instance.

In the first part of the proof, we show that there exists an unsplittable
shortest path routing whose induced flows do not exceed the arc capacities if
the given Fully Disjoint Paths instance has a feasible solution. Assume
there exist fully disjoint (si, ti)-paths Pi in H, i = 1, . . . , k. Then we define
the metric λ as

λa :=











1, if a ∈ Pi for some i ∈ {1, . . . , k} or

if a ∈ ⋃k
i=1

{

(u1
i , u

2
i), . . . , (u

α
i , si), (ti, v

α
i), . . . , (v2

i , v
1
i)

}

,

|A|, otherwise.

One easily finds that all shortest paths in D are unique with re-
spect to λ. In particular, the shortest (u1

i , r)-path is the path
P ∗

(u1
i ,r)

= (u1
i , . . . , u

α
i , si) ⊕ Pi ⊕ (ti, v

α
i , . . . v1

i , r) for each i = 1, . . . , k,

and the shortest (ul
i, v

m
j)-path is P ∗

(ul
i,v

m
j)

= (ul
i, v

m
j) for each i, j = 1, . . . , k

with i 6= j and l, m = 1, . . . , α. Figure 6.6 illustrates this routing. It is not
difficult to verify that the arc flows fa(λ) induced by this routing do not
exceed the arc capacities ua, a ∈ A.

6.4. Inapproximability Results 127

r

vα
1

v1
1

t1

s1

uα
1

u1
1

vα
2

v1
2

t2

s2

uα
2

u1
2

w

Figure 6.7 No USPR. If the shortest (u1
1, r)- and (u1

2, r)-paths intersect in
some internal node w, they are not uniquely determined.

In the second part of the proof, we show that the flows of any unsplittable
shortest path routing exceed at least one arc capacity by a factor of at
least α + 1 if the Fully Disjoint Paths instance has no solution. So,
suppose there is no set of fully disjoint (si, ti)-paths in H and let λ ∈ ZA

+

be an arbitrary metric that defines unique shortest (u, v)-paths P ∗
(u,v) for all

(u, v) ∈ K.

First, assume that some arc (ul
i, v

m
j) is contained in the shortest path

P ∗
(u1

h,r)
for some commodity (u1

h, r). Since P ∗
(u1

h,r)
is the unique shortest

(u1
h, r)-path, its arc (ul

i, v
m
j) is also the unique shortest (ul

i, v
m
j)-path. The

total flow across this arc therefore is at least du1
h,r + dul

i,v
m
j

= α + 1, while

its capacity is only u(ul
i,v

m
j) = 1. This leads to a congestion of at least α + 1

for this routing. In the following, we thus may assume that all commodities
(u1

i , r), i = 1, . . . , k, with demands du1
i ,r = α are routed within the subgraph

D′ = (V, F ∪ A2).

Now, suppose we had ti ∈ P ∗
(u1

i ,r)
for all i = 1, . . . , k. Then at least two of

these paths, say P ∗
(u1

1,r)
and P ∗

(u1
2,r)

, would have to intersect in some internal

node w ∈ W , as illustrated in Figure 6.7. Otherwise, there would exist fully
disjoint (si, ti)-paths in H. However, these two paths P ∗

(u1
1,r)

and P ∗
(u1

2,r)

cannot be unique shortest paths w.r.t. λ, as they contain different subpaths
between w and r.

128 6. Approximability of Unsplittable Shortest Path Routing

r

vα
1

v1
1

t1

s1

uα
1

u1
1

vα
2

v1
2

t2

s2

uα
2

u1
2

Figure 6.8 If t1 ∈ P ∗
(u1

2
,r)

, then the shortest path property forces all com-

modities (ul
2, v

m
1) to follow their respective subpath of P ∗

(u1
2,r)

.

Consequently, there must be some i ∈ {1, . . . , k} such that ti 6∈ P ∗
(u1

i ,r)
.

Since P ∗
(u1

i ,r)
is completely contained in D′, there must be some j 6= i such

that tj ∈ P ∗
(u1

i ,r)
. Furthermore, all nodes ul

i and vm
j , l, m = 1, . . . , α, are

contained in P ∗
(u1

i ,r)
. Hence, all α2 commodities (ul

i, v
m
j) are routed along

their respective subpath of P ∗
(u1

i ,r)
, see Figure 6.8. The total flow across arc

(tj , u
α
j) therefore is at least α + α2, while its capacity is only α.

Together, the two parts of the proof imply that it is NP-hard to approx-
imate Min-Con-USPR within a factor less than α + 1. �

If we choose α = 1 in the above construction, all capacities and demand
values of the Min-Con-USPR instance are equal to 1. This yields the
following theorem.

Theorem 6.6 For any ǫ > 0, it is NP-hard to approximate Min-Con-
USPR within a factor of 2− ǫ, even if all demand values and capacities are
equal to one.

For the general case, we obtain a stronger non-constant inapproximability
bound by choosing α depending on the size of the given Fully Disjoint
Paths instance.

Theorem 6.7 For any ǫ > 0, it is NP-hard to approximate Min-Con-
USPR within a factor of O(|V |1−ǫ).

6.4. Inapproximability Results 129

Proof. The encoding size of the constructed Min-Con-USPR instance is
bounded by O

(

α2 log α(|W |+ |F |)
)

. With α = α(H) := |W |q, the presented
construction thus remains polynomial in |W | + |F | for any fixed q ∈ N.
Because |V | ∈ Ω(α), there exists some qǫ ∈ Z+ for every ǫ > 0, such that
α 6∈ O(|V |1−ǫ) for α := |W |qǫ . With Lemma 6.5, this implies the claim. �

Analogously, it follows that approximating Min-Con-USPR within a factor
of O(|A|1/2−ǫ) or O(〈I〉1/2−ǫ) is NP-hard for any ǫ > 0, where 〈I〉 is the
encoding size of the Min-Con-USPR instance (including the encoding size
of the cost and capacity values).

By adding α many new nodes rj , j = 1, . . . , α, and replacing each com-
modity (u1

i , r) of demand du1
i ,r = α by α many commodities (u1

i , r
j) with

du1
i ,rj = 1, we may transform the Min-Con-USPR instance constructed in

the proof of Lemma 6.5 into an instance that satisfies dmax ≤ umin. For
the special class of Min-Con-USPR instances constructed in the proof of
Lemma 6.5, this transformation is strongly polynomial. Therefore, the inap-
proximability results of Lemma 6.5 and Theorem 6.7 also hold for the case
where dmax ≤ umin.

6.4.2 Capacitated Network Design

A problem that is closely related to the capacitated network design problem
Cap-USPR is the Generalized Steiner network problem, also known
as Point-to-Point Connection problem: Given a (directed) graph
D = (V, A) and with arc costs wa ∈ Z+, a ∈ A, and a set of commodities
K ⊆ V × V find a minimum cost arc set B ⊆ A such that the subgraph
(V, B) contains an (s, t)-path for each (s, t) ∈ K.

With demand values ds,t := 1 for all (s, t) ∈ K and ua := |K| for all
a ∈ A, the Generalized Steiner network problem reduces straightfor-
ward to the Cap-USPR problem. Inapproximability results for the directed
and undirected Generalized Steiner network problem carry over im-
mediately to the corresponding Cap-USPR problem.

It was shown by Dodis and Khanna [75] that there exists no polynomial
time O(2log1−ǫ|V |)-approximation algorithm for the directed Generalized
Steiner network problem with ǫ > 0, unless NP ⊆ DTIME(npolylog(n)).
This yields the strongest inapproximability threshold for the directed Cap-
USPR problem currently known.

Theorem 6.8 ([75]) For any ǫ > 0, the directed Cap-USPR problem is
inapproximable within O(2log1−ǫ|V |), unless NP ⊆ DTIME(npolylog(n)).

For the undirected Generalized Steiner network problem, Goemans
and Williamson [99] devised a simple primal dual algorithm that achieves a
worst case performance guarantee of 2 − 1/|K|, the best known inapprox-

130 6. Approximability of Unsplittable Shortest Path Routing

r

v

w

u1
u2

. . .
uk

s1 s2 . . .
sk

t1 t2 . . .
tk

Figure 6.9 Constructed Cap-USPR instance. Edges with capacity 2M(k−1)
and 2Mk(k − 1) are bold, edges with capacity 1 are thin.

imability threshold is well below this number. 1) In the following, we prove
a slightly stronger result for the undirected Cap-USPR problem.

Theorem 6.9 For any ǫ > 0, it is NP-hard to approximate the undirected
Cap-USPR problem within a factor of 2 − ǫ.

Proof. We present a reduction similar to the one used in the proof of
Lemma 6.5.

Suppose we are given an undirected Fully Disjoint Paths instance
consisting of the graph H = (W, F) and the node pairs (si, ti), i = 1, . . . , k.
We may assume w.l.o.g. that there is an (si, ti)-path in H for each i =
1, . . . , k, and that {si, ti}∩{sj , tj} = ∅ for all i 6= j. Let M := ⌈(2−ǫ)k/ǫ⌉+1.

We construct an undirected Cap-USPR instance (G, u, w, K, d) as shown
in Figure 6.9: The node set V of the graph G = (V, E) contains all nodes
in W , the three nodes v, w, and r, and a node ui for each i = 1, . . . , k. The
edge set E consists of all edges in F , one edge vw, and the edges rui, uisi,
uiv, and wti for each i = 1, . . . , k.

The commodity set K contains two types of commodities: For each i =
1, . . . , k, we introduce a commodity (r, ti) with demand value dr,ti := 1. For
all pairs i, j = 1, . . . , k with i 6= j, we introduce a commodity (ui, tj) with a
demand of dui,tj := 2M .

1)Andrews [7] shows that there is no O(log1−ǫ|V |)-approximation algorithm for the Buy-
at-Bulk Network Design problem unless NP ⊆ ZPTIME(npolylog(n)). This proof can
be adapted to show the same threshold for the undirected Cap-USPR problem. However,
Andrews’ construction inherently uses randomization and relies on the probabilistic Erdös-
Sachs theorem [79]; a deterministic construction that yields the same bound is not known.

6.4. Inapproximability Results 131

r

v

w

u1
u2

. . .
uk

s1 s2 . . .
sk

t1 t2 . . .
tk

Figure 6.10 USPR in G if fully disjoint (si, ti)-paths exist in H.

The edge capacities and costs are defined as

ue :=











2M k(k − 1), if e = vw,

2M (k − 1), if e ∈ {uiv, wti : i = 1, . . . , k},
1, otherwise, and

we :=











M, if e = vw,

1, if e ∈ {uisi : i = 1, . . . , k},
0, otherwise.

For any fixed ǫ > 0, this construction is polynomial in the size of H.

First, suppose there exist fully disjoint (si, ti)-paths Pi in H. Then we
define the metric λ as

λe :=























1, if e ∈ Pi for some i ∈ {1, . . . , k} or

if e ∈ {rui, uisi, uiv, wti : i = 1, . . . , k},
|A|, if e = vw, and

|A| + 2, otherwise.

It is easy to verify that this metric λ induces a USPR for the commodity set
K, as illustrated in Figure 6.10. For each i = 1, . . . , k, the unique shortest
(r, ti)-path is

(

r, ui, si

)

⊕Pi, and for pair i, j = 1, . . . , k with i 6= j, the unique
shortest (ui, tj)-path is

(

ui, v, w, tj
)

. If the corresponding commodities are
routed along these paths, the induced edge flows fe do not exceed the given
capacities ue, e ∈ E. Hence, the metric λ and the capacity multipliers
ze = 1 for all e ∈ E form a feasible solution for the constructed Cap-USPR

132 6. Approximability of Unsplittable Shortest Path Routing

instance. The total capacity installation cost for this solution is

∑

e∈E

weze =
k

∑

i=1

wuisi + wvw = k + M .

Now, suppose there is no set of fully disjoint (si, ti)-paths in H. Let
λ ∈ ZE

+ be an arbitrary metric that defines a USPR for the commodities
K. Analogous to the proof of Lemma 6.5, there are two possible cases:
Either some commodity (ui, tj), i 6= j, is routed across an edge ulsl, or
all commodities (ui, tj), i 6= j, and (at least) one commodity (r, ti), i ∈
{1, . . . , k}, are routed together across the edge vw.

In the first case, a commodity (ui, tj) with demand value dui,tj = 2M is
routed across an edge ulsl with uulsl

= 1. Then the capacity multiplier zulsl

must be at least 2M and, therefore, the cost of this solution is no less than
zulsl

wulsl
= 2M .

In the second case, all k(k−1) commodities (ui, tj), i 6= j, with dui,tj = 2M
and (at least) one commodity (r, tl) with dr,tl = 1 are routed across the edge
vw with uvw = 2Mk(k − 1). Then the capacity multiplier zvw must be at
least two, which also yields a total solution cost of at least 2M .

Hence, if there are no fully disjoint (si, ti)-paths in H, then any feasible
solution of the constructed Cap-USPR instance has a cost of at least 2M .

Since it is NP-hard to decide whether fully disjoint (si, ti)-paths exist in
H, it is also NP-hard to approximate the optimal solution of the constructed
undirected Cap-USPR instance within a factor strictly less than 2M/(k +
M) > 2 − ǫ, as claimed. �

Theorem 6.9 also holds for the directed Cap-USPR problem, but the stronger
general inapproximability threshold for the directed case follows from The-
orem 6.8. With a construction similar to the one presented in the proof of
Theorem 6.9 one can show that the directed Cap-USPR problem remains
hard to approximate within 2 − ǫ even if |K| = 2. For the special cases
where the underlying digraph is a cycle or a bidirected ring, a variant of the
reduction used in Theorem 6.1 yields a constant inapproximability threshold
of 4/3 for the both the undirected and the directed Cap-USPR problem,
respectively.

6.4.3 Fixed Charge Network Design

Intuitively, the fixed charge problem FC-USPR is harder than the Cap-
USPR problem, where the installation of arbitrarily large arc capacities is
allowed. For any given Cap-USPR instance, there exists a feasible solution
which can be easily found (provided that D contains an (s, t)-path for each
(s, t) ∈ K). For FC-USPR, on the other hand, already the task of finding
some feasible solution is NP-hard, cf. Theorem 6.1. If we were given an FC-
USPR instance with cost one for some arcs and prohibitively large costs for

6.4. Inapproximability Results 133

all others, then the core of the problem is to find a USPR in the subgraph
induced by the edges of cost one. As this is an NP-complete problem, we
cannot expect to find a solution of FC-USPR with a reasonable quality
guarantee in polynomial time. In the following, we prove this intuition.

Theorem 6.10 FC-USPR is NPO-complete.

Proof. We present an approximation preserving reduction, to be more
precisely a PTAS-reduction [10, 65], from the Min-Weight-Sat problem.

The Min-Weight-Sat problem is defined as follows: Given a set X of
boolean variables, a collection C of disjunctive clauses of at most three
literals per clause, and a non-negative integer weight for each variable in
X, the aim is to find a truth assignment for X that satisfies all clauses
in C and minimizes the sum of the weights of the true variables. In
Min-Weight-Sat(3), each variable occurs at most three times in total and
at least once as a negated and once as an unnegated literal. It was shown
by Orponen and Mannila [150] that Min-Weight-Sat is NPO–complete.
As for the unweighted satisfiability problem, the restricted problem Min-
Weight-Sat(3) remains NPO–complete. The restriction to 3 occurrences
of each boolean variable is not necessary to prove Theorem 6.10, but it
allows us to use a simpler reduction where all demand values and capacities
are either 1 or 2.

Suppose we are given a Min-Weight-Sat(3) instance consisting of the
boolean variables x1, . . . , xn with nonnegative weights wi ∈ Z+, 1 ≤ i ≤ n,
and the clauses C1, . . . , Cm. We construct an instance (D, u, w, K, d) of
FC-USPR, such that any truth assignment for the Min-Weight-Sat(3)
instance corresponds to a solution of the FC-USPR instance whose cost is
equal to the weight of the truth assignment.

The digraph D = (V, A) contains the 6n + 2m nodes

V :=
{

qi, v1
i , v2

i , v̄1
i , v̄2

i , ri : i = 1, . . . , n
}

∪ {sh, th : h = 1, . . . , m} .

Among these nodes, we introduce the arcs

Ax :=
{

(qi, v
1
i), (v1

i , v
2
i), (v2

i , ri), (qi, v̄
1
i),

(v̄1
i , v̄2

i), (v̄2
i , ri) : i = 1, . . . , n

}

, and

AC :=
{

(sh, v̄1
i), (v̄2

i , th) : i = 1, . . . , n and h = 1, . . . , m such

that xi appears unnegated in Ch

}

∪
{

(sh, v1
i), (v2

i , th) : i = 1, . . . , n and h = 1, . . . , m such

that xi appears negated in Ch

}

.

For each boolean variable xi, the nodes indexed by i form a variable subgraph
as shown in Figure 6.11(a). For each clause Ch, the nodes sh, th, and either

134 6. Approximability of Unsplittable Shortest Path Routing

ri

qi

v2
i

v1
i

v̄2
i

v̄1
i

(a) Variable graph for xi.

th

sh

v2
i

v1
i

v2
j

v1
j

v̄2
k

v̄1
k

(b) Clause graph for Ch = (x̄i ∨ x̄j ∨ xk).

Figure 6.11 Constructed FC-USPR instance.

the nodes v1
i , v2

i or the nodes v̄1
i , v̄2

i with index i such that xi occurs in Ch

form a clause subgraph as shown in Figure 6.11(b).
The arc capacities and costs are defined as

ua :=

{

2, if a ∈ Ax,

1, if a ∈ AC ,

and

wa :=

{

wi, if a = (qi, v
1
i), i ∈ {1 . . . , n}, and

0, otherwise.

The commodity set K consists of a commodity (qi, ri) with a demand value
of dqi,ri = 2 for each i = 1, . . . , n, and of a commodity (sh, th) with a demand
dsh,th = 1 for each h = 1, . . . , m.

Clearly, this construction is polynomial in the size of the given Min-
Weight-Sat(3) instance.

In the first part of the proof, we show that, for each truth assignment
that satisfies all clauses of the Min-Weight-Sat(3) instance, there exists a
corresponding feasible solution of the constructed FC-USPR instance. So,
let x ∈ {true, false}n be such a truth assignment.

For each clause Ch, at least one literal evaluates to true. The index of
the corresponding binary variable is denoted by i(h) ∈ {1, . . . , n}. If more
than one literals evaluate to true in Ch, then i(h) w.l.o.g. denotes the
lexicographically first one. We define the corresponding metric λ = λ(x) ∈
ZA

+ as

λa :=































1, if a ∈ ⋃

i: xi=true{(qi, v
1
i), (v1

i , v
2
i), (v2

i , ri)} or

if a ∈ ⋃

i: xi=false{(qi, v̄
1
i), (v̄1

i , v̄2
i), (v̄2

i , ri)} or

if a ∈ ⋃

h:Ch=(x̄i(h)∨...){(sh, v1
i(h)), (v2

i(h), th)} or

if a ∈ ⋃

h:Ch=(xi(h)∨...){(sh, v̄1
i(h)), (v̄2

i(h), th)}, and

2, otherwise.

6.4. Inapproximability Results 135

ri

qi

v2
i

v1
i

v̄2
i

v̄1
i

sh

th

sk

tk

Figure 6.12 Partial routing in D corresponding to a truth assignment with
xi = false and clauses Ch = (x̄i ∨ . . .) and Ck = (x̄i ∨ . . .).

This metric λ defines a USPR for the commodities in K. If the boolean vari-
able xi is true, then we route commodity (qi, ri) on path P+

i :=
(

qi, v
1
i , v

2
i , ri

)

,
otherwise on path P−

i :=
(

qi, v̄
1
i , v̄

2
i , ri

)

. If the boolean variable xi(h)

occurs negated in Ch, then we route commodity (sh, th) along the path
(

sh, v1
i , v

2
i , th

)

. (Note that x̄i(h) then is true by definition of i(h).) Other-
wise, if the boolean variable xi(h) occurs unnegated (and evaluates to true) in
clause Ch, then commodity (sh, th) is routed via path

(

sh, v̄1
i , v̄

2
i , th

)

. Figure
6.12 illustrates this routing.

Since each variable xi occurs in at most two clauses negated and in at
most two clauses unnegated in the given Min-Weight-Sat(3) instance,
any arc (v1

i , v
2
i) or (v̄1

i , v̄
2
i) is contained in at most two commodity routing

paths. All other arcs a ∈ A are contained in at most one shortest path with
respect to λ. Hence, the flows that are induced by the corresponding USPR
satisfy the given capacities.

Let B ⊆ A be the set of arcs contained in the induced routing paths.
Then (B, λ) defines a feasible solution of the FC-USPR instance. Clearly,
(qi, v

1
i) ∈ B if and only if the boolean variable xi is true. Hence, we have

∑

a∈B

wa =
∑

i: xi=true

wi ,

i.e., the weight of the truth assignment x is the same as the cost of its
corresponding FC-USPR solution (B, λ). This immediately implies

w(λopt) ≤ w(xopt) . (6.2)

In the second part of the proof, we show that any feasible solution of
the constructed FC-USPR instance defines a truth assignment satisfying
all clauses. Let (B, λ) be such a feasible solution. First, observe that each
commodity (qi, ri), i ∈ {0, . . . , n}, is routed either on path P+

i or on path
P−

i . Any other (qi, ri)-path contains some arc a ∈ AH , whose capacity

136 6. Approximability of Unsplittable Shortest Path Routing

ua = 1 is insufficient to accommodate the demand dqi,ri = 2 of commodity
(qi, ri) . Thus, we can define the truth assignment x = x(λ) ∈ {true, false}n

as

xi :=

{

true, if P+
i is the (unique) shortest (qi, ri)-path w.r.t. λ,

false, otherwise.

If the shortest (sh, th)-path w.r.t. λ contains the vertex v1
i , then commodity

(qi, ri) must be routed on the path P−
i in the USPR defined by λ. Otherwise,

the capacity of arc (v1
i , v

2
i) would be violated. Analogously, commodity

(qi, ri) must be routed via P+
i if v̄1

i is contained in the routing path of
some commodity (sh, th). According to our construction, this implies that
the corresponding clause Ch evaluates to true for the truth assignment x
defined by the given routing. Hence, the constructed truth assignment x
satisfies all clauses.

The arc set B of the given FC-USPR solution contains all arcs that belong
to some of the routing paths. For each boolean variable xi that was set to
true in the constructed truth assignment x, the arc (qi, v

1
i) is contained in

the routing path for commodity (qi, ri) and therefore also belongs to the set
B. Hence, we have

∑

a∈B

wa ≥
∑

i: xi=true

wi . (6.3)

Together (6.2) and (6.3) imply that any ǫ-approximate solution of the
constructed FC-USPR instance corresponds to an ǫ-approximate solution
of the original Min-Weight-Sat(3) instance. Thus, the given reduction
is a PTAS-reduction from Min-Weight-Sat(3) to FC-USPR. As Min-
Weight-Sat(3) is NPO-complete, so is FC-USPR. �

Theorem 6.10 immediately yields the following corollary.

Corollary 6.11 For any ǫ > 0, it is NP-hard to approximate FC-USPR
within a factor of 2〈I〉

1−ǫ
, where 〈I〉 is the encoding size of the FC-USPR

instance I = (D, u, w, K, d).

In the proof of Theorem 6.10, we only used the requirement that all com-
modities are routed unsplit. Our construction implicitly guarantees the
existence of a compatible metric for every unsplittable flow routing that
satisfies the given capacities. Hence, Theorem 6.10 and Corollary 6.11 also
hold for the fixed charge network design problem with unsplittable flow
routing instead of unsplittable shortest path routing.

Theorem 6.10 and Corollary 6.11 also hold if the underlying digraph is a
bidirected ring (or a cycle in the undirected case), which can be easily shown
with a construction similar to that in the proof of Theorem 6.1.

6.5. General Approximation Algorithms 137

Finally, note that any NPO problem can be approximated within a factor
of O(2〈I〉

ǫ
) for some ǫ > 0 (i.e., it belongs to the class exp–APX) if at least

one feasible solution can be computed in polynomial time. Because for FC-
USPR already the problem of finding a feasible solution is NP-hard, this
problem does not belong to exp–APX , unless P = NP.

6.5 General Approximation Algorithms

In this section, we present polynomial time approximation algorithms for
the minimum congestion problem Min-Con-USPR and for the capacitated
network design problem Cap-USPR that are applicable for general under-
lying digraphs. The fixed charge network design problem FC-USPR is not
approximable within any reasonable quality guarantee, unless P = NP .

6.5.1 Congestion Minimization

By Theorem 6.1, Min-Con-USPR is NP-hard to approximate within a fac-
tor of O(|V |1−ǫ). In the following, we show how to compute min{|K|, |A|}-
approximate solutions.

We begin by showing how to approximate Min-Con-USPR within a fac-
tor of |K|. Note that, in contrast to the Generalized Steiner Network
problem, this is not trivial: We have to ensure that there exist a compatible
metric for the chosen routing paths, i.e., a metric such that each routing
path is the unique shortest path between its terminals.

Definition 6.12 For each path P ∈ P, let umin(P) := min{ua : a ∈ P} be
the thickness of P .

An obvious optimal solution for a USPR instance with only one commod-
ity (s, t) is to route (s, t) via an (s, t)-path P ∗

(s,t) of maximum thickness,

i.e., a path with umin(P ∗
(s,t)) = max{umin(P) : P ∈ P(s, t)}. Choosing

a maximum thickness (s, t)-path P ∗
(s,t) for each commodity (s, t) therefore

yields an unsplittable flow routing whose congestion is at most |K| times the
congestion of an optimal unsplittable flow routing in the multicommodity
case.

Note that maximum thickness paths are not necessarily unique. Further-
more, it also may be impossible to enforce uniqueness by a small perturba-
tion of the capacities. In order to guarantee the existence of a compatible
metric for the chosen paths, we need to consider all capacities on the paths
instead of only the bottleneck capacity.

Definition 6.13 For each path P ∈ P, the capacity pattern useq(P) of P
is the non-decreasingly sorted sequence of its arc capacities, i.e., useq(P) :=
(ua1 , . . . , ua|P |

) with ai ∈ P , ai 6= aj, and uai ≤ uai+1).

138 6. Approximability of Unsplittable Shortest Path Routing

The lexicographic order on the capacity patterns defines a prefix-monotone
total order on the paths. In contrast to the order by path thickness, ties
in the useq-order can be broken consistently by an arbitrarily small pertur-
bation of the capacities (or via a secondary lexicographical ordering of the
paths according to their arc numbers), for example. It is not difficult to
verify that, if each path P ∗

(s,t) is the unique useq-maximum (s, t)-path with

respect to (a perturbation of) the arc capacities u, then there exists a metric
λ ∈ ZA

+ such that each P ∗
(s,t) is a unique shortest (s, t)-path w.r.t. λ. This

leads to the simple approximation algorithm ThickestPath shown below.

Theorem 6.14 ThickestPath is an |K|-approximation algorithm for Min-
Con-USPR.

Proof. Obviously, any useq-maximal (s, t)-path is a maximum thickness
(s, t)-path. As we route each commodity (s, t) ∈ K on the useq-maximal
path with respect to (a perturbation of) the capacities ua, the paths P ∗

(s,t)

hence form a routing with congestion at most |K| times the congestion of
an optimal solution.

As the lexicographic order on the useq-sequences defines a prefix-monotone
total order on the paths, the useq-maximal (s, t)-paths can be found in
polynomial time using a standard labeling algorithm. If the ties in the
useq-order are broken consistently (by an appropriate perturbation), these
paths form an unsplittable shortest path path routing. A compatible metric
then can be computed in polynomial time using the linear programming and
rounding approaches discussed in Chapter 4. �

Our second approximation algorithm, whose performance guarantee is in-
dependent of the number of commodities, is based on the multicommodity
flow relaxation of the Min-Con-USPR problem. In a fractional multicom-
modity flow (MCF) routing, the demand of each commodity (s, t) may be

Algorithm 6.1 ThickestPath

Input: Digraph D = (V, A) with capacities ua ∈ Z+ for all a ∈ A and a
commodity set K ⊆ V × V with demands ds,t ∈ Z+ for all (s, t) ∈ K.

Output: A valid metric λ ∈ ZA
+ for the commodity set K.

1. Compute the useq-maximal (s, t)-path P ∗
(s,t) for each commodity

(s, t) ∈ K with respect to (a perturbation) of the capacities ua,
a ∈ A.

2. Find a metric λ ∈ ZA
+ such that for each (s, t) ∈ K the path P ∗

(s,t)

is the unique shortest (s, t)-path w.r.t. λ. (Possible algorithms are
discussed in Chapter 4).

3. Return λ.

6.5. General Approximation Algorithms 139

distributed arbitrarily among the paths P(s, t). Such a routing can be ex-
pressed as an assignment x : P(K) → [0, 1], where each xP denotes the
fraction of the demand ds,t that is sent along P ∈ P(s, t). The problem of
finding an MCF routing of minimal congestion can be formulated as a linear
program as follows:

min L (CON-LP)
∑

P∈P(s,t)

xP = 1 ∀ (s, t) ∈ K

∑

(s,t)∈K

∑

P∈P(s,t):a∈P

ds,t · xP ≤ L · ua ∀ a ∈ A (6.4)

L ≥ 1

0 ≤ xP ≤ 1 ∀ (s, t) ∈ K, P ∈ P(s, t)

Using column generation techniques, (CON-LP) can be solved in polynomial
time w.r.t. to the size of the given problem instance, even though it contains
exponentially many path variables. Let (x∗, L∗) be an optimal solution of
(CON-LP). Clearly, L∗ is a lower bound for the minimum congestion that
can be obtained with an unsplittable shortest path routing. The total flow
across an arc a ∈ A in the corresponding multicommodity flow routing is

fa(x
∗) :=

∑

(s,t)∈K

∑

P∈P(s,t):a∈P

ds,tx
∗
P .

Let π∗
a ∈ R+, a ∈ A, be the optimal dual variables corresponding to the

constraints (6.4) in (CON-LP). It follows from LP duality that all paths
P with x∗

P > 0 are shortest paths between their respective terminal nodes
with respect to the metric π∗. However, these paths paths are not necessarily
unique shortest paths with respect to π∗ and, furthermore, not all shortest
(s, t)-paths with respect to π∗ for a commodity (s, t) do carry a positive flow.
The idea of our second algorithm PenalizeSmallLinks, which is illustrated
on the following page, is to perturb the metric given by the optimal dual
variables π∗

a such that each commodity’s shortest path is unique.

Theorem 6.15 PenalizeSmallLinks is an |A|-approximation algorithm for
Min-Con-USPR.

Proof. It is easy to see that there exist an integer-valued metric λ′ ∈
ZA

+ that induces exactly the same shortest paths as the given fractional
metric π∗ ∈ RA

+ (whether or not uniqueness is an issue). One such integer-
valued metric can be found by considering the optimal basis of (CON-LP)
computed (implicitly) in Step 1 of the algorithm and then scale π∗ according
to Cramer’s rule, for example.

Given an integer valued metric λ′ ∈ ZA
+ and an arbitrary arc numbering

idx : A → {1, . . . , |A|}, the shortest (s, t)-path in D with respect to the

140 6. Approximability of Unsplittable Shortest Path Routing

’perturbed’ metric λa := 2|A|+1 · λ′
a + 2idx(a) is unique for every pair of

connected nodes s, t. Hence, the metric λ defined in Step 4 of algorithm
PenalizeSmallLinks is valid also for the given commodity set K. It remains
to show that the congestion induced of this USPR is at most |A| times the
congestion of the optimum MCF routing.

Let fa(x
∗) and fa(λ) denote the arc flows induced by an optimal solution

(x∗, L∗) of (CON-LP) and by the USPR defined by the metric λ, respectively.
Compared to the optimal MCF flow, an arc a receives additional traffic in
the USPR routing only from those arcs a′ with idx(a′) > idx(a). Hence, we
have for each a ∈ A

fa(λ) ≤
∑

a′: idx(a′)≥idx(a)

fa′(x∗) ≤
∑

a′: fa′ (x
∗)≤fa(x∗)

fa′(x∗) ≤ |A| · fa(x
∗) .

Consequently, L∗ ≤ maxa∈A fa(λ)/ua ≤ maxa∈a |A| ·fa(x
∗)/ua = |A| ·L∗. �

We have already seen the proof of Proposition 6.2 that a ratio of Ω(|A|)
between the optimal congestion values for USPR and MCF routings may be
attained. Together, Theorems 6.14 and 6.15 yield the following corollary.

Corollary 6.16 Min-Con-USPR is polynomially approximable within a
factor of min{|K|, |A|}.

Note that the routing obtained by rounding the optimal fractional multi-
commodity flow routing x∗ is not necessarily a valid USPR. In the following
example, all basic optimal solutions of (CON-LP) are integer and thus form
unsplittable flow routings, but none of these routings is a USPR.

Example 6.1 Consider the bidirected ring D = (V, A) consisting of the
nodes V = {v1, . . . , v4} and the arcs A = {(v1, v2), (v2, v1), . . . , (v1, v4)}.

Algorithm 6.2 PenalizeSmallLinks

Input: Digraph D = (V, A) with capacities ua ∈ Z+ for all a ∈ A and a
commodity set K ⊆ V × V with demands ds,t ∈ Z+ for all (s, t) ∈ K.

Output: A valid metric λ ∈ ZA
+ for the commodity set K.

1. Compute an optimal solution (x∗, L∗) of (CON-LP).

Let π∗
a, a ∈ A, be the optimal dual variables for (6.4).

2. Find integer arc lengths λ′
a ≥ 1 that induce the same shortest paths

as π∗
a. (In particular, such that all paths P with x∗

P > 0 are shortest
paths w.r.t. λ.)

3. Number the arcs by idx : A → {1, . . . , |A|} in order of non-increasing
flow values fa(x

∗).

4. Return the metric λa := 2|A|+1 · λ′
a + 2idx(a).

6.5. General Approximation Algorithms 141

v4 v3

v2v1

Figure 6.13 Optimal basic solution of (CON-LP) for Example 6.5.1.

Let ua = 1 for all a ∈ A, and consider the four commodities K :=
{(v1, v3), (v3, v1), (v2, v4), (v4, v2)} with demand values ds,t = 1 for all (s, t) ∈
K.

For this instance of Min-Con-USPR, all basic optimal solutions of
(CON-LP) are integer and up to symmetry correspond to the routing
xP = 1 for all P ∈ S :=

{(

v1, v2, v3

)

,
(

v3, v4, v1

)

,
(

v2, v1, v4

)

,
(

v4, v3, v2

)}

and xP = 0 for all P 6∈ S, which is illustrated in Figure 6.13. This routing,
however, is not a USPR. One easily verifies that the linear system (4.3)–(4.4)
is infeasible for the corresponding path set S. So, by Theorem 4.4, there ex-
ists no compatible metric for S. In fact, any feasible USPR for commodities
K induces a flow of at least two on at least one arc of the bidirected ring.

△

Algorithms ThickestPath and PenalizeSmallLinks carry over straightfor-
ward to the undirected version of Min-Con-USPR, where they have worst
case approximation ratios of |K| and |E|, respectively. In Section 6.6, we
show that PenalizeSmallLinks achieves a constant factor-2 approximation
guarantee in the special case where the underlying graph is an undirected

cycle.

6.5.2 Capacitated Network Design

As many other capacitated network design problems, the Cap-USPR prob-
lem seems to be very hard to approximate. No algorithms with non-trivial
quality guarantees are known for general arc capacities and arbitrary com-
modities.2) However, the uniform and the single-source version of the prob-
lem can be approximated within reasonable bounds.

We say that a Cap-USPR problem instance is uniform if all all arc (or
edge) capacities are equal, i.e., ua = u for all a ∈ A. For the uniform Cap-
USPR problem with only one commodity (s, t), an optimal solution is given
by routing the commodity along some shortest (s, t)-path P ∗ with respect

2)The 2O(
√

log |V | log log |V |) log dmax -approximation algorithm of Charikar and Karagio-
zova [56] for the Buy-at-bulk Network Design problem does not carry over to the
Cap-USPR problem, as the routings computed by this algorithm do not necessarily form
unsplittable shortest path routings.

142 6. Approximability of Unsplittable Shortest Path Routing

to the arc costs w and installing ⌈ds,t/u⌉ many capacity units on the arcs
of P ∗. For the uniform Cap-USPR problem with multiple commodities,
sending each commodity (s, t) ∈ K along a shortest (s, t)-path P ∗

(s,t) with

respect to (an appropriate perturbation of) the arc costs w and installing
⌈∑(s,t): a∈P ∗

(s,t)
ds,t/u⌉ many capacity units on each arc a ∈ A thus trivially

yields an |K|-approximate solution.

Proposition 6.17 The Cap-USPR problem with uniform capacities is ap-
proximable within a factor of |K|.

Clearly, Proposition 6.17 holds for both the directed and the undirected
problem version. For the non-uniform Cap-USPR problem, however, rout-
ing each commodity individually along an optimal path for its correspond-
ing single commodity problem does not necessarily yield a valid unsplittable
shortest path routing for the entire commodity set.

For the undirected uniform Cap-USPR problem, the trivial bound of
Proposition 6.17 can be improved to a factor of only O(log |V |) using a
probabilistic approximation of the arc costs by dominating tree metrics.3)

Given an undirected graph G = (V, E) and a metric λ ∈ RE
+, we denote by

distλ(s, t) the distance between s and t with respect to λ in G. A metric
λ ∈ RE

+ is said to be a tree metric, if there exists a tree T in G such that
all shortest paths with respect to λ are fully contained in T . A metric λ
dominates another metric µ if distλ(s, t) ≥ distµ(s, t) for all (s, t) ∈ V (2).
The stretch of a dominating metric λ with respect to another metric µ is

stretch(λ, µ) := max
{

distλ(s, t)/distµ(s, t) : (s, t) ∈ V (2)
}

.

Bartal [19] showed that any metric in an undirected graph can be proba-
bilistically approximated by a distribution over dominating tree metrics such
that the expected stretch is O(log2 |V |). This result was later improved by
Fakcharoenphol et al. [84] to an expected stretch of only O(log |V |). Charikar
et al. [57] showed how to de-randomize this probabilistic approximation,
i.e., how to approximate a metric with a distribution over only polynomially
many tree metrics.

Based on these results, Awerbuch and Azar [11] proposed an approxi-
mation algorithm for the undirected uniform Buy-at-bulk network de-
sign problem. As all solutions computed by this algorithm are trees, it
carries over directly to the undirected uniform Cap-USPR problem. The
de-randomized version of this algorithm basically works as follows:

First, we compute polynomially many tree metrics λi ∈ RE
+, i ∈ I, that

probabilistically approximate the given arc costs w. For each tree metric λi,

3)Alternatively, also the technique of approximating the underlying graph by a so-called
light-weight distance-preserving spanner (with respect to the edge costs) can be applied
to obtain a O(log |V |)-approximation algorithm for the undirected uniform Cap-USPR
problem, see Mansur and Peleg [137].

6.5. General Approximation Algorithms 143

we then compute the cost of the solution defined by that metric, that is, by
routing each commodity (s, t) along a shortest path P ∗

(s,t)(λ
i) with respect

to λi and installing ⌈∑(s,t): e∈P ∗
(s,t)

(λi) ds,t/u⌉ many capacity units on each

edge e ∈ E. Clearly, each such solution is feasible for the given uniform
Cap-USPR problem. At the end, we return the best of these |I| solutions.

The performance guarantee of O(log |V |) follows straightforward from [11]
and [84].

Theorem 6.18 (Awerbuch and Azar[11], Fakcharoenphol et al.[84])
The undirected uniform Cap-USPR problem is approximable within a factor
of O(log |V |).

Note that in planar graphs any metric can be probabilistically approximated
by polynomially many tree metrics with only constant expected stretch.
Hence, Awerbuch and Azar’s algorithm yields a constant worst-case guar-
antee for the uniform Cap-USPR problem on undirected planar graphs.

For the non-uniform and for the directed Cap-USPR problem, the tech-
nique of using probabilistic approximations by tree metrics utterly fails.

Another interesting variant of the Cap-USPR problem is the single-
source version, where all commodities share the same source terminal (or,
equivalently, share the same destination). Single-source network design
problems have been considered in the literature for various capacity and
routing paradigms. Most proposed solution techniques enforce that the rout-
ing paths form a tree and — as any tree routing is an unsplittable shortest
path routing — can be applied directly for the single-source Cap-USPR
problem.

A straightforward approach to compute a solution for the single-source
problem is to iteratively assign to each commodity the cheapest path such
that the new path together with the already assigned paths forms an arbores-
cence. If the commodities are considered in order of decreasing demands,
this simple Greedy algorithm achieves a worst-case guarantee of |K|. Clearly,
this approach works for both the directed and the undirected single-source
problem.

Proposition 6.19 The single-source Cap-USPR problem is approximable
within a factor of |K| in general.

For the directed single-source Cap-USPR problem, no better approximation
algorithm is known.

The undirected single-source problem can also be solved using one of the
algorithms proposed by Guha et al. [108], Gupta et al. [110], Talwar [182],
or Meyerson et al. [140]. These algorithms achieve a constant approximation
ratio for the uniform undirected single-source problem and an O(log |K|)-
approximation ratio for the non-uniform undirected single-source problem.

144 6. Approximability of Unsplittable Shortest Path Routing

None of these algorithms was specifically designed for the Cap-USPR prob-
lem, but they all produce tree routings and thus can be applied straightfor-
ward.

6.6 Special Cases

In the following, we present specialized algorithms that achieve constant
factor approximation guarantees for Min-Con-USPR and Cap-USPR in
the special cases where the underlying graph is a bidirected ring or an undi-
rected cycle. As mentioned above, FC-USPR remains NPO-complete even
in these special cases.

6.6.1 Min-Con-USPR on an Undirected Cycle

Algorithm PenalizeSmallLinks presented in Section 6.5 carries over straight-
forward to the undirected version of Min-Con-USPR. In the special case
where the underlying graph G = (V, E) is an undirected cycle, there are only
two possible routing paths for each commodity. For any edge e ∈ E, exactly
one of these two paths contains e. Hence, perturbing the length of only one
minimum flow edge emin := arg min fe(x

∗) suffices to ensure that all shortest
paths are unique. This immediately yields the following theorem.

Theorem 6.20 Algorithm PenalizeSmallLinks achieves a worst case approx-
imation ratio of 2 if the underlying graph is an undirected cycle.

Proof. Analogous to the proof of Theorem 6.15. �

Theorem 6.20 extends straightforward to the case where all blocks of the
underlying undirected graph are cycles.

Cosares and Saniee [63] and Schrijver et al. [177] proposed approximation
algorithms for the undirected Ring Loading problem, which is equivalent
to the minimum congestion unsplittable flow problem on a cycle with unit
capacities, that are based on rounding the optimal solution of (CON-LP).
The same approach also works for the undirected Min-Con-USPR problem,
only the rounding procedure must be slightly adapted in order to guarantee
that the resulting paths form an unsplittable shortest paths routing. For the
general (i.e., non-uniform) Min-Con-USPR problem on undirected cycles,
the adapted algorithms also achieve a worst-case approximation ratio of 2.

6.6.2 Cap-USPR on an Undirected Cycle

Let G = (V, E) be an undirected cycle with edge capacities ue ∈ Z+ and
edge costs we ∈ Z+ for all e ∈ E, and let K ⊆ V (2) be a set of undirected
commodities with demand values ds,t ∈ Z+ for all (s, t) ∈ K. Consider

6.6. Special Cases 145

the following linear programming relaxation of (the multicommodity flow
relaxation of) the undirected Cap-USPR problem:

min
∑

e∈E

weze (CAP-LP)

∑

P∈P(s,t)

xP = 1 ∀ (s, t) ∈ K

∑

(s,t)∈K

∑

P∈P(s,t):e∈P

ds,t · xP ≤ ueze ∀ e ∈ E (6.5)

ze ≥ 0 ∀ e ∈ E

0 ≤ xP ≤ 1 ∀ (s, t) ∈ K, P ∈ P(s, t)

The idea of our approximation algorithm for Cap-USPR is to round an
optimal solution (x∗, z∗) of (CAP-LP) to an integer solution ([z], [x]) of
(CAP-LP) in such a way that the corresponding routing paths S := {P :
[x]P = 1} form a USPR.

It is well known (and follows directly from LP duality) that an opti-
mal solution of (CAP-LP) is given by routing each commodity (s, t) on
shortest path P ∗

(s,t) with respect to the edge lengths we/ue and installing

ze :=
∑

(s,t): e∈P ∗
(s,t)

ds,t/u many capacity units on each edge e ∈ E. For

an appropriate perturbation of these edge lengths, all shortest paths are
unique and form a USPR. In the corresponding optimal solution (x∗, z∗) of
(CAP-LP), all xP variables are integer. Only the ze variables may attain
fractional values and need to be rounded up.

Unfortunately, the optimal fractional solution values z∗e may be arbitrarily
small, so rounding them up may increase the total cost by an arbitrarily
large factor. Yet, if we knew which edges are contained in an optimal Cap-
USPR solution (zopt, xopt) in advance, then we could easily restrict the
linear program (CAP-LP) to allow capacity installation on only these edges.
The additional cost of rounding up the capacity multipliers z∗e of the optimal
linear programming solution then would be bounded by the cost of the
optimal solution, and we would obtain a 2-approximate solution, in the
worst case.

In the special case where the underlying graph is an undirected cycle, we
do not need to now the optimal solution’s topology in advance. It either
contains all edges of the cycle or it is contained in one of the paths obtained
by removing one of the edges of the cycle. In algorithm EnumerateAndRound

shown on the next page, we simply enumerate all these possibilities.

Theorem 6.21 Algorithm EnumerateAndRound is a 2-approximation algo-
rithm for Cap-USPR on an undirected cycle.

Proof. For each l ∈ E, the metric λl defined in Step 2.1 of the algorithm
clearly induces a USPR whose paths do not contain l. The metric λ0 defined

146 6. Approximability of Unsplittable Shortest Path Routing

in Step 1.1 is a perturbation of the metric we/ue. Since λ0
e0

is odd and all
other lengths λ0

e are even, also λ0 defines unique shortest paths between all
node pairs. Hence, all metrics λ0 and λl with l ∈ E define valid USPRs and
the corresponding solutions (λ0, z0) and (λl, zl) are feasible.

Let (λopt, zopt) be the optimal solution of the given Cap-USPR instance.
We consider two possible cases.

First, assume that zopt
e ≥ 1 for all e ∈ E. In this case, we have

w(z0) =
∑

e∈E

wez
0
e =

∑

e∈E

we⌈fe(λ
0)/ue⌉

≤
∑

e∈E

we

(

fe(λ
0)/ue + zopt

e

)

= w(z∗) + w(zopt) ≤ 2w(zopt) ,

which implies that (λ0, z0) is a 2-approximate solution.
If this is not the case, we have zopt

l = 0 for some l ∈ E. As G− l is a path,
the routing of all commodities is uniquely determined in this case. Hence,
the metric λl constructed in algorithm EnumerateAndRound and the optimal
solution’s metric λopt induce the same shortest paths and, thus, define the
same solution. As zl is a minimum cost capacity installation for this routing,
(λl, zl) even is an optimal solution in this case. �

Again, Theorem 6.21 generalizes straightforward to undirected Cap-USPR
instances where all blocks of the underlying graph are cycles.

Algorithm 6.3 EnumerateAndRound

Input: Undirected cycle G = (V, E) with capacities ue ∈ Z+ and costs
we ∈ Z+ for all e ∈ E and an undirected commodity set K ⊆ V (2) with
demands ds,t ∈ Z+ for all (s, t) ∈ K.

Output: Capacity multipliers ze ∈ Z+ and a valid metric λ ∈ ZE
+ for the

commodity set K, such that the induced edge flows fe(λ) do not exceed
the capacities ueze for all e ∈ E.

1. Compute solution (λ0, z0) as follows:

1.1 Set λ0
e :=

{

Mwe/ue + 1, if e = e0,

Mwe/ue, otherwise,

for some arbitrary e0 ∈ E and M := 2 Πe∈Eue.

1.2 Set z0
e := ⌈fe(λ

0)/ue⌉ for all e ∈ E.

2. For each l ∈ E, compute solution (λl, zl) as follows:

2.1 Set λl
e :=

{

|E|, if e = l,

1, otherwise.

2.2 Set zl
e := ⌈fe(λ

l)/ue⌉ for all e ∈ E.

3. Return minimum cost solution of (λ0, z0) and (λl, zl), l ∈ E.

6.6. Special Cases 147

6.6.3 Min-Con-USPR on a Bidirected Ring

For Min-Con-USPR on a bidirected ring, neither the perturbation tech-
nique used in algorithm PenalizeSmallLinks nor the naive rounding of an
optimal solution of the linear programming relaxation alone lead to a con-
stant factor approximation: The perturbation technique produces |A|/2-
approximate solutions in the worst case, and the rounding approach may
produce non-USPR integer routings as illustrated in Example 6.5.1.

The idea of our algorithm is to remove some arc from the given bidirected
ring and round the optimal fractional routing in the residual digraph. The
following two lemmas show that any routing obtained this way is a valid
USPR. Recall that two paths P1, P2 ∈ P are said to be conflicting, if there
are two nodes u, v ∈ V such that both P1 and P2 contain an (u, v)-subpath
P1[u, v] and P2[u, v], respectively, but P1[u, v] 6= P2[u, v].

Lemma 6.22 Let D = (V, A) be a bidirected ring. Then there exists an
optimal solution (x∗, L∗) of (CON-LP) such that x∗

P1
= 0 or x∗

P2
= 0 for any

pair of conflicting paths P1 and P2 with (sP1 , tP1) 6= (sP2 , tP2). Furthermore,
such a solution (x∗, L∗) can be found in polynomial time.

Proof. Suppose we have an optimal solution (x∗, L∗) of (CON-LP) with
x∗

P1
> 0 and x∗

P2
> 0 for two conflicting paths P1 and P2 with (sP1 , tP1) 6=

(sP2 , tP2). For simplicity, we denote s1 := sP1 , t1 := tP1 , s2 := sP2 , and
t2 := tP2 .

Let P̄1 be the opposite (s1, t1)-path to P1 and let P̄2 be the opposite
(s2, t2)-path to P2. Since P1 and P2 conflict, we have P̄1 (P2 and P̄2 (P1,
see Figure 6.14. We may assume w.l.o.g. that P1 carries less flow than P2

in the routing given by x∗, i.e., ds1,t1x
∗
P1

≤ ds2,t2x
∗
P2

. Let α := ds1,t1x
∗
P1

.
We now construct another optimal solution (x′, L∗) of (CON-LP) by ’un-

crossing’ the routing of the two commodities (s1, t1) and (s2, t2), as shown
in Figure 6.14. For commodity (s1, t1), we shift the entire flow of value α
from path P1 to its opposite path P̄1. Simultaneously, we also shift a flow
of value α from P2 to P̄2 for commodity (s2, t2). Formally, x′ is given as

x′
P1

:= 0 , x′
P2

:= x∗
P2

+ α/ds2,t2 ,

x′
P̄1

:= 1 , x′
P̄2

:= x∗
P̄2

− α/ds2,t2 , and

x′
P := x∗

P , for all P 6∈ {P1, P̄1, P2, P̄2}.

One easily verifies that fa(x
′) ≤ fa(x

∗) for all a ∈ A, so x′ is an optimal
solution of (CON-LP), too. Note that this uncrossing operation reduces the
total flow in the network, i.e.,

∑

a∈A fa(x
′) <

∑

a∈A fa(x
∗).

Thus, in any optimal solution x∗ of (CON-LP) which in addition also
minimizes

∑

a∈A fa(x) (over all optimal solutions of (CON-LP)) we have
x∗

P1
= 0 or x∗

P2
= 0 for any pair of conflicting paths P1 and P2 with

(sP1 , tP1) 6= (sP2 , tP2).

148 6. Approximability of Unsplittable Shortest Path Routing

s1

s2

t2

t1

P1

P̄2

P2

P̄1

(a) Original routing x∗.

s1

s2

t2

t1

P̄2

P2

P̄1

(b) Uncrossed routing x′.

Figure 6.14 Uncrossing the routing of two parallel commodities.

We can easily find such a solution x∗ as follows: First, we solve the linear
program (CON-LP) to determine the optimal value L∗. Then, we solve
(CON-LP) with an additional linear constraint L ≤ L∗ and the objective
function replaced by min

∑

a∈A fa(x). The optimal solution x∗ of the second
linear program then has the required properties. �

Lemma 6.23 Let D = (V, A) be a bidirected ring and a0 ∈ A. Let S be a
set of paths in D − a0 that contains no pair of conflicting paths. Then there
exists a compatible metric λ ∈ ZA

+ for S.

Proof. Without loss of generality, we may assume that the nodes of D are
labeled v1 to vn in clockwise order and that a0 = (vn, v1). The anti-parallel
arc of a0 is denoted a1 = (v1, vn).

Suppose a1 6∈ P for all P ∈ S. Then all paths P ∈ S are unique shortest
paths for the metric

λa :=

{

|V |, if a ∈ {a0, a1}, and

1, otherwise.

So, we may assume that a1 ∈ P for some P ∈ S. We distinguish three types
of paths in S:

S0 :=
{

P ∈ S : P =
(

vi, vi+1, . . . , vj

)

with i < j
}

,

S1 :=
{

P ∈ S : a1 ∈ P
}

, and

S2 :=
{

P ∈ S : P =
(

vj , vj−1, . . . , vi

)

with i < j
}

.

The set S0 consists of all clockwise oriented paths of S, the set S1 of all
counter-clockwise oriented paths of S that contain a1, and the set S2 of all
remaining counter-clockwise oriented paths of S, see Figure 6.15. As no
path of S contains a0, the three sets S0, S1, and S2 form a partition of S.

6.6. Special Cases 149

P0 ∈ S0P1 ∈ S1

P2 ∈ S2

vn

v2

v1

Figure 6.15 Path sets S0, S1, and S2 in a bidirected ring.

First, we show that there is a compatible metric for the path set S0 ∪ S1.
For this, we consider these paths in an undirected setting. Let G = (V, E)
be the undirected cycle with E := {vivi+1 : i = 1, . . . , n}, where vn+1 = v1.
Recall that a1 ∈ P for all P ∈ S1, and a1 6∈ P for all P ∈ S0. Hence,
there are no two directed paths in S0 ∪ S1 that correspond to the same
undirected path. Furthermore, the set of undirected paths corresponding to
S0 ∪ S1 contains no pair of conflicting undirected paths. It was shown by
Ben-Ameur and Gourdin [27] that in this case there exists a metric λ′ ∈ RE

+

in the undirected cycle G that is compatible with the undirected path set
corresponding to S0 ∪ S1, see Theorem 5.26 in Section 5. Its corresponding
directed metric λ′′ ∈ RA

+ given as λ′′
(u,v) := λ′

uv for all (u, v) ∈ A is compatible
with the directed path set S0 ∪ S1 in D.

Now, we modify this metric such that it is compatible with the entire path
set S = S0 ∪ S1 ∪ S2. Recall that no path in S0 ∪ S1 contains the arc a0.
Thus, also the metric λ ∈ RA

+ defined as

λa :=

{

λ′′
a, if a 6= a0, and

∑

a∈A\{a0}
λ′′

a + 1, if a = a0,

is compatible with S0 ∪ S1. Furthermore, note that, for each path P ∈ S2,
the corresponding clockwise oriented (sP , tP)-path P̄ contains the arc a0.
Hence, each path P ∈ S2 is shorter than its counterpart P̄ with respect to
λ, which implies that λ is compatible with entire path set S. �

Lemma 6.22 and Lemma 6.23 lead to the constant factor approximation
algorithm BidirectedRingRounding shown on the following page. In the first
step of this algorithm, we compute an optimal multicommodity flow routing
x∗ with the additional properties stated in Lemma 6.22. Then we remove the
least utilized arc amin = arg min fa(x

∗) from the bidirected ring and ’round’
the optimal MCF routing in such a way, that no routing path uses the arc
amin and that no pairs of conflicting paths are created. By Lemma 6.23,
the routing obtained this way is indeed a USPR for the given commodities.
Using the methods presented in Chapter 4, we then compute a compatible

150 6. Approximability of Unsplittable Shortest Path Routing

metric for this routing.

Theorem 6.24 BidirectedRingRounding is a 3-approximation algorithm for
Min-Con-USPR on a bidirected ring.

Proof. It follows immediately from Lemmas 6.22 and 6.23 that algorithm
BidirectedRingRounding computes a valid solution for Min-Con-USPR. It
remains to show that this solution has a congestion of at most three times
the optimal solution’s congestion.

In Step 3 of algorithm BidirectedRingRounding, we shift all flows on paths
across arc amin to the respective opposite flow paths, and we round path
variables xp with x∗

p ≥ 0.5 to 1. Hence, for any arc a ∈ A, we have fa([x]) ≤
2fa(x

∗) + famin(x
∗) ≤ 3fa(x

∗). �

Algorithm BidirectedRingRounding and Theorem 6.24 straightforward carry
over to the case where all strongly connected components of D are bidirected
rings or subgraphs of bidirected rings.

6.6.4 Cap-USPR on a Bidirected Ring

In this final section, we show how to approximate Cap-USPR on a bidi-
rected ring within a constant factor. In principle, we use the same approach
as for the undirected problem version: We compute a solution (λ0, z0) that
is a 2-approximation of the optimal solution (λopt, zopt) in the case where

Algorithm 6.4 BidirectedRingRounding

Input: Bidirected ring D = (V, A) with capacities ua ∈ Z+ for all arcs
a ∈ A and a commodity set K ⊆ V × V with demands ds,t ∈ Z+ for all
(s, t) ∈ K.

Output: A valid metric λ ∈ ZA
+ for the commodity set K.

1. Compute an optimal solution (x∗, L∗) of (CON-LP) with x∗
P1

= 0
or x∗

P2
= 0 for any pair of conflicting paths P1 ∈ P(s1, t1) and

P2 ∈ P(s2, t2) with (s1, t1) 6= (s2, t2).

2. Find arc amin := arg min fa(x
∗).

Let āmin be the reverse arc of amin.
3. Define [x] ∈ {0, 1}P(K) as

[x]P :=























0, if amin ∈ P or

if x∗
P < 0.5 or

if x∗
P = 0.5 and āmin ∈ P , and

1, otherwise.

4. Find a compatible metric λ for S := {P ∈ P(K) : [x]P = 1}.
5. Return λ.

6.6. Special Cases 151

zopt
a ≥ 1 for all a ∈ A, and |A| many solutions (λl, zl), l ∈ A, to cope with

the cases where zopt
l = 0 for some l ∈ A. In contrast to the Cap-USPR

problem on an undirected cycle, however, the Cap-USPR problem on a
bidirected ring remains NP-hard even in the restricted case with zl = 0 for
some arc l ∈ A. Nevertheless, it is possible to approximate the problem in
this restricted case within a constant factor by rounding the optimal solution
of the following linear programming relaxation of Cap-USPR:

min
∑

a∈A

waza (CAP-LP2)

∑

P∈P(s,t)

xP = 1 ∀ (s, t) ∈ K

∑

(s,t)∈K

∑

P∈P(s,t):a∈P

ds,t · xP ≤ uaza ∀ a ∈ A

xP ≤ za ∀P ∈ P(K), a ∈ P (6.6)

za ≥ 0 ∀ a ∈ A

0 ≤ xP ≤ 1 ∀ (s, t) ∈ K, P ∈ P(s, t)

The linear program (CAP-LP2) is the directed version of (CAP-LP) with
some additional inequalities of type (6.6). These inequalities are trivially
valid for any integer solution of (the directed version of) (CAP-LP). So,
any optimal solution of (CAP-LP2) provides a lower bound on the optimal
solution value of a given Cap-USPR instance. If D is a bidirected ring, these
inequalities close a substantial part of the integrality gap of (CAP-LP), while
the strengthened formulation remains polynomially solvable.

Analogous to Lemma 6.22, one can the existence of an optimal solution
(x∗, z∗) of (CAP-LP) (without inequalities (6.6)) with x∗

P1
= 0 or x∗

P2
= 0 for

any pair of conflicting paths P1 and P2 with (sP1 , tP1) 6= (sP2 , tP2). For the
stronger formulation (CAP-LP2), one obtains the following weaker result.

Lemma 6.25 Let D = (V, A) be a bidirected ring. Then there exists an
optimal solution (x∗, z∗) of (CAP-LP2) such that x∗

P1
+ x∗

P2
≤ 1 for any

pair of conflicting paths P1 and P2 with (sP1 , tP1) 6= (sP2 , tP2). Furthermore,
such a solution (x∗, z∗) can be found in polynomial time.

Proof. Analogous to the proof of Lemma 6.22. �

Just as in the previous section, any optimal solution of (CAP-LP2) with
the properties stated in Lemma 6.25 can be turned into a valid solution of
the given Cap-USPR problem instance by removing one arc, rounding the
fractional flows in the remaining digraph consistently, and finally installing
arc capacities that are sufficient for the resulting flows. The corresponding
algorithm BidirectedEnumerateAndRound is illustrated on the next page.

152 6. Approximability of Unsplittable Shortest Path Routing

Theorem 6.26 BidirectedEnumerateAndRound is a 4-approximation algo-
rithm for Cap-USPR on a bidirected ring.

Proof. The proof of Theorem 6.26 is similar to that of Theorem 6.24.
It follows from Lemma 6.23 and Lemma 6.25 that, for each l ∈ A, the

path set Sl computed in Step 2.4 defines a USPR for the given commodity
set K and that Sl is a compatible metric for this routing.

The metric λ0 defined in Step 1.2 is a perturbation of the metric wa/ua.
As λ0

(v0,v1)
and λ0

(v1,v0)
are odd and all other lengths λ0

a are even, also λ0

defines a USPR. Hence, all solutions (λ0, z0) and (λl, zl) are feasible.
Now consider the optimal solution (λopt, zopt) of the given Cap-USPR

instance. Analogous to the undirected case, it follows that (λ0, z0) is a

Algorithm 6.5 BidirectedEnumerateAndRound

Input: Bidirected ring D = (V, A) with capacities ua ∈ Z+ and costs
wa ∈ Z+ for all a ∈ A and a commodity set K ⊆ V × V with demands
ds,t ∈ Z+ for all (s, t) ∈ K.

Output: Capacity multipliers za ∈ Z+ and a valid metric λ ∈ ZA
+

for the commodity set K, such that the induced arc flows fa(λ) do not
exceed the capacities uaza for all a ∈ A.

1. Compute solution (λ0, z0) as follows:

1.1 Set λ0
a :=

{

Mwa/ua + 1, if a ∈ {(v0, v1), (v1, v0)},
Mwa/ua, otherwise,

with M := 2Πa∈Aua.

1.2 Set z0
a := ⌈fa(λ

0)/ua⌉ for all a ∈ A.

2. For each l ∈ A, compute solution (λl, zl) as follows:

2.1 Compute an optimal solution (zl∗, xl∗) of (CAP-LP2) with the
restriction zl

l = 0 and such that xl∗
P1

+ xl∗
P2

≤ 1 for any pair
of conflicting paths P1 ∈ P(s1, t1) and P2 ∈ P(s2, t2) with
(s1, t1) 6= (s2, t2).

2.2 Let l̄ be the reverse arc of l.

2.3 Define [xl] ∈ {0, 1}P(K) as

[x]lP :=























0, if l ∈ P or

if xl∗
P < 0.5 or

if xl∗
P = 0.5 and l̄ ∈ P , and

1, otherwise.

2.4. Find a compatible metric λl for Sl := {P ∈ P(K) : [x]lP = 1}.
2.5 Set zl

a := ⌈fa(λ
l)/ua⌉ for all a ∈ A.

3. Return minimum cost solution of (λ0, z0) and (λl, zl), l ∈ A.

6.7. Concluding Remarks 153

2-approximate solution if zopt
a ≥ 1 for all a ∈ A.

So, assume that zopt
l = 0 for some l ∈ A. For the corresponding solution

(zl∗, xl∗) of (CAP-LP2), the inequalities (6.6) then imply that zl∗
a ≥ 0.5 for

each arc a ∈ A with ⌈zl∗
a ⌉ ≥ 1. Hence, we have

w(zl) =
∑

a∈A

waz
l
a =

∑

a∈A

wa⌈zl∗
a ⌉ ≤

∑

a∈A

wa 4zl∗
a = 4w(zl∗) ≤ 4w(zopt) ,

which implies that (λl, zl) is a 4-approximate solution in this case. �

Again, algorithm BidirectedEnumerateAndRound and Theorem 6.26 general-
ize to digraphs in which all strongly connected components are bidirected
rings.

6.7 Concluding Remarks

In this chapter, we have shown that it is NP-hard to approximate Min-
Con-USPR within a factor of O(|V |1−ǫ) in general and Cap-USPR within

a factor of O(2log1−ǫ |V |) in the directed or 2− ǫ in the undirected case. The
fixed charge network design problem FC-USPR was proven to be NPO-
complete. We presented simple |A|- and |K|-approximation algorithms for
Min-Con-USPR in general networks and we illustrated how known tech-
niques can be used to approximate several restricted versions of Cap-USPR.
For the special cases where the underlying graph is an undirected cycle or
a bidirected ring, constant factor approximation algorithms for Min-Con-
USPR and Cap-USPR were proposed.

We also constructed examples where the minimum congestion obtainable
with unsplittable shortest path routing is a factor of Ω(|V |2) larger than the
congestion of an optimal unsplittable flow routing or an optimal shortest
multi-path routing, and a factor of Ω(|V |) larger than the congestion of an
optimal unsplittable source-invariant routing.

It remains open whether the inapproximability threshold of Ω(|V |1−ǫ)
for Min-Con-USPR is tight or whether better approximation ratios than
O(min{|A|, |K|}) can be achieved. It is also not known how to compute
approximate solutions with reasonable quality guarantees for the general
Cap-USPR problem. The methods known for the corresponding Gener-
alized Steiner network or Buy-at-Bulk Network Design problem
versions do not necessarily yield feasible solutions for the Cap-USPR prob-
lem.

154 6. Approximability of Unsplittable Shortest Path Routing

Part III

An Integer Programming

Solution Approach

155

Chapter 7

Integer Linear Programming

Models

In this chapter, we introduce several integer linear programming formula-
tions for unsplittable shortest path routing problems, study the algorithmic
properties of these formulations, and compare the strength of their respec-
tive linear relaxations.

We present two basic types of integer linear programming formulations.
The first class of formulations uses binary path variables to describe the
set of valid unsplittable shortest path routings, whereas the second class
uses binary arc routing variables. We also discuss a variant of the second
class where additional binary variables are used to describe the forwarding
that is induced by the routing (i.e., the arcs via which the shortest paths
leave each intermediate node). For each variant, we discuss the formulation
of unsplittable shortest path routings in general and present correspond-
ing (mixed-) integer linear programming formulations for the three basic
unsplittable shortest path routing problems FC-USPR, Cap-USPR, and
Min-Con-USPR, that have been introduced in Chapter 3 of this thesis.
Formulations for other unsplittable shortest path routing problems can be
derived analogously.

In contrast to the ‘traditional’ integer linear programming models for
shortest path routing problems, our formulations contain no variables for the
routing lengths. Instead, our formulations rely on special linear inequalities
to ensure that the paths described by a feasible integer solution indeed
form an unsplittable shortest path routing. This approach leads to integer
linear programs that are not only much smaller but also stronger than those
obtained with the traditional formulations. Once our models are solved and
the paths of an unsplittable shortest path routing are found, a compatible
routing metric can be easily computed in a post-processing step, using the
methods presented in Chapter 4 of this thesis. Virtually, our approach
decomposes the problem of finding an optimal unsplittable shortest path
routing into the two subproblems of finding the optimal end-to-end routing

157

158 7. Integer Linear Programming Models

paths and, afterwards, finding a valid metric that induces exactly these
paths.

The remainder of this chapter is organized as follows. In Section 7.1,
we review the existing literature on integer linear programming models for
unsplittable and multi-shortest path routing problem. Section 7.2 contains a
brief review the basic necessary notation and illustrates the general modeling
and solution approach proposed.

In Section 7.3, we introduce our first class of integer linear programming
formulations, which are based on binary path routing variables and the in-
dependence system characterization of the path sets of unique shortest path
routings. The second class of formulations, in which the valid unsplittable
shortest path routings are described by binary arc routing variables, is pre-
sented in Section 7.4.

In Section 7.5 we discuss the computational complexity of the separation
and pricing associated with these formulations. We show that in both for-
mulations the separation problem associated with those model inequalities
that ensure that the paths form an unsplittable shortest path routing is
NP-hard in general, but solvable in polynomial time if the point is integer.
We also show that the pricing problem for the path variables in the first
class of formulations can be solved in polynomial time with respect to the
size of the current restricted linear relaxation, but that an optimal solution
of the entire linear relaxation may involve exponentially many active path
variables and exponentially many binding linear inequalities. Assuming that
P 6= NP, we thus may not even expect the linear programming relaxations
arising in a branch-and-bound algorithm based on these formulations to be
solvable in polynomial time.

In Section 7.6, we finally compare the strength of the proposed formula-
tions. We show that the two variants of the arc routing formulations are
equivalent with respect to their linear relaxation values, whereas the path
routing and the arc routing formulations are incomparable in general.

7.1 Related Work

Integer and mixed integer linear programming nowadays is one of the stan-
dard tools for solving network design and routing problems in telecommu-
nications. There exists a vast literature related to integer linear program-
ming models and methods for various kinds of network design and routing
problems. The scope ranges from general network flow and connectivity
problems, such as minimum cost flow or Steiner network problems, to very
specialized problems addressing issues related to network survivability or
particular hardware and routing technologies at a very detailed level. An
overview of the fundamental methodology and some recent results can be

7.1. Related Work 159

found in the textbooks and surveys of Grötschel et al. [105], Pióro and Medhi
[162] or Resende and Pardalos [172], for example.

Shortest path routing problems have been rarely tackled with integer pro-
gramming methods until recently. Instead, local search algorithms or other
meta-heuristics and Lagrangian relaxation techniques have been very pop-
ular to solve these problems [26, 34, 37, 48, 81, 92, 93, 133, 163]. Fortz and
Thorup, Fortz and Thorup, who considered a traffic engineering problem
with multi-shortest path routing in [92, 93], also computed lower bounds by
solving the corresponding fractional multicommodity flow relaxation.

The first integer programming formulation of a shortest path routing prob-
lem (to our knowledge) was presented by Bley et al. [37], who considered a
(survivable) network design problem with unsplittable shortest path routing.
This formulation contains binary arc routing variables for the commodities’
end-to-end routing paths, integer arc length variables for the routing metric,
and continuous variables for the distances between the node pairs with re-
spect to these routing lengths. With these variables, the interdependencies
between the routing path variables and the arc length and distance variables
can be easily expressed by quadratic constraints. These have been linearized
in a straightforward manner, leading to a quadratic number of linear con-
straints involving big-M coefficients. The uniqueness of the shortest paths
was guaranteed by adding a pre-determined perturbation to the integer arc
length variables.

De Giovanni et al. [69] used a similar formulation to solve a minimum
cost network design problem for the OSPF routing variant with equal cost
multi-path (ECMP) traffic splitting, as described in Chapter 3 on page 27.
The commodities in this model are given by the traffic destination nodes,
i.e., all traffic demands with a common destination are aggregated into one
multi-source single-destination commodity. In the routing is expressed by
binary variables indicating which arcs are contained in the routing paths
towards each destination, continuous variables for each commodities actual
arc flows, and continuous variables for the routing lengths of the arcs and
for the shortest path distances with respect to these lengths. In this model,
both the relation between the binary arc routing variables and the continu-
ous arc flow variables as well as the relation between the binary arc routing
variables and the continuous routing length and distance variables are ex-
pressed via big-M (in)equalities. As this multi-path routing variant does
not require the uniqueness of the shortest paths, the formulation of de Gio-
vanni et al. does not contain any constraints related to this particularity
of unsplittable shortest path routing. Instead, it contains a set of addi-
tional traffic splitting constraints, which ensure that each commodity’s flow
is split evenly among the outgoing routing arcs at each intermediate node.
Based on an analogous formulation, Parmar et al. [158] recently proposed an
integer programming approach for the problem of finding a multi-shortest
path routing with even traffic splitting that minimized the congestion in a

160 7. Integer Linear Programming Models

network with given capacities.

Similar formulations were also presented by Bourquia et al. [41], Pióro
et al. [163], and Tomaszewski et al. [184] for the problem of finding an
unsplittable shortest path routing that minimizes the maximum congestion
and by Eremin et al. [80] for the problem of finding a k-splittable such
routing.

From an algorithmic point of view, these ‘traditional’ integer linear pro-
gramming formulations have several severe disadvantages. The (implicit)
step of linearizing the quadratic constraints, which express the relation be-
tween the routing paths and the routing lengths, leads to huge integer linear
formulations, even for very small networks. Furthermore, the resulting linear
constraints employ big-M coefficients to link the binary arc or path routing
variables to the continuous or general integer routing length and distance
variables. With respect to their linear relaxation values, these formulations
are very weak. Standard branch-and-bound based integer linear program-
ming approaches usually perform very poorly on such formulations. In [37],
Bley et al. used this type of integer programming formulation only to for-
mally describe the considered (survivable) network design problem. For
solving it, they retreated to a local search heuristic. de Giovanni et al. [69],
Bourquia et al. [41], and Eremin et al. [80] each solved the proposed mod-
els using standard integer programming techniques. Their computational
results reveal that these models are not well-suited for solving instances of
practical size, unless they are substantially strengthened using additional
inequalities.

A first attempt to formulate unsplittable shortest path routing problems
as an integer linear program without variables for the routing metric was
made by Staehle et al. [180] and Milbrandt [141], who proposed integer lin-
ear programming models with only binary arc-flow variables for the problem
of finding an unsplittable shortest path routing that minimizes a linear com-
bination of the maximum and the average link congestion. These models
ensure that the computed routing paths satisfy the Bellman property, but
they still admit non-unsplittable shortest path routings as integer solution.

The first correct integer linear programming approach without additional
variables for the routing metric was presented by Bley and Koch [33, 36] for
a survivable network design problem with unsplittable shortest path rout-
ing. Besides the link capacity variables, their model contains only binary
arc routing variables for each commodity. In order to ensure that a valid un-
splittable shortest path routings is obtained, they separate inequalities that
cut-off invalid routings. The arc routing formulation presented in Section
7.4 below is based on this model. Holmberg and Yuan [115] generalized this
approach to solve a network design problem with unsplittable shortest path
routing and multi-cast commodities.

In addition, there exist a large number of publications that address un-
splittable shortest path routing problems in which all commodities share a

7.2. Basics 161

common source and, in addition, the chosen routing paths must to form a
tree. Problems of this type arise in the planning of access and tributary
networks for telecommunications and electric energy, for example, and are
typically referred to as access network design or hub location problems in
this context. They can be regarded as single-source variants of unsplit-
table shortest path routing problems. Here, we just want to mention the
publications of Kleinberg [123], Dinitz et al. [74] and Skutella [179], who
mainly address the approximability of such unsplittable flow problems, and
the works of van de Leensel [186], Pfender [160], and Labbé and Yaman
[129, 128, 130], who discuss integer programming formulations, polyhedral
results, and dynamic programming solution approaches for these problems.

7.2 Basics

Before we turn our attention to our general integer programming approach
for the fixed charge network design problem FC-USPR, let us briefly re-
view the basic notions, notations, and concepts introduced in the preceding
chapters.

Let D = (V, A) be a directed graph with non-negative arc capacities
u = (ua)a∈A ∈ ZA

+ and arc costs w = (wa)a∈A ∈ ZA
+. Furthermore, let

K ⊆ V ×V be a set of directed commodities with demand values ds,t ∈ Q+,
(s, t) ∈ K. Without loss of generality, we may assume that all arc capacities
ua, a ∈ A, and all demand values ds,t, (s, t) ∈ K, are strictly positive. For
each commodity (s, t) ∈ K, let P(s, t) be the set of all simple (s, t)-paths in
D. We let P(K) :=

⋃

(s,t)∈K P(s, t). With P we denote the set of all simple
paths in D. Given a path P , we refer to its source node by sP and to its
target node by tP . We write a ∈ P or v ∈ P to indicate that the arc a ∈ A
or the node v ∈ V occurs in P , respectively. A vector λ ∈ RA

+ is called a
(routing) metric, even if it does not satisfy the triangle inequality.

A metric λ ∈ RA
+ is said to be valid for the commodity set K if, for each

commodity (s, t) ∈ K, the shortest (s, t)-path P ∗
(s,t)(λ) with respect to λ is

uniquely determined. Given such a valid metric, the set of these induced
shortest paths forms an an unsplittable shortest path routing (USPR) for
the commodity set K, see Definition 3.4 on Page 33. The demand of each
commodity (s, t) ∈ K is routed unsplit along the respective shortest path
P ∗

(s,t)(λ) in a USPR. So, given a valid metric λ, the total flow through an
arc a ∈ A in its induced USPR is

fa(λ) :=
∑

(s,t)∈K: a∈P ∗
(s,t)

(λ)

ds,t . (7.1)

In Chapter 3, we introduced three basic unsplittable shortest path rout-
ing problems: the congestion minimization problem Min-Con-USPR, the
capacitated network design problem Cap-USPR, and the fixed charge net-
work design problem FC-USPR.

162 7. Integer Linear Programming Models

The task in the congestion minimization problem Min-Con-USPR is to
find a valid metric λ ∈ ZA

+ for the given commodities K, such that the
maximum arc congestion L := max{fa(λ)/ua : a ∈ A} is minimized.

In the capacitated network design problem Cap-USPR, we seek for a valid
metric λ ∈ ZA

+ for the commodity set K and for integer capacity multipliers
za ∈ Z+, a ∈ A, such that fa(λ) ≤ uaza for all a ∈ A. The objective is to
minimize the total capacity installation cost

∑

a∈A waza for some given arc
costs wa ∈ Z+, a ∈ A.

Finally, the goal in the fixed charge network design problem FC-USPR
is to find a minimum cost subset of the arcs B ⊆ A and a valid metric
λ ∈ ZB

+, such that (i) λ defines an unsplittable shortest path routing for the
commodities K within the subgraph (V, B) and (ii) the induced arc flows
fa(λ) do not exceed the capacities ua (on the arcs a ∈ B). This clearly is
equivalent to the task of finding a minimum cost vector of binary capacity
multipliers za ∈ {0, 1}, a ∈ A, together with a valid metric λ ∈ ZA

+, such
that fa(λ) ≤ uaza for all a ∈ A.

In all three problems, the solution contains a valid routing metric λ ∈ ZA
+

for the given commodity set. In order to evaluate the respective objective
functions, however, the metric itself is not necessary. It would be suffi-
cient to know only the routing paths that comprise the induced USPR. (In
fact, even knowing the induced arc flows would be sufficient.) Thus, an
integer linear programming formulation of these problems does not neces-
sarily have to involve a description of the routing metric. It is sufficient
to model the end-to-end routing paths together with the induced arc flows
and arc capacities, provided that the model guarantees that the paths of
any integer feasible solution indeed comprise an unsplittable shortest path
routing. Given a set of such paths, a valid metric that induces exactly these
paths can be computed in polynomial time using the linear programming
and rounding approach presented in Chapter 4, see Theorem 4.6 on page 47
and Theorem 4.12 on page 60. In other words, modulo the polynomial-time
post-processing step of finding the actual routing metric, the three unsplit-
table shortest path routing problems can be formulated equivalently as a
matter of finding the path set of a USPR instead of a valid metric for the
given commodity set.

Accordingly, our general solution approach solves the given unsplittable
shortest path routing problem in two phases: In the first phase, the end-
to-end routing paths are optimized (together with the capacity installation)
using integer linear programming techniques. In the second phase, the linear
programming and rounding approach presented in Chapter 4 is applied to
determine a valid metric that induces the paths computed in the first phase.

The models used in the first phase of this approach do not need to involve
extra variables for the arc lengths of the routing metric. With the concepts
introduced in Chapters 4 and 5, the path sets that comprise a USPR for the

7.2. Basics 163

given commodity set can be easily characterized. Recall that

(i) a metric λ = (λa)a∈A ∈ RA
+ is said to be compatible with a given path

set S ⊆ P , if each path P ∈ S is the unique shortest (sP , tP)-path with
respect to λ, and that

(ii) a path set S ⊆ P is called a unique shortest path system (USPS) if
there exists a compatible metric λ ∈ RA

+ for S.

So, a path set S is a USPR for the commodity set K if and only if it is an
USPS that contains exactly one (s, t)-path for each commodity (s, t) ∈ K.

Alternatively, USPR can be characterized via their associated forward-
ings, which is useful when working with a integer programming formula-
tion based on arc routing variables. A forwarding is a set F ⊆ V × A,
and each forwarding arc (t, (u, v) ∈ F) ∈ F means that the traffic from
or via node u towards destination t must leave node u via the arc (u, v),
see Section 4.6. For a given path set S ⊆ P , its associated forwarding is
F(S) :=

⋃

P∈S

{

(tP , a) : a ∈ P
}

. Similar to the path set characterization,

(i) a metric λ ∈ RA
+ is said to be compatible with a forwarding F ⊆ V ×A

if, for each (t, (u, v)) ∈ F , arc (u, v) is contained in all shortest (u, t)-
paths with respect to λ, and

(ii) a forwarding F ⊆ V ×A is said to be a unique shortest path forwarding
(USPF) if there exists a compatible metric for F .

By Observation 4.17, a metric is compatible with a path set S ⊆ P if and
only if it is compatible with its associated forwarding F(S). Hence, a path
set S is a USPR for the commodity set K if and only if it contains exactly

one (s, t)-path for each commodity (s, t) ∈ K and its associated forwarding
F(S) is an USPF.

As observed in Chapter 5, both the family of all unique shortest path sys-
tem as well as the family of all unique shortest path forwarding in a digraph
are independence systems. Using a standard integer linear programming
formulation for these independence systems, we derive in the following inte-
ger linear programming formulations for unsplittable shortest path routing
problems without extra variables for the routing metric.

Remark 7.1 Note that the approach of modeling only the valid end-to-end
routing paths and computing a compatible metric afterwards is only appli-
cable if the range of admissible values for the routing metric is sufficiently
large. In particular, we assume that we can easily compute a compatible
metric with admissible length values for any given USPR. For realistic net-
work sizes and modern routing protocols such as OSPF or IS-IS this is
normally the case. Otherwise, if the fact that the range of admissible length
values is restricted cannot be ignored, further constraints must be added

164 7. Integer Linear Programming Models

to the formulations presented in this chapter to ensure the existence of a
compatible metric whose arc lengths are admissible for the given routing
protocol.

7.3 Path Routing Formulations

A natural way to model the unsplittable shortest path routings for a given
commodity set in an integer linear programming manner is to use binary
variables to indicate which end-to-end paths are contained in the routing and
which are not. For this purpose, we introduce the path variables xP ∈ {0, 1}
for all paths P ∈ P(K), which are interpreted as

xP =

{

1, if commodity (sP , tP) is routed via path P , and

0, otherwise.

With these variables, we now can define the polytope of all unsplittable
shortest path routings.

Definition 7.2 The unsplittable shortest path routing polytope

USPR(K) ⊆ RP(K) is the convex hull of the characteristic vectors of all
unsplittable shortest path routings for the commodity set K, i.e.,

USPR(K) := conv
{

χ(S) ∈ {0, 1}P(K) : S is a USPR for K
}

.

Each vertex of USPR(K) corresponds to an unsplittable shortest path rout-
ing for the commodity set K, and vice versa. For notational convenience,
we denote this polytope simply by USPR in the following.

As we have seen in Chapter 5, the family of all unsplittable shortest
path systems in D forms an independence system. Let CUSPS ⊂ 2P be
the family of circuits of this independence system. That is, CUSPS consists
of all irreducible non-unsplittable shortest path systems (non-USPS) in D,
see Definition 5.1 on page 72. Clearly, no irreducible non-USPS is fully
contained in the path set of any unsplittable shortest path routing. Hence,
any vertex x of USPR satisfies the (USPS) circuit inequalities

∑

P∈S

xP ≤ |S| − 1 ∀S ∈ CUSPS ∩ P(K). (7.2)

If it is clear from the context that we are talking about a path routing
formulation, we will call these inequalities simply circuit inequalities.

Furthermore, any unsplittable shortest path routing for the commodity
set K contains exactly one (s, t)-path for for each (s, t) ∈ K. Consequently,
also the demand constraints

∑

P∈P(s,t)

xP = 1 ∀ (s, t) ∈ K (7.3)

7.3. Path Routing Formulations 165

hold for each vertex x of USPR.
Together with the integrality of the path variables, these constraints are

sufficient to describe all unsplittable shortest path routings.

Theorem 7.3

USPR = conv
{

x ∈ {0, 1}P(K) : x satisfies (7.2) and (7.3)
}

.

Proof. Clearly, any vertex x of USPR satisfies x ∈ {0, 1}P(K) and all
(in)equalities (7.2) and (7.3).

For the reverse direction, let x ∈ {0, 1}P(K) be a solution of (7.2)–(7.3),
and let S(x) := {P ∈ P(K) : xP = 1} be the set of routing paths defined
by this solution.

The circuit inequalities (7.2) ensure that no irreducible non-USPS is fully
contained in S(x). Thus, S(x) does not contain any non-USPS, which im-
plies that S(x) is a USPS.

The demand constraints (7.3) imply that, in addition, |S(x)∩P(s, t)| = 1
for all (s, t) ∈ K. Consequently, S(x) is a USPS that contains exactly one
comm-path for each commodity (s, t) ∈ K. As this means that S(x) is
an unsplittable shortest path routing for the commodity set K, we have
x = χ(S(x)) ∈ USPR. �

Note that the set of all circuit inequalities (7.2) contains the inequalities

xP + xP ′ ≤ 1 ∀P, P ′ ∈ P(K) : P and P ′ are conflicting

as a subset. Taken alone, these inequalities ensures that the path set S(x)
defined by an integer vector x ∈ {0, 1}P(K) satisfies the Bellman property.

Theorem 7.3 leads straightforward to integer linear programming formu-
lations for FC-USPR, Cap-USPR, Min-Con-USPR, or other unsplittable
shortest path routing problems.

In order to formulate the fixed charge network design problem FC-USPR,
we introduce a binary capacity variable za ∈ {0, 1} for each a ∈ A, which is
interpreted as

za =

{

1, if arc a is installed, and

0, otherwise.

Clearly, an arc set B ⊆ A provides sufficient capacities for an unsplittable
shortest path routing S ⊆ P(K) of the commodities K, if and only if the
capacity constraints

∑

(s,t)∈K

∑

P∈P(s,t): a∈P

ds,t xP ≤ uaza ∀ a ∈ A (7.4)

166 7. Integer Linear Programming Models

hold for the corresponding characteristic vectors x = χ(S) and z = χ(B).
Hence,

min
{

wT z : (x, z) ∈ {0, 1}P(K)∪A, (FC-PathIP)

(x, z) satisfies (7.2)–(7.4)
}

is a correct integer linear programming formulation of the fixed charge net-
work design problem FC-USPR.

Analogously, the capacitated network design problem Cap-USPR can be
formulated with integer capacity variables za ∈ Z+, a ∈ A. Each variable
za now expresses the number of installed base capacity units on arc a ∈ A.
With the same capacity constraints (7.4) as for the fixed charge problem
(but now with integer capacity variables), the capacitated network design
problem Cap-USPR can be formulated as

min
{

wT z : (x, z) ∈ {0, 1}P(K) × ZA
+, (Cap-PathIP)

(x, z) satisfies (7.2)–(7.4)
}

In order to formulate the congestion minimization problem Min-Con-
USPR, we introduce a single non-negative congestion variable L ∈ R+.
Obviously, the maximum congestion induced by an routing S ⊆ P(K) is no
more than L if and only if the capacity constraints

∑

(s,t)∈K

∑

P∈P(s,t): a∈P

ds,t xP ≤ uaL ∀ a ∈ A (7.5)

are satisfied for the corresponding characteristic vectors x = χ(S). Solving
the congestion minimization problem Min-Con-USPR thus is equivalent to
solving the mixed integer linear program

min
{

L : (x, L) ∈ {0, 1}P(K) × R+, (Con-PathIP)

(x, L) satisfies (7.2), (7.3), and (7.5)
}

.

The correctness of these three (mixed-) integer linear programming models
follows immediately from Theorem 7.3. Other unsplittable shortest path
routing problems can be formulated analogously.

Note that the circuit inequalities (7.2) are sufficient to ensure that each
integer solution of the above formulations indeed defines a valid unsplittable
shortest path routing. However, the LPs obtained by relaxing the integrality
constraints in these formulations are not very strong. In Chapter 8 we show
how additional inequalities to strengthen the formulations can be derived.

Several additional requirements that arise in real-world planning problems
can be easily incorporated into these models.

• Path length restrictions, such as upper bounds on the physical length
or on the delay of the routing paths, can be encoded by restricting the
set of admissible paths P(s, t) for each commodity.

7.4. Arc Routing Formulations 167

• Node or arc taboos, which forbid the use of certain nodes or arcs in
the routing paths of some commodities, can be enforced similarly by
restricting the admissible path sets.

• Routing symmetry, i.e., the requirement to use of anti-parallel routing
paths (v1, v2, . . . , vn) and (vn, vn−1, . . . , v1) for anti-parallel commodi-
ties (v1, vn) and (vn, v1), can be incorporated into the models either
by adding the equalities

xP = xP ′ for all anti-parallel paths P, P ′ ∈ P(K),

or by performing the corresponding variable substitutions. In fact, the
symmetric unsplittable shortest path routings of a given commodity
set can be described equivalently by undirected path sets in the cor-
responding undirected supply graph. Only in the capacity constraints
(7.4) or (7.5) the paths need to be considered in a directed context
to correctly express the capacity consumption of the directed traffic
flows.

In Section 9.1 we present models that include these extensions.

7.4 Arc Routing Formulations

Another type of integer linear programming formulations for unsplittable
shortest path routings is obtained by describing the end-to-end routing paths
in terms of arc routing variables instead of path routing variables.

Definition 7.4 For each path set S ⊆ P(K), we denote its corresponding
arc routing by

R(S) :=
⋃

P∈S

{ (

(sP , tP), a
)

: a ∈ P
}

⊆ K × A .

In order to indicate which arcs are contained in which routing paths, we
introduce a binary arc routing variable ys,t

a ∈ {0, 1} for each commodity
(s, t) ∈ K and for each arc a ∈ A. These variables are interpreted as

ys,t
a =

{

1, if commodity (s, t) is routed via arc a, and

0, otherwise.

In terms of these variables, the polytope of all valid unsplittable shortest
path routings for the commodity set K is given as follows.

Definition 7.5 The unsplittable shortest path arc routing polytope
USPA(K) ⊆ RK×A is the convex hull of the incidence vectors of all those
arc routings that correspond to an USPR for the commodity set K, i.e.,

USPA(K) := conv
{

χ(R(S)) ∈ {0, 1}K×A : S is an USPR for K
}

.

168 7. Integer Linear Programming Models

If it is clear from the context which commodity set K we refer to, we denote
this polytope simply by USPA in the following.

Any USPR S for the commodity set K contains exactly one (s, t)-path for
each (s, t) ∈ K. Hence, its corresponding arc routing variables y = χ(R(S))
satisfy the flow conservation constraints

∑

a∈δ−(v)

ys,t
a −

∑

a∈δ+(v)

ys,t
a =











−1, ∀ (s, t) ∈ K, v = s,

1, ∀ (s, t) ∈ K, v = t, and

0, ∀ (s, t) ∈ K, v ∈ V \ {s, t}.
(7.6)

In order to ensure that the values of the routing variables correspond to a
unique shortest path routing, we consider the forwarding defined by their
values. Recall that each path set S ⊆ P defines its associated forwarding

F(S) =
{

(t, a) : a ∈ P for some (s, t)-path P ∈ S
}

⊆ V × A ,

see Definition 4.16. Similarly, every arc routing defines a forwarding.

Definition 7.6 For each arc routing R ⊆ K ×A, we denote its associated
forwarding by

F(R) := {(t, a) : ((s, t), a) ∈ R} ⊆ V × A .

Clearly, F(R(S)) = F(S) for any path set S ⊆ P . Furthermore, a path set
S is a unique shortest path system if and only if its associated forwarding
F(S) is a unique shortest path forwarding (USPF), see Definition 4.15 and
Observation 4.17 on page 61. Hence, a path set S is a USPS if and only if
F(R(S)) is a USPF. This condition now can be formulated in terms of the
arc routing variables.

As we have seen in Chapter 5, the family of all unique shortest path
forwardings (USPF) in D forms an independence system. Let CUSPF ⊂
V × A be the family of circuits of this independence system. By definition,
CUSPF consists of all irreducible non-USPFs in the underlying digraph D.

The forwarding associated with any unique shortest path system cannot
fully contain any non-USPF F ∈ CUSPF . Hence, the arc routing variables
y = χ(R(S)) of an unsplittable shortest path routing S for the commodity
set K therefore must satisfy the (USPF) circuit inequalities

∑

((s,t),a)∈R

ys,t
a ≤ |R| − 1 ∀ R ⊆ K × A with (7.7)

(i) F(R) ∈ CUSPF

(ii) |F(R)| = |R|.

Condition (i) in (7.7) ensures that the forwarding associated with each set R
is a non-USPF, which is necessary for (7.7) to be valid for USPA. Condition
(ii) and the fact that the associated non-USPF F(R) is irreducible, on the

7.4. Arc Routing Formulations 169

other hand, are not necessary for (7.7) to be valid; these two conditions only
filter out those sets R for which inequality (7.7) would be trivially dominated
by the variable bounds and other USPF circuit inequalities.

If it is clear from the context that we are talking about an arc routing
formulation, we will call these inequalities simply circuit inequalities.

Note that the circuit inequalities (7.7) are just the disaggregated version
of the inequalities

∑

(t,a)∈F

max{ys,t
a : s with (s, t) ∈ K} ≤ |F | − 1 ∀ F ∈ CUSPF , (7.7’)

which involve non-linear max-terms. In fact, the set of all circuit inequalities
(7.7) is equivalent to the set of all inequalities (7.7’), see also Section 7.4.1
below.

The following theorem shows that, together with the integrality con-
straints for the arc routing variables, the linear constraints (7.6) and (7.7)
are sufficient to characterize all unsplittable shortest path routings for the
commodity set K.

Theorem 7.7

USPA = conv
{

y ∈{0, 1}K×A : y satisfies (7.6) and (7.7)
}

.

Proof. First, we show that any vertex of USPA is contained in the polytope
defined by the binary vectors y ∈ {0, 1}K×A that satisfy (7.6) and (7.7). So,
let y be a vertex of USPA. By definition of USPA, there exists an USPR
S ⊂ P(K) for the commodity set K, such that y = χ(R(S)). Obviously, y
is 0/1-valued. It is also easy to see that y satisfies all equalities (7.6). It
remains to show that y also satisfies all inequalities (7.7).

So, suppose y violates inequality (7.7) for some set R ⊆ K × A. As y
is a 0/1-vector, this can only be the case if ys,t

a = 1 for all ((s, t), a) ∈ R.
For each ((s, t), a) ∈ R, the arc a then must be contained in the (s, t)-path
that belongs to the given path set S. This, however, implies that F(R)
forms an USPF, which contradicts with condition (i) of inequality (7.7).
Consequently, y satisfies all circuit inequalities (7.7).

For the reverse direction of the proof, consider a vector y ∈ {0, 1}K×A

that satisfies (7.6) and (7.7), and let

Ps,t :=
{

a : ys,t
a = 1

}

for each (s, t) ∈ K.

Since y is binary and fulfills the flow conservation constraints (7.6), each arc
set Ps,t contains an (s, t)-path and maybe some additional circuits. For any
directed cycle C ⊆ A and any t ∈ V , however, the set {(t, a) : a ∈ C} is a
non-USPF. The circuit inequalities (7.7) imply that ys,t

a = 0 for at least one
arc a ∈ C. Consequently, each arc set Ps,t is indeed a simple (s, t)-path.

170 7. Integer Linear Programming Models

Now, suppose that the set S := {Ps,t : (s, t) ∈ K} of these paths does not
form an USPR for the commodities K. According to Observation 4.17 on
page 61, its associated forwarding F(S) then must be a non-USPF.

Clearly, there exist some irreducible non-USPF F ⊆ F(S). Furthermore,
for each (t, a) ∈ F , there exists at least one node st,a ∈ V such that (st,a, t) ∈
K and y

st,a,t
a = 1.

One easily verifies that the set R := {((st,a, t), a) : (t, a) ∈ F} ⊆ K ×
A then satisfies both conditions (i) and (ii) of inequality (7.7). Hence,
inequality (7.7) for R would be violated by the given vector y. As this
is a contradiction to our assumption that y satisfies all inequalities (7.7),
the routing paths Ps,t form an unsplittable shortest path routing for the
commodity set K. �

Note that the set of all circuit inequalities (7.7) contains the inequalities

ys1,t
(u,v) + ys2,t

(u,w) ≤ 1 ∀ (s1, t), (s2, t) ∈ K, (u, v), (u, w) ∈ A, v 6= w

as a subset. Taken alone, these inequalities ensures that the routing paths
of all commodities with a the same destination t form an anti-arborescence
with root t for any integer vector y ∈ {0, 1}V ×A.

Theorem 7.7 leads straightforward to another group of (mixed-) integer
linear programming formulations for unsplittable shortest path routing prob-
lem.

Analogously to the path variable formulations discussed in the previous
section, the fixed charge network design problem FC-USPR can be formu-
lated by introducing additional binary capacity variables za ∈ {0, 1}, a ∈ A,
and the necessary capacity constraints

∑

(s,t)∈K

ds,t ys,t
a ≤ ua za ∀ a ∈ A. (7.8)

The complete integer linear programming formulation obtained this way for
the fixed charge network design problem FC-USPR is

min
{

wT z : (y, z) ∈ {0, 1}(V ×A)∪A, (FC-ArcIP)

(y, z) satisfies (7.6)–(7.8)
}

.

Analogously, the capacitated network design problem Cap-USPR can be
formulated with general non-negative integer capacity variables za ∈ Z+,
a ∈ A. Its corresponding integer linear programming formulation then reads

min
{

wT z : (y, z) ∈ {0, 1}V ×A × ZA
+, (Cap-ArcIP)

(y, z) satisfies (7.6)–(7.8)
}

.

7.4. Arc Routing Formulations 171

To formulate the congestion minimization problem Min-Con-USPR, we
again introduce a single non-negative congestion variable L ∈ R+ and impose
the capacity constraints

∑

(s,t)∈K

ds,t ys,t
a ≤ uaL ∀ a ∈ A (7.9)

This yield the following mixed integer linear programming formulation for
Min-Con-USPR:

min
{

L : (y, L) ∈ {0, 1}V ×A × R+, (Con-ArcIP)

(y, L) satisfies (7.6), (7.7), and (7.9)
}

.

Theorem 7.7 immediately implies the correctness of these three formula-
tions. Other unsplittable shortest path routing problems can be formulated
analogously.

Again, the circuit inequalities (7.7) are sufficient to ensure that each in-
teger solution of the above formulations defines a valid unsplittable shortest
path routing, but the LPs obtained by relaxing the integrality constraints
are not very strong. Additional inequalities to strengthen the formulations
are derived in Chapter 8.

Again, several additional real-world routing restrictions can be easily in-
corporated into these models.

• Path length restrictions, such as upper bounds on the physical length,
the number or arcs, or the delay of the routing paths, can be taken
into account by adding inequalities of the type

∑

a∈A

ℓay
s,t
a ≤ ℓmax

s,t ∀(s, t) ∈ K ,

where the coefficients ℓa denote the considered length values of the
arcs and the numbers ℓmax

s,t denote the imposed length bounds for each
commodity (s, t) ∈ K.

• Node or arc taboos, which forbid the use of certain nodes or arcs in the
routing paths of some commodities, can be enforced by removing the
corresponding arc routing variables from the model or, equivalently,
setting their upper bounds to 0.

• Routing symmetry, i.e., the use of anti-parallel routing paths for anti-
parallel commodities, is easily obtained by either adding the equalities

ys,t
(u,v)

= yt,s
(v,u)

∀ (s, t), (t, s) ∈ K, (u, v), (v, u) ∈ A

or by performing the corresponding variable substitutions.

The models presented in Section 9.1 include all these extensions and modi-
fications.

172 7. Integer Linear Programming Models

7.4.1 Variants with Additional Forwarding Variables

As already mentioned above, the circuit inequalities (7.7) are just the dis-
aggregated form of the simpler but in the strict sense non-linear inequalities
(7.7’). By introducing extra variables for the max-expressions involved in
inequalities (7.7’), the arc routing formulation can be ‘simplified’ as follows.

For each node t ∈ V and each arc a ∈ A, we introduce an additional for-
warding variable xt

a ∈ {0, 1} to indicate whether the pair (t, a) is contained
in the associated forwarding of the routing. The natural interpretation of
these variables is

xt
a =











1, if arc a = (u, v) is contained in the unique shortest

(u, t)-path defined by the routing, and

0, otherwise.

With these additional variables, the set of circuit inequalities (7.7) can be
equivalently formulated as

∑

(t,a)∈F

xt
a ≤ |F | − 1 ∀ F ∈ CUSPF , (7.7a)

ys,t
a ≤ xt

a ∀(s, t) ∈ K, a ∈ A (7.7b)

Inequalities (7.7a) ensure that the forwarding variables describe a unique
shortest path forwarding. Together with inequalities (7.6) and (7.7b), this
implies that the arc routing variables ys,t

a describe a valid unsplittable short-
est path routing for the commodity set K.

Consider the polytope associated with this extended integer linear pro-
gramming formulation.

Definition 7.8 The unique shortest path forwarding polytope USPF(K)
is the convex hull of all those vectors (y, x) ∈ {0, 1}(K×A)∪(V ×A) that satisfy
(in)equalities (7.6), (7.7a), and (7.7b), i.e.,

USPF(K) := conv
{

(y, x) ∈ {0, 1}(K×A)∪(V ×A) :

(y, x) satisfies (7.6), (7.7a), (7.7b)
}

.

If it is clear from the context which commodity set K we refer to, we again
omit the parameter K.

It is easy to verify the following equivalence.

Proposition 7.9

{

y ∈ RK×A
+ : y satisfies (7.6) and (7.7)

}

=
{

y ∈ RK×A
+ : ∃ x ∈ RV ×A

+ s.t. (y, x) satisfies (7.6), (7.7a), (7.7b)
}

7.4. Arc Routing Formulations 173

Proof. Follows immediately with xt
a := max{ys,t

a : (s, t) ∈ K} for all t ∈ V
and a ∈ A. �

Proposition 7.9 implies that the unsplittable shortest path arc routing poly-
tope USPA is equal to the projection of USPF onto the space of arc routing
variables y, i.e.,

USPA = {y ∈ RK×A : ∃ x ∈ RV ×A with (y, x) ∈ USPF} .

Together with Theorem 7.7, this leads to the following result.

Theorem 7.10 The polytope USPF(K) is the convex hull of all those vec-
tors (y, x) ∈ {0, 1}(K×A)∪(V ×A), for which y is the incidence vector of the
arc routing of an USPR for the commodity set K and x is the incidence
vector of an USPF with xt

a ≥ ys,t
a for all (s, t) ∈ K and all a ∈ A

Less formally speaking, Theorem 7.10 says that also the extended formu-
lation with additional forwarding variables ‘correctly’ models unsplittable
shortest path routings.

Each of the three integer linear programming formulations (FC-ArcIP),
(Cap-ArcIP), and (Con-ArcIP) can be transformed into another (mixed-
) integer linear programming formulation by adding the |V | · |A| additional
forwarding variables xt

a and replacing set of circuit inequalities (7.7) with
the set of inequalities (7.7a) and (7.7b). By Theorem 7.10, both alterna-
tives are correct and equivalent with respect to the optimal integer solution
value. Even more, Proposition 7.9 implies that also the linear relaxation
of the original formulation with inequalities (7.7) and that of the extended
formulation with forwarding variables and inequalities (7.7a) and (7.7b) are
equivalent, i.e., yield the same optimal solution value.

Also, it is not necessary to require integrality for both the arc routing
variables ys,t

a and for the forwarding variables xt
a. One easily verifies that

the integrality of all forwarding variables implies the integrality of all arc
routing variables. The integrality of all arc routing variables, on the other
hand, implies integrality only for those forwarding variables xt

(u,v) where u is

contained in some chosen (s, t)-path, but not necessarily for all forwarding
variables. However, the remaining forwarding variables can be set to 0 with-
out violating any of the inequalities (7.7a) or (7.7b). So, any solution with
integer arc routing variables can be transformed into an equivalent solution
with both integer arc routing variables and integer forwarding variables.

The fixed charge network design problem FC-USPR thus can be formu-
lated as a mixed integer linear program also in one of the following two
ways:

min
{

wT z : (x, y, z) ∈ RV ×A
+ × {0, 1}(K×A)∪A, (FC-FwdIP)

(x, y, z) satisfies (7.6), (7.7a), (7.7b), and (7.8)
}

174 7. Integer Linear Programming Models

min
{

wT z : (x, y, z) ∈ {0, 1}V ×A × RK×A
+ × {0, 1}A, (FC-FwdIP’)

(x, y, z) satisfies (7.6), (7.7a), (7.7b), and (7.8)
}

Both formulations (FC-FwdIP) and (FC-FwdIP’) are equivalent to the
formulation (FC-ArcIP) with respect to both their optimal integer solution
value and their optimal linear relaxation value. Analogously, mixed integer
linear programming formulations with forwarding variables and constraints
(7.7a) and (7.7b) instead of constraints (7.7) can be derived for FC-USPR,
Min-Con-USPR, or other unsplittable shortest path routing problems.

Similar to the USPF circuit inequalities (7.7), many other valid inequali-
ties for USPA can be formulated easier in terms of the forwarding variables
xt

a than in terms of the arc routing variables ys,t
a . The following theorem

describes the basic relation between the valid inequalities in both variants.

Theorem 7.11 An inequality
∑

(t,a)∈V ×A

αt
a xt

a ≤ α0

with αt
a ≥ 0 for all (t, a) ∈ V × A is valid for USPF if and only if, for all

R ⊆ K × A with F(R) = V × A and |R| = |V | · |A|, the inequality
∑

((s,t),a)∈R

αt
a ys,t

a ≤ α0

is valid for USPA.

Proof. Inequalities (7.7b) imply that xt
a ≥ max{ys,t

a : (s, t) ∈ K} for all
t ∈ V and a ∈ A. From this, the claim follows straightforward. �

The remaining two sections of this chapter are dedicated to the questions
that naturally arise if one wishes to solve the formulations presented above.
In a standard branch-and-bound algorithm, we would iteratively optimize
over the respective LP relaxations and branch on one (or a set) of the integer
variables whose value is fractional in the current LP solution. From an algo-
rithmic point of view, it thus is natural to ask whether (i) the LP relaxation
can be solved efficiently and (ii) which of the alternative formulations has
the stronger LP relaxation.

In the following section, we discuss the computational complexity of solv-
ing the LP relaxations. Afterwards, in Section 7.6, we address the strength
of the relaxations.

7.5 Solving the LP Relaxations

In this section, we study the separation and pricing problems associated
with the LP relaxations of the integer linear programming formulations in-
troduced above.

7.5. Solving the LP Relaxations 175

In general, all of these formulations involve exponentially many inequali-
ties or variables: The path routing formulations contain both exponentially
many path variables xP , P ∈ P(K), and exponentially many USPS cir-
cuit inequalities (7.2), whereas the arc routing formulations contain ‘only’
exponentially many USPF circuit inequalities (7.7) or (7.7a). From the com-
putational perspective, it is an interesting question whether the pricing and
separation problems associated with these variables and inequalities can be
solved in polynomial time or not.

Note that we actually want to solve the integer linear programs introduced
above, and that we intend to do this with the standard LP-based branch-
and-bound approach. In the LP relaxations that we then would solve at the
nodes of the branch-and-bound tree, some of the commodities routing vari-
ables may be fixed already. When solving an LP in the branch-and-bound
tree, these fixings need to be considered. Since we consider unsplittable
shortest path routings, there are interdependencies among all paths of all
commodities. Even the routing paths that are entirely fixed by the previous
branching decisions must be explicitly considered in the LP relaxation of a
subproblem; they still may imply constraints on the other paths and thus
lead to the separation of new inequalities.

In order to keep notation and argumentation as simple as possible, we
focus on the integer programming formulations for the fixed charge network
design problem FC-USPR in this and in the following section. The obtained
results carry over straightforward to the formulations of Cap-USPR and
Min-Con-USPR.

7.5.1 Path Routing Formulations

The formulation (FC-PathIP) contains exponentially many path routing
variables xP , P ∈ P(K), as well as exponentially many USPS circuit in-
equalities (7.2) in general. It therefore is natural to solve its LP relaxation
using a price-and-cut algorithm, which iteratively solves a series of so-called
restricted LP relaxations.

In principle, a price-and-cut algorithm works as follows: It starts with
a restricted LP (RLP) that consists of only a small initial subset of the
variables and constraints of the entire LP relaxation. In each iteration,
it first solves the current (RLP) and then determines some path variables
with negative reduced cost and/or some violated inequalities. These are
then added to (RLP) for the next iteration. The algorithm stops if neither
variables with negative reduced costs nor violated inequalities are found.
The optimal solution of the last iteration’s (RLP) is optimal and feasible for
the complete LP relaxation. Barnhart et al. [16, 18, 17] and Desrosiers and
Lübbecke [70, 71] discuss theoretical aspects and successful implementations
of such algorithms.

The efficiency of the overall price-and-cut algorithm depends substantially

176 7. Integer Linear Programming Models

on how efficient variables with negative reduced costs and violated inequal-
ities can be found. In our case, the separation problem for USPS circuit
inequalities is NP-hard, unfortunately. Even more, there exists a class of
problem instances for which the LP relaxation of (FC-PathIP) has a unique
optimal basis with exponentially many active path variables and exponen-
tially many binding circuit inequalities. We will present such an example at
the end of this section. Hence, the LP relaxation of (FC-PathIP) cannot
be solved in polynomial time in general.

On the positive side, we will that the separation problem for the circuit
inequalities (7.2) can be solved in polynomial time if the given vector x
is integer, and we will show that, in each iteration of the price-and-cut
algorithm, the pricing problem for the path variables xP , P ∈ P , can be
solved in polynomial time with respect to size of the current restricted LP.

Separation of USPS Circuit Inequalities

First, we consider the separation problem for the USPS circuit inequalities
(7.2). Formally, this separation problem is given as follows:

Problem: Sep-USPS-Circuit

Instance: A vector x ∈ QP(K).

Task: Find an irreducible non-USPS S ∈ CUSPS for which x
violates the circuit inequality (7.2) or prove that no such
S exists.

Without loss of generality, we may assume that the factional solution x
satisfies at least the trivial variable bounds, i.e., x ∈ [0, 1]P(K). Furthermore,
we may assume that x is given as a sparse-vector, i.e., only the non-zero
entries of x are actually encoded. In other words, the encoding size of
the separation problem Sep-USPS-Circuit depends only on the non-zero
values in x, but not on the size of the entire path set S.

For any given such vector x and any irreducible non-USPS S, one can
easily verify in polynomial time whether the corresponding circuit inequality
(7.2) is violated or not. Therefore, Sep-USPS-Circuit is an NP decision
problem. With the results of Chapter 5, it follows that Sep-USPS-Circuit
is also NP-hard.

Theorem 7.12 Sep-USPS-Circuit is NP-complete in general.

Proof. Given a vector x ∈ [0, 1]P(K), Sep-USPS-Circuit is equivalent to
the problem of finding an irreducible non-USPS S ∈ CUSPS with

∑

P∈S(1−
xP) < 1 or proving that no such S exists. This, in turn, is equivalent to
solving the Min-Weight-Non-USPS problem for the path set S′ := {P :
xP > 0} and the path weights wP := (1 − xP) for all P ∈ S. The latter
problem was shown to be NP-hard to approximate within a factor strictly

7.5. Solving the LP Relaxations 177

less than 7/6 in Theorem 5.15 and Corollary 5.16. Hence, Sep-USPS-
Circuit is NP-hard as well. �

One can show that Sep-USPS-Circuit remains NP-hard even if x is
given by an optimal solution (x, z) of some restricted LP relaxation of
(FC-PathIP).

Because Sep-USPS-Circuit is NP-hard, we cannot hope to solve the
LP relaxation of (FC-PathIP) in polynomial time (unless P = NP). How-
ever, we can efficiently cut-off integer vectors x that do not correspond to
unsplittable shortest path routings.

Theorem 7.13 Sep-USPS-Circuit can be solved in polynomial time for
binary vectors x ∈ {0, 1}P(K).

Proof. Let x ∈ {0, 1}P(K) and S(x) := {P ∈ P(K) : xP = 1}. Then Sep-
USPS-Circuit is equivalent to finding an irreducible non-USPS R ⊆ S(x)
or proving that S(x) is a USPS. This problem can be solved in polynomial
time with respect to |S(x)| using algorithm Greedy-Non-USPS presented in
Chapter 5, see Theorem 5.13 on page 83. Because |S(x)| ≤ |K| for any x ∈
{0, 1}P(K) that satisfies (7.3), Sep-USPS-Circuit is solved in polynomial
time with with respect to |K|. �

Note that Theorem 7.13 only implies that one can find some violated circuit
inequality (7.2) for any invalid integer vector x. Finding the most violated
such inequality (in the normalized form with right-hand side 1) is equivalent
to the problem of finding the minimum cardinality non-USPS R ⊆ S(x),
which again is NP-hard, see Theorem 5.15.

There are several special cases, in which also the general separation prob-
lem Sep-USPS-Circuit can be solved in polynomial time. One such case
comprises symmetric (or undirected) unsplittable shortest path routing prob-
lems where the underlying graph is a cycle or, more general, belongs to the
class of graphs described in Theorem 5.26 on page 100. In these graphs, the
family of unsplittable shortest path routings is completely characterized by
the Bellman property. Therefore, the size of any irreducible non-USPSs is
exactly two, so Sep-USPS-Circuit can be solved in polynomial time by
enumerating all possible irreducible non-USPSs.

Pricing of Path Variables

In the sequel, we turn our attention to the pricing problem for the path
variables xP , P ∈ P(K).

Consider the LP relaxation of (FC-PathIP) and let ηS , S ∈ CUSPS, be
the dual variables of the circuit inequalities (7.2), let πs,t, (s, t) ∈ K, be the
dual variables of the demand constraints (7.3), and let µa, a ∈ A, be the
dual variables of the capacity constraints (7.4). The problem of finding a
path variable with negative reduced cost then can be formulated as follows:

178 7. Integer Linear Programming Models

Problem: Price-USPR-Path

Instance: Vectors η ∈ QCUSP S , π ∈ QK , and µ ∈ QA.

Task: Find an (s, t)-path P ∈ P(K) such that

−πs,t −
∑

a∈P

µa −
∑

S∈CUSP S : P∈S

ηS < 0 (7.10)

or show that no such path exists.

In view of this problem, we may assume without loss of generality that
ηS ≥ 0 for all S ∈ CUSPS , that πs,t ≤ 0 for all (s, t) ∈ K, and that µa ≥ 0
for all a ∈ A.

It is easy to see the Price-USPR-Path is in NP . We also have reason
to believe that, for general vectors η, π, and µ, this problem is NP-hard.

Conjecture 7.14 For arbitrary vectors η ∈ Q
CUSP S
+ , π ∈ QK

− , and µ ∈ QA
+,

Price-USPR-Path is NP-hard.

However, within a branch-and-price-and-cut algorithm for (FC-PathIP)
the vectors η, π, and µ are not arbitrary. They comprise an optimal dual
solution of some restricted LP relaxation of (FC-PathIP).

In the following we show that, given a restricted LP relaxation (RLP) of
(FC-PathIP), the problem of finding a path variable with negative reduced
cost can be solved in polynomial time with respect to the encoding size of
(RLP). In this setting, we may assume without loss of generality that also
the set R ⊆ P(K) of all path variables contained in (RLP) is given as input
to the pricing problem Price-USPR-Path.

The following lemma shows that we can restrict our attention to those
vectors η, π, and µ that satisfy

ηS = 0 for all S ∈ CUSPS with S 6⊆ R. (7.11)

Lemma 7.15 Let R ⊆ P(K) and consider a restricted LP relaxation (RLP)
of (FC-PathIP). Assume that

(i) (RLP) contains all capacity variables za, a ∈ A,

(ii) (RLP) contains exactly those path variables xP with P ∈ R,

(iii) (RLP) contains the variable bound constraints 0 ≤ xP ≤ 1 for all
P ∈ R, and

(iv) (RLP) contains all (in)equalities (7.3) and (7.4).

Furthermore, (RLP) may contain an arbitrary number of circuit inequalities
(7.2).

Then there exists an optimal dual solution (η∗, π∗, µ∗) of (RLP) that sat-
isfies (7.11).

7.5. Solving the LP Relaxations 179

Proof. For all those S ∈ CUSPS, for which the corresponding circuit in-
equality (7.2) is not contained in (RLP), we trivially have ηS = 0 for any
dual feasible solution (η, π, µ) of (RLP).

So let S ∈ CUSPS be an irreducible non-USPS with S 6⊆ R, whose corre-
sponding circuit inequality (7.2) is contained in (RLP).

The path variables xP with P ∈ S \ R are not contained in (RLP), so
we have xP = 0 for all P ∈ S \ R in any solution (x, z) of (RLP). (Every
solution (x, z) of (RLP) is interpreted as a solution (x, z) of the entire linear
relaxation of (FC-PathIP) with xP = 0 for all P 6∈ R.) For each other path
P ∈ S ∩ R, (RLP) contains the path routing variable xP together with its
corresponding variable bound constraint xP ≤ 1. As S 6⊆ R, these variable
bound constraints imply

∑

P∈S

xP =
∑

P∈S∩R

xP +
∑

P∈S\R

xP =
∑

P∈S∩R

xP ≤ |S| − 1 .

Consequently, the circuit inequality (7.2) for S is redundant in (RLP).
In fact, the above argument shows that (7.2) is redundant for all path

sets S ∈ CUSPS with S 6⊆ R. It then follows immediately from linear pro-
gramming duality that there exists a dual optimal solution (η∗, π∗, µ∗) with
η∗

S = 0 for all these path sets S. �

Using a simple perturbation technique when solving (RLP), one can eas-
ily enforce that the optimal dual solution (η∗, π∗, µ∗) of (RLP), which is
considered as input for the pricing problem, satisfies (7.11).

Remark 7.16 Lemma 7.15 implies that there exist optimal dual multipliers
satisfying (7.11) even if the restricted LP (RLP) contains all circuit inequal-
ities (7.2) of (FC-PathIP). However, if the LP relaxation of (FC-PathIP)
is solved by a price-and-cut algorithm as proposed at the beginning of this
section, then the intermediate restricted LPs do not even contain circuit
inequalities (7.2) whose underlying non-USPS S is not fully contained in
the set of active path variables. Lemma 7.15 and property (7.11) then hold
trivially.

Property (7.11) implies that, for each path P 6∈ R, we have ηS = 0 for all
S ∈ CUSPS with P 6∈ R P ∈ S. Given the set R ⊆ P(K) of path contained
in (RLP) and a dual feasible solution (η, π, µ) of (RLP) that satisfies (7.11),
Price-USPR-Path thus reduces to the problem of finding a path P ⊂
P(K) \ R that satisfies

−πs,t −
∑

a∈P

µa < 0 , (7.12)

or to prove that no such path exists.
This restricted version of Price-USPR-Path can be solved easily by

computing the (|R∩P(s, t)|+1) shortest (s, t)-paths with respect to the arc

180 7. Integer Linear Programming Models

lengths µa, a ∈ A, for each (s, t) ∈ K. If the length of the shortest (s, t)-
path that does not belong to R is less than −πs,t, then this path satisfies
(7.12), and consequently also (7.10). Otherwise no (s, t)-path with negative
reduced cost exists.

For each commodity (s, t) ∈ K, the (|R∩P(s, t)|+1) shortest (s, t)-paths
can be computed in polynomial time with respect to |R∩P(s, t)| and to the
encoding size of µ, using the k-shortest paths algorithms of Yen [196] for
example.

This immediately yields the following theorem.

Theorem 7.17 Let (RLP) be a restricted LP relaxation of (FC-PathIP).
Furthermore, let R ⊆ P(K) be the set of all paths whose corresponding path
variable is contained in (RLP) and let (π, η, µ) be a dual solution of (RLP)
that satisfies (7.11). Then Price-USPR-Path can be solved in polynomial
time with respect to |R|, |A|, and the encoding size of η, π, and µ.

Theorem 7.17 implies that, in each iteration of the price-and-cut algorithm,
a single path variable with negative reduced cost can be found in polynomial
time with respect to the size of the current restricted LP. Unfortunately, the
process of iteratively adding violated inequalities or missing path variables
with negative reduced cost does not necessarily terminate after only poly-
nomially many iterations, as we will see in the following section.

Remark 7.18 Note that the pricing problem remains polynomially solvable
if some nodes or arcs are forbidden in the routing paths of some commodities
or if path length restrictions based on uniform arc lengths are introduced.
To cope with the first kind of restrictions, the k-shortest paths problem can
be solved in the corresponding subgraph of D. If length bounds are imposed
on the admissible routing paths, the pricing problem turns into a ℓ-bounded
k-shortest paths problem, which is still solvable in polynomial time with a
variant of Yen’s algorithm [196] for uniform arc lengths. If the underlying
arc lengths are arbitrary, the ℓ-bounded k-shortest paths problem and our
pricing problem become (weakly) NP-hard.

Node and link taboos or limits on the hop-length of the paths, as intro-
duced in our real models, therefore do not affect the solvability of the pricing
problem. Also, branching schemes that work by fixing the path variables of
all paths that cross a chosen set of arcs to 0, like the set-based branching
scheme introduced by Barnhart et al. [18], do not affect the nature of the
pricing problem. These fixings can be handled easily be reducing the graph
used in the k-shortest paths computation, again.

Exponentially Large Optimal Bases

In general, an optimal basis of the full LP relaxation at some node of the
branch-and-bound tree may involve an exponential number of variables and

7.5. Solving the LP Relaxations 181

· · ·

v1 v2 v3

Arc costs: w(v2,v3) = 3α + 8,

wa = 1 otherwise

v4 v5 v6 = u0 u1 u2 uα−1 uα

ū1 ū2 ūα

Figure 7.1 Digraph D with indicated capacity bounds and costs: Bold arcs
have a capacity of 2, thin arcs have a capacity of 1.

constraints (with respect to the encoding size of the underlying FC-USPR
problem).

Proposition 7.19 There exist classes of FC-USPR instances, for which
the optimal basis of the LP relaxation of (FC-PathIP) is unique and con-
tains both an exponential number of active path variables xP and an expo-
nential number of binding circuit inequalities (7.2).

Proof. In order to simplify and shorten the presentation, we provide a class
of examples where the routing paths of some commodities are already fixed.
If (FC-PathIP) is solved by an LP-based branch-and-bound algorithm, this
is the case after some branches anyway. It is not difficult to extend this class
of examples to the case without fixed routing paths.

Let α ∈ Z+ and consider the digraph D = (V, A) with capacities ua and
arc costs wa illustrated in Figure 7.1. The node set V consist of the 6 + 2α
nodes v1, . . . , v6, u1, . . . , uα, and ū1, . . . , ūα. The arc set A consists of the
8 arcs (v1, v2), (v2, v3), (v4, v5), (v5, v6), (v1, v5), (v5, v3), (v4, v2), (v2, v6)

and the 3α arcs (ui−1, ui), (ui−1, ūi), and (ūi, ui) with i = 1, . . . , α, where
u0 := v6. The capacities ua and the arc costs wa are set to

ua :=

{

2, for a ∈ {(v1, v2), (v2, v3), (v4, v5), (v5, v6)},
1, otherwise,

and

wa :=

{

3α + 8, for a = (v2, v3),

1, otherwise.

Note that size of the graph as well as the encoding size of the capacity
bounds and arc costs are polynomial in α.

Among the nodes of D we consider the four commodities (v1, v3), (v4, v3),
(v4, v6), and (v1, uα) with demand values

ds,t :=

{

2, for (s, t) = (v4, v6), and

1, for (s, t) ∈ {(v1, v3), (v4, v3), (v1, uα)}.

182 7. Integer Linear Programming Models

We assume that the routing paths of the commodities (v4, v3) and (v4, v6)
have already been fixed by the Branch-and-Cut-and-Price algorithm to (the
only feasible choice)

P4,3 :=
(

v4, v2, v3

)

for commodity (v4, v3) and

P4,6 :=
(

v4, v5, v6

)

for commodity (v4, v6).

In the following, we show that the LP relaxation of (FC-PathIP) has a
unique optimal solution (x∗, z∗) satisfying

xP4,3 = xP4,6 = 1 , (7.13)

and that x∗
P > 0 for exponentially many paths P .

First, let us see which path variables xP may have positive values in such
a solution. Commodity (v1, v3) may be routed fractionally over both of the
two (v1, v3)-paths PA

1,3 :=
(

v1, v5, v3

)

and PB
1,3 :=

(

v1, v2, v3

)

. Note that the
capacity of (v5, v6) is already saturated by routing commodity (v4, v6) across
this arc. For commodity (v1, uα) therefore only those (v1, uα)-paths P with
(v5, v6) 6∈ P are eligible. One easily verifies that there are exactly 2α many
such (v1, uα)-paths, and we denote these paths P 1

1,α to P 2α

1,α.

Next, observe that each of these paths P i
1,α contains the subpath

(

v1, v2, v6

)

. Hence, every path set Si :=
{

PA
1,3, P4,3, P4,6, P i

1,α

}

, i =
1, . . . , 2α, is an irreducible non-USPS. Consequently, (FC-PathIP) contains
a circuit inequality (7.2) for each such set Si. All other inequalities (7.2) in
(FC-PathIP) are redundant for the subproblem defined by (7.13).

Furthermore, the demand constraints (7.3) imply that any x that satisfies
(7.13) also fulfills

max{xP i
1,α

: i = 1, . . . , 2α} ≥ 2−α , (7.14)

xP A
1,3

≤ 1 − 2−α and (7.15)

xP B
1,3

≥ 2−α . (7.16)

Clearly, equality holds in (7.14), (7.15), and (7.16) if and only if xP i
1,α

= 2−α

for all i = 1, . . . , 2α.

Note that we have w(v2,v3) >
∑

a6=(v2,v3)
wa for the arc costs defined in our

example. Hence, there is a unique optimal fractional solution (x∗, z∗) for
(FC-PathIP) satisfying (7.13), which is given by

x∗
P =























1, for P = P4,3 and P = P4,6,

1 − 2−α, for P = PA
1,3,

2−α, for P = PB
1,3 and P ∈ {P i

1,α : i = 1, . . . , 2α}, and

0, otherwise,

7.5. Solving the LP Relaxations 183

v1 v2 v3

v4 v5 v6 = u0 u1 u2 uα

ū1 ū2 ūα

Figure 7.2 Optimal fractional solution of (FC-PathIP) with exponentially
many active variables and inequalities.

and

z∗a =























1, for a ∈ {(v4, v5), (v5, v6), (v4, v2), (v2, v6)},
(1 + 2−α)/2, for a = (v1, v2) and a = (v2, v3)

1 − 2−α, for a = (v1, v5) and a = (v5, v3), and

1/2, otherwise.

Figure 7.2 illustrates the routing corresponding to this solution.
In the corresponding basis, obviously all 2α path variables xP i

1,α
are active.

It is not difficult to verify that each of the 2α circuit inequalities (7.2) for
the sets Si is tight and active in this basis. If one of these inequalities were
remove from the LP, then some (v1, v3)-flow could be shifted from path PB

1,3

to path PA
1,3, leading to less capacity installation on arc (v2, v3) and a better

objective value.
With α → ∞ Proposition 7.19 follows. �

Proposition 7.19 implies that we cannot expect to solve the LP relaxation
of (FC-PathIP) in polynomial time.

Remark 7.20 In the simplified example shown above one could easily lift
all path variables P i

1,α, i = 1, . . . , 2α, into the circuit inequality (7.2) of some
set Sj . This would yield the general rank inequality

∑

i=1,...,2α

xP i
1,α

+ xP A
1,3

+ xP4,3 + xP4,6 ≤ 3 ,

which dominates all 2α circuit inequalities (7.2) for the sets Sj , j = 1, . . . , 2α.
The LP including this inequality would have an optimal basis of polynomial
size for the case discussed above. However, it is not clear how to find a set of
valid inequalities such that the resulting optimal basis in only polynomially
large in general.

Remark 7.21 Proposition 7.19 and the presented class of examples carry
over straightforward to the LP relaxation of (Con-PathIP). It also hold for

184 7. Integer Linear Programming Models

the restricted LP relaxations of (Cap-PathIP) that are solved at the sub-
nodes of an LP-based branch-and-bound algorithm, where some of the com-
modities routing paths or some of the capacity variables are already fixed.
However, it does not hold for the plain LP relaxation of (Cap-PathIP)
without all variables free. This LP can be solved easily by routing each
commodity unsplit along a shortest path with respect to the metric wa/ua

for all a ∈ A.

7.5.2 Arc Routing Formulations

In contrast to the formulation based on path routing variables, the formu-
lations based on arc routing variables contain ‘only’ a polynomial number
of variables. Yet, also these formulations involve exponentially many (non-
redundant) non-USPF inequalities of type (7.7) or (7.7a).

In the following, we show that the separation problem for these inequalities
is NP-hard. With the polynomial time equivalence of separation and opti-
mization [103], this implies that solving the LP relaxation of (FC-ArcIP) is
NP-hard as well. On the other hand, we again can cut-off infeasible integer
vectors in polynomial time.

For both types of USPF circuit inequalities (7.7) and (7.7a), the task of
finding a violated inequality leads to the same combinatorial problem, which
can be formalized as follows.

Problem: Sep-USPF-Circuit

Instance: An arbitrary vector x ∈ QV ×A.

Task: Find an irreducible non-USPF F ∈ CUSPF such that

∑

(t,a)∈F

xt
a > |F | − 1

or prove that no such F exists.

To find a violated circuit inequality of type (7.7a) in the formulation that
contains both arc routing and forwarding variables, we need to solve Sep-
USPF-Circuit for the vector x given by the values of the forwarding vari-
ables xt

a in the current LP solution. Obviously, inequality (7.7a) is violated
for an irreducible non-USPF F if and only if

∑

(t,a)∈F xt
a > |F | − 1.

In order to find a violated circuit inequality of type (7.7) in the formulation
without forwarding variables, we solve Sep-USPF-Circuit for the vector
x given by

xt
a := max

{

ys,t
a : (s, t) ∈ K

}

for all t ∈ V and a ∈ A,

where ys,t
a are the values of the arc routing variables in the current LP

solution. It is easy to see that there exist an irreducible non-USPF F with

7.5. Solving the LP Relaxations 185

∑

(t,a)∈F xt
a > |F | − 1 for this vector x, if and only if inequality (7.7) is

violated for the arc routing

R :=
{(

(st,a, t), a
)

: (t, a) ∈ F and st,a = arg max{ys,t
a : (s, t) ∈ K}

}

.

In either case we may assume without loss of generality that the given fac-
tional solution satisfies at least the variables bound constraints and, there-
fore, x ∈ [0, 1]V ×A.

It follows from the results in Chapter 5 that Sep-USPF-Circuit is NP-
complete.

Theorem 7.22 Sep-USPF-Circuit is NP-complete in general.

Proof. Given a vector x ∈ [0, 1]V ×A with xt
a ∈ Q for all t ∈ V and all a ∈ A

and given an irreducible non-USPS S, we obviously can verify in polynomial
time whether

∑

(t,a)∈F xt
a > |F |− 1 or not. So Sep-USPF-Circuit belongs

to the class of NP decision problems.
On the other hand, Sep-USPF-Circuit is equivalent to the problem of

finding an irreducible non-USPF F ∈ V × A with
∑

(t,a)∈F (1 − xt
a) < 1 or

proving that no such F exists. This problem, in turn, is equivalent to solving
the Min-Weight-Non-USPF problem for the weights wt,a := (1 − xt

a) for
all t ∈ V and all a ∈ A. By Corollary 5.33 on page 109, the later problem
is NP-hard to approximate within a factor strictly less than 7/6. Hence,
Sep-USPF-Circuit is NP-hard in general. �

Sep-USPF-Circuit remains NP-hard even if the given vector x corre-
sponds an optimal basic solution of a (restricted) LP of the original formu-
lation.

Again, we can solve the separation problem in polynomial time if the given
vector x is integer.

Theorem 7.23 Sep-USPS-Circuit can be solved in polynomial time for
binary vectors x ∈ {0, 1}V ×A.

Proof. Given a binary vector x ∈ {0, 1}V ×A, let F (x) := {(t, a) : xt
a =

1}. The separation problem Sep-USPF-Circuit then is equivalent to the
problem of finding an irreducible non-USPF E ⊆ F (x) or proving that no
such non-USPF exists. This problem can be solved in polynomial time using
the greedy algorithm Greedy-Non-USPF presented in Chapter 5, see Theorem
5.31 on page 106. �

Theorem 7.23 implies that we can find some violated circuit inequality (7.7)
or (7.7a) if the given integer vector x ∈ {0, 1}V ×A does not correspond
to an unsplittable shortest path routing. Finding the most violated such
inequality (in the normalized form with right-hand side 1) is equivalent to
the problem of finding the minimum cardinality non-USPF E ⊆ F (x). This
problem again is NP-hard, see Theorem 5.15 on page 84.

186 7. Integer Linear Programming Models

In the special cases where the rank of all irreducible non-USPFs in the
underlying graph is bounded by some constant k ∈ Z+ or where the unique
shortest path forwardings are completely characterized by the Bellman prop-
erty, Sep-USPS-Circuit can be solved in polynomial time using enumera-
tive methods. The class of symmetric (or undirected) unsplittable shortest
path routing problems where the underlying undirected graph is a cycle or,
more general, belongs to the class of graphs described in Theorem 5.26 on
page 100 is such as case.

7.6 Strength of the LP Relaxations

In the following section, we finally compare the strength of the three al-
ternative (mixed-) integer linear programming formulations (FC-PathIP),
(FC-ArcIP), and (FC-FwdIP).

For this, let USPRz, USPAz, and USPFz be the three polytopes obtained by
projecting the solutions of the LP relaxations of (FC-PathIP), (FC-ArcIP),
and (FC-FwdIP) onto the space of capacity variables za, a ∈ A, i.e.,

USPRz := conv
{

z ∈ [0, 1]A : ∃ x ∈ [0, 1]P(K) such that

(x, z) satisfies (7.2)–(7.4)
}

,

USPAz := conv
{

z ∈ [0, 1]A : ∃ y ∈ [0, 1]K×A such that

(y, z) satisfies (7.6)–(7.8)
}

, and

USPFz := conv
{

z ∈ [0, 1]A : ∃ (x, y) ∈ [0, 1](K×A)∪(V ×A) such that

(y, x, z) satisfies (7.6), (7.7a), (7.7b), (7.8)
}

.

In order to see whether the LP relaxation of one formulation is stronger,
equivalent, or incomparable to that of another formulation, we need to com-
pare these polytopes. If two of these polytopes coincide for all instances
of FC-USPR, then the respective formulations are equally strong. If, for
all instances of FC-USPR, one polytope is fully contained in another one,
then the formulation corresponding to the smaller polytope is always at least
as strong as that corresponding to the larger one. Finally, if there exist a
digraph D = (V, A) with arc capacities ua, a ∈ A, and a commodity set
K ⊆ V ×V with demand values ds,t, (s, t) ∈ K, such that none of two poly-
topes is contained in the other one, then the formulations are incomparable.
In this case, there exist instances of FC-USPR such the first one yields a
strictly better LP bound and there exist instances such that the latter one
yield a strictly better bound.

First, consider the two polytopes USPAz and USPFz corresponding to
the LP relaxations of (FC-ArcIP) and (FC-FwdIP), respectively. By
Proposition (7.9), these two polytopes coincide.

Theorem 7.24 For all instances of FC-USPR, we have USPAz = USPFz.

7.6. Strength of the LP Relaxations 187

v1 v2 v3

v4

v5

v6 v7 v8

v9

v10

Figure 7.3 Example for a fractional routing and arc capacities that are valid
in the path variable based model but invalid in the arc flow variable based
model.

Proof. Follows directly from Proposition (7.9). �

As already mentioned in Section 7.4, this implies that the LP relaxation
of (FC-ArcIP) and that of (FC-FwdIP) always yield the same objective
value.

Next, consider the two polytopes USPAz and USPRz, which correspond to
the LP relaxations of (FC-ArcIP) and (FC-PathIP), respectively. In the
following, we show that neither USPAz ⊆ USPRz nor USPRz ⊆ USPAz holds
in general.

Theorem 7.25 There exist instances of FC-USPR such that USPAz 6⊆
USPRz.

Proof. For the sake of brevity, we present an example where the routing
paths of some commodities are already given and fixed, as they would be
after some iterations in a branch and bound algorithm. Examples without
pre-fixed routing paths can be constructed similarly.

Let D = (V, A) be the digraph shown in Figure 7.3, which consists of the
10 nodes

V :=
{

v1, . . . , v10

}

and the 14 arcs

A :=
{

(v1, v2), (v2, v3), (v3, v4), (v4, v5), (v3, v5), (v6, v7), (v7, v8),

(v8, v9), (v9, v10), (v8, v10), (v1, v7), (v7, v3), (v6, v2), (v2, v8)
}

with capacities ua = 2 for all a ∈ A. Within this digraph, we have the four
commodities

K :=
{

(v1, v5), (v1, v10), (v6, v3), (v6, v8)
}

with demand values

dv1,v5 = dv1,v10 = 1 and dv6,v3 = dv6,v8 = 2.

188 7. Integer Linear Programming Models

We assume that also the routing paths of the two large commodities (v6, v3)
and (v6, v8) are given and fixed. The prescribed routing paths are

P6,3 :=
(

v6, v2, v3

)

for commodity (v6, v3) and

P6,8 :=
(

v6, v7, v8

)

for commodity (v6, v8).

The polyhedra describing the feasible capacity variables in the corresponding
restricted LP relaxations of (FC-PathIP) and (FC-ArcIP) are

USPR∗
z := conv

{

z ∈ [0, 1]A : ∃ x ∈ [0, 1]P(K) such that

(x, z) satisfies (7.2)–(7.4) and

xP6,3 = xP6,8 = 1
}

, and

USPA∗
z := conv

{

z ∈ [0, 1]A : ∃ y ∈ [0, 1]K×A such that

(y, z) satisfies (7.6)–(7.8) and

y
(6,3)
(v6,v2)

= y
(6,8)
(v6,v7)

= 1
}

.

In oder to show that USPA∗
z 6⊆ USPR∗

z, we consider the fractional capacity
installation z ∈ RA

+ defined as

za :=











1, if a ∈ {(v6, v2), v2, v3), (v6, v7), (v7, v8)},
1/2, if a ∈ {(v1, v2), (v2, v8), (v1, v7), (v7, v3)}, and

1/4, otherwise.

First, we show that z 6∈ USPA∗
z. For this, consider the fractional routing

illustrated in Figure 7.3: The two commodities (v6, v3) and (v6, v8) are sent
unsplit along their prescribed paths P6,3 and P6,8, while commodity (v1, v5)
is sent evenly split along the paths

PA
1,5 :=

(

v1, v7, v3, v5

)

and PB
1,5 :=

(

v1, v7, v3, v4, v5

)

and commodity (v1, v10) is sent evenly split along the paths

PA
1,10 :=

(

v1, v2, v8, v10

)

and PB
1,10 :=

(

v1, v2, v8, v9, v10

)

.

As the capacities of the arcs (v6, v2), (v2, v3), (v6, v7), and (v7, v8) are al-
ready saturated by routing the commodities (v6, v3) and (v6, v8) along the
prescribed paths P6,3 and P6,8, this is in fact the only fractional multicom-
modity flow routing that satisfies the capacities uaza for all arcs a ∈ A and
uses the prescribed paths P6,3 and P6,8. With

R1 :=
{

((v6, v3), (v6, v2)), ((v6, v3), (v2, v3)),

((v6, v8), (v6, v7)), ((v6, v8), (v7, v8)),

((v1, v5), (v1, v7)), ((v1, v5), (v7, v3)),

((v1, v10), (v1, v2)), ((v1, v10), (v2, v8))
}

, and

R0.5 :=
{

((v1, v5), (v3, v5)), ((v1, v5), (v3, v4)), ((v1, v5), (v4, v5)),

((v1, v10), (v8, v10)), ((v1, v10), (v8, v9)) ((v1, v10), (v9, v10))
}

,

7.6. Strength of the LP Relaxations 189

the corresponding fractional arc routing y ∈ RK×A
+ is given by

y(s,t)
a :=











1, for all ((s, t), a) ∈ R1,

1/2, for all ((s, t), a) ∈ R0,5, and

0, otherwise.

Clearly, (y, z) satisfies (7.6) and (7.8). Hence, we have x ∈ USPA∗
z if and

only if y satisfies all inequalities (7.7). As the forwarding

F :=
{

(v3, (v2, v3)), (v8, (v7, v8)), (v5, (v7, v3)), (v10, (v2, v8))
}

is an irreducible non-USPF in D, inequality (7.7) would be valid for the
corresponding arc routing

R :=
{

((v6, v3), (v2, v3)), ((v6, v8), (v7, v8)),

((v1, v5), (v7, v3)), ((v1, v10), (v2, v8))
}

.

However, inequality (7.7) is violated for this set R and, therefore, x 6∈ USPA∗
z.

To see that z ∈ USPR∗
z, consider the path routing vector x ∈ [0, 1]P(K)

corresponding to the above fractional multicommodity flow routing, which
is given by

xP :=











1, for all P ∈ {P6,3, P6,8},
1/2, for all P ∈ {PA

1,5, PB
1,5, PA

1,10, PB
1,10, }, and

0, otherwise.

Clearly, (x, z) satisfies the inequalities (7.3) and (7.4). To see that x also
satisfies all inequalities (7.2), recall that any irreducible non-USPS contains

either 2 or at least 4 paths, see Theorem 5.7. As xP ≤ 1/2 for all path
but except P6,3 and P6,8, (7.2) cannot be violated for a irreducible non-
USPS S with S ≥ 4 and for no irreducible non-USPS S with S = 2 and
S∩{P6,3, P6,8} = ∅. Hence, (7.2) can be violated only if F is a pair of paths
from {P6,3, P6,8, PA

1,5, PB
1,5, PA

1,10, PB
1,10, }. However, any such pair satisfies

the Bellman property and thus forms an USPS. Consequently, all inequalities
(7.2) are satisfied and z ∈ USPR∗

z. �

Theorem 7.26 There exist instances of FC-USPR such that USPRz 6⊆
USPAz.

Proof. Again, we present an example where the routing paths of some
commodities are already given and fix.

Let D = (V, A) be the digraph illustrated in Figure 7.4. This digraph
consists of the 10 nodes

V :=
{

v1, . . . , v10

}

190 7. Integer Linear Programming Models

v1 v2

v3 v4 v5 v6 v7

v8 v9 v10

Figure 7.4 Example for a fractional routing and arc capacities that are valid
in the arc flow variable based model but invalid in the path variable based
model.

and the 17 arcs

A :=
{

(v3, v1), (v1, v2), (v1, v5), (v5, v2), (v2, v7), (v3, v4), (v4, v5),

(v5, v6), (v6, v7), (v3, v8), (v4, v9), (v5, v10), (v8, v5), (v9, v6),

(v10, v7), (v8, v9), (v9, v10)
}

,

with arc capacities ua = 1 for all a ∈ A. Within this digraph, we are given
the 4 commodities

K :=
{

(v4, v6), (v4, v10), (v8, v6), (v3, v7)
}

with demand values ds,t = 1 for all (s, t) ∈ K.
Assume that the routing paths of the first 3 commodities (v4, v6), (v4, v10),

and (v8, v6) are given and fixed as

P4,6 :=
(

v4, v5, v6

)

for commodity (v4, v6),

P4,10 :=
(

v4, v9, v10

)

for commodity (v4, v10), and

P8,6 :=
(

v6, v9, v6

)

for commodity (v8, v6).

We denote the capacity polyhedra defined by the projections of the corre-
sponding restricted LP relaxations by

USPR∗
z := conv

{

z ∈ [0, 1]A : ∃ x ∈ [0, 1]P(K) such that

(x, z) satisfies (7.2)–(7.4) and

xP4,6 = xP4,10 = xP8,6 = 1
}

, and

USPA∗
z := conv

{

z ∈ [0, 1]A : ∃ y ∈ [0, 1]K×A such that

(y, z) satisfies (7.6)–(7.8) and

y
(4,6)
(v4,v5)

= y
(4,10)
(v4,v9)

= y
(8,6)
(v8,v9)

= 1
}

.

We want to show that USPR∗
z 6⊆ USPA∗

z. So, let z ∈ RA
+ be defined as

za :=











1, for all a ∈ P4,6 ∪ P4,10 ∪ P8,6,

0, for all a ∈ {(v3, v4), (v1, v5), (v5, v2), (v6, v7)}, and

1/2, otherwise.

7.6. Strength of the LP Relaxations 191

First, we show that z 6∈ USPR∗
z. For this, consider the fractional routing

where the first three commodities (v4, v6), (v4, v10), and (v8, v6) are routed
unsplit along their respective prescribed paths and the fourth commodity
(v3, v7) is routed evenly split along the two paths

PA
3,7 :=

(

v3, v1, v2, v7

)

and PB
3,7 :=

(

v3, v8, v5, v10, v7

)

.

One easily observes that this routing is the only fractional multicommodity
flow routing of the four commodities that satisfies the capacities uarcza for
all arcs a ∈ A and uses the prescribed paths for the first three commodities.

Hence, z ∈ USPR∗
z if and only if x ∈ R

P(K)
+ with

xP :=











1, for all P ∈ {P4,6, P4,10, P8,6},
1/2, for all P ∈ {PA

3,7, PB
3,7}, and

0, otherwise

satisfies inequality (7.2) for all irreducible non-USPS S in D. However, the
set S := {P4,6, P4,10, P8,6, PB

3,7} is an irreducible non-USPS and (7.2) is
clearly violated for S. Thus, z 6∈ USPR∗

z.
On the other hand, z ∈ USPA∗

z. To see consider the arc routing y ∈ RK×A
+

defined by the above routing, which is given by

y(s,t)
a :=











1, for all ((s, t), a) ∈ R1,

1/2, for all ((s, t), a) ∈ R0.5, and

0, ,otherwise,

where

R1 :=
{

((s, t), a) : (s, t) ∈ {(v4, v6), (v4, v10), (v8, v6)} and

a ∈ P4,6 ∪ P4,10 ∪ P8,6

}

, and

R0.5 :=
{

((s, t), a) : (s, t) = (v3, v7) and a ∈ PA
3,7 ∪ PB

3,7

}

.

Clearly, (y, z) satisfy all constraints (7.6) and (7.8). To see that y satisfies
also all constraints (7.7), observe that the prescribed paths P4,6, P4,10, P8,6

form an USPS. Hence, if inequality (7.7) were violated for some arc routing

R ⊆ K × A, then R must contain some some pair ((s, t), a) with y
(s,t)
a > 0

that does not correspond to the three prescribed paths. And this can only

be one of the pairs ((v3, v7), a) with a ∈ PA
3,7 ∪ PB

3,7. Since y
(v3,v7)
a = 1/2 for

all these pairs ((v3, v7), a), R can contain only one of them for (7.7) to be

violated. As, furthermore, R cannot contain a pair ((s, t), a) with y
(s,t)
a = 0

for (7.7) being violated, R must be a subset of one the sets R((s,t),a) :=
R1 ∪{((s, t), a)} with ((s, t), a) ∈ R0.5. These eight sets, however, are easily
verified to be valid arc routings: Each arc routing where the three paths
P4,6, P4,10 and P8,6 are entirely prescribed but only one routing arc in PA

3,7

192 7. Integer Linear Programming Models

or PB
3,7 is given for commodity (v3, v7) can be extended to a valid unsplittable

shortest path routing for all four commodities. Consequently, none of the
inequalities (7.7) can be violated by the arc routing y, which implies that
z ∈ USPA∗

z. �

Theorems 7.25 and 7.26 show that neither USPAz ⊆ USPRz nor USPRz ⊆
USPAz holds in general. Hence, it is not clear a-priory which of the two
formulations (FC-PathIP) or (FC-ArcIP) yields the better LP bound.
The LP relaxations of these two formulations are incomparable in general.

With Proposition 7.24 it follows immediately that also the LP relaxations
of (FC-PathIP) and of (FC-FwdIP) are incomparable.

Remark 7.27 Theorems 7.25 and 7.26 carry over straightforward to the
corresponding LP relaxations of (Con-PathIP) and (Con-ArcIP). They
also hold for restricted LP relaxations of (Cap-PathIP) and (Cap-ArcIP)
in which the routing paths for some commodities or some of the capacity
variables are fixed. The unrestricted LP relaxations of (Cap-PathIP) and
(Cap-ArcIP) without any prescribed routing paths or capacities, however,
always yield the same optimal solution value.

In the following chapter we show how to strengthen the LP relaxations of
the basic path routing and arc routing formulations discussed above.

Chapter 8

Valid Inequalities

In this chapter, we derive several classes of valid inequalities for the poly-
hedra associated with the integer programming models introduced in Chap-
ter 7. Our main objective is to relate the facial structure of these integer
programming polyhedra to that of other well-know and well-studied poly-
hedra and to illustrate how valid inequalities for the latter ones carry over
to valid and sometimes even facet-defining inequalities for the former ones.

There exists a vast literature on valid inequalities for various related net-
work design and routing problems. Many valid and facet-defining inequali-
ties have been derived for network connectivity problems [25, 58, 59, 98, 106,
107, 102, 104, 135], unsplittable or fractional multicommodity flow prob-
lems [4, 6, 8, 14, 15, 31, 30, 55, 68, 66], or special link capacity structures
[1, 43, 109, 136, 188]. Because unsplittable shortest path routing is more re-
strictive than the routing schemes assumed in these articles, the inequalities
carry over immediately to the polyhedra associated with the corresponding
unsplittable shortest path routing problems. Therefore, we focus on two
substructures that arise only in unsplittable shortest path routing polyhe-
dra and on one technique that was originally proposed for unsplittable flow
polyhedra in this chapter.

In Section 8.1, we discuss how the facets of the considered unsplittable
shortest path routing polyhedra are related to the facets of the independence
system polyhedra associated with the family of unique shortest path routings
and unique shortest path forwardings. In Section 8.2, we review an approach
proposed by Belaidouni and Ben-Ameur [20] for deriving strong metric-type
inequalities for unsplittable flow routing polyhedra. The so-called super-
additive metric inequalities obtained with this approach are stronger than
those that can be derived by strengthening the classical metric inequali-
ties for fractional multicommodity flow routing. In Section 8.3 we finally
illustrate how valid inequalities for the unsplittable shortest path polyhedra
can be obtained from the precedence constrained knapsack polytope that
is defined by single arc capacity constraint and all binary routing variables
involving this arc.

193

194 8. Valid Inequalities

Throughout this chapter, we denote the polyhedra associated with the
integer linear programming models introduced above as follows:

USPRFC(K, u) := conv
{

(x, z) ∈ {0, 1}P(K)∪A :

(x, z) satisfies (7.2)–(7.4)
}

USPRCap(K, u) := conv
{

(x, z) ∈ {0, 1}P(K) × ZA
+ :

(x, z) satisfies (7.2)–(7.4)
}

USPRCon(K, u) := conv
{

(x, L) ∈ {0, 1}P(K) × R+ :

(x, L) satisfies (7.2), (7.3), and (7.5)
}

USPAFC(K, u) := conv
{

(y, z) ∈ {0, 1}(V ×A)∪A :

(y, z) satisfies (7.6)–(7.8)
}

USPACap(K, u) := conv
{

(y, z) ∈ {0, 1}V ×A × ZA
+ :

(y, z) satisfies (7.6)–(7.8)
}

USPACon(K, u) := conv
{

(y, L) ∈ {0, 1}V ×A × R+ :

(y, L) satisfies (7.6), (7.7), and (7.9)
}

8.1 Routing Inequalities

In this section we show how to derive valid and facet-defining inequalities for
unsplittable shortest path routing polyhedra from the fact that the unique
shortest path systems (USPS) and the unique shortest path forwardings
(USPF) in a digraph form independence systems. Applying known results
and techniques for general independence system polytopes, one immediately
obtains valid and facet-defining inequalities for USPR and USPA. These
inequalities then carry over trivially to the polyhedra USPRFC, USPRCap,
USPRCon, USPAFC, USPACap, and USPACon associated with our integer lin-
ear programming formulations. For the arc routing formulation we present
some additional inequalities, which cannot be derived directly from the in-
dependence system characterization.

Note that the inequalities discussed in this section are independent of the
given capacities ua, a ∈ A. They only reflect the fact that the routing must
be an unsplittable shortest path routing.

8.1.1 Path Routing Formulation

First, we examine the polyhedra associated with the path routing formula-
tions. Let IUSPS ⊆ 2P be the independence system of unique shortest path
systems and consider its associated independence system polytope

IND(IUSPS) :=conv
{

χ(S) : S ⊆ P , S is an USPS
}

=conv
{

x ∈ {0, 1}P : x satisfies (7.2)
}

.

8.1. Routing Inequalities 195

This polytope is equivalent to the stable set polytope STAB(HUSPS) of the
corresponding conflict hypergraph HUSPS = (P , CUSPS), whose nodes are
the paths in D and whose hyperedges are the irreducible non-USPSs (i.e.,
the circuits CUSPS of the independence system IUSPS).

It is easy to see that the unsplittable shortest path routing polytope USPR

is a face of IND(IUSPS). In fact,

USPR = conv
{

x ∈ IND(IUSPS) : xP = 0 ∀P ∈ P \ P(K) and
∑

P∈P(s,t)

xP = 1 ∀ (s, t) ∈ K
}

.

Therefore, any valid inequality for IND(IUSPS) is valid for USPR too and,
in consequence, also for the polyhedra USPRFC, USPRCap, USPRCon. More
precisely, we have the following two results.

Observation 8.1

(i) Each valid inequality for IND(IUSPS) is also valid for USPR.

(ii) Each facet of USPR is supported by an inequality αT x ≤ α0 that defines
a facet of IND(IUSPS).

Observation 8.2

(i) Each valid inequality for USPR is also valid for USPRFC.

(ii) Each valid inequality for USPR is also valid for USPRCap. Furthermore,
each facet-defining inequality for USPR is facet-defining for USPRCap

too.

(iii) Each valid inequality for USPR is also valid for USPRCon. If

ua ≥ max
{

fa(λ) : λ is a valid metric for K
}

for all a ∈ A,

then every facet-defining inequality for USPR is also facet-defining for
USPRCon.

Note that Observation 8.1 not only implies that all valid inequalities of
IND(IUSPS) are valid for USPR. It also states that it is sufficient to study
the facets of IND(IUSPS) in order to obtain a complete facial description
of USPR. By Observation 8.2, the corresponding inequalities then are also
valid or even facet defining for the polyhedra associated with our integer
linear programming formulations.

There is a vast literature related to the properties and to valid inequali-
ties for independence system polytopes, stable set polytopes, or the closely
related set covering polytope, see for example Edmonds [76], Padberg [151],
Nemhauser and Trotter [145], Hammer et al. [111], Euler et al. [82], Conforti

196 8. Valid Inequalities

and Laurant [61], Cornuéjols and Sassano [62], Laurent [131], Sassano [174],
and Müller and Schulz [144] to mention just a few. Applying this machinery
to the independence system polytope IND(IUSPS) yields numerous classes
of valid and in some cases even facet-defining inequalities for USPR.

In the following, we review only the very basic properties of IND(IUSPS)
and USPR and present the class of general rank inequalities and one of its
subclasses, the clique inequalities.

A standard result of Hammer et al. [111] on the facial structure of general
independence systems implies that the following for IND(IUSPS).

Theorem 8.3 (Hammer et al. [111]) Each facet of IND(IUSPS) is ei-
ther

(i) a trivial facet induced by an inequality xP ≥ 0, P ∈ P,

(ii) or induced by a unique inequality αT x ≤ 1. Moreover, αP ≥ 0 for all
P ∈ P.

With Observation 8.1, one obtains the following properties for the facets of
USPR.

Corollary 8.4 Each facet of USPR is either

(i) a trivial facet induced by an inequality xP ≥ 0, P ∈ P(K),

(ii) or induced by some inequality αT x ≤ 1 with αP ≥ 0 for all P ∈ P(K).

One class of non-trivial facets of IND(IUSPF) and USPR is induced by
the so-called rank inequalities. Let r : 2P → Z+ be the rank function of
the independence system IUSPS , i.e., for each path set S ⊆ P the number
r(S) is the maximum cardinality |R| of a unique shortest path system R ∈
IUSPS with R ⊆ S. For any path set S ⊆ P(K), the corresponding rank
inequality is

∑

P∈S

xP ≤ r(S) . (8.1)

It is well known that rank inequalities are are valid for general independence
system polytopes, see Edmonds [76] or Hammer et al. [111] for example.
With Observation 8.1 we thus obtain the following.

Theorem 8.5 For any path set S ⊆ P(K), the corresponding rank in-
equality (8.1) is valid for USPR.

8.1. Routing Inequalities 197

v4 v5 v6

v1 v2 v3

P1 :=
(

v1, v2, v6

)

P2 :=
(

v2, v5, v3

)

P3 :=
(

v4, v2, v3

)

P4 :=
(

v4, v5, v6

)

Figure 8.1 Non-closed irreducible non-USPS.

In general, the separation problem for rank inequalities (8.1) is NP-complete.
The USPS circuit inequalities (7.2) used in our path routing formulation

are a special case of rank inequalities, given by the sets S ⊆ P(K) with
r(S) = |S| − 1. The following example shows that these inequalities are not
necessarily facet-defining for IND(IUSPS) or USPR.

Example 8.1 The path system S shown in Figure 8.1 is an irreducible
non-USPS with r(S) = |S| − 1 = 3. Now consider the path P0 :=
(

v1, v2, v3, v5, v4

)

. Since this path conflicts with all other paths P1,. . . ,P4,

we have r(S) = r(S ∪ {P0}) = 3. Hence, the rank inequality
∑4

i=1 xPi ≤ 3
for S is dominated by the rank inequality

∑4
i=0 xPi ≤ 3 for S ∪ {P0} and,

consequently, the first one can not be facet defining for IND(IUSPS). △

Various sub-classes of rank inequalities (8.1) have been studied in the liter-
ature. Most of them are named according to the substructures their support
induces in the corresponding conflict hypergraph. Often they generalize well
know inequalities for stable set polyhedra of simple graphs. Examples are
the generalized clique inequalities, generalized odd cycle or anti-cycle in-
equalities, or generalizations of anti-web inequalities, see Nemhauser and
Trotter [145], Euler et al. [82], Laurent [131], and Müller and Schulz [144].
We will not reformulate these inequalities or the conditions under which
each of these inequalities is facet defining here. In general, the supporting
substructures of these inequalities and the conditions for being facet-defining
have no natural interpretation in terms of path sets. We only want to men-
tion the class of simple clique inequalities, because these inequalities are
heavily used in our solution algorithm.

Given a set S ⊆ P of pairwise conflicting paths, the corresponding (USPS)
clique inequality is

∑

P∈S

xP ≤ 1 (= r(S)) . (8.2)

It follows directly from Theorem 8.5 and Observation 8.2 that the clique
inequality is valid for USPR.

198 8. Valid Inequalities

Corollary 8.6 For any set S ⊆ P(K) of pairwise conflicting paths, the
corresponding clique inequality (8.2) is valid for USPR.

One easily verifies that the clique inequality (8.2) is facet-defining for the
independence system polytope IND(IUSPS) if and only if S is maximal with
respect to inclusion, i.e., if there is no path P ∈ P(K)\S that conflicts with
all paths in S.

Clique inequalities are of special interest in many applications. Often they
can be separated very efficiently by combinatorial heuristics, even though
the exact separation problem for (maximum) clique inequalities is NP-hard.

Together with the demand constraints 7.3, the clique inequalities (8.2) im-
ply the so-called subpath inequalities (also called precedence or ordering
constraints)

xQ ≥ xP ∀Q ⊂ P . (8.3)

One easily verifies that, for each path pair Q ⊂ P , the subpath constraint
(8.3) is a linear combination of the (not necessarily maximal) clique inequal-
ity

∑

P ′∈P(sQ,tQ)\{Q}

xP ′ + xP ≤ 1

and the demand constraint
∑

P ′∈P(sQ,tQ)

xP ′ = 1.

Hence, the subpath constraints (8.3) are valid for USPR.

8.1.2 Arc Routing Formulation

Rank and clique inequalities for the arc routing formulation are derived (in
principle) analogous to those for the path routing formulation.

Let IUSPF ⊆ 2V ×A be the independence system of unique shortest path
forwardings and consider its associated independence system polytope

IND(IUSPF) :=conv
{

χ(F) : F ⊆ V × A, F is an USPF
}

conv
{

x ∈ {0, 1}V ×A : x satisfies (7.7a)
}

.

This polytope is equivalent to the stable set polytope STAB(HUSPF) on the
corresponding circuit hypergraph HUSPF := (V × A, CUSPF) again.

On the other hand, consider the polytope that is given by projecting
the unsplittable shortest path forwarding polytope USPF onto the space of
forwarding variables, i.e.,

USPFx := conv
{

x ∈ {0, 1}V ×A : ∃ y ∈ RK×A with (y, x) ∈ USPF
}

= conv
{

x ∈ {0, 1}V ×A : ∃ y ∈ RK×A with y ∈ USPA s.t.

(y, x) satisfies (7.7a) and (7.7b)
}

.

8.1. Routing Inequalities 199

It is obvious that USPFx ⊆ IND(IUSPF). Therefore, any valid inequality
for IND(IUSPF) is valid also for USPFx and USPF. Applying Theorem 7.11,
any valid inequality for USPF with only non-negative coefficients then trans-
lates into a set of valid inequalities for USPA. Since all non-trivial facets
of IND(IUSPF) are supported by inequalities with only non-negative co-
efficients [111], ever non-trivial facet of IND(IUSPF) yields a set of valid
inequalities for USPA.

Various classes of valid inequalities for USPA thus can be derived by ap-
plying the results for general independence system polytopes known from
the literature to IND(IUSPF) and reformulating the inequalities in terms of
arc routing variables. In the following, we review only the most basic ones.

Let r : 2V × A → Z+ be the rank function of IUSPF .

Theorem 8.7 For any forwarding F ⊆ V ×A, the corresponding (USPF)
rank inequality

∑

(t,a)∈F

xt
a ≤ r(F) (8.4)

is valid for USPFx and USPF.

The USPF circuit inequalities (7.7) and (7.7a) used in the two arc routing
formulations of unsplittable shortest path routings are the subset of rank
inequalities corresponding to the circuits of IUSPF . It is not difficult to see
that the circuit inequalities are not necessarily facet-defining for USPA or
USPF. A counter-example can be constructed analogous to Example 8.1.1.

Given a set F ⊆ V × A of pairwise conflicting forwarding arcs, the corre-
sponding (USPF) clique inequality is

∑

(t,a)∈F

xt
a ≤ 1 (= r(F)) . (8.5)

It is easy to verify that the clique inequality is valid for USPFx and USPF.
A subset of the USPF clique inequalities are the out-degree inequalities

∑

a∈δ+(v)

xt
a ≤ 1 ∀ t, v ∈ V . (8.6)

With Theorem 7.11, each out-degree inequality (8.6) carries over to the set
of inequalities

∑

a∈δ+(v)

ys(a),t
a ≤ 1 ∀ v, t ∈ V, s : δ+(v) → V with (s(a), t) ∈ K. (8.7)

By Theorem 7.11, these inequalities are valid for USPA.

200 8. Valid Inequalities

We shall point out that independence system based inequalities can be
derived also for the ‘reverse’ problem. By considering also the independence
system of unique shortest path ‘anti-forwardings’, which is equivalent to the
system of unique shortest path forwarding in the problem instance where
all arcs and all commodities are reversed, one obtains a set of reverse valid
inequalities for the arc routing polytope USPA.

The corresponding reverse USPF clique inequalities contain the set of
in-degree inequalities which, after applying the corresponding version
of Theorem 7.11, lead to the following inequalities in terms of arc routing
variables:

∑

a∈δ−(v)

ys,t(a)
a ≤ 1 ∀ v, s ∈ V, t : δ−(v) → V with (s, t(a)) ∈ K (8.8)

Clearly, these inequalities are valid for USPA.

Finally, we will present some additional valid inequalities for USPA, which
are not derived from the independence system polytopes of forwardings or
anti-forwardings. These simple inequalities operate directly on the arc rout-
ing variables. They all exploit the fact that a commodity (s, t) whose termi-
nals s and t are both contained in the routing path P for another commodity
must be routed on the corresponding subpath P [s, t] of the path P .

Proposition 8.8 For each pair of commodities (s, t), (s, v) ∈ K and for
each arc a ∈ A, the corresponding (source) subpath inequality

ys,v
a − ys,t

a +
∑

e∈δ−(v)

ys,t
e ≤ 1 (8.9)

is valid for USPA.

Proof. Let (s, t), (s, v) ∈ K and consider an arbitrary vertex y ∈ {0, 1}K×A

of USPA. Let P and Q be the two path defined by y for the commodities
(s, t) and (s, v) respectively.

Clearly, we either have
∑

e∈δ−(v) ys,t
e = 0 or

∑

e∈δ−(v) ys,t
e = 1.

If
∑

e∈δ−(v) ys,t
e = 0, inequality (8.9) reduces to ys,v

a − ys,t
a ≤ 1 for all arcs

a ∈ A. This is satisfied trivially, because y ∈ {0, 1}K×A.

So, assume
∑

e∈δ−(v) ys,t
e = 1. This implies that v is contained in P . As P

and Q also share the common source s, the Bellman property implies that
Q ⊂ P . Consequently, we have ys,v

a ≤ ys,t
a for all arc a ∈ A and inequality

(8.9) is satisfied. �

An analogous inequality can be formulated by considering commodities that
share a common destination.

8.2. Superadditive Metric Inequalities 201

Proposition 8.9 For each pair of commodities (s, t), (v, t) ∈ K and for
each arc a ∈ A, the corresponding (destination) subpath inequality

yv,t
a − ys,t

a +
∑

e∈δ−(v)

ys,t
e ≤ 1 . (8.10)

is valid for USPA.

Proof. Analogous to Proposition 8.8. �

Inequalities for triples of commodities can be formulated similarly.

Proposition 8.10 For each triple of commodities (s, v), (v, t), (s, t) ∈ K
and for each arc a ∈ A, the corresponding (triple) subpath inequality

ys,v
a − ys,t

a +
∑

e∈δ−(v)

ys,t
e ≤ 1 . (8.11)

is valid for USPA.

Proof. Analogous to Proposition 8.8. �

Further inequalities of this type can be formulated easily.

In general, none of the subpath inequalities (8.9), (8.10), and (8.11) is
facet-defining for USPA. Yet, they proved to be very useful in practice.

8.2 Superadditive Metric Inequalities

In this section, we review a class of inequalities that can be obtained by
strengthening the well-known metric inequalities derived by Iri [117] and
Onaga and Kakusho [147] for fractional multicommodity flows. The pre-
sented approach was proposed by Belaidouni and Ben-Ameur [20] for un-
splittable flow problems. The strengthening technique is based on applying
a non-decreasing superadditive function to the capacity constraints before
aggregating them according to some given metric.

Throughout this section, let D = (V, A) be a digraph with arc capacities
ua, a ∈ A, and K ⊆ V × V be a set of commodities with demand values
ds,t ∈ Z+, (s, t) ∈ K.

8.2.1 Classical Metric Inequalities

Many classes of valid inequalities for network design and routing problems
have been derived from the well-known metric inequalities introduced by Iri
[117] and Onaga and Kakusho [147].

202 8. Valid Inequalities

Theorem 8.11 (Iri [117], Onaga and Kakusho [147]) Let u ∈ RA
+ be

a vector of arc capacities. There exists a fractional multicommodity flow
routing of the commodities K that satisfies these arc capacities if and only
if the metric inequality

∑

a∈A

µa ua ≥
∑

(s,t)∈K

πµ
s,t ds,t (8.12)

holds for all µ = (µa)a∈A ∈ RA
+, where πµ

s,t is the length of a shortest (s, t)-
path with respect to µ.

Theorem 8.11 follows straightforward by applying Farkas’ lemma to the
linear system

∑

P∈P(s,t)

xP = 1 ∀ (s, t) ∈ K,

∑

P∈P(K): a∈P

dsP ,tP xP ≤ ua ∀ a ∈ A,

xP ≥ 0 ∀P ∈ P(K),

which describes all fractional multicommodity flow routings x ∈ R
P(K)
+ that

satisfy the given arc capacities ua, a ∈ A.

Two important subclasses of the metric inequalities (8.12) are the graph
partition inequalities and the directed cut inequalities. Let U1∪̇ . . . ∪̇Uk = V
be a partition of the nodes. The corresponding graph partition inequality is
the metric inequality defined by metric µ = χ(δ(U1, . . . , Uk)), i.e.,

µa :=

{

1, if a = (u, v) with u ∈ Ui, v ∈ Uj , i 6= j, and

0, otherwise.

For k = 2, the partition inequality is also called (undirected) cut inequality .
The directed cut inequality corresponding a node set U ⊂ V is given by the
metric µ = χ(δ+(U)), i.e.,

µa :=

{

1, if a = (u, v) with u ∈ U , v ∈ V \ U , and

0, otherwise.

There are numerous publications related to the strength of these inequal-
ities in general or related to special cases where the cut or graph partition
inequalities sufficiently characterize the existence of a fractional multicom-
modity flow routing for some given capacities. Overviews of such results
can be found in the surveys by Frank [94, 95] and Schrijver [176], for exam-
ple. The most famous results in this context certainly are the Max-Flow-
Min-Cut Theorem of Ford and Fulkerson [91] and Hu’s Theorem [116]. The

8.2. Superadditive Metric Inequalities 203

Max-Flow-Min-Cut Theorem implies that the (directed) cut inequalities suf-
ficiently characterize the existence of a fractional single commodity routing
in a (directed) graph, while Hu’s Theorem shows that the undirected cut
inequalities are also sufficient to describe fractional two-commodity routings
in the undirected case.

Now consider the polytope

MCFFC(K, u) := conv
{

(x, z) ∈ R
P(K)
+ × {0, 1}A :

(x, z) satisfies (7.3) and (7.4)
}

,

which corresponds to the fixed charge network design problem with frac-
tional multicommodity flow routing. With ua := uaza, it follows immedi-
ately from Theorem 8.11 that, for each metric µ ∈ RA

+, the corresponding
metric inequality

∑

a∈A

(µaua) za ≥
∑

(s,t)∈K

πµ
s,t ds,t (8.13)

is a valid for MCFFC. Note that this inequality involves only the binary
capacity variables za, a ∈ A. So, for any metric µ ∈ RA

+, it defines a 0/1-
covering (or, equivalently, a 0/1-knapsack) problem on the these variables.
Clearly, any inequality that is valid for the corresponding 0/1-covering poly-
tope

ICOV(µ) := conv
{

za ∈ {0, 1}A : z satisfies (8.13)
}

is also valid for MCFFC.
Using basically this observation, several classed of valid and facet defining

inequalities for MCFFC and for more general multicommodity flow network
design polytopes have been derived in the literature. [15] approached net-
work design problems with basic strengthened cut inequalities. Dahl and
Stoer [66, 67] introduced the so-called band and partition band inequali-
ties,which correspond to cover inequalities for the knapsacks defined by
(8.13) for arbitrary metrics and for graph partition metrics. Alevras et al. [5]
and Wessäly [190] generalized these inequalities to 2-band and strengthened
2-band inequalities, Alevras et al. also used so-called strengthened metric
inequalities, which can be obtained by applying standard integer routing
techniques to (8.13). Further classes of strong valid inequalities for network
design problems with multicommodity flow routing have been discussed by
Bienstock et al. [30, 31].

Since USPRFC ⊆ MCFFC, these inequalities are valid of USPRFC as well.

8.2.2 Superadditive Metric Inequalities

For unsplittable flow routing, stronger inequalities can be obtained by apply-
ing a non-decreasing superadditive function to the coefficients of the capacity
constraints (7.4) before aggregating them to a metric-like inequality.

204 8. Valid Inequalities

Definition 8.12

(i) A function Γ : Rm → R is called superadditive if Γ(a) + Γ(b) ≤
Γ(a + b) for all a, b ∈ Rm.

(ii) A function Γ : Rm → R is called non-decreasing if Γ(a) ≤ Γ(b) for
all a ≤ b.

It is well known that non-decreasing superadditive functions can be used to
generate valid inequalities for integer programming polyhedra, see Nemhauser
and Wolsey [146] or Wolsey [194] for example.

Consider the polyhedron P = conv
{

x ∈ Zn
+ : Ax ≤ b

}

defined by a ma-
trix A ∈ Rm×n and a vector b ∈ Rm, and denote the i-th column of A by ai

for each i = 1, . . . , n. If Γ : Rm → R is a non-decreasing and superadditive
function, then the inequality

n
∑

i=1

Γ(ai) xi ≤ Γ(b) (8.14)

is valid for P . Even more, each facet of P can be derived from A and b by
applying an appropriate non-decreasing superadditive function.

Theorem 8.13 (Burdet and Johnson [47], Jeroslow [119]) Every
valid inequality for a non-empty polyhedron P = conv

{

x ∈ Zn
+ : Ax ≤ b

}

is equivalent to or dominated by an inequality of type (8.14).

It follows immediately from (8.14) that, if
∑

i αixi ≤ β is a valid inequality
for P and Γ : R → R is a one-dimensional non-decreasing superadditive
function, then also

∑

i Γ(αi)xi ≤ Γ(β) is valid for P .

Applying this observation to the polytope

UFPFC(K, u) := conv
{

(x, z) ∈ {0, 1}P(K)∪A :

(x, z) satisfies (7.3) and (7.4)
}

,

which corresponds to the fixed charge network design problem with unsplit-
table flow routing, Belaidouni and Ben-Ameur obtained the following result.

Theorem 8.14 (Belaidouni and Ben-Ameur [20]) For any non-nega-
tive metric µ ∈ RA

+ and any non-decreasing superadditive function Γ : R →
R, the superadditive metric inequality

∑

a∈A

(µa Γ(ua)) za ≥
∑

(s,t)∈K

πµ
s,t Γ(ds,t) (8.15)

is valid for UFPFC, where πµ
s,t is the length of a shortest (s, t)-path with

respect to µ.

8.2. Superadditive Metric Inequalities 205

Proof. Let µ ∈ RA
+ be a non-negative metric and Γ : R → R be a non-

decreasing superadditive function.
By the definition of UFPFC, all capacity inequalities (7.4) are valid for

UFPFC. Because za ∈ {0, 1} for each a ∈ A, also each strengthened capacity
constraints

∑

P∈P(K): a∈P

Γ(dsP ,tP) · xP ≤ Γ(ua) · za ∀ a ∈ A (8.16)

are valid for UFPFC.
Naturally, any non-negative linear combination of these inequalities is

valid for UFPFC too. Hence, also the aggregated inequality

∑

a∈A

µa ·
(

∑

P∈P(K): a∈P

Γ(dsP ,tP) · xP

)

=

∑

P∈P(K)

Γ(dsP ,tP) ·
(

xP

∑

a∈P

µa

)

≤
∑

a∈A

µa Γ(ua) · za

is valid for UFPFC. Since
∑

P∈P(K) xP = 1 for all x ∈ UFPFC, it follows that

∑

P∈P(K)

Γ(dsP ,tP) πµ
s,t ≤

∑

a∈A

µa Γ(ua) · za

is valid for UFPFC as well, where πµ
s,t := min{∑a∈P µa : P ∈ P(K)}. �

Because USPRFC ⊆ UFPFC, the superadditive metric inequalities (8.15) are
valid also for USPRFC. As they involve only capacity variables, they are also
valid for the polytope USPAFC corresponding to the arc-routing formulation
of the fixed change network design problem FC-USPR.

Corollary 8.15 For any non-negative metric µ ∈ RA
+ and any non-decrea-

sing superadditive function Γ : R → R, the superadditive metric inequality
(8.15) is valid for both polytopes USPRFC and USPAFC.

The following examples shows that the superadditive metric inequalities are
indeed stronger than the classical metric inequalities.

Example 8.2 Let D = (V, A) be the digraph consisting of the nodes V :=
{v1, . . . , v4} and the arcs A := {(v1, v2), (v1, v3), (v1, v4) (v2, v4), (v3, v4)}
with capacities ua := 1 for all a ∈ A. Within this digraph, consider the com-
modities K := {(v1, v3), (v1, v4), (v2, v4)} with demand values are ds,t := 0.6
for all (s, t) ∈ K. D and K are illustrated in in Figure 8.2. Let’s consider
the fixed change network design problem, where each arc capacity can be
installed at most once.

It is obvious that there exists a factional multicommodity flow rout-
ing of the commodities K within the subgraph (V, B) with B :=

206 8. Valid Inequalities

v2 v4

v3v1

dv1,v3 = dv1,v4 = dv2,v4 = 0.6
ua = 1 for all a ∈ A

Figure 8.2 Digraph and Commodities of Example 8.2.2: Solid lines are arcs,
dashed lines are commodities

{(v1, v2), (v1, v3), (v2, v4), (v3, v4)}: One could, for example, route com-
modities (v1, v3) and (v2, v4) unsplit along the direct arcs (v1, v3) and (v2, v4),
respectively, and route commodity (v1, v4) half along the path (v1, v2, v4)
and half along (v1, v3, v4). Hence, all classic metric inequalities (8.12) are
satisfied for z := χ(B).

On the other hand, the given capacities do not admit an unsplittable flow
routing of the given commodities within the subgraph (V, B). In fact, there
is a simple violated superadditive metric inequality: Let µ ∈ RA

+ be the
metric given by the cut δ({v1, v2}), i.e., µ(v1,v3) = µ(v1,v4) = µ(v2,v4) = 1 and
µ(v1,v2) = µ(v3,v4) = 0. Let Γ : R → R be defined as Γ(x) := ⌊5/3 · x⌋. It is
easy to verify that Γ is non-decreasing and superadditive. The superadditive
metric inequality defined by µ and Γ is

Γ(u(v1,v3)) z(v1,v3) + Γ(u(v1,v4)) z(v1,v4) + Γ(u(v2,v4)) z(v2,v3) =

z(v1,v3) + z(v1,v4) + z(v2,v3) ≥
∑

(s,t)∈K

Γ(ds,t) = 3 .

For z := χ(B), this inequality is clearly violated.
Note that this superadditive metric inequality is stronger than any band,

2-band, or strengthened metric inequality that could be derived from the
(fractional) multicommodity flow polytope MCFFC. In fact, this inequality
is not valid MCFFC. △

In general, the superadditive metric inequalities (8.15) are not sufficient
to characterize all capacity installations that admit an unsplittable flow
routing. It is not difficult to construct instances of the fixed charge network
design problem with unsplittable flow routing, for which the linear program

min
{

wT z : (x, z) ∈ [0, 1]P(K)∪A

(x, z) satisfies (7.3), (7.4), and (8.15)
}

,

has a smaller solution value that the corresponding integer program.

Remark 8.16 For any non-decreasing superadditive function Γ : R → R

and for each arc a ∈ A, the strengthened capacity constraint (8.16) used to

8.2. Superadditive Metric Inequalities 207

derive the superadditive metric inequality (8.15) is just some valid inequality
for the 0/1-knapsack polytope

KN(a) := conv
{

(x, za) ∈ {0, 1}Pa × {0, 1} : (x, za) satisfies (7.4)
}

defined by the capacity constraint (7.4) on arc a, where Pa = {P ∈ P : a ∈
P}.

Hence, each superadditive metric inequality (8.15) is equivalent to or dom-
inated by a linear combination of facet-defining inequalities for these knap-
sack polytopes and the original model (in-)equalities.

This means that the superadditive metric inequalities (8.15) are redundant
if all facet-defining inequalities for these knapsack polytopes (or the more re-
stricted precedence constrained knapsack polytopes discussed in Section 8.3)
are added to the LP relaxation.

Nevertheless, these inequalities are often useful in practice, because they
operate directly and only on the capacity variables za.

The presented approach can be applied analogously to derive valid in-
equalities for the corresponding polyhedra of the capacitated network design
problem with unsplittable flow routing. Again, the resulting inequalities
carry over immediately to the unsplittable shortest path routing polyhedra
USPRCap and USPACap.

Theorem 8.17 For any non-negative metric µ ∈ RA
+ and any non-decreasing

superadditive function Γ : R → R, the superadditive metric inequality
∑

a∈A

(−µa Γ(−ua)) za ≥
∑

(s,t)∈K

πµ
s,t Γ(ds,t)

is valid for both polyhedra USPRCap and USPACap, where πµ
s,t is the length

of a shortest (s, t)-path with respect to µ.

Proof. Analogous to the proof of Theorem 8.14. �

For the polyhedra associated with the congestion minimization problems, the
strengthening technique of applying a superadditive function to the capacity
constraints cannot be used directly, because in the corresponding capacity
constraints involve the fractional congestion variable L. Nevertheless, one
might use it indirectly to generate a lower bound on the congestion variable
L by checking for violated strengthened metric inequalities for several fixed
threshold congestion values L̂.

Theorem 8.18 Let L̂ ∈ R+. Furthermore, let µ ∈ RA
+ be a non-negative

metric, Γ : R → R be a non-decreasing superadditive function, and denote
by πµ

s,t the length of a shortest (s, t)-path with respect to µ. If
∑

a∈A

µa Γ(L̂ua) <
∑

(s,t)∈K

πµ
s,t Γ(ds,t) ,

208 8. Valid Inequalities

then the inequality

L ≥ L̂

is valid for USPRCon and USPACon.

Proof. Follows directly from Theorem 8.14. �

8.2.3 Separation of Superadditive Metric Inequalities

The separation problem for superadditive metric inequalities is NP-hard in
general. Using a construction similar to that in the proof of Theorem 6.1,
the Partition problem [96, 121] can be reduced to the problem of finding
a violated superadditive metric inequality in a ring-network. Even if the
metric µ is given, the problem of finding a non-decreasing superadditive
function Γ that yields the most violated superadditive metric inequality
(8.15) remains NP-hard.

A natural heuristic approach for the separation of superadditive metric
inequalities (8.15) is to first generate a metric for which the classical metric
inequality (8.12) is as tight as possible (up to scaling of the metric) and
then, in a second step, compute a non-decreasing superadditive function Γ
that together with µ yields a violated inequality (8.15).

The first subproblem, which is nothing else but the separation problem
for the classical metric inequalities, can be easily solved in polynomial time.

The second subproblem of finding the best possible general non-decreasing
superadditive function Γ : R+ → R+ is computationally hard. Therefore,
it is useful to retreat to a subclass of these functions such that the best
function in this subclass can be computed efficiently.

Belaidouni and Ben-Ameur [20] propose two subclasses of non-decreasing
superadditive step functions for this approach. The best function in the
first class can be computed in polynomial time using a linear programming
approach. For choosing a function from the larger second class, Belaidouni
and Ben-Ameur propose a heuristic.

In our implementation, we use a very simple class of non-decreasing su-
peradditive functions. It consists of the step functions Γc(x) = ⌊c x⌋ for a
small number of values c ∈ R+. Applying such a function to a given inequal-
ity corresponds to the standard integer rounding procedure, see Nemhauser
and Wolsey [146]. Figure 8.3(a) illustrates the function Γ5/3(x), which was
also used in Example 8.2.2. The strengthened capacity constraints (8.16)
obtained by these functions have a very simple interpretation: Regarding
c as a base capacity unit, the values Γc(ds,t) express how many (integer
multiples) of these units are sent with each commodity (s, t), and the value
Γc(ua) expresses how many (integer multiples) of these units can be fully
accommodated within the given arc capacity of ua.

8.3. Precedence Constrained Knapsack Inequalities 209

0 1 2 3
0

1

2

3

(a) Γ5/3(x)

0 1 2 3
0

1

2

3

(b) Γ1,1/2(x)

Figure 8.3 Non-decreasing superadditive functions corresponding to integer
and strengthened integer rounding.

Another class of simple non-decreasing superadditive functions, which
might be useful but is not implemented yet, is the class of functions

Γc,α(x) :=

{

⌊cx⌋, for cx − ⌊cx⌋ ≤ α,

⌊cx⌋ + cx−⌊cx⌋−α
1−α , for cx − ⌊cx⌋ > α

with c ∈ R+ and 0 ≤ α < 1. These functions correspond to the strengthened
integer rounding procedure, see Nemhauser and Wolsey [146]. Figure 8.3(b)
illustrates the function Γc,α(x) for c = 1 and α = 1/2.

8.3 Precedence Constrained Knapsack Inequalities

In this section, we consider the subproblem that is defined by a single arc
capacity constraint and the routing paths across that arc.

For unsplittable flow problems with fixed or variable arc capacities, each
such subproblem is a standard 0/1-knapsack with a fixed or variable knap-
sack capacities, and valid inequalities for the corresponding knapsack poly-
topes carry over immediately to valid inequalities for the original unsplit-
table flow polyhedra.

For unsplittable shortest path routing problems, the interdependencies
among the routing paths introduce additional precedence relations among
the items in the knapsack problem. For each arc, the subproblem defined by
its capacity constraint and the routing paths across this arc can be regarded
as a precedence constrained knapsack with fixed or variable capacity. Valid
and facet-defining inequalities for the corresponding precedence constrained
knapsack polyhedra carry over naturally to valid inequalities for the underly-
ing unsplittable shortest path routing polyhedron. As not only the capacity
constraints but also the precedences among the routing paths are respected,
the inequalities derived from facets of the precedence constrained knapsack
polyhedra are typically much stronger than those derived from facets of the
corresponding standard knapsack polyhedra.

210 8. Valid Inequalities

In order to illustrate the basic concepts, we focus on the precedence con-
straint knapsack polytope that arises as relaxation of the path routing for-
mulation of the fixed charge network design problem FC-USPR. For this
formulation, the resulting precedence constrained knapsacks have a fixed
capacity and a precedence relations are very easy to describe. For the arc
routing formulation of FC-USPR, the presented techniques and results ap-
ply analogously; only the structure of the underlying precedence relations
changes. The formulations of the capacitated network design problem Cap-
USPR and of the congestion minimization problem Min-Con-USPR lead
to precedence constrained knapsack problems with general integer of gen-
eral fractional capacities. Using standard mixed-integer linear programming
techniques, the concepts presented throughout this section can be extended
to derive valid inequalities for these polytopes as well. Similar extensions
have been discussed for the standard knapsack polytope with integer capac-
ities by Brockmüller et al. [43], van Hoesel et al. [188] and for the standard
knapsack polytope with a single fractional (capacity) variable by Marchand
and Wolsey [138].

8.3.1 Basics

Throughout this section, let a ∈ A be an arbitrary but fixed arc. For
simplicity, we denote by Pa := {P ∈ P(K) : a ∈ P} the set of routing
paths that contain this arc, by dP := dsP ,tP the demand associated with
each path P ∈ Pa, and by d(S) :=

∑

P∈S dP the total demand associated
with each path set S ⊆ Pa.

Let (x, z) ∈ {0, 1}P(K)∪A be an integer vector that satisfies the capacity
constraints (7.4). If za = 0, then we trivially have xP = 0 for all P ∈ Pa.
Otherwise, if za = 0, the path routing variables xP satisfy the capacity
constraint

∑

P∈Pa

dP xP ≤ ua . (8.17)

Inequality (8.17) defines a standard 0/1-knapsack. The items of the knap-
sack are the paths P ∈ Pa, the item sizes are the demand values dP associ-
ated with these paths P ∈ Pa, and the knapsack capacity is the arc capacity
ua. Is is easy to see that any valid inequality αT x ≤ α0 for the associated
knapsack polytope

KN(Pa, d, ua) := conv
{

x ∈ {0, 1}Pa : x satisfies (8.17)
}

.

carries over to a valid inequality αT x ≤ α0za for the polytope UFPFC asso-
ciated with the fixed charge network design problem with unsplittable flow
routing, which was introduced in the previous section. Under some mild con-
ditions, facet-defining inequalities for KN(Pa, d, ua) yield also facet-defining
inequalities for UFPFC.

8.3. Precedence Constrained Knapsack Inequalities 211

v1

v2

v3

v4

v5

v6

v7

v8

P1 =
(

v3, v4

)

P2 =
(

v3, v4, v5

)

P3 =
(

v2, v3, v4

)

P4 =
(

v3, v4, v8

)

P5 =
(

v2, v3, v4, v5

)

P6 =
(

v6, v2, v3, v4, v5

)

P7 =
(

v1, v2, v3, v4, v5

)

(a) Paths in Pa.

P1

P2 P3 P4

P5 P6

P7

(b) Partial order on the paths.

Figure 8.4 Precedence relations among the paths in Pa.

Since USPRFC ⊆ UFPFC, these inequalities are also valid for USPRFC.
However, they are typically not very strong, because the interdependen-
cies among the routing paths of an unsplittable shortest path routing are
completely disregarded in the standard 0/1-knapsack polytope. Stronger
inequalities for USPRFC can be obtained by considering the capacity con-
straint (8.17) and (some of) the interdependencies among the paths across
a together. The path set S(x) := {P : xP = 1} defined by an integer vec-
tor (x, z) ∈ USPRFC is an unsplittable shortest routing and thus satisfies
the Bellman property, see Definition 5.5 on page 75. This implies that the
precedence constraints

xQ ≥ xP for all Q ⊂ P (8.18)

hold for any such vector. Note that these constraints are just linear combi-
nations of the original circuit equalities (7.2), demand equalities (7.3), and
the non-negativity constraints xP ≥ 0. They are clearly valid for USPRFC

(and even for its LP relaxation).
The precedence constraints (8.18) define a partial order on the paths in

Pa. Figure 8.4 illustrates this order for a simple example. Together with
the knapsack constraint (8.17), these inequalities define the precedence
constrained knapsack polytope

PCKN(Pa, d, ua) := conv
{

x ∈ {0, 1}Pa : x satisfies (8.17) and (8.18)
}

associated with arc a. For notational simplicity, we denote this polytope by
PCKN in the following.

Clearly, any valid inequality for PCKN carries over to a valid inequality
for USPRFC.

Observation 8.19 If αT x ≤ α0 is a valid inequality for PCKN, then the
inequality αT x ≤ α0 za is valid for USPRFC.

212 8. Valid Inequalities

Note that in general facet-defining inequalities for PCKN not necessarily
yield facet-defining inequalities for USPR. The non-Bellman-type interde-
pendencies among the paths in Pa and the generalized upper bound con-
straints

∑

P∈P(s,t)∩Pa
xP ≤ 1 implied by the demand constraints (7.3) are

still disregarded in PCKN. Nevertheless, facets of PCKN typically yield much
stronger valid inequalities for USPRFC than the facets of KN.

In the remainder of this section, we review some basic results concern-
ing the facial structure of PCKN, discuss several classes of valid and facet-
defining inequalities for PCKN, and show that the precedence constraint
knapsack problem – and thus several lifting problems related to these in-
equalities – can be solved in pseudo-polynomial time for some special case
of our application. For simplicity, we formulate all concepts in terms of the
paths used in our concrete setting instead of general ’items’.

8.3.2 Properties and Valid Inequalities for PCKN

For any set S ⊆ Pa, we denote by

l(S) := {P ∈ Pa : P ⊆ Q ∈ S}

the set of all paths that are subpaths of some path in S, including the
paths in S themselves. If all paths in S are chosen as routing paths in an
unsplittable shortest path routing, then the Bellman property implies that
also all other paths in l(S) must be chosen. Analogously, we denote by

u(S) := {P ∈ Pa : P ⊇ Q ∈ S}

the set of all paths that are superpaths of some path in S, including the paths
in S themselves. The sets l(S) and u(S) are the lower and the upper ideal
of S in the partial order defined by the Bellman property. For notational
simplicity, we write just l(P) for l({P}) and u(P) for u({P}). According
to the standard terminology for partial ordered set, two paths P and Q are
said to be incomparable if neither P ⊂ Q nor Q ⊂ P . A path set S ⊆ Pa is
called incomparable if all its paths are pairwise incomparable.

Without loss of generality, we assume in the following that

d (l(P)) ≤ ua for all P ∈ Pa, (8.19)

that is, every single path and all its subpaths fit into the knapsack capacity.
If (8.19) does not hold for some path P , then xP = 0 for all x ∈ PCKN.
In this case, we can remove the path P from the precedence constraint
knapsack and consider only the face of PCKN that is induced by xP = 0,
which is equivalent to the smaller precedence constrained knapsack polytope
PCKN(Pa \{P}, d, ua). Facets of this smaller polytope can be lifted trivially
to facets of the original one.

If condition (8.19) holds, one easily observes the following.

8.3. Precedence Constrained Knapsack Inequalities 213

Theorem 8.20 (Boyd [42])

(i) PCKN is full-dimensional, i.e., dim(PCKN) = |Pa|.

(ii) xP ≥ 0 is a facet of PCKN if and only if u(P) = {P}.

(iii) xP ≤ 1 is a facet of PCKN if and only if

• l(P) = {P} and

• d(l(P ′) ∪ {P}) ≤ ua for all P ′ ∈ Pa.

(iv) xP ′ ≥ xP is a facet of PCKN if and only if

• P ′ ⊂ P , P ′ 6= P , and

• d(l(Q) ∪ l(P)) ≤ ua for all Q with P ′ ∈ l(Q).

Most of the valid and facet-defining inequalities for PCKN studied in the
literature are strengthened versions of well-known inequalities for the stan-
dard 0/1-knapsack polytope.

The first class of valid inequalities for PCKN that we discuss here is a gen-
eralization of the minimal cover inequalities for the standard 0/1-knapsack
problem, which have been introduced independently by Balas [13], Padberg
[152], Hammer et al. [111], and Wolsey [192].

Definition 8.21 (Boyd [42]) A set C ⊆ Pa is called an induced cover
if d(l(C)) > ua.

An induced cover is a set of paths that together with their subpaths exceed
the capacity of the knapsack. For any such induced cover C ⊆ Pa, the
induced cover inequality

∑

P∈C

xP ≤ |C| − 1 (8.20)

is valid for PCKN. In order to be facet-defining for PCKN, an induced cover
inequality must not be dominated by another induced cover inequality. This
leads straightforward to the notion of minimal induced covers.

Definition 8.22 (Boyd [42]) A set C ⊆ Pa is said to be a minimal in-
duced cover if

(i) C is incomparable,

(ii) C is an induced cover, i.e., d(l(C)) > ua, and

(iii) d(l(C) \ {P}) ≤ ua for each P ∈ C.

214 8. Valid Inequalities

In our setting, a minimal induced cover is a set of incomparable paths that
together with their induced subpaths exceed the given capacity, whereas all
of the induced subpaths and all but one of the original paths fit into the
capacity.

Theorem 8.23 (Boyd [42], Park and Park [157]) Given a minimal in-
duced cover C ⊆ Pa, the induced cover inequality (8.20) defines a facet of
PCKN if and only if l(P) ∩ l(P ′) = ∅ for all P, P ′ ∈ C.

For an arbitrary minimal induced cover C, the induced cover inequality
(8.20) is facet-defining for

conv
{

x ∈ PCKN : xP = 0 for P ∈ Pa \ l(C), and

xP = 1 for P ∈ l(C) \ u(C)
}

,

which is a face of PCKN. Via sequential lifting, any minimal induced cover
inequality can be turned into facets for the entire polytope.

It is easy to see that, for any minimal induced cover C, inequality (8.20)
dominates the standard 0/1-knapsack cover inequality

∑

P∈l(C)

xP ≤ |l(C)| − 1 ,

which could be derived from the corresponding knapsack polytope KN when
disregarding the precedence constraints among the paths in l(C).

Another class of valid inequalities is derived from a simple generalization
of minimal induced covers.

Definition 8.24 (Boyd [42]) Let k ∈ Z+ with k ≥ 2. A set C ⊆ Pa is
said to be an induced k-cover if

(i) C is incomparable, and

(ii) each subset S ⊆ C with |S| = k is a minimal induced cover, i.e.,
d(l(S)) > ua and d(l(S) \ {P}) ≤ ua for each P ∈ S.

The induced k-covers C with k = |C| are precisely the minimal induced
covers. It is easy to verify that, for each induced k-cover C ⊆ Pa, the
induced k-cover inequality

∑

P∈C

xP ≤ k − 1 (8.21)

is valid for PCKN. The following theorem characterizes the conditions under
which the induced k-cover inequality (8.21) defines a facet of PCKN.

8.3. Precedence Constrained Knapsack Inequalities 215

Theorem 8.25 (Boyd [42]) Given an induced k-cover C ⊆ Pa, the in-
duced k-cover inequality (8.21) defines a facet of PCKN if and only if

⋂

S⊆C: |S|=k−1

l(S) = ∅ .

A sequential lifting procedure that turns the k-cover inequality of an ar-
bitrary k-cover C into a facet-defining inequality was proposed by van de
Leensel et al. [187].

Also (1, k)-configuration inequalities, which have been introduced by Pad-
berg [153] for the standard 0/1-knapsack polytope, can be strengthened by
exploiting the given precedence constraints.

Definition 8.26 (Boyd [42]) Let C ⊆ Pa, P ∈ Pa \ C, and k ∈ Z+ with
2 ≤ k ≤ |C|. The pair (C, P) is called an induced (1, k)-configuration if

(i) C ∪ {P} is incomparable,

(ii) C ∪ {P} is an induced cover, i.e., d(l(C ∪ {P})) > ua,

(iii) d(l(C ∪ {P}) \ {P}) ≤ ua, and

(iv) for each S ⊆ C with |S| = k, the set S ∪ {P} is a minimal induced
cover.

Again, it is not difficult to verify that, for every induced (1, k)-configuration
(C, P) and every subset Z ⊆ C with r := |Z| ≥ k, the induced (1, k)-
configuration inequality

(r − k + 1) xP +
∑

Q∈Z

xQ ≤ |r| (8.22)

is valid for PCKN. Boyd [42] has shown that this inequality is facet-defining
under the following conditions.

Theorem 8.27 (Boyd [42]) Let (C, P) be an induced (1, k)-configuration
and Z ⊆ C with r := |Z| ≥ k. Then the induced (1, k)-configuration inequal-
ity (8.22) defines a facet of PCKN if and only if

(i) l(P) ∩ l(Z) = ∅, and

(ii)
⋂

S⊆Z: |S|=k−1

l(S) = ∅ .

216 8. Valid Inequalities

For those induced (1, k)-configurations (C, P) that do not satisfy these con-
ditions, the corresponding induced (1, k)-configuration inequality (8.22) de-
fines a facet of

conv
{

x ∈ PCKN : xQ = 0 for Q ∈ (Pa \ l(C ∪ {P})) ∪ (C \ Z), and

xQ = 1 for Q ∈ l(C ∪ {P}) \ u(C ∪ {P})
}

,

which is a face of PCKN. Again, these inequalities can be turned into facets
of the entire precedence constrained knapsack polytope PCKN via sequential
lifting.

The separation problem for all three presented classes of inequalities is
NP-hard in general. In our implementation, we use a set of simple greedy
heuristics to find violated minimal induced cover inequalities (8.20).

8.3.3 Lifting

In many cases, the inequalities discussed above define only a facet of a face
of PCKN. When using a standard sequential lifting procedure to turn them
into inequalities that are facet-defining for the entire polytope PCKN, the
problem of determining the lifting coefficient for a single variable is a prece-
dence constrained knapsack problem with the same precedence relations as
the underlying original problem. Garey and Johnson [96] have shown that
this problem is strongly NP-complete in general.

Van de Leensel et al. [187] introduced a special class of lifting orders, so-
called predecessor first remaining variables second (PFRS) orders. When
using these orders to sequentially lift a minimal induced cover or an induced
(1, k) configuration inequality αT x ≤ α0, the lifting coefficients of the prede-
cessor variables xP , P ∈ l(sup(α)), can be determined in pseudo-polynomial
time. The computation of the lifting coefficients for the remaining variables
as well as the computation of the lifting coefficients for induced k-cover
inequalities remains strongly NP-complete in general also for these lifting
orders.

For certain special cases of precedence relations, however, the precedence
constrained knapsack problem – and thus also the lifting problem for all
variables – is solvable in pseudo-polynomial time. Johnson and Niemi [120]
propose a dynamic programming algorithm for the case where the prece-
dence relations form a tree. This algorithm generalizes straightforward to
the case where precedence relations form a graph with bounded tree-width.

The precedence graphs arising from the Bellman property in our appli-
cation unfortunately have unbounded tree-width. Even if we consider only
a single path P and all its subpaths across arc a, the precedence relations
form a grid, whose tree-width depends of the length of P , see Figure 8.5.
Nevertheless, also this special case of the precedence constrained knapsack

8.3. Precedence Constrained Knapsack Inequalities 217

u3

u2

u1

v1

v2

v3

...

...

P11 =
(

u1, v1

)

P12 =
(

u1, v1, v2

)

P21 =
(

u2, u1, v1

)

P22 =
(

u2, u1, v1, v2

)

...

(a) Paths in Pa.

P11 P21 P31

P12 P22 P32

P13 P23 P33

(b) Partial order on paths.

Figure 8.5 Precedence relations among the paths in Pa in the case where
max{δ+(v), δ−(v) : v ∈ V } = 1.

problem can be solved in pseudo-polynomial time. Let δmax := max{δ(v) :
v ∈ V } denote the maximum degree in the digraph D = (V, A) of the
underlying unsplittable shortest path routing problem. Then we have the
following result.

Theorem 8.28 For any constant k ∈ Z+, the precedence constrained knap-
sack problem {maxαT x : x ∈ PCKN(Pa, d, ua)} can be solved in pseudo-
polynomial time for all instances of FC-USPR with δmax ≤ k, where a ∈ D
and α ∈ ZPa

+ is an arbitrary non-negative objective function.

In the following, we present a dynamic programming algorithm to solve this
precedence constrained knapsack problem in the special case where both
the maximum in-degree and the maximum out-degree are bounded by 1.
This basic algorithm can be extended to the case where the degree in the
underlying digraph is bounded by an arbitrary constant by incorporating
the subtree decomposition ideas that are used in the dynamic programming
algorithms of Johnson and Niemi [120] and Flippo et al. [90] for the tree
knapsack problem. Because this generalization is extremely technical and
some serious notational overhead would be required to formulate it mathe-
matically correct, it is omitted here.
Proof [Theorem 8.28 for max{δ+(v) : v ∈ V} ≤ 1 and
max{δ−(v) : v ∈ V} ≤ 1]. If both the maximum in-degree and the
maximum out-degree of the underlying digraph are bounded by 1, then all
paths in Pa are subpaths of either a common directed superpath or a com-
mon directed cycle. Without loss of generality, we may assume that all paths
in Pa are subpaths of a common superpath P =

(

um, . . . , u1, v1, . . . , vm

)

with a = (u1, v1), as illustrated in Figure 8.5.
Furthermore, we may assume that Pa consists of all subpaths P ′ ⊂ P

with a ∈ P ′. If this is not the case, we simply let P be the shortest path
that contains all paths given in Pa and then add all missing subpaths P ′ of P

218 8. Valid Inequalities

with cost αP ′ = 0 to Pa. As P contains at most 2·max{|P ′| : P ′ ∈ Pa} many
arcs, the encoding size of the extended problem instance remains polynomial
in the original instance’s encoding size.

For each pair of nodes ui and vj , we denote by Pij the (ui, vj)-subpath of
P . With the above assumption, we have Pa = {Pij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
As shown in Figure 8.5, the (transitively reduced) precedence graph among
these paths is a directed grid of size m × n.

For each pair (k, l) with 1 ≤ k ≤ m and 1 ≤ l ≤ n and for each U with
1 ≤ U ≤ ua, we let

F (k, l, U) :=
{

max αT x : x ∈ {0, 1}PA ,
∑

P∈Pa

dP ≤ U ,

xPk,l
= 1 ,

xPk,j
= 0 for all j > l,

xPi,j = 0 for all i < k and all j,

xPi,j ≥ xPi+1,j for all i ≥ k and all j,

xPi,j ≥ xPi,j+1 for all i ≥ k and all j
}

.

According to this definition, F (k, l, U) is the optimal solution value of the
precedence constrained knapsack (sub-)problem that is given by the subset of
paths Pij with i ≥ k, and assuming in addition that path Pkl is chosen, that
path Pkl+1 is not chosen, and that the knapsack capacity for the remaining
(non-fixed) paths is U .

One easily observes that

{max αT x : x ∈ PCKN} = max{F (m, l, ua) : 1 ≤ l ≤ n} . (8.23)

Furthermore, it is not difficult to verify that F obeys the following recursion.
For k = m and for all l = 1, . . . , n and all U = 0, . . . , ua:

F (m, l, U) =

{

∑

i≤l αPmi if
∑

i≤l dPmi≤U

0 otherwise.

For all k = 1, . . . , m − 1 and for all l = 1, . . . , n and all U = 0, . . . , ua:

F (k, l, U) = max
{

F (k + 1, j, U ′) +
∑

i≤l αPki
: j, U ′ with

1 ≤ j ≤ l and U ′ := U − ∑

i≤l dPki
≥ 0

}

.

Using a standard dynamic programming algorithm based on this recursion,
all function values of F in the domain {1, . . . , m}× {1, . . . , n}× {0, . . . , ua}
can be computed in pseudo-polynomial time. With (8.23), this implies that
the given precedence constrained knapsack problem {maxαT x : x ∈ PCKN}
can be solved in pseudo-polynomial time. �

8.3. Precedence Constrained Knapsack Inequalities 219

Remark 8.29 With a slight modification, the dynamic programming algo-
rithm presented above can also be used to solve the precedence constrained
knapsack problem for precedence graphs that are (linear) interval intersec-
tion graphs or circular interval intersection graphs. So, also these special
cases of the precedence constrained knapsack problem are solvable in pseudo-
polynomial time.

220 8. Valid Inequalities

Chapter 9

Implementation and

Computational Results

In this final chapter we describe the algorithm that is used to solve the
network design and routing optimization problems arising in the planning
and operation of the IP backbone networks of the German national research
network. The algorithm combines and extends the concepts and techniques
exposed throughout this thesis. It is based on the general solution approach
illustrated at the beginning of Chapter 7: In the first phase, a (near-) optimal
set of end-to-end routing paths, together with a network configuration is
computed using integer linear programming techniques. Afterwards, a valid
routing metric that induces exactly these optimal paths is computed.

The integer linear programming models used in the first phase of our
algorithm are based on those presented in Chapter 7, but they incorporate
more of the technical details and operational side constraints that arise in
real-world IP network planning. After the end-to-end paths are found, the
compatible routing metric is computed with the linear programming and
rounding algorithms described in Chapter 4 of this thesis.

In Section 9.1 we describe the more realistic problem setting implemented
in our algorithm and present the corresponding integer linear models. This
specific problem has been set up in cooperation with the DFN-Verein for
the purpose of planning of the German national research networks G-WiN
and X-WiN. Although tailored to fit needs of the DFN-Verein, the models
are applicable for a wide range of IP networks and IP network planning
problems. They contain a very detailed yet very general description of the
link and node hardware used in practice, and they also incorporate several
types of typical routing restrictions that arise in real-world routing problems.

Section 9.2 is dedicated to the computational aspects of our implemen-
tation. Here we discuss the general solution approach and describe which
methods and strategies are used for separation, column generation, branch
node and branch variable selection. We also sketch the heuristics that are
used to compute feasible solutions in the branch and bound algorithm. Some

221

222 9. Implementation and Computational Results

of the details that proved to be crucial for the performance of the overall
algorithm are discussed in this section too.

In Section 9.3 we report and discuss the computational results obtained
with this algorithm for the DFN-Verein planning problems and for some
test instances from the SNDlib [149]. We conlude this chapter by discussing
some of the strengths and weaknesses of the implemented algorithm and by
pointing out some directions for potential future improvements.

9.1 Modeling the Real Problem

In the sequel we present the mathematical models that were developed for
solving the network design and traffic engineering problems for the Ger-
many’s national research and education network. We focus on those techni-
cal and operational variants that were used in the planning of the backbone
network G-WiN, but the models are not specific for the G-WiN. They were
designed to capture many aspects of practical interest as general as possible
and are they applicable for many other networks as well.

9.1.1 Underlying Networks

The point-to-point link technologies used in the G-WiN provide the same
routing capacity for both directions of a link. Multi-point links connecting
more that two routers via a single shared-capacity line are not used in the
G-WiN. For dimensioning purposes, the network therefore is considered as
an undirected link graph, whose nodes correspond to the locations where a
router is or can be installed and whose edges correspond to the potential
links between these routers.

Notation 9.1 The topology of the network is given as an undirected link
graph G = (V, E).

The undirected link graph G defines the directed supply graph, in which the
directed traffic demands are routed.

Notation 9.2 With the given link graph G = (V, E) we associate the di-
rected supply graph D = (V, A), where

A :=
{

(u, v), (v, u) : uv ∈ E
}

.

In short-term traffic engineering problems, where the both topology and
the hardware configuration of the real network must remain unchanged, we
may of course assume that the supply graph and its arc capacities are given
directly. In medium- and long-term network design and network reconfigu-
ration problems, we need consider the possible hardware installation in the
undirected link graph.

9.1. Modeling the Real Problem 223

Figure 9.1 Switching fabric and fully equipped Cisco 12016 Gigabit-router
in the G-WiN network [72].

9.1.2 Hardware and Network Configuration

For each node and each link in the network, appropriate node hardware or
link technology must be installed. In practice, this is not just one single de-
vice or capacity type for each node or link. Many different hardware devices
and software components are necessary to realize the required functionali-
ties.

Figure 9.1 shows a typical IP router used in the G-WiN and in other
networks. The entire router system consists of a core unit and a number of
different interface cards. The core unit contains a routing processor card,
redundant clock and scheduler cards, a number of switching fabric cards,
and redundant power supply for the entire system. The routing processor
plus the number and the type of switching fabrics determine the maximum
total throughput of the router. In principle, all these cards are separate
devices that may be purchased, installed, or replaced independent of each
other. Yet, a router system typically can be equipped with only one type of
processor, clock, and switching fabric card. Since these devices are necessary
for the router to be operational, they can be regarded as an integral part
of the core unit here. Figure 9.2 illustrates the simplified architecture of a
router, where only the (pre-equipped) core router and the interface cards are
considered. There exist various router systems, and interface cards for one

224 9. Implementation and Computational Results

STM1

4xSTM1

LinkRouter (with processor card) Interface card

7 slots remain for interface cards

Figure 9.2 Simplified architecture of an IP router.

system typically cannot be used together with the core unit of another sys-
tem. In general, the chosen core unit type determines which and how many
interface cards, switching fabrics, and routing processors can be installed.
Most router vendors offer interface cards for various link technologies, such
as Sonet, Ethernet, ATM, or WDM, and for various link capacities.
Thus, many different link technologies and capacities can be used within
one network.

In the following we present a very generic model for the network configu-
ration and the hardware installation, which was introduced by Kröller [127].
Besides the technical aspects of the hardware installation such as hardware
compatibility, many non-technical issues arising in real-world planning prob-
lems can be expressed within this model.

The model uses the concept of abstract components and resources. Com-
ponents are entities that can be installed somewhere in the network in an
integer amount. A component may be a real item, such as router or an in-
terface card, as well as an artificial item, like a rebate available when buying
bundles of hardware.

Notation 9.3 Let G = (V, E) be the link graph. Components can be in-
stalled at nodes v ∈ V , at edges e ∈ E, and at the graph G itself. The set of
these graph elements is

G = G(G) := {G} ∪ V ∪ E .

Notation 9.4 The set of all components is denoted by C. The graph
elements themselves are also components, i.e., G ⊆ C.

A component c ∈ C has to be installed at least zc,g and at most zc,g times
at the graph element g ∈ G, where zc,g, zc,g ∈ Z+ with zc,g ≤ zc,g. Each
graph element g ∈ G is a special component that is installed exactly once at
itself and only there, i.e.,

zg,g = zg,g = 1 for all g ∈ G and

zg,g′ = zg,g′ = 0 for all g, g′ ∈ G with g 6= g′.

9.1. Modeling the Real Problem 225

Notation 9.5 A component c ∈ C is installable at graph element g ∈ G,
if zc,g > 0. A vector z = (zc,g) ∈ ZC×G

+ is called a component installation
if

z ≤ z ≤ z , (9.1)

where z =
(

zc,g

)

∈ ZC×G
+ and z =

(

zc,g

)

∈ ZC×G
+ are the lower and upper

installation bounds, respectively.

The side constraints of the component installation are expressed via re-
sources, which are provided or consumed by the installed components. A
resource may stand for a technical restriction, such as the type and the num-
ber of interface cards that can be plugged into a core router, or for some
administrative condition, such as a maximum number of allowed device ex-
changes in a network reconfiguration.

Notation 9.6 The set of all resources is denoted by R.

If a component is installed at a graph element, it provides or consumes some
of the resources.

Notation 9.7 For each graph element g ∈ G, each component c ∈ C (that is
installable at g), and each resource r ∈ R, the resource value ̺r

c,g ∈ Z de-
notes the contribution to the resource r of a single installation of component
c at g.

If ̺r
c,g > 0, then installing one component c at g provides ̺r

c,g units of r. If
̺r

c,g < 0, then |̺r
c,g| units of r are consumed by installing c at g.

In principle, a resource must not be exhausted, i.e., the consumption of a
resource must not exceed the provision. However, there are several different
ways how components installed at different graph elements share resources.
For example, a total cost budget is a global resource that is consumed by
all components installed in the network. The maximum number of interface
cards that can be plugged into a core router is a restriction that is only
locally valid at each node. Clearly, the free slots in the router’s core unit at
a node v ∈ V are not consumed by the interface cards that are installed at
some other node w ∈ V , w 6= v. To model these differences, we distinguish
three types of resources.

Notation 9.8 The resource set is partitioned into

RL ∪̇RV ∪̇RG = R .

Each resource r ∈ R is either a local resource r ∈ RL, a node resource
r ∈ RV , or a global resource r ∈ RG.

226 9. Implementation and Computational Results

For each local resource r ∈ RL and for each graph element g ∈ G, the amount
of resource r consumed by the components installed at g must not exceed the
amount provided by the components at g. Similar, node resources balance
the resource values of the components installed at a node and its adjacent
edges, while global resources balance the resource values of all installed
components. These constraints can be formulated with the following linear
inequalities:

∑

c∈C

̺r
c,gzc,g ≥ 0 for all g ∈ G, r ∈ RL, (9.2)

∑

g∈{v}∪δ(v)

∑

c∈C

̺r
c,gzc,g ≥ 0 for all v ∈ V , r ∈ RV , (9.3)

∑

g∈G

∑

c∈C

̺r
c,gzc,g ≥ 0 for all r ∈ RG. (9.4)

The three types of local, node, and global resources suffice to describe all
relevant hardware compatibility constraints and network configuration re-
strictions arising in the planning of the G-WiN.

Notation 9.9 A component installation z ∈ ZC×G
+ is called a feasible di-

mensioning, if it satisfies the bounds (9.1) and all resource inequalities
(9.2), (9.3), and (9.4). The set of all feasible dimensionings is

Z :=
{

z ∈ ZC×G
+ : z satisfies (9.1), (9.2), (9.3), and (9.4)

}

.

The components that are installed at the edges of the link graph (may)
provide bidirectional routing capacities. This is modeled with a special local
resource cap ∈ RL. We assume that the total routing capacity available on
an edge e ∈ E is precisely the sum of the capacity contributions ̺

cap
c,e of all

components c installed at e. This assumption is realistic, if either at most one
(real) component per edge provides capacity in any feasible dimensioning, or
if the flow across the link may use the capacities of all components that are
installed in parallel. If such flow-sharing technology is not available, then
parallel link technologies appear as different links to the IP router and must
be modeled by parallel edges in the link graph.

Notation 9.10 Let z ∈ ZC×G
+ be a feasible dimensioning. The (routing)

capacities u = (ua) ∈ RA
+ provided by z in the digraph D are

u(v,w) = u(w,v) :=
∑

c∈C

̺capc,vwzc,vw for all vw ∈ E,

where cap ∈ RL denotes the special local resource routing capacity.

The cost of a network dimensioning depends on the installed components.
It is expressed using another special resource.

9.1. Modeling the Real Problem 227

Components installable at node v

v

Resource values:

space 1

cr-12008

Resource values:

space −1
slot 6
swcap 10,000

4xstm1-card

Resource values:

slot -1
stm1 4

4xstm4-card

Resource values:

slot -1
stm4 4

Components installable at edge e

e

Resource values:

fiber 1

stm1-link

Resource values:

stm1 -1
swcap -155
fiber -1
cap 155

stm4-link

Resource values:

stm4 -1
swcap -622
fiber -1
cap 622

Figure 9.3 Typical components and resources considered in an IP network.

Notation 9.11 The cost of a network dimensioning z ∈ ZC×G
+ is

∑

g∈G

∑

c∈C

̺costc,g zc,g ,

where cost ∈ RG denotes the special global resource cost.

Example 9.1 Figure 9.3 illustrates some typically components consid-
ered in an IP-over-SDH network like G-WiN. The graph node component
v provides the room necessary for the installation of other components at
v. With the local resource space it expresses that at most one router may
be installed. In this example, we consider only one router system, a Cisco
12008. The core unit of this router system is modeled by the component
cr-12008, which consumes 1 unit of the resource space. In practice, one

228 9. Implementation and Computational Results

may have the choice between several router systems. A Cisco 12008 core
unit has a switching capacity of 10 Gbit/s and 8 card slots. One of these
slots is occupied by the routing processor card and one is occupied by a
scheduler card, 6 slots remain free. This is described with the node resource
swcap and the local resource slot, respectively. Each of the free slots can
be equipped with an interface card (or another switching fabric to increase
the maximum throughput of the router, but this is ignored in our example).
The interface cards provide ports to attach links. In this example, we con-
sider two types of interface cards. One type provides four ports for STM-1
links and is modeled by the component 4xstm1-card. The other card type
provides four STM-4 ports and is modeled as component 4xstm4-card. The
node resources stm1 and stm4 express the respective port types.

At the edges, three different components are considered. At each edge e,
component e specifies how many and which link capacity types may be in-
stalled at e. We consider two possible capacities STM-1 and STM-4, which
are modeled by the components stm1-link and stm4-link. Since the com-
ponent e provides one unit of the local resource fiber and each component
stm1-link and stm4-link consumes one unit, at most one of the two ca-
pacity types may be installed at edge e. Combining these capacities or
installing multiples of each is not allowed. If stm1-link is installed at edge
e = uv, it consumes one STM-1 port and 155 Mbit/s of the router’s switch-
ing capacity at each end-node u and v. In turn, it provides a bidirectional
routing capacity of 155 Mbit/s for the IP traffic across edge e. Analogously,
an stm4-link component consumes an STM-4 port and 622 Mbit/s of the
router’s switching capacity at each end-node and provides a routing capacity
of 622 Mbit/s. △

The component-resource model introduced above is very flexible and allows
to model the hardware installation part of network planning problems at a
very detailed level. The simplified link capacity models used in the basic
unsplittable shortest path routing problems Min-Con-USPR, FC-USPR,
and Cap-USPR can be easily expressed in terms of components and re-
sources (if we assume that the same capacity must be installed for both
directions of each link).

Besides the pure hardware installation and compatibility, the component-
resource model can be used to capture many other aspects that are relevant
in practice.

In the planning of the G-WiN, for example, we used artificial components
and resources to model pools of freely available hardware and to express
the demand of spare ports at the nodes, which were needed to connect the
core network to common Internet exchange points and to local networks. In
the network expansion and reconfiguration planning, we also used special
components and resources to bound the number (or the associated cost)
of modifications that can be made to the existing network. Kröller [127]

9.1. Modeling the Real Problem 229

discusses some of these modeling possibilities in detail.

9.1.3 Traffic Demands and Routing

The routing of the data traffic in the G-WiN is controlled by the OSPF
protocol. For operational reasons, the DFN-Verein wants all packets with
the same origin and destination to follow the same path through the network.
Thus, the routing can be modeled as an unsplittable shortest path routing.

Notation 9.12 The traffic demands are given as a set of directed com-
modities K ⊆ V × V . Each commodity (s, t) ∈ K has an associated de-
mand values ds,t ∈ Z+.

In practice, the routing often has to fulfill several side constraints, which
have been disregarded in the pure unsplittable shortest path routing version
studied in the preceding chapters. In the G-WiN, we have to consider three
kinds of routing restrictions: hop limits, node taboos, and the symmetry
requirement. Hop limits bound the number of routers in the admissible
routing paths and are introduced to ensure low and even packet delays.
Node taboos force some or all routing paths to avoid certain nodes. They
are introduced to ensure that certain special nodes have no transit traffic. In
some of the G-WiN planning instances, the considered link graph contains
‘artificial’ nodes that correspond to external networks reachable via different
gateways or to important nodes at the next lower network level. In both
cases, traffic between the normal nodes shall not transit these nodes. Finally,
the routing symmetry requirement means that the same routing length must
be assigned to the two anti-parallel arcs defined by an undirected edge of
the link graph. Consequently, the same path is used for both directions
of a communication. This requirement is often introduced to ensure the
traceability of data packet flows and improve.

The hop limits and the node taboos are specified via the following param-
eters.

Notation 9.13 For each commodity (s, t) ∈ K, we are given a hop limit
ℓs,t ∈ Z+, which specifies the maximum number of arcs allowed in the routing
path for commodity (s, t).

Notation 9.14 For each commodity (s, t) ∈ K, we are given a set of taboo

nodes Ts,t ⊆ V \ {s, t}, which must not be contained in the routing path of
commodity (s, t).

The concept of node taboos extends straightforward to link- or arc-taboos.

These parameters restrict the set of admissible routing paths for each
commodity.

230 9. Implementation and Computational Results

Notation 9.15 For each commodity (s, t) ∈ K, an (s, t)-path in D is said
to be admissible if it contains at most ℓs,t arcs and none of the nodes in
Ts,t. In the remainder of this chapter, we denote the set of all admissible
(s, t)-paths by

Pa(s, t) :=
{

P ∈ P(s, t) : |P ∩ A| ≤ ℓs,t and P ∩ Ts,t = ∅
}

and let Pa(K) :=
⋃

(s,t)∈K Pa(s, t).

According to these restrictions, we extend the notion of valid metrics and
unsplittable shortest path routings introduced in Chapter 3 as follows.

Notation 9.16 A routing metric λ ∈ RA
+ is said to be admissible for the

commodity set K ⊆ V × V if

(i) it is valid, i.e., the shortest (s, t)-path P ∗
(s,t)(λ) is uniquely determined

for each commodity (s, t) ∈ K,

(ii) it is symmetric, i.e., λ(u,v) = λ(v,u) for all uv ∈ E, and

(iii) for each commodity (s, t) ∈ K, the induced shortest path P ∗
(s,t)(λ) is

admissible.

Notation 9.17
Given an admissible metric λ ∈ RA

+ for the commodity set K, the path set

S(λ) :=
{

P ∗
(s,t)(λ) : (s, t) ∈ K

}

is an admissible unsplittable shortest path routing (USPR) (induced
by λ) for the commodity set K.

In practice, we seek for an admissible metric λ with integer arc lengths
that fit into the data format of the OSPF routing protocol, i.e., with values
λa ∈ {1, . . . , 65535} for each a ∈ A. In the main planning process, however,
this restriction can be safely ignored. For real-world size networks, any
admissible metric can be turned into an equivalent admissible metric with
small enough integer values using the methods discussed in Chapter 4.

Incorporating these additional restrictions into the basic path routing for-
mulation for unsplittable shortest path routings introduced in Chapter 7
leads to the following integer linear programming characterization of admis-

9.1. Modeling the Real Problem 231

sible unsplittable shortest path routings:
∑

P∈S

xP ≤ |S| − 1 ∀S ∈ CUSPS ∩ Pa(K) (9.5)

∑

P∈Pa(s,t)

xP = 1 ∀ (s, t) ∈ K (9.6)

xP = xreverse(P) ∀P ∈ Pa(K) (9.7)

0 ≤ xP ≤ 1 ∀P ∈ Pa(K)

xP ∈ Z+ ∀P ∈ Pa(K)

It follows immediately from Theorem 7.3 that the vectors x ∈ {0, 1}Pa(K)

that satisfy (9.5)–(9.7) correspond exactly to the admissible unsplittable
shortest path routings for the commodity set K, i.e., S(x) := {P : xP = 1}
is an admissible USPR for each x ∈ {0, 1}Pa(K) satisfying (9.5)–(9.7), and
x = χ(S) satisfies (9.5)–(9.7) for each admissible USPR S ⊆ Pa(K). Of
course, we perform the variable substitutions corresponding to the symmetry
constraints (9.7) instead of adding two binary variables with an equality
constraints in the implementation of this sub-model.

Incorporating the additional routing restrictions into the arc routing for-
mulation introduced in Chapter 7 leads directly to the following integer lin-
ear programming characterization of admissible unsplittable shortest path
routings:

∑

a∈δ−(v)

ys,t
a −

∑

a∈δ+(v)

ys,t
a =











−1,

1,

0,

∀ (s, t) ∈ K, v = s

∀ (s, t) ∈ K, v = t

∀ (s, t) ∈ K, v ∈ V \ {s, t}
(9.8)

∑

((s,t),a)∈R

ys,t
a ≤ |R| − 1 ∀ R ⊆ K × A with (9.9)

(i) F(R) ∈ CUSPF

(ii) |F(R)| = |R|
∑

a∈A

ys,t
a ≤ ℓs,t ∀ (s, t) ∈ K (9.10)

ys,t
(v,w) = yt,s

(w,v) ∀ (s, t) ∈ K, (v, w) ∈ A (9.11)

ys,t
(v,w) = 0 ∀(s, t) ∈ K, (v, w) ∈ A with

v ∈ Ts,t or w ∈ Ts,t

(9.12)

0 ≤ ys,t
a ≤ 1 ∀ (s, t) ∈ K, a ∈ A

ys,t
a ∈ Z+ ∀ (s, t) ∈ K, a ∈ A

With Theorem 7.7 it is again easy to see that the vectors y ∈ {0, 1}K×A

that satisfy (9.8)–(9.12) correspond to admissible unsplittable shortest path
routings for the commodity set K and vice versa.

Note that the symmetry constraints (9.11) and the node taboo constraints
(9.12) appear only for notational convenience in this routing model. In our

232 9. Implementation and Computational Results

implementation, we of course perform the corresponding substitutions and
omit the fixed variables.

9.1.4 Load Groups

One of the main objectives of traffic engineering in IP networks is to min-
imize the maximum link congestion. In practice, however, it is often very
useful to consider not only the maximum link congestion over all links in
the network, but to classify the links into several groups and to consider the
congestion for each group of links independently.

The topologies and the traffic demands in real networks often force the
same set of links to be at the top-most load level (or even imply that the
maximum congestion is attained on one particular link) no matter which
routing metric is used. Minimizing the maximum congestion over all links
of the network would lead to a routing that minimizes and balances the load
on the one or few bottleneck links, but that disregards further potential
improvements in the rest of the network. Connections to common Internet
exchange points or to heavily used servers typically are such bottleneck links.
If these special links are known in advance and their bandwidth cannot be
increased, it is reasonable to consider them independent from the normal
links.

In our traffic engineering model we allow to distinguish between arbitrarily
many groups of links.

Notation 9.18 We are given a partition of the arc set A into load groups
Aj, j ∈ J , i.e.,

⋃

j∈J Aj = A and Ak ∩ Al = ∅ for all k, l ∈ J with
k 6= l. Each load group Aj , j ∈ J , has an associated non-negative objective
coefficient αj ∈ Z+.

Load groups provide the flexibility to handle the ‘special’ links known a-
priori and the ‘normal’ links independent from each other. For each load
group, we consider an individual value for the maximum congestion over all
links in that group.

Notation 9.19 Let λ ∈ RA
+ be an admissible metric for the commodity set

K and u ∈ RA
+ be a vector of arc capacities. For each j ∈ J , we denoted by

Lj = Lj(λ) := min
{

L ∈ R+ : fa(λ) ≤ L · ua for all a ∈ Aj

}

the maximum congestion that is attained by the routing induced by λ on
the arcs of Aj.

The objective in the traffic engineering problem now is to minimize the linear
combination of these congestion values, i.e.,

min
∑

j∈J

αjLj .

9.1. Modeling the Real Problem 233

If the arc set A is ‘partitioned’ into only one load group A1 = A, this
objective function reduces to the uniform case considered in the Min-Con-
USPR problem. If the arc set is partitioned into two or more load groups,
we have to avoid that the arcs of one load group are overloaded in order to
reduce the congestion on the arcs of another group. In our traffic engineering
model, we therefore require that, for each load group j ∈ J , the maximum
congestion value Lj is between 0 and 1. Equivalently, we can demand that
fa(λ) ≤ ua for all a ∈ A. (Other upper bounds on the maximum admissible
congestion values can be transformed to 1 by scaling the routing capacities
of the respective links.)

9.1.5 Problems and Models at a Glance

With the above notation, the minimum cost network design problem with
unsplittable shortest path routing implemented in our algorithm can be sum-
marized as follows:

ND-USPR

Instance: A link graph G = (V, E) and, implicitly, the associated
supply digraph D = (V, A).

Components and resources, i.e.,
⊲ set C of components,

⊲ sets RL, RV , and RG of typed resources,

⊲ component installation bounds z, z ∈ ZC×G
+ , and

⊲ resource values ̺r
c,g ∈ Z for all c ∈ C, r ∈ R, g ∈ G.

A commodity set K ⊆ V × V with
⊲ demand values ds,t ∈ Z+,

⊲ hop limits ℓs,t ∈ Z+, and

⊲ taboo nodes Ts,t ⊆ V \ {s, t}, for all (s, t) ∈ K.

Solution: A feasible dimensioning z ∈ Z and an admissible metric
λ ∈ {1, . . . , 65535}A for the commodity set K such that
the induced routing satisfies the capacity constraints

f(u,v)(λ) ≤
∑

c∈C

̺capc,uv zc,uv for all (u, v) ∈ A.

Objective: min
∑

g∈G

∑

c∈C ̺costc,g zc,g

This problem captures not only the initial network design step, but also
the re-dimensioning of an existing network. Artificial increment and decre-
ment components and corresponding resources can be used to model the
installation of additional hardware and the removal of existing hardware.
Restrictions on the number of changes or on the expenses induced by the

234 9. Implementation and Computational Results

reconfiguration can be easily formulated with these components in the di-
mensioning sub-model.

With the models for the dimensioning and routing subproblems presented
above, we immediately obtain two integer linear programming formulations
for ND-USPR. For the version with path routing variables, the correspond-
ing arc capacity constraints are

∑

(s,t)∈K,
P∈Pa(s,t): a∈P

ds,t xP ≤
∑

c∈C

̺capc,vw zc,vw ∀ (v, w) ∈ A . (9.13)

An integer linear programming formulation for ND-USPR (ignoring the
boundedness of the routing metric λ) with path routing variables then is

min
{

∑

g∈G

∑

c∈C

̺costc,g zc,g : (x, z) ∈ {0, 1}Pa(K) × ZC×G
+ (ND-Path)

(x, z) satisfies (9.1)–(9.7) and (9.13)
}

.

For the version with arc routing variables, the capacity constraints can be
written as

∑

(s,t)∈K

ds,t ys,t
a ≤

∑

c∈C

̺capc,vw zc,vw ∀ (v, w) ∈ A . (9.14)

A complete integer linear programming formulation (again, ignoring the
boundedness of λ) with arc routing variables is given as follows:

min
{

∑

g∈G

∑

c∈C

̺costc,g zc,g : (y, z) ∈ {0, 1}K×A × ZC×G
+ (ND-Arc)

(y, z) satisfies (9.1)–(9.4), (9.8)–(9.12), and (9.14)
}

.

In traffic engineering, the goal is minimize the congestion in the network.
Neither the topology of the existing network nor its hardware configura-
tion may be changed in this short-term task. Hence, it is not necessary
to consider the undirected link graph and the components and resources
describing the network’s fixed hardware configuration. Instead, we assume
that the directed supply digraph D = (V, A) and the available routing ca-
pacities u ∈ ZA

+ are given explicitly. The traffic engineering problem then
can be formalized as follows:

9.1. Modeling the Real Problem 235

TE-USPR

Instance: A directed graph D = (V, A) with positive arc capacities
ua ∈ Z+, ua > 0 for all a ∈ A.

A commodity set K ⊆ V × V with
⊲ demand values ds,t ∈ Z+,

⊲ hop limits ℓs,t ∈ Z+, and

⊲ taboo nodes Ts,t ⊆ V \ {s, t}, for all (s, t) ∈ K.

Load groups Aj , j ∈ J , with associated objective coeffi-
cients αj ∈ Z+.

Solution: An admissible metric λ ∈ {1, . . . , 65535}A for the com-
modity set K such that the induced routing satisfies the
capacity constraints fa(λ) ≤ ua for all a ∈ A.

Objective: min
∑

j∈J αj Lj , where

Lj := min{L ∈ R+ : fa(λ) ≤ L ua for all a ∈ Aj} .

Integer programming models for TE-USPR based on the models of the
routing subproblems discussed above again are obtained straightforward.
For the version with path routing variables, the corresponding capacity con-
straints are

∑

(s,t)∈K,
P∈Pa(s,t): a∈P

ds,t xP ≤ ua Lj ∀ j ∈ J , a ∈ Aj . (9.15)

A complete mixed-integer linear programming formulation for TE-USPR
(ignoring the boundedness of the routing metric λ) with path routing vari-
ables is

min
{

∑

j∈J

αj Lj : (x, L) ∈ {0, 1}Pa(K) × RJ
+ (TE-Path)

(x, L) satisfies (9.5)–(9.7) and (9.15)

0 ≤ Lj ≤ 1 ∀ j ∈ J
}

.

The capacity constraints for the formulation of the traffic engineering prob-
lem TE-USPR with arc routing variables finally are

∑

(s,t)∈K

ds,t ys,t
a ≤ ua Lj ∀ j ∈ J , a ∈ Aj , (9.16)

236 9. Implementation and Computational Results

leading to the following mixed-integer linear programming formulation of
TE-USPR (ignoring the λ-bounds):

min
{

∑

j∈J

αj Lj : (y, L) ∈ {0, 1}K×A × RJ
+ (TE-Arc)

(y, L) satisfies (9.8)–(9.12) and (9.16)

0 ≤ Lj ≤ 1 ∀ j ∈ J
}

.

We implemented a solution algorithm for all four formulations.

9.1.6 Remarks

In our project with the DFN-Verein we also encountered a combined traf-
fic engineering and network reconfiguration problem, where modifying the
existing network dimensioning within some given limits in order to reduce
the network congestion as much as possible was allowed. In this problem
version, both the undirected link graph with the components and resources
describing the possible network reconfigurations as well as a set of load
groups with associated objective coefficients are given. The task is to find
a feasible dimensioning and an admissible routing metric, such that the lin-
ear combination of the load group congestion values is minimized. The side
constraints that limit the number of changes to the current network configu-
ration or the reconfiguration cost have been formulated in the dimensioning
sub-model again.

Furthermore, an important issue in the project with the DFN-Verein was
to plan the network in such a way, that it is still operational and if some
nodes or links fail. Accordingly, also the routing metric in should be chosen
such that the congestion remains as low as possible in such failure situations.
In the real problems, we therefore also considered a set of so-called oper-
ating states representing typical or crucial failure scenarios. The concepts,
models, and algorithms discussed throughout this thesis generalize (almost)
straightforward to the respective problem versions with multiple network
operating states. However, network survivability and fault tolerant routing
are beyond the scope of this thesis, so we do not consider this part of the
problems and of our implementation here. In [36], an earlier version of the
currently implemented integer programming formulation with arc routing
variables for each considered operating state is presented. Orlowski [148]
and Fadejeva [83] discuss several issues concerning the integer programming
formulations for closely related survivable network design problems with
unsplittable flow routing, and some of their results merged into the current
implementation of our algorithms for survivable unsplittable shortest path
routing.

9.2. Implementation 237

9.2 Implementation

In the following, we give a high-level description the algorithm that was
implemented to solve the problems ND-USPR and TE-USPR.

The algorithm follows the general approach discussed in Section 7.2: In
the first phase, we solve an integer linear programming formulation of the
problem to find an optimal set of routing paths and, for the network design
problem ND-USPR, also the corresponding network dimensioning. For each
problem, either the corresponding path routing formulation (ND-Path) or
(TE-Path) or the corresponding arc routing formulation (ND-Arc) or
(TE-Arc) may be used. In the following, we refer to the chosen formu-
lation as the Master problem. The Master problem is solved with the usual
branch-and-price-and-cut or branch-and-cut algorithm. We use specialized
branching rules, cutting planes, and heuristics, which are described below.

After the Master problem is solved (or the time limit is exceeded), the
algorithm enters the post-processing phase. Using the algorithms presented
in Chapter 4, it then computes a compatible routing metric for the best
integer solution found for the Master formulation.

The algorithm is implemented in the c++ programming language as part
of the Discnet network optimization library [9]. The data structures and
algorithms are based on the standard c++ library and Leda 4.1 [132]. The
linear programs arising during the solution process are solved by Cplex
[64]. Cplex is also used to solve the integer linear programming problems
that arise as sub-problems in our heuristics. The branch-and-price-and-cut
framework for the Master problem, including the management of the branch-
and-bound tree and the control of the pricing and separation algorithms, is
part of Discnet.

9.2.1 Initial Heuristics

We use some basic heuristic methods to start the branch-and-bound algo-
rithm with a good initial solution.

Random routing metrics

The first heuristic simply generates a set of random routing metrics. Op-
tionally, these metrics may be biased on the geographic link lengths or on
unit lengths, which proved to useful for instances with path length restric-
tions. Node taboos in the given problem are accounted for by increasing
the lengths of the corresponding adjacent links. For each of these candidate
metrics, the heuristic then computes the induced routing paths and traffic
flows, applying a perturbation to ensure uniqueness if necessary. Metrics
that induce non-admissible routing paths or whose induced flows exceed the
available or maximally installable capacity are simply discarded.

238 9. Implementation and Computational Results

For the traffic engineering problem TE-USPR, each of the remaining
metrics defines a feasible solution.

For the network design problem ND-USPR, an auxiliary integer linear
program is solved to find the cheapest feasible dimensioning that provides
sufficient routing capacities for the induced flows. If there exists such a
dimensioning, then the routing metric and this dimensioning together define
a feasible solution. Otherwise the metric is discarded. For a candidate metric
λ ∈ RA

+, the corresponding auxiliary integer linear program is

min
{

∑

g∈G

∑

c∈C

̺costc,g zc,g : z ∈ ZC×G
+

z satisfies (9.1), (9.2), (9.3), and (9.4)
∑

c∈C

̺capc,vwzc,vw ≥ f(v,w)(λ) ∀ (v, w) ∈ A
}

.

In principle these auxiliary integer programs are NP-hard. However, they
typically can be solved very fast in practice. In our heuristics, we limit the
CPU-time for the solution (1 second per default) and choose a parameter
setting instructing Cplex to emphasize the construction of feasible solu-
tions.

Lagrangian algorithm

Our second initial ‘heuristic’ is the Lagrangian solution approach presented
in [34]. Instead of using randomly generated link metrics, this approach iter-
atively updates the candidate metric based on the violation of the (relaxed)
capacity constraints. Primal solutions are computed from the candidate
metrics exactly as in the random weights heuristic above. As a positive
side-effect, this approach also computes a lower bound on the optimal solu-
tion value. A more detailed description of this algorithm can be found in
[34].

We want to point out that a good initial solution is extremely important
for the performance of our solution approach. For the traffic engineering
problem TE-USPR, it not only provides a cut-off value for the branch-and-
bound procedure, it also helps to generate stronger cuts in the sequel, see
Sections 9.2.3 and 9.2.7 below.

9.2.2 LP Initialization

The initial Master LP contains all variables and constraints of the corre-
sponding unsplittable flow formulation. For the network design formula-
tions, all component variables zc,g and all resource constraints (9.1)–(9.4)
are contained in the initial LP. For the traffic engineering formulations, all
congestion variables Lj , j ∈ J , occur in the initial LP. Also, all of the re-
spective capacity constrains (9.13), (9.14), (9.15), of (9.16) are contained in
the initial LP.

9.2. Implementation 239

Furthermore, the initial LPs of the arc routing formulations (ND-Arc)
and (TE-Arc) involve (in principle) all arc routing variables, all flow con-
servation constraints, and all hop-length restrictions. However, only one set
of arc routing variables is created for each pair of anti-parallel commodities.
The variables for the other commodity are expressed in terms of those of
the first commodity via the variable substitutions defined by the routing
symmetry constraints (9.11). Naturally, the variables ys,t

(v,w) with v ∈ Ts,t

or w ∈ Ts,t and the corresponding taboo constraints (9.12) are omitted.
Furthermore, arc routing variables ys,t

(v,w) with t = v, with s = w, or with

dist(s, v) + dist(w, t) >= ℓs,t are omitted. They obviously must attain the
value 0 in any feasible solution.

For the path routing formulations (ND-Path) and (TE-Path), the initial
LP contains all demand constraints (9.6) and the path routing variables of
some initial paths. The set of these paths can be generated by (a combina-
tion of) the following methods:

(1) Enumerate all admissible paths for each commodity (s, t) ∈ K.

(2) Compute the k-shortest admissible paths for each commodity (s, t) ∈ K
and some given k ∈ Z+.

(3) Compute a maximum number of arc- or node-disjoint admissible (s, t)-
paths for each commodity (s, t) ∈ K.

(4) Generate a set of random routing metrics (again, these may be biased)
and use all those induced routing paths that are admissible.

The USPS or USPF circuit inequalities are not contained in the initial
Master LP.

9.2.3 Inequalities

Our algorithm separates several types of cuts and original model inequalities
at the nodes of the branch-and-bound tree.

Metric-type inequalities

For the network design formulations (ND-Arc) and (ND-Arc), strength-
ened metric inequalities [5], band inequalities [66, 67], and superadditive
metric inequalities are separated at the root of the branch-and-bound tree.
The basic form of superadditive metric inequalities was described in Sec-
tion 8.2.

The separation problem for each of these inequalities is NP-hard. In our
algorithm, we solve these problems heuristically for the cut-metrics given
by single-node, two-node, and three-node cuts in underlying graph. Given
such a graph metric, the (only) associated strengthened metric inequality is

240 9. Implementation and Computational Results

obtained by standard integer routing and the most violated band inequality
is computed using a dynamic programming algorithm [190]. In order to
identify possibly violated superadditive metric inequalities, a small number
of step functions Γc(x) = ⌊c x⌋, c ∈ R+, is applied for every given metric, c.f.
Section 8.2. Which values of c are actually tried depends on the installable
capacities on the links across the given cut.

Optionally, all metric-based inequalities can be separated also at deeper
nodes in the branch and bound tree. Furthermore, additional base metrics
can be generated during the algorithm via the standard separation tech-
niques for classical metric inequalities or via cut enumeration in an auxiliary
graph, that is obtained by heuristically shrinking the underlying link graph
based on the tightness of the capacity constraints in the current LP solution.
However, both options degraded the overall performance of the algorithm
and are turned off per default.

Cover and GUB-cover inequalities

In the two network design formulations (ND-Path) and (ND-Arc), the
resource constraints (9.2), (9.3), and (9.4) typically define various standard
0/1-knapsacks and GUB-knapsacks on the binary component variables zc,g,
c ∈ C and g ∈ G. For these knapsacks, our algorithm separates the corre-
sponding 0/1-knapsack cover inequalities [13, 152, 111, 192] and the GUB-
cover inequalities [193] at all nodes of the branch-and-bound tree. The re-
spective separation problems are solved exactly using the obvious dynamic
programming algorithms.

Induced cover inequalities

Appropriate versions of induced cover inequalities for the precedence con-
strained knapsacks defined by the arc capacity constraints are separated for
each of the four formulations at each node of the branch-and-bound tree. A
basic version of these inequalities for a single binary capacity variable and
path routing variables was discussed in Section 8.3.

For the four formulations considered here, the underlying precedence con-
strained knapsacks can be roughly described as follows. The basic set of
items in the knapsack for arc a ∈ A corresponds to the arc routing variables

y
(s,t)
a , (s, t) ∈ K, or to the path routing variables xP , P ∈ P with a ∈ P .

The sizes of these items are given by the respective commodities’ demand
values and the precedences among them are given by the implications of the
Bellman property.

For the traffic engineering formulations (TE-Path) and (TE-Arc), the
capacity of the precedence constrained knapsack on arc a ∈ A is Ljua, where
j ∈ J is the load group with a ∈ Aj and Lj is the currently best know upper
bound for the maximum congestion in load group j in an optimal solution,

9.2. Implementation 241

c.f. Section 9.2.7 below.

For the network design formulations (ND-Path) or (ND-Arc), the com-
ponent installation variables zc,vw, c ∈ C, on the underlying link vw, (v, w) =
a, are considered as binary or general integer items also. The sizes of these
items are the negative values of the provided routing capacities, and the
precedences among them are derived from GUB or ordering constraints for
the corresponding component installation variables. The knapsack capacity
is zero for the network design formulations (ND-Path) or (ND-Arc).

For all four variants, the separation problem for induced cover inequalities
is NP-hard in general. Our algorithm employs a simple greedy heuristic to
find violated induced covers. Starting with an artificial minimal item, it
maintains a set of items that is closed under the precedence relations. In
each iteration, it adds an item to this set. If the total size of the items in
the set exceeds the capacity of the knapsack, the induced cover inequality
given by the (w.r.t. the precedence relations) maximal elements of that set
is evaluated. If this inequality is violated, the heuristic returns. Otherwise
it continues to add items to the set, but now in such a way that the number
of maximal elements of the set decreases. Every time this number reduces,
the corresponding induced cover inequality is evaluated. The heuristic stop
if clearly no violated induced cover inequality can be generated by adding
further items. Several strategies of adding item in the first and in the second
phase have been implemented. In a post-processing loop, it finally tries to
reduce the generated induced covers to minimal induced covers. Lifting of
the resulting basic induced cover inequalities is not performed.

Circuit inequalities

Violated USPS circuit inequalities (9.5) for the path routing formulations
(ND-Path) and (TE-Path) or violated USPF circuit inequalities (9.9) for
the arc routing formulations (ND-Arc) and (TE-Arc) may be separated at
all nodes of the branch-and-bound tree. The subprograms to find irreducible
non-USPSs or irreducible non-USPFs, however, are rather time consuming
and accept only path sets and forwardings as input. Therefore, attempts to
separate circuit inequalities are made only if the Master LP solution is almost
integer and if no other violated inequality could be found. Besides, the
separation routines are also called indirectly via one of the node heuristics
at the branch-and-bound nodes of depth 2k, k ∈ Z+, see Section 9.2.6.

The implementation of the separation routines in our algorithm is straight-
forward. Given a solution of the Master LP, we first determine the path set
S or the forwarding F corresponding the the integer and near-integer rout-
ing variables (≥ 0.8 per default). For these sets, we then apply algorithm
Greedy-Non-USPS shown on page 83 or algorithm Greedy-Non-USPF shown
on page 106 to find an irreducible non-USPS R ⊆ S or an irreducible non-
USPF E ⊆ F , respectively. If such sets are found, the corresponding USPS

242 9. Implementation and Computational Results

or USPF circuit inequality is evaluated and, if violated, added to the Mas-
ter LP. If the given primal solution is integer, then this approach solves the
separation problem exact. Otherwise it is only a heuristic.

The linear system (4.3)–(4.4) in algorithm Greedy-Non-USPS is solved as
described in Chapter 4, using a cutting-plane algorithm that iteratively adds
violated inequalities of type (4.3). The separation problem for these inequal-
ities is solved with an improved version of algorithm CheckTwoShortestPaths,
which computes at most |V | many shortest path trees in each iteration of
the cutting plane algorithm. The linear system (4.11)–(4.14) in algorithm
Greedy-Non-USPF is solved via a single call to Cplex.

Other unsplittable shortest path routing constraints

Violated out-degree inequalities (8.7), in-degree inequalities (8.8), or sub-
path inequalities (8.9), (8.10), and (8.11) for the arc routing formulations
(ND-Arc) or (TE-Arc) are separated at all nodes of the branch-and-bound
tree. The respective separation problems are solved exactly using ad-hoc
enumeration methods. Even though there is only a polynomial number of
these inequalities, we generate them only if violated to keep the size of the
Master LP as small as possible.

Finally, USPS clique inequalities (8.2) for the path routing formulations
(ND-Path) and (TE-Path) are separated at all nodes of the branch-and-
bound tree. For this, our algorithm maintains a conflict graph, whose
nodes represent the paths in the LP and whose edges represent the pair-
wise (Bellman-) conflicts among the paths.

The separation problem for the USPS clique inequalities reduces to the
problem of finding a maximum weight clique in this graph, where the weights
are given by the values of the path routing variables xP , P ∈ P , in the cur-
rent Master LP solution. In general, this problem is NP-hard. However,
there are numerous efficient heuristics and exact solution methods for find-
ing maximum weight cliques in general graphs that can be applied. Bomze
et al. [38] provide a very comprehensive overview of such methods. In our
algorithm, we use the sequential Greedy heuristic described by Borndörfer
and Kormos [40], which proved to be very efficient. Given the size of the
conflict graphs we encounter in our application, computing an optimal max-
imum weight clique using the branch-and-bound algorithm proposed in [40]
or some other method is way out of the question.

9.2.4 Pricing of Path Variables

If the Master problem is one of the path routing formulations (ND-Path)
or (TE-Path) and the path variables have not been completely enumerated
initially, our algorithm adds path variables with negative reduced costs at
each node of the branch-and-bound search tree.

9.2. Implementation 243

The corresponding pricing problem is solved using the k-shortest paths
approach described in Section 7.5: For each commodity (s, t) ∈ K, let ks,t

be the number of (s, t)-path variables in the current restricted LP and let
Zs,t ⊂ A be the set of arcs for which the flow of commodity was fixed to 0
by previous branching decisions. The hop limit for admissible (s, t)-paths is
ℓs,t. For each commodity (s, t) ∈ K whose routing path is not yet entirely
fixed by the branching decisions and whose set of admissible routing paths
has not been fully added to the LP, our algorithm computes the ℓs,t-bounded
(ks,t+1)-shortest (s, t)-paths in the digraph D−Ts,t−Zs,t with respect to the
lengths given by the dual variables of the capacity constraints. The paths are
computed iteratively in order of increasing length (w.r.t. the dual variables),
using a modified version of Yen’s k-shortest path algorithm [196, 12]. The
procedure stops as soon as a path P is found whose corresponding routing
variable xP is not contained in the restricted LP. If this path P has negative
reduced cost, then it is added to the LP. Otherwise, if P has non-negative
reduced cost or if ks,t +1 paths have been considered, none of the admissible
(s, t)-paths has negative reduced cost.

Note that our algorithm does not lift the new variables into existing cir-
cuit, clique, or induced cover inequalities. The pricing problem would be-
comes strongly NP-hard (even with respect to the size of the restricted
LP), if immediate lifting is considered. (In practice, however, this no-lifting
approach is not very efficient, as we will see in our computational results.)

9.2.5 Branching

General branching scheme

For the branching on component variables and arc routing variables, our
algorithm uses standard branching on the variable bound.

For the branching on path routing variables, it uses the set-based branch-
ing scheme proposed by Barnhart et al. [18] for unsplittable flow problems.
Given a commodity that is routed fractionally in the current LP solution,
the algorithm first determines a vertex v where the commodity’s flow splits,
i.e., where at least two of the outgoing arcs carry a positive fraction of the
commodity’s flow. Then in partitions the set of all outgoing arcs into two
disjoint subsets A1 ∪ A2 = δ+(v), A1 ∩ A2 = ∅, such that both of these
subsets carry a positive fraction of the commodity’s flow. Finally, it cre-
ates two child nodes in the branch-and-bound tree. The first child node is
defined by the fixing xP = 0 for all P ∈ P(s, t) ∩ A1 (also for those paths
not even in the LP), the second child is given by the fixing xP = 0 for all
P ∈ P(s, t) ∩ A2.

244 9. Implementation and Computational Results

Branch node selection

The next branch-and-bound node to explore is selected by the following
strategy. For a given number of iterations (32 by default) the algorithms
chooses the node with the best dual bound. Then, it ‘dives’ for a good
feasible solution deep into the tree. The dive starts at a best-dual-bound
node and then always chooses the child node whose arc routing variable or
component variable was rounded up by the last branch. When branching
on sets of path routing variables, it chooses the child where the biggest of
the affected path variables was not fixed to zero. If a new feasible solution
is found, the algorithm switches back to the best-dual-bound strategy. If it
ends up in an infeasible or too costly node of the branch-and-bound tree,
it backtracks. If after a fixed number of backtrack steps (5 by default) no
feasible solution is found, it switches back to the best-dual-bound strategy.

Branch variable selection

The aim of our branch variable selection policy is to perform first the ‘impor-
tant’ branches, which fix the routing variables of the big demand commodi-
ties or the installation variables of expensive and high capacity components.
Routing variables of small demand commodities shall be handled at the
deeper nodes of the branch-and-bound tree.

For the network design formulations (ND-Path) and (ND-Arc), our al-
gorithm uses a strategy that alternates between branches on the routing
variables and branches on the component variables.

When branching on routing variables, it always prefers the routing vari-
ables that occur in tight capacity constraints or tight induced cover inequal-
ities. When solving a traffic engineering problem, this means that it prefers
the fractional routing variables that occur in the capacity constraints where
the maximum congestion for the respective load group is attained. Among
the preferred routing variables, it then chooses one whose value is ‘reason-
ably’ fractional and whose associated demand value is big.

9.2.6 Primal Heuristic

Two primal heuristics are used at the nodes of the branch-and-bound tree.
Both are applied only at nodes with depth 2k, k ∈ Z+, or if the ratio
between the optimal LP value of the current node and the optimal LP value
of its parent node exceeds a certain threshold (1.02 by default). Thus, the
heuristics are applied more frequently at the top of the branch-and-bound
tree than in the lower parts of the tree, and they are applied after very
significant changes.

Analogous to the initial heuristics, both heuristics generate a candidate
routing metric and then try to compute a feasible solution for this metric.

9.2. Implementation 245

For the network design problem ND-USPR, this again involves the solution
of an auxiliary integer program.

Our first heuristic tries several combinations of the current dual variables
of the capacity constraints and (biased) random metrics in the digraph given
by the current fractional arc capacity installation. As in the initial heuris-
tics, these candidate metrics are manipulated to account for path length
restrictions and node taboos in the given problem. In addition to the modi-
fications performed by the initial heuristics, the heuristics used at the nodes
of the branch-and-bound tree also increase the length of those links where
the traffic flow in the current LP solution is less than 50% of the smallest
still installable capacity. With this simple technique we try to avoid the
use of links that very likely are not installed in the best solution of this
branch-and-bound subtree.

Our second heuristic is closely related to the separation routine for USPS
or USPF circuit inequalities. In a first step, it determines the path set or the
forwarding that is given by the integer or near-integer (≤ 0.8 per default)
path or arc routing variables. Then it tries to find a compatible metric for
this routing or forwarding by solving the linear programming relaxation of
(Arc-IUSP) or (Arc-IUSPF).

If this linear program is solvable, its solution comprises a candidate rout-
ing metric, which is processed exactly as in the first heuristic. Otherwise, if
the linear program is not solvable, the near-integer routing variables form a
non-USPS or a non-USPF. In this case, the heuristic proceeds like the sep-
aration algorithm for the respective circuit inequalities, see Section 9.2.3.

9.2.7 Further Techniques

Flow costs

We observed that the LP relaxations of the Master problem are solved faster
if the routing variables have a positive objective function coefficients. In our
implementation, we perturb the original objective function of the Master
problem by adding small flow costs.

This technique encourages the LP to route commodities via short rather
than long paths. This reduces several stalling effects, such as the repeated
generation of slightly violated inequalities followed by a small shift of the
flows in the cutting plane phase. For the performance of the overall algo-
rithm, this perturbation technique turned out to be very important.

Automatic bound strengthening

When solving the traffic engineering problem TE-USPR, we also apply
some simple but effective bound strengthening for the congestion variables.
For each load group j ∈ J , we keep track of an upper bound Lj and a
lower bound Lj for the congestion variable Lj . The upper bounds Lj are

246 9. Implementation and Computational Results

set to 1 initially. An initial value for the lower bounds can be computed by
considering which arcs of each load groups must be used in a solution. If,
for example, all arcs of a graph cut δ(W) belong to the same load group Aj ,
then we immediately have Lj ≥ max{dv,w/ua : w ∈ W, v ∈ V \ W, a ∈ Aj}.

Whenever a new feasible solution with objective L∗ is found, we try to
tighten the upper bounds by setting

Lj := min
{

Lj , 1/αj (L∗ −
∑

k∈J \j

αk Lk)
}

, for all j ∈ J .

The upper bounds for the congestion variablesLj , j ∈ J , in the Master LP
are updated accordingly.

This bound strengthening indirectly tightens the capacity constraints and
thereby reduces the remaining search space for the branch-and-bound algo-
rithm. This effect is amplified by the fact that the induced cover inequalities
are based on these capacity constraints. The reduction of the upper bounds
for the congestion variables Lj , j ∈ J , immediately leads to a reduction
of the capacities Ljua that are considered in the corresponding precedence
constrained knapsack problems. The capacity reduction introduces new in-
duced covers for these knapsacks and thus leads to more and stronger in-
duced covers inequalities in the following separation attempts. Of course,
these inequalities are valid only for the restricted problem of finding a better
solution than the best known one.

9.2.8 Post-Processing

In the post-processing phase of our algorithm, a compatible metric for the
best solution of the Master problem is determined. Using the methods
presented in Chapter 4, the implementation is straightforward.

If the Master problem is formulated in terms of path routing variables, we
first solve the linear relaxation of (Arc-IUSP) for the set of routing paths
given by the Master problem’s solution. This yields a fractional compatible
metric for these paths. Then we perform the scaling and rounding steps
described in algorithm MIP-Rounding to construct a compatible metric with
integer arc lengths. If the Master problem is formulated in terms of arc
routing variables, we proceed analogously. First we solve the linear relax-
ation of (Arc-IUSPF) for the forwarding defined by the Master problem’s
solution. Analogous to algorithm MIP-Rounding, we then round and scale
the resulting fractional metric to an integer one. In both cases, we can re-use
the linear programs for the inverse shortest paths or inverse shortest path
forwarding problem, respectively, that have been used in the first phase of
the algorithm.

9.3. Computational Results 247

9.3 Computational Results

We tested our algorithm on various real-world problems from the DFN-
Verein and on several benchmark instances taken from the Survivable Net-
work Design Data Library SNDlib [149]. Our main interest, of course, was to
solve the problems arising in the planning of the German national research
and education network as good as possible. In this section we present and
discuss some selected computational results.

All computations were performed on an Intel Pentium 4ee machine with
3.2 GHz speed and 2 GB RAM running Linux 2.6.16. The LP relaxations
of the Master problem and the auxiliary integer linear programs arising in
the heuristics were solved by Cplex 10.1 [64].

9.3.1 DFN Instances

We consider 12 network design and 6 traffic engineering problems, that
originate from 6 different planning turns of the German national research
network between 1999 and 2005. The bwin problems stem from the last
re-planning of the B-WiN in 1999, the problem gwin1 to gwin4 come from
different network expansion stages of the G-WiN, and the xwin instances
arose in the first design studies of the current IP-over-optics backbone net-
work X-WiN For each of the 6 planning turns we have two network design
and one traffic engineering problems.

The bwin and gwin network design problems are very similar. They are
all defined on a complete commodity set describing the full traffic matrix
and a complete or almost complete link graph on 10 or 11 nodes. These were
the 10 top level backbone nodes and, in the gwin1–3 problems, an artificial
node with two adjacent edges representing the two parallel ‘up-links’ to the
global Internet or, in gwin4, an important node at the next lower network
level. The hop limits in the bwin and gwin problems are 2 or 3, depending
on the actual commodity, and neither the artificial node nor the lower level
node must carry transit traffic.

In the bwin problems, one of 55 possible capacities can be chosen for
each edge, but the number of chosen edges must be either 12, 13, or 14. The
total network cost is given by a curious function depending on the number of
installed edges, and the minimum capacity installed on these edges, and the
capacity installed on each. It is described in detail in [37]. Node hardware
is not considered in the bwin problems.

In the gwin problems, the dimensioning of the artificial node and its ad-
jacent edges is fix. On each of the other links, one capacity from a given set
of capacities can be installed. Depending on the specific problem instance,
these sets represented various subsets of the STM-hierarchy. At the nodes,
the corresponding interface cards for both routers and switches are consid-
ered. Depending on the actual instance, the total installed link capacity,

248 9. Implementation and Computational Results

the number of links of each type, and the number of interface cards of each
type can be bounded. Finally, the dimensioning must provide also enough
spare ports to connect the local networks to the backbone router.

For each of the 5 basic bwin and gwin settings, a greenfield network de-
sign problem, a network reconfiguration problem, and a traffic engineer-
ing problem are considered. In the greenfield network design problem, the
dimensioning (and the topology) of the network may be chosen arbitrary
with respect to the side-constraints discussed above. In the reconfiguration
problem, the total number of link modifications with respect to the exist-
ing network is bounded. The traffic engineering problem finally allows no
changes to the configuration of the existing network. The problems bwin
and gwin1 correspond to real greenfield network design problems solved for
a top-to-bottom reconfiguration of the B-WiN and the initial design of the
G-WiN. The reconfiguration restrictions in bwinR and gwin1R are artificial.
Problems gwin2R, gwin3R, and gwin4R, on the other hand, correspond to
real reconfiguration problems solved in the course of network expansions of
the G-WiN. Here, the reconfiguration restrictions have been removed in the
respective greenfield version gwin2, gwin3, and gwin4.

The network design problems xwin1 and xwin2 stem from the planning
of the current IP-over-optics backbone and are simplified versions of the
real problem. In these problems, small multiples of 10 Gbit connections
can be installed between the nodes. In xwin1, connections can be installed
only between nodes that are direct neighbors in the underlying dark fiber
network and for some extra node pairs. The link graph of xwin2 contains
additional links that correspond to optically paths in the underlying dark
fiber network. At the nodes, interface cards for the IP router and for the
optical equipment are considered. The 250 biggest demand values obtained
from traffic accounting form the commodity set of both xwin problems. For
each commodity, the hop limit is set to the length of the respective shortest
path plus 5, and the artificial nodes representing external networks must
not carry transit traffic. The traffic engineering problem was derived by
fixing the link capacities to the solution computed in the greenfield planning
problem.

Table 9.1 on page 250 presents the computational results obtained with
our algorithm for the 12 DFN network design problems. The reconfiguration
problems are marked with an ’R’. All path variables for the path routing
formulation were enumerated initially. Note that the computations were
performed with the real DFN problem data and side constraints, but not
with the original cost data. The used cost functions resemble the charac-
teristics of the original ones, but result in different cost values (and in some
cases also in different optimal solutions).

The columns in this and the following tables show the following values:
The columns |V |, |E|, and |K| display the number of nodes and edges in the
link graph and of directed commodities. For each integer linear programming

9.3. Computational Results 249

formulation, the column LP shows the value of the initial LP formulation.
Root shows the lower bound after finishing the price-and-cut algorithm at
the root node of the branch-and-bound tree. LB and UB display the values
of the best lower bound and the best feasible solution at the end of the
branch-and-bound algorithm, Nodes the number of branch-and-bound nodes
evaluated, Gap the remaining optimality gap in %, and Time the total
running time of the algorithm in seconds.

The computational results for the 6 traffic engineering problems are shown
in Table 9.2 on page 251. Again, all path variables were enumerated initially.
In the problems bwin and gwin4 the goal is to minimize the maximum link
congestion over all arcs. In the other four problems, gwin1, gwin2, gwin3,
and xwin1, the artificial up-links form a second load group, and the objective
is to minimize a weighted sum of the maximum congestion over all up-links
and the maximum congestion over all normal links.

To the satisfaction of our project partner, the implemented algorithm can
solve almost all DFN instances to optimality within reasonable time.

The results in Table 9.1 show that the greenfield network design problems
are somewhat harder to solve than the corresponding network reconfigura-
tion problems. For the dense bwin and gwin instances, the lower bounds
obtained at the root node, the number of branch-and-bound nodes, and the
overall solution times are comparable for both formulations. Given the tight
hop length restrictions, this is not surprising. The xwin instances are not
very tightly hop-restricted, but very sparse. Here the path routing formu-
lation yields clearly better results. The initial LP gaps are moderate for all
instances and formulations. On average, roughly 50% of the initial gap are
closed at the root node of the branch-and-bound tree in both formulations.

Compared to the network design problems, the traffic engineering prob-
lems can be solved very fast. One reasons is that the traffic engineering
problems are based on the sparse actually realized networks and not on
the (nearly) complete ones considered in the network planning step. The
main other reason is that our initial heuristics perform very well for traffic
engineering problems, especially on such sparse graphs. Together with the
automatic bound strengthening based on these solutions, this helps to sep-
arate strong induced cover inequalities and solve the problems after a few
branches on the big demands’ routing variables. The initial LP gap is closed
basically by the combination of branching and induced cover inequalities in
these tests.

9.3.2 Instances from the SNDlib

A second set of test instances was taken from the SNDlib [149]. The SNDlib
is a library of publicly available benchmarking instances for survivable net-
work design problems. Most of the instances in the SNDlib originate from

25
0

9.
Im

p
l
e
m
e
n
t
a
t
io

n
a
n
d

C
o
m
p
u
t
a
t
io

n
a
l

R
e
su

lt
s

Name |V | |E| |K| arc routing formulation path routing formulation

LP root LB UB Nodes Gap Time LP root LB UB Nodes Gap Time

bwin 10 45 90 9757 9769 9775 9924 258 1.5 10000 9757 9764 9778 9778 156 0.0 4296

bwinR 10 45 90 1332 1333 1334 1334 321 0.0 4537 1332 1333 1334 1334 94 0.0 3861

gwin1 11 47 110 6326 6833 7117 7329 24301 3.0 10000 6326 6825 7038 7399 3436 5.1 10000

gwin1R 11 47 110 6703 7597 7991 7991 1020 0.0 185 6703 7573 7991 7991 1671 0.0 861

gwin2 11 47 110 6342 6850 7266 7266 1615 0.0 281 6342 6900 7266 7266 6572 0.0 2803

gwin2R 11 47 110 7831 8742 9358 9358 890 0.0 65 7831 8835 9358 9358 689 0.0 39

gwin3 11 47 110 1440 1518 1561 1561 717 0.0 66 1439 1517 1561 1561 446 0.0 54

gwin3R 11 47 110 1501 1592 1666 1666 226 0.0 24 1501 1597 1666 1666 170 0.0 22

gwin4 11 55 110 9795 1010 1131 1131 2195 0.0 1226 9795 1009 1131 1131 2233 0.0 2466

gwin4R 11 55 110 1354 1751 1946 1946 286 0.0 67 1354 1741 1946 1946 158 0.0 117

xwin1 42 58 250 1096 1115 1145 1227 2780 7.2 10000 1109 1139 1227 1227 6328 0.0 432

xwin2 42 135 250 1102 1129 1192 1246 10816 4.5 10000 1101 1130 1184 1184 17574 0.0 1566

Table 9.1: Results DFN network design problems. (Only the first 4 digits of the values displayed.)

9.3.
C

o
m
p
u
t
a
t
io

n
a
l

R
e
su

lt
s

251

Name |V | |E| |K| arc routing formulation path routing formulation

LP root LB UB Nodes Gap Time LP root LB UB Nodes Gap Time

bwin 10 12 90 977 989 1000 1000 6 0.0 6 977 977 1000 1000 8 0.0 8

gwin1 11 19 110 903 925 1000 1000 4 0.0 1 903 918 1000 1000 14 0.0 2

gwin2 11 27 110 890 910 1000 1000 163 0.0 21 890 899 1000 1000 222 0.0 30

gwin3 11 23 110 828 856 1000 1000 46 0.0 6 828 856 1000 1000 88 0.0 9

gwin4 11 23 110 798 1000 1000 1000 6 0.0 1 798 1000 1000 1000 2 0.0 1

xwin1 42 58 250 958 959 1000 1000 74 0.0 57 958 958 1000 1000 7724 0.0 5679

Table 9.2: Results for DFN traffic engineering problems. (Values scaled such that the larger of the two LB-values is 1000.)
.

252 9. Implementation and Computational Results

real-world network dimensioning problems. Because many of the problems
in the SNDlib are intrinsically undirected and provide only one demand
value (of unclear direction) for each node pair, we made the demand values
in all computations with SNDlib instances symmetric.

The tested network design problems contain for each link a finite set of
capacities to chose from. The 5 problems dfn-bwin, dfn-gwin, dfn-xwin, di-
yuan, and ta1 use the set of link capacities and costs provided in the original
SNDlib instance.1) In the remaining problems, the original capacities are
interpreted as basic units that can be installed in integer combinations with
multiplicities up to 10. The costs of the created capacities are the sum of
the base unit costs. Node components are not considered in these instances.

The SNDlib traffic engineering instances have been constructed by setting
all link capacities uniformly to a sufficiently large value.

Tables 9.3 and 9.4 on pages 253 and 254 report the computational results
obtained for these instances with hop limits set to the length of the respective
shortest path plus one for each commodity. For this setting, all variables in
the path routing formulations were enumerated initially.

Table 9.5 on page 255 lists some results for the traffic engineering problems
without hop limit. In this setting, only the 20 shortest paths were gener-
ated initially for the path routing formulation, the remaining path variables
were priced out during the run of the algorithm. The columns Paths and
B-Conflicts show the total number of path variables created by the algo-
rithm (until the total time limit was exceeded) and the number of pairwise
(Bellman-type) conflicts among these paths.

For the SNDlib instances with tight hop limits, our algorithm shows the
same principle behavior as for the DFN instances. Except for norway, all

traffic engineering problems could be solved to optimality. The running
times for the two alternative formulation are comparable. As in the DFN
instances, the initial LP gap of the traffic engineering problems is closed
essentially within the branch-and-bound tree and not at the root.

For the norway instance one observes that only relatively few branch-and-
bound nodes are explored until the time limit is exceeded. The reason is that
in this instance the number of admissible routing paths is large (even for
the given tight hop limit) and, more important, that there are many inter-
dependencies among these paths. There are 4260 admissible routing paths
and 2, 645, 994 pairwise conflicts among them. This means that our clique
inequality separation sub-routine for the path routing formulation searches
for maximum weight cliques in a graph with 4260 nodes and 2, 645, 994
edges. Even with the used heuristics this is time consuming. Furthermore,
the great number of admissible routing paths leads to some stalling effects

1)The SNDlib problems dfn-bwin, dfn-gwin, and dfn-xwin are descendants of the original
DFN instances bwin, gwin2, and xwin1. They have been simplified to fit into the formats
of the SNDlib and modified to conceal the original cost data.

9.3.
C

o
m
p
u
t
a
t
io

n
a
l

R
e
su

lt
s

253

Problem |V | |E| |K| arc routing formulation path routing formulation

LP root LB UB Nodes Gap Time LP root LB UB Nodes Gap Time

dfn-bwin 10 45 90 1795 5698 7417 7417 100 0.0 183 1795 7417 7417 7417 14 0.0 78

dfn-gwin 11 47 110 1643 2165 2944 2988 32610 1.1 10000 1643 2205 2988 2988 25633 0.0 3021

dfn-xwin 42 58 250 952 1163 1227 1227 11968 0.0 580 950 1144 1227 1227 14053 0.0 202

atlanta 15 22 210 477 6516 9570 9570 36 0.0 24 477 4100 9570 9570 101 0.0 41

di-yuan 11 42 44 3161 7129 8124 8124 124 0.0 18 3161 7189 8124 8124 133 0.0 15

pdh 11 34 48 459 1138 1304 1304 280 0.0 12 459 1168 1304 1304 178 0.0 12

polska 12 18 132 5866 7329 8555 8555 250 0.0 28 5866 7114 8555 8555 291 0.0 23

ta1 24 55 396 235 1052 1078 1078 8 0.0 30 235 1078 1078 1078 1 0.0 56

norway 27 51 702 854 6276 6377 6377 6 0.0 88 854 6373 6377 6377 3 0.0 1299

newyork 16 49 240 361 1503 1815 1815 266 0.0 206 361 1295 1542 1889 92 22.5 10000

france 25 45 600 1888 1991 1997 2320 2388 16.2 10000 1888 1990 1994 2340 297 17.4 10000

nobel-us 14 21 182 797 7092 8673 8673 48442 0.0 3611 797 6967 8673 8673 45074 0.0 3320

nobel-ger 17 26 242 1154 1241 1430 1430 10225 0.0 1358 1154 1220 1399 1430 11680 2.4 10000

nobel-eu 28 41 756 5707 5948 6118 6554 2984 7.1 10000 5707 5943 6027 6630 1044 10.0 10000

Table 9.3: Results for SNDlib network design problems. Hop limits set to shortest path length plus one. (Only the first 4
digits of values displayed.)

.

25
4

9.
Im

p
l
e
m
e
n
t
a
t
io

n
a
n
d

C
o
m
p
u
t
a
t
io

n
a
l

R
e
su

lt
s

Problem |V | |E| |K| arc routing formulation path routing formulation

LP root LB UB Nodes Gap Time LP root LB UB Nodes Gap Time

dfn-bwin 10 45 90 576 659 1000 1000 338 0.0 6 576 576 1000 1000 516 0.0 109

dfn-gwin 11 47 110 992 992 1000 1000 58 0.0 1 992 992 1000 1000 236 0.0 2

dfn-xwin 42 58 250 997 997 1000 1000 97 0.0 8 997 997 1000 1000 183 0.0 5

atlanta 15 22 210 961 977 1000 1000 3 0.0 1 961 961 1000 1000 3 0.0 1

di-yuan 11 42 44 491 557 1000 1000 51 0.0 2 491 568 1000 1000 28 0.0 1

pdh 11 34 48 558 665 1000 1000 5 0.0 1 558 633 1000 1000 18 0.0 1

polska 12 18 132 991 993 1000 1000 306 0.0 5 991 991 1000 1000 624 0.0 6

ta1 24 55 396 739 898 1000 1000 349 0.0 28 739 826 1000 1000 20 0.0 1199

norway 27 51 702 1000 1000 1000 1119 891 11.9 10000 1000 1000 1000 1119 504 11.9 10000

newyork 16 49 240 718 718 1000 1000 28 0.0 13 718 718 1000 1000 18 0.0 8

france 25 45 600 790 790 1000 1000 198 0.0 127 790 790 1000 1000 138 0.0 149

nobel-us 14 21 182 951 984 1000 1000 1098 0.0 25 951 984 1000 1000 2147 0.0 11

nobel-ger 17 26 242 885 885 1000 1000 59 0.0 6 885 885 1000 1000 55 0.0 25

nobel-eu 28 41 756 997 997 1000 1000 5740 0.0 3120 997 997 998 1000 1292 0.3 10000

Table 9.4: Results for SNDlib traffic engineering problems. Hop limits set to shortest path length plus one. (Values scaled
such that the larger of the two LB-values is 1000.)

.

9.3.
C

o
m
p
u
t
a
t
io

n
a
l

R
e
su

lt
s

255

Problem arc routing formulation path routing formulation

LP root LB UB Nodes Gap Time root LB UB Nodes Gap Time Paths B-Conflicts

atlanta 765 765 1000 1000 62 0.0 18 765 765 1035 26 35.3 10000 2610 2,651,457

polska 991 991 1000 1000 1226 0.0 106 991 991 1051 139 5.9 10000 2430 2,606,248

france 879 879 1000 1135 90 13.5 10000 879 879 1352 6 53.8 10000 7392 12,549,244

nobel-us 960 960 1000 1000 145 0.0 28 960 960 1169 84 21.7 10000 7075 23,366,655

nobel-ger 885 885 1000 1000 106 0.0 252 885 885 1188 26 34.2 10000 3034 3,449,109

nobel-eu 997 997 1000 1000 160 0.0 46 997 997 1161 9 16.7 10000 9633 22,870,658

Table 9.5: Results for some SNDlib traffic engineering problems without hop limits. (Values scaled such that the larger of
the two LB-values is 1000.)

.

256 9. Implementation and Computational Results

in the cutting-plane algorithms at the nodes of the branch-and-bound tree:
In both formulations the LP has enough freedom to repeatedly reroute the
flows in order to satisfy the inequalities that have just been added without
changing the objective function.

As shown in Table 9.3, most of the small network design problems could
be solved to optimality. For those problems that could not, the algorithm
either does not improve on the initial solution at all or it finds a solution
that is close to the best solution reported in the end very quickly. This
indicates that our initial heuristics and our branching strategies and local
heuristics work very well. In fact, finding good solutions quickly was one of
the main goals in the design of the branching strategies. Also the dual bound
improves mainly in the first few branch-and-bound nodes, where branches on
the biggest and most expensive capacities and on the big demands’ routing
variables are performed.

Some of network design problems have significant gaps between the ini-
tial LP value and the root LP value after adding cuts. However, the largest
fraction of these gaps could be closed with band inequalities and superad-
ditive metric inequalities and was not related to the unsplittable shortest
path routing nature of the problems.

For the smaller problem instances, both formulations are comparable. For
the harder instances, the arc routing formulation typically outperforms the
path routing formulation. Apparently, the inequalities used in the path
routing formulation, which are focused on individual paths rather than arc
flows, admit to much flow rerouting and thus lead to stalling effects described
above. The inequalities in terms of arc routing variables seem to better ‘get
to the point’.

The results reported in Table 9.5 for the traffic engineering problems with-
out hop limits corroborate this observation. While with the arc routing for-
mulation most of the problems still can be solved reasonably well, the path
routing formulation utterly fails. For the presented instances, it did neither
improved the solutions provided by the initial heuristics nor the lower bound
obtained by the price-and-cut algorithm in the root node. The reported
numbers of generated paths and Bellman-conflicts among them describe the
size of the graphs that have been considered in the separation subroutine
for clique inequalities. In addition to the stalling effects described above,
we also observed another kind of stalling when solving the price-and-cut
problems at the nodes of the branch-and-bound tree: As new path variables
are not lifted into the existing inequalities during the pricing procedure, the
following separation phase often will do this lifting job and generate one of
the already inequalities with the new variables lifted in. In the worst case,
this iterates a couple of times and the same basic inequality is generated
for several ’lifting stages’. This is obviously very inefficient and needs to be
changed in order to make the path routing formulation applicable also for
problems with many admissible paths.

9.3. Computational Results 257

F

E

B

ER

K

M

S

H

HH

L

Up

F

E

B

ER

K

M

S

H

HH

L

Up

Figure 9.4 Topology and traffic demands of G-WiN-2.

9.3.3 Proof of Practical Importance

We conclude this section with a small example illustrating the practical
importance of our optimization algorithm for the DFN-Verein.

Figure 9.4 illustrates the topology and the traffic demands of the G-WiN-2
network in August 2001. The traffic engineering problem gwin2 considered
above originates from these data.

Most manufacturers pre-configure their routers with a set of alternative
default metric settings. Of course, these settings are made without knowl-
edge of the network that the router will be used in, least of all of the traffic
demands in that network. Nevertheless, these default settings are used in
surprisingly many networks. For large and dense networks with homoge-
neous capacities and evenly distributed traffic demands the default setting
may even perform reasonably well. For the G-WiN-2 network, however, us-
ing one of the typical default routing metrics would have been extremely
bad. Figure 9.5 on the following page shows the link congestion values that
result from three of the most commonly used routing metric settings and
those that result from the optimal metric computed with our integer linear
programming algorithm.

Obviously, the traffic is distributed more evenly over the links with the
optimized routing metric. The peak congestion is not even half of that
observed for three default settings. With the balanced routing, the network
will be much more robust in case of unforeseen traffic changes or in case
of network failures. To illustrate this, Figure 9.6 on page 259 shows not
only the peak congestion in the normal network state, but also the peak
congestion attained if any single router fails and the OSPF protocol is left
to reroute all traffic in the residual network.

258 9. Implementation and Computational Results

(a) Inverse link capacities (perturbed) used as routing lengths

(b) Unit lengths (perturbed) used as routing lengths

(c) Geographic link lengths (perturbed) used as routing lengths

(d) Optimized routing lengths

Figure 9.5 Link congestion values for several routing metrics.

9.4. Conclusions and Future Work 259

Inverse capacities

Unit lengths

Geographic lengths

Routing lengths op-
timized for normal
network operation

Routing lengths op-
timized for all single
router failures

Figure 9.6 Maximum link congestion values in normal operation and in
single router failure scenarios for several routing metrics.

9.4 Conclusions and Future Work

The results of our computational experiments show that the proposed in-
teger linear programming approach works well for small and medium-size
problems. In particular, almost all real-world planning problems of the
DFN-Verein could be solved to optimality. For those problems that could
not be solved satisfactory, our algorithm provides good solutions quickly.

For the solution of problems with unevenly distributed traffic demands
the integer programming approach is particularly favorable. Because its de-
cisions are based on the end-to-end routing paths, it can force the dominant
commodities explicitly to use or not to use certain paths or links and assess
the effect that these alternatives have on the rest of the problem. Another
advantage of using an integer programming based method is that additional

technical or operational side constraints can be incorporated rather easy.
This makes the algorithm very flexible and allows its application for various
problem settings.

Although the implemented algorithm was able to solve the problems of
primary interest satisfactory, it still has several deficiencies. The arc routing
formulation works reasonably well also for larger problems, but the method
used to solve the path routing formulation is inappropriate for problems
with many admissible routing paths. The implemented pricing approach
certainly needs a revision to make the path routing formulation applicable
to larger problems. Adding inequalities that are originally based on the arc
routing or forwarding variables may be beneficial. In order to solve large
problems, even a pure path-reformulation of the arc routing model may be
useful.

The computational results also reveal that only a small fraction of the
integrality gap was closed at the root node of the branch-and-bound tree.
The added cuts only became effective after a few branches. Finding stronger
cuts will certainly lead to a better performance of the overall algorithm.

260 9. Implementation and Computational Results

Other branching rules might lead to improvements as well. The currently
implemented ones focus on demand values and capacities, but they disregard
the interdependencies among the routing paths.

Finally, we need to remark that both the arc routing and the path routing
formulation have inherently bad scaling properties. The approach of model-
ing each commodity’s path with an individual set of binary routing variables
naturally leads to big integer linear programs. In view of the computational
results for the larger test instances, it might be useful to reconsider several
ideas and approaches that have been suspended after some first test on the
smaller instances. Using an extended formulation with forwarding variables
variables, for example, might reduce the number of cut generation loops and
thereby improve the overall solution time. For bigger problems, it might be
better to use aggregated formulations, where only the forwardings and the
reversely directed anti-forwardings are described with binary variables, but
continuous variables are used to model the aggregated traffic flows. The big-
M characteristic of these formulations may be compensated by the smaller
size of the resulting integer programs. Formulations that model only a few
dominant traffic demands explicitly by binary routing or forwarding vari-
ables and consider the rest of the problem as a continuous multicommodity
routing finally might be an option to deal with really large problems.

Bibliography

[1] Y.K. Agarwal. k-partition facets of the network design problem. Net-
works, 47(3):123–139, 2006.

[2] R. Ahuja and J. Orlin. Inverse optimization. Operations Research, 49:
771–783, 2001.

[3] R. Ahuja and J. Orlin. Combinatorial algorithms for inverse network
flow problems. Networks, 40:181–187, 2002.

[4] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, Algo-
rithms, and Applications. Prentice Hall, 1993.

[5] D. Alevras, M. Grötschel, and R. Wessäly. A network dimensioning
tool. ZIB Technical Report SC-96-49, Konrad-Zuse-Zentrum für In-
formationstechnik Berlin, 1996.

[6] D. Alevras, M. Grötschel, and R. Wessäly. Cost efficient network
synthesis from leased lines. Annals of Operations Research, 76:1–20,
1998.

[7] M. Andrews. Hardness of buy-at-bulk network design. In Proceedings
of the 45th Annual IEEE Symposium on Foundations of Computer
Science, 2004.

[8] A. Atamtürk. On capacitated network design cut-set polyhedra. Math-
ematical Programming, 92:425–437, 2002.

[9] Discnet. discnet – Network optimization software library. atesio
GmbH, Sophie-Taeuber-Arp-Weg 27, D-12205 Berlin, Germany, 2000–
2005. URL http://www.atesio.de.

[10] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-
Spaccamela, and M. Protasi. Complexity and Approximation: Combi-
natorial Optimization Problems and their Approximability Properties.
Springer-Verlag, 1999.

[11] B. Awerbuch and Y. Azar. Buy-at-bulk network design. In Proceedings
of the 38th Annual IEEE Symposium on Foundations of Computer
Science, Miami Beach FL, pages 542–547, 1997.

261

262 BIBLIOGRAPHY

[12] J. Azevedo, J. Madeira, E. Martins, and F. Pires. A shortest paths
ranking algorithm. In Proceedings of Annual Conference Associazione
Italiana di Ricerca Operativa (AIRO 1990), Sorrento, Italy, pages
1001–1011, October 1990.

[13] E. Balas. Facets of the knapsack polytope. Mathematical Program-
ming, 8:146–164, 1975.

[14] M. Ball, T. Magnanti, C. Monma, and G. Nemhauser, editors. Hand-
books in Operations Research and Management Science, 8: Network
Routing. North-Holland, Amsterdam, 1995.

[15] F. Barahona. Network design using cut inequalities. SIAM Journal
on Optimization, 6:823–837, 1996.

[16] C. Barnhart, N.L. Boland, L.W. Clarke, E.L. Johnson, G.L.
Nemhauser, and R.G.Shenoi. Flight string models for aircraft fleeting
and routing. Transportation Science, 32:208–220, 1998.

[17] C. Barnhart, E. Johnson, G. Nemhauser, M. Savelsbergh, and
P. Vance. Branch-and-price: Column generation for solving huge in-
teger programs. Operations Research, 46:316–329, 1998.

[18] C. Barnhart, C. Hane, and P. Vance. Using branch-and-price-and-
cut to solve origin-destination integer multicommodity flow problems.
Operations Research, 48(2):318–326, 2000.

[19] Y. Bartal. On approximating arbitrary metrics by tree metrics. In
Proceedings of the Thirtieth Annual ACM Symposium on the Theory
of Computing, Dallas TX, 1998.

[20] M. Belaidouni and W. Ben-Ameur. A superadditive approach to solve
the minimum cost single path routing problem: Preliminary results. In
Proceedings of the First International Network Optimization Confer-
ence (INOC 2003), Paris, France, pages 67–71, Evry/Paris, October
2003.

[21] R. Bellman. Dynamic Programming. Princeton University Press,
Princeton, New Jersey, 1957.

[22] R. Bellman. On a routing problem. Quarterly of Applied Mathematics,
16(1):87–90, 1958.

[23] R. Bellman and S. Dreyfus. Applied Dynamic Programming. Princeton
University Press, Princeton, New Jersey, 1962.

[24] R. Bellman and R. Kalaba. Dynamic Programming and Modern Con-
trol Theory. Academic Press, New York, London, 1965.

BIBLIOGRAPHY 263

[25] W. Ben-Ameur. Constrained length connectivity and survivable net-
works. Networks, 36:17–33, 2000.

[26] W. Ben-Ameur. Multi-hour design of survivable classical IP networks.
International Journal of Communication Systems, 15:553–572, 2002.

[27] W. Ben-Ameur and E. Gourdin. Internet routing and related topology
issues. SIAM Journal on Discrete Mathematics, 17(1):18–49, 2003.

[28] W. Ben-Ameur, E. Gourdin, B. Liau, and N. Michel. Optimizing
administrative weights for efficient single-path routing. In Proceedings
of Networks 2000, 2000.

[29] C. Berge. Graphs and Hypergraphs. North-Holland, Amsterdam, 1973.

[30] D. Bienstock and O. Günlük. Capacitated network design – polyhedral
structure and computation. INFORMS Journal on Computing, 8(3):
243–259, 1996.

[31] D. Bienstock, S. Chopra, O. Günlük, and C.Y. Tsai. Mininum cost
capacity installation for multicommodity flows. Mathematical Pro-
gramming, 81:177–199, 1998.

[32] R. Bixby and W. Cunningham. Handbooks of Combinatorics, pages
551–609. Elsevier, 1995. Chapter on “Matroids Optimization and
Algorithms”.

[33] A. Bley. Network optimization for IP-networks. Talk at the Inter-
national Symposium on Mathematical Programming 2000, Atlanta,

2000.

[34] A. Bley. A Lagrangian approach for integrated network design and
routing in IP networks. In Proceedings of the First International
Network Optimization Conference (INOC 2003), Paris, France, pages
107–113, October 2003.

[35] A. Bley. Inapproximability results for the inverse shortest paths prob-
lem with integer lengths and unique shortest paths. ZIB Preprint ZR-
05-04, Konrad-Zuse-Zentrum für Informationstechnik Berlin, 2005.

[36] A. Bley and T. Koch. Integer programming approaches to access and
backbone IP-network planning. ZIB Preprint ZR-02-41, Konrad-Zuse-
Zentrum für Informationstechnik Berlin, 2002.

[37] A. Bley, M. Grötschel, and R. Wessäly. Design of broadband virtual
private networks: Model and heuristics for the B-WiN. In N. Dean,
D.F. Hsu, and R. Ravi, editors, Robust Communication Networks:
Interconnection and Survivability, volume 53 of DIMACS Series in

264 BIBLIOGRAPHY

Discrete Mathematics and Theoretical Computer Science, pages 1–16.
American Mathematical Society, 1998.

[38] I. Bomze, M. Budinich, P. Pardalos, and M. Pelillo. The maximum
clique problem. In D. Du and P. Pardalos, editors, Handbook of Com-
binatorial Optimization, volume 4. Kluwer Academic Publishers, 1999.

[39] J.A. Bondy and U.S.R. Murty. Graph Theory with Applications. Amer-
ican Elsevier, New York, and Macmillan, London, 1976.

[40] R. Borndörfer and Z. Kormos. An algorithm for maximum cliques.
Unpublished working paper, Konrad-Zuse-Zentrum für Information-
stechnik Berlin, 1997.

[41] N. Bourquia, W. Ben-Ameur, E. Gourdin, and P. Tolla. Optimal
shortest path routing for Internet networks. In Proceedings of the
First International Network Optimization Conference (INOC 2003),
Paris, France, pages 119–125, 2003.

[42] E.A. Boyd. Polyhedral results for the precedence-constrained knapsack
problem. Discrete Applied Mathematics, 41:185–2001, 1993.

[43] B. Brockmüller, O. Günlük, and L.A. Wolsey. Designing private line
networks - polyhedral analysis and computation. Technical Report
CORE 9647, Université Catholique de Louvain, Louvain-la-Neuve,
Belgium, 1996.

[44] P. Broström. Optimization in the Design of OSPF Telecommunication
Networks. PhD thesis, Linköping University, 2004.

[45] P. Broström and K. Holmberg. Determining the non-existence of a
compatible OSPF metric. Technical Report LiTH-MAT-R-2004-06,
Linköping University, April 2004.

[46] P. Broström and K. Holmberg. Stronger necessary conditions for the
existence of a compatible OSPF metric. Technical Report LiTH-MAT-
R-2004-08, Linköping University, May 2004.

[47] C.A. Burdet and E.L. Johnson. A superadditive approach to solve
linear integer programs. Annals of Discrete Mathematics, 1:117–144,
1977.

[48] L. Buriol, M. Resende, C. Ribeiro, and M. Thorup. A hybrid genetic
algorithm for the weight setting problem in OSPF/IS-IS routing. Net-
works, 46:36–56, 2005.

[49] D. Burton. On the Inverse Shortest Path Problem. PhD thesis, Depart-
ment of Mathematics, Facultés Universitaires ND de la Paix, Namur,
Belgium, 1993.

BIBLIOGRAPHY 265

[50] D. Burton and P. Toint. On an instance of the inverse shortest paths
problem. Mathematical Programming, 53:45–61, 1992.

[51] D. Burton and P. Toint. On the use of an inverse shortest paths
algorithm for recovering linearly correlated costs. Mathematical Pro-
gramming, 63:1–22, 1994.

[52] D. Burton, B. Pulleyblank, and P. Toint. The inverse shortest path
problem with upper bounds on shortest path costs. In P. Pardalos,
D. Hearn, and W. Hager, editors, Network Optimization, volume 450
of Lecture Notes in Economics and Mathematical Systems, pages 156–
171. Springer-Verlag, 1997.

[53] M.-C. Cai and Y. Li. Inverse matroid intersection problem. Mathe-
matical Methods of Operations Research, 45:235–243, 1997.

[54] R. Callon. Use of OSI IS-IS for routing in TCP/IP and dual
environments. IETF Internet RFC 1195, December 1990. URL
http://www.ietf.org/rfc/rfc1195.txt.

[55] R. Carr, L. Fleischer, V. Leung, and C. Phillips. Strengthening in-
tegrality gaps for capacitated network design and covering problems.
In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
2000, pages 106–115, 2000.

[56] M. Charikar and A. Karagiozova. On non-uniform multicommodity
buy-at-bulk network design. In Proceedings of the Thirty-seventh An-
nual ACM Symposium on the Theory of Computing, Baltimore, Mary-
land, USA, 2005.

[57] M. Charikar, C. Chekuri, A. Goel, S. Guha, and S.A. Plotkin. Ap-
proximating a finite metric by a small number of tree metrics. In
Proceedings of the 39th Annual IEEE Symposium on Foundations of
Computer Science, Palo Alto CA, pages 379–388, 1998.

[58] S. Chopra and M. Rao. The Steiner tree problem I: Formulations,
compositions and extension of facets. Mathematical Programming, 64
(2):209–229, 1994.

[59] S. Chopra and M. Rao. The Steiner tree problem II: Properties and
classes of facets. Mathematical Programming, 64(2):231–246, 1994.

[60] K. Coffman and A. Odlyzko. Handbook of Massive Data Sets, pages
47–93. Kluwer Academic Publishers, 2001. Chapter Internet Growth:
Is there a “Moore’s Law” for data traffic?

[61] M. Conforti and M. Laurant. On the facial structure of independence
system polyhedra. Mathematics of Operations Research, 13(3), 1988.

266 BIBLIOGRAPHY

[62] G. Cornuéjols and A. Sassano. On the 0,1 facets of the set covering
polytope. Mathematical Programming, 43:45–55, 1989.

[63] S. Cosares and I. Saniee. An optimization problem related to balancing
loads on SONET rings. Telecommunication Systems, 3:165–182, 1994.

[64] CPLEX 10.1. CPLEX 10.1 reference manual, 2006. URL
http://www.cplex.com.

[65] P. Crescenzi and V. Kann, editors. A Compendium of NP Optimization
Problems. 2003. URL
http://www.nada.kth.se/~viggo/problemlist/compendium.html.

[66] G. Dahl and M. Stoer. A polyhedral approach to multicommodity
survivable network design. Numerische Mathematik, 68(1):149–167,
1994.

[67] G. Dahl and M. Stoer. A cutting plane algorithm for multicommodity
survivable network design problems. INFORMS Journal on Comput-
ing, 10(1):1–11, 1998.

[68] G. Dahl, A. Martin, and M. Stoer. Routing through virtual paths
in layered telecommunication networks. Operations Research, 47(5):
693–702, 1999.

[69] L. de Giovanni, B. Fortz, and M. Labbé. A lower bound for the In-
ternet protocol network design problem. In Proceedings of the Second
International Network Optimization Conference (INOC 2005), Lisbon,

Portugal, volume 1, pages 402–408, March 2005.

[70] J. Desrosiers and M.E. Lübbecke. A primer in column generation.
Technical Report 2003/48, Technische Universität Berlin, 2003.

[71] J. Desrosiers and M.E. Lübbecke. Selected topics in column genera-
tion. Operations Research, 53(6):1007–1023, 2005.

[72] Deutsche Forschungsnetz Verein. DFN. URL http://www.dfn.de.

[73] E. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1:269–271, 1959.

[74] Y. Dinitz, N. Garg, and M. Goemans. On the single source unsplittable
flow problem. Combinatorica, 19:1–25, 1999.

[75] Y. Dodis and S. Khanna. Designing networks with bounded pairwise
distance. In Proceedings of the Thirty-first Annual ACM Symposium
on the Theory of Computing, Atlanta GA, pages 750–759, 1999.

BIBLIOGRAPHY 267

[76] J. Edmonds. Combinatorial Structures and their Applications, pages
69–87. Gordon and Breach, New York, 1970. Chapter on Submodular
Functions, Matroids, and Certain Polyhedra.

[77] J. Edmonds. Matroids and the greedy algorithm. Mathematical Pro-
gramming, 1:127–223, 1971.

[78] D. Eppstein. Finding the k shortest paths. Technical Report TR-94-
26, Department of Information and Computer Science, University of
California, May 1994.

[79] P. Erdös and H. Sachs. Reguäre Graphen gegebener Taillenweite
mit minimaler Knotenzahl. Wissenschaftliche Zeitung der Universität
Halle-Wittenberg, 12:251–257, 1963.

[80] A. Eremin, F. Ajili, and R. Rodosek. A set-based approach to the
optimal IGP weight setting problem. In Proceedings of the Second
International Network Optimization Conference (INOC 2005), Lisbon,
Portugal, volume 1, pages 386–392, March 2005.

[81] M. Ericsson, M. Resende, and P. Pardalos. A genetic algorithm for
the weight setting problem in OSPF routing. Journal of Combinatorial
Optimization, 6:299–333, 2002.

[82] R. Euler, M. Jünger, and G. Reinelt. Generalizations of cliques, odd
cycles and anticycles and their relation to independence systems poly-
hedra. Mathematics of Operations Research, 12(3):451–462, 1987.

[83] L. Fadejeva. Ein Column-Generation-Ansatz zur Kostenoptimierung
von ausfallsicheren Kommunikationsnetzen mit Single-Path-Routing.
Diploma thesis, Technische Universität Berlin, August 2003.

[84] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on ap-
proximating arbitrary metrics by tree metrics. In Proceedings of the
Thirty-fifth Annual ACM Symposium on the Theory of Computing,
2003.

[85] A. Farago, A. Szentesi, and B. Szviatovszki. Allocation of administra-
tive weights in PNNI. In Proceedings of Networks ’98, Sorrento, Italy,
pages 621–625, 1998.

[86] A. Farago, A. Szentesi, and B. Szviatovszki. Inverse optimization in
high-speed networks. Discrete Applied Mathematics, 129:83–98, 2003.

[87] G. Farkas. Über die Anwendung des mechanischen Princips von
Fourier. Mathematische und naturwissenschaftliche Berichte aus Un-
garn, 12:263–281, 1895.

268 BIBLIOGRAPHY

[88] G. Farkas. Theorie der einfachen Ungleichungen. Journal für reine
und angewandte Mathematik, 124:1–27, 1902.

[89] S. Fekete, W. Hochstättler, S. Kromberg, and C. Moll. The com-
plexity of an inverse shortest path problem. In R. Graham, J. Kra-
tochv́ıl, J. Nesetril, and F. Roberts, editors, Contemporary Trends in
Discrete Mathematics: From DIMACS and DIMATIA to the Future,
volume 49, pages 113–127. American Mathematical Society, 1999.

[90] O.E. Flippo, A.W.J. Kolen, A.M.C.A. Koster, and R.L.M.J. van de
Leensel. A dynamic programming algorithm for the local access
telecommunication network expansion problem. European Journal of
Operational Research, 127:189–202, 2000.

[91] L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton Univer-
sity Press, Princeton, New Jersey, 1962.

[92] B. Fortz and M. Thorup. Internet traffic engineering by optimizing
OSPF weights. In Proceedings of the 19th IEEE Infocom 2000, Tel-
Aviv, Israel, pages 519–528, 2000.

[93] B. Fortz and M. Thorup. Increasing Internet capacity using local
search. Computational Optimization and Applications, 29(1):13–48,
2004.

[94] A. Frank. Packing paths, cicuits, and cuts – A survey. In B. Korte,
L. Lovász, H.J. Prömel, and A. Schrijver, editors, Algorithms and
Combinatorics, volume 9, chapter 4, pages 47–100. Springer-Verlag,
1990.

[95] A. Frank. Handbooks of Combinatorics, pages 111–177. Elsevier, 1995.
Chapter Connectivity and Network Flows.

[96] M. Garey and D. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman and Company, New York,
1979.

[97] F. Gavril. Algorithms on circular arc graphs. Networks, 4:357–369,
1974.

[98] M. Goemans. The Steiner tree polytope and related polyhedra. Math-
ematical Programming, 63(2):157–182, 1994.

[99] M.X. Goemans and D.P. Williamson. A general approximation tech-
nique for constrained forest problems. SIAM Journal on Computing,
24:296–317, 1995.

[100] T. Griffin and G. Wilfong. An analysis of BGP convergence properties.
In SIGCOM, 1999.

BIBLIOGRAPHY 269

[101] M. Grötschel and L. Lovász. Handbooks of Combinatorics, chapter
Combinatorial Optimization, pages 1541–1597. Elsevier, 1995.

[102] M. Grötschel and C. Monma. Integer polyhedra associated with cer-
tain network design problems with connectivity constraints. SIAM
Journal on Discrete Mathematics, 3:502–523, 1990.

[103] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and
Combnatorial Optimization. Springer-Verlag, 1988.

[104] M. Grötschel, C. Monma, and M. Stoer. Facets for polyhedra arising
in the design of communication networks with low-connectivity con-
straints. SIAM Journal on Optimization, 2(3):474–504, August 1992.

[105] M. Grötschel, C. Monma, and M. Stoer. Network Models, volume 7
of Handbooks in Operations Research and Management Science, chap-
ter 10, pages 617–672. Elsevier, North-Holland, Amsterdam, 1995. M.
Ball, T. Magnanti, C. Monma, G. Nemhauser (Eds.).

[106] M. Grötschel, A. Martin, and R. Weismantel. Packing Steiner trees:
Polyhedral investigations. Mathematical Programming, 72:101–123,
1996.

[107] M. Grötschel, A. Martin, and R. Weismantel. Packing Steiner trees:
Further facets. European Journal on Combinatorics, 17:39–52, 1996.

[108] S. Guha, A. Meyerson, and K. Munagala. A constant factor approx-
imation for the single sink edge installation problem. In Proceedings
of the Thirty-third Annual ACM Symposium on the Theory of Com-
puting, Hersonissos, Crete, Greece, pages 383–388, 2001.

[109] O. Günlük. A branch-and-cut algorithm for capacitated network de-
sign problems. Mathematical Programming, 86:17–39, 1999.

[110] A. Gupta, A. Kumar, and T. Roughgarden. Simpler and better ap-
proximation algorithms for network design. In Proceedings of the
Thirty-fifth Annual ACM Symposium on the Theory of Computing,
pages 365–372, 2003.

[111] P. Hammer, E. Johnson, and U. Peled. Facets of regular 0-1 polytopes.
Mathematical Programming, 8:179–206, 1975.

[112] J. H̊astad. Some optimal inapproximability results. In Proceedings of
the Twenty-ninth Annual ACM Symposium on the Theory of Comput-
ing, El Paso TX, pages 1–10, 1997.

[113] D. Hausmann, T. Jenkyns, and B. Korte. Worst case analysis of greedy
type algorithms for independence systems. Technical report, Institut
für Ökonometrie und Operations Research, Universität Bonn, 1977.

270 BIBLIOGRAPHY

[114] C. Hedrick. Routing information protocol. IETF Internet RFC 1058,
June 1988. URL http://www.ietf.org/rfc/rfc1058.txt.

[115] K. Holmberg and D. Yuan. Optimization of Internet protocol network
design and routing. Networks, 43(1):39–53, 2004.

[116] T. Hu. Multi-commodity network flows. Operations Research, 11:
344–360, 1963.

[117] M. Iri. On an extension of the maximum-flow minimum-cut theorem
to multicommodity flows. Journal of the Operations Research Society
of Japan, 13(3):129–135, 1971.

[118] T. Jenkyns. The efficancy of the greedy algorithm. In Proceedings of
the Seventh Southeastern Conference on Combinatorics, Graph The-
ory, and Computing, pages 341–350, 1976.

[119] R.G. Jeroslow. Cutting plane theory: Algebraic methods. Discrete
Mathematics, 23:121–150, 1978.

[120] D.S. Johnson and K.A. Niemi. On knapsacks, partitions, and a new
dynamic programming technique for trees. Mathematics of Operations
Research, 1983.

[121] R. Karp. Reducibility among combinatorial problems. In R. Miller and
J. Thatcher, editors, Complexity of Computer Computations, pages
85–103. Plenum Press, New York, 1972.

[122] N. Katoh, T. Ibaraki, and H. Mine. An efficient algorithm for k short-
est simple paths. Networks, 12:411–427, 1982.

[123] J.M. Kleinberg. Single-source unsplittable flow. In Proceedings of the
37th Annual IEEE Symposium on Foundations of Computer Science,
Burlington VT, pages 68–77, 1996.

[124] S. Kolliopoulos and C. Stein. Improved approximation algorithms for
unsplittable flow problems. In Proceedings of the 38th Annual IEEE
Symposium on Foundations of Computer Science, Miami Beach FL,
pages 426–435, 1997.

[125] B. Korte and D. Hausmann. An analysis of the greedy heuristic for
independence systems. Annals of Discrete Mathematics, 2:65–74, 1978.

[126] B. Korte, L. Lovász, and R. Schrader. Greedoids. Springer-Verlag,
1991.

[127] A. Kröller. Network optimization: Integration of hardware configura-
tion and capacity dimensioning. Diploma thesis, Technische Univer-
sität Berlin, June 2003.

BIBLIOGRAPHY 271

[128] M. Labbé and H. Yaman. Polyhedral analysis for concentrator location
problems. Technical Report 2003/13, Université Libre de Bruxelles,
2003.

[129] M. Labbé and H. Yaman. Solving the uncapacitated concentrator loca-
tion problem with star routing. Technical Report 2003/15, Université
Libre de Bruxelles, 2003.

[130] M. Labbé and H. Yaman. Projecting the flow variables for hub location
problems. Networks, 44:84–93, 2004.

[131] M. Laurent. A generalization of antiwebs to independence systems and
their canonical facets. Mathematical Programming, 45:97–108, 1989.

[132] Leda. LEDA: Library of Efficient Data types and Algorithms, 1998–
2003. URL http://www.algorithmic-solutions.com.

[133] F. Lin and J. Wang. Minimax open shortest path first routing algo-
rithms in networks suporting the SMDS service. In Proceedings of the
IEEE International Conference on Communications 1993 (ICC’93),
Geneva, Suisse, volume 2, pages 666–670, 1993.

[134] D. Lorenz, A. Orda, D. Raz, and Y. Shavitt. How good can IP rout-
ing be? Technical Report 2001-17, DIMACS, Center for Discrete
Mathematics and Theoretical Computer Science, Rutgers University,
Princeton University, AT&T Bell Laboratries and Bellcore, 2001.

[135] T. Magnanti and S. Raghavan. Strong formulations for network design
problems with connectivity requirements. unpublished manuscript,
1999.

[136] T. Magnanti, P. Mirchandani, and R. Vachani. Modeling and solv-
ing the two-facility capacitated network loading problem. Operations
Research, 43(1):142–157, 1995.

[137] Y. Mansur and D. Peleg. An approximation algorithm for minimum-
cost network design. Technical Report CS94-22, Weizman Institute of
Science, Rehovot, Israel, 1994.

[138] H. Marchand and L.A. Wolsey. The 0 − 1 knapsack problem with a
single continuous variable. Mathematical Programming, 85(1):15–34,
May 1999.

[139] E. Martins and J. Santos. A new shortest paths ranking algorithm.
Investigaça̋o Operacional, 20(1):47–62, 2000.

[140] A. Meyerson and K. Munagala S. Plotkin. Cost-distance: Two-metric
network design. In Proceedings of the Thirty-second Annual ACM

272 BIBLIOGRAPHY

Symposium on the Theory of Computing, Portland OR, pages 624–
630, 2000.

[141] J. Milbrandt. Possibilities of routing optimization in IP networks.
Master’s thesis, Department of Computer Science, University of
Würzburg, 2001.

[142] C. Moll. Das inverse Kürzeste-Wege-Problem. PhD thesis, Universität
zu Köln, 1995.

[143] J. Moy. OSPF version 2. IETF Internet RFC 2328, April 1998. URL
http://www.ietf.org/rfc/rfc2328.txt.

[144] R. Müller and A. Schulz. Transitive packing: A unifying concept in
combinatorial optimization, 1999.

[145] G. Nemhauser and L. Trotter. Properties of vertex packing and inde-
pendence system polyhedra. Mathematical Programming, 6, 1974.

[146] G. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimiza-
tion. John Wiley & Sons, 1988.

[147] K. Onaga and O. Kakusho. On feasibility conditions of multicommod-
ity flows in networks. Transactions on circuit theory, 18(4):425–429,
1971.

[148] S. Orlowski. Local and global restoration of node and link failures in
telecommunication networks. Master’s thesis, Technische Universität
Berlin, February 2003.

[149] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly. SNDlib 1.0–
Survivable Network Design Library. In Proceedings of the Third In-
ternational Network Optimization Conference (INOC 2007), Spa, Bel-
gium, April 2007. http://sndlib.zib.de.

[150] P. Orponen and H. Mannila. On approximation preserving reductions:
Complete problems and robust measures. Technical Report C-1987-28,
Department of Computer Science, University of Helsinki, 1987.

[151] M.W. Padberg. On the facial structure of set packing polyhedra. Math-
ematical Programming, 5:199–215, 1973.

[152] M.W. Padberg. A note on zero-one programming. Operations Re-
search, 23:883–837, 1975.

[153] M.W. Padberg. (1,k)-configurations and facets for packing polyhedra.
Mathematical Programming, 18:94–99, 1980.

BIBLIOGRAPHY 273

[154] C.H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994.

[155] C.H. Papadimitriou and M. Yannakakis. Optimization, approximation
and complexity classes. Proceedings of the Twentieth Annual ACM
Symposium on the Theory of Computing, Chicago IL, pages 229–234,
1988.

[156] C.H. Papadimitriou and M. Yannakakis. Optimization, approximation
and complexity classes. Journal on Computer System Science, 43:425–
440, 1991.

[157] K. Park and S. Park. Lifting cover inequalities for the precedence-
constrained knapsack problem. Discrete Applied Mathematics, 72:219–
241, 1997.

[158] A. Parmar, S. Ahmed, and J. Sokol. An integer programming approach
to the OSPF weight setting problem. Optimization Online, 2005.

[159] R. Perlman. Interconnections: Bridges, Routers, Switches and Inter-
networking Protocols. Addison-Wesley, 2nd edition, 1999.

[160] T. Pfender. Arboreszenz-Flüsse in Graphen: polyedrische Unter-
suchungen. Master’s thesis, Technische Universität Berlin, 2000.

[161] M. Pfetsch. The Maximum Feasible Subsystem Problem and Vertex-
Facet Incidences of Polyhedra. PhD thesis, Technische Universität
Berlin, 2002.

[162] M. Pióro and D. Medhi. Routing, Flow, and Capacity Design in Com-
munication and Computer Networks. Morgan Kaufmann Publishers,
2004.

[163] M. Pióro, A. Szentesi, J. Harmatos, and A. Jüttner. On OSPF re-
lated network optimization problems. In 8th IFIP Workshop on Per-
formance Modelling and Evaluation of ATM & IP Networks, pages
70/1–70/14, Ilkley, UK, 2000.

[164] PNNI. Private Network-Network Interface specification version 1.0
(PNNI). The ATM Forum Technical Committee, af-pnni-0055.000.,
March 1996.

[165] J. Postel. User datagram protocol. IETF Internet RFC 768, August
1980. URL http://www.ietf.org/rfc/rfc0768.txt.

[166] J. Postel. Internet protocol. IETF Internet RFC 791, September 1981.
URL http://www.ietf.org/rfc/rfc791.txt.

274 BIBLIOGRAPHY

[167] J. Postel. Internet control message protocol. IETF Internet RFC 792,
September 1981. URL http://www.ietf.org/rfc/rfc792.txt.

[168] J. Postel. Transmission control protocol. IETF Internet RFC 793,
September 1981. URL http://www.ietf.org/rfc/rfc793.txt.

[169] M. Prytz. On Optimization in Design of Telecommunications Net-
works with Multicast and Unicast Traffic. PhD thesis, Royal Institute
of Technology, Stockholm, Sweden, 2002.

[170] Y. Rekhter and P. Gross. Application of the border gateway pro-
tocol in the Internet. IETF Internet RFC 1772, March 1995. URL
http://www.ietf.org/rfc/rfc1772.txt.

[171] Y. Rekhter and T. Li. Border gateway protocol 4
(BGP-4). IETF Internet RFC 1771, March 1995. URL
http://www.ietf.org/rfc/rfc1771.txt.

[172] M.G.C. Resende and P.M. Pardalos, editors. Handbook of Optimiza-
tion in Telecommunications. Springer-Verlag, 2006.

[173] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label switch-
ing architecture. IETF Internet RFC 3031, January 2001. URL
http://www.ietf.org/rfc/rfc3031.txt.

[174] A. Sassano. On the facial structure of the set covering polytope. Math-
ematical Programming, 44:181–202, 1989.

[175] A. Schrijver. Theory of Linear and Integer Programming. John Wiley
& Sons, 1986.

[176] A. Schrijver. Homotopic routing methods. In B. Korte, L. Lovász,
H.J. Prömel, and A. Schrijver, editors, Algorithms and Combinatorics,
volume 9, chapter 12, pages 329–371. Springer-Verlag, 1990.

[177] A. Schrijver, P. Seymour, and P. Winkler. The ring loading problem.
SIAM Journal on Applied Mathematics, 11(1):1–14, February 1998.

[178] C. Skiscim and B. Golden. Solving k-shortest and constrained shortest
path problems efficiently. Annals of Operations Research, 20:249–282,
1989.

[179] M. Skutella. Approximating the single source unsplittable min-cost
flow problem. Mathematical Programming, 91(3):493–514, 2002.

[180] D. Staehle, S. Köhler, and U. Kohlhaas. Towards an optimization of
the routing parameters for ip networks. Technical Report TR 258,
Department of Computer Science, University of Würzburg, 2000.

BIBLIOGRAPHY 275

[181] W. Stevens. TCP/IP Illustrated, volume 1. Addison-Wesley, 1994.

[182] K. Talwar. Single-sink buy-at-bulk LP has constant integrality gap. In
Proceedings of the 9th Conference on Integer Programming and Com-
binatorial Optimization (IPCO 2002), pages 475–486, 2002.

[183] R. Tarjan. Sensitivity analysis of minimum spanning trees and shortest
path trees. Information Processing Letters, 14(1):30–33, 1982.

[184] A. Tomaszewski, M. Pióro, M. Dzida, and M. Zagożdżon. Optimiza-
tion of administrative weights in IP networks using the branch-and-cut
approach. In Proceedings of the Second International Network Opti-
mization Conference (INOC 2005), Lisbon, Portugal, volume 2, pages
393–400, March 2005.

[185] C. Tong and K. Lam. An embedded connectionist approach for the
inverse shortest paths problem. Technical report, Department of Sys-
tems Engineering and Engineering Management, The Chinese Univer-
sity of Hong Kong, 1996.

[186] R. van de Leensel. Models and Algorithms for Telecommunication
Network Design. PhD thesis, Faculty of Economics and Business Ad-
ministration, Maastricht University, The Netherlands, 1999.

[187] R.L.M.J. van de Leensel, C.P.M. van Hoesel, and J.J van de Klun-
dert. Lifting valid inequalities for the precedence constrained knapsack
problem. Mathematical Programming, 86:161–186, 1999.

[188] C. van Hoesel, A.M.C.A. Koster, R. van de Leensel, and M. Savels-
bergh. Polyhedral results for the edge capacity polytope. Mathematical
Programming, 92(2):335–358, 2002.

[189] D. Welsh. Handbooks of Combinatorics, chapter Matroids: Funda-
mental Concepts, pages 481–526. Elsevier, 1995.

[190] R. Wessäly. Dimensioning Survivable Capacitated NETworks. PhD
thesis, Technische Universität Berlin, April 2000.

[191] G. Wilfong and P. Winkler. Ring routing and wavelength translation.
In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
1998, pages 333–341, 1998.

[192] L.A. Wolsey. Faces of linear inequalities in 0-1 variables. Mathematical
Programming, 8:165–178, 1975.

[193] L.A. Wolsey. Valid inequalities for 0/1 knapsacks and MIPs with
Generalized Upper Bound constraints. Discrete Applied Mathematics,
29:251–261, 1990.

276 BIBLIOGRAPHY

[194] L.A. Wolsey. Integer Programming. John Wiley & Sons, 1998.

[195] S. Xu and J. Zhang. An inverse problem of the weighted shortest path
problem. Japan Journal of Industrial Applied Mathematics, 12:47–59,
1995.

[196] J. Yen. Finding the k shortest loopless paths in a network. Manage-
ment Science, 17:712–716, 1971.

[197] M. Zagożdżon, M. Dzida, M. Pióro, and A. Tomaszewski. Optimiza-
tion of administrative weights in single path networks with OSPF
routing. In 12th Polish Teletraffic Symposium PSRT 2005, Poznań,
September 2005.

[198] J. Zhang and Z. Liu. Calculating some inverse linear programming
problems. Journal of Computational and Applied Mathematics, 72:
261–273, 1996.

Index

2-band inequality, 203

admissible metric, 230
admissible path, 230
admissible unsplittable shortest path

routing, 230
anti-arborescence, 12
approximation algorithm, 17
approximation preserving reduction,

19
approximation ratio, 17
APX , 18
arborescence, 12
arc routing, 167
AS, see autonomous system
associated forwarding, see forwarding
autonomous system, 22

B-property, see Bellman property
band inequality, 203
Bellman property, 75
BGP, see Border Gateway Protocol
Border Gateway Protocol, 23
Buy-at-Bulk Network Design prob-

lem, 142

Cap-USPR problem (capacitated net-
work design with unsplittable
shortest path routing), 35

capacitated network design problem
with unsplittable shortest path
routing, 35

circuit, 13
circuit hypergraph, 14
circuit inequality

for arc routing variables, 168
for path variables, 164

clique inequality
for arc routing variables, 199
for path variables, 197

commodities, 32, 229
compatible metric, see metric
conflict hypergraph, 73
conflicting paths, 75, see also Bell-

man property
congestion, 30, 34, 232
cut inequality, 202
cyclic comparability, 98

delay, 30
demands, 32, 229
dimensioning, 28, 226
directed cut inequality, 202
distance vector protocol, 24
dominance among metrics, 142

ECMP, see equal cost multi path rout-
ing

equal cost multi path routing, 25, see
shortest multi-path routing

Exact Set Cover problem, 47

facet, 9
Farkas Lemma, 9
Farkas ray, 80
FC-USPR problem (fixed charge net-

work design with unsplittable
shortest path routing), 36

feasible potential, 62
fixed charge network design problem

with unsplittable shortest path
routing, 36

forwarding, 60
associated with arc routing, 168
associated with path set, 61

forwarding arc, 60
forwarding table, 26
Fully Disjoint Paths problem, 124

GB-property, see generalized Bellman
property

277

278 INDEX

generalized Bellman property, 77
generalized cyclic comparability, 78,

see also generalized Bellman
property

Generalized Steiner Network prob-
lem, 129

graph partition inequality, 202

hat-cycle graph, 100
hop limits, 229

IIS, see irreducibly inconsistent sys-
tem

in-degree inequality, 200
independence system, 13
independence system polytope, 194,

198
induced (1, k)-configuration inequal-

ity, 215
induced k-cover inequality, 214
induced cover inequality, 213
induced flow, 34
inter-domain routing, 23
Intermediate System to Intermediate

System protocol, 24
Internet Protocol, 22
intra-domain routing, 24
inverse shortest paths problem, 40, see

also inverse unique shortest
paths problem

inverse unique shortest path forward-
ing problem

feasibility, 62
minimum arc length, 66
minimum total length, 66

inverse unique shortest paths problem
feasibility, 43
minimum arc length, 43
minimum path length, 43
minimum total length, 66

IP, see Internet Protocol
IP routing, see shortest path routing
irreducibly inconsistent system, 80
IS-IS, see Intermediate System to In-

termediate System protocol
IUSP problem (inverse unique short-

est paths), 43
IUSPF problem (inverse unique short-

est path forwarding), 62

jitter, 30

knapsack polytope, 210

link graph, 222
link state protocol, 24
load group, 232
loss-rate, 30

Max-3-Sat problem, 94
Max-USPS problem (maximum unique

shortest path system), 91
Max-Weight-USPS problem (max-

imum weight unique short-
est path system), 91

Maximum Weight Clique problem,
102

metric, 33
admissible, 230
compatible

with forwarding, 61
with path set, 42

dominance, 142
stretch, 142
tree ∼, 142
valid, 33

metric inequality, 202
Min-Arc-IUSP problem (minimum

arc length inverse unique short-
est paths), 43

Min-Arc-IUSPF problem (minimum
arc length inverse unique short-
est path forwarding), 66

Min-Con-USPR problem (minimum
congestion unsplittable short-
est path routing), 34

Min-Non-USPF problem (minimum
non-unique shortest path for-
warding), 104

Min-Non-USPS problem (minimum
non-unique shortest path sys-
tem), 81

Min-Path-IUSP problem (minimum
path length inverse unique
shortest paths), 43

Min-Sum-IUSP problem (minimum
total length inverse unique
shortest paths), 66

Min-Sum-IUSPF problem (minimum
total length inverse unique
shortest path forwarding), 66

INDEX 279

Min-Weight-Non-USPF problem (min-
imum weight non-unique short-
est path forwarding), 105

Min-Weight-Non-USPS problem (min-
imum weight non-unique short-
est path system), 81

Min-Weight-Sat problem, 133
minimum congestion unsplittable short-

est path routing problem, 34
Minimum Vertex Cover problem,

84
multicommodity flow routing, 120

ND-USPR problem (network design
with unsplittable shortest path
routing), 233

network design problem, see Cap-USPR,
FC-USPR and ND-USPR

no-bottleneck condition, 123
non-decreasing function, 204
NP, 16
NPO, 16

Open Shortest Path First protocol, 24
OSPF, see Open Shortest Path First

protocol
out-degree inequality, 199

P , 16
Partition problem, 119
partition band inequality, 203
performance ratio, 17
PO, 17
Point-to-Point Connection prob-

lem, 129
precedence constrained knapsack poly-

tope, 211
precedence constrained knapsack prob-

lem, 217
precedence constraint, 211
Price-USPR-Path problem (pricing

of path variables in path rout-
ing models), 178

rank
of a forwarding, 103
of a path set, 73

rank inequality
for arc routing variables, 199
for path variables, 196

rank quotient, 92
Ring Loading problem, 144
RIP, see Routing Information Proto-

col
routing, 28, 32
routing domain, see autonomous sys-

tem
Routing Information Protocol, 24
routing lengths, see metric
routing metric, see metric
routing weights, see metric

Sep-IUSP problem (separation of
shortest path uniqueness con-
straints), 45

Sep-USPF-Circuit problem (sepa-
ration of circuit inequalities
for arc routing variables, 184

Sep-USPS-Circuit problem (sepa-
ration of circuit inequalities
for path routing variables),
176

Set Partition problem, 47
shortest multi-path routing, 25, 120
shortest path routing, see also unsplit-

table shortest path routing,
24–276

source-invariant routing, 120
stable set, 11
stable set polytope, 195, 198
strengthened 2-band inequality, 203
strengthened cut inequality, 203
strengthened metric inequality, 203
stretch of a metric, 142
sub-optimality of paths, see Bellman

property
subpath inequality, 198, 200, 201
subpath property, see Bellman prop-

erty
superadditive function, 204
superadditive metric inequality, 204,

207
supply graph, 32, 222

taboo nodes, 229
TE-USPR problem (traffic engineer-

ing with unsplittable short-
est path routing), 234

tight arc, 62
traffic engineering, 30

280 INDEX

traffic engineering problem, see Min-
Con-USPR and TE-USPR

traffic splitting, see shortest multi-path
routing

tree metric, 142

unique shortest path forwarding, 61
compatible metric, 61
inverse ∼ problem, 62
irreducible non-∼, 103
maximal ∼, 103
minimum non-∼ problem, 104
minimum weight non-∼ problem,

105
unique shortest path forwarding poly-

tope, 172
unique shortest path system, 42

compatible metric, 42
inverse unique shortest paths prob-

lem, 43
irreducible non-∼, 72
maximal ∼, 72
maximum ∼ problem, 91
maximum weight ∼ problem, 91
minimum non-∼ problem, 81
minimum weight non-∼ problem,

81
unsplittable flow routing, 120
unsplittable shortest path arc routing

polytope, 167
unsplittable shortest path routing, 33,

see also unique shortest path
system, unique shortest path
forwarding

admissible, 230
unsplittable shortest path routing poly-

tope, 164
unsplittable source-invariant routing,

120
USPF, see unique shortest path for-

warding
USPR, see unsplittable shortest path

routing
USPS, see unique shortest path sys-

tem

valid metric, 33
valid-cycle property, 81

weakly disjoint paths, 57
weakly stable set, 11

