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Zusammenfassung 

Die vorliegende Dissertation beschäftigt sich mit der Optimierung der Fahrzeugeinsatzplanung 
im öffentlichen Personennahverkehr. Dieses Problem ist für die meisten praxisrelevanten Fälle 
schwierig (Ar'P-schwer). In dieser Arbeit präsentieren wir Methoden der ganzzahligen linearen 
Programmierung zur Lösung dieses Planungsproblems. "Vernünftige" mathematische Formu
lierungen des Fahrzeugeinsatzplanungsproblems basieren auf Netzwerkfluß-Modellen und ent 
sprechenden ganzzahligen linearen Programmen (LP). Dies sind sogenannte bogenorientierte 
Mehrgüterfluß-Modelle bzw. pfadorientierte SetPartitioning-Modelle. Wir beschäftigen uns mit 
beiden Ansätzen, der Schwerpunkt liegt aber auf dem bogenorientierte Mehrgüterfluß-Modell 

Mathematisch bearbeiten wir diese Modelle mit Branch-und-Cut- bzw. Branch-und-Cutund-
Price-Methoden. Reale Anwendungen führen zu riesigen LPs mit einigen Millionen ganzzahligen 
Variablen. Die Behandlung solcher LPs erfordert Spalten-Erzeugungs- Verfahren (auch Column-
Generation-Verfahren genannt). Basierend auf Lagrange-Relaxationen entwickeln wir hierzu 
neue Verfahren zur Auswahl der zu erzeugenden Spalten, die wir Lagrange-Pricing nennen. 
Lagrange-Pricing-Techniken haben es erstmalig ermöglicht, LPs dieser Art mit rund 70 Millionen 
Variablen zu lösen. 

Für den bogenorientierten (Mehrgüter)Fluß-Zugang beschreiben wir ausführlich, wie Lagrange-
Relaxationen sowie die LP-Relaxation effizient gelöst werden. Zusätzlich schlagen wir eine 
Heuristik vor, die schnell gute Lösungen erzeugt. Diese Heuristik beruht auf einem sog. Schedule-
FirstClusterSecond-Ansatz. Eine zentrale Aufgabe bei der Lösung dieser primalen und dualen 
Probleme ist dabei die effiziente Behandlung von Problemen mit einem Depot. Wir zeigen, daß 
das bogenorientierte Mehrgüterfluß-Modell durch eine geeignete Anwendung der Dantzig-Wolfe-
Dekomposition in ein pfadorientiertes SetPartitioning-Modell überführt werden kann. 

Der zweite Teil dieser Arbeit präsentiert die Rechenergebnisse zu den von uns entwickelten und 
implementierten Verfahren. Diese Untersuchungen basieren auf realen Testdaten von drei großen 
deutschen Nahverkehrsunternehmen. 

Die implementierten Codes arbeiten zuverlässig und stabil. Die mit diesen Verfahren durchge
führten Testläufe lieferten hervorragende Ergebnisse: Bis auf ein Problem können alle Beispiele 
optimal gelöst werden. Die Lösungen des Branch-and-Cut-Verfahrens wurden auch mit den Pla
nungsergebnissen der in der Praxis gegenwärtig eingesetzten Verfahren verglichen: Wir konnten 
zusätzlich mehrere Fahrzeuge einsparen sowie eine Kostenreduktion von bis zu 10 % aufzeigen. 

Der mögliche Nutzen dieser Methoden ist enorm. Beispielsweise rechnet die BVG damit, den 
Planungsprozeß mit den von uns entwickelten Softwaretools deutlich straffen und jährlich Ein
sparungen in Höhe von rund 100 Millionen Mark erzielen zu können, siehe den Artikel Auf 
Sparkurs zum Ziel im Rheinischer Merkur, Nummer 39, von Schmidt [1997] 

Teile der vorgestellten Methoden wurden bereits in die Planungssysteme BERTA (der Berliner 
Verkehrsbetriebe (BVG)) und MICROBUS II (der IVU Gesellschaft für Informatik, Verkehrs 
und Umweltplanung mbH, Berlin) integriert. Darüber hinaus hat auch die Forschungsabteilung 
der SIEMENS AG in München dieses System erworben. 

Mathematics Subject Classification (1991): 90B06, 90B10, 90C05. 90C06. 





Abstract 

This thesis deals with integer linear programming approaches for the A^P-hard 
Multiple-Depot Vehicle Scheduling Problem (MDVSP) in public mass transit . 
"Reasonable" formulations of the MDVSP are based on network flow models and 
their integer linear programming analogues. In particular, arc-oriented multi 
commodity flow models and path-oriented set partitioning models (derived by 
Dantzig-Wolfe decomposition) are two customary models for this kind of prob
lem. In this thesis, we investigate both approaches. The main emphasis is on the 
solution of the multicommodity flow formulation. 

The solution methods applied for the two models are branch-and-cut and branch-
and-cutand-price, respectively. Additionally, column generation techniques seem 
indispensable for both approaches. We have developed new column generation 
rules that make it possible to solve the huge linear programs with up to 70 million 
integer variables that come up here. These rules for selecting new columns are 
based on Lagrangean relaxations and, therefore, called Lagrangean pricing. 

For the arc-oriented multicommodity flow approach, we describe the efficient so
lution of single-depot instances, Lagrangean relaxations, and the LP relaxation. 
In addition, we propose a heuristic that quickly generates good solutions. This 
heuristic is based on a schedule first - cluster second approach. For the path-
oriented set partitioning approach, we describe its relation to the arc-oriented 
model 

The second part of this thesis presents the computational investigations of the 
solution methods that we have developed and implemented. These investigations 
are based on test da ta of three large German public transportat ion companies. 

The computational results are excellent: Except for one problem, all encountered 
test instances can be solved to proven optimality. Compared with the results 
obtained with the best planning system currently available in practice, our test 
runs indicate savings of several vehicles and a cost reduction, on the average, of 
about 10 %. 

The possible profit from using this optimization software is immense. For instance, 
BVG reckons on savings of about DM 100 million per year, see the newspaper 
article Auf Sparkurs zum Ziel in Schmidt [1997] 

Par ts of the presented methods are already integrated in the BERTA system 
of the Berliner Verkehrsbetriebe (BVG) and in the MICROBUS II system of 
the IVU Gesellschaft für Informatik, Verkehrs- und Umweltplanung mbH, Berlin. 
Moreover, this system has also been purchased by the research department of the 
SIEMENS AG, Munich. 

M a t h e m a t i c s Subjec t Classif ication (1991): 90B06, 90B10, 90C05. 90C06. 
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n t r o c t i o 

Solving transportation problems was and still is one of the driving forces behind the de 
velopment of mathematical disciplines such as optimization and operations research, see 
Borndörfer, Grötschel, and Löbel [1995]. Truly large transportation problems have to be 
solved, for instance, in airline traffic (airline and crew scheduling) and public mass transit 
(vehicle and duty scheduling). In the past, the corresponding transportation markets have 
often been protected by monopolistic structures. However, deregulation of such monopo
listic markets has led to world-wide competition. It is therefore obvious that competitive 
participants in these markets must use computeraided tools for their operational plan
ning process to employ their resources as efficiently as possible. Modern and sophisticated 
mathematical optimization techniques can help to solve such planning problems 

For instance, public transportation in the European Community is subject to such market 
deregulation. Monopolistic markets have become more liberal or will soon be broken up. 
In order to prevent their complete extinction from the market, monopolistic transportation 
companies will therefore have to change from deficitoriented monopolies to competitive 
market players. One important factor in facing the challenges of a competitive market is 
of course, cost reduction, which can be obtained by making intelligent use of the latest 
mathematical knowhow, see Böhmig and Wolter [1997] and Kretschmann and Lawerentz 
[1997] 

Over the last few decades, planning large systems in public transit has been subdivided 
into a hierarchical process: line planning, timetable planning, vehicle scheduling, and 
duty scheduling and rostering. Solving each of these single steps is still a hard task. This 
thesis deals with one of these steps: vehicle scheduling. 

The MultipleDepot Vehicle Scheduling Problem (MDVSP) is to assign a fleet of vehi
cles, possibly stationed at several garages, to a given set of (timetabled or passenger) 
trips such that operational, company-specific, technical, and further side constraints are 
satisfied and the available resources are employed as efficiently as possible. In the last 
three decades, considerable research has gone into the development of academic as well as 
practiceoriented solution techniques for the jVP-hard MDVSP and special, often poly-
nomially solvable, cases of it. Review articles on this topic are, for instance, Desrosiers, 
Dumas, Solomon, and Soumis [199], Daduna and Paixäo [1995], and Bussieck, Winter 
and Zimmermann [1997] 
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The most successful solution approaches for the MDVSP are based on network flow models 
and their integer programming analogues. In the literature, there are two basic mathemat 
ical models of this type: First, a direct arcoriented model leading to a multicommodity 
flow problem and, second, a path-oriented model leading to a set partitioning problem. The 
latter can also be derived from Dantzig-Wolfe (DW) decomposition applied to the first 
Both approaches lead to largescale integer programs, and column generation techniques 
are required to solve their LP relaxations. We shall explicitly discuss these two models 
in our literature overview. This thesis investigates both approaches. However, the main 
emphasis is on the solution of the multicommodity flow formulation. 

To the best of our knowledge, only relatively small (artificially generated and realworld) 
MDVSPs have by now been solved to proven optimality: Forbes, Holt, and Watts [1994] 
report on numerical investigations with up to 3 depots. Mesquita and Paixäo [1997], a 
recent publication on this topic, still solve problems just with up to 4 depots and 352 
timetabled trips 

Practice-oriented heuristics are often based on a single-commodity network flow relaxation. 
We will show that solutions generated by methods based on network flow do not necessarily 
attain the optimum since, in general, they do not use all degrees of freedom. Moreover 
these methods do not provide tight lower bounds or do not provide lower bounds at all 

The contribution of this thesis is the efficient and optimal solution of the integer linear 
program (ILP) derived from the multicommodity flow formulation. Column generation 
seems indispensable to solve large problems of this kind. In particular, we present a new 
technique, called Lagrangean pricing, that is based on two Lagrangean relaxations of the 
multicommodity flow model 

Our computational investigations are performed on large-scale data from three German 
public transportation companies: the Berliner Verkehrsbetriebe (BVG), the Hamburger 
Hochbahn AG (HHA), and the Verkehrsbetriebe Hamburg-Holstein AG (VHH). These 
instances involve problems with up to 49 depots, about 25 thousand timetabled trips, and 
about 70 million integer decision variables. These test instances have been provided by 
our partners HanseCom GmbH, Hamburg, and IVU Gesellschaft für Informatik, Verkehrs 
und Umweltplanung mbH (IVU), Berlin. Test runs on this test set show that our method 
is able to solve problems of this size optimally. These problems are orders of magnitude 
larger than the instances successfully solved with other approaches, as far as we know. 

The interested reader can find further information about the involved companies BVG, 
HanseCom, HHA, IVU, and VHH (in alphabetical order) via WWW at www.bvg.de, 
www.hansecom.com, www.hochbahn.com, www.ivu-berlin.de, and www.oepnv.de/vhh, 
respectively 

Our research has been supported by the German Federal Ministry of Education, Science 
Research, and Technology in the program Anwendungsorientierte Verbundprojekte auf 
dem Gebiet der Mathematik (Application-Oriented Joint Projects in Mathematics). This 
program aimed at giving financial support to joint projects of academic institutions and 
partners from industry. It was the goal to improve available or to develop new mathe 

http://www.bvg.de
http://www.hansecom.com
http://www.hochbahn.com
http://www.ivu-berlin.de
http://www.oepnv.de/vhh


matical techniques and to transfer the resulting software tools into practice. And inded, 
parts of our software have already been integrated in the planning systems BERTA of 
the Berliner Verkehrsbetriebe and MICROBUS II of the IVU GmbH. Additionally, the 
research department of the SIEMENS AG, Munich, has also purchased our system. With 
our software, the Berliner Verkehrsbetriebe expects to save about DM 100 million per 
year, see the article Auf Sparkurs zum Zel by V. A. Schmidt [1997] 

This thesis contains 2 chapters and is divided into five parts: basics (Chapter 1), the 
roblem (Chapters 2-4) lwer and upper bound (Chapters 5 - ) , exat methd (Chapters 
0-11), and computatio (Chapter 2) 

Basics: In Chapter 1, we give an introduction to some basics concerning notation, linear 
algebra, polyhedral theory, (integer) linear programming, graph theory, and network flows 

The Problem: This part is divided into three chapters: a problem description, complex
ity investigations, and a literature overview. 

The MDVSP is introduced in Chapter 2, and we present a multicommodity flow formu
lation with its integer programming analogue. We also distinguish our multicommodity 
flow formulation from some other (arcoriented) models that have been presented in the 
literature 

The complexity of the MDVSP is investigated in Chapter 3, which is divided into one 
section for the polynomially solvable singledepot case and another for the A'P-hard 
multipledepot case 

Chapter 4 contains a detailed literature overview. In addition, we discuss the arcoriented 
multicommodity flow and the path-oriented set partitioning formulations 

Lower and Upper Bounds: In this part, we present the algorithmic tools that we have 
used to solve large problem instances with our branch-and-cut method. 

It starts with the solution technique for single-depot instances in Chapter 5. Such prob
lems are solved with a network simplex algorithm combined with column generation. 

Chapter 6 deals with two Lagrangean relaxations of the ILP and presents the subgradient 
methods which we apply for their solution. The occurring inner minimization problems 
of the Lagrangean duals are solved by the network simplex code presented in the chapter 
before. In particular, Lagrangean relaxations are used to compute fast and tight lower 
bounds 

In Chapter 7, we will describe in detail the basic ingredients of our LP method that are 
indispensable to solve the LP relaxation of large problems. In particular, we introduce 
Lagrangean pricing. We have also investigated certain recent approximation approaches 
for the solution of the LP relaxation. We do not believe that such algorithms can sub
stantially help solving the LP relaxation that we investigate here 

Chapter 8 deals with some heuristics. It starts with two opening heuristics: the well 
known cluster first - schedule second approach (CF-SS) and a schedule - cluster - resched
ule algorithm, which is a composition of (the other wellknown) schedule first - cluster 



TRODUC 

second approach and CF-SS. The chapter continues with LP-phnging, which is an LP-
based iteratively rounding heuristic and used within our branch-and-cut algorithm. Last 
but not least, we give a short introduction to the vehicle scheduling of HOT. 

Chapter presents some results of our polyhedral investigations of the MDVSP. 

Exact Methods: This part presents exact branch-and-bound and branch-and-cut-and-
price approaches for the multicommodity flow and the DW set partitioning formulations 
respectively 

Chapter 10 give a composition of the concepts presented in the previous part resulting in 
an efficient method to solve MDVSP instances 

In Chapter 11, we show how the DW decomposition formulation is derived from the mul 
ticommodity ILP formulation, discuss the relation between the arcoriented multicom
modity flow and the path-oriented set partitioning formulations, and provide a branch-
and-cutand-price algorithm for the solution of the DW decomposition. 

Computations: The methods of the Parts II and IV have been tested on realworld 
data of BVG, HHA, and VHH. In Chapter 12, we summarize the results of our computa
tional tests for single-depot instances (solved with our network simplex implementation) 
and multiple-depot instances (solved with branch-and-cut and decomposition approaches 
respectively) 



apte 

tion reliminies 

This chapter introduces some basics concerning notation, linear algebra, polyhedral the 
ory, (integer) linear programming, graph theory, and network flows. Readers who are 
familiar with the basics of these fields may wish to continue with Chap. 2. In what fol 
lows, the accent is rather on collecting prerequisites than on completeness. Parts of the 
exposition follow Grötschel, Loväsz, and Schrijver [1988. For more detailed information, 
we recommend 

Bazaraa, Jarvis, and Sherali [1990], Chvätal [1980] Grötschel, Loväsz, and Schrijver 
[1988], Luenberger [1989], Nemhauser and Wolsey [1988, and Schrijver [1989] for 
polyhedral theory and (integer) linear programming, 

Berge [1973] and Grötschel, Loväsz, and Schrijver [1988] for graph theory 

Ahuja, Magnanti, and Orlin [1993,199 and Bazaraa, Jarvis, and Sherali [199 for 
network flows, and 

Garey and Johnson [199] and Papadimitriou and Steiglitz [1982 for complexity 
theory 

1.1 Sets, Vecto Spaces, and atrices 

By N, Z, Q, and R we denote the sets of natural, integer, rational, and real numbers 
respectively. Z+ , Q+ , and M+ are the subsets of nonnegative elements. We assume that 
0 £ N and denote N0 := N U {0}. The symbols Nn, Zn, Qn, and W1 are used for the sets 
of vectors with n components and entries in N, Z, Q, and M. Rn is understood as the 
usual n-dimensional Euclidean vector space with an inner product xTy := Y^=i x^y^ 
for x,y G Mn. The superscript "T" denotes transposition, and, unless stated otherwise 
x G Mn is always a column vector. I G R denotes the n-vector with all entries equal to 
one, and e- G Mn is the j - th canonical unit vector 

vector x = X)j=i ^ ^s called linear combination of the vectors xx2 X 



TER 1 IES 

M for i = A;. If, in a d d i n , 

^ 0 Vi 1 ( conic 
1 we call a(n) affine combinaton 

> 0 Vi 1 convex 

of the vectors X\ x2 • xk. These combinations are called proper if neither = 0 nor 
A = eJ for some j 2 k}. For a nonempty subset S C M", we denote by 

lin(S) 1 linear 

flY <?\ ^ e ffi n m ^ ^ ^ e e m e s ° S, 

conv(S*) convex 

that is the set of all vectors that are linear (conic, affine, convex) combinations of finitely 
many vectors of S. For the empty set, we define lin(0) := cone(0) := {0} and aff(0) : 
conv(0):= 0. 

subset S C is called a(n) 

linear bspace "| lin(S) 
cone -r c _ cone(S') 
affine ubspace aff(S') 
convex set conv(5') 

A subset S C W is called linearly (affinely) independent if none of its members 
is a proper linear (affine) combination of elements of S; otherwise S is called linearly 
(affinely) dependent. It is well known that a linearly (affinely) independent subset of 

n contains at most n elements (n + 1 elements). For any set S C M.n, the rank of 
S (affine rank of S), denoted by rank(S) (arank(S')), is the cardinality of the largest 
linearly (affinely) independent subset of S. For any subset S C W1, the dimension of 
S, denoted by dim(S'), is the cardinality of the largest affinely independent subset of 
S minus one, i e . , dim(S') = arank(5) — 1 A set S C Rn with dim(S) is called 
fulldimensional 

If E and R are sets, then RE is the set of mappings from E to R. If E is finite, it is 
very convenient to consider the elements of RE as \E\-dimensional vectors where each 
component of a vector G RE is indexed by an element of E, i.e., x = {xe)eeE. For 
F C E, the vector \F £ R defined by xf = 1 if e G F and xf = 0 if e E \ F is called 
the incidence vector of F. For a set G (not necessarily G C E) x(G) R is defined as 

x(G) : 2_ x 

Gn 

For a real number a, \a\ denotes the largest integer not larger than a (the floor or lower 
integer part of a), \a] denotes the smallest integer not smaller than a (the ceiling or 
upper integer part of a), and \a\ := \a — | ] denotes the integer nearest to a. 



For a y set R, Rrm denotes the set of mxn-matrices with e i e s in R. For a matrix 
A G R™*, we usually assume that the row index set of A is { 1 , . . . ,m} and that the 
column index set is { l , . . n } . Unless specified otherwise, the elements or entries of 
A G R™*1 are denoted by a^, 1 ^ i ^ m, 1 ^ j' ^ n; we write 4 = ( a ) . Vectors with n 
components are also considered as nxlmatrices 

If / is a subset of the row index set M of a matrix 4̂ and J is a subset of the column index 
set N of A, then ATJ denotes the submatrix of A induced by those rows and columns of A 
whose indices belong to / and J, respectively. Instead of AMJ (AIN) resp.) we frequently 
write A.j Aj, resp.) A is the z th row of A (so it is a row vector), and A. is the j - th 
column of 

Whenever we operate with vectors and matrices, but do not explicitly specify their di 
mensions, we always assume that their dimensions are compatible 

The identity matrix is denoted by I or, if we want to stress its dimension, by In. The 
symbol 0 stands for any appropriately sized matrix, which has all entries equal to zero, 
and similarly for any zero vector. If A G Rrnp and B G R1™1 then (A, B) (or just (AB) if 
this does not lead to confusion) denotes the matrix in R^P+I) whose first p columns are 
the columns of A and whose other q columns are those of B. Analogously, if C G R™ and 

-R* then I „ ) denotes the matrix in (r whose first r rows are the rows of C 

and whose other s rows are those of D. The inverse matrix of a nonsingular nxn-matrix 
A is denoted by A-

The rank of a matrix A (notation: vank(A)) is the rank of the set of its column vectors 
This is known to be equal to the rank of the set of its row vectors. An mxn-matrix is 
said to have full row rank (full column rank) if r a n k ( ) = m ( r ank ( ) = n) 

1. Polyhedra 

If A is a real mxn-matrix and b G M, then A ^ b is called a system of (lin
ear) inequalities and Ax = b a system of (linear) equations. The solution set 
P := {x G K"| x ^ b} of a system of inequalities is called a polyhedron. A polyhedron 
P that is bounded is called a polytope. polyhedral cone is a cone that is also a 
polyhedron. 

If a G M.n \ {0} and a0 G M, then {x G Rn\ aTx ^ a0} is called a halfspace, and 
{ i e K n aTx = a0} a hyperplane. To shorten notation, we shall sometimes speak of the 
hyperplane ax = a0 and the halfspace aT a0. Every polyhedron is the intersection of 
finitely many halfspaces 

We call an inequality ax ^ a0 valid with respect to P if P C {x | aTx ^ a0}. A set 
F C P i s called a face of P if there exists a valid inequality ax ^ 0 for P such that 
F {x G P | aTx = a0} We say that F is the face define (or induced) by oTx ^ a0 

The subset eq(F) : G M\ Ax = b V G F} of the row index set of A is called the 
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qualit set of F. 

If x is a point in a polyhedron P such that {x} is a face of P, then x is called a vertex of 
P . A facet of P is a maximal face F oi P := {x eRn\ b} with 0 F ^ P. Facet 
defining conditions are given by the following theorem: 

(1.1) Theorem. Let P := {x £ W\ Ax ^ b} be a polyhedron and F, induced by the 
inequality aTx 0, be a nontrivial face of P. Then the following are equivalent: 

i. F is a facet of P. 

ii. dim(P) = dim(P) — 1. 

iii. For each valid inequality x ^ d0 satisfying F C {x G P | dTa; = }5 there 
exists some vector u Meq(F) and 0 ^ i G M such that d0 = 0 + MT6eq(p a n d 
dT w T + ueq(P 

3 Linear and Integer Linear P r g r a m 

1.3.1 Linear Programming and Duality 

Given an mxn-matrix A, a vector 6, and a vector c. A linear programming problem 
(LP), we also just say linear program, is the task to find a vector x* G P = {x\ Ax 
6, x ^ 0} inimizing the linear function cTx over . We ill usually rite an LP in one 
of the folloing f o r s : 

in 
Ax — b 
x > 0 

in{cTx| Ax = b, x ^ 0} 

incTx, Ax = b, x ^ 0 

or incTx x G P. 

A vector x G P is called a feasible solution of the LP, and a feasible solution x is called 
an optimal solution if cx* ^ cx for all feasible x G P. The linear function c x is 
called the objective function of the LP. The s a e terinology applies if ini izat ion 
is replaced by axiization. 

With every LP min{cx| Ax = 6, x ^ 0}, we associate the dual LP max{y6| yA ^ c } 
referring to the original LP as the primal one. Both p r o b l e s are interrelated by the 
folloing duality theore of linear programming: 

(1.2) Theorem. If both the linear program (P) min{cx| Ax = b7 x ^ 0} and its 
dual linear program (D) m a x { i t A ^ c } have feasible solutions then both LPs have 
o p t i a l solutions yielding the sa o p t i a l ) objective value. f one of P) or (D) has no 
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feasible solution then the other is either unbounded or has also no feasible soluton and 
if one of P) or (D) is unbounded then the other has no feasible solution. 

If the polyhedron P is given by an arbitrary collection of linear inequality and equality 
constraints the folloing corollary displays the general s c h e e for f o r i n g the dual to a 
p r i a l LP. 

(1.3) Corollary The p r i a l LP 

(14a) in dx + e 

ubject t 

(14b) Ax + B a, 

(14c) Cx + D b, 
(14d) x + F 

(14e) 

and its dual LP 

(15a) ax + v + 

subject to 

(15b) A + v + w 

(15c) + v + w 

(15d) 

yield the s a e o p t i a l value provided that both linear p r o g r a s are nonepty . 

The folloing results provide s o e useful op t i a l i ty conditions for linear p r o g r a s . 

(1.6) Theorem. Weak complementary slackness theorem. Consider the p r i a l 
LP (1.4) and its dual LP (15). Let (x*,y) and (u v* w* denote s o e o p t i a l 
solutions for (14) and (15) respectively. Then 

*> = Q. + Di. = k 

* < = Ei. + Fi. = a 

* > = + v + w 

(1.7) Theorem. Strong complementary slackness theorem. If the primal LP (P) 
min{cT:r| Ax = 6, x ^ 0} and its dual LP (D max{ub\ uTA ^ cT} have feasible solutions 
then there exists o p t i a l solutions x and such that for each c o l u n j of A holds 

* > j 

0. 
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1.3.2 Integer Linear Programming 

Given an mxnmatrix A, a vector b, and a vector c. An integer linear programming 
problem (ILP), we also just say integer linear program, is the task of finding a vector 

£ X = {x\ Ax = b, x ^ 0 x integral} in i iz ing the linear function cx over X. 

Let X := {x\ Ax = b, x ^ 0} denote the continuous relaxation of X. Given an ILP 
min{cTx| x E X} , then min{cTx|a; E X} is called its LP relaxation. It is easy to see 
that the following inequalities hold provided that all LPs and LPs are feasible: 

^ . Theorem 1. . 

mm x ^ mm x = max x ^ max 
A*=h A*=b A < c A < c T 

x > 0 x > 0 . , 
, ntegral 

X i n tegra l 

1.3.3 Lagrangean Relaxation 

Another possible relaxation of an ILP is Lagrangean relaxation. ts general approach is 
outlined in Schrijver [1989] and, especially for network flow prob les , in Ahuja, Magnanti, 
and Orlin [1993]. The basic idea is the following. Let X denote some nonempty polytope; 
for s ipl ici ty and for the sake of illustration a s s u e X := {x| A ^ 0, x integral}. 
LetX : x\ A • t /« tij ^ 0 denote the continuous relaxation of X. Suppose we consider 
the ILP 

(1 i n x | Dx x E X 

and its LP relaxation 

(1 i n x | Dx x E X } . 

agrangean relaxation of (1 ith respect to D x d is the opt i izat ion proble 

( 1 0 ) ax 
u 

mm 
T{D x — d)\ 

The inner ini izat ion proble leads to a concave and pieceise linear function 

(111 L(u,X) : min D)x 

whose maximization problem maxM L(«, X) is called the agrangean dual. The com
ponents of are called the agrange multipliers. 

If we apply Lagrangean relaxation to the LP relaxation (1.9, we end up ith so 
counterpart L(u,X). All together, we have the folloing theore 
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(1.12) Theorem 

min ax i (« , X) ^ axi(w, X) min 
Dx=d U U x = d 
x e x x e x 

Proof: Let x and denote s o e o p t i a l solutions of ( 1 ) and ( 1 0 ) respectively. 
Then 

x °Pt A x=d j-> 

mm = a) = JJx 
D x = d 
x G X 

d + D ) x d + mm D) x L(uX) = &xL(u,X) 
x£ u 

proves the first inequality. The second inequality holds since for each 

xcx 
L(u, X) — = min D) x ^ min D) x L(u, X) — d. 

^ xe 

The third inequality is proved by 

ax L(u,X) ax min 
xex 

eorem 1. 

max 
TA<cT-

eorem 1. . 

ax + v = mm 
D+TA^CT x=d 

xex 

• 

(1.13) Remark. Lagrangean relaxation aims at problem L(u, X) that are easier to solve 
than the original problem (1 . ) In particular subproblems may benefit from separability 
or the convex hull of the set X may coincide with its continuous relaxation X. The latter 
is often the case in network optimization. Then the Lagrangean relaxation (1.10) and 
the LP relaxation (1.9) yield the same optimal objective value, and direct LP techniques 
can be applied to solve the Lagrangean relaxation. Moreover, it follows directly from 
the proof of Theorem 112 that the Lagrange ultipliers s i p l y correspond to the dual 
multipliers of D x d. 

(1.14) Remark Typically, X is chosen such that L(u,X) (1.11) can be evaluated in 
(pseudo)polynomial time for any given u. For those cases, the Lagrangean dual can be 
theoretically solved in pseudo)polynoial ti see Schrijver [989] 

(1.15) Remark. If there is no danger of confusion with the considered polytopes and 
, we shall also rite L(u) instead of L(u,X) and L(u,X) respectively. 



HAPTE 1. NOTATION AND PRELIMINARIE 

Since the Lagrangean dual is a concave maximization problem, subgradient methods from 
nonsmooth optimization are employed for its solution. An overvie about such ethods 
is given in iriartUrruty and Learechal 93] 

1.4 Graphs 

Our terminology for graph theory is an extended version of the terminology introduced by 
Grötschel Loväsz, and Schrijver [ 8 8 ] . They themselves use a xture of Berge [973] 
Bollobäs [1978] Bondy and urty 976] and L a l e r 976 

A directed graph (or digraph) D = (V, A) consists of a finite nonempty node set V 
and a finite arc set A. For each arc a e A, we associate an ordered pair (z, j) of nodes 
called endnodes at which i is the initial endnode (or tail) and j is the terminal 
endnode (or ead) of a. We say that an arc a = (ij) goes from to j , that a is 
incident from and incident to j , and that a leaves i and enters j . If there is an arc 
going from i to j , we say that is a predecessor of j and that j is a successor of 

An isolated node has no incident arc, and a loop is an arc (i, i). We consider only graphs 
without isolated nodes and without loops. Parallel arcs are possible, i.e., two different 
arcs a and a' can have the same tail i and the same head j . If there is no danger of 
confusion, (i,j) denotes the arc having tail and head j . Whenever parallel arcs occur  

ill handle the carefully. 

For subsets W C V and B C i V(B) denotes the set of nodes incident to s o e arc in  
and A W ) is the set of arcs ith head and tail in W. 

€ then the set of arcs having i as initial (terminal) node is denoted by S(i 
(5(i)); we set 5(i) : 5(i) U S(i). The numbers | 5 ( i ) | |5(«)| , and \5(i)\ are called 
the outdegree, indegree and degree of respectively. For any set W C , we set 

W) : {(i,j) e A\ e W and j # W}, 5W) : 5(V \ W), and 5{W) := 5{W) U 
{W). The symbols 5()7 5(), and ö(-) always belong to the digraph represented by 

D = (V,A) f there is a danger of confusion, w write ^ ( ( and 5() For t 
subsets U , we set U - W) : U) n 5{W) 

A path in D is a finite sequence P = i0, a,i,ii, a2, Z2, • • • afc,̂ fc, A; ^ 0, that begins and 
ends with a node and contains mutually distinct nodes (with a possible exception for iQ 

and ifc). The nodes i\ and the arcs a,i of P appear alternately such that ^_i and i\ are 
the endnodes of a;, for / 1, 2 , . . . , k. The nodes z0 and ik are called the origin and the 
terminus, respectively, or the endnodes of P. If a node s is the origin and a node t is 
the terminus of P, P is called an [s, t]path. The nodes z l 5 . . . , ife_i are called the internal 
nodes of P . The number A; is the lengt of the path. A directed path or dipath in  

is a path in which all arcs a; = (zj ^ for / = 1, 2 , . . . , . The directed version of an 
[ path is denoted by t)dipath. 

Two nodes s, t of a digraph D are said to be connected if £) contains an [s, t]path. D 
is called connected if every two nodes of D are connected. A path is called closed if 



1.5. NETWORK FOWS 

it has nonzero length and its origin and terminus are identical. A closed path (dipath) 
in which the origin and all internal nodes are different is called a circuit (dicycle or 
directed cycle). An arc set T C A is called a t ree if T does not contain a circuit and if 
the digraph (V),T) is connected. A tree is called a spanning tree ifT{V = V 

We shall also use the words "path", "circuit", or "tree" to denote the arc set of a path 
circuit, or tree e.g. the incidence vector of a path is the incidence vector of the path' 
arc set. 

5 etwork Flows 

Network flow problems and algorithms have been profoundly investigated during the last 
decades. Veldhorst [1993] has compiled a bibliography containing 370 references to single 
multicommodity and other classes of flo papers published by 993 

1.5.1 The Minimum-Cost Flow Problem 

One of the ost extensively studied and best understood problems in operations research 
is the minimum-cost flow problem. To formulate this problem, we start from some con 
nected digraph D = (V,A) together with some linear cost function c 6 Q upper bounds 
u E Q and node imbalances G Qv fulfilling tb = 0. The minimum-cost flow 
proble is to find a vector x <E Q such that x is an o p t i a l solution to the linear 
progra 

( 1 a ) in N 
a 

subject to 

( 1 b ) (i {i eV, 

( 1 c ) V(ij)eA. 

The equations (1.1b) are called flow conservation constraints and the inequalities 
(1.16c) are the flow capacities on x. A flow x is called feasible if it satisfies the flow 
conservation constraints and the flow capacities. A node i is called supply, demand, or 
transshipment node depending upon whether is larger than maller than or equal 
to zero. With J denoting the nodearc incidence atrix of ( 1 ) reads 

(1 i n x | J\fx = b, 0 ^ x ^ } . 

It is well known that Af and thus, the constraint matrix of (1.17) are totally unimodular. 
For integer vectors u and there a l a y s exists an integer o p t i a l flow, see Grötschel 
Loväsz and Schrijver 988 
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Let 7T E Q (the node potentials) and TJ E Q be the dual multipliers for the flow 
conservation constraints ( 1 b ) and the upper bounds in ( 1 c ) . The dual proble of 
( 1 ) is 

(1 ax - r - r < c 77 ^ 0} 

hich is 

( 1 a ) ax N 2_ 
i,j) 

subject to 

( 1 b ) V(i,j)eA, 

( 1 c ) V ( t j ) 6 A 

Note that our model (1.17) imposes a zero lower bound for the flow on each arc a e i . This 
is no loss of generality since lower bounds / < A ith / ^ u) can easily be transformed 
to 0 by substituting the flow vector x by x + /, E QA. Then the system I ^ x ^ u 
transforms to 0 ^ x ^ w — 2, and Mx = b transforms to Mx = b—M, which is equivalent 
to decrease öj and to increase bj by kj for all (i, j) E A. The objective in cTx transform 
to cTl + min cTx Figure 1.1, which is taken fro Ahuja agnanti and Orlin 993] 
displays such a lower bound transforation. 

, h  

Figure : Transforation to zero lower bounds. 

1.5.2 Fl Decomposition 

Up to now, we have only considered flows that are defined on arcs. Whenever we talk 
about a flow, we mean such an arc flow. It is also possible, however, to define flows on 
dipaths and dicycles. For those cases, we explicitly refer to the by dipat or dicycle 
flo and we s o e t i e s rite only pat or cycle flow. 

Let V denote all possible dipaths between any pair of nodes in D, and let W denote all 
dicycles in D. We set P := {xR\ R E V} and W = {xS\ S E W}. For each p E P and 
each w E W, let fp^0 and fw^0 denote the flow values on p and w, respectively, and 
let x(p) : fpp E R and x(w) : fww E R denote the flow vectors corresponding to 
arc flos. Then every path and cycle flo uniquely de ter ines an arc flo x E RA by 

x : 2_{p) + / w) 
<EP W<EW 
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The f o l n g theor h o s ho ar flos can be d e c p o s d into path and cycl flos. 

(1.20) Theorem. Every path and cycle flow has a unique representation as a nonnegative 
arc flow. Conversely, every nonnegative arc flow x can be represented as a path and cycle 
flow - though not necessarily uniquel - with the folloing two properties: 

a) very dipath ith positive flo connects a source node to a d e a n d node. 

b) At most \V\ + \A\ dipaths and dicycles have nonzero flo; out of these at ost \A\ 
dicycles have nonzero flo 

Proof: Flow Decomposition Theorem of Ahuja agnanti and Orlin 993] page or 
Ahuja agnanti and Orlin 989] page 37 • 

(1.21) emma. I * = 0, for all i eV, each nonnegative flo x can be represented as a 
cycle flo along at ost \A\ directed cycles. 

5 3 The Multicommodity imum-Cost Flow Problem 

Minimum-cost flows are always considered for a single commodity. Therefore, those prob 
l e s are also called single-commodity flow problems. It is also possible to consider 
flo problems with different commodities, called multicommodity flow problems. For 
example, several vehicles, each defining a commodity, share the same or parts of the sam 
network and each is governed by its own flow conservation constraints. If there is no inter 
action between the different commodities, the ulticommodity flow problem decomposes 
into independent single-commodity flow problems. In general, however, the commodities 
share common resources and facilities (e.g., common flo capacities as in our case) and 
do interact such that a decoposition is ipossible. 

We shall give a formulation of the multicommodity flow problem that is tailor-made 
for our purposes. We are given a digraph D = (V, A) and K commodities denoted by 
1, 2 , . . . , K. For each commodity d there is an arc set Ad c A such that A is equal to the 
disjoint union \Jdd oreover there are a linear cost function c E A , upper bounds 
u E Q+, and node imbalances b E Qv (such that lb = 0). A flow vector x E Q 
is associated with each commodity d E { 1 , . . . , K} such that each x is a feasible flow, 
i.e., x satisfies ( 1 b ) and (1.16c) with respect to b and . The flow vector for A is 
denoted by x := {x)d=i^..yK Individual lower bounds l E Q can also be considered by 
a transforation for each commodity as described in Fig. 1 

There are common flow capacities defined as follows: For each two nodes i, j E V, let kj 
and Uij denote the common lower and upper bound for the total flo of all commodities 
fro node to node j i e . 

(122 } - j} 
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j and are set to zero if there exist no ar (ij) G A. 

Let D (V, A) denote the digraph of commodity d. The multicommodity i n i m -
cost flo proble reads 

( 1 a ) in 

subject to 

( 1 b ) < }^j}) j G F , 

( 1 c ) (i)) (*)) V, 
( 1 d ) e i ci G 1 , . . . K} . 

The integrality theorem for optimal minimum-cost flos does no longer hold for multi 
commodity flows: onsider three different commodities b, and c, each defined on a copy 
of the digraph from Fig. 1.2 consisting of nodes and 6 arcs. For each commodity, the 
arc costs are set to 0 for the arcs {(1,3); (3, 2) (2,1)} and are set to M > 0 for the arcs 
{(1, (2, 3,1)}. The individual and common arc upper bounds are set to 1, i.e., 
u, M6, and u are all set to 1. The task is to send for each commodity one unit of flow 
as follows: for commodity a from node 1 to 2, for commodity b from node 2 to 3, and for 
commodity c from node 3 to 1. It is easy to check that the optimal solution value is ^ 
and each commodity sends half a unit of flow on one of the arcs having cost M and half 
a unit of flo on the path that includes its t ransshipent node and has zero costs. 

Figur Multicommodit i n i m - c o s flo digraph that yields a factional o p t a l 
solution. 



apter 

M t i p e - D e p o t Vehic S c h e d i n 

Probem Descrpton 

We ill now give a formal description of the MultipleDepot Vehicle Scheduling Problem 
(MDVSP) in public ass transportation. Our terinology follo artley 98 to a 
large extent 

A garage (or maintenance and storage facility) is a location where vehicles are parked 
and serviced. The term fleet denotes the set of vehicles of a transportation company. The 
fleet is divided among the garages, and it is know which vehicle types and how many 
vehicles of each type are stationed at each garage. A depot is a nonempty set of vehicles 
that need not be distinguished for the scheduling process. The set of all depots is denoted 
by V. With each depot d G V, we associate a start point d and an end point d here 
its vehicles begin and terminate their daily scheduled run or duty. Let 

={\deV} and = { \ d G V} 

denote the set of all such start and end points, respectively. It is the task of the operator 
to subdivide the fleet into an appropriate set of depots. It is possible to define a depot for 
each individual vehicle or to define only one depot for all vehicles. In general, however 
depots do not contain vehicles of different garages. Typicall all vehicles of the s a e type 
stationed at the s a e garage are combined in a depot. 

We assume that the lines have been defined and their service frequencies have been cho 
sen, i.e., a timetable has been determined. This timetable defines a set of so-called 
timetabled trips or passenger trips), denoted by T. We associate with each trip 
t e f a first stop t together ith a departure t i e st and a last stop t together ith 
an arrival t i e et. Let 

= { t e T } and = { t e T} 

denote the set of all first and last stops, respectively. For each individual trip t G T 
there is given a n o n e p t y set of valid depots, which we call depot group of t and denote 
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by G(t) C V. Only the vehicles of the trips depot group are allowed to service a trip 
t. Such restrictions are necessary if, e.g., a doubledecker bus would be too high for 
an underpass, an articulated bus would be too long for s o e narrow bend, the vehicle 
capacity would not meet the trips d e a n d , etc. Normally, all timetabled trips of a line 
have the same basic depot group but ithin the peak hours depot groups are enlarged 
by further depots. Let 

={teT\d£ Gt)} 

denote all those t i e t ab led trips that can be serviced by the vehicles of depot d and 

= { t G T and = { t G T 

the set of all first and last stops thereof 

Figure shows three different lines in the plane. Each line is serviced in both directions. 
Figure 2.2 illustrates a small timetable with five chronologically ordered trips on these 
three lines. Each trip is uniquely assigned to some line as given in Fig. 2.3. In this figure 
the lines and their service frequencies are combined to a set of timetabled trips. The 
depot group of each t i e t ab led trip is s h o n by the different colours of the first and last 
stops. 

There are further types of trips, which do not carry passengers. These trips are used to 
link timetabled trips: A pull-out trip connects a start point d ith a first stop t 
a pull-in trip connects a last stop t with an end point d, and a dead-head trip 
(or dead running trip) connects a last stop t with a succeeding first stop For 
notational siplicity, we call the all unloaded trips. 

Many publications on vehicle scheduling abbreviate "timetabled trip" by "trip". We 
will not follow this use to avoid possible misunderstanding between timetabled trips and 
unloaded trips. Thus, whenever there is a danger of confusion, we explicitly use t i e t ab led 
trips and unloaded trips respectively. 

For two timetabled trips t and t G T, let Ai;i/ ^ 0 be given. In the literature, At;i 

denotes the duration (travel plus layover time) from the location of the last stop of t to the 
location of the first stop of t , e.g., see aduna and Paixäo [995], DellAmico, Fischetti 
and Toth [1993], and Ribeiro and Soumis [1994]. However our operating partners use 
such a definition of Ai)t> only for those deadhead trips for which the idle t i e or the 
difference s# et does not exceed a predefined maximum ranging from 40 to 120 minutes. 
Otherwise, A ^ is set to infinity. eadhead trips exceeding this m a x i u m are currently 
not considered for various reasons, e. g, the driver's idle time or break would become too 
long etc. We will show that such a restriction in the degree of freedom can lead to a 
higher vehicle demand and therefore, to subop t i a l solutions. To make it possible to use 
such links in spite of this, we set Atjt> := s? — et whenever it is possible to park a vehicle 
between t and t at the depot. We call these special deadhead trips also pu l l inpu l l 
out trips. Our pull inpullout trips are never given by the user and must be ip l i c i t l 
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Figur : Lines. 

-i r-
time 

departure arrival 

Figure : T ie t ab le . 

t imetabled trip 

t imetab le 

Figure : T ie tab led trips for two depots. 
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defined by our system. We therefore call the short and explictly defined deadhead trips 
also userdefined deadhead trips. When we talk about user-defined unloaded trips, w 

ean userdefined deadhead trips and pullout and pullin trips. 

Whenever et + Atj> ^ st' is satisfied, the corresponding deadhead trip is called compat 
ible. Pull-in and pullout trips are always considered to be compatible, i.e., we assume 
that for each d G V and each i G 7^ the pullout and pullin trip exist and can be used. 
Figure 4 illustrates possible unloaded trips for our s a l l e x a p l e . 

dead-head trips 

pull-out Y 
trips jjj 

pull-in trip 

time 

Figure 4: nloaded trips. 

The unloaded trips are used to interconnect the timetabled trips to vehicle schedules 
each being a chain of trips such that the first trip is a pull-out trip, the last trip is a 
pullin trip, and the timetabled and unloaded trips occur alternately. A vehicle schedule 
is feasible if there exists a depot that can service all its trips. All trips of a vehicle schedule 
have to be serviced by the same vehicle. f no deadhead trip is a pullinpull-out trip 
the vehicle schedule is also called a block (or a rotation). A block that contains only 
one single timetabled trip is also called a tripper. Figure 2.5 shows a solution ith t 
vehicle schedules for the s a l l e x a p l e presented in the last four figures. 

For each trip we consider depot specific weights (or costs) depending on the trip's type 
duration, distance, etc. The weight of an unloaded trip may in addition depend on the 
idle time of the vehicle and the driver etc. The exact definition of the weights must be 
quantified properly depending on operational interests. The weight of a vehicle schedule 
is the su of the weights of all its trips. 

The task of the MDVSP is to provide a set of vehicle schedules, which cover each trip 
t G T exactly once and minimize a given linear objective function. There are different 
objectives possible, strongly depending on operational interests: The main objective 
especially of large companies is to use as fe vehicles as possible and subordinate, with 
minimum operational costs among all minimal fleet solutions. The motivation of this 
objective is to reduce the large capital costs for investment and maintenance of vehicles; a 
permanent and significant reduction in the number of vehicles does also reduce related fix 
costs (e.g., for garages, maintenance plants, or drivers). Another objective especially of 
smaller transportation companies - is to schedule a given fleet with minimum operational 
costs. n the folloing, we concentrate our investigations on the first objective function. 



. MATMATCAL MODEL 

Figur 5: Two vehicle shedules. 

hemti ode 

We introduce a mathematical model that is based on a multicommodity flo formulation. 
For this formulation, we give an integer linear programming forulation. 

nteger Mult icommodiy Flow Model 

n the folloing, we define for each d ET> the folloing sets: 

A d r i 
Ad 

t-tri = {( ) | t e T t i e t ab led trips 

puii-out = ^ ^ f e T p u l l o u t t r i p s ) 

p/Un={()\t£T 

{(,q)\,qe Td A < s 

p u l n t p s 

deadhead trips) 

d-
tTi Pull-out U AflAn U ^ r i unloaded trips) 

Let (d , d) denote a backward arc from the depots end to start point. Backward arcs 
are used for the vehicle return and to control depot capacities. Let 

V'd = { } U 7 U T and *"* j ^ {{ tri 
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denote the node and arc set espectively of the digraph = ( V . We define a 
large digraph 

=(V 

ith node set U V U T and arc set A (j 

Figure 2.6 gives an illustration of D' for our small example from Sect. 2.1. The node set 
V consists of the start and end points of all depots and the first and last stops of all 
timetabled trips. The arc set A is the disjoint union of the arcs of all timetabled and 
unloaded trips. Note that the arc set A includes parallel arcs. Addressing an arc ( t , t 
without knowing its depot d G G(t) may lead to confusion. f necessary, we explicitly 
distinguish such arcs by their corresponding depots. 

Figur igraphs ( V ) and (V deV, wit = { g } and = { e } . 

nteger near rogramming Formulation 

We will no present an integer linear programming model for the MDVSP. For each d G X 
and each G Ad, we introduce an integer variable x that denotes a decision variable 
indicating whether a vehicle of depot d runs trip a or not, unless a denotes the backward 
arc. In this case, x counts all ep loyed vehicles of the depot d. The variables x are 
cob ined into vectors x = ( G RA d G X and these into x := ( G M 

Our two stage cost function is realized as follows: With each unloaded trip G Ad[
Ti, we 

associate a weight c G Q representing its operational costs. In addition, we add to the 
weight of each pullout trip a sufficiently large M representing the capital costs and being 
larger than the operational costs of any feasible solution. We deliberately do neither define 
weights for the timetabled trips nor for the backward arcs explicitly in our mathematical 
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mode, i.e., w assume them to be zero. If such weights are considered nevertheless, we 
apply the following simple transformation: Whenever a trip t G T is serviced by the depot 
d G G(t): it is clear that exactly one unloaded trip of Ad incident from the last stop node 
t must be used. Thus, we can easily shift the depot dependent costs of a trip t G Td to 
each arc of Ad that is incident from t . A similar transformation shifting costs via the 
depot end point d can be performed for nonzero costs of a backward arc. 

For each d G V, let Â  denote the depot lower and nd denote the depot upper capacity. 
These capacities define the (individual arc) lower and upper bounds of the backward arc. 
The (individual) lower and upper bound of all the other arcs is set to zero and one 
respectively. For each t G T, the common lower and upper bound of the arcs going from 
the first stop node t to the last stop node t are both set to 1. All the other arcs are not 
restricted by a common flow capacity, i.e., all these common lower and upper capacities 
are set to sufficiently small and large numbers, respectively such that conditions ( 1 b ) 
are never tight and can therefore be neglected. 

T describe a feasible vehicle schedule (and multicommodity flow vector respectively) 
an integer vector x G R' must satisfy the conditions from ( 1 ) : 

. The common lower and upper capacities ( 1 b ) both together define the equations 

Y 4 1, tGT. 
eG 

. The flow conservation constraints ( 1 c ) defining 

v ) - x v ) 

which detail read 

a) ))-xd 

b) d - x ( 

c) -x 

d) - x ) ) 

. The individual flow capacities ( 1 d ) defining 

5) 

and 

1, G ^ t r i U ^ " t r i rfGD. 

v G deV 

teT deV. 

teT dG 

dG 

deV. 

d G £ 
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The equalities 2.2), the socalled flow conditions, ensure tha each timetabled trip t is 
serviced xactly once. With respect to our multicommodity flow model the LP reads 

a) min 

A«-

subject to 

b) !' t e 

c) v ) ) - x v ) ) v E d E V 

d) de 

e) 1, e Alri U ^ r i d e 2 

f) integral 

The LP (2.7) is a special integer multicommodity minimumcost flow problem. Consid 
ering every depot d on its own, the solution vector x describes vehicle duties that depart 
from the depots start point, flow through the digraph {Vd,Ad), arrive at the depot end 
point, and return on the backward arc (,d) to the start point. It is easy to see that 
x is a circulation of the "commodity" d through (Vd, d). The difficulty is that the cir 
culations xd are connected by the flow conditions 2.2): Exactly one of the \t)\ parallel 
arcs ) must be used by some circulation x d E t). 

From a computational point of view, the ILP (2.7) includes many redundant constraints 
that can be eliminated by the following preprocessing steps: 

If we consider a fixed t E T and insert all flow conservation constraints from a) 
into the flow condition from we get new equivalent) flow conditions 

^ ) ) 1, t e 

which because x ) ) (ß 0 for all d ^ t) is equivalent to 

£ )) 1, 
v 

or 

1, T. 

Combining a) and b) for each fixed and each fixed t ields new 
equations 

V. 
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Substituting the flow conditions ( ) by the new ones 8) and the flow conser 
vations ( .3a) by ( 9 ) implies tha the variables % t+ (and thus the equations 
(2.3b)) can be eliminated. In graphtheoretical terms this variable elimination cor 
responds to a contraction of the two trip nodes t and to one single node, which 
we simply denote by Each arc of ^ " n , for all d E V will be removed; each arc 
incident to t gets the new head node t and analogousl each arc incident from 
gets the new tail node 

Consider for each fixed depot d E V the flow conservation constraints (2.3c) (2.3d) 
and (2.9): The lefthand side of this system describes a nodearc incidence matri 
of a networ flow problem. It is well known (see e.g., in Ahuja, Magnanti, and 
Orlin [1989], page ) that each equation of such a system is linearly dependen 
on all the others. W can therefore eliminate the equation (2.3d) for each d E V 
The variables xd_ d^ are also unnecessary and can be eliminated by inserting the 
equation c) into the appropriate bound constraints (25) of the backward arc 
(d,d) E Ad. As in the contraction described above for the timetabled trips, we 
contract the two depot nodes d and d to one new node d and remove the backward 
arc ) from the arc set A 

ith these variable eliminations we get reduced digraphs 

0) D:(V,A) 

and (V ^tn with a new arc set A : Tn a n d n e w n o d e s e t s 

d} and T. 

The contracted digraph (V, A) is displayed in Fig. . We rewrite ) and with 
respect to D as 

t)) 1, 

and 

12 t ) t ) V. 

The LP ) reduces with respect to D (V, A) to 

a) min 

Al 

subject to 

b) t) 1, 

c) t) t) 

d) d) 

e) 1, 
a
d
tTi 

f) ,1 
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g 

Figure ontracted digraph (V,A) 

A last simplification can be obtained from 11): 

t)) t) V. 

similar result holds for x((t)) , which is a linear combination of equations from 
.11) and (2.12). Thus the upper bound constraint from (2.6) is for each arc a i 

a linear combination of (2.11) and (2.12) plus an affine combination of —x ^ 0, i.e. the 
upper bounds are redundant and can be neglected. The final LP formulation reads: 

4a) 

subject to 

-
l 

4b) 

4c) 

d) 

4e) 

4f) 

t) 

t) 1, 

t) 

d)) 

(2.15) Remark. A feasible vector of 4) may be considered as the incidence vector 
of some feasible solution. 
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2.16) em The linear system 11) and ) is nonredundant. 

Proof: We assume that V : {1 , . . . , |D |} . Since all pullout and pullin trips exist per 
definition we can consider the submatrix that is defined by all columns of 

J{(*d) ^ u l l - ° u t | d mmt)} {{d,t) fUn } . 
e 

It is easy to check that, arranging the columns in the right way, this submatri is lower 
triangular and nonsingular which implies the full rank of the system • 

3 scussion of the ode 

Applied to vehicle scheduling problems from practice, the integer linear programming 
formulation 4) leads to LPs with up to 70 million integer variables and 125 thousand 
constraints. In this sections, we will distinguish our multicommodity flow formulation 
from some other models that have been presented in the literature. 

racticeoriented solution methods are in most cases based on a singlecommodity mini 
mumcost flow relaxation within a s c h d u l irst - cluster second (SFCS) approach 
see Chap. 8 or aduna and Paixäo [995] for a detailed description of this approach. This 
means that the multipledepot formulation is reduced to a singledepot relaxation. Un 
like multicommodity flow formulations however those singledepot relaxation approaches 
have two significant drawbacks: 

Depot groups and flow conservation: It is only possible to consider a single (depot 
independent) deadhead trip - we better call it link between two timetabled trips. Such 
a link £, t) is considered to be feasible with respect to the depot groups \£G(t)C\G(t) ^ 0 
But if depot groups must only be satisfied locally between two trips, the intersection of 
the depot groups of a generated vehicle schedule or block) may be empty. In other words 
the solution would be infeasible, see, e.g., Fig. . Splitting such infeasible block into its 
feasible parts can lead to suboptimal solutions. 

I • ^ • 

Figure nvald block. 

To avoid falling in such traps, the MDVSP should be modelled as a special multicom 
modity flow problem. Many research groups have considered the MDVSP as a multicom 
modity flow problem long before we started our investigations. The requirement of many 
realworld applications to consider differen depot groups however, was just realized in 
the last years, e.g., by Lamatsch [1988] or Forbes, Holt, and Watts [1994]. Obviously 
multicommodity flow formulations are natural for this ind of scheduling problems. This 
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is also reflected by the fact that we ndependently came up with the same LP model as 
Forbes olt and Watts 

Limited duration for deadhead trips: It is often the case that singledepot relax 
ations consider deadhead trips with a limited duration see, e.g., Daduna and Mojsilovic 
[1988] and Daduna, Mojsilovic, and Schütze [1993] It is therefore only possible to gen 
erate blocks that must be linked to vehicle schedules in a succeeding step. Based on 
heuristic ideas, the main objective is to use as many deadhead trips as possible and, sub 
ordinate, to minimize operational costs. Obviously, this objective function does indeed 
minimize the number of blocks if depot groups are handled correctly. At the same time, it 
is assumed that a block minimal solution provides also a minimal fleet solution. It can be 
shown, however, that this is not true in general, see Figs. 2.9 and 10. The blocks, which 
have been determined by this strategy are subdivided to the depots and depotwise linked 
to vehicle schedules. These links correspond to pull inpullout trips. It is clear that such 
a problem decomposition into two successive steps can lead to suboptimal solutions. 

a 7:05 -- 7:201 1^| d 7:50 -- 8:00 e 9:01 -- 9:20 

/ 
b 7:05 -- 7:20] >\ c 7:36 -- 7:46 \ f 9:01 -- 9:20 

Figure A singledepot instance using limited durations for deadhead trips) for which 
a block minimal solution does not provide a minimal fleet solution. 

Figure 2.9 displays such singledepot instance: The maximum allowed duration of a 
deadhead trip is set to 60 minutes such that only the displayed deadhead trips arrows) 
can be used. If we assume that the operational weight of ( , d) is significantly smaller 
than the weight of (c d), it is easy to check that the blocks including the trips {a, efj 
{6, c}, e}, and {/} define the unique block minimal solution with minimum operational 
weight. If we further assume tha it is not possible to use a pull inpullout trip to link "c" 
or "d" with "e" or "f, the block minimal solution requires four vehicle schedules. A fleet 
minimal solution, however needs three vehicle schedules (e.g. including the timetabled 
trips , e} {b / } , and {d}) but has five blocks including the timetabled trips  

d} e} and /}) . 

d 10:40 -- 11:10 

b 8:15 -- 9:051" " ^ c 9:55 -- 10:45 

a 7:50 -- 8:20 

Figure A multipledepot instance (using limited durations for deadhead trips) for 
which a block minimal solution does not provide minimal fleet solution. 

Figure 2.10 displays a multipledepot nstance with two depots for which the minimal 
fleet solution cannot be obtained with a block minimal solution: The first depot can 
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service trips b " c , and " d , and the second depot can servce " a , b , and "c". Two 
timetabled trips may be linked by a pull inpullout trip if the depot groups are satisfied 
and if the two timetabled trips do not overlap. The maximum allowed duration of a dead 
head trip is set to 60 minutes such that for both depots just the deadhead trip between 
"b" and "c" is possible. The block minimal number is three ("d" is assigned to the first 
depot, "a is assigned to the second depot, and "b>c" is assigned either to the first or 
to the second depot) and requires three vehicles, but two vehicles are optimal c} and 

d}) if each timetabled trip defines its own block. 

We have shown in Figs. 9 and 2.10 that it is insufficient to generate a minimal fleet 
solution in such a two step approach. Linking blocks optimally and selecting userdefined 
unloaded trips must be done simultaneously. Pul l inpul lout trips translate the decision 
of linking blocks into the terminology of deadhead trips. Therefore, using pullinpull 
out trips makes it possible to generate a minimal fleet solution with minimum operational 
costs in one step. 

Each pull inpullout trip stands for a pullin trip followed by a pull-out trip. The set of all 
pullinpull-out trips represents all feasible possibilities to link blocks to vehicle schedules. 
If we enlarge the userdefined unloaded trips by the pull inpullout trips the number 
of necessary vehicles is nothing but the number of used pullout trips (or, equivalently 
pullin trips). Vice versa if we replace each pull inpullout trip of vehicle schedule by 
the corresponding pullin and pullout trip, it is always possible to assign all resulting 
blocks of this vehicle schedule to a single vehicle. 

The concept of pull inpullout trips was first described by Bokinge and Hasselström 
[1980] and Desrochers Desrosiers and Soumis [1985]. Since the number of pullinpull 
out trips grows in the order of # £ x ( # T ) , they claimed that numerical investigations 
with pull inpullout trips are unacceptable for the computers they used. Such a prob 
lem formulation needed too much main memory at this time. Therefore, Bokinge and 

asselström 1980] and Desrochers, Desrosiers, and Soumis 1985] give an alternative for 
mulation for the singledepot case without pull inpullout trips. Lamatsch [1988,1992 
extends this formulation to the multipledepot case. Compared to our formulation without 
pull inpullout trips, his formulation results in a mathematical model with Ö{#V x # T ) 
additional flow conservation constraints and 0(#T> x # T ) additional variables. At first 
glance, such a problem formulation with a linear instead of a quadratic number of vari 
ables seems to be advantageous. Nevertheless, we have decided in favour of the problem 
formulation with pull inpullout trips resulting in a mathematical model with a quadratic 
number of variables. The reasons for our decision are: 

For the alternative formulation, it is not obvious to tell the beginning of a simple 
block from the beginning of a new vehicle schedule, i.e., it is impossible to count 
the number of necessary vehicles easily. In our formulation, each used pullout trip 
defines new vehicle schedule . e. a further vehicle must be provided. 

. The model with pull inpullout trips is more flexible since, from an operational 
poin of view the weight of a pull inpullout trip can differ from the sum of the 
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weights of its pul and pu lou t trip. 

Realworld problems with one depot can be solved efficiently with the computer 
generation of our days, even if we use million pull inpullout trips. Truly large 
scale instances, which are solved as subproblems within our solution process for 
MDVSPs, with up to 5 thousand timetabled trips and 7 million unloaded trips 
can be optimally solved within some minutes see hap. 5) 

4. Although the use of pull inpullout trips increases the problem size enormously 
especially the number of variables of an integer linear programming formulation 
the number of constraints remains constant. This does not hold for the formulation 
of Lamatsch, whose ILP includes (#D x T) more flow conservation constraints. 
For our largest problem instance, however, this may induce about 00 thousand 
flow conservation constraints that must be added to the 125 thousand original flow 
conditions and flow conservations. Currently there is no LP solver available that 
could solve systems of this scale even with a reduced variable set. 

We have seen that arcoriented multicommodity flow formulations and their integer pro 
gramming analogues are proper models for the MDVSP. With such formulations, it is 
possible to consider most practical requirements. Only restrictions on the length or the 
durations of blocks or vehicle schedules however cannot be handled efficiently with such 
arcoriented formulations. ven the S D S P is jVPhard if such restrictions must be 
considered, see, e.g., Freling and Paixäo 995]. For those problems, we suggest to use 
pathoriented set partitioning models. We will differentiate arcoriented models from 
pathoriented models in the next chapter and describe a set partitioning approach for the 

SP in hap. 11 
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o m e x t y of t h M S P 

The complexity of an MDVSP instance depends on \V\. The singledepot case {\V\ 
with up to several thousand trips can be solved efficiently with polynomial time minimum 
cost flow algorithms. For the other cases (\V\ ^ 2), even the uncapacitated MDVSP is 
A/Phard. Bertossi arraresi, and Gallo 987] proved that the multicommodity matching 
relaxation of the MDVSP is already A/Phard for problems with two depots, no depot 
capacities and no depot groups. Their proof is based on a special satisfiability problem 
the NE 3SAT with unnegated literals. 

We will give a new proof for their result. This new proof is based on our multicommodity 
flow formulation. n addition, we show that the MDVSP is A P h a r d in the strong sense. 
We will also prove the new result tha the feasibility version of the SP with depot 
capacities is already complete. 

From now on MDVSP" always refers to the multipledepot case \V\ ^ 2 whereas the 
Single-Depot Vehicle Scheduling Problem (SDVSP) refers to the singledepot case \V\ 1 
In the following of this thesis we will consider the SP and xplicitl mention it when 
we consider the SP 

For our complexity investigations in this chapter we will use the terminology introduced 
in Garey and Johnson 97 

he n g e p o t C 

onsider a SDVSP assuming V := {d} and G(t) for all T- Figure 1 illustrates 
single-depot case digraph D' = (V'A'). 

For the SDVSP we can neglect the index d. The ILP (2.7) of the "singlecommodity" flow 
model with a detailed list of its flow conservations (23) reads: 

(3.1a) min ^ 
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subject to 

3.1 V f T 

3.1c) )) - V f T 
3.1 V f T 

3.1e) (d)) - { d 

3.1 (d )) 

3-l (d 

3.1h VaA 

3.1i) intej p-al 

As before we apply to 3.1) some preprocessing steps to get a more concise IL formu 
lation: 

• One of the flow conservations ( 3 . 1 3 . 1 f ) is redundant; we eliminate (3.1 

• Inserting 3.1b) into 3 .1 ) and 3.I yields new equations 

3. S+ +1 Vt 

3. - 1 Vt 

and we can eliminate the equations and variables of (3.1b). Figure 3. shows the 
transformed digraph for all these variable eliminations. 

Each inequality xa ^ 1 is a linear combination of some equation (3 . ) or (3.3) 
respectively plus an affine combination of — . We can neglect them 

t is easy to check that the lefthand side of the remaining equation system (3.1 f 
( 3 . , and (3 . ) describes a nonredundant nodearc incidence matrix of a network 
flow problem. Since all bounds and the righthand side are integral the integrality 
condition (3.1 i) is automatically satisfied for each basic solution. 

The reduced IL 3.1) reads 

3.4a min 2 ^ 
~tri 

subject to 

3.4b (5+)) 7", 
3.4c) T, 
3.4 (d 

3.4e {d 

3.4 u-tTip 
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Figure 3.1: SDVSP digraph (V'A' with c} 

Start point is a 
transshipment 
node 

First stops are 
demand nodes 

Last stops are 
supply nodes 

End point is a 
transshipment 

node 

Figure 3. DVS digraph fter variable elimination 
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which s the L formulation of a minimumcost flow problem. The difference to the 
MDVSP is that the flow conditions (3.1b) in combination with the flow conservations 
(3.1c) and (3.Id) can be transformed to real node demands and supplies such that (3.1 
reduces to a polynomially solvable minimumcost flow problem. 

(3.5) T h e m The S S P can be solved in polynomial time. 

Various polynomial and pseudopolnomial time solution approaches for minimumcost 
flow problems can be found, e.g., in huja Magnanti, and Orlin [1993]. We use net 
work simplex algorithm to solve the S S P . The implementation of this network simple 
algorithm is described in Chap. 5. 

3. The u l p l D e p o t 

To show the A/'Phardness of the MDVSP, we have to show the jVPcompleteness of its 
decision probem, which is defined as follows: Given an instance (2.14) of the MDVSP 
and a number L e Q; is there a feasible solution that satisfies all conditions of ( 1 
and has an objective value not larger than LI 

(3.6) Theorem The decision is A/'Pcomplete in the strong sense. 

of: See page 35. • 

(3.7) Corollary There exists no pseudopolnomial time algorithm for the SP 
unless V = AfV. 

of: arey and Johnson [1979] hap. page 95. • 

The answer to the question whether there exists polnomial approximation scheme for 
the DVSP is most probably "no": 

(3.8) Theorem The ^approximation DVSP is jVPhard. 

of: See page 39. • 

(3.9) Remark The objective function in the proof of Theorem 3.8 does not sat 
isfy the triangle inequalities. It is still open whether there exists a polynomial time 
^approximation algorithm for the MDVSP when the triangle inequalities are satisfied. 
For practical applications, however, we do not believe that this has any relevance since 
the arc costs are seldom distances and usually do not satisfy the triangle inequalities. 

Our above complexity investigations are focused on uncapacitated problem instances. 
For capacitated instances, however, it is not only AfVhard to optimize but already 
A/'Pcomplete to find a feasible solution. 
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3.10 T h e o e m The feasibility problem f the capacitated DVS is AfVcomplete. 

of: See page • 

(3.11) Remark. Complexity theory tells us that it is A/'Phard to find a feasible solution 
if depot capacities are considered. However, it turned out that depot capacities are not 
always hard constraints and can thus sometimes be violated since vehicles can often be 
shifted from one garage (or depot) to another. 

In the following we give the proofs of the last three theorems. To prove the complexity 
results for the DVSP we use the ONE-IN-THREE 3SAT with unnegated literals 
which we briefly write O 3 S A T - U L . This special satisfiability problem is as follows 
Given two integer numbers ^ 3 and p ^ , a set il { u i . . . , uq} of Boolean variables 
and a collection C {<£i.. . , <ZP} of clauses over il such that each clause C e C has | 
and that no £ contains a negated literal; is there a truth assignment tr : i l i—> {T, F}, T 
stands for "True" and stands for False such that each clause C e C has exactly one 
true literal? The OIT-3SA-U is nown to be A/'Pcomplete in the strong sense (see 

arey and Johnson [1979]). 

Proof of T o r e m 3.6 We show that the theorem is already true for uncapacitated 
problems with two depots (\V\ 2) and identical depot groups G = V (the lower and 
the upper capacities are set to and o respectively). Given such a two depot instance 
of the MDVSP and a number e Q. Obviously, the decision problem of the MDVSP 
is in MV since given a solution x, a nondeterministic algorithm can check all conditions 
of (2.14), compute the objective value cTx and compare it with the given bound L in 
polynomial time. transform the OIT3SAT-UL to the decision problem of the MDVSP. 
Let q {ui and C {<£i <£p make up an arbitrary instance 
of the -U 

The construction of an MDVSP instance for the T 3 S - U L instance will be based on 
a two depot problem: The first depot is denoted by true (T) and the second depot by 
false (F), i.e., V {T,F}. Let u0 denote an artificial Boolean variable. Every Boolean 
variable and each literal of each clause define a timetabled trip .e. 

TT % {u0 (J 

The definition of the deadhead trips is slightly complicated First we introduce some 
help sets 

• G = i 

• Q for all i p} and 

• %j {U {ce lf= is a literal of for all j q 
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et denote an order on Hj such that for } C %f 

= 3 m < n : Qm A Qn 

"-</ is welldefined because each Hj contains at most one element from each . y E Hj 
is called the successor "succ(x)" of x E Hj if x <j y and if there exists no z Hj such 
that z - y. The arc sets of the deadhead trips are set to 

4" tr i iM U 
j=2 

and 

Ap^ ( J t s u c c ) ) ) Y 
ten 

The lower bounds AT and p re set to 0, the pper b o n d s K and re et to oo. The  
of the following acs re et to zero: 

all d e f d dead-head trip "tri and 4F"tn 

the p l l t trip ({ {u0})) C ull-° and ({ ) C ^ u l l -° 

the p u l l n trip ) - }) C ^1Un and 
U ? { m a x ^ / H J }) C A r ^ 

The oss of all the other arcs are set to 1 Finally, we set := 0. The arcs, whi 
an nly be used by f e i b l e o l t i o atifying cTx ^ 0 = L, re thoe who 
o e f i e re 0 i e 

3.1 if (cx = 0 and ) then c = 0. 

It i sy to see that the bove t r a n f o r t i o n can be perfor n ö(p + q) time 

F iu re 3.3 shows the d p h D' = ( 1) of a transforme I T S A U L problem 
stance with il := ulU2U3114} and <£ {{u!,U2u3 {u iu ,U4 O l y the cs 

atifying ca = 0 are splaye The t s k to fnd a t r t h ssgn tr 1— 
satisfying (U1VU2U3) (U1VU2VU4) 

To prove that the given t ranformt io is ndeed a tranformation fro O I T S A L to 
MDVSP, we have to show th an i a n e of 3 S A L is s t i b l e if and ly if 
the transformed proble f e i b l e 

Assume that we know a truth s sgnmnt tifying the claus of . We will contruct a 
feaible scheduling whoe i e vetor f e ib le . For e assgn to f e we 
def a n v e h i l e s c h e l e 

31 
t succ t E Hj t 7 ax^'Hj and ax^'H 
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re 33: DVSP ph D' = ') of SA 

hi over ll t i e t b l e trip of tr(u ^ For ssgn to t r e w ef 

(314 and 

Ths over ll by F-vehle s c d u l e ncovered) n of QQ The no Uo and th 
" t r e " literal n e of each us grou Qi, i ,p, are till uncovered. et c- G Qi 
i = p} denote the u o v e r e liter . To plete the sche l ing , we 

ef vehile s c h e l e 

(315) u0 uo a n d ) . 

Obiously, th r u c d ution es o l y d e n d dead-head ips and ly loade 
trips with zero c o t c o e f i e s . It is e a y to hec that ll conditions of (2.14) re satisfie 
and that the objective valu oe not exceed L = 0. F ig re 3.4 how the tranformation 
of two fesible t r t h assign for the e x a p l e of Fig 33; o l cs with 1 for 
all a G iTi re played. 

Converely er f e i b l e o l t io atifying c = 0: 

O Si mus follow (312), a f e i b l e olution can ly use the l l -o t trip ( 
U u0}) ^ u l l - o and F - , F) c ^ - ° u t . Since 5"u0) = ( T u 0 ) and 
) = for ll t G e c h t i e t b l e trip t G Q u0 ust be 
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u 
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+ 
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s e r v d xa q + 
s c h e l e 

© articulr Uo can ly be servic by a vehicle scheule of T. Applying the flow 
conervt io contr (212), thi T-vehile s c h e l e mus also service exactly one 
literal no of each Q^ { l , . . } , and s d e f e d like (315). By the way, ll 
these litera nodes servic by thi vehile s c h e l e will b e e the t r e liter 
of the t r t h s s g n t 

© S D ilip = u , T ) , for all j G { l } , i p l i e that the pe of ll 
r e m n g Tveh i l e s c h e l e li (314) 

0 All timetbled trip whi are ot overed by one of the bove dscribe -vehile 
s c h e l e must be servic by e Fveh i le schedule. ch et , i G 1 , . . . ,p} 

es xactly two suc es. S ice A{) = 0, for all i 0 £>}, there 
exis t least two liter nod (fro (?) whi are both covere b y v e h i l e 
s c h e l e . Consider any liter node t G Uf= that is serviced by F-vehicle 
schedule: the flow condition (2.11), the flow conservatio (212) and © llow o l y 
F-vehile scheule li (313), whereas j ust be cho such that t EHj 

© We can c o c d e fro 0 that for a Boolean varible \Xj either ll their %j 
toether build the nod of some Fvehicle s c h e l e or ever ode in %j is ode 
of ome Tvehicle s c h e l e , and we an a o c o n e fro © that there e 
least one Tvehicle s c h e l e like 31 scribe © 

@ The fact that all v r i b l e , j } re ervi follow fro the flow 
nditio 11) 

The poi © @ ply t h t the t r t h ssgn 

(3 1 t r ) - i if ) = < -
[ ) - \ if f'-™ 

for l H . . , } i satisfiable for the give T S A proble ance. 

The A/'P-cmpleteness proof i done the A / ' P o m p l e t e s s n the trong s e e imm 
ately follow from the f a t that the give transforatio e r t e l the mber 
and 1 (ee Garey and Johnso [1979], C h p . 4). • 

Proo Theorem 3.8 For an abitrary problem i s t a n e of the MDVSP, let Sop and 
c ( 5 ) denote e opti scheduling and it objective value, repetively. Given an 
e > 0 and a polyomial time algorithm A tha enerates for every instance of the M V S P 
a scheduling Sj_ tifying c(S^) ^ (1 + e)(St). Similarly to the proof of Theorem 3.6, 
we transfor the T - 3 S A U L to the decision problem of the ^ a p p r o t i o n MDVSP. 
C o e r so > 0. In ifference to the proof of Theore 3 L i set to 1 + e 
e h c's cost coeficient that w s set to 1 is icreased by s + 5: and cJT+ u, s set 
to 1 Everything e le remins unchanged We leave it to the reader to prove t h t an 

3SA a n e is s a t i b l e if and ly if the tranfor proble f e i b l e 
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s l u t satisfying cTx = 1 ^ 1 + e and t a t an IT-3SAT-U i n a n e is u s f i a b 
if and only if the objetive of any f e i b l e o l t io for the tranfor proble tifie 
CTX > 1 + £ • 

Proof of Theorem 3.10 Thi proof is similar to the proof of Theorem 3.6. The theorem 
is already true for \V\ = 2 and T Give such a ac i t te instance of the MDVSP. 
The feibi l i ty proble of the pacit ted SP i in HV nce the additional work to 
the d i o proble to he the epot itie whi an be e i poly 
time 

We transfor the 3SAT- to the c a i t t e d fe ib i l i t proble of the M V S P . 
Let q ^ 3, p ^ 1, it = ui } and C = €p an b i t r ry i a n 
of the O I T S A T U L . 

The epot re } the t i e t b l e trip re 

u0 üi ü (J 

({üi,. Uqs re mm and re opie of the u o l ) 
and 7T 7F 

For the e f i t i o of the ad-head trip we firt i t r o u c e help et 

• g = it, 

• G for ll i {, } 

• G J and 
%j Uf= s a l i ter l of U } for ll } 

Let "- ote an o r e r o Hj such that for } C %j 

y = 3 m < n : Gm A Qn 

%j is calle the successor s u c c ) " of x E %j if x -<j y and if there exi o ele  
%j such th z - y The c set of the ad-head trip re et to 

4" tr i u0 U 

and 

U C * « ^ 

r both depot the lower bounds A and re et to 2 and the er b n d s T and 
Kp are set to 1 respectively. All c c t s are set to zero. It i y to ee that the 
bove t r a n f o r t i o an be perfor ( + q) t i e 
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g r e s w e am O I - 3 S U o m an 3 the Boolean 
variable re {111,11113114 and the lauses are ux,U2,113 { u i U 4 repetively 
The t s k to find a t r t h ssgn tr : it 1— tifying U 1 V U 3 ui U4) 

+ 

+ 

re 35: C i t t e SP ph D' = (Ä) of SA 

Assum tha we know a tru s sgnmnt fyng the claus . We will c o n u c t a 
feaible scheduling whoe i e vetor f e ib le . For e assgn to f e we 

ef an vehile s c h e l e 

(317) 
t succ t E %j t ^ ax^/Hj and &x^Tij 

s cover all t i m e t l e trip of tr(u ^ F° r ssgn to t r e ef 
vehile s c h e l e 

(318 a n d )• 

s cover all (by F-vehcle s c l e s overe n o s of and Qp+\. Let c[ Q 
denote the still ncovere liter n e fro each Q, for ll i . . . ,p}, (o t e : exat l 
two nodes of each are overed by some vehile s c h e l e ) over the u0 

and all the we ef vehile s c h e l e 

(319 
u0 m and 
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Until ow, ll n d e s exc {Hi... ,ü re o v e d . Sinc we d e e d exactly q + 
vehicle schedules, there i t o t l free c a p i t of q — 3 vehicle scheules left for both 

epot toether. For e ü~ I i } we d e f e e i t h e r v e h i l e schedle 

3 n and fr 
or a n v e h i l e s c h e l e 

3 ) a n d ü 

depending o the free depot c a c i t i e s . F iu re 3 shows the tranformatio of two f e i b l e 
truth assgn for the e x a p l e of Fi 3 ly cs with 1 for ll t n 

are diplaye 

Covere ly er f e i b l e o l t io 

© Sinc 6 ) = ( F + ) for all t G ({u0 Q U ü üg_3}), x describe 
at l e t \{uo} U Go U {üi, . . u ^ = 1 + q + ( 3) = vehicle schedule 
This number of vehile schedule is equal to the max c p a i t y of both epots 
together. Therefore e p l l u t trip s us to ervi t i e t b l e d trip if 
and o l y if t G ({u0} U Q0 U {üi, ü g } ) 

© The trip ode u must be service with e Tveh i l e schedle because © and 
the flow nditio 11) imply th '0) = u0) = 0 and, therefore 

x(Su'0) n j - t r i ) = x ) = 0 or (u'0) n ^T t r ip) = 1 T r n g thi vehicle 
schedule for and t r n g it b a c k d with respect to the flow conditio (2.11 
and the flow eration 12) the pe of the Tvehicle s c h e l e is like (3.19) 

(D For lH e ü . . . g _ } : 6() ^T t r i p U A?tri) = 0. Thi plie t h t the vehile 
s c h e l e that s e r v i s t looks lik ( 3 ) or (321) 

© Conder the vehile schedle of ome timetabled trip e G i- tracing it 
forward and with respet to ©, to the flow cnsera t ion (2.12), and to 
S ) = u T ~ ( u ) results either in a T-vehicle schedule like (318) or i 
an Fvehi le schedule li 317); the re p r e e l y the vehile s c h e l e th 
servi ll n fro 

® Fro © follows th f e i b l e ol t ion x must ma use of the maxima epot 
c a c i t i e which i q — 1 in both cases. First we can lude that there exists 
l e t one Tveh i l e schedule of t p e (318) because on T-vehile schedule is used 
as escribed © and there exist at m o t q — 3 Tvehicle schedules of t p e (3.18) 
Second, there xist at lea t two Fvehi le schedle of type (317) becuse Uo i 
ervice fro epot and there e t q vehile s c h e l e of t p e 
3.2) 

© Wheever a ( l i t e r ) timetable trip no c G JiLi *̂ ^s s e r v i c e d from a T-vehile 
s c h e l e , the flow onervatio ( 2 1 ) implie that thi is the T-vehicle s c h e l e 
fro © It i ow fro © th for , i p} exatly two 
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± u 3 ; 

u' 

Gp 
fp+1 

T 

re f e i b l e t r t h ssgn fo th an f F 
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c a n n t be servied b his vehicle s c l e . T nodes an ice 
by an Fvehi le schedle But for the same re for the thi 
F-vehile scheule an o l y be of pe (317) 

© The fact that all v r i b l e } re ervi follow fro the flow 
nditio 11) 

Poi © © ply t h t the t r t h ssgn 

) • if { *0™ 

for lH } is s t i b l e for the ive SA proble a n e • 



apter  

terature vervew 

th ap an ng DVS and 
varian it 

Arcoriente multicommdity flow ( s r e n t e d in Chap 2) and path-oriente antzig-
Wolfe (DW set partitioning formulatios (see Chap. 11 are usually used to m d e l the 
MDVSP. pplied to vehicle schedling problems from practice their orresponding ILP 
f o r l a t i o n s provide ever illio n teer v r i b l e . Solving such l ILP reqire 
co lmn g e r t i o t e i q e s 

For the arc-oriented moe l , column generation an be een a an pl i i t r i n g tehniqu 
(see Schrijver [1989]): one works n retricted subet of tive acs tha re nerate 
and eliminated n a dnamic roess. For the DW mposition, column e r t io 
usully lead to ricing proble in the for of contra shortest path problems an 
researchers a t o a t i a l l y assocate the term o l m n g e e r a t i o " with the solution pro 
cess u s d n a DW d c o p o s i t i o n (e ee S o m [1997). To d i t i n g s h this use of the 
term "colum generatio" from tho a g e r a l p r i n g tehnique i the of 
Schriver, DW colmn g e r a t i o n also called delayed column generation as r o o s 
Chväal [1980]. T avoid msunder tandng we will use in this paper the ter ol 

neratio a g e r l LP r i n g t e c i q e i the se of Shriver. 

Dantzig-Wolfe decomposition models are n e e d for p r o b l e s that involve path con
s t ra i ts . They apply not only to vehicle schedling r o b l e s , but a to application 
of imilar favour eg . , to rew and airline scheduling. For a survey o set partitioning 
a p p r o h e s to suc roblems we refer the reader to Derosiers, D m a s , Solomon, and 
Sou [1995], B r n r t Hane, and Van [199] B a r t o h n , N e u s e r and 
Van [1997] and So [1997] 

Direct approaches to the multicommodity flow formulation can be used if all con
s t r n t s can be formulated solely in terms of the rcs of the etwor. Thi the e for 
the MDVSP ere here 

All the m e l s presete in the literature us natural flow formulatio with their (elf 
sugg t ing t e e r li r o m m n g a n a l o u s . D e o t ro and d o t apaitie re 
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of cours natural bu hav often t b c o n s e r the l i teratre a b u t he MDVSP 
Condition of t hee t e have ofte been ignored to smplify the used notation to receive 
nice results for pec roble ases, or were not required by the re problem that ha 
bee invet igate . I m t , the only ifference between the model pblished by 

ow and ur m o e l r e t e Chap. 2 i whether nditio of this knd ave bee 
sidere or ot. 

n the following we ive a colletion of re ferees to c o m t e r a i e d anning system tha 
re employe in practice. We continue with survey o models and olution approche 

in vehile ro t ing and sche l ing . Afterw we ive an overview the SDVSP and 
the DVSP 

4.1 omputer-Aided planning system 

Fro a p c t i oint of view, there re ever bliatio t h t r e o r t o xperie 
with c o m t e r d pannng te lik 

N, ee C h m b e r l n and Wre [19881992 

BERTA ( " t R i e b e i l a n u n g und -Auswertung of the Berlier Verkehrbe
triebe ( B G ) and VU G H , Berli ee Löbel and S t r b e [199 and Beker 
Roß and hemzy [1996; 

H A S T S , ee Bl and Rouss [1988] and mer and [1992] 

HOT II ( " H e r O t i i z a t i o Technique of the H b u r g e r Hochbahn AG 
and anseCo GmbH, H m b ee Hofstad [1981] Mojsilovic [1983], Daduna 
and Mojsilovic [1988], Daduna, Mojsilovi and chütze [1993], Schütze and Völker 
[1995] and Petzold and hüze [1995] 

4.2 om Surveys 

din and Gol 

B o n and Golden [1981] give "Classifiatio Vehile Rot ing and Shedl ing" They 
d e f e the ter vehicle route as an orere sequnce of pckup or elivery o i t s travers 
by a vehicle s r t i n g and ending at a ot. A vehile schedule i a equence of picku 
or delivery poin together with an assoiated set of rrival and d p a t u r e t ime, whi  

vehile travers in the gnate order t the ified ti When arrival tim 
at n or arcs are fixe advance, thi s called a schedulin problem. Problem 
with unspecified arrivl times re referre to s straightforward routing r o b l e . Whe 
time windows or r e e n e relationshi ex such th routing and scheduling function 
nee to be perfor the thor view suc roble s c b i vehile ro t ing and 
scheuling roble 
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B o n and de uss seve a r i a t s o ve r o u n g and s h e n g problem 
and provid a taxonomy for these problem, e assifcation n a h o n e o u s or 
h e t e r o e o u s vehicle fleet, o e or more than o pot, tim r e t r i t i o n paticular 
acs or odes, etc. This axonomy i followe by a classificatio of olutio trateies for 
ro t ing p r o b l e , eg . , cluster fir r o t e second, route first custer second saving 
approaches, etc. p to exact r o u r e Finally hort scri t io of three bi 
routing and s c h e l i n g problem give 

The interesting part of Bodin and Golen, fro ur point of view, is the hierarhy as 
ification of vehicle scheuling problem: They tart with ple versio of an SDVSP 

having the task to minimize the fleet size (or capital ly. Tho roblems are 
solved using flow lgorithms. If, in addition, operationa s must be nsidere they 
first olve the smple SDVSP, which utes the um fleet size x the m i i m 
fleet ize v a e , and inimize the tot erationa sts for ll miniml fleet olutio 
Thi problem s solved usng a m n i m t flow orith We will show n Chap 
how this two age approach can be c o s e d to n g l e a g e approach. The nex 
traightforwar xtension of the SDVSP to allow mltiple pots, whih the thor 

solve either by a cluster fir - s c h e l e nd or by a schedule firs cluster cond 
approch. Depot grops re ot ere t the thor scuss r e t r i t i o path 
length t i e window et 

s s d , din, an ol 

The survey of Assad, Ball Bodin and Golden [1983] give c o p r e h e i v e overview abo 
vehicle ro t ing and schedling approahes. The methods presnte n Bodin and Golde 
[1981] ee to be a compact versio of the techniques of Assad et [1983]. Both rt i les 
give t a x o m y followed by some ar te r i s t ics of routing, scheduling and m i x r e s of 
both p rob les . Although Assad et l devote a chapter to e a h of routing scheuling 
and combined routing and s c h e l i n g proble we will n t r t e o summry o their 
survey on schedling problem 

The thor f o r a t e SDVSP 

4 ^ 
a £ j4u-tri 

subjet to 

4.1b (5+ i e 

4. (6+)-(6- i e 

4 G i t r i 

whih can be tranformed to 34) withou pot apacitie and with an e l i n a t e d ^-,d+ 
varible. The weights of the arcs are efined by capi t l costs (for m i z a t i o n of the 
fleet ize) and er t ing . They scribe two ol t ion approche the 
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of B and G o e n [1981], he lw c s i e r ither capi t l costs peratng cost 
(with a fleet size and apply wo stage a p p r o h to optimize suc a proble They 
a lo p r e t ngle ag approa a we will p r e n t i Chap. 5 

Althoug the a tho r s are re of the roblem with limited d a t i o n s of ad-head tri 
(see the model discussion in Chap. 23) they do not use tri like o l l n - p l l 
tri beause there are ( ( t i e t b l e t r i ) ) many of t h e . 

SDVSP with path restrictions are own to be J\fVard eg . , ee Freling and Paixä 
[1995). Assad et l. ive an ILP formuation for suc roble b t d ot scribe how 
suc problems can be olve e f ien t ly 

MDVSPs are f o r m t e d as multicmmodity flow proble with the following LP for 
ation which i eq iv l en t to (213 without d o t ro 

(4 mJ 
ev tri 

subjet to 

(42b x(5+(t)) 

(4 (S(t)) Ant)) Vd 

(4 (5)) V d 

(42e VaG A-tT[p Vd 

( 4 1 } 

Assad et l. describe heuristics like oncurre s c h e l e r an interchang method ila 
to the opt heuristi for travelling s a l e a n rob le s ) uster fir - schedle second 

ethod, and s c h e l e fir uster nd etho b xa etho to olve the 
DVSP. 

an o. 

rrare and Gallo [1984] give review o solving vehicle and rew scheduling problem 
in publi mass t rani t . They fo rma te the SDVSP an a s s i g n t problem, whih can 
be olved by ssignment or ener p u r e imumcot flow orithms and dscuss 
the iffere ssibilitie how the cost f t i o an be u s d to ize apit or 
opertional sts or ure of both 

The DVSP is c d e r e d withou depot grou and without lower ot apacities. It  
f o r a t e d as a l t immodi ty flow problem b e d o the ssgn el for the 

n g l e o t e. I otatio their f o r a t i o read 

(4 ^ $ > 
eT A'j 
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4 E 
ev 

4. (t d e 

4.3d )) t e d e 

4.3e d e 

4.3f e ^ t r i p V d e 

(4 {0, e Al
d

tT[p Vd 

Thi formulation s s m i l r to o r lticommoity flow formution ( 2 7 . The thor 
propose the two heuritics cluster first - schedule s o n d and schedle firt - luster nd 
and give a note on a a g a n g a n relaxation a p p r o h to olve the DVSP 

ro al 

Deroiers, Dumas Solomn, and Somis [1995 give suvey on various vehicle s c h e l i n g 
and ro t ing proble we just summarize their " F i d c h e l e Problems" 

Their MDVSP formulation does either n s e r depot g rops or lower bounds for the 
ot apacitie. The f o r a t i o fro Ribeiro and So [1994] and read 

ev ae^
l-tri 

subjet to 

4 

4 (t T u V d 

4 V d 

4 1} 

This roblem formuation very cloe to of ssad et l and to f o r t i o 
214 For the n g l e o t e (4 read 

4 j 
a £ j u - t r i 

subjet to 

4.5b x ( ) ) 

4. x(6)) x(5-)) 0, T U 

4.5d x(6)) K, 

4 5 e 0. 
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o apply ome m i n i m u m t flo a i t o ( 5 , the uthor anform th proble 
nto an eqivalent LP f o r l a t i o of n i u m t flow roble similrly to (31). 

n addition to the g e r l m i i m u c o t flow format ion the author discuss how the 
SDVSP can be olved usng a t r anpor t t ion or an assgnment formulatio. They 
mention t h t the s s g n e n t fo rmat io annot handle ot apaitie 

The uthors are awre of the problem with limited durations of ad-head trips. To 
avoid the use of a quadatic number of vriables they give refereces to the rt i les of 
Bokinge and Hasselström [1980] Derocher, Desroier and Soumis [1985] and masch 
[1988,1992] who ive a proble formut io with li ber of v r i b l e We have 
discuss suc approaches in C a p 2 

Desrosier et al. give a list of aticles describing some h e r i t i c algorithm for the MDVSP. 
The branchand-bond approch of Carpaneto, DellAmico, Fischetti and Toth [1989] 
and the Lagrangan relaxatio approach of masch [19881992] re shortly escribed 
A very det i le scriptio give for the anzig-Wolfe itio appro of 
Ribeiro and So [1994] 

an aixäo. 

The problem assifation and the SDVSP scription in a d n a and Paixäo [1995] 
closely follow ssad, Ball Bodi and Goldn [1983] with m additional e x t e i o 
to the SDVSP a d n a and xä ive illustrtive scrit io of 

ssgn a p p r o h e e.g ilovi [1983] 

iassign approches ( e , Bran and xä 19871988)) 

hing a p p r o h e ( e . , Bertossi, Carrresi, and llo [1987]) 

transportation approche e a v i , Schweitzer and Shlifer [1978] and avi 
and Shlifer [1978]) 

and t flow approche (e Carr re and llo [1984] 

The thor f o r a t e the DVSP a a ltiommodity flow problem, but d ot con
s i e r depot group So practial reqirement however as mult i le vehicle t y s , path 
restriction t i e t a b l e ensitivity analysis (e.g ee der and Ster [1981] Fuc [1992] 
or D a d n a ilovi and hütze [1993] et re scuss p a t e l y 

4.3 The Single Depot ase 

onsider the s i n g d e t cas o be i m p t a n t i n e SDVSP tanc occ not o 
as re vehile s c h e l i n g p r o b l e . They have to be olved r e t e l s s u r o b l e 
of 
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us first ed nd a p p c h e 

s c h e l e firt uster ecnd approche  

s c h e l e uster rescheule approche 

a g a n g a n relaxatio of DVSP resulting SDVSP i n a n and 

t imetble sensitivity analysis, i e hifting som timetabled trips by few m t e 
may i p r o v e the vehicle schedle (see Shütze and Völker [1995], Daduna M 

ilovic, and Schütze [1993], Daduna and ojilovi [1988] ilovi [1983], Hof 
ad [1981] and B n g and sseltrö [1980] 

Löbel [1996a] escribe a network s p l e x i m l e e n t t i o n in C which solve very l a g 
real-world SDVSP ance from practice efficiently With this c o e , it is possible to 
olve roblem anc with up to 50 thousand of n d e and 70 illio of unload trips 

see lso hap. 5 and C a p . 12. Thi etwork simple code, calle CF, is a v i l b l e 
for academc use free of e vi t URL h t t / / w w w . z i b e / O t i i z a t i o ee 
Löbel [199b]. 

For aademic use, there re o other eficie des ilable free of ch a , for 
a n e , the relaxation code AX4 of ert and ng [1994] or the scling 
e C 2 of Golberg [1992] 

Futher aticle reort ing on the SDVSP are Fuc [1992], Bran and Paixä [1987,1988] 
Derohers , Desrosiers, and Somis [1985] and B n g e and Hasseltröm [1980] The 
c o u t a t i o n a l investigations of all thes publicatio re on r t h e r small instane and 
b e e therefore obolete. Nevertheless the curre c soltion approche re till 
the e 

he ultiple epot C s e 

The l i t of bliatio b o t the DVSP an be ssifie by the following a t t r ib te 

iz of the solved est instances ow, only h e r i t i c s ave been successfully ap
plied to olve l a e instancs. In m s t ses, exac etho and a g a n g a n relax
tion a p p r o h e ave o l y been applied to rather ll an 

M u l t i c o m m t y fow formulaton Are the used m e l o ml t icommoi ty 
flow formations or ot? This q t i o n is mportant s pot r o s cannot be 
consiered exactly in s i n g l e - m m i t y flow formlt ions . O l y me spec ses 
of the MDVSP reduce to the ngle-depot ase e.g., roble c o n e r i n g no ot 
groups and having dpot-independent weights of the ll and ll tri ee 
Carpaneto D e l l A m o Fischetti and Toth [1989] 

Publications tha use multicommodit flow formulatio re, eg . , Grötschel, Löbel, 
and Völker [199], Löbel [1997a1991996b] and it and xäo [1997] 

htt//www.zibe/Otiizatio
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Larsen and Madsen [199 , K o t and Löbel [1996] B a n Costa, and xao 
[1995], Forbe Holt and W t t [1994], Ribeiro and Sou [1994], Dell'Amco, 
Fischetti, and Toth [1993], Mesquita and Paxäo [1992], Lamasch [19881992] 
Capaneto, D e l l A m o Fischetti, and Toth [1989] Bertossi Carraresi and Gallo 
[1987], Carraresi and llo [1984] avih, Schweitzer and Shlifer [198] avi 
and Shlifer [198] 

ublication tha do not use multicommdity flow formlations are, for instance, 
a d n a and Völker [199] Petzold and chütze [1995], Shütze and Völker [1995] 

Daduna, Mojsilovic and Schütze [1993] a d n a and M i l o v i [1988] ilovi 
[1983] and H o a d [1981] 

d e r t i of epot groups. Depot g r o s are used L a e n and Mad [1997] 
Branco, , and Paixäo [1995], Forbes, Holt, and Watts [1994], and Lamatsch 
[19881992 as well as Grötschel, Löbel and Völker [199], Kokott and Löbel [1996] 
and Löbel [1997a1997c1996b] In additio B a n o , and xä [1995] and 
Forbe, Holt and tt [1994] use the LP f o r a t i o 

(4 
ev ae»-tTi 

subjet to 

(4 * ( < ( * ) ) eT 
(4 (t eT VdeV 

(4 V d e V 

(4 

(4 1} 

whi xa t ly the e f o r t i o n a r ILP 21 witho ot lower apa 
itie 

a n n R 

Grötschel, Löbel, and Völker [1997], Larsen and adsen [1997], Kokott and Löbel [1996] 
rano , Costa, and Paixäo [1995] L a a t s c h [19881992] Mesquita and Paixäo [1992]) 

and Bertossi arrarei, and Gallo [1987] discuss L a r a n e a n relaation approahe for 
the MDVSP. 

Basically, the MDVSP described by the flow condition and the flow conservation con 
straint Hence, two Larangean relaxation approahes are reasonable: F i r t , a relaxation 
with r e s p t to the flow onditions resulting in subproblems that d e s e into inde 

endently olvable i n i u m - c s t flow problems, see Grötschel, Löbel, and ölker [1997] 
Laren and aden [199], Kokott and Löbel [1996], and ertossi arrarei, and Gallo 
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[198]. Scond, a relaation with respec t e fow onsrvations reulting in subprb 
lem that are olynomially solvable SDVSP instance, ee Grötschel Löbel and Völker 
[199], Kokott and Löbel [1996], ranco ta, and Pa i äo [1995] ita and Paixäo 
[1992], and Lamatsc[19881992] 

Thee two relaation pproache have the followin featre 

1 In Kokott and Löbel [1996] we how that these two L a r a n e a n relaation together 
with sugradient method an be used for e f i e n t tation of t i h t lower 
b o n d for sustantial proble from ract ie 

2. A popular method for finding feaible olt ions of truly largscale DVSPs are 
certainly schedle first - cluster ond approahe which are sometimes followed 
by a reschedle ethod, see below and in Chap. 8 ith r e p e t to the flow onser
vation the Lagrangean relaxation together with som rimal (interchange and/or 

reedy) heuritic can be viewed s such a schedle fir cluster second approah 
A similar idea as above can be pplied to the Larangean relaation with repec 
to the flow conditions resulting in a cluster firs schedle ond approach The 
latter is, however, less lar than the fir pproach 

3 Grötschel, Löbel, and Völker [199 and Löbel ( 1 9 9 , we describe these La 
grangean relaxation techniq new ol eneration t ra te ie for the LP re 
laat ion of the DVSP, ee ha 

Exept of Grötschel, Löbel, and Völker [199 and Kokott and Löbel [1996], the computa 
tional investigation of the mentioned artiles on Larangean relaation are based on te 
i n t a n c s with at most 600 t i e t ab led tri for a deot-proble and 1 9 1 t i e t ab led 
t r i f o r a 3 d e o t r o b l e 

Bodin, Kyde, and Rosenfield [1978] p r o p e a oncurrent schedler h e u r i t i : Timetabled 
trips are considered accordin to their inreasin starting t ims ; let t T denote the 
-th timetabled tri with respect to the tarting time order Let H := denote the 
et of vehicles that are currently in use. The following steps are perfored for eac 

j = 1 , . . . , |T|: If there e s t s at lea t one vehicle h E H such that the la t i e t ab led trip 
ti assigned to h can be onnected to tj by an unloaded tri (tj, tj), select ong them the 
heapest unloaded trip and assign tj to the corresponding vehicle. If this not ssible 

a new vehile h is used and inerted to H. This new vehicle is seleted fro e d e o t 
d EV that still ha a free c a c i t y and min i i ze the llo 

Some other heuritics are the schedule fir - uster seond approach (see Löbel [199c], 
Grötschel, Löbel, and Völker [199], D a d n a Mojsilovic, and Schütze [1993], DellAmico, 
Fischetti and Toth [1993] D a d n a and ojsilovi [1988] Carrares and Gallo [1984] 
Mojsilovic [1983], Assad Ball, Bodin, and Golden [1983], Hoffstadt [1981] Bodin and 
Golden [1981] Gavih and Shlifer [198], and Gavih, Schweitzer, and Shlifer [198] the 
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cluste first - schedle second approach e Löbel [1997] Larsen and Maden [1997] 
Grötschel, Löbel, and ölker [1997], De l lmico , Fischetti, and Toth [1993], Mesquita and 
Paixäo [1992], Carraresi and Gallo [1984]), and reschedule procedre ee Löbel [ 1 9 9 ] 
Grötschel, Löbel, and Völker [1997] and D e l l o , Fischetti and Toth [1993] 
hall describe this kind of approah in ha 8. 

Branco, osta, and aixäo [1995] propos an L P b a e d ronding herist i The optimal 
(nonintegral) soltion of the ILP relaxation i rounded to s e integral feasible solution 
Afterwards, they appl a saving heuritic smilar to the 2opt heristic for the travel 
ling salesman problem In Löbel [199c], we a lo describe an LP based h e u r i t i , which 
iteratively rounds coponent of a fractional LP soltion to zero and one, respectively 
reotimize the enlared LP, and proceeds until the roblems be infeaible or an 
integer soltion i fond. Thi iterative rondin h e r i t i alled LP-plunging for ore 
details see h a . 8 

rt p p e s 

öbel [199a] Derosier, Dum Solomon, and Soumis [1995] r a n o Costa, and 
Pa i äo [1995] Bianco, Mingozzi, and Ricciardelli [1994] Ribeiro and Soumi [1994] and 
L a a t s c h [1988] discuss set partitioning pproaches (baed on Dantzig-Wolfe deco 
tion) for the MDVSP The rows and columns of the et partitioning problem correspond 
to the timetabled trips and to all pssible vehile schedule. A comprehensive descrition 
of the Dantzig-Wolfe d e i t i o n s c h e e applied to the DVSP i iven in Deroier 
et al. 

L a a t s c h [1988] applies the Dantzig-Wolfe d e c p o s i t i o n p r i n l e to hi f o r l a t i o n 
and ives set artitioning formulation of the MDVSP without depot capacitie Since 
this approach was not suitable for the comuter ofthat time it s rejeted by the thor 

The firt article to the best of knowlede, reporting a b o t a deomosi t ion approa 
and omutational invetigation (with u to 10 depot and 300 timetabled trips) 

ublihed by Ribeiro and Soumis [1994]. Applying the Dantzig-Wolfe decompit ion 
rinciple to the DVSP, they reformlate the MDVSP et artitioning proble with 

additional ide ontraints for the d e o t capacities. 

A delayed o l m n generation approach for the general pckup and delivery problem re 
sulting in set partitionin approach with additional side constraints can be fond in the 
PhD thesis of Sol [1994] Barnhar ohnon, Nehauser , Savelbergh, and Vance [1994] 
discuss delayed ol generation aproaches for various proble classes and give an in 

ht into branch-and-pric pproache arnhart, ane, and Vance [1996] report abo 
mptational invetigation of a branchand-price approach for the integer m l t i 

modity flow roblem. Although they claim that they solve large inteer test in tan 
their two lar integer roblems do not have more than 91 nodes, 203 arcs and 18 
commodities and 50 node, 130 arcs, and 58 ommoditie Moreover, only the s a l l e 
inteer roble with 50 node arcs, and 1 mmoditie ld be olved to o t i a l i t 
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r a l th er integer t e t instanc t h y topped the run on our cpu time ith 
itive between the b e t interal o l t ion and the b r a n a n d - p r i e lower b o n d 

a n a n o u p p e s 

Up to now, only relatively small real-world MDVSPs have been olved to ptimality: 
Forbes, Holt, and Watt [1994] solve their ILP formulation in three stag First they re 
la the problem resultin in a SDVSP that an be olved by a network s i l e alorithm 
Seond, the o t imal solution of the relaed proble is used to contruct a d a l feasible 
basis for the LP relaxation. The corresponding basis soltion satifies the flow ondition 
that e a h t i e t ab led tri has to be ervied exctly by one vehile, but some flow con 
servations may be violated. The dual le alori th s then applied to reolve the LP 
relaation to otimality Third, a b r a n a n d - b o u n d approach is used to find an optimal 
integral solution. The thor r e o r t on n e r i c a l investigations with to 3 d e o t and 
600 timetabled tri some of thee in tan are taken fro realworld p rob les . 

Caraneto, D e l l A m o Fischetti, and Toth [1989] describe a different ILP formlation for 
the DVSP baed on an assgnment formlation with additional cycle (or path oriented 
flow onervation constraint. They apply a o-called "additive lower bounding" proedure 

r o e d by Fischetti and Toth [1988] to reeive a lower bound of their ILP formulation 
and pply a branchand-bond approah to olve the DVSP arpaneto et al. report on 
omputational invetigation for artifiially generated problem with up to 3 depot and 
0 timetabled tri Ribeiro and Soum [1994] how that this additive lower bondin 

is nothing t a spcial application of a Lagrangean relaxation and its correspondin 
subgradient ethod. Therefore, the lower b o n d of Carpaneto et al. i never better than 
the lower bound provided by the L a r a n e a n al of the LP or the I f o r l a t i o n for a 

l t i m m o d i t flow odel 

l I v e s 

onsidering the presented mputational invetiat ions most of the mentioned referenc 
in this literature overview ut either academic or practice-oriented accent The firs 
describe mathematical background and methods, but do not tell how large-scale real 
world roblems can be solved. The omutational results, if reor ted at all, are baed on 
investiations with small mostly randomly generated test instan having less than one 
thousand t i e t ab led t r i . Thi different for r a t i o r i e n t e d bliation 

Löbel [1997c], Grötschel, Löbel, and Völker [1997], Löbel (1997d), and Kokott 
and Löbel [1996], we have reor ted on olving p r a t i a l DVSP to optimality 

The h e r i t i vehicle schedlin pproa of the O II ystem is reported by 
Schütze and Völker [1995], Daduna, ilovi, and Schütze [1993], Mojsilovi 
[1983], Daduna and Moilovi [1988], and Hoftadt [1981], all previously or cu 
rently e l o y e e of the er H o b a h n AG or its s u i d i a r an 
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GmbH Althugh they do no e x y r e p r t their computatonal resl ts , th 
olt ions are known to be of hi quality Grötschel, Löbel, and Völker [199 
omared the o p t i a l solutions of our exac branh-andcut approach with the 

lution of HO II and find o t that on the average, a 3% vehicle reduction and a 
10 % savin are ossible. From practical point of view, the HOT ystem gen 
erates ite ood solutions. The reason why the syste doe not nessar i ly 
provide an o t i a l soltion will be discussed in Chap 84 

Forbes, Holt, and Watt [1994] report about real-world proble "of an ctual bus 
perator. The full t i e t ab led tri set of the bus oerator onsists of more than 

6500 timetabled t r i s and three depots On the averae, 2 % of the trips can be 
serviced by only one depot, 25 by two depots, and 3 by all three depot From 
this test set whic robably was too large for the used peronal uter, several 
randomly extracted problem with up to 600 t i e t ab led trips are onidered. Sinc 
the average d e o t group size <ZG = 1.31 the considered test instance are not too 
difcult. This s also reflected by the f a t that for 22 of all the 30 extrated tes 
instances the o p t i a l soltion of the LP relaxation was already integral. For the 
other 8 test problems, the gap between the optimal value of the LP relaation and 
the o p t i a l v a l e of a feasible inteer olution i at m o t 0003% 

Gavish, hweitzer, and Shlifer [198] report already in 1978 a b o t a system that 
can olve problems with p to 2500 timetabled t r i p . Depot g r o u , however, are 
not considered such that MDVSPs can be reduced to SDVSP with schedule first 
- cluster second approah. With their ystem arts of a anually generated et 
of vehicle schedles of a bus c a n y oera t in ore than 500 t i e t ab led tri 

ld be refined nifantly 
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Solvin th i n e - D e p as 

SD n t ony in a form but al as u b b l m within h e t i c s o 
Larangean duals of DVSP We will how in this thesi that solvin the MDVSP 
reqires at everal te the effient and e a c t olution of SDVSP. Althogh the SDVSP 
an be formulated a a polynomially olvable minimum-cost flow roble and it is well 

known how such flow problems can be olved ef ien t ly we devote an ow chater to the 
ol t ion tehniqu for SDVSP 

present an eficient solution method based on the network smplex impleentation 
MCF, see Löbel [1997b] This code is able to olve SDVSP of any relevant size 
tart with a short summary of the network ple alorithm and continu with ome 

implementation details of our network s imle ode We a s s u e the reader to be fa i l i a r 
with the network s l e a l o r i t h . The la tion describe how F is used to olve 
SDVSP in tan 

5.1 he P r i m l N o r k Simplex lgori thm 

The network smple algorithm with upper bound techniqe is spia l ized revised sim 
ple a lgor i th , see Dantzig [1963] or Chvätal [1980] that xploit the t r u c r e of networ 
flow problems. The linear algebra of the s m l e x algorithm replaed by s i p l e network 
operations. H e l g o n and Kenninton [1995] and Ahuja, M n a n t i , and Orlin [19891993] 
describe the r i a l networ le alori th and ive doode i l e e n t a t i o n 
hint et 

To apply the simple algorithm to (1.1) in{cTx Hx = b, 0 x ^ u}, we need 
full rank constraint atrix. For a onnected network D the rank of the flow conserva 
tion onstraints 1.16b is equal to |V| 1 and the flow conservation constraint for one 
designated node the socalled roo node, an be eliminated. We will assume that we 
have chosen such a root node and have eliminated its flow conservation onstraint, i e . 
the reduced nodear incidene atrix has full rank. For notational simlification, we 
also denote the redued nodear iniden atri by It is well known that every 
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nonsingla ba is rix B of M responds to a spanning f A in and vice v s a 
Let T C be a panning tree in D. The variables Xij (i,j) G T, are called the basic 
v a r b l e s orrespondin to the basis atrix B := N.,T- Let L and U denote the arcs 
that c o r r e o n d to the n o n a i c vr iables whose values are set to the lower and pper 
bound, r e c t i v e l y . The t r i l e (T, L, U) is called a b ur For iven nonbasi 
ar sets L and U the r i h t hand side b t ransfors to 

b': Y, -̂  

The associated basic solution is the solution of th tem BxT = & th values of the 
node potentials are determined by the system nTB = c£. Let c^ := Cy — Tj + tj denote 
the reduced of an ar (i j) The dual ultipliers r\ of the bounds are 
de te r ined by 

51 r- i i ( h j ) e 

otherwise 

A basis structure (T L, U) is alled p m a if the assoiated basic solution 
satisfies the flow bounds (116 and is alled if for all ( i j ) G A 

5.2a ij (i,j) 

52b ij< (ij) 

A basis structure is called o t i m a l if it is oth rimal and ual feasible For further 
information about the primal networ s i l e ially flow harts and seudo odes 
see Helason and Kennington [1995] 

5.2 plementat ion Details 

Many networ flow textbook ontain (relatively similar) pseudoodes of networ flow 
a lgor i ths We started our implementation with the pseudocode iven by Ahuja Mag-
nanti, and Orlin [1989] and tried to improve important alori th details to m k e it 
more robust and efficient s u h that even truly largscale problems can be solved rou
tinely. We describe the key ingredients of our modifations Most of our c p u t a t i o n a l 
mprovements result, in t, from very efficient pricing strategies. The i p o r t a n of 

pricin follows from our experimental observations that our i l e m e n t a t i o n till ends 
on the averae, ore than 80 percent of the u time on ricing. 

In the de s r i t i on of the primal network simplex a lgor i th , we have a s s u e d the input 
networ to be onneted whih we ensure by the followin roedure: Given an arbitrar 
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(not n e s s a i l y onnected) n e w r k D = V,A), add to V one artifiia root node 
denoted by 0". ch oriinal node i of V is then connected to the root node 0 either 
by the artifcially enerated arc (z, 0) if i is a supply or t r a n s s h i e n t node or by the 
artificially generated arc (0 i) if i is a demand node. Let (V 0} A') denote the 
networ obtained by adding the artificial root node 0 to V and adding the artifcial slack 
a r s (i , for each supply and transshipment node, and (0 ), for each demand node to 
A. Each art i f ial slack ar has a lower bound of 0, an pper bound of infinity, and 
suf ient ly lar cost oe f i en t 

an D r u c e s 

usti [1990] investiates the influence of the omputer languaes C and FORTRAN 
on an mpleentat ion of rimal networ simplex code. He finds out that, for both 
l a n u a e s , an addressbased implementation (linked lists and pointers is more e f i e n t 
than a cursorbased implementation (vectors and indices) and that the e r f o r a n s of 
cursorbased impleentations in and Fortran are essentially the s a e ur ode 
is implemented in C with addressbased data structures 

Over the last three deades, the basis tree representation and data strutures for the net 
work simplex alorithm have been investigated rofoundly. Most of the network s i p l e 
mplementations use similar data structures. We desribe our version. All node and ar 

inforation r e t i v e l y are stored in the following data strutures: 

de information: Let T C A be a sanning tree in D, and onsider some node v 
V \ {0}. There is a unique (undirected) path in T, denoted by P(v), leading fro 
v to the root node 0. The ar in P(v, which is incident to v is called the b s i c  

of v. The other terminal node u of this basi ar is alled the p r e d e s s o r 
(node) of v. The basic arc of v is called u p a r d (downwar oriented if v is the 
tail (head node of its basic a r . If u is the redecessor of some other node v, we 
call v a c h d (node) of u. Suppose there is some order of the children of v, and 
let and w be two different hildren of v. If is aller than w with r e s p t to 
the given order, we call the left siblin of w and w the ight sbling of u. If 
there is no child that is smaller (reater) than given hild w, then w has no left 
(right sibling E a h node has at most one hild reference the other children of 
node can be reahed by traversin the siblin l ins . The number of nodes in P( 
is called the ub ize of v. 

The subtree size and redecessor variables are used by the ratio test The orienta
tion child, and siblin variables are used for the mputation of the node otentials 

c i n f o r m a t n : For eac arc we store information about its tail and head node its 
upper bound value its osts and whether it is basi ar of T or nonbasi ar of 
LOTU. 

Figure 51 shows s a l l examle of a rooted basis tree for our data strutures (the 
underlyin networ is a py fro Ahuja nanti, and Orlin [1993] ur technique to 
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- left sibling 
^- basic arc • child - right sibling 

od 

r edes so il 
ild il il il il 

ri siblin il il il il il il 
left siblin il il il il il il 

rientation ow ow ow ow ow 

e 5 : R e d ba 

store the rooted basis tree results fro ersonal disussions with R. by 

sed on o c o m t a o n a x p e r i e n , ing e has the m o t ant inf 
e n e on the e r fo ran of a networ s i l e leentat ion. Ahuja nanti, and 
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lin [1993] describe me picin le uch as Dantzig rule, st liible arc ule, and 
andidate list rule We have implemented and tested these ricin rules in slightly 

modified s. It turned out that our by far fastest rules are ial andidate list rules 
called m p l prtal in e see by[19921994] 

Given two natural numbers K and J. The arc set A is ivided nto \K\ anddate lists 
each of size at most K If the arcs are indexed from 1 to \A, the kth canddate list 

ludes all arcs i satsfyng (i 1) modulo K = (k ) There is a hot-list of at most 
J + K arcs, which ally empty. The andidate list number next, w ich defines the 
first to be examined canddate ls t in the inital ricing all, is set to 1. The andidate 
lists are always examined in a wraaround fashon For a picing call the following step 
are performed: First, the reduced costs of the arcs being urrently in the h o t l s t are 
recomuted. If the new reduced costs of s u h an arc becomes nonnegative, thi arc i 
immedately removed from the hot-list. Seond, as long as the hot-lst can be filled with 
at least K additional arcs and not all andidate lists have been examned in this pricing 
call, we price out all arcs of the next canddate list, add all nonbasic arcs of this list having 
negative reduced costs to the ho t l s t , and icrement the nex variable by 1 if next ^ K 
otherwise we reset next to 1). Third if all candidate lists have been examined, but the 
hot-lst is still empty, the current bass struture s optimal. Otherwise, some arc of the 
hotlist that most violates the redued cost iterion is selected as the bass entering ar 
The last step of pricing call is the preparation of the h o t l s t for the next all: The basi 
enterng ar l e a s the ho t l s t . At most J a r s with most vald redued osts enter the 
new ls t 

Multple artial picing s very sensive to the number of arcs which makes a fine tuning 
for every problem class necessary We use the followng default values for K and J 
dependng on the number of a r s : 

N u r of a 
< 1 0 0 

1 0 0 0 0 ^ \A\ < 100000 
100000 

30 
50 

200 

5 
10 
20 

ompared with the multiple partia pricing (with the defult values of K and J as above), 
pricing rules such as first e l b l e ar rule or Dantzig's rule are about 4 to 5 t m e slower 
see Löbel [1996a] 

n i l B t r u r e . 

The easiest way to find an nitial p a l feasble basis structure is as follows: The n a l 
basis tree consist of all artifcial slack arc and each orginal ar beomes nonbasic at its 
lower bound. Note, that no arc is at its upper bound. Such an itial basis struture 

called artifici ba t r c t u r e Obviously, th articial bas struture al 
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feasile for D and t e origna n w o r is feaible f t wo ha a f e a l e 
solution where no articial ar has a p o s i v flow value 

The use of an artificial basis tree has several advantages. First, it has a simple struture 
and can be generated quickly Second, the ratio test and the basis pdate are qute fast 
for the first teratons. We ha also tried to generate an initial bass structure usng 
a crash proedure. The performane, however, was alway slower than startng with an 
artificial basis tree The only exeptions occur for ecial appications where a particular 

roblem knowledge can be exploted, for nstane we pply a olumn generaton. 

an um 

For largecale networks, the performance often benefits from a column generaton ap 
proah: I a first s t e , only a restricted subset A C A is considered, and the flow value 
of each arc a € A' \A is fixed to zero ontains all a r t c i a l a r s to ensure the exsten 
of a mal feasble basis structure 

When the restricted network has been solved to optimalty all fixings of the gnored 
a r s are removed, and the redued costs according to the last node potentials are omuted 
for all arcs ( s e n s v i t y a n a l y ) . As long as there exist a r s that violate the otimality 
c o n d o n s we add at least one and at most a arameter ontrolled aximum number 
of such arcs to the restricted arc set A (column g e n e r i o n ) , r eo t imze for the new 
enlarged arc set , and iterate until opimal ty can be proved for the comlete arc set A 
Note that the orgnal roblem ithout a r t c i a l arcs has been solved to o p t a l i t y f no 
artificial arc has a ositive flow value. To avod that A grows too much, some nonbasic 
arcs of L, i .e , arcs whose flow values are set to 0, may also (parameter controlled) be 
removed from , e. g , when the redued osts are greater than some predefined threshold. 

The i n i a l suproblem (V A) s op t i i zed usng an artificial basis structure. The new 
generated ar become all nonbasic i L. E a h subsequent restricted roblem restarts 

th the o a l basis struture of its previous subnetwork 

With the oncept of strongly feasble bases, see Cunningham [196], and a ombinatorial 
version of erturbation, one can prove that the network mplex algorithm theoretically 
runs n pseudoolynomial t m e see Ahuja Magnanti, and Orln [1989] pages 305-310 

Our omuta tona l experiments show always a good polynomial behaviour of our net 
work s p l e x implementation MCF. Even truly largescale test instances are quickly solv 
able such that, on the verage, a low-order olynomal n the number of ar and node 
an be assumed for the omlexity 
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5. pplying he ork Simplex ode to DV 

For SDVSPs (3.4) we have desgned the following algorthm that is based on the above 
desribed network simplex ode combinaton wth sensivity a n a l s and column gen
eraton. 

The depot's starting point d was chosen as the root node. A positive depot lower bound 
A is transformed to zero as show g. 11) by the varable subst tuton x^-,d+ 

- which results 

53a / 

aeAu~tTi 

subjet to 

5 1 e T 
5 {S)) I er 
53d - , { ö ~ ~ ) ) 

-, 

5 0 V a e Aa-tTip 

Noe tha n t e ase o a fixed eet ze, i e., A e le x', d+) an be eimnated 
(snce it is set to zero), the depot' startng nt and end oint ont ra t to one ngle 
d e o t node and 5 r e d u s to 

54a - j ^ 

subjet to 

5. 

5. 

5.4d 

5 

All constructed artficial a r s together w th the userdefined unloaded t rps define the 
i n i a l restricted ar set A Between two subsequent s u r o b l e m s the column generaton 
(of currently fixed pull-in-ull-out trips) s lmited to a number ranging between 30 and 
50 thousand a r s . To keep the restricted subnetworks small enough, is also possible 
to remove "bad arcs orrespondng to a reduced cost terion from A. The parameter 
control for the column generaton and e l n a t o n deends on the roblem t y e , the 

lable man memory et 

1 

1 
(6-)) 

0 a e Aa-tri 
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The h ice of th M for th artificil l a k acs has be don carfull e t 
objective coefficients of the pull-out trips an already contain a M value (see Chap. 2) 
Therefore, the cost coefficients of the artificial slack ar are set to a sufciently large 
M M that also domnates the M of the ullout t rps 

The column generation s nothng but a spcial pricing strategy Our proposed method 
for solving SDVSPs runs in pseudo-polynomial time since we use strongly feasible bases 
Of ourse, there exist several even strongly olynomal time algorithms for minimum-cost 
flow problems (e.g see Ahuja, Magnanti, and Orlin [1993], page 395), but our network 

mplex ode with column generation erforms, on the average, always better than very 
effcient implementations (with default onfiguraton) of such polynomial tme algorthms 
for our test data (see öbel [1996a]) Even our largest SDVSPs instanes (derived by 
Lagrangean relaxation with 70 million arc can be solved to optimality thin less than 
15 mnutes cpu t m e Pure realworld SDVSP wth up to several thousand timetabled 
trip and several millon unloaded t rps can be solved to o a l t y w t h n few minutes 
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Solv r a e a relaxati 

We dscrib in this hapter t e two basic ideas how the Lagranean rlaxation poac 
can e applied to the MDVSP such that the resultng Lagrangean duals become efficiently 
solvable. The techniques presented here have already een presented n Kokott and Löe l 
[1996] 

In thi chapter, the onsdered model are based on the dgraph ' (21). Based thereon 
we give a somewhat low up ILP formulaton of the MDVSP ludng redundant on
strants: 

61a) n N \ 

subjet to 

6 1 2 ^ f 1 V t e T 

6 1 (ö+t+)) 1 V t e T 
6 I r r I V t e T 
61e) ) ) VteT Vd 

6 I f ) (S))f VteT Vd 

61g) f,+ VteT Vd 

61h) )) Vd 

6 1 +) Vd 

6 1 J) 1 t e ^ t r i p Vd 

61k) o V a <E A t r ip ^ t r i p \/deV 

611) ntegral 

The flow condtions are given three tmes by the equivalent constraints 61b) 6.1c), and 
(6Id). Moreover 61) i l u d e s the a d d o n a l (redundant) flow onservatons 61e). For 
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each of the two Lagrangean r l a x a o n aproach p r e n t e d b o w , we sha s e c t thos 
constraints of (6.1) that give a sufcient prolem d e s p t o n , ut that are neessary to 
formulate e a h relaxaton properly 

1 R e l a i o lo 

The first relaxaton is to put the flow conservations into the ob je ive funtion. As we will 
see, the resulting inner mnimizaton problem of the Lagrangean dual s a large SDVSP 
problem. However, to r e i v e s u h a nic problem structure, we h a e to neglet the 
ndividual depot lower and upper capacities for this relaxation. Th doe not matter 
nce depot apacitie are often soft constraints, see Rem. 311 and we consider here 
relaxation anyway (for most of our problems, we are una le to solve the following 

Lagrangean dual to optimality - with or wthout depot capacies). Hence the variale 
xd

d_ d+, and the constraints (6.1h) and (61 ) are gnored. The underlying P formulaton 
for the first Lagrangean relaxaton reads 

6a) \ J S) 

t t 

6. x ( ) ) 1 V i e f 

6. x(5)) 1 V i e f 

6 . d ) 0, VteTd VdeV 

6 . e ) 0, V a e i ^ V t 

6 f) ntegral 

Note that the formulaton (6 does not ontai variables for the tmetabled trips and 
the backward arcs. Snce (6 .c ) is a lnear combinaton of (6.2b) and ( 6 d ) s easy to 
see that 6 ) is euivalent to (2.14) wthout depot a p a c i s 

et I = (7T G RTd)dx> denote the Lagrange multipliers associated w th the flow conserva 
tions (6.2d) Let the subcript "fcs of Lics and LRfcs defined elow) be an abbreviaton 
for Flow-onServaton. Let LRfcs denote the followng Lagrangean relaxaton: W t h 
repect to 6 d ) the Lagrangean dual of (6. 

63) axLf 

th nner m z a t o n prolem 

(64 

L f ) : mn W £ >? ( ) ) ) 
x > 0 ega l 

Sasfyng 
b) nd (6.2 c ) 
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The equaions (6.2b) and (6 .c ) are exactly ide conra ints of the I 3.4) of a 
SDVSP without depot capacities. Hence, Lics(7r) orresponds to a large mimum-cost 
flow problem, and t follows from Remark 1.13 that LRfc and the LP relaxaton of (61) 
(without depot c a p a c i s ) yield the same optimal value. 

ny o p t a l soluton x : x() a t t a i n g the value of Lfcs(n) describes a set of vehicle 
schedules overing each metabled tri exactly once Some of these vehicle schedule 
however may violate flow conservatons ( 6 d ) ts t rps belong to ifferent depots 

2 Relaat io f th Flo Conditio 

The second relaxaton s obtained by puttng the flow o n d o n s nto the o j e i v e fun 
tion. ts underlyng P formulaton reads 

(65a) nN \ 

subjet to 

(65 E 4^ x V t e 7 

(65c) (5+( $ °> VteTVdeV 

(65d) f t - ) ) 0, VteTVdeV 

(65e) S+(+) 0, V d e D 

(65f) )) 0 VdEV 

(65g) Kd 

(65h) f l, V r , t+ e 4 t r i p Vdev 
(65 i) 0, V a e ^ t r i p ^ t r i p VdeV 

(65 j) ntegral 

Let v := (z)ter e ^ T denote the Lagrange multpliers associated with the flow c o n d o n s 
(6.5b). Let the subscript "fed" of Lfcd and LRfcd be an abbreviation for Flow-ConDion 
Let LRfcd denote the followng Lagrangean relaxaton: th repect to (65b), the La-
grangean dual of (65) 

(6 m a x L f ^ ) . 



OLVING RANG 

n n r m o n p 

(6 

w*): m ( E E E 4 )Y 
a; satsfies 

( 6 5 c ) ( 6 . s j )  

L f s e i v a l e n t to 

(6 I E i E 4 
it decomposes nto a constant part z^Tl and nto \V ndependently solvale m m u m - c o s t 
flow problems. Note that each of these minimum-cost flow subproblem is equivalent to 
its continuous relaxation. It follows from Remark 113 that LRf and the LP relaxation 
of (61) yeld the same optimal value 

s easy to see that a feasible soluton of ea s u p r o l e m 

(69) mi E 4 

correponds to a set of vehicle schedules satsfying the depot specic capacies The 
additional inequalities (65h) ensure that the vehicle schedules of a depot cover ea 
timetaled t r p at most once. The Lagrange multplers correspond to the shadow prices 
of the tmetabled trips and measure their attractivity. It is easy to see that the objective of 
(6.8) is to find those vehicle schedules that give the most objective progress for the given 
shadow prices. Considerng all vehicle hedules of all depots together, some timetabled 
tri may not be serviced at all or may be serviced by more than one depot, . e , some 
flow conditions may be violated. In those cases, the associated Lagrange multplers are 

reased or decreased to make the timetaled trips cheaper or more expensive 

3 Subgraient Method 

We sole the Lagrangean relaxations LRfcs and LRfcd using a subgradent method. The 
general idea is the following: Let L denote one of the two concave functions Lfcs and Lfcd. 
A subgradient for L in u is a vector g that satisfies L(u + z) ^ {u) + gTz for each z. 
For a given u^\ let x^ denote some optimal solution of L(u^). This solution can 
used to easily generate a sugradient by the following well known lemma. 

(6.10) L m a - D is a sugradient for L in 

t follows from Lemma (610) that any u* attaining the maximum value of L yields 
u* ^ ^ u*) ^ 0. The optimal value of the Lagrangean dual may 
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approximated by the following procedure: Start with some arbitrary u^ and recursively 
create a seuence u^\ u^\u^\ . . . of new points, each depending on its previous points 
and the computed subgradients hitherto. Note that each Lu^) is a lower ound on the 
maximum value of L, e., it is also a lower bound for the value of the (214) and 
(61), respectively. Our asic method is as follows: 

(6.11) Algorithm. Basic Sugradient Metho for the DVSP. 
Input: L. 
Output: Lower bound for ILP (2.14) and (61), respectivel 
1. Choose initial Lagrange multiplier u^ and set k := 0. 
2. Evaluate L^). 
3. Compute subgradient gW := g^u^). 
4. If the iteration limit N± is reached or g^ = 0 then STOP; otherwise continue. 
5. Compute new step length a^\ 

. Compute new step direction gW e c o n v { g . . . ^ 

ncrement k and go to 

ere follow the details of our sugradient algorithm (611): 

tep 1. oose initi g r a n e m t i 

For LRfcs, the initial ir^ is set to zero. Initializing z ) for LRfcd: It turned out from 
computational investigations that the following initialization of the Lagrange multipliers 
j/( perform best concerning the maximal achieved objective value LfC(j and concerning 
the number of iterations of the subgradient method. Solve Lfcs(0) of the Lagrangean 
relaxation LRfcs. Let v and denote the optimal dual multipliers of the constraints 
(6.2b) and (6.2c), respectivel. The estimation of v^ by defines a good starting 
point since Liu^ and Lfc(0) ield the same value. 

Here is the proof of this statement: For each d e V, let vj := v := 0 denote the 
node potential of the contracted depot node. With respect to Lfcs(0), we know that 
the reduced costs cf- = cf — vf + j are nonnegative for each unloaded trip. Since 
#£_ +s = (ö()) = x + ( ) , it follows straightforwardl by inserting and 
that (69) is euivalent to 

i Y^ cij 
xd saisfies 

(6.5 c ) ( 6 . 5 j ) 

Since this objective function is nonnegative for each d and describes circulation in this 
case, it is eas to see that = 0 is optimal Thus, Li ) = t t L f 0 ) 
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ep 2. E v a t e 

The core of our Lagrangean relaxation codes is the network simplex implementation MCF, 
described in Chap. 5, together with a column generation for the single-depot case and, 
therefore, also for LR f (63). We use a modified version of this implementation to solve 
the minimum-cost flow problems Lfcd (66). The initial restricted arc set consists for oth 
relaxations of the user-defined unloaded trips. 

tep 3 C o t e subgradient 

First, let TV^ denote the kth Lagrange multiplier for LRfcs, and let x^ denote some 
optimal solution attaining the value of L f ( e ) ) follows from Theorem 10 that 

c+))) ) : 

is a subgradient for L f s at eas to see that The interpretation 
of gW is as follows: 

= 0, ^ is valid for the corresponding flow conservation. 

If (gf 1, some vehicle of depot d enters the t imetaled trip t ut none 
leaves it. 

If (gf 1, some vehicle of depot d leaves the t imetaled trip t ut none 
enters it. 

gW is used as the step direction then 

if f) 0, the Lagrange multiplier remains unchanged, i e . 
) 
> 

if (gf) +1, the La grange multiplier irf is increased, the objective coefficients of 
each arc entering is increased, and the objective coefcient of each arc leaving 
is decreased; 

if (g) — 1, the Lagrange multiplier nf is decreased, the objective coefficients of 
each arc entering is decreased, and the objective coefcient of each arc leaving  

is increased. 

Second, let v^ denote the kth Lagrange multiplier for LRfcd, and let x^ denote some 
optimal solution attaining the value of Liu^ also follows from Theorem 10 that 

= l )) 

is a subgradient for Lfcd at v \ It is also eas to see that . . . . The 
interpretation of g^ is as follows: 
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If g\ 0, the timetabled trip t is serviced exactl once and is valid for the 
corresponding flow condition. 

f g — 1, the t imetaled trip t is not serviced at all 

f g 0, the t imetaled trip t is serviced by exactl vehicle schedules. 

f g(~ is used as the step direction then 

iigk) = 0 , the La grange multiplier and, thus, the objective coefficient of each arc 
in t~ — ) remains unchanged; 

if g\ = 1, the Lagrange multiplier v is increased and the objective coefficient of 
each arc in r — ) is decreased; 

if g\) < 0, the La grange multiplier v is decreased and the objective coefcient of 
each arc in ) is increased. 

tep 4 pping criteia 

First, we check whether gW 0. If this condition is satisfied, the corresponding x^ 
is feasile as well as optimal, and we can STOP. Second, we check our iteration limit 
denoted by , i e., if k > we STOP. Our tandard value for N is 100. 

tep 5. C o t e new tep e n t h 

Polyak [1967] shows how the step length can be chosen such that the sequence L ( M ^ ) 
L(u^), ... converges to the optimum of the Lagrangean dual. However, our goal was 
rather to compute good lower bounds quickl than on satisfying some convergence cri 
terion. Therefore, we focused our efforts only on performance improvements within our 
given iteration limit. The step length and the step direction play a key role here. ased 
on the parameter setting, we use one of the following step length rules: 

g~^i— if- declines for N consecutive iterations) 

a ^ else 

with 0"( 10 and a maximum failure parameter i 

a« a - W f ^ if L d6ClineS f ° r N* , 
) = 1 : LL w j t h ) J consecutive iterations) 

else, 

with « such that a becomes 10, a maximum failure parameter A^ := 2, and 
an upper ound L for provided our schedule - cluster - reschedule heuristic, see 
Chap. 
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Remember our two tage objective: minimize the fleet size and, subordinate, the opera
tional costs. For almost all of our test instances, the initial Lagrangean function Lfcs(0) 
and .Lfcd(^) provide already the exact value for the fleet size. Therefore, we concentrate 
our eforts to find an initial a^ that improves the operational costs. 

It turned out that the initial step length is the only sensitive parameter of our subgradient 
methods. For each of our test instances, we have made several test runs to find out good 
starting values for a^\ We are, however, not able to provide an reasonable rule for a 
good starting configuration. Thus, we have decided to use a^ 10 as default for our 
presentation. For our complete test set, this value was one of the best among all that we 
have tried out. We refer the reader to okott 1996] for a detailed description of these 
tests 

tep 6. C o t e new tep d i t i 

Following the ke idea of undle methods, e. g., see Crowder [196], we use the following 
step direction: 

W = O.W + 0.2 0Ag OAg^ 

we set g = g^^ . This turned out to a r o u s t choice. 
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Solvin th elaxation 

We will describe in this chapter how the LP relaxation of (2.14) can e solved to optimalit 
by means of colum generation techniques. The standard column generation approach 
in the literature is based on generating and eliminating columns based on the reduced 
cost criterion. W propose here a new technique that is based on Lagrangean relaxations 
of the multicommodity flow model. The method which we call Lagrangean pricing, 
activates the arcs of complete paths and not only individual arcs. In particular, it is 
not only possible, but essential that columns with positive reduced costs are generated. 
Lagrangean pricing has been developed independently at the same time by Fischetti and 
Toth [1996] and Fischetti and Vigo [1996] for solving the symmetric Traveling Salesman 

ro lem and the Resource-Constrained orescence Prolem, respectivel 

Solving an MDVSP instance to optimality using LP based approaches requires to solve 
the LP relaxation to optimality. With Lagrangean pricing, it becomes possible to solve 
the huge linear programs that come up here. Therefore, we propose Lagrangean pricing 
as one of the basic ingredients of an efective method to solve this kind of problems to 
proven optimaliy 

this chapter, the underlying ILP formulation is based on the contracted digraph 
10). Rememer, the considered LP relaxation reads 

1a) in ^ ^ 

subject to 

1b) 5+ 

1c) (t) 

1d) d) 

1e) d) 

1f) 

Xd 
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Let v e ffi, 7T := (7r e M d ) d e I , 0 ^ ,0 l 5 , and 0 ^ 7 e denote the dual multipliers 
associated with the constraints 1 ) , ( 1 c ) I d ) and 1e), respectivel 

In the recent years, considerable research has gone into the design of pseudopolynomial 
time approximation algorithms for multicommodity flow feasibility problems. Several pa
pers have been written about this topic as, for instance, Leighton, Makedon, lotkin, 
Stein, Tardos, and Tragoudas [1991], Plotkin, Shmoys, and Tardos 1991], and Klein, 
Plotkin, Stein, and Tardos [1994]. However, there are too few papers describing imple 
mentations of such algorithms and reporting bout computational results thereof. More
over, the results reported in Leong, Shor, and Stein [1993] and Borger Kang, and Klein 
[1993] on rather small problem instances do not look encouraging from a computational 
point of view. It is therefore not clear whether approximation algorithms could substan 
tially help solving the optimization problems that we investigate here. We will discuss 
such approximation algorithms in the last section. 

1 Implementation etails 

The instances of the MDVSP we encountered in practice have up to 70 million variables 
and 125 thousand euations. Ignoring the integrality stipulation, we obtain linear pro 
grams, which are way out of reach for even the best LP codes currently availale, not 
to mention the fact that it is impossile to explicitl store such a large LP in toda 
computers. 

We will show in this section how the LP relaxation (71) can be solved to optimality using 
Lagrangean pricing techniques. In particular, our implementation combines robust LP 
software, a minimum-cos flow code, and parts of the Lagrangean relaxations codes for 
the MDVSP. In our case, we use the CPLEX al lale L i ra r LEX 1995) and our 
network simplex code MCF. 

In a first try, we have tried to apply a standard column generation and elimination tech
nique based on the reduced cost criterion, see Sect. 7.1.1. With such a standard approach, 
however, only rather small instances have been solved successfully. Salling in the objec
tive value occurred for larger instances. Within the column generation process, many new 
columns have been generated, but none of them could help to improve the objective value. 
Moreover, almost all active columns have reduced costs near to ero and, therefore, none 
of them could e eliminated resulting in too large RLPs. 

The new Lagrangean pricing techniques can help to improve the column generation pro 
cess. We will describe Lagrangean pricing in Sect. 1. The right composition of all 
employed ingredients is given in Sect. 1.3. 
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The asic idea of a column generation is to provide only a relatively small subset of the 
columns, which includes some optimal basis, and to ignore all the other ones. One starts 
with a subset of columns that, in addition, includes at least some primal feasible basis. 
The reduced LP, defined by this subset of columns, is called restricted LP (RLP). It is the 
task to solve a sequence of RLPs until it is proved that the last RLP contains the columns 
of some basis, which is optimal for the complete LP. The g loa l optimalit condition of 
an RLP is descried elow. 

An exact description of the column generation is as follows. Assume that we have already 
determined a subset A C A such that A includes some primal feasible solution. Consider 
the RLP including only the columns according to this subset A. n addition, assume that a 
primal feasible starting basis is determined. In general, the LP is resolved to optimali 
but it is sufficient to perform only some (primal) simplex iterations. Let P, fr, and 7 
denote the value of the dual multipliers associated with the last basis of the current RLP. 
For notational simplicity, let vd : 0 and ik\ := 0, for all , denote rticial variales. 
We compute for each variale the reduced costs 

cfj = 4j (i, j such that I * 

ote that ca ^ 0 for all active columns a 6 if the last RLP was solved to optimality 
f ca ^ 0 for all a £ A, the global optimality of the current asis is proved and we can 

stop. Otherwise, we search for som inactive) variales A\ and generate their 
corresponding columns 

Standard column generation schemes generate only those columns that violate the reduced 
cost criterion c ^ 0, i.e., variables with negative reduced costs. But, as we will see 
below, it turned out that adding also columns with nonnegative reduced costs may b 
advantageous. Having selected the variables that become active, A and the corresponding 
RLP are redefined appropriatel. The enlarged LP is reoptimized or a limited number of 
simplex iterations is performed, and we iterate until we prove optimality, i e . a ^ 0. 

Obviously, to achieve any progress, at least one variable having negative reduced cost 
must be activated between two consecutive RLPs. Tests in practice have shown that it 
is impossible to generate all inactive columns with negative reduced costs since the next 
RLP gets far too large and cannot be handled at all. Therefore, we restrict the number of 
new arcs to some parameter controlled limit. This limit ranges from 00 to 3000 variales 
for each depot, depending on the prolem s ie . 

For the standard column generation scheme, we use the original pricing rule due to ant ig 
[1963]. We select the variables with most invalid reduced costs as candidates to becom 
activated. With this approach, it is also possible to prove the global optimality of some 
RLP, provided that the last RLP has een solved to optimalit and includes some optimal 
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basis. We have also t e d to use more advanced pricing rules such as Devex pricing 
proposed by Harris [1973] and steepestedge pricing proposed by Goldfarb and Reid 1977]. 
Similar to Dantzig's rule, these rules generate only columns with negative reduced costs 
but we could not observe better computational results. Therefore, we have reected those 
advanced pricing rules and apply only Dantig's rule. Lagrangean pricing. 

To avoid that the RLPs become too large, we must also remove obsolete columns in each 
iteration of the column generation process. All columns whose reduced costs exceed some 
predefined parameter controlled positive threshold are therefore eliminated. 

1.2 agrangean pricing 

In a first version, we have tried to solve large MDVSP instances using only standard 
column generation and elimination schemes. ut this approach failed. One main obstacle 
is the completely degenerate LP relaxation. A second reason for the difficulties is as 
follows: The standard column generation scheme activates only variables with negative 
reduced cost. These variables can locally promise some progress in the objective value, 
but i is not clear whether they may have any influence on the solution and the objective 
value without an interaction with some other related nonactive variables. Therefore, we 
came up with the idea that the nonactive variables should be not only evaluated alone by 
its reduced costs, but also in interaction with all the other active and inactive variables. 
However, how can this be done efficiently? We have to find a method that determines good 
(nonactive) variables that ma give progress in the objective value as best as possible. 
To use the information already compiled within the previous RLPs, this method should 
also use dual information as pricing methods do. It may also be a good idea to invoke 
also Lagrangean relaxation techniues that turned out to give goo approximations of 
our hard solvale LP relaxations 

The answer to these uestions is Lagragean pricing: The inner minimization problem 
Lfcs (6.4 and Lfcd (6.7) of the presented Lagrangean relaxations LRfcs and LRfcd can be 
solved efficiently, even for the complete variable set, and give excellent approximations of 
the LP relaxation. So, we evaluate the inner minimization prolems Lfcs7r) and Lfd(z>) 
Remember v and fr denote the value of the dual multipliers associated with the flow 
conditions 1 and the flow conservations 1c) of the las asis of the current RLP. 

Obviously, both relaxations approximate the LP relaxation with all active and inactive 
variables, use dual information given by the last RLP, are based on good relaxations of 
the LP relaxation, and can be evaluated efficiently. We still have to show how good 
nonactive variables can be determined. The solution of each inner minimization problem 
can be interpreted as a set of vehicle schedules that seem to be advantageous for the given 
shadow prices of the current RLP relaxation. In the case of the Lagrangean relaxation 
Lfcd, these vehicle schedules may include unloaded trips of different depots. Consider all 
the vehicle schedules defined by the optimal solutions attaining the values of Lfs(it) and 
-^fcd(^)- Each still nonactive variable according to some unloaded trip of som of these 
vehicle schedules determines candidate to ecom active. 
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The Basic I n g e d n t s 

We have made man computational experiments to find out the right mixture of the 
techniques presented above. The basic ingredients, each being indispensable to solve 
largescale instances at all, follows: 

Initial RLP elaxation: The initial RLP should contain at least some primal feasible 
solution yielding a value as close to the LP optimum as possible. A very effcient 
way to heuristicall determine some solution is a schedule - luster - reschedule 
heuristic (SCR). A faster method is a nearest depot heuristic (ND), which assigns 
each timetabled trip to some depot with the smallest sum of the pull-out and pullin 
costs. This kind of opening heuristic, however, yields rather poor starting points 
and, theoretically, can produce arbitrarily bad solutions, see Chap. 8. Nonetheless 
we will see in Chap. 12 that the performance results are, on the average, comparable 
regardless whether we start with the ND or the more sophisticated heuristic. 

As soon as each timetabled trip is assigned to some depot, the problem decomposes 
into \V\ independently solvable single-depot subproblems. We solve for each depot 
ts single-depot instances according to all its heuristically assigned timetabled trips. 
Each unloaded trip that corresponds to some basic variable becomes active and its 
column is generated for the initial RLP. Thus, the first RLP includes at least the 
feasible solution defined by the union of the solutions of all subproblems together 
A further idea is to use the union of all columns generated by any primal (opening 
heuristic) and dual (Lagrangean relaxation) method. Unfortunately, we have not 
tested such a combination of diferent heuristics 

he Workhorses: Minimum-Cos Flow and LP Solving the LP relaxation with our 
approach exactly, requires the efficient solution of minimum-cost flow problems and 
linear programs at several steps: The minimum-cost flow problems stem from single 
depot subproblems and Lagrangean relaxations, the LPs are RLPs. All minimum-
cost flow problems have been solved with MCF. The linear programs have been 
solved with the primal as well as the dual simplex solver of the CPLEX Callable 
Library, version 4.0.9. CPLEX turned out to be a reliable and robust method for 
our degenerate LP problems. 

For our computations, an important feature of CPLEX 4.0 is the new and more gen 
tle perturbation method. In previous version of CPLEX, the bounds of all variables 
have been relaxed when perturbing a problem. This perturbation approach led often 
to numerical problems when we have solved our test instances. With the current 
version of CPLEX, only all basic variables are perturbed whenever the perturba 
tion starts. As soon as some nonbasic variable has been selected to become basic it 
will also be perturbed if not already done in some previous iteration. This simple 
alteration of the perturbation strategy has significantl improved the efficienc of 
our implementation for large D V s . 
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The column generation is divided into two phases: F a g n phase wher we 
apply standard and Lagrangean pricing, and, second, a s t r d phse in which we appl 
onl the standard column generation approach. 

grangean p h a e : This phase precedes always the standard phase and is applied as 
long as the objective value declines between two consecutive RLPs at least by some 
predefined parameter controlled threshold (10.0 is used as default). The last basis 
of the last RLP is always neglected, and each RLP is reduced by LP preprocessing. 
The columns of each RLP obtained in this phase are, at least for large MDVSPs, far 
too many for the primal simplex solver. We use here the dual simplex solver. We 
have also tried to use CPLEX's primaldual logarithmic barrier solver. It turned out, 
however, that numerical problems often prevent the barrier solver from proceeding. 

As long as there is a sufficiently large gap between the optimal LP value and the 
value of the current RLP, the Lagrangean phase works well. However, stalling 
occurs when the current RLP value approaches the LP optimum. This phase is 
unable to converge to an optimal variable set: Although the objective has been 
become almost optimal, the standard column generation between two consecutive 
RLPs finds always thousands up to millions of unloaded trips that do not satisfy 
the reduced cost criterion. This effect is maybe a result of neglecting always the 
last basis (i.e., all dual information of the previous RLP, but we cannot provide 
an other reasonable xplanation. 

Thus, we came up with the idea to use at this point only the tandard column 
generation scheme: We switch to the standard phase when the objective progress 
becomes too small and, therefore, some "approximation of optimalit" has been 
reached. 

tanda phase: When we start this phase, we believe that our current RLP contains 
some almost optimal basis of the complete LP relaxation. The occurring RLPs are 
now solved with the primal simplex solver and each RLP starts with the last basis 
of the preceding RLP. This approach iterates until the global optimalit of some 
RLP can be proved with the reduced cost criterion. 

2 o x t i o l g r i t 

First of all, one has to realiz that the term "approximation" stands for an approximation 
of feasibility problems, i.e., it is the task to ask whether there exists some feasible or 
almost feasible solution or not. But we consider a minimization problem that can only 
be solved by such approximation algorithms if we add an extra inequality bounding the 
maximum allowed objective value that has to be adopted within a binar search procedure. 

Let the commodities of an approximation problem be indexed by k. The basic idea 
of approximation algorithms for multicommodity flow problems is closel related to La 
grangean relaxation, see lotkin, h m s , and Tardos 1991 At first, some initial flow 
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is arbitrarily determined such that each singlecommodity flow x , for all commodities k, 
satisfies at least the individual flow conservation constraints and individual flow bounds. 
The coupling constraints - the flow conditions and the upper bound on the objective value 
as in our case - will be most probabl violated. Then some optimization problems over the 
individual constraints are repeatedly solved to find directions in which the violation of the 
coupling constraints can be decreased. To do this, penalties for the coupling constraints 
corresponding to Lagrange multipliers are defined. Constraints being more violated get 
larger penalties than constraints being less violated. The coupling constraints are relaxed 
by a Lagrangean relaxation approach and the subproblem L is evaluated for the given 
penalties. The heuristical idea here is that large penalties tend to imply that the resulting 
optimal point x (attaining the value of L improves the corresponding invalid constraints 
For a properly small number a, the new flow vector is set to x = (1 a) + ax. This 
procedure is repeated until som given degree of approximation is reached or the problem 
is determined to be infeasible. 

Plotkin et al. remark that Lagrangean relaxation approaches are often used to obtain 
empirically good algorithms for solving linear programs. For instance, our Lagrangean 
relaxation are such approaches. Unlike those methods, they give a rule for adjusting the 
Lagrange multipliers such that a run time analysis proves a very favourable theoretic 
performance. The interesting result for approximation algorithms is that the run tim 
is not as sensitive to the number of commodities as one might expect: ök • log A for a 
randomed version and ö(k2 • log ) for deterministic version. 

Leong, Shor, and tein [1993] and Borger, Kang, and Klein [1993] report on computational 
investigations and comparisons for the concurrent multicommodity flow problem, the 
latter for problems with unit commodity demands and unit edge capacities. Their results 
provide support for the theoretical run time behaviour. These investigations are based 
on randomly generated test sets, all with less than 1000 nodes and less than 3480 edges. 
Only one relatively small real-world test problem having 49 nodes, 260 arcs, and 585 
commodities is presented in Leong et al. For problems with a small number of commodities 
(up to 40 50), the approximation codes are outperformed by a special purpose simplex 
code. Moreover, the same clearly holds for the interesting realworld problem. Leong 
et al. call this behaviour "an anomaly". 

Unfortunately, these computational results did not encouraged us to use such approxima 
tion algorithms: First, for problems with a small number of commodities and especially 
for the interesting realworld problem, the approximation code was clearly outperformed. 
This is very important to us since the number of commodities (resp., depots) is small for 
our problems, and we are more interested in the empirical than in the worst case per 
formance. Second, none of the inventors of approximation algorithms has computation 
ally attacked minimum-cost multicommodity flow problem with this kind of approach. 
There are also some further obstacles that put us off from approximation algorithms: 

MDVSPs have no source and sink nodes. If we consider only the flow conserva 
tions and the individual lower and upper bounds for a nonnegative cost function 
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the optimal solution s obviously zero. However, the flow s enforced b the flow 
conservations for each timetabled trip. It seems to be an open problem how the 
approximation method can be adopted to equations avoiding numerical difculties 
and convergence problems 

In each main iteration of the approximation method, the flow is always partl 
rerouted. At last, the solution might have significantly more nonzero values than 
the solution of the LP relaxation. This ma badl influence the performance of 
branchandcut approach. 

Our minimization problem must be solved by binary search. Although we can appl 
quite good methods to compute a lower bound CL and an upper bound cu efficientl 
(see Chaps. 6, 8, and 12), we believe that 0(\n(cjj cL)) approximation problems 
that have to be solved are still far too much since, for our tes instances, the number 
of approximation problems can easil grow up to more than 20. 
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rim euristics 

All methods in the literature about solving large real-world MDVSP systms are, to 
the best of our knowledge, heuristics. The core of our thesis, however, is to solve large 
MDVSs exactly. Nonetheless, the exact branchandcut method presented here requires 
primal opening and improvement heuristics that help to reduce the branchandbound 
tree and, hence, accelerate the solution process significantly. We have implemented three 
heuristics that we will explain in this section. First, a cluster firs - schedule second 
heuristic that is based on nearest depot approach, denoted by ND. Second, a schedule  

cluster - reschedule heuristic based on the Lagrangean relaxation LRfcs, denoted by 
SCR. Third, an LP based iterative rounding heuristic, called LP-plunging, that exploits 
information compiled in an (R)LP and its optimal solution. I addition, we brief describe 
the mathematical ingredients of the assignment approach implemented in HOT II 

Because it is jVP-hard to find feasible solutions for capacitated problems, see Theo 
rem 3.10, Remark 3.11 gives some justification that our opening heuristics ND and SCR 
as well as the assignment approach of HOT II consider depot capacities only heuristically 

8.1 luster First - Schedule Second 

The idea of cluster first - schedule second approaches (CF-SS) is as follows: First, each 
timetabled trip is assigned to exactly one depot (cluster part) decomposing the problem 
into \V\ independently solvable singledepot instances. Second, each of these single-depot 
problem is efcientl solved to optimali (schedule part) with a network flow algorithm. 

We have implemented a simple version based on a nearest depot heuristic that consid 
ers depot capacities heuristically Of course, the following procedure could be further 
improved, but this is not our goal 
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(8.1) Algorithm. ND heuristic for the MDVP. 
Input: MDVSP instance with depot lower and upper capacities. 

t p t : Set of vehicle schedules that possible violate depot capacities. 

1. Assign each trip t T to the depot argmin{c^x + dhd\\ d € Gt)} and solve 
each resulting single-depot problem to optimalit using MCF. Let all depots be 
unexamined. 

2. I all depot capacities are satisfied, we have generated a feasible solution and stop. 

3. If there exist unexamined depots with violated lower or upper capacities, select some 
depot / with this proper Otherwise, we stop with an infeasible solution violating 
some depot capacities. 

. If the upper capacity of / is exceeded by the amount of k we heuristically select k 
vehicle schedules whose timetabled trips can be assigned to other depots with free 
capacity as cheaply as possible. If at least one circulation has been shifted to a free 
depot, we let all depots be unexamined and continue with 6. Otherwise, we go to 3. 

. If the lower capacity of I is violated by the amount of A/, we heuristically search for 
vehicle schedules or blocks that have been assigned to other depots, but could also 
be serviced by I. If at least one circulation has been shifted to the depot I, we let 
all depots be unexamined and continue with 6. Otherwise, we go to 3. 

6. The new resulting assignment of timetabled trips to depots is depot wise scheduled 
to optimaliy, and we go to 2. 

In the worst case, ND may theoretically produce arbitrar bad solutions. Consider the 
following small uncapacitated instance with V : {r, g}, T ^ 0, and A^"tnp := Ag t n p := 
{(i +1) | < < | T ; the weight of each unloaded trip is set to zero, except the weights 
of {(r, i), (i r)| i odd} C ^4r~

tnp and {(g,i), (i,g)\ even} C Agtnp that are all set to 1. 
ND assigns each timetabled trip with an even number to the depot g and with an odd 
number to r. The scheduling part cannot use any of the possible deadhead trips for this 
assignment and comes up with a solution using exactly \T\ vehicle schedules. The worst 
case ratio, however, is -^ since the optimal solution is exactl one vehicle schedule if all 
timetabled trips are serviced either b g or r. 

2 Schedule Cluster eschedule 

The heuristic that we describe in this section is currently installed in BERTA of the 
Berliner Verkehrsbetriebe VG) and is used in Berlin for bus and tram scheduling. It is 
also installed in MICR 2 of the I GmbH, erlin. 

The schedule cluster - reschedule approach is based on the following idea: There is a 
natural composition of schedule first - cluster second (SFCS) and CFSS heuristics since 
the output from the first one can obviously be used as the input for the second resulting 
in a schedule - cluster - reschedule heuristic (SCR 
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Our version of CR considers depot upper capacities heuristically, but considers no depot 
lower bounds. It is based on the function Lf c s() , which was presented in Chap. 6 for the 
Lagrangean relaxation with respect to the flow conservations and can be applied to any 
arbitrarily chosen Lagrange multipliers T. Currently, we apply SCR always with IT : 0. 
However, it is also possible to embed SCR in the subgradient method for L R f . Let TT be 
given, we perform the following procedures: 

h e d i n 

We start by evaluating (7r) with the network simplex code MCF. Let x be some 
optimal solution for Lic provided by MCF, and let S(x) C 2A denote the set of all 
vehicle schedules defined by x. Note that each S x) represents all unloaded trips of 
ts corresponding vehicle schedule. 

V e h i e demand timati 

In the following, we try to give an estimation of the necessary fleet size for x: Consider 
a fixed vehicle schedule S € {x). Let S C A denote all arcs with zero reduced costs 
connecting two subsequent timetabled trips of S, being a pullout trip that enters the 
first timetabled trip of S, or being a pull-in trip that leaves the last timetabled trip of  

Depending on our parameter settings, we allow, in addition, also to consider arcs in 
S with positive reduced costs being smaller than a predefined small value. Let 
{d maxieT S n A\ S (1 A denote those depots fitting best for S 

All vehicle schedules of S(x) are heuristically subdivided to the depots such that the 
depot capacit constraints are satisfied as much as possible. We construct the following 
minimumcost flow problem as shown in Fig. 8.1 and solve it with MCF. The node set is 
defined by V U S{x) U {p, q} with source node p, sink node q, and transshipment nodes 
V U S(x). The arc set consists of the arcs (p, d) connecting the source node p with each 
depot node d e D , (S, q) connecting each vehicle schedules S <E with the sink node q 
an arc connecting the sink with the source node, and all arcs [JSeS G() x {S} connecting 
each vehicle schedule with ts fitting depots. The arc costs and upper capacities are 

given as shown in Fig. 8.1. The weights cs := (\S\ - \S n ^ _ t r i p | ) • M + EaesnAu-trip ct 
approximate the costs if the timetabled trips of the vehicle schedule S (or a proper subset 
thereof are assigned to depot d. M denotes our used capital costs of a vehicle, and the 
term \S\ — \S 0 Ä£tnp\ tries to measure those parts of S that cannot be assigned to the 
depot d and, should this situation arise, must expensively) be assigned to other depots 
using possibly more vehicles 

The interpretation of this minimum-cost flow problem is as follows: It is the task to send 
exactly \S(x)\ units of flow from the source to the sink node as cheaply as possible. Since 
the costs of the arc {p, q) dominate the sum of all the other arcs together, as much flow as 
possible is routed through the transshipment nodes X>U< i e , as man vehicle schedules 
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(MM/\S(x 

(cost/capacity) of an arc. KJ is set to oo for uncapacitated d e p t s . MM d o t e s a h e n m b e r 
dominating the sum of all the other objective coefficients 

igure 8 1 : Minimum-cost flow problem for vehicle demand estimation 

S as possible will be assigned to one of its depots G(S). This assignment, however, must 
consider the given depot capacities in any case since only K^ units of flow can be routed 
through each node d 6 V. On the other side, at most one unit of flow can be routed on 
each node S 6 S(x), i. e it can only be assigned at most once. It is easy to see that the 
maximum flow through V {x) is routed as cheaply as possible with respect to the cost 
coefficients cd

s. 

With the optimal solution of this minimum-cost flow problem, we receive an estimation 
of the necessary fleet size for each depot according to x. Moreover, the flow value of 
(p, q) gives some estimation of the quality of x by the number of vehicle schedules that 
presumable cannot be assigned to depots without violating depot capacities. Last, but 
not least it helps us to derive a clustering from as described in the next two procedures 

Minimization of violated flow conservations 

We invoke a heuristic that tries to modify each vehicle schedule 5* <E S(x) by exchanging 
arcs such that the modified solution satisfies the depot capacities as much as possible 
and violates fewer flow conservations. It is motivated by the fact that we presumable can 
preserve more vehicle schedules of the modified solution than of the original one when the 
timetabled trips will be serviced by one of its fitting depots. 
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For eac S 6 S(x, we determine its favourite depot, denoted by dep(S) and defined b 
d if the flow value of the arc {d, S) was set to one, or defined by argmax^ex» 15* fl A^~ n p 

in the case that S was not assigned to any depot. By exchanging unloaded trip a 6 S by 
existing counterparts a 6 5, we heuristically try to determine parts of or complete block 
or better vehicle schedules whose timetabled trips can together be assigned to the same 
depot. It is the task to perform these exchanges such that 

the resulting blocks and vehicle schedules are as large as possible and iolate there 
fore as few flow conservations as possible 

the objective value is declined minimally, and 

as much blocks and vehicle schedules stemming from S have been assigned to its 
favourite depot dep as possible 

lusterin and reschedulin 

Each trip t G T is now assigned to that depot providing the unloaded trip that services 
in our modified solution, and the CF-SS heuristic applies 

Tabu Search. 

Whenever not all timetabled trips of a modified vehicle schedule can be completely as 
signed to the same depot, we forbid the use of those user-defined dead-head trip that 
connect two timetabled trips that are serviced in sequence by some 5 6 S(x), but have 
been assigned to two different depots. As long as new arcs have been forbidden, we restart 
with the scheduling procedure using the smaller network without the forbidden arcs 

8.3 LP-Plungng 

Our realworld MDVSP instances exhibit in practice a nice "almost-integrality property": 
solutions x of the LP relaxation (7.1) or an RLP include few fractional variables. It is often 
the case that x is already integral or there exists some integral solution yielding (almost 
the same objective value. Moreover, the gap between the optimal LP or RLP value and 
its optimal integer value is often small or zero. This property of realworld problems was 
also observed and described by Forbes, Holt, and Watts [1994]. LP-pluning makes use 
of this property by iteratively rounding up and fixing components of the L solution and 
reoptimizing the enlarged LP. 

Given an LP relaxation or an RLP and a nonintegral feasible vector x. Let A e ( 0 . 0 
denote some threshold value for which all fractional variables having a value within (A, 1) 
are rounded up and fixed to one, and let a 6 (0.5,1.0) denote some shrink factor for A. 
The standard values for A and a are 0.95 and 0.9. As long as the current x is nonintegral 
and the curren is primal feasible the following steps are performed: 



86 CHAPTER 8. P R L HE 

. All vaiables e (A, 1 unded up and f e d to 1 

2. If no variable was fixed to 1 and if «A is still greater than 0.5, we reset A : «A 
and go to 1. Otherwise, the value of every fractional variable is not larger than 
and we fix the first variable to 1 yielding the largest fractional value. 

3. Logical implications are performed, i e for each variable xfj being fixed to one, we 
fix the variables of all arcs (6+(i) U 6~(j)) r\Ajtlip and (5(i) U 5(j))\A^tlip to zero 

. The L enlarged by the variable fixings is reoptimized with the dual simplex algo
rithm. 

If the LPplunging succeeds, the clustering defined by the last (integral) x is depot-wise 
rescheduled to optimality using all possible unloaded trips of each depot. From this point 
of view, LP-plunging can also be viewed as a SCR heuristic that is based on the L 
relaxation 

Since the restricted column set of an RLP generally includes only a small part of ~tnP 
the LP-plunging generates in many cases only poor or infeasible integer solutions. If this 
is the case, we enlarge the current RLP parameter controlled by inactive columns (such 
that the probability to find a better integer solution is presumably increased, but the dual 
feasibility of the optimal basis of the RLP is not destroyed and the main memory limit of 
the workstation is not exceeded) and apply the Lp lung ing second time 

4 Vehicl Schedulng OT II — 
H a m u r g e r Optimizatio Technique 

We shall now describe another SF-CS approach that has been developed, implemented 
and successfully employed in practice at several German and international transporta 
tion companies: the sensitivity analysis module (SAM) and the vehicle scheduling module 
(VSM) of the HOT II system of the Hamburger Hochbahn AG and the HanseCom GmbH, 
Hamburg. This section is only focused on the mathematical details, the advantages, and 
the weakpoints of the vehicle scheduling in HOT. For a complete description of the HOT 
system, we refer the reader to the articles of Daduna Mojsilovic, and Schütze [ 1 9 ] and 
Daduna and Mojsilovic [1988]. 

It is an important property of HOT that only dead-head trips having a maximum pre
defined duration ranging between 40 and 120 minutes are considered. The concept of 
pull-in-pull-out trips is not used. Therefore, SAM is designed to build blocks, but not 
complete vehicle schedules. It includes procedures that, for a given set of timetabled trips 
build blocks heuristically without considering pull-out and pull-in trips and interactivel 
try to modify iteratively the timetable data such that the current solution can be im 
proved with respect to the number of blocks. The output of SAM is used as the starting 
point for VSM ts main mathematical part consists of distributing the blocks to depots 
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such that o o n a e m i m i e d and d e p t c a p a s a e s e d as g o d 
possible. 

SAM includes the scheduling part of SF-CS: It is formulated as a depotindependent 
assignment problem being based on the cost matrix with coefficients 

< if it is possible to link the timetabled 
trips i and j within some maximum pre 
defined turning time  
otherwise 

with a sufficiently large M dominating the sum of all cost coefficients of feasible links. 

We have already discussed in Chap 2.1 that a problem formulation like in HOT cannot 
handle depot groups correctly. Therefore, before the cluster part in VSM can be applied 
the resulting blocks of SAM must be splitted into smaller parts such that each component 
becomes feasible with respect to the depot groups 

The assignment problem is solved with the Hungarian method (for a description see, e. g. 
Ahuja, Magnanti, and Orlin [1993], page 471). The heuristic idea here is to minimize the 
number of blocks, and one hopes that the number of vehicle schedules is simultaneously 
minimized. We have also shown in Chap 2.1 that, in general these two objectives do 
not exactly coincide: A solution with the minimum number of blocks does not imply a 
solution with the minimum number of vehicle schedules, and vice versa 

The somewhat incorrect handling of depot groups together with the fact that blocks are 
generated without a consideration of all pull-in-pullout trips are the reasons why the 
assignment approach of HOT does not necessarily produce ptimal solutions 

The scheduling part is followed by a so-called sensitivity analysis. For critical time periods 
as rush hours the system interactively tries to modify the timetable data within reasonable 
bounds such that the number of blocks can be further reduced, but the level of service 
keeps constant. More precisely, the system iteratively offers parameter controlled possible 
modifications of the departure times of timetabled trips and the delay buffers of dead
head trips such that inadmissible links become feasible and, in each step, two existing 
blocks can be merged together. The heuristic motivation to reduce the number of block 
is the same as above: Such a reduction may also possibly reduce the number of vehicle 
schedules. This approach, however, can also fail because the number of vehicle schedules 
can increase: Figure 8.2 shows a similar counterexample as given in ig. 2 , but with a 
modified end time of block "b" and a modified starting time of "c" 

d 10:40 -- 11:10 

b 8:15 -- 9:35' " ^ c 9:40 -- 10:45 

a 7:50 -- 8:20 

igure 82: Counterexample to the heuristic motivation of sensitiity analysis 
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Let us assume that the ink between the blocks "b" and "c" is inadmissibe s long as 
the timetable data keep unchanged Obviously, the blocks "a" and "c" in sequence as 
well as the blocks "b" and d" in sequence can each be serviced by one vehicle, i.e., two 
vehicles can service all blocks and thus all timetabled trips. But if the linking conditions 
are somewhat relaxed such that it becomes feasible to link "b" with "c" to a new block 
"b—>-c", an additional vehicle becomes obviously necessary. Nevertheless, the sensitivity 
analysis seems to work very well in practice as indicated by the vehicle given in Daduna 
Mojsilovic, and Schütze [19 

At last, clustering in done in VSM. First, it is checked whether each block can be assigned 
to some depot or whether there are infeasible combinations of depot groups. In the latter 
case, such a block has to be splitted such that each part can be assigned to some depot 
In the worst case, an additional vehicle becomes necessary. Considering depot capacities 
heuristically, each block is assigned to some valid depot such that the costs for the pullout 
and pullin trips are as small as possible. 

Although some parts of the vehicle scheduling in HOT do not model the real problem 
exactly, all weakpoints can be repaired heuristically. On the other side, some degrees of 
freedom get lost resulting in suboptimal solutions. In Grötschel, Löbel, and Völker [1997] 
we have already obtained savings compared to the solutions of HOT that indicate, on the 
average, reductions of the fleet size of about 3 % and of the operational costs of about 
10%. From a practical point of view, the scheduling in HOT is nevertheless an efficien 
primal heuristic with a uite satisfable solution uality 
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olyedra invtigati 

n t chapter, we give some r e s u s concerning our polyhedral investigations of th 
MDVSP. Readers who are orientated practically rather than theoretically may possibly 
wish to continue with the next chapter 

Polyhedral investigations play a basic role in solving many combinatorial optimization 
problems as, for instance, the travelling salesman problem. The thesis of Thienel [1995 
gives a computational study for various problems that are solved with polhedral cutting 
plane approach 

Our early theoretical investigations of the MDVSP started with a characterization of the 
facial structure of its 0/1polytope In the course of our algorithmic developments and 
computational investigations in solving the MDVSP, however it turned out soon that we 
are faced with completely different obstacles than finding (violated) inequalities of the 
integer polytope. For the few problems of our test set that could not be solved to proven 
integer optimality using only our column generation together with LPplunging, we could 
not successfully apply a cutting plane approach Our separators are able to determine 
violated inequalities for fractional LP solutions, but using them as cutting planes gives 
rise to the following two problems: First, the enlarged P relaxations become harder 
such that they could often not be resolved to optimality for large instances. Second, 
if reoptimization succeeds, the flow is always completely rerouted with the same costs 
Finally, when no more new violated cuts could be determined, we must start branch-and-
bound with much harder LPs. It turned out that it is for our test set better to use only 
branch-and-bound without cutting planes. 

Although cutting planes do not contribute to the solution of our problems, we will, for the 
sake of completeness, at least give the theoretical results of our polyhedral investigations 
but do not describe the separation routines that we have implemented. We start by 
defining the polytope associated with the MDVSP and give the results concerning the 
polytope's dimension. We continue with the results concerning trivial inequalities xd

a ^ 0 
and introduce new kinds of valid inequalities for the uncapacitated case. Last but not 
least, we give an extended version of minimum cover ineualities that are valid for the 
capacitated version of the MD polytope. 
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he DV olytope 

By -PMDVSP := conv {re e RA\ x satisfies (2.14b) - (2.14f)} we denote the 0/1-polytope 
associated with the incidence vectors of feasible solutions of the MDVSP Without lost of 
generality we assume in this chapter D:={1, . . . , |X>|} 

Since the feasibility problem of the (capacitated) MDVSP is A/"P-complete, see Theo
rem 3.10, it is also A/'P-complete to determine the dimension of PMDVSP and impossible 
to make any statements on its facial structure. Therefore, our polyhedral investigations 
have been mainly concentrated on the uncapacitated case. Our first result is about the 
quality set of PMDVSP for uncapacitated problems 

(9.1) Lemma. The equality set eq(PMDVsp) for uncapacitated problems is given by the 
flow conditions (214b) and the flow conservations (214c) 

Proof: We have to show that each valid equation eTx = / is a linear combination of 
(214b) and (2.14c). For convenience of notation, we define for each d 6 V artificial scalars 
T(i and ird and set them to zero. Given some valid quation eT = f, we have to show that 
there exists vectors r e l r and -n := {^ 6 ^Td)deT such that efj := f;- — 7if + - = 

for all (i, j) e Au
d

tTip and all d e V, and J := / r t = 0. We set irf := -e% for alH e T 
and all d € T>, and we set j := di + for d = minG(i) and for all i E T- Inserting 
and 7 into proves 

9.2a) td V i e 7^ V d e £ 

92b e\ d = mmG{i) V i e 7 

sing 1 / mm G{i) for all i e 7 and otherwise we can prove 

93) 7 ( = } 0. 

For each e T we consider rc^ := , for all d e G(i) \ {minG(i)} = 1 
= mmGj) for all j e 7 \ {i} and 0 otherwise which proves 

94) <S» ^ ( 8 i 0. 

For each d £ V and each arc (i, ) e ^4d"
tnp, consider 1 and \t 

^ 1 I = minG(t) for alH e 7 \ {hi} which proves 

9 5 ) (9=2) ^ 
' (9.4) 

• 
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Note, the equality set of PMDVSP is determined alone by the existene of a t a 
pullin trips. Knowing eq(PMDVsp) the dimension dim(PMDvs) is: 

(96) emma. The dimension of the uncapacitated MDVS polytope is 

u-triP j2\T \T\ 
dev 

Proof: Lemmata 2.16 and 9.1 • 

Our polyhedral investigations benefit from the program package PORTA written by 
Thomas Christof. ORTA is an abbreviation for POlyhedron Representation Transfor
mation Algorithm. It provides tools with which a polyhedron given by a convex set of 
vertices and (possibly) a cone of extremal rays can be transformed into a representation 
given by a set of linear equations and ineualities, and vice versa ORTA is available 
via WWW, see Christof [1994] 

We have used PORTA to enumerate all facets of small problems for which we assume that 
G(t) = V, for all t e f , and each subset of timetabled trips can be serviced in sequence 
by one vehicle. Table 9.1 displays the number of facets for problems with 3 timetabled 
trips and problems with 4 timetabled trips u to 4 depots. For 3 trips, there are exactly 7 
trivial facets xa ^ 0 per depot, see Lemma 9.7, and 2^1 — 2 nontrivial 2-cut or, for \T\ = 3 
equivalently, 1-path inequalities, see Lemma 99 and Lemma 914. The number of facets 
of larger problems could not be determined, but one can easily guess their combinatorial 
explosion 

T\ V\ T\ V\ 

27 
264 

42 
1658 

£>| 

Tab m b r of f s f mp 

Although we have determined different kinds of valid inequalities (and facets for the above 
kind of complete problems) almost nothing is actually known about the facial structure 
of -FMDVSP 

9.2 Trivial inequalities 

For arbitrary uncapacitated problems, the next lemma gives sufficient conditions when 
trivial ineualities are facet defining 
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(9.7) Lemma, (i) xd ^ is facet defining for each a E ^~ t nP and each d e D . 
(ii) a is facet defining for t E T and d E V if \6+(t) n ^ J t r i p | ^ 3. 
(iii) x is facet definin for t E T and d E V if \6~(t) H ^" t r i p 3 

Proof: Obviously, these inequalities are valid. We show (i): Let F be the face induced 
by xd ^ . F defines the same set of feasible solutions as the problem without the dead
head trip a E Ad'

tnp. Hence, the statement follows straightforwardly by Theorem 9.6 and 
Theorem 1.1. Showing (ii) requires a quite long technical proof whose length would not 
be justified by its contents. The idea is to prove condition iii of Theorem 11 . Last but 
not least (iii) follows immediately from (ii) by symmetrical reasons • 

(9.8) Remark. If \S+(t) fl ^ " t n p | < 3, the inequality x is valid but not alway 
facet defining. For instance, x is facet definin 

S+(t) n 4 " t r i p = 0 and 5~(t) n ^ J t r i p = 0 or 

(t) n 4 " t r i p t ) 5( \Ad^Q and 5(t) \ Ad ± 0 

but not if 

(t) n A-irip = 0 and 5(t) n ^ J t r i p ^ 0 or  

6+{t) n 4 " t r i p t ) S( \Ad^V and S(t) \A = ® 

uivalent results hold for x if \5t) n ^ j t r i p | < 3 

9.3 2-c and Extended 2-c nequalities 

The facial structure for the following inequalities was investigated for the case where 
G[t) = X>, for all t E T, and each subset of timetabled trips can be serviced in seuence 
by one vehicle n general they define only valid ineualities 

( 9 . ) Lemma. 2-cut inequalities. Given some number p E {3, . . . , | T | } . Let U := 
[ui,..., Up] C T denote an ordered set of timetabled trips such that their starting times 
satisfy sUl < . . . < sUp. Additionally, let V be partitioned into p — 1 sets h..., Iv-\ E 2V 

such that their disjoint union equals V and at least I\ and I i are nonemty. Then the 
ineuality 

(U) J Z «M (W) 2, 
j = del 

d 2-ut inequali s v d f r PMD 
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Proof S c e all coefficients of the vector a are nonneg ach i teger f e solution 
covering U with at least two vehicle schedules satisfies aTx ^ x (ö(U)) ^ 2. Otherwise, 
if x (S~(U)) = 1, the trips of U are serviced by exactly one vehicle, say of depot d E V. 
Then for i satisfying d E I holds xd i e Tx • 

(910) Lemma. xtended 2-cut inequalities. Given some number q E 3 , . . . , |T|} 
denote an ordered set of timetabled trips such that their Le 

starting tmes satisfy sUl < ••• < . For each d E V, l t Ud C Ü be given wi 
U := f]deVU = [ui... ,up] and p ^ 3. Additionally, let V be partitioned into p — 1 
sets i i , . . . , Ip-i E 2V such that their disjoint union equals V and at least I\ and J i are 
nonempty. Then the ineuality 

(Ü) 5 > {«» 
deh 

E 
j = 

E {«*} { « i » 

U\ < U < U^_)_i 

d e i i 

either" {«<} - {M}) 

X ) [ ( * ) n r ( * £ ) n )] 

lle exended 2-cut inequality is v l id for PMD 

Proof: The idea of this proof is as follows: For each arbitrary, but fixed integer feasible 
solution x, we iteratively eliminate nodes u E U\U and shrink paths including such nodes 
respectively, until we receive an extended 2cut inequality that is known to be valid for 
the shrunken x. 

Assume that xd (S+(U) n 5U\ Ud)) = 0, for all d V, i e , x uses only arcs havin 
a nonnegative coefficient in bT. Obviously, bTx ^ x(5~(Ü)) ^ ~({u~i})) = 1. If 
covers Ü with two or more vehicle schedules it is easy to see that bTx ^ x ((Ü)) ^ 2 
Otherwise, x uses exactly one vehicle schedule say of depot d E V, to cover Ü. Then there 
exists an unique i satisfying d E Ii and either x U {^}) = 1 or xd {up} — U = 1 
or 

r , r ^ 

Tx 

E 
Ü e ud : 

sither" m} {w}) 1 _ 
or" «} - {m}) J 

C o r s e l y , a u m e that t e r exists some / E V and some u E U 
l Ü) n # { M } ) = 1 sing the flow conservation of it follows that 

l(6-{u}) l {5-U)n 5-{u}) {u}) l(U\)^{u} 

Let b x denote the extended 2-cut inequality derived from bTx without u. For the consid
ered fixed) it is easy to see that d for all d^l. S we have to show 
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that the same holds for /: If x {5 ) f {«}) {u}) , it is easy to 
verify that bl 

xl + xl(5Ü)C{u}) x l { u } ) xl(5Ü)n {«}) = \ l 

If {(Ü \ Ui) —> {u} = there exists exactly one v E Ü \U such that xvu = 1. Since 

u = 0, but bl
vux

l
vu = —1, it follows that bl xl = () x So, we have shown that 

x bTx and thus, by induction over the nodes in Ü \ U follows that at some step 
(SÜ) fl Ü \ l ) = i e the extended 2cut inequality is valid. • 

( 9 ) Remark In the case of U, x reduces to a 2cut inequality 

9.4 1-path neualit ies 

The 1-path inequalities which we present in the next lemma have been investigated by 
Alexander Martin. 

(9.13) Definition. Given some (with respect to the starting times) ordered set V := 
[ui,.:up] C T and some partition of V in sets U and Ü. Then we say U dominates 
Ü if \U fl { 1 , . . . i}\ ^ \Ü fl { 1 , . . . i}\, for alH = 1 , . . . p — 1; we say Ü subdominates 
U if \Üni,.p}\ ^ \Un{i, . ^ . , p} | , for all i = 2,... ,p. If we replace " by " we 
say that U s t i c t l y dominates Ü and Ü s t i c t l y subdominates U. 

(9.14) Lemma. 1-path inequalities. Given some U C T such that p : U\ ^ 3 and 
dd. For each d EV: let U and Ü be some partition of U such that 

dominates d 

ii) Ü subdominates Ud, 

iii) [dev strictly dominates U \ {Jdei
 a n d 

iv) dev strictly subdominates U \ dep 

hen the inequality 

x{U) Y d ( i t T i P U ) ) ) 
dev 

called 1-path inequality is valid for PMDVSP 

Proof: Consider in terms of cycle flows xd = ^weW /if,w ,d E {0, l}1 4^. For each 
d EV and each W let U C U denote the trips covered by . It is easy to check that 
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> [ ^ an thus < devew dev^wjl^] l 1 

• 
Note that conditions i) - iv) are not necessary to show validity of the inequality. If 
however, some of these conditions is unsatisfied, the resulting inequality can, at least in 
the complete case be strengthened. The name 1-path originates from the fact that each 
vehicle schedule E Wd entering U exactly once and having an empty intersection with 

iUip(U) Ud) uses at most one arc of U + Ü) C AjtTipU) 

(915) Remark. For p 3 2cut and path inequalities are the same 

9.5 Extended Cover nequalities fo the p a i t a t e d 
MDVSP 

We present for the capacitated MDVSP polytope a generalized version of the minimal 
cover inequality, which has been first presented by Balas [1975], Hammer, Johnson, and 
Peled [1975], and Wolsey 975]. Given some depot capacity xd(5+(d)) ^ K A set 
S C A^u "out is called a cove if \S\ > Kd. The cover is minimal if \S\ = Kd + . Given 
some minimal cover 5* AFn "ou the inequality 

S) ^ K 

is called the minimal cover inequl i ty corresponding to S. he next lemma shows how 
the inequality can be strengthened 

(9.16) Lemma. Extended minimal cov inequality. Given some depot capacity K 
for depot I and some such that \ hen the inequality 

xl{6U) ^ ^ ^ t / ) 
deV: d£ 

called exended al cover nequality and its equivalent representation 

£ (5U) xl At«»UJ Y; Ar 
deV: d^ 

re v l id for the c i t a t e d P 

Proof: The equivalence of dTx ^ Ki and dTx ^ is given by subtracting the sum of the 
flow conditions x (5u)) = 1, for all u E U, from dx ^ Ki to receive — dTx ^ — 1. Each 
integer feasible x can use at most Ki vehicle schedules of depot I to service all timetabled 
trips of T and thus also of U. herefore either at least one circulation of / covers two 
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or mo s o U or t e e s s m e o t c at l t o e of U, 
either 

^2 (5U) or xl f-tlipU) 
deV: d^ 

• 

(9.17) Remark. The part x (S(U)) of eTx includes the left-hand side of the minimal 
cover inequality corresponding to the pullout trips entering U. 
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Solvin t h M S P exactly 

At first glance, it seems to be impossible to solve large-scale MDVSPs using commer 
cial or publicly available standard software, even on the newest and fastest workstations 
or supercomputers. Nonetheless, with an intelligent combination of available LP and 
minimum-cost flow codes together with implementations of many concepts of combina 
torial optimization and integer linear programming, it has become possible to solve such 
problems on fast workstations to optimality. Hitherto, we have introduced step by step all 
basic ingredients that turned out to be indispensable to solve our test instances: We solve 
the integer linear programming formulation of MDVSPs by primal and dual heuristics 
column generation and elimination, and branch-and-cut. We have already discussed each 
component except branch-and-cut 

We have also investigated a Dantzig-Wolfe decomposition as described in the next chapter 
It turned out that this decomposition approach is an unsuitable method to solve the 
MDVSP. The major obstacle here is that the continuous master problem relaxations 
become too hard to be solved efficiently. Especially for problems with more than one 
thousand timetabled trips, the LU factorization in solving the restricted master problems 
takes far too much time. We will discuss the computational results of our decomposition 
implementation in Chap. 12. 

In what follows below, we first give a brief description of the branch-and-cut approach, 
show how an approximation guarantee can be determined easily using lower and upper 
bound values, and describe the implementation details of our method to solve the MDVSP 
exactly 

10.1 Branchand-Cut 

The basic idea of branch-and-cut is simple. Most of the valid inequalities, in general 
facets, of the convex hull of feasible solutions are not used by the initial LP relaxation 
since there are too much to handle them efficiently. If the optimal solution of the LP 
relaxation provided by the used P solver is not feasible a separation problem is solved to 
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nd violated iqua l i t i es cutting off t e i f e b e s t i and strengtening the cr rent 
LP relaxation. This is called the cutting plane approach The enlarged LP is reoptimized. 
Separation and reoptimization alternate until either the LP solution becomes feasible or 
no further violated inequality can be identified. In the latter case, a branch-and-bound 
procedure starts. We assume the reader to be familiar with it. Branch-and-cut combines 
branch-and-bound and cutting plane such that separation is allowed at each leave of the 
branch-and-bound tree 

A comprehensive description including all important ingredients of branch-and-cut is, for 
instance, given in the thesis of Thienel [1995] providing a computational study of several 
optimization problems solved with the branch-and-cut system A B C U S . 

Unlike expected by the experiences of many branch-and-cut applications reported in the 
literature, our branch-and-cut plays only a subordinate role in solving our test problems 

he bottleneck is rather to solve the LP relaxations to optimality. This was possible for 
19 out of our 20 real-world test instances. Out of these, 12 could be solved optimally using 
only column generation/elimination and LP-plunging. The best integer feasible solution 
for each of the other 7 problems was almost optimal, which gives rise to the assumption 
that branch-and-bound may be sufficient to solve further problems to optimality. Indeed, 
four of them could then be solved to the integer optimum by branch-and-bound, all with 
less than 10 branching nodes. It was also possible to solve these four problems with 
branch-and-cut, but, surprisingly, needing significantly longer run times. The remaining 
three problems could neither be improved by branch-and-bound nor by branch-and-cut 

10.2 pproximation uarantee 

Given a problem instance with an optimal integer solution value c*. Assume that we have 
determined a valid lower bound CL and an integer upper bound cy. Since ^ CL ^ c* ^ c 
the percentage deviation between cy and c* can be approximated by 

TT — C* u — C 

— — -
c cL 

From a practical point of view, it can take a long time to obtain a lower bound by the 
optimal LP value or an improved one by branch-and-cut. Therefore, as long as the LP 
relaxation is not solved to optimality, we use the somewhat weaker, but much "faster" 
lower bound obtained by Lagrangean relaxations 

10.3 Implementation Details 

he basic components of our algorithm are the following: 

agrangean relaxations to quickly obtain tight lower bounds for the minimum fleet 
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size and the m i m u p e l c s t s c s p o e to t e i 
optimum value 

Primal opening heuristics to obtain a first integer feasible solution and a good start 
ing point for the P relaxation. 

The LP relaxation approach with a column generation scheme including agrangean 
pricing 

• LP-plungng to exploit the information compiled in each (R) and its optimal 
solution. 

Branch-and-cut to solve a problem to proven optimality 

The workhorses: MCF combined with a column generation and the solver 
CPLEX. 

Figure 10.1 gives the flow chart of our method to solve MDVSPs. We first determine 
a lower bound CL by the Lagrangean relaxations LRfcs and LRfd as close to the integer 
optimum value as possible. We know from Kokott and Löbel [996] that the realworld 
test instances considered here seem to be fairly well structured. Already the trivial prob
lem relaxation Lfcs(0), i.e., simply neglecting the flow conservations, provides very good 
lower bounds Second, we compute an upper bound CJJ using the opening heuristics SCR 
and/or ND. Third, the LP relaxation is solved to optimality using our column genera 
tion and column elimination scheme. Besides standard reduced cost pricing, the column 
generation procedure is reinforced by the new Lagrangean pricing. Within the iterative 
column generation and elimination process, we optionally call the LP-plunging heuristic 
to improve the current integer feasible solution. Whenever the upper bound CJJ could be 
improved, we check whether — is small engh from a practical point of view and stop if 
this is the case 

When the LP relaxation has been solved to optimality, our method has already generated 
an optimal solution by LP-plunging for many test instances. In this case, we stop. Oth
erwise, let CLP denote the optimal LP value. We generate as many nonactive columns as 
possible (respecting a main memory limit) that have reduced costs smaller than J — c^p. 
Note that none of the other inactive variables can have a positive value in an integer 
solution yielding a smaller objective value than cjj. The resulting RLP is then fixed and 
solved by branch-and-cut. Of course, branch-and-cut is only a heuristic if not all columns 
with reduced costs smaller than CJJ — c^p have been generated since neither an optimal 
nor a feasible solution is guaranteed by such a fixed R P . 

Our network simplex code MCF as well as the C P E X Callable Library, see CPLEX 
[1995], are the workhorses of our code: Solving the MDVSP with our algorithm exactly 
requires at several steps the efficient solution of minimum-cost flow problems and linear 
programs. Standard tools in vehicle scheduling are network flow models and algorithms 
which have been profoundly investigated and are well understood. MCF allows to solve the 
single-depot problems and subproblems to optimality in a few seconds. The Lagrangean 
functions can, depending on the problem size, also be evaluated in a few seconds up to 
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START 

Compute a "fast" and "tight" lower 
ound C by Lagrangean relaxation. 

Compute an upper bound C 
by opening heuristics 

nitialize column generation. 

Solve c u r n t RLP 

mprove C by LP-plunging (optional) 

Column elimination by d u c d cost criterion. 

Column generation by Lagrangean 
pricing and reduced cost pricing. 

»( STO 

e 1 0 : S g MDVSPs ow c 
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a few minutes For i n s t c e Lfcs can be exactly e v u a e d in about 15 minutes f r ou 
largest the problem with 70 million of arcs, see Chap 12. The linear programs have been 
solved with the primal and dual simplex solver of CPLEX, version 40.9 
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ntig-Wolfe ecomosition 

In the previous chapters, we have d i s c s e d our ranch-and-cut approach with column 
generation to solve the MDVSP exactly. A further method to solve our problem is Dantzig-
Wolfe decomposition, which is due to Dantzig and Wolfe [I960]. This decomposition 
method has often be used to solve various multicommodity flow problems in the fields of 
transportation and telecommunication. 

The general decomposition principle and its economic interpretation is outlined in Chvätal 
[1980] and, for network multicommodity flow, in Ahuja, Magnanti, and Orlin [1993]. We 
will use most of the concepts already proposed by Desrosiers, Dumas, Solomon, and 
Soumis [1995] for decomposing the MDVSP . 

The underlying LP formulation is based on the contracted digraph D 210) reading 

(111a 

subjet to 

(11.1b 

(11.1c 

(11.Id 

(11.le S+{t 

(11.If 0. 

(1111 integral 

We will describe in this chapter how this ILP can - at least theoretically - be solved 
by branch-and-cut-and-price: First, (11-1) is reformulated in terms of cycle flows, which 
give rise to an integer master problem, and we compare this cycle with the original arc 
formulation. Second, we describe how the linear programming relaxation of this integer 
master problem can be solved by a delayed column generation giving rise to a pricing 

m i nS Yl cd 

x(6+{t)) 1 VteT, 

8+(d eV 

(S+{d)) eV 

(t o teT eV 

10 
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problem. Third, we describe the g e r a l principle of branch-and-price and how it can be 
combined with branch-and-cut to a branch-and-cut-and-price approach, which is finally 
employed to solve the integer master problem to optimality 

11.1 The ster Problem 

Hitherto we have always considered the MDVSP to be given in an arc-oriented formula 
tion with arc flows. It is also possible, however, to consider a cycle flow formulation as 
follows: For all d G V, let 

= { G M 0 satisfies ( l l . le )} 

= {S C Ajimp S is a vehicle schedule for depot d} 

and 
={X

S 

(112) Remark. Obviously, each Wd describes exactly the set of directed cycles in Dd 

and Wd describes the incidence vectors according to the dicycles in Dd. We will consider 
Wd also as the matri (x that is defined by arranging the elements of W column
wise 

The set of all incidence vectors is denoted by 

(113) Lemma For each d G V holds: 

< G cone 

Proof: It is obvious that cone(W/
d) C Xd. Conversely, each flow xd G Xd can be decom

posed with Theorem 1.20 Lemma 1.21, and Remark 11.2 into a dicycle flow, i e for each  
W exists a scalar f ^ 0 such that = J / or G cone(W) • 

(114) Remark. Lemma 11.3 follows as an application of the Decomposition Theorem 
for Polyhedra due to Motzkin, 1936: A set of vectors in Euclidean space is a polyhedron 
if and only if it can be represented as the sum of some convex set and some cone n our 
case, the convex set is {0} and the cone is X cone(W 

Inserting each 0 ^ G R into (111) results in an eger mst robl 
(IM 

(11 m i n ^ 
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t t 

11 E 1 * G T 

11 deV 

11 deV 

11 o 

11 {o 

where each c^ denotes the costs of the vehicle schedule associated 
with the dicycle w G Wd within the digraph Dd. In the following we will call the linear 
programming relaxation of (11.5) the mster proble ( M ) . 

Per definition of each Xd: the constraints (11.1 e) and (11.1 f) are always satisfied by Wd fi 
and can therefore be neglected. The transformation of the objective function (111a) into 
(11.5), the flow condition (11.1b) into (11.5b), and the depot capacities (111c) and 
(11Id) into ( 1 1 ) and ( 1 1 ) are validated as follows: 

For each d EV holds 

E E E 

E 

r e G T h l d 

*(* EW* E 
s+(t)n 

E E 

E E W W 
5+( f)n 
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r e h d E V 

* + * ) ) 
S+()n 

E E 
)n )n 

E 

(11.6) Remark. It is easy to see that each w(5+(t)) is equal to one if and only if the 
dicycle w W covers the timetabled trip t E T, otherwise, w[5+(t)) is zero. Therefore 
the system ( 1 1 ) corresponds to a constraint matrix of a set partitioning problem. 

11.2 elation between the aster roblem and the  
elaxation 

It is obvious that the ILP formulation and IMP yield the same optimal integer value. The 
same holds for the LP relaxation and MP, but MP provides more fractional basic solutions 
More precisely, let PLP and PMP denote the polytopes associated with the LP relaxation and 
MP. It is easy to show that there exist vertices fi E PMP such that (x = Wdß

d)dev E PL 

is a nontrivial convex combination of vertices in PLP For instance, we have enumerated 
the vertices of PLP and PMP for a uncapacitated problem with \V\ = 2, \T\ = 3, and 
G = V, and we have enumerated all facets of the integer version of PL and PMP, which 
we denote by PlLP and PIMP These enumerations have performed with PORTA. 

For this small instance, the polytopes PLP and PMP contain exactly 22 equivalent integral 
and four equivalent fractional vertices: The integral vertices of PMP are the following 
vectors 

I + I I + I I + I + I I + I , and 

whereas each ocurring c o l u n vetor can belong to any of the two depots. It is easy to 
verify that there are exactly 22 combinations possible. The fractional vertices of PMP are 
the eight possible combinations of 

(117) 
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However, only four of t e m , for which the two colums (1 0)T and (0,1,1)T belong 
to different depots, can be transformed to vertices of PLP. If, for instance, all three 
columns belong to the same depot, the corresponding solution in PLP can be represented 
as a nontrivial convex combination of the vertices in PLP corresponding to (1,1,1)T and 
( 1 0 1 ) T + (0,1, 0)T in PMP. Based on heuristical arguments Forbes, Holt, and Watts 
[1994] claim that such cases are unusual: Either the column (1,1,1)T or the columns 
(1,0,1)T + (0,1,0)T would be most probably cheaper than (11.7) such that it would be 
unlikely that a solution like (11.7) is optimal. We agree with them, however, only if the 
columns (1,1, 0)T and ( 0 1 1 ) T of (117) belong to the same depot and if the optimal 
solution in PLP is unique. 

Based on our data we cannot guarantee that the optimal solution of PLP is unique. There 
fore, solving the MP requires either a proper perturbation of the objective function or we 
cannot avoid that we obtain an optimal solution such as (11-7), which may require ad
ditional branching steps in the branch-and-cutand-price algorithm that we will describe 
below. 

11.3 The ricing roblem 

Although the master problem has significantly fewer equations than the LP relaxation, 
it contains exponentially many variables. Nevertheless, we can solve MP with a delayed 
column generation approach. The general column generation principle was outlined for 
the LP relaxation in Chap. 7. 

Let the restricted master problem (R be the linear program that is defined by the 
columns of MP corresponding to some W W. We assume that RMP is primal feasible 
Let v G Mr, 0 ^ ß G R, and 0 ^ 7 6 l p denote the dual multipliers according to 
(11.5b), (11.5c), and (11.5d) for the optimal basis of a current RMP. The reduced costs 
of the variables of M are given by 

T { 5 + ) ) MdeV 

For convenience of notation, we define for each d G V an artificial variable ^ 6 B and set 
it to zero t follows straightforwardly that 

( t ) ) (t 

Y C%ii Y Viii3 Y (<$ji3 

given basis is optimal if and only if for all w G Wd and for all d G V the reduced costs 
~ are nonnegative Therefore a basis is optimal for RMP as well as for MP if the pring 
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11 min min Y^ (ct V 

ield ive v l u 

11.4 lving the ster Problem 

From a complexity theory's point of view, it is a A/'P-hard problem assuming the initial 
RMP to be primal feasible; however, we refer to Rem. 3.11, in which we determined depot 
capacities to be often soft constraints. We initialize the first RMP with the columns 
associated with a feasible set of vehicle schedules given by some primal heuristics as for 
instance, a nearest depot heuristic, see Chap. 8 

We attack the pricing problem as follows: Let PPd denote the pricing problem for a fixed 
( f e D . We split the depot node d into its original nodes d+ and dr such that d+ becomes 
the new tail node of all pull-out trips, and d~ becomes the new head node of all pull-in 
trips. Then, P is the problem to find the shortest path from d+ to dr according to the 
arc weights d := (cfj — Vi)i^Ad- Fortunately, the underlying network for each PP^ with 
the two new depot nodes is acyclic. The shortest paths - even if negative arc weights 
occur - can therefore be computed in (91^1) time using e g the reachng algorithm as 
proposed in Ahuja, Magnanti and Orlin [1993]. 

The algorithm proceeds in the following way: For d EV, let wd denote the shortest path 
for PPd . If 7d — ßd + c wd ^ 0 for all d 6 V, the optimal basis of the current RMP is also 
optimal for MP, and we are done. Otherwise, the column of at least one w violating the 
optimality condition is generated and added to RMP, the enlarged RMP is reoptimized, 
and we iterate. Between two consecutive RMPs we generate for each depot d the column 
corresponding to the shortest path w if j d — ß \ w < 0. 

Our computational investigations have shown that Lagrangean pricing is indispensable 
to solve the LP relaxation of larger MDVSP instances. Thus, we came up with the idea 
that our decomposition may also benefit from Lagrangean pricing. And indeed, it can 
help to significantly accelerate the solution of MP: Consider the subproblems Licd of the 
Lagrangean relaxation LRfcd for which the flow conditions have been put into the objective 
function. We use the value of the optimal dual multipliers v of the last RMP as estimators 
of the Lagrange multipliers of the flow conditions and evaluate Lfcd at v. In Chap. 6, we 
have shown that each optimal solution of LicA{v) corresponds to a set of vehicle schedules 
that seem to be advantageous for the given Lagrange multipliers v. Thus, we generate the 
columns of all these suggested vehicle schedules for which the reduced cost criterion for 
MP is not satisfied and which are currently not active. In addition to the standard column 
generation scheme, this Lagrangean pricing is always used between two consecutive RMPs 
to generate further columns 
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11. ng the I n t e e r aster Problem 

11.5.1 Branch-and-Price 

Applying a branch-and-bound procedure to a fixed RMP that contains an optimal basis 
according to MP, the current set of active columns will neither guarantee an optimal nor 
a feasible integral solution (see, e.g., Barnhart, Johnson, Nemhauser, Savelsbergh, and 
Vance [1994] or Sol [199]). Barnhart et al. claim that, nevertheless, many decomposition 
problem instances have been solved successfully, but not to proven optimality, by the 
heuristic of limiting the column generation to the root node of the branch-and-bound 
tree. 

Incorporating column generation in each node of a branch-and-bound tree - this is called 
branch-andprice - is hard: Standard branching on variables of MP may be ineffective 
since fixing a variable / to zero destroys the easy structure of PP. Moreover, there no 
guarantee and it is even most likely that the pricing problem will regenerate the column 
of /if, within the branching node corresponding to /xf, := 0. To avoid a reactivation of 

f,, we have to compute also the second shortest path, and, for a branching depth k, we 
would have to compute in the worst case the k shortest path. For this reason, we should 
use branching strategies that are cmpatbl to P. The following actions can be easily 
performed for PP: 

Fixing arc variables to zero. To fix some arc a E i j t n p to zero, we set its weight c 
in Pd to infinity. Consequently all columns f satisfying Wij 1 w E W, can 
also be fixed to zero 

Removing depots from a depot group. To forbid that a trip t E T is serviced by a 
depot d E G(), we can easily remove d from G(t) and fix all arcs of ^ ~ t n p t } ) to 
zero 

ntracting two tmetabled trips. If for some depot d two subsequent timetabled 
trips i and j E Td are serviced in sequence, we have to contract the nodes i and j 

ote that each arc weight cf • must be shifted on the node j (or i) to each arc of 

( i ) n r i p ( o r ( * ) n ^ r i p ) 

It would be advantageous to have branching rules that can make use of some of these 
actions: We c o p u t e the vector x := (Wd fi

d) . Obviously, is integral if and only 
if // is integral. If this is the case, MP has been solved to optimality, and we can stop. 
Otherwise, we perform one of the following briefly sketched branching strategies and 
iterate the branch-and-price algorith until op t i a l i ty is proved. 

t a n d a d branching n the original variables in (11.1). We select some d E V and 
some arc (i, j) E A^~trip such that fj is fractional. On the left branch, we set xfj = 
and 0 for all with ij 1. On the right branch, we set f and 



110 CHAPTER 11. DANIG- LFE ECOMTIO 

12ew -wi-=i Vw lj in addition, all the other epots th d can be r e o v e d fro 
the depot groups G(i) and G(j) 

ching on depot groups We select so t G and divide (t) in two subsets 
Gt(t) and Gr(t) such that J2deG m xd (S+)) and J2eGrm xd(5+(t)) are both frac 
tional. On the left branch, we r e o v e Gi) fro G() and on the left branch, we 
remove Gr). 

he branching strategy propose y Ryan and Foster [1981]. Let i and jbe two 
timetabled trips such that x(i — j) is fractional. O the left branch, we set x(i —> 
) := 0, i.e., we fix each arc a (i — ) to zero. On the right branch, we contract  
and j and fix each arc a (i) U (j)) \ (i — ) to zero 

11.5.2 Branch-and-Cut-and-Price 

Branch-and-cut and branch-and-price can be combined to a branch-and-cut-and-price ap
proach. Such an approach tries to tighten MP by column generation and cutting plane 
generation. The difficulty of branch-and-cut-and-price is the incompatibility of its two 
parts: PP can become uch harder and even impossible to be solved if we add valid cuts 
(or facets) to MP since new cut can destroy the well suited structure of PP. Vice versa 
generating new c o l u n s ay also have a negative effect on separation, see Barnhart et 
al. 

For instance, the only facet of MP for our s a l l e x a p l e fro Sect. 112 is the following 
clique inequality (see Padberg [173) : 

tu-» E E 

It is easy to check that there exists no vector ed G Arf such that e Wd / is equal to 
the left-hand side of (11.9) for any fixed d. This eans that it would be ipossible to 
consider (11.9) within P. 

ach inequality 

( l i i o ; > > 

being valid for the integer version of (111) (and for the LP 2 1 ) resp. defines a valid 
inequality 

(1111 ^2 

for MP. In our case, separation can be attacked similarly to the branching for branch-
and-bound: We have to separate for the arc forulation and must 
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trnsform identified violated cuts to a represntation valid for MP. This strategy is capabl 
to separate each fractional solution of MP whose equivalent fractional representation 
within the LP relaxation could be separated anyhow. Only those fractional solutions that 
correspond to some nontrivial convex combinations of integral solutions within the LP 
relaxation can not be attacked at all by such a separation approach. f, however, such a 
degenerated case occurs, branching b e c o e s indispensable. 

This separation scheme is compatible to PP: Let us enlarge the LP relaxation (11.1) by 
some valid cut (11.10) and the master problem (11.5) by the corresponding cut (11.11) 
Let 0 ^ £ G K denote the dual ultiplier according to (1111) The pricing proble (11 
b e c o e s 

1112) (c 

i. e., the arc weights cd simply become (e and each cut of type (1111) can be easily 
incorporated in our pricing procedure. 

To sum up, one can say that branching and separating on the original variables is a good 
compromise for branch-and-cut-and-price proaches if the problem can copletely be 
described with an arc formulation and with path and cycle formulation. 
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apter 12 

omutational sults 

This is the l e s t chapter of this thesis summarizing all our computational results for 
the MDVSP. With the results presented here, we want to prove the effectiveness of our 
developed and i p l e e n t e d methods to solve large MDVSP instances from practice. 

We start the presentation of our computational results in Sect. 121 with a description of 
the individual depot data of the city of Berlin (BVG), the city of Hamburg (HHA), and 
the region around Hamburg (VHH) in Tabs. 12.1-12.3. his data are the basis of our 
singledepot and multipledepot test instances, which are in detail presented in Sect. 12.2 

The solution statistics of the single-depot instances obtained by the individual depot data 
and single-depot relaxations are illustrated in Tabs. 12.5-12.8 in Sect. 12.3. The central 
results of the investigated multiple-depot instances such as the objective values (of the 
lower bounds, the optimal integer value, and the upper bounds) and the run times are 
given in Tabs. 12.9-12.12 in Sect. 12.4. Detailed results of the subgradient methods for 
the Lagrangean relaxations are given in Sect. 125. Some specific results of solving the 
LP relaxation without LP-plunging is presented in Sect. 126. We close this chapter with 
the results obtained for the Dantzig-Wolfe decoposition method in Sect. 12.7. 

Admittedly, all our computational tests have been performed without a consideration 
of depot capacities for two reasons: First, HanseCom has not provided depot capacities 
for HHA and VHH. Second, each BVG test instance is just based on a subset of all its 
timetabled trips and/or depots making it pointless to consider the given capacities. It also 
speaks well for ignoring depot capacities that they can be considered as soft constraints 
see Rem. 3.11, and none of our partners has ever coplained out the necessary fleet 
sizes of our solutions 

All computational tests have een performed on a SUN Model 170 UltraSPARC with 
512 MByte main memory and 17 MByte virtual memory We were the only user on 
this achine during our test runs. All linear programs have been solved with the CPLEX 
Callable Library, version 4.0.7 and 4.0.9, all inimum-cost flow problems and single-depot 
suproblems have been solved with the callale l i ra ry of our network s i p l e x code MCF 
combined with a c o l u n generation. 

11 
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12. Real-Worl Data Specifications 

Currently, BVG maintains 9 garages and runs 10 different vehicle types (2 doule-decker 
types, 6 single-decker types, and 3 articulated bus types). Combining the grages with 
their available vehicle types results in 44 depots, see Tab. 121. For a normal weekday 
about 28,000 t i e t ab led trips have to be serviced. Since BVG outsources some trips to 
third-party companies, this number reduces to 24906. Using all degrees of freedom these 
25 thousnd t i e t ab led trips can e linked with about 70 illion unloded trips 

Depots T\ 
A u-trip 1 

Depots T\ def Total 

B-Depot 23 
B-Depot 24 
B-Depot 25 
B-Depot 26 
B-Depot 27 
B-Depot 28 
B-Depot 29 
B-Depot 30 
B-Depot 31 
B-Depot 32 
B-Depot 33 
B-Depot 34 
B-Depot 35 
B-Depot 36 
B-Depot 37 
B-Depot 38 
B-Depot 39 
B-Depot 40 
B-Depot 41 
B-Depot 42 
B-Depot 43 
B-Depot 44 

2403 
2370 
2143 
4225 
3349 
2764 
2920 
2665 
2981 
2340 
2812 
2179 
2772 
2577 
2202 
1965 
2049 
1369 
1565 
2500 
1720 
1369 

16201 
15666 
14850 
28243 
20741 
17518 
18112 
17287 
18582 
16617 
18995 
16270 
19897 
17969 
12811 
13634 
11948 

9320 
10110 
14781 
10938 
9320 

1,917,649 
1,706,145 
1,516,896 
3,036,693 
3,027,439 
2,205,739 
2,343,428 
2,015,129 
2,415,834 
1,360,858 
1,949,709 
1,021,680 
1,769,839 
1,487,242 
1,572,817 
1,496,895 
1499,119 

813,746 
977,644 

2,094,639 
1141,457 

813,746 

AU trip 1 

Depot T\ Depot T\ def Total 

B-Depot 1 2139 15156 1309,598 
B-Depot 2 46 2631 610,588 
B-Depot 3 87 281 49,007 
B-Depot 4 22 5898 444,07 
B-Depot 5 38 71 498,07 
B-Depot 6 62 198 775,71 
B-Depot 7 71 32 821797 
B-Depot 8 867 361 4,99 
B-Depot 9 66 2586 46,47 
B-Depot 1 40 8922 117,1 
B-Depot 1 51 421 363,96 
B-Depot 1 867 8631 09,72 
B-Depot 13 39 3897 756,2 
B-Depot 1 21 2701 713,144 
B-Depot 1 41 0797 009,292 
B-Depot 1 44 0352 824,1 
B-Depot 1 46 2743 2,981149 
B-Depot 1 27 27 733,559 
B-Depot 1 21 6758 395,188 
B-Depot 2 2751 428 855,240 
B-Depot 21 96 2127 2,740,7 
B-Depot 2 631 9156 2,148,047 

Tab : BVG d p o 

HHA together with some other transportation copanies maintain 14 garages with 9 
different vehicle types resulting in 0 depots, see Tab. 12.2. More tha 16,000 daily trips 
must e scheduled with about 15.1 million unloded trips his p ro le decoposes into 
seven multipledepot and nine singledepot instances 

VHH currently plans 10 garges with 9 different vehicle types. The g g e v e h i c l e combi 
nations define 19 depots, see Tab. 12.3 he 5,447 t i e t l e d trips of VHH e linked 
with about 10 illion unloded trips 
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Depots T\ 
/iutrip| 

Depots T\ de al 

Hamburg 1 - Depot 1 
Hamburg 1 - Depot 2 
Hamburg 1 - Depot 3 
Hamburg 1 - Depot 4 
Hamburg 1 - Depot 5 
Hamburg 1 - Depot 6 
Hamburg 1 - Depot 7 
Hamburg 1 - Depot 8 
Hamburg 1 - Depot 9 
Hamburg 1 - Depot 10 
Hamburg 1 - Depot 11 
Hamburg 1 - Depot 12 

2,900 
2,277 
1,716 
1,065 
1,413 
1076 

728 
2,288 
1,882 
1,588 
1296 

892 

399,601 
143,146 
116,142 
31,520 
48,374 
45,723 
13,654 

257,733 
102,764 
79,955 
77,201 
25,100 

2,170,962 
2,285,501 

850,828 
488,655 
339,891 
318,626 
233,010 

1,360,544 
1579,315 

404,016 
459,468 
348,230 

Hamburg 2 - Depot 1 
Hamburg 2 - Depot 2 
Hamburg 2 - Depot 3 
Hamburg 2 - Depot 4 
Hamburg 2 - Depot 5 
Hamburg 2 - Depot 6 
Hamburg 2 - Depot 7 
Hamburg 2 - Depot 8 
Hamburg 2 - Depot 9 

4 
214 

21 
211 
648 

55 
695 
493 

1365 

2,059 
195 

2,651 
14,136 

468 
16,526 
8,322 

56,988 

1 
18,700 

225 
16,854 

180,554 
1,430 

186,863 
104,153 
475,533 

Hamburg 3 - Depot 1 
Hamburg 3 - Depot 2 

521 
521 

19,003 
10,745 

65,650 
122,692 

Hamburg 4 - Depot 1 
Hamburg 4 - Depot 2 

30 
17 

858 
54 

22,151 
152 

Hamburg 5 - Depot 1 
Hamburg 5 - Depot 2 

986 
930 

56,760 
27,452 

211,153 
368,242 

Hamburg 6 - Depot 1 
Hamburg 6 - Depot 2 

1,345 
1693 

02,253 
72,882 

322,546 
1233,766 

Hamburg 7 - Depot 1 
Hamburg 7 - Depot 2 

232 
220 

3,922 
2,348 

12,510 
21315 

Hamburg 8 
Hamburg 9 
Hamburg 10 
Hamburg 11 
Hamburg 12 
Hamburg 13 
Hamburg 14 
Hamburg 15 
Hamburg 16 

20 
10 

126 
14 
1 

71 
109 
183 
194 

66 
29 

442 
53 

2 
355 
617 

1,025 
1943 

47 
54 

3,322 
68 

2 
2,388 
5,241 

14,347 
15,419 

Tab 2: HH po 
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Depots T\ 
np 

de Tot 

Hamburg-
Hamburg-
Hamburg-
Hamburg-
Hamburg-
Hamburg-
Hamburg-
Hamburg-
Hamburg-
Hamburg-
Hamburg-
Hamburg-
Hamburg-
Hamburg-
Hamburg-
Hamburg-
Hamburg-
Hamburg-
Hamburg-

Holstein 
Holstein 
Holstein 
Holstein 
Holstein 
Holstein 
Holstein 
Holstein 
Holstein 
Holstein 
Holstein 
Holstein 
Holstein 
Holstein 
Holstein 
Holstein 
Holstein 
Holstein 
Holstein 

Depot 1 
Depot 2 
Depot 3 
Depot 4 
Depot 5 
Depot 6 
Depot 7 
Depot 8 
Depot 9 
Depot 10 
Depot 11 
Depot 12 
Depot 13 
Depot 14 
Depot 15 
Depot 16 
Depot 17 
Depot 18 
Depot 19 

10 
1508 
2920 
2355 

14 
700 

2351 
1665 

2 
758 
602 
373 

953 
799 
417 

2451 
1213 
795 

2 
137,965 
241,720 
158,053 

36 
12,705 

145,095 
79,404 

4 
19,138 
12,059 
5,563 

25,334 
18,641 
5,095 

150,944 
28,594 
13,037 

50 
158,607 
787,772 

2,501906 
90 

207,772 
688.574 

1262,356 
4 

54,345 
160,374 
57,451 

2 
64,447 

283,643 
73,045 

2,637,754 
188,124 
272,893 

Table 2.3: VHH pot 
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12. Th Test Ins tanes 

Multiple-depot problems. 

Diferent p a r a m e r ettings nd o p t i i z a t o n aspects y in the tes ance th 
ar splayed i 12.4. B th total number of arcs in Au~tnp, we a lo giv th 
number of u s e r - e f d un ps without pul-inpull-out t rps. e term 0G : 
^2tel(t)/\T\ d t e th verage epot group ize. Not tha th number of equaon 
of ( 1 eq th number of f o n d o n nd f o n e r o n s 

e-epot 
V\ \T\ 

t r iP|/l,00 
0G 

n u e r of 
e q o n 

e-epot 
V\ \T\ er- ll 0G 

n u e r of 
e q o n 

erl 
erln 2 
erln 3 

44 906 
906 
313 

84 
304 

77 

69700 
13200 

300 

03 
1.56 
2.33 

125255 
6364 

370 
e r l p a n d u 1 
e r l p a n d u 2 
e r l p a n d u 3 
e r l p a n d 
e r l p a n d 
e r l p a n d 
e r l p a n d u 7 
e r l p a n d u 8 

9 
13 
13 
13 
13 

424 
308 
424 
308 
331 
998 
424 
308 

64 
27 
39 
72 
75 
28 

145 
283 

700 
800 
590 
530 
550 
380 
300 
800 

4.94 
5. 
1.92 
2.25 
2.25 

.90 
4.16 
5.0 

418 
21470 
7103 

10753 
10834 
5798 

12506 
18376 

a m b g 1 
a m b g 2 
a m b g 3 
amb 
a m b g 5 
a m b g 6 
a m b g 7 

12 563 
83 
791 
238 
461 
283 
341 

22 
99 
30 

85 
176 

10900 
000 
200 

23 
580 
600 

34 

2.23 
2.0 

3 
04 
31 
33 
3 

27696 
549 
835 
487 
379 
323 
79 

a m b n 
a m b n 2 

4 
19 

13 
447 

230 000 
00 

1.68 
3.6 

9167 
25334 

Table 2 . : R e a l - r l ple-epot 

ere are no epots o n n g cl of feret g a r a s f eac of e m p l e -
e p t te s 

Berlin 1: T the cmple BVG prblem th all p s s ree of feedo 

Berlin 2: T prblem i ba on th t i m e l e d i of Berln 1, ut th e p t s 
nd th d e a e a d tr are g e r a th dfere le r e s u n g in fwer ree of 
eedo 
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Ber ln 3: Th a mall cludng 9 out of er nd 
depots fom on nge gara 

Berlin-Spandau 1 — 8 All th o t d by B e r l p a n d u ar e f d on the 
d of th d i i of Spandu f fere weekdays nd dferent depot g e r a o n les 

Hamburg 1 - 7 ere we c o n e r the m e - e p o t s u b p r e m of HHA 

Hamburg-Holstin 1: Th su of VHH o n g not al ts depot nd s 

Hamburg-Holstin : T ba on the cmple of VHH 

Single-depot problems. 

The ngle-epot i n s n c are th indivdual epot of BVG and HH 
ssumng th each depot mu e r c e all poss m a b l e nd b th singe-
epot r e a x a o n s Rf(0) of eac ul t ipe-epot ce 

12.3 Solving Single-Depot Instances 

ngle-epot s t c e ca be m e l l e m m - c o t f prblems. Hence real-
d SDVSP of ny ize can b effic sovable as shown Tables 12.5-12.8. 

a b s iv fo th ngle-depot prblem i n r m a o n about the un t nd perform 
simpex e r a o n r the lt version of MCF and CF th eraton. F 
the c m n g e r a o n there are also giv th number of era col nd th 
number of re um-cost f p r e m that ve b s o d un mal 
h s b pr 

W t h the d verson of CF ll BVG epots ogether can solv n th 
80 nute e ution e ca be accelera less than 10 nut th mn 
g e r a o n the HHA oblem thes i m s are 19 nd 3 mnut rcng 
th v e r o n of MCF with c n g e r a o n the un im ould be decrea on 
the a v e r a , out 89% nd the p e r r m mplex e r a o n out 83% 

Table 12.8 s h s the r e s u s f lage-cale i s t c e agrangea re
laxaon . E n th lares p r l e m th 25 t h o u n d abled tr and 70 on 
un lad p , w h resuts mum-co low problem wth 5 t h o u n d de 

nd 70 on arc ca so in about 15 nutes to m a l y ng CF with 
c o m eraion CF ee about 25 inut sove all single-epot e laxaon 
ogther mal 

se r s u t s supp the conusion tha eac real-orl ngle-epot prblem ca 
dule mall n a fe n u t . In p a r a r , clusere tile-depot prblem 

ca b e f f i c y f ver r a n s a t o n mpa th 



3 OLVING THE INGLE-DEP TACES 

Depots \v\ 
MCF default V1CF with column generation 

Depots \v\ implex CPU CPU implex # Gener # Restr 

iterations time time iterations columns problems 

Berlin-Depot 1 4,279 1309,598 129,125 68 25,773 97,050 

Berlin-Depot 2 4,937 1610,588 161791 117 13 31390 126,723 

Berlin-Depot 3 3,745 849,007 65,867 40 19,307 48,911 

Berlin-Depot 4 4,447 1444,077 193,945 119 24,380 54,639 

Berlin-Depot 5 4,773 1498,079 175,840 124 24,577 56,660 

Berlin-Depot 6 5,247 1775,719 261205 151 10 31160 89,384 

Berlin-Depot 7 3,543 821797 63,988 38 19,653 49,044 

Berlin-Depot 8 3,735 904,995 72,084 49 20,381 50,612 

Berlin-Depot 9 3,329 346,470 16,163 13 17,563 63,524 

Berlin-Depot 10 1881 117,164 4,613 10,654 28,618 

Berlin-Depot 11 3,027 363,965 19,531 13 17,454 48,209 

Berlin-Depot 12 1735 109,722 4,133 10,380 26,233 

Berlin-Depot 13 4,793 1756,254 215,499 119 12 38,121 98,054 

Berlin-Depot 14 4,437 1713,144 196,786 94 11 44,649 97,936 

Berlin-Depot 15 3,483 1009,292 104,520 43 33,791 89,195 

Berlin-Depot 16 3,289 824,190 69,789 38 32,362 88,328 

Berlin-Depot 17 6,929 2,981149 365,002 276 25 47,482 158,118 

Berlin-Depot 18 5,477 1733,559 200,484 180 11 34,431 92,166 

Berlin-Depot 19 4,373 1395,188 180,030 95 28,150 84,142 

Berlin-Depot 20 5,503 1855,240 220,541 158 12 37,342 105,372 

Berlin-Depot 21 5,929 2,740,790 386,941 284 14 34,887 91498 

Berlin-Depot 22 5,263 2,148,047 253,242 148 14 32,593 88,240 

aCPU run times in seconds without reading the problems. 
6Number of active columns of the last restricted arc set; note, there was no column elimination. 

umber of restricted problems that have been solved until optimality has been proved. 

Table 2.5: m- em VG epots 1-22. 
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Depots \v\ 
MCF default VICF with column generation 

Depots \v\ implex CPU CPU implex Gener Restr 

iterations time time iterations columns problems 

Berlin-Depot 23 4,807 1,917,649 195,814 134 25,165 56,313 

Berlin-Depot 24 4,741 1,706,145 162,903 128 10 25,660 83,333 

Berlin-Depot 25 4,287 1,516,896 125,018 101 24,888 81623 

Berlin-Depot 26 8,451 3,036,693 411807 291 39 44,244 137,002 

Berlin-Depot 27 6,699 3,027,439 440,860 317 28 38,762 172,072 

Berlin-Depot 28 5,529 2,205,739 286,844 164 13 30,450 86,708 

Berlin-Depot 29 5,841 2,343,428 303,000 223 23 33,507 161984 

Berlin-Depot 30 5,331 2,015,129 234,430 140 12 29,578 86,147 

Berlin-Depot 31 5,963 2,415,834 310,058 172 17 33,589 106,700 

Berlin-Depot 32 4,681 1,360,858 137,648 67 10 27,581 128,344 

Berlin-Depot 33 5,625 1,949,709 253,413 126 17 31944 147,490 

Berlin-Depot 34 4,359 1,021680 102,569 51 10 26,833 113,194 

Berlin-Depot 35 5,545 1,769,839 222,475 130 16 32,036 132,442 

Berlin-Depot 36 5,155 1,487,242 181006 98 12 30,190 127,656 

Berlin-Depot 37 4,405 1,572,817 156,316 131 12 21477 132,346 

Berlin-Depot 38 3,931 1,496,895 149,545 74 12 24,254 134,701 

Berlin-Depot 39 4,099 1,499,119 188,056 80 16 25,168 168,289 

Berlin-Depot 40 2,739 813,746 79,403 33 15,969 108,389 

Berlin-Depot 41 3,131 977,644 96,296 40 19,075 127,846 

Berlin-Depot 42 5,001 2,094,639 239,039 124 16 25,985 166,107 

Berlin-Depot 43 3,441 1,141457 119,167 55 21201 76,146 

Berlin-Depot 44 2,739 813,746 79,403 33 15,969 108,389 

ll depots of I Berlin 1 1 ogether 7,836,189 4,722 498 1220,005 

CPU run times in seconds without reading the problems. 
Number of active columns of the last restricted arc set; note, there was no column elimination. 

umber of restricted problems that have been solved until optimality has been proved 

Table 2.6: m- em VG epots 23-44. 
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12. Solving ultiple-Depot nstance 

In th ecion, w s u m a r i z the c m p u t a t o n a l sults of our m l e e p n s c e s . 
e ng objeciv val fleet size and o p e r a o n a l ight are iv Tab 2 9 : 
the wer ounds ined w t h L f ( 0 nd the LP e l a x a o n s ; (ii) the er optimu 

th m ill unkno th be er sout ion v a s ; (iii the per ound 
y our ng heu wel our b r a - a n d c u t meth 

ar with SCR nd e rmnat in a fe r a max un of 0 hou 
nd 16 o u s f er a r g th N ) 

e lar problem erl 1 has n bee so t m a y . erl 2 and e r in 
panda 2 and 8 h n s o l d f minimal ut to pro co minma l In 

Tab 1 2 0 and 12 iv the lower ound value p r p r t i o n th er o m a l 
v a l u s b e t kn er ound v a l e s ) nd th pper bound valu n p r o t i o n 
to th nteger o m a l val ( r th best kno wer bound v a l e s ) . ote that th 
p r r o n f th operaional ght s only c o n s e r e d f p l e m f its o r r s p o n d n g 
fleet ize gap is e q a l to zero un times that h ee r e q r e d to so the f u n i o n 
-^f(O), the LP elaxaton re ithout L P p l u n g n g th o p i n g e u r i s SCR and 

nd ou exac meth th nd thout us th onal L P u n g ith th 
n g e r a t i o n ar iv 1212 

Lower Bounds . 

For th rangean relaxations, we have on o n e r d L f ( 0 ) . H v e r ha shown 
n Chap. t h t L f ( 0 ) and L{{v+ — v~ p r v i th am p t m a l val (v+ nd v~ 

denote th imal val of the dual m t i p i e r s o a t th the flo o n d o n i 
-^f(O)) valu o by l / f ( 0 give excell approximations. e m 
i n r a l et ize ca e a p p x i m a on the ave rae , by 99.94 %. I remarkab 
th the ivi em r e l a x a o n - simp e g l e c g the fl o n e r o n s - giv 
su gh approxmation For out of our n s c e , th sizes ca be exac 
a p r m a t e d . Ignorng fo t h e p r o e m th th eet siz the gap betwee 
the pera tonal costs of L f ( 0 ) nd th p t m 16 % and % on the average 
F m ou p n t of v i w , th gap are a c c e p a b e , ut w l l sho the ext e c o n 
th th ca be gnfica ecreased us in d d o n s u r a th 

ll LP relaxaion except f Ber s to t imalty. To nd 
ima LP v erl 1, ou mn e n e r a o n equire about 00 h o u s cp 
va the LP r e l a x a o n iv wer ounds q t e cl th er 

mal val 12 out of th 20 o n e r ce th LP r e a x a i o n alrea 
p v i d e th eger p t m a l val nd f ce can be obtain by ounding up 
th LP val to th ext i n t g e r F er 1, w o not kno th m m a l number 
of vhicles ut expect that th siz ower ound provid b th LP r e l a x a o n 
also ght never the LP r e a x a o n provi exact fl iz also provi th 
m m a e r a o n ghts 
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wer ound 
er uton 

rangea 
e laxaon Lf(0) 

LP elaxaon 

ee gh le gh 

erl 
erln 2 
erln 3 

0.995 
0.997 

1.0000 0.994 

0.9954 
0.9997 

1.0000 1.0000 
pand 
p a n d u 2 
p a n d u 3 
p a n d u 4 
p a n d u 5 
pand 
p a n d u 7 
p a n d u 8 

1.0000 
0.994 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.994 

0.999 

0.9655 
0.8484 
0.8399 
0.9014 
0.999 

1.0000 
0.9973 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.9973 

0000 

1.0000 
1.0000 
1.0000 
1.0000 

0000 

vera 0.9983 0.93 0.999 0000 
n 0.00 0.066 0.00 0.0000 

am 
a m g 2 
a m g 3 
a m g 4 
am 5 
a m g 6 
a m g 7 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

0.94 
0.9556 
0.9483 

1.0000 
0.96 
0.994 
0.956 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

10000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

1.0000 
0.9945 

0.988 1.0000 
1.0000 

1.0000 
0000 

vera 0.999 0.990 0000 0000 

/Ön 0.00 0.0 0.0000 0.0000 

ll vera 0.9988 0.9534 0.999 0000 

ll fa 0.00 0.050 0.0012 0.0000 

Standard deiat ion 

Tabe 1 2 0 : wer ound r e i v th er mal val be 
mal val ar d face 
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er ound 
er uton 

dule c l e r r e e d u l e 
re LP thod 

le gh Flee gh 

e a r t depot e u c 
re LP t h d 6 

dule c l e r r e e d u l e 
re LP thod 

le gh Flee gh ee gh le gh 

erl 
erln 2 
erln 3 

018 
10089 

1.0000 000 

1009 
1.0000 
1.0000 1.0000 0 

10 
1.0000 
1.0000 1.0000 

pand 
p a n d u 2 
p a n d u 3 
p a n d u 4 
p a n d u 5 
pand 
p a n d u 7 
p a n d u 8 

1.0000 
1.0000 
1.0000 

0052 
1 0 5 7 

1.0000 
1.0000 
1.0000 

9 

3124 
133 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

003 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

120 
189 

0 3 0 
1623 
5 
12 
120 
189 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

0044 

1.0000 
1.0000 
1.0000 
1.0000 

00 

vera 0044 0008 0005 48 00 0009 

VÖn 0.00 0.0026 0.00 0.0538 0.007 0.0016 

am 
a m g 2 
a m g 3 
a m g 4 
am 5 
a m g 6 
a m g 7 

0324 
1.0097 

1.0000 
1.0000 
1.0000 
1.0000 

066 

1.0747 
1.0000 

0826 
0505 

100 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

1.05 
1.0000 
1.0484 

1.0000 
066 

1.0000 

1.0000 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

100 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

1.0000 
00 

050 1.0000 
1.0000 

1.0000 
0038 

0597 
085 

1.0000 
1.0000 

1.0000 
0057 

vera 0 05 000 0005 0 0000 0009 

/Ön 0.016 0.088 0.00 0.00 0.04 0.0000 0.00 

ll vera 0080 0007 0005 09 00 0009 

ll V ^ 0.058 0.00 0.00 0.0580 0.00 0.00 

"Results obtained by the opening heuristics SCR and ND, respectively. 
^Results obtained with our LP method including branch-and-cut, starting with SCR or ND, using 

LP-plunging, and terminating after a run time limit of ten hours (and 16 hours for Berlin 1 starting 
with ND). 

Standard deviation 

Table 12 pper ound r e i v th er mal val be wer ound 
ptimal val ar d fac 
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ee th LP val are qu tigh ar p n o m n o n is er 
rbe nd W [994] 22 of th 30 nces ith u 600 t a b 
ps ral LP solutions and th larest gap bewee th LP val nd the tegra 

p m o t 0.003% the r e m a n g prblems thi o b e r o n d s not 
eem a small scale phenomenon 

val of th eraional weights th eciv v a l e of th lower ounds do not 
necessaril def wer ounds for th er o m a l w g h t s amon all mal flee 
solutons. o mate the q a l of th perational weghts r e q r e s t h t th lower bound 
of th e iz s tght! For all prblems t h t do not sf this o n d o n h o v e r , w 
b i e th th vertheless giv g o d ma th mal e raona l 

gh 

parng the run t i m s of the rangea and LP elaxaon viou th a-
ragean relaxatons Lfc(0) are th ster m t h to o a i n od lower ound q 

T tter ower ounds provi the LP r e a x o n e q r e long un ti t h t are 
on t i d succeeding brach-andcut m e t h d uton produced SCR 
are a l a y s signfica better th thos of N . On the average wever SCR d a 
the o p n g h u r i r the b r a - a n d c u t algorithm d o s not provie b t t e r ar ing 
p n t s is th m o n n g th artng ithout ny h c a l l y gnera luton 
ou LP th s unable to sove a y of ou a r e r p r l e m nce ll 

Upper Bounds. 

ll o n s e r th pper ound b t e d b the t p e n g huristics (SCR nd 
D) and bta th exact b r a - a n d o u n d meth tar tng with SCR nd N 
sing LP-ung in bewee two RLP nd t e r m a t n g er a giv un ti of 
ou ( n d 16 ours f er 1 t a r g th N ) 

T ivial pening h e t i already deliver goo su ee iz ap on 
the average about 0 % th standard dviation of % a p racca l p t of v iw, 

owever the peratonal of the lutons are unaccepable. The b e r resu 
are taned fom th SCR uri The avera flee size ap i 0.8 % th a standar 
d v i o n of 1 e raona l cots of th utons are cmparab the r su l 

b th rrenty u d rac 

We alm o t a i n o m a resu ap ou exac r a - a n d - c u t m thod 
with a tim of 0 hou T bjeciv gap ar on the a v e r a , less th 0.12% 
t d e s not make a differ ich p e n g euri e use th exact thod 

ce th un tmes are comparable f oth Th run tim of ou exac metho ma  
ecrea se both opening heu ogther o d e r m the fir LP Th 

ma be th ba futher c o m p u t o n a l 

gures 1 2 1 2 . 4 d p l th d v e p m of the pper ound s (feet iz nd 
e raona l e i g h ) ob by th L P u n g n g heur i i c n oporion th ger 

ma or wer ound v a l s artng our m t h th th souton th 
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Seconds. 

gu 12 evelpme of l e iz pper ound of problem e q i r m r e 
hous un to a m m a l soution a r n g th th 
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10.00 
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Seconds. 

gu 12 D v e l p m e of operaonal gh pper ound of problems requing mo 
th hou run t m e o o a minmal leet soluton and knowing th 

gh among al mal et soutons; a r n g th th 
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1.00 

0.00 

Berlin 1 
Berlin 2 

Hamburg 1 
Hamburg-Holstein 2 

3600 7200 10800 14400 18000 21600 25200 28800 32400 36000 
Seconds. 

gure 123: Develpm of fee iz upper ounds of prolem requirin 
ou un the o ; sarting th th SCR 
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gure 12 D v e l p m e of o e r a o n a l ght u e r ound of problem eq re 
than hour un o the o p m and knowng the m 

gh amon all mal ee utons; arting th th SCR he 
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ND fl izes can be approxma in wo hou a ap le n 3% 4 fou 
ou wth ap of out 1 % nd i 6 our w th gap less th % or all prblem 

exept B e r n Fig. 1 2 . artng with th soution d th SCR th fl 
iz can be a p p r m a e d on hou th ap ss th nd n 10 hou th 
ap less than % ee g. 123. here al a p i v velpment of th peraonal 
osts: pare th timal er cos of mal ee soutions the peraonal 

ts can be a p p r m a d with mall gap, ee 122 and 124. I th un ti mit 
0 hours or mor th fou gures s h w th eaningless open 

is the results are ny c a e omparable ever there onger 
of thre hours a r n g th SCR provi tter r e s u s 

ptimal olutions 

thout un m eac of ou ith th excepion of th 
p r e m Berl ca be soved proven ee imality th th excepon of th 
p r e m s Ber 2 e r l i n p a n d u 2 nd B e r p a n d a u 8 eac ce ca be 
to p nd t i m a y . 

W t h the c r r v e r o n of ou b r a - a n d - c u t etho soving eal arge-cale blem 
to proen mal ead mpraccal un s. In p a r i u l a r soving Berli th 70 

illion varables t mal still a cal le o us. Neverthelss, the su d 
w th ou meth are c u r r e y the bes o a i a b l e . S u t o n s p r v i i n g y ap 
of le ut w th eaonable operaonal wigh ca be c u t accepable 
un 

12. ubgraden od 

In the iv som le u t o n resuts about th s u r a meth 
that appl to o l e th r a e a n r e a x a o n In Table 12 sum

mariz the peratonal igh of the v e a t s u g r a i e n m e t h d wth fferen pa
r a m e r t t n g ( d a u l t and bes configuraion taine n Kokott 9 9 ) f LR and 
LRfd m p a r o n th Lfc(0) In d d o n , we also giv th gh ap e l t iv th 
i e r imum among all m m a l soluton 

T e r s u t s the c o m n "LRfcs(0)" are th bjectiv ghts ed glecing 
the flow conerat ion o n r a i s he resuts i th n " e f a t " l l u r a the 
c o p u t a t o n a l rsul ts f r parameter t tngs as f l l w s A maximal number of e r aons 
Ni 00 step ength rule A th maxmal n u b e r of consecutive f r e N2 and 

ep direcon g^ : 0.g^ + 0.#( f c _) + 0.#(fe~ + 0.g(k~3\ al ep length 
parameer ^ nd a^ depend mple on th consier p r e m nsta nd 
are not ab ive any goo alue n ce wthout m a n g te uns Therfo 
w v dec u e a^ 0 f the step ngth rule A nd to ^ su th 
th s u n g ^ out ep ngth le On th vera s n 
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fa
u 

fa
u 

•a •a 

Table 1 2 3 : bjecive v a s u n g sub ra t h d s ( o m a l er val are 
face nd th peraonal ap r e i v to th opti 
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b e e r r u l t s f ou t d t a hu we iv on the mputtional s u s f 
first s t r a g y , w h , d d o n r e q r e s no er ound. T e resuts the c 
"Kokott 99] ar the val of th be p a r a m e r c o n g u r a o n s giv the m a e r 
t h i of ndeas okott 

T e m surpising su that Lf(0) lm always provdes a ght wer bound f 
the flee siz and th a r g t gap ere ost 0.01%. Rounding u the ee iz 

iv th LP reaxation to th nex ger val th ap to the mal ee iz 
al ero. ce we c o n e r our problems t be well condtion n so sen 

hic ee to be onfirme y th omputational results of ou s u r a thods 
T gap beween the n i a l r a e a n f u n o n v a l e and th p t i m m alrea less 
than 1601% Lf(0) th apprpr parameer c o n g u r a o n f th s u r a 

thod th ap ca be educd less th 0% 

On the avera ther L R s n LRfd yel b e e r wer bounds ou Ho 
ver LRfcd can be d er or ou large probem n s t c e , ee Tab 12 dd 
on l l Lf s d e c l e and thu ts soluton ca e accelera by para l le l izon 

r a e a e laxaon 

Wo) LR LRf 
er 
e r n 2 
e r n 3 

16 258 
05 

16 
48 

pand 
p a n d u 2 
p a n d u 3 
p a n d u 4 
p a n d u 5 
p a n d u 6 
p a n d u 7 
p a n d u 8 

27 
93 

150 
4447 

357 
1116 
1037 

89 
1367 
39 

117 
383 

36 
58 

am 
a m g 2 
a m g 3 
a m g 4 
am 
a m g 6 
a m g 7 

12 
4 

838 
38 

2 
98 

6643 
415 

89 
2 

33 
26 

37 

le 4: un econds. 
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o n e r n g fixe parameter c o n g u r a o n beaviou of grangean f u n o n 
wthin th s u g r a e n t methods are lar for alm all nces. exemplar 
giv the resu var ngle p a r a m e r of our t p a r a m e r c o n g u r a o n just fo 
the problem amb 

gures 12. and 12 sh th nfluence of th number of ed sugradients th step 
d i e c o n : "1 sug ra e a s g^ g^k\ " s u b r a d n t s " eans g^ 0. ^ 
O.Zg^V nd s u r a eans f® O.gW + O ^ + OAg^ 0.^~3 

sing than on s u r a lea o a er conver and n g e r a l ld 
tter wer ound ca ee Fi 127 nd 128 oth pr s ep iz 

e r r m parab 

g. 129 sho th beaviour r dfere maxmal a l e d onsecutiv fa  
e can ee the Lgrangean f u n o n mprves very fas the first e r aons fo 

= but then futher gnfican mprvemen are a c e d ince th ep length 
is d u d far too t Fo 2 = 3, the step lengths s reduced ony on ce su 
th th subgradi t h d cannot onver to ny mal souton caly, w 
ca cla th N2 oo mpr 

T c a l l th r a e a n re lax ion LR nd LRfcd and the LP relaxaon 
th am o p m a l value vertheless our subgra thods do not t t n th ptima 

es f the l a r e n s c e ut the resuing gap a e rather mall outtanding 
g of a g r a e a e laxaon is th t h y provide wer bound q k l y . In par

ar th s u r a n t method prvide a wer ound ver i t e raon In ontras  
agrangea r e a x a o n s the c l u n generaon th th LP elaxaton pr 
wer ound only i t h bee s o d to ma ca t k e a long me 
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gure : C p a r n g differ ep e c o n s am 1 and LRf 
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43200070000 
A — 
B -

^ " ' 
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.Mf^ 
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100 

gure 7: C m p a r n g ep lengt les f am 1 and LRf 
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gu 9: C m p a r n g dfere max val am 1 and LR 
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2.6 LP laxation 

In th wing, we r e p r t on so ecfic o e r v a o n ad soving th LP 
r e l t i o n thout LPplungng. Table 1 1 5 sh nd 
o p g h u r i s c , th number of LP th ha bee un ty has bee 
p the total n u b e r of C P E X i t e r o n th have bee p e r r m e th number 
of ol t h t h v e be g e e r t e d a nat thi the c n g n e r o n cess 

sh l l cribe some atu of ou n g e r o n meth th th e x m p of 
er ng th SF d B e r l d a u 8 nd H both ng th 

N T aviou of ou e m o n ng th S D i 
th other p r l e m 

W b e r th fo l long ng pa of th eciv v a s th ee 
i z , converge q to th mi va thin f e r a o n nd a r e i v e l 

p of the otal run the crossover the ng th da ph 
the bjectiv valus yeld al the minim ee iz da p s necess 
to solv th wer par of th bjective va th p e r o n l c to pti 
ou te se ther th s d a d th ea p m th otal run 
an th n u b e r of RLPs gure 12 12 show yp develpm of th lee 
iz val left tu t h r p e r o n a ghts ( g h ture i repec th 

kih LP the run r e e c i v y . 

n u e r of g e n e r a d a el ns re alm ays out th 
e r o n of the c n g e r i o n prcess see th left tu of .1 

er th LP izes are r e l ive l onsan urng the uton ces. gh 
tu th figure s h w t p i c v e l o p m t s of th numer of ow 

noner elemnt of th kth LP of th kth LP th grange p er 
LP r e p c e n g . e r e from th p t u e the m p o n c e of LP prepro 

th th g n g ph thout th preprocessing nether th p r i a l or the ua 
mpex solver wou not be pp icb le ere ecus of tolerble ong un s ut 

preprcessng ces the sizs of thes RLP g n f i c t l su th bec ble 
to so th c c r r n g RLP th c c e p t l e run t i s 

e n u e r of p r a l CPLEX eraton that h been p e r r m e d 
fo th kih LP givn 1213. In th Larang ha h RLP i always 
so cr In th dar ph h RLP a a y s r e i z d ng th  

tim ba th oint eref th n u e r of p e r r m d mplex 
e r o n s sul ly m er th g n g ha th exmple of Berli 

dau 8 wever n u e r difficltes ccurre for th e r a o n 17 - 20: th RLP 
ha been reperturbd o triblng th number of e r o n s nd run the 
fou RLPs Without t h s n u e r diffic e r l d a u 8 wou be th 
other prblems 
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2. antzi-Wlfe ecomsition 

A t u , ou ain go lv th MP r e q n g fir th ma 
soution of ted our c p u t i o n ecompoion sts tu out 
soon that e c m p o n an u n s u b l e m t h to the M D S P cle 

that th Ps bec o h be sol e f l y . E p e c i y r p r e m th 
th on thou le th i z a o n v i g an 

In w t fllow scrbe ou d e c o m p t i o n tes un ai ss th 
reson this kin of a p p h fails for th M D S P . d on some 

ller ot so h p r e m f HH We consider lle nge-epot 
i n a n c an ll l t i e - e p o t problem excep th 12-epot ce. A 
th other HH nc re lage to be ecomposion of th 
conidered prblem th LP th pt the i e r va re 
th 

ble 12.16 shws so sta of ou e c m p o s i o n set su th number of 
depot (\V\ th numer of t a b l e d p |T|), th n u b e r of u n a d ps (Au_tnp |) 
th ver e p t gou iz 0G the number of o s s l e hicl le th number 
of ss ks 

We giv m er e rvaon a o u t ou m p u t o n l t t s rep on pecfic 
resuts th onsier p e m s est prblem, we us a e lmit 
d n b , of thre ou ui g e r o u s th LP r e l a t o n 
of the gges e c m p o s o n prblem be i th 
le th 00 econds 

eneral b s e r v i o n s . 

F r ou th pr p r l e m P^ re ef s o v a l e th 
of th un e h c be ec 

e righ sid of is eq to 1 ading to er LPs Fr v e r o n 40 
on C P E X povid new, ggressive p e r t u r b o n metho that an dle 

er LP e f f i c i y . , we nver recogniz ny n u e r a 
problem stemmng f er the fir b e a v e r o n of 
CPLEX 0. 

In on of the fir version of ou mplemntaton st c e f f i c t c 
th su of M the p e r o n a l c t s of the c r r o n d i n g vehcle ed 

w E Wd. aive of t h s t stage objeciv f u n o n th eq to 08 h 
cause n u e r d i l n poving glo p t y : T o e r n c e 
of C P E X onl a val betwee 0~9 d 10~4 th th 
redce mus be lea r e e r th or eq o — 1 ~ 4 fo w E . I 
th iz ee di d i th ti toler i le 
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Decomposition 
test set 

V\ r\ 
trip 

0G li -W-K 
Decomposition 

test set 
V\ r\ de Total 

0G 

Hamburg 14 109 617 5,241 1.0 2.0 • 10 i3 2.3 • 10 
Hamburg 15 183 1,025 14,347 1.0 2.0 10 7.1 • 10 
Hamburg 2 - Depot 4 211 2,651 16,854 1.0 3.9 1014 7.5 10 
Hamburg 7 - Depot 2 220 2,348 21,31 1.0 5.5 1016 7.0 10 
Hamburg 7 - Depot 1 232 3,922 2,510 1.0 1.1 10 4.7 10 
Hamburg 2 - Depot 8 493 8,322 104,153 1.0 1.6 10 8.0 10 
Hamburg 3 - Depot 1 521 19,003 65,650 1.0 8.8 10 2.4 10 
Hamburg 2 - Depot 5 648 14,136 80,55 1.0 3.9 10 4.3 10 
Hamburg 2 - Depot 7 695 6,526 86,863 1.0 1.3 1 6.3 1 1 3 

Hamburg 1 - Depot 7 728 13,65 233,010 1.0 2.3 10 5.9 1016 

Hamburg 1 - Depot 1 892 25,100 348,230 1.0 3.2 1024 1.8 10 
Hamburg 5 - Depot 2 930 27,452 368,242 1.0 5.3 10 1.1 10 
Hamburg 5 - Depot 1 986 56,760 211,153 1.0 1.1 1024 1.6 10 
Hamburg 1 - Depot 4 1,065 31,520 488,655 1.0 1.4 1025 1.0 10 
Hamburg 1 - Depot 11 1,296 77,201 459,468 1.0 1.3 10 2.3 1020 

Hamburg 6 - Depot 1 1,345 02,253 322,546 1.0 2.4 1 1.2 1 
Hamburg 1 - Depot 10 1,588 79,955 404,016 1.0 5.1 10 1.4 10 
Hamburg 6 - Depot 2 1,693 72,882 1,233,766 1.0 5.0 1 4.1 1 2 3 

Hamburg 1 - Depot 3 1,716 116,142 850,828 1.0 5.6 1030 1.3 1025 

Hamburg 4 238 2,000 23,000 1.04 1.5 102 2.4 10 
Hamburg 7 341 6,000 34,000 1.32 5.9 10 1.2 1012 

Hamburg 3 791 30,000 200,000 1.32 2.3 1022 3.9 10 
Hamburg 5 1,461 85,000 580,000 1.31 5.3 10 1.1 10 
Hamburg 6 2,283 76,000 1,600,000 1.33 5.0 1028 4.2 1023 

Hamburg 2 1,834 99,000 1,000,000 2.02 3.3 1 5.3 1 

Table 2.16: Decompositio test set t n fom 

eciml plces, we have to compute c c u t e l y t l e s t igits (the fleet 
size plus the o p e r a t i o l costs plus the optimality t o l e r c e , which is close to a 

n be smaller th the machine precision n "almost" optimal RMP (i. e., the 
value of (11. is smller tha but close t o ~ 4 ) , cnce l l t io importan 

igits c occur computig the educed costs. ometimes, the uced costs o  
generated colum turned out to be feasible within the next RM but have bee 
dicate to be infs ib le i PP 

avoi such u m e i c l toubles, we sc le ow the objective coefficients by  
set the optimality tolerance to 10~9 hen, we have to compute accuately  

igits less th beore. his simple t i c mkes the implementatio mo obust. 
ce t h e , we have ver recognized a ther cancellation impotan igits i 

soling PP 
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i t i l i z i the f s t RM ly with ll c o l u m s c o e s p o g with t i p p e s lead 
to quite bad s t a t i g p o i t s : Withi the time limit, ne o the poblems coul be 
solved to opt iml i ty , and ly the s igle-depot problems with up to 493 timetabled 
rips the multiple-depot problem mburg 7 could be sol fleet minimally 

with cost gaps rangin from 14% up to 138% Fo ll the other poblems, we coul 
not generate an (MP) solution yielding the m i i m u m number o vehicles. Moreove 
the b s i s so lu t io s o the l s t RM are completely fraction d there lmost 
no v a a b l e s with a value te t h n or e q u l to .5, but most n z e values 

s m l l e tha .2. This m av egativ influence on the p e r f r m c e of 
c h - - p i c e lgorithm. 

stead s t t i g with ll t i p p e s , we use the c o l u m s c o r r e s p o g to the ND 
solutio to see some effects, with an intege optimal solution. Note that ND 
already g e t e s n o p t i m l solution f s i g l e - e p o t i s t ances . 

The a v g e umbe f n z e elements pe colum the occurr s is p
p rox imted by the a v g e number ot timetabled ips of the g e a t e vehicle 
schedules. For our ecomposition test set, this numbe is 17.3 with s t d a devi
atio o 4 8 ; the lowest average column length of our oblems is the l g e s t 
is 35.2. These MPs a e quite dense set p r t i t i o i n g poblems. t is known t h t the 
LU factorizt io becomes the b o t t l e e c s o l g such problems with m o e than 
thous t i m e t b l e d trips. A similar obsevation has been made by Bondörf 
[1998, he solves set p t i t i o problems isi from l a g e - s c l e vehicle outi 
from a d i a l - a d e system icapped people i B l i 

ixin the umbe t i m e t b l e ips, the vestigatio ibei Soumis 
994] n d i c t e t h t the ru time is linear the umbe epots. We have too 

few test pob lems to m k e such a statement, but this result o Ribeiro and oumis 
soun resonable 

The Single-Depot Problems . 

To get feeli bout the size th oblem ave to be successfully sol with 
decompositio pproach, we have f s t ves t ig t e ou single-depot i s t ances . The results 

re displaye Fig. 12.14 showing the xis of o a t e s the ru times with espect 
to the numbe timetabled trips, u l o a d e d trips, vehicle scheules , respectively. 
The left p ic tues show the results that we have obtai without g r n g e a pricing: We 
starte with o p t i m l integral solution a d always g e e r t e d o l y the colum eliver 
by S t o p p i g w h e e v the time limit w ached, it tu out that this s t t e g y 
solves o l y the maste oblem f rather tiny poblems with up to 200 timetable rips 
which e about 2 thousan ad-head ips nd 1016 vehicle schedules to opt iml i ty . 
f we just want to f d an RM clud m i i m l fleet solution (poved via sufficiently 

small n e g a t i e reduce costs), it is possible to solve problems with up to 700 t i m e t b l e 
ips ( 0 0 t h o u s d dad -head trips an 1020 vehicle scheules) . The right pictures show 

the results that we have obt u s i g i addition Lagangean pricing, which sigificantly 
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Figure 12.14: Decomposition run times for the single-depot instances 
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c c e l e t e s the solutio c o g e c e . With this t ech ique , we ble to solve the m s t e 
oblem of problems with up to 700 timetabled ips o p t i m l l y and with up to 1700 

t i m e t b l e ips fleet mi imal ly . A e g a t i e si effect o g g e n icing is tha 
there ar m o e columns g e a t e d betwee two consecutive RMPs m a k g e c h s i g l e 
RMP much h e r to solve. t is ot clear to us whether there is some b a k poin 
w h e e this a c c e l e t i o n o i t e a t i o c o n v g e n c e is c a c e l e out by larger times. 

The Mul t ip le -Depot Problems . 

ave show that s t t i from s c t c h with ll c o l u m s correspo with ip
p e ) oes not w o k a ll. So, we have used the solutions obt by ND as s t t i n g 
points. The decomposition run times with without grange icing o these tests 
are compar with the times. All these times are isplayed b. 12.17 showi 
that the ecomposition without Lagrangean pricin solves only the two small problems 

mbur 4 and 7 fleet m i i m a l , but ot to g l o b l optimality. Using L a g r g e a pricing 
cceler tes this solution times, but does not lead to furthe significnt i m p v e m e n t s such 
s s o l g more problems at least fleet minimal. Compar to our irect method, the 

decompositio i m p l e m e n t i o is completely inferior 

Test Set0 
Decom Dositio 

Test Set0 D e u l t 6 . p i c i g 0 Test Set0 

fleetd globl6 fleet0 globl6 fleet* globl6 

mbu 25 
mbu ,210 1,663 

Hambug 3 Ü ^ 18 31 
Hambu 135 155 
Hambug 6 80 
Hambu ^ ^ 67 685 

aND generates an optimal solution for Hamburg 4 and 6. 
6Without Lagrangean pricing. 
cWith Lagrangean pricing. 
dTime to prove that the starting solution is fleet minimal. 

ime to prove global optimality of the last RMP and RLP. 
No objective improvement within the time limit 

ble 12.17: Run times s t t i n g with solution geneated with the ND heuis t ic . 

To see whethe the decomposition method c t l e s t p v e the op t iml i t y o n optim 
solution we s t r t e d the decomposition and the L method with a intege optimal so 
lution. Table 12.18 gives the run times, the numbe of solved RMP and restricte LPs, 
the number of generated columns, and the number PLEX i t e t i o n s being p e r f m e d 
or these test uns. 

st of ll, the LP method is ble to p v e op t iml i ty ch o these poblems within 
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st S 
composition 

LP 
st S efault agr. pricing 

LP 
st S 

Bd Ac Ba Ac Ba 

Run times 
Hamburg 4 
Hamburg 7 1,031 04 
Hamburg 3 656 22 
Hamburg 5 78 
Hamburg 6 79 
Hamburg 388 397 

Numbr o RM and RLP 
Hamburg 4 5,658 76 3,991 
Hamburg 7 435 1,88 87 1,439 
Hamburg 3 667 50 301 
Hamburg 5 707 61 
Hamburg 6 668 45 
Hambur 353 34 

r a t d columns / 1,000 
Hamburg 4 
Hamburg 7 
Hamburg 3 
Hamburg 5 57 
Hamburg 6 56 73 
Hamburg 55 55 

PLEX itrations / 1,000 
Hamburg 4 487 33 
Hamburg 7 41 93 11 
Hamburg 3 57 54 
Hamburg 5 
Hamburg 6 
Hamburg 38 

ithout Lagrangean pricing. 
With Lagrangean pricing. 

ime, iterations, etc. to prove that the starting solution is fleet minimal 
ime, iterations, etc. to prove global optimality of last RMP and RLP. 

ble 12.18: S t t i n g with n intege opt iml solution 
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less th 00 seconds un time. Within time limit o t h e e h o u s , ou decomposition 
implementation was unable to p r v e op t iml i ty of any these poblems, only the fleet 
minimality could be confirmed the problems with up to 7 1 t ime tb l ed trips. 

The l g e the numbe f t ime tb l ed t i p s of n i n s t n c e is, the m o e time is spent within 
the L fctorization. The w o s t case example is Hamburg 2: Applying in addition the 
L a n g e pic ing, only 34 MPs could be solved within the time limit, which ar fa 
too less to have a chance to solve such l g e problems within reasonable run time. 

p a i s o o Ribeiro and umis 

A l d y in 991, Ribei nd Soumis [994] av e p o t e d bout thei computation 
results using DantzigWolfe decomposition f the MDVSP. They solved randomly gen
erated capacitated DVSPs with up to 300 timetabled trips and 6 depots to optimality 
using a nch-and-bound algorithm. C o m p e d with ou computational results, we won
der how they c n solve even the integer formulation of their problems to optimality while 
we are unable to just solve the MP e lxa t ions of our uncpac i t a ted problems with 
similar numbe of timetabled t i p s using consideably faste w o s t t i o n and a mo 
sophisticated sion o CPLEX From ou point of iew, the asons a follows: 

They do not mention the numbe d e d - h e ips. this numbe is s m l l , the 
number of possible vehicle schedules is lso re l t ively s m l l . Each problem instance 
of Ribei and Soumis includes 60 % long t i m e t b l e d trips with d u a t i o n u n i f m l y 
distributed between three and five hours. The other 4 % are short timetabled rips 
with a d u a t i o n u n i f m l y d is t ibuted between 5 nd 0 minutes. On the a v g e , 
each t i m e t b l e d trip as t h e r r e a duration of 2 hou and 33 minutes. 70 % the 
short timetabled t i p s e d e n e d between 8.00 a. m. nd 5.00 p. m. The d u t i o n 
of the timetabled trips given by our test set is, on the average, bout 30 minutes, 
the m o n i n g peak begins ea l i e and the afternoon peak ends later than the peak 
of thei problems. 

The used depot c c i t i e s o Ribei nd Soumis seem to be quite geneous: 
each test instance, they p r o i d e one vehicle for at most two up to three t i m e t b l e d 

ips. In a city like Berlin about 10 t h o u s n d buses would be necessary to run 
bout 25 t h o u s n d t i m e t b l e d trips that have to be daily seviced in Bel in . But 

BVG maintains less tha 2,000 buses. Even f we assume t h t only one h of the 
avai lb le fleet sizes are used for their oblems - otherwise, consideration o depot 

cities becomes pointless - the esulting vehicle schedules would on the aveage 
c o n t i n five timetabled t i p s . In Berlin nd Hamburg, this number is bout 15 nd 
20. 

The only i n t i o n p i d e d by them is how ny columns geneated until 
optimality c be proved. The lages t number geneated columns w 4585 f 
an i n s t n c e with 5 depots and 300 timetabled t i p s . They give neither i n m a t i o n 

bout the aveage length f the generated vehicle schedules nor bout the vehicle 
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demnd of the optimal s l u t i o n . For o r te et, we h v e generated, on the verge, 
vehicle schedules with 173 timetabled trip s tandrd dev t ion was 48) The 
probem with the smalles value was 4 t i m e t e d trips and the large value was 
352 timetabled trips 

For the c c i t a t e d MDVSP, it is J\fV-hrd to fnd feasib lution Ribeiro nd 
Soumis, however, do not tell how they initialize their method 

ased on the bove conideration, we re e to etimate the averge ength of the 
vehicle schedules of their problem, which may be an indictor for the "hardness" of their 

aster probems It seems to us that the combinatoric of our test set i arder than the 
combinatoric of their te et All these open q u t i o n s giv us r i e to the suspicion tha 
the artificially generated probem of Ribeiro and Somis are of a different quality and, 
from computational point of iew, are far easier t h n o r real-world problems 
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onclusion 

Thi the devoted to the u l t i p e - e p o t Vehice Scheduling robem (MDVSP) 
probem r i ing , for i n n c e , in ch city or region with p u i c t r p o r t a t i o n sy 
tem roblems of thi type are of very large s a l e In the p r e i o u s c h p t e r , we hav 
preented a variety of method for its solution All approaches are based on techniq 
from combintor ia l optimization. A well-choen combination of t h e e method turned 

ut to be able to s l v e (a lmot ) all probems of practical interest in acceptable r n n i n g 
times. The success of the impemen ta t ion , of c o u e , benefited from the (in the recent 
year drastically increased) computing power of modern workstations an sophis t ic ted 
commercial optimization oftware such as the LP solver CPLEX W summarize ome 
of our findings: 

ngle-depot n s a n c e s n be lved q i c ith ate of the rt code for m i n i m m -
c o t flow probem such as r i m p e m e n t i o n M and the use of column genera
tion t e c h n i q u , p r c t i c a l problem instance of a l m o ) a r b i t r r y size c n be solved 
to optimality in a few minutes. For instance, we hav lved 70 million v a r i b l 
problem in a b o t 15 minute ee Tab 128 

pper bounds that have been generated with the schedul - cluster - reschedule h e r i 
tic (SCR), which employs our ingle-depot s lve r , are of high quality C o m p r e d 
with the optimal integer lutions, SCR p ro ides s lu t ions with fleet ize gap nd 
operational weight gap of ss than 1 2 5 % and 5 2 , r e p e c t i y , ee Tab 1211 
This show that MDVSP be heurit ically s l v e d in r e a s o n b e running time, 
see Tab 1212 

agrangean relaxations allow to c o m p t e tight lower b o n d ven for rge mult ipe-
depot i n a n c e , ee T b 1213 n particular, negecting the flow conservation 
constraint l w e r bound an be computed q i t e fast, ee Tab. 1 2 1 . Lagrngean 
r e l aa t ion c n be used to quickly s i m u l t e fleet and c o t effect of different param
eter ettings 

anchandcut e of lving even very rge multipe-depot i n n c e to opti
mality, ee T 

agrangean pricing s a good ide to lve the rge degenerate that come p in 
lving multipe-depot instance with branch-and-cut r initial code used the 

well known ndard r e d c e d c o t pricing techniques. However, thi did not work a 

15 
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all because of alling, ee Ch To c r e alling, we in t rodced w h t we call 
Lagrngean pricing We p r o p o e it as one of the basic ingredient of n effecti 
method to solve multipe-depot vehic cheduling probems Similar poi t ive resul 
have been oberved by Fischetti and Toth [1996] and chetti and Vigo [ 9 9 
als dealing with large degenerate LPs We beieve th v a r i a e pricing based on 
Lagrangean r e t i o n is a useful too t h t can help to lve many combinatorial 
optimization probems 

n t i g - W o l f e d e c o p o t i o n eems not to be a useful a p p r o c h for large M D V S s 
We have experimented with various possibilitie to employ n t z i g o l f e decompo 
ition for the olution of M D V S s At first glance, this seem to be quite natural 
nd obvious pproach The c o m p a t i o n a l results, however, re very disappointing, 
ee T a s 1217 and 1218 

putat ional b r e a k h r o u g h : to nowedge, t p r een t no other impement 
tion i able to s l v e MDVS with more than 1,000 t i m e t a l e d trip to optimality 
Our code has successfully produced optimal solutions of various realworld problem 
in tances with p to 25 thousand t i m e t e d trip see T b 12 The integer multi-
commodity flo problems a r i ing this are order of m g n i t d e larger than wh 
other codes are a b e to h n d The r g e t real i n s t n c e we encountered gave rise to 
an integral multicommodity flow problem with bout 125 thousand equ t ions and 
70 million integer variables We could not p r o d c e an optimal solution, ut f o n d 
a solution with fleet ize g p of ss than 0 5 

P o i b l e saving indicated by r t e t r s are immen C o m p r e d with al 
p n n i n g process, the SCR heur i t ic ind ic te s saving of about 15% - 20 of the 
vehicles and about 10% - 15 of the oper t iona l costs Compared with assign
ment he r i s t i c , our brnch-and-cut method ind ic t e s savings of everal v e h i c s and 
about 10 % cost reduction However, the final valuation of the SCR gene r t ed 
olutions ave not been f n i h e d by BVG, HHA, and VHH yet still has to be 

checked whether our vehicle chedules provide a useful inp for d t y cheduling, the 
next tep in the hierrchical lanning process t is therefore not c r how much of 
these indicated saving c n be obtained in p r c t i c e Nonetheless, o r method can 
olve large problems optimally The Berliner Verkehrsbetriebe, for instance, expect 

to sav about DM 100 million per year with our SCR he r i s t i c , see Schmidt [199 

There is a hig d e m n d within industry for efficient method for the MDVS rt of 
our system have been purchased by BVG for their planning tem B R T A , by VU for 

C R B U S and by the reserch d e p t m e n t of the S I E N S in Munich 

There re f r t h e r challenge in the fie of vehicle cheduling in ic t r i t The 
main bottleneck of o r branch-and-cut method was the lution of the r e a t i o n s 
The olution process of the branch-and-cut softwre could be ccelerated ign i f i cn ty by 
empoying faster g , p a r a l l i z e d LP lvers 
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econd tas to i n t i g t e whether f r t h e r ing n be o b t i n e d by flexible de
p a r t r e time for the t i m e t a e d trips Te by un nd Völker 1997] show possib 
savings of several vehicles using the heur i t ic assignment a p p r o c h of the OT ystem 

n the ong term, we im lving vehic nd ty cheduling by n integrated p p r o c h 
Currently, the existing mthema t i ca l knowhow nd the avalable c o m p t i n g power are in
sufficient to solve vehic and ty cheduling in one tep Since m o t of the avalable 

lanning s t e m do not include ophisticated) athematical method for duty chedul 
ing, t r a n p o r a t i o n companie may well benefit from duty optimization oftware Together 
with VU and HanseCom, we have s r t e d a new project dealing with the op t imiz t ion 
of d t y cheduling 
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