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eutsch samenfassu 

er vorlegenen Dissertaton unteruchen w e O e r u n g von aufallsicheren Telekom­
munikationnetzwerken. W p ä e n e r e n u n t e r c h i c h e gemischt-ganzzahlige Modelle für 

i iskrete K a z i ä t s s t r u t u r , owe für die Sicherung d s Netze gegen den Aufall einzelner 
Komonenten. Die Modelle wurden in ener K o o e r a t o n mit der E-Plus Moblfunk GmbH 
verwendet. Di theoretischen Reultate wurden in Algorithmen umgesetzt und i d von un 
e n t i k e l t e e t z w e r k s t i i e r u n g w e r z e u g D S C N E T (Dimensioning Survivable C a c i t a t e 
NETworks) integriert, welches s i t mehreren Jahren n der Planung bei E-Plus eingeetzt wi 

r betrachten Transportnetzlanungsproblem ne Telekommunikationaneter Di 
s Problem etzt auf logischen Kommunikatonanforerungen zwischen den Stanorten ( n o ­

ten d zu lanenden Netzes und oteniel i ta l l ierbaren Verbdungen (Kanten) zwischen 
derelben Knotenmenge auf. Ein K a z ä t m o d e l l tellt Information bereit, welche Ka­
paztäten auf den potentiellen Kanten verfügbar s i . W betrachten zwei Modelle. Entweer 
ist ene e x l i t e Liste der verfügbaren K a z i t ä t e n gegeben oder eine Menge von ogenannten 

s i s k a z ä t e n , ie auf jeder Kante i d u e l l kombiiert werden können. Die Bsiska­
a z ä t e n müßen aarweise ganzzahlige Vielfache vonenander in. Man beachte, daß 

Eigenchaft von en internationalen S tanards PDH und SDH erfüllt w i d Ein Aufallsicher­
heitmodell tellt die Information bereit, wi as zu lanen Netz gegen en Aufall einzelner 
Netzkomonenten gechützt werden oll. W r betrachten sinnvolle Kombinatonen der Mo­

elle DIVERSIFICATION, RESERVATION und PATH RESTORATION Das e r t e Modell garantiert 
Aufallsicherhe urch kommunikatonbedarfabängge Bechränung s Prozentatze der 
durch nzelne etzkomonenten geroutet werden darf. Bei den b e i e n ane ren Moelle können 
Kommunikationbedarfe bei Aufall einer Netzkomonente auf unterchdl iche Weise neu ge 
routet werden. Zel der Planung ist eine k t e n m i i m a l e K a z i t ä t e n t c h e i d u n g , die eine 
Routenlanung aller Kommunikatonbedarfe gemäß den Aufallsicherheanforderungen er­

öglicht. 

entwkeln e n Schnttebenenverfahren zur Lösung er betrachteten O e r u n g s p r o ­
bleme. Zu em Zweck unteruchen i Polyeder, die mi den verchiedenen Problemen 

ssoziiert s i . Wir päent ie ren neue Klassen von Unglechungen, entwkeln Searationalgo­
thmen un Heurisiken. Mit dem Schnttebenenverfahren werden untere und obere Schranken 

für den Wert von O i m a l u n g e n berechnet, und daher ist e öglich, Qualtätgarantien für 
die berechneten Löungen anzugeben. Parallel zur Bechrebung der implementierten Algorth 
men äentieren wir umfangreiche Te t raktisch relevanten Daten, die zu Problemen m 
mehr al 2 Billionen Variablen führen. 

Schlüsselworte: Aufallsichere Telekommunikatonnetzwerke, Schnttebenenverfahren 

Mathematic Subject Clssification (1991): 90C11, 0 C 0 , 0B12 





stract 

n this thesis, we evelop a framewor for c m a l urvvable c a a c t a t e networ sign 
roblem We r e e n t ifferent model both for the d i s r e t e c a a c i t ructure and the ro­

t e c t o n of the network a g a i t the f i u r e of single network o m o n e n t . The ma thema tca l 
m o e l are u d i t h n a c o o e r a t i o n with the German m o b i l e h o n e rovider E-P lus Mo­
bilfun GmbH. The theoretical and ractical r e u l t have been ntegrated into our network 

mensioning tool D I S C N E T (Dimensioning Survivable C a c i t a t e N E T w o r s ) , which is in u 
at E -P lus . 

We c o n s i e r the transport networ sign roblem of a t e l ecommunca ton r o v e r . A 
nput i ven a o-called demand g r a h w h c h conta dge the logical ommunication 

requirements in term of channe l , an pply g r a h w h c h contai dge the otential 
h s i c a l t r a n i s s i o n l i k s . A c a a c i t y m o e l r o v i d s information about c a a c i which can 
otentially be talle on the edge of the upply g r a h together with the respective t 

We consider two m o e l . Either t is possible to choo the c a a c i t of each edge from a f inte 
et of c a a c i t i , or, in the other c a e , a a non-negative integer combination of a finite set 

of basic c a a c i . T h e e basic c a a c i t i s satisfy, as in the lesiochronou d i i t a l herarchy 
(PDH) and the nchronou ital hierarchy (SDH), that each one i an nteger multiple of 
all smaller basic c a a c i t i The u r v i v a b y model r o v i d s informaton on how to c 

th single no or single ge failure We consider r eaonab le combination of the followng 
model D V E R S I F I A T I O N , RESERVATION, and P A T H R E S T O R A T I O N . The f i r t model e n u r e 
u r v i v a b y through a " n o d i s j o n t " routing in the non-falure c a e , while the other model 

e n u r e urvivability through rerouting in c a e of a single network o m o n e n t failure. The 
latter model differ in the way the f l u r e routing is performed an to which extent the non 
failure routing m t be respected The objective is to c h o o e c a a c i t at m i m a l c uch that 
t s p s s i b l e to route the communication d e m a n s s imul taneouly under the given urvivabilit 

requrement 

We e m l o y a c u t t n g ane approach to olve the ifferent networ sign r o b l e m . Thu 
we focu on c o m u t n g a lower bound for the o t m a l olution value and feasible olution 
through heur i s tc a lgor i thm. Together, the value of the lower bound an the be olution 

rovide a guarantee for the quality of the olution o m u t e d . We n v e g a t e the tructure 
of s s i a t e d olyhedra, develop s a r a t i o n algorithm for variou class of i n e q u a l t i , and 
integrate this together w t h different t of h e u r i s . Throughout the thesis, we r e e n t 
o m u t a t i o n a l tudi of the ifferent a lgor thmi art ith real-world roblem tanc that 

lea to m d n t e g e r rogram ith more than 2 t r i l lon variable 

eywords: Survvable etwork D s i g n , C u t t n g lane Algor thm 
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I n t r o d t i 

n this thesis, we r e e n art of the r eea rch that ha been m o t v a t e by an ongong rojec 
of the K o n r a d Z u Z e n t r u m für Informationtechnik Berli ( Z I B ) ith the E-P lus Mobilfun 
GmbH. The roject wa i i t a t e d in July 1994 and our team at B, g u i d d by Martin Grö tche l 
tar ted ith D i i t r i s A lev ra , Mechth Stoer and myelf. A few month ater Mechthild 

hired by the orwegan Telecom and after two y e a r , D i t r i s left to IBM. Besid the upport 
of ome t u e n t , I have been workng alone in this roject since then1 . 

The tructure of this thesis reveal our v e w of o lvng roblem arising r a c e . We tar t 
th a d i p t i o n of the ractical background, then et u mathematical model which f c u 

on i o r t a n t art of the ractical roblem contnue w t h a mathematical i n v e t g a t i o n of 
the tructural r o e r t i and eventually, we convey the theor into an algorithmi environment 
w h c h can then be to olve the ractical roblem 

Along th ne of thought we at tac the transport networ sign roblem of a telecom­
munication rovider. This is a very general roblem and many telecommunication rovder 
( i nc ld ing m o b i l e o m m u n c a t i o n roviders) need to olve ome variation of the b s i c version, 
which can be d n e d follow 

ven are the loca ton n o s ) of the networ o m m u n c a t o n requrement 
between p i of n o d , an et of available c a a c i t for each otential 
line (link) between wo no A feasible o l u t o n o m i s a t o o l o g y 
o n s i n g of a u b e t of the l k s , an d i d u a l c a a c y for each c h o e n 
i , and r o u t n g for all communcat ion requrements such that the c h o e n  

c a a c i t i s suffic to accommodate the routings simultaneouly. Among 
all feasible o l u t o n , the target i to i d an o t i m a l olution w t h respec 
to the c ncurre b the elected c a a c t i 

The combnator of this integrate t oo logy , c a a c y an r o u t n g roblem is enormou 
since the number of o t en t a l t o o l o g and t r a n s i s s i o n aths i t p i c a l l y e x o n e n t i a l 
the number of available t r a n i s s i o n l . In fact, many speca l ca of this basic version 
of network d s i g n roblem are hard ization roblems in the e n e of c o m l e x y theory. 
Another r e a o n for thi o m l e x i t is the l i t e number of available c a a c i t In ractical 
appl ica t ion , the et of c a a c ha almo alway d i s r e t e tructure since the tandard 

*I will use "we" whenever I make reference to this project team or to the reader and myself 



INTRODUCTION 

fine by the n te rna tona l t e l ecommunca ton u n o n ( ITU) r o v e a w e l l - f i n e et of ca­
acit which are pported by the available network equipment. It i worth menton ing that 

many of the urvvable c a a c i t a t e d networ d s i g n roblems ( i n c l u n g t h o e considered i 
this thesis) would be olynomally olvable f an a r b t r a r y capacity could be talle on l k s 
between network no 

we m e n o n e before, r ou tngs satisfyng the c o m m u n c a t o n requrement are one target 
th the transport network d s i g n . However, we did not m e n t o n yet, tha t the routings should 

be c h o e n uch that the network is considered survivable. According to the standard fine 
i ( I T U T - G . 8 4 1 , 1995), a network is survivable, is c a a b l e of r e t o r i n g traffic in the event 
of a falure. The egree of u r v v a b i t is de t e rmne by the network' ability to survive single 
line tem f i l u r e , multiple l n e tem failure and equipment falures The equipment i 
m o e r n telecommunicaton networks is highly relable , but u r v i v a b i t is an issue since there 

ight be a huge i a c t of networ fa lure on our iety. J t recall the r e d t e d horror 
enari related to the o-called year 2000 roblem, and c o n s i e r the following n e w s p e r 

referenc few e x a m l e of network failure 

n May 1 8 8 The Wall Street Journal, 1 8 8 ) , an electrcal fire n a t c h n g center 
Chicago wa responsible for 20 ercent f g h t reduction at O'Hare, w h c h ha been the 
m o t bu ort of the US at that time. It turned out, ee EEE S e c t r u m , 1 8 9 ) that 
" o m e area had no ervice for a month, and dollar e t i m a t e of lost business range from 
hundred of ml l ion to ten of illions" 

Christma 99 (Der Tagesspegel, 1 9 9 , a gger cut the m a n cable o n n e c n g everal 
d i s t r t of B e r l n to the r e t of the c iy . onequence , approximately 160 000 houeho ld 
were w t h o u t cable TV and 3000 houeho ld thout t e l e h o n e . Recall, t wa C h r t m a 

June 199 (Der piegel, 1 9 9 , terror cut fiber-oc cable at trateg nt clo 
to the in te rna tonal a i o r t n Frankfurt. They were uccssful . The c o m l e t e outhern 

art of Frankfurt, including the a i o r t a well a the unversi ty hospital, were without 
a ta c o n n e c o n and t e l e h o n e . 

March 1999 (Di resse, 1999 , a gger cut an ortant cable n A u t r 
onequence , Vienna an the w e t e r n art of A u t r a were d i o n n e c t e d for a l m o t a 
o m l e t e day. 

M o e r n t e l ecommunca ton networks are on fiber-opc c a b l e , w h c h have the o t en t a l 
to transport huge amount of da ta using the necessary equipmen at the e n d n o d . Hence, 
networ ith uch high c a a c y links tend to be ver sparse and each l i k carr u b s t a n t a l 

art of the overall traffic. The b new ithin thi ontext are that a u b t a n t a l amount of 
traffic is l o t i c a e of uch a li falure, f the network ha not been r e a r e d for the articular 
failure s i tua ton . Sinc networks which are d s i g n e d to be urvivable tend to be considerably 
more exens ive , the network planner ha to find the right balance between c t an qua l t y 
of the network. Thi is exactly the topic of this thesis: How to d s i g n a cheapest survivable 
network? 

few year ago, t ha been common r a c e to olve the transport networ sign roblem 
through t e r a t o n over the following u b r o b l e m 



INTRODUCTION 

elect the toology of the networ  

Choo a routng for the ommuncaton requrement sing the electe toology.  

Choo c a a c able to accommoate the choen routng 

It ha been roven by exe rence that this sequence of ecision lea to feasible but ver 
exensive olution. The reaon is the followng. If the network planner choo a chea 
among all connected toolog the reul t wll be a m i m a l spannng tree. Obvouly, such a 
decision comletely determine the other two teps The routng is fixed sinc there is exactly 
one path between ever r of nod and the c a a c i are determned by the routing ecision 
anyway. Even if urvivabity issue have been nclu i the toology lanning, the chea 
ufficently connecte toology wll be ver spare, an therefore the routing a well a the 

caac i t are almo redetermined 

urng the l a t year o m u t n g ower ha been r ap i ly ncreasing an oluton metho 
olog have been consierably i r o v e d b everal reearcher Hence, it appear natural that 
m o e r n telecommuncation r o v e r are now demanding for a more h c a t e d integration 
of lanning roblem well as soluton method 

We examne man ommercal network plannng tool , whch uually r o v e an elaborate 
g r a h c a l u e r nterface and who olution approache are a l o becomng more hiticated 
Tpically, ome ort of a randomzed heuri t uch as simulated annealing, genetc algorithms 
or tabu earch ha been i l e m e n t e s soluton approach. In all tool we got aware of, however, 
at l ea t two feature are ssing whch are ortant for otimiztion network dsign tools i 
a mathematical ene : 

r t , an algorthm to comute a lower boun for the cos of an mal oluton. Wthout 
this feature, i is i s s i l e to rove that a olution is timal or to rovide a qualit 
guarantee for the oluton 

econ an exact algorthm to verfy whether a gven et of c a a c t i can accommoate 
routing of the communicaton demand which atisfy all i d requrement. Without 
this feature, even the enumeraton of all feasible caac i t e lecon become a non-triial 
task 

Unless V = HV whch is not beleve by the m a j o r y of reearchers i this f i e l , we cannot 
exec t to fin an efficient algorthm that comutes provably o t ima l o l u t o n . Therefore, we 
decidd to develop problem d e n d e n t theory for a utting l apprch olution methodol 
ogy whch has proven to be uccssful for many TV'hard ombnatoral ization roblem 
Thi approach otentially yield vabl mal oluton since lower bounds (we assume a 

zation roblem) are calculate for the value of an o m a l olution throughout the o t i 
zaton rocss. This is done in addtion to the c o m u t a t o n of feasible olution With the 

nowledge of uch a lower bound, a qality artee for the value of the b e t oluton found 
can be r o v i d In more detai if up denote the value of the b e t olution found and low the 
omu ted lower bound the q u a l y guarantee (gap) is dfined s (up—low) j low. For examle, 
f ome heuristi iel olution of value 11 million and the lower boun calculation yel 10 
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on, then is proven that an o m a l o l u t o n at m o t 10 ercent c h e a e r . ot tha t 
the best so lu ton found ight be o m a l but this j u t cannot be roven. If the lower bound 
however, is equal to the be o l u t o n value, then this tablishe prf f timality for the 
b e t o l u t o n found 

In this thesis, we ntegrate ifferent m o e l for the i s r e t e c a a c tructure and different 
models to deal with single network o m o n e n t failure Our mathematical models ntegrate 
t o o l o g y ecis ion, c a a c i decis ion, routing decision and urvivabilit i s sue . This integra­
tion lea to huge m x e d n t e g e r rogramming model w h c h are extremely dfficult to olve. 
J u t a an e x a m l e , everal of the ractical roblem tanc d ithin this thesis have more 
than a trillion 1000 000 000 0 0 0 ) var iab le . This i d i c a t e the necss i t of isticated al 
g o r i t h m . We r e e n t problem d e n d e n t theor i n c l u n g the i n v e t i g a t o n an c lass i ica ton of 

o l y h e r a related to ifferent networ d s i g n roblem together w t h a r a t o n algorithm for 
all class of inequal e m l o y e d i the c u t t n g lane algorithm. We evelop several t a r t n g 
and provement h e u r i , and extend and d t column genera ton b a d algorithm to solve 
the ecision roblem whether given c a a c s sffice to accommodate a routing that atisfie 
all c a a c t y and urvivability r e q u i r e m e n . We d e v e l o d and i l e m e n t e d an o t i z a t i o n 
tool, called D I S C N E T (Dimensioning Survivable C a c t a t e d NETworks), that ha been in u 

ithin the network planning p r o c s s at E-P lus for more than three year now. It erve 
tool for hort-term network e x a n s i o n as well for long-term network and budget l annng . 
B e s i e the o t en t a l t r e u c i o n of 10 20%, n other word illion of Euro, D I S C N E T put 
the networ d s i g n e r nto s i o n to analyze different network s e n a r o s . It become easier to 
decde how much capital one is illing to inve n order to acheve a elldefied q u a l t n the 
network 

Outline of the thesis 

The r e l n a r , w h c h follow this i n t r o u c o n , serve a hort reference to the n o t a t o n an 
o n c t d We over part from near algebra, o l y h e r a l theory, linear rog rammng an 

g r a h theory. The u b e q u e n t c h a t e r reveal, a we already m e n o n e d , our view of olving 
ractical roblem 

In C h a t e r 1, we be the r a c c a l b a c g r o u n of the overall l a n n n g r o s s for a 
mob i l eommunica t ion network We g v e an overview of the tructure of uch a networ and 
o u t l n e different art of the anning p r o c s s Besid the transport network d s i g n , t h e e are 
nod location roblem traffic forecat , an i t chng network planning. 

In C h a t e r 2, we f c u on a ma thematca l v e w of the c o n s i e r e roblem. We formulate 
near mixedinteger programming model for the transport network sign roblem, covering 
wo m o e l for the i s r e t e c a a c t tructure, and three model to eal w t h single network 
o m o n e n t failure At the en of the econd c h a t e r , we give a urvey on c a a c t a t e d networ 

d s i g n roblems in which the roblem of routing the emand is d f ined a mu l t i ommodi t 
flow roblem. 

In C h a t e r 3, we r e e n t our theore tca l n o w l e g e about the o l y h e r a fine the convex 
hull of feasible o l u t o n . For each combination of a model for the d i s r e t e c a a c tructure 
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an a m o e l for u r v v a b y , we n v e g a t e the facal tructure of the respecve olyhera 
We rov ie a oherent reen ta ton of the knowledge about the olyhedra i n c l n g everal  

class of valid an f ace td f i i ng inequaliti 

In C h a t e r 4, we be how to raccal ly olve transport networ sign roblem on 
the basis of the reearch reente in the p r e c n g chater . Starting from an overview of the 

articular cut tng lane algorithm, we iscuss in the ubequent ection detail oncerning 
rerocss ing , linear rogramming relaxation, f eas ib ty roblem of caaci ty vector a­

raton algorithm, and heur i sc a lgor thm. Eventually, we reent the reu l t of thorough 
omutational e x e r m e n t th real-world data 

T h e e four cha te r bu the core of the thesis. Afterwar we conclu th ome remar 
on ssible future reearch direction and we b r f l y d i b e the grahical u e r interface, whch 
ha been i l e m e n t e d (in JAVA) to pport the basic work of the network planner. 





r e l i m i n e s 

n the followng, we g v e an overvew of w e l l n o w n n o t o n an once from near algebra, 
olyhedral theory, linear rog rammng and g r a h theory. Our iption is rather o m a c t 

and doe not erve a an in t roduc ion to the respective areas. Hence, we refer the reader 
not f a m a r w t h the a r t cu la r theory to one of the following exel lent books and overview 
An in t roduc ton to l n e a r algebra can be found in any basic textbook on this topic. A goo 
overview of olyhedral theory can be found i (Pulleyblank 1983) ( P d b e r g and Grö tche l 
1985 chrijver, 1986) and (Nemhauer an Woley, 1988) The b o o s (Schrijver, 1986 and 
( P b e r g , 1995) g v e excellent i n t r o u c t i o n to the theory of linear programming. more 
elementary n t r o u c t i o n to this t o c can be found i (Chvätal 1 9 8 . There exis a huge 
number of ntroductory book for g r a h theory. (Bondy an Murty, 6) ight erve a fir 
reference. Finally, we refer to the exel len t book (Ahuja et a l , 199 w h c h r o v d oherent 

introduction to the theory of network flow 

near Agebra 

We enote by R, Q, and Z the et of real, r a t o n a l an nteger number respecve ly . For 
the sitive part of t h e e sets ( i nc lu ing zero) we u the ymbol R_|_, Q+, and Z + . To mak 
d f i n o n s short we u e I (or K f any of t h e e three et can be applied. We distinguis 
between the sitive nteger number ithout zero by N. Tha t is, N Z + \ { 0 } . For n 6 N 
the et of ra-mensional vector over K is K n . S e c a l vector are 0 and 1, the vectors of all 
O' and all l , respectively. The tnssition of a vector x is xT. The ra-dimensional vector 
{ Xß} C Kn are iear idepnde if A, 0 i 1,. k, is the u n q u e olution of the 

e q u a t o n X ] j i 0 w t h \ £ K t = . n . 

For i £ I , we enote by \x the malle nteger number larger than or equal to x an 
x\ the largest integer number maller than or equal to x. We a l o ay \x and [^J a r e the 

ceiling and the f f x, respectively. If x 6 \{0} divides y 6 \{0} , that f y/x € Z 
we write x\. The reatest mmon divisor gcd of a et Y y} € \{0}) is 
max{x : x\y for i = n}. 

For any f in te set E, we identfy a f u n c o n x: E —> K with the o r r e s p o n n g | . E | m e n s i o n a l 
vector x = (xe)eeE £ K £ : K). The incidence vecr xF £ 0 1}E of i 7 C £J is d f ined b 
XF(e) '• if € F and xF(e) = 0 e $ F. Conversely, a vector x £ {0,1} efine the 
incidee s Fx := { £ E : xe 1}. More generally, the suprt of a vector i £ K is d f ined 
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by pp( : i e 0}. T h u , Fx pp( for a l}-vector x. 

et C M ded if M K exis ith ||a;|| < M for all x E X and ome norm 
|| : Kn -> K+ ( norm satisfie \\x\\ > Vx E MP; ||Aa;| = |A| | |x| |V E M 
(m)||a; + || < ||z|| + || V , y € K For K", we d f i n e 

l e T : 3A A t e a n 3: x t E t e N t. 

> E K : 3A A t e a n 3x i | 6 l e N t. 

0=1 A = ! a n d Si=i A ^ i ' 
on x € M : 3A Xt E K an 3x ,xt E £ e N t. 

S i = i A = ! a n S i = i A « x 0 ' 
one x E K : 3A At e K an 3 x , xt E £ e N t. 

to be the lnear , affine, convex an one hull of X, r especve ly . The sion of 
is d i ( f f ( X ) ) that is, the maximum number of linearly d e n d e n t vectors in a 

hedral T h e r y 

ven a E K ™ \ { } and a , the et x E K n : aTx < is alf-spa an {x E IK™ : aTx 
} is a hyperpl. The te in terec t ion of hal fspac ven by E M : Ax < b} w t h  
E MP1* an b E R m is ledron, where MP1" is the space of matrice with m row and 

n c o l u m n . A bounde o l y h e r o n is a ltope 

The n e q u a l y aTx < for a E K" is wa/ir for o l y h e r o n P f P {x K n : 
a x < }, and it is tigh P , if t is val and Ta : P f { E K n : a x = } / 0, tha t 
is if there exis x E P th a x We ay, JFa is the indued ax < 

zero-dimensional fac a vertex, a o n d m e n s i o n a l fac an ed an a face F / P of 
olyhedron P is / o/ is m a x m a l w t h respect to inclusion. If ax < val 

for P and F i £ P : a x is a facet of P , we ay that ax < is facetdeng or 
face-idung. An equvalent characterization of a facet i tha t dim( P ) 1. If a 

o l y h e r o n P i fulldimensional, and ax < and ft a; < ß are f a c e t n g w t h ^ J~b 
then there ex A E R ith Aa b an ß. Note, thi r o e r t is the key to mo 

roof that ome inequal is f a c e t f i n g for a olyhedron. It is not fficult to ee that 
every b o u n d olyhedron ha v e r t . If a olyhedron ha vert then every face of the 

olyhedron ha verti 

near roramming 

o l y h e r o n P {x E K : Ax < b} C , for Q} an a l nea r f u n c o n : R 
fine ar prram, for short LP M i z a t o n an m a x z a t i o n version are 

max x : x E P an x : x E P 
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vector x* E P, whch atta the maxmum mum) i is an timal luton. The 
et of optimal solution { T x : x E P } of a lnear rogram m a x x : E P} is 

a face of the olyhedron P. Thus if a lnear rogram i b o u n d the timal oluton value 
is attained at a vertex. For every linear rogram m a x T x : 6 > 0}, the dual liar 
prram is i { 6 : A > y > 0}. 

T h o r e m 0. lit f li r o g r m m n g ) L A E Kmxn , E K d c . / 

x e K" : Ac < x > 0} / 0 an { e T : A > y > 0} / 0 

tial lut vales 

max { re : Ax < x > 0} an n {6 : A y > 0} 

ar d 

x E x E W : Ax < x > 0} an e K™ : A y > 0} 

exst such ht c 

U n e r the s s u m o n of Theorem 1, the maxmum an the mum are a t tane 

T h o r e m 0. ( C o p e m e n t y sackness) L A e K™™, ö e T E K. I th 
exst x E {x E K™ : Ax < b} and E E W : ATy > c}, the d y are imal 

luton max { e x : Ax < b, x > 0} n {b : A y > 0} respeivel onl 
y{ A) 0 nd ATy — c) 0 

rap h e r y 

An dirted rap G (V, <f>) onsis of two ets V an an an n c e n c e funcon 
4 : E V(2> where V^2' is the et of unorered of . The element of V are the ndes 
of 7 an the elements of E are the edges of G. For each E E ith 0(e) {u v}7 the no  

and w are the ddes of . We ay, is djat to an e ve ra i> is d j t to 
and e is incide to an , respectvely. For each E , the number (v) of n c e n t edge 
is the deree of v i . The no v is an islted no the degree of v in G is zero, that is 

(v) An e g e E E ith 0(e) { « « } for ome nod u E V is , and two edge 
ith the ame endno that is, two e g e s e e 6 E with 0(e = 0 ( e , are paralll edes 
o t i e that arallel e g e are the reaon for the formalism with the i n c e n c e funcon. If we  

not have to distinguish between arallel edge, or the dge are unique within the context, 
we write E E or {uv} E E for an e g e E E ith 0(e) {uv}, tead of using 
the incidence function. g r a h without loops and arallel dges is simple g r a h . 

gra {WFi) is subraph of = (V,</>) V,F C E an ip(f) = 0( /) 
for all f F. Secial ubgra are duc by ube t s of the n o s and dge , respectively, 
and special cae , removng a n o e or an edge. 

For a ube t F C E of the e g e the triple G[F] : (V, F e is the subrap f G duced 
, where 0 : F —> V^2> is the ncidence function r e t r t e to F, that is ( / ) = </>(f) for 
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all F. For a ube t of the no {W) C E enote the ubset of e g e th both 
e n n o d s i W, that E E(W) if an only 0(e) W(2). With this notation, the triple 
G[W] = (W (W), <(w)) is the subraph f indued W, where (W isi analogouly, 
the ncidence funcon 0 r e t r t e d to the ge et (W). In the followng two special ca of 
i d u c d u b g r a h we ightly change the common notation for reaon of b revy . If an e g e  

E E is remove from G, the u b g r a h G = (V,E) of G is o b t a n e , and if a nod V 
and all edges i n c e n t to are remove from G the ubgra Gv (VVE) of G is obtane 
A nodeset C V is deer of G f ether E W or W for each E E th 
0(e) {««}. 

In the followng, we r e r e e n t graph ther no an ge whenever the n c e n c 
function is i i i t l y given. Therefore, we will denote a gra b G (V,E) i t e a d of 
G (V,</>) 

ven two ube ts W W V th = 0, the et 5(WW E £ 3 w 
E W ith 0(e) = { }} C E onta all dge ith exactly one endnod W 

u b e t F C E of the e g e s i called a raphpartition f k E N, f there exis a r t o n of 
the node set V into k subset Vi, Vk w t h Vi U • • • U = V and V n Vj for 1 i < j < k 
uch that F 5G(V V) = Ui<i< je ^ G ( ^ ^ J ) special c a e of a - g r a p a r t i o n of 

G is w£, where F (W V\W)~: S(W) for a u b e t I f C F of the nod If W {}, 
we wrte SQ(V) instea of 5 Q ) 

If is necssary to isnguish between ifferent g r a , we exten all no taona l conven­
ons introducd above b pplementar dex. For a g r a h G we write, for examle, 

{v),8G(, e t c . 

pa G from vo to is equence of the form P (VQ e v\ e e V where 
f o r , k E E for 1 A, and i V are the two e n n o of edge 

i f. The l e h of a ath is number of e g e , that is, the length of P in the 
notaton above is k. The nod ^ and k are the ddes P an the nod v \ are 
the i e r des of P. We e the notaton E P or E P E is an dge of P or is an 
inner n o e of P . We denote by V(P) and i£(P) the set of nner nod and dges, respecvely. 
That is, for a path P (vo ev e . e vk) i G we have V ( ) { V } and 
i£(P { e,t}. It is ommon to disnguish between ath an walks, where walk are 

ath thout n o e r e e t o n . However, we wll only u ath ithout nod r e e t t i o n and 
only u the notion of ath. A cle or osed path i ath where the endno are entical 
A cycle dd i it length is an odd number, an an d l deve is et of oddcycle 
uch that each nod is inner-no of at lea t one oddcycle. Two ath and P are de 

disjit i V(Pi) CV( = 0, that is if the n t e r e c o n of the two et of n n e r - n o s i e m y , 
an analogouly, P and P are eddisjt if E{) n E{P) = 0, that is if the n t e r e c o n 
of the two et of e g e s is emty . 

gra G is oned f for each of ifferen no an v there exis path 
from to v. More generally, a gra is kde edgeoned (k E N) f there exis 

nod ge)isjoint ath from to for each r of ifferent no and v. The maxmal 
onnected ubgrahs i ith respect to edge et inclusion are the onts f G. A nod 
E V of a graph is an rtiulon de f the u b g r a h Gv ha more omonent than 

an analogouly, e g e of brid e ha more omonent than G 



hapter 

ratica 

The research reented in th thesi wa motvate by the omlex network sign roblem 
our roject artner E-Plus Mobilfun GmbH ha to olve. A we will ee, this networ ds ign 

roblem ontai a series of ubroblem which m t be solved an ntegrate each comlex  
i e l f . The network panner have to make man decision to sign a network in whch 

ommunication requirement between u e r of the network can be fulfilled ith high robabi t 
at any tme . The ecision are in te rdenden t and influencd by a varety of arameters such  

the available harware includng it t, the e t m a t e d ommunication requrement, a given 
budget, or an ex i sng networ. The hardware of the network and the manower needd to 
mantain the network are exensive, and therefore, it i the target of the network planner to find 
the ight balance between nvetment c t and network quality. (There is no recis d f i t i o n 
of the quality of a networ, but it hould be exress in term of cutomer atisfacon and 
the ability to fulfill communicaton requirement) 

This cha te r rov i p o n of the ma tasks in the sign of a moble ommun 
cation network n c l u n g a iption of the transport networ sign roblem, which is the 

roblem we ll focu on in the ubequent cha te r 

The followng nt is worth m e n o n n g : Our rojec artner is a m o b l e o m m u n c a t o n 
network erator, and onequently, we develo model and algorithm to olve art of 
the overall ds ign r o s s of a mobileommunicaton network However, the d i b e m o e l 
and oluton approache can often be u d in the transport network dsign rocss of other 
telecommunicaton rovder . In fact, only nor detail of the transport network are partiular 
to mobileommuncation, and the d abtract mathematical m o e l focu on the ortan 

spect of network planning, which appear for other t of networks well 

The ontens of this cha te r is the followng. We b r f l y e x l a n the archtecture of a bal 
yst bile mmncaton (GSM)1 network including s interfac and u b t e m 

fine the t a n a r d (GSM1.02, 199 GSM1.4, 1994) an ibe less techncally 
Mouly and Pautet, 199 on the archtecture, we be pical e coms i t i on of 

the overall sign r o s s an reent, in more detal, the n o e locaton roblem, the traffic 

1 Originally, GSM was an acronym for Groupe Special Mobile, which was a working group of the Conferenc 
Europeenne des Administration des Postes et des Telecommuniations between 1982 and 1987 

11 
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forecat , an the t c h n g an transport network p l a n n n g roblem 

Architecture of a GSM network 

GSM or GSM18 networ onsis of w e l f i n e ierarchcally o r e r e u b t e m 
together w t h nterfac between the u b t e m an to the external world. The three main 
u b t e m are the twork d ichi subsystm (NSS) , the bas stti subsyst (BSS) 

an the ile sttons (MSS) Throughout our i p o n we neglect the fourth u b t e m , the 
operation subsyst (oss) , becau it is responsible for maintenance issue an less i p o r t a n 
for the networ sign roblems u n e r onsideration. There are two external interfac One to 
the c u t o m e r an the other to external networks which might be the network of another mobile 
ommunica ton network erator or a ubli itched t e l e h o n e network ( P S T N ) . Altogether, 

the u b t e m and the nterfac d f i n e the erarchcal tem hown in F g u r e 1.1. 

A interface 

BSC 

Abis interface 

BTS 

Radio interface 

NSS 

BSS 

MS 

gure 1.1: Archtec ture of a GSM networ 

2The values 900 and 1800 indiate the range of the frequency band in which t radio network operates. A 
GSM-900 network utilizes parts of the frequency band 890-960 MHz. Analogously GSM-1800 network utilizes 
pats of the frequency band 1710-1880 MHz 



The c o n n e c n g l n e between the n o s in Figure 1.1 r e r e e n t the logcal re la tons in a 
GSM network. Across the three interfac A, Abis and radi in ter fac) , the relations set u 
a collection of t a r , that is, the nod from a "lower" u b t e m are artitioned uch that the 
nod of one a r t i o n are connecte to a single nod of the u b t e m "above". Only in the 
to level u b t e m , the NSS, there are logcal r e l a ton between nternal nod 

MS The m o b l e t a t o n bu the lowet level of the herarchy. They consis of the bil 
uimn ( M E ) , which everybod know mobile hone, and the subsriber idety 
dule (SIM), which tores part of the a i i s t r a t v e information about a a r t cu l a r 

er. The SIM i the mart card erted into an ME. The MS fac on one side the er 
of the networ and on the other sid the BSS Not that a er can be a human being 
who u the nterfac display, louspeaker , or keyboard, but a er can al be t e r m n a l 
equipment like a c o m u t e r or a f a c s i i l e . 

BSS The ba t a t o n u b t e m ha two nterfac to other u b t e m : the o-calle radi 
itfac to the MSs, which is the only interface that d f i n t e l y t r a n i da ta through 
the a r , and the o-calle A tf to the NSS There are no external nterfac The 
main task of the BSS i to onnect the MS th th NSS through two class of network 
o m o n e n t the bas t e i v e r ston BTSS) w h c h are l to the MSs, and the 

bas sttion onllers BSCs) w h c h are l to the NSS. W t h i BSS, each BTS 
ommunca te th exactly one redetermine BSC across the so-calle bis i t f 

The TS a c c o m m o a t e the di traeivers T R X S ) an h a n l e the l k protocol to 
ommunca te with the MSs The e r v e area of a single TS is i i d d nto 3-4 ector 

and for each ector there are u to 3 TRXs. The fir TRX n a ector can manage 
ommunica tons (channels3) an each a d d o n a l TRX i the ame ector manages 8 om­

munica ton (There i ifference of two channel since t h e e are r ee rved for b r o a c a t 
nformation at the fir TRX in the ector.) T h u , a BTS ith three ector and one TRX 
ithin each ector can manage 18 3 6 o m m u n c a t o n s , and th two TRXs in each 

ector 42 ( 3 - (6 + 8)) ommunica ton pical BSC today can control u to 128 TRXs 

NSS The networ an t c h n g u b y s t e m bu the h g h e level of the nternal herarchy 
and has interfac to the BSS an external ne twork . The NSS onsists of different class 
of network o m o n e n t the bil ervices ichi rs (MSCs) and two t of 
data ba hoe l o n sters LRS) an visit ocon sters ( V L s ) 

An MSC is t c h n g n o e 4 w t h a d d o n a l f u n c o n a l i y to o e r a t e a m o b l e o m m 
ica ton network. For i t a n c e , hand-over management, loca ton u d a t e , an er au 

then ica t ion are uch additional f u n c i o n a l i t i . The HLRs (there m g h t be more than 
one f the c a a c y of a single HLR doe not suffic to handle all u e r of the network) 
tore a d i s t r a t i v e informaton about all registered e r . This i n c l , for i t a n c e , 

the curren g e o g r a i c a l sition and basi data about the ontract of the u e r . With 
each MSC VLR is s s a t e . It tore the u b e t of information from the HLRs about 

3A channel is th basic unit of data transmission. Its capacit i 64 kbit/s. 
4Switching is the abilit to interconnect the channels attached to each network node and to move traffic from 

each incoming channel t the appropriate outgoing channel whenever the r e q u i r e e n neither originates nor 
t e r i n a t e s at the node 
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t h o e u e r currently n the e r v e area of the a r t cu la r MSC. T h s informaton at the 
VLR is frequently u a t e d since the u e r of a m o b l e o m m u n i c a t o n networ typically 
move between e r v i e area The c a a c i y of the VL and the MSC, respectively, not 
u n b o u n d d . In fact, in the sign r o s s the VLR m u t be dimensioned uch that the ex­

ected number of u e r s in the e r v e area of the a s s i a t e MSC can be handled, and the 
MSC m u t be dimensioned uch that the c o m u t i n g power uffic to handle the e x e c t e d 
maximum number of o-called bus hour all t t s (BHCA) 

It is worth m e n o n n g that the u e r s of a networ are not only the u b b e r of the 
r o v e r o e r a t i n g this network. There exist o-calle ming contract between provder 

of different m o b i l e o m m u n i c a t o n n e t w o r . The o n t r a c s permit a u e r of one networ to 
u t z e the r eou rce of another network the er is not n the ervi area of the "home" 
network. Tp ica l ly , roviders i different c o u n t r s sign uch contract to mak it ssible for 
their c t u m e r to communicate th their m o b l e hone in foregn countri 

The MS ommunca te w t h the g e o g r a c a l l y clo TS even f no c o m m u n c a t o n is re 
q u e t e by a u e r . Per idical ly , ever MS negotiates th clo BTS to choo the b e t one 
to r e c v e or u b m t a communcat ion r e q u e t . Here, the b e t o o n is a c o m r o m i s e between 
the available radio channel and the quality of the r ec ived signal. The negota t ion is r e e a t e d 

the MS change it g e o g r a c a l s i t o n and the r e u l t is stored in an H R of the NSS an 
the V of the v s i t e MSC 

S w i t c h n g nd transport etwork 

n F g u r e 1.1, we r e e n t e the logcal t ructure of GSM n e t w o r . A we have een, there are 
logical l i k across the three in ter facs (A, A b i , an ra interfac) and between the MSCs i 
the NSS nowing this, we can now describe the logical communcat ion ath for a r t cu l a r 
ommuncat ion between u e r s MSA an MSB (see Figure 1.2) 

MSC A 

BSC A 
"7 

BSC B 
V 

BTS A 
"7 

BTS B 

~̂ 

gure 1.2: Logcal c o m m u n c a t o n a th 



MSA nows i currently a s s a t e TSA, w h c h elf s ( e r m a n e n t l y a s s a t e th 
BSC A, which elf ( e r m a n e n t l y assocate ith MSCA On the NSS level, the c o m m u n c a t o n 

ath might ss a d d i o n a l MSC, like the MSCC in F g u r e 1.2. Eventually, the path follow 
again the herarchy: from MSC over BSCB an TSB own to u e r MSB. Altogether, this is the 
l a l ommunication a th between MSA an MS 

The logcal l k s o not uffice to e t a b l h the c o m m u n c a t o n . In a d d o n , there m 
be h s i c a l t r a n i s s i o n links ith ufficient t r a n i s s i o n c a a c t y , and hysical t r a n i s s i o n 

aths which connect the e n n o d of each logical l k sing the t r a n i s s i o n l i k . In this 
ontext, t is ommon to d i n g u h between two ne twork : the itng twork and the 

rt twork. The tching network onsist of BSC and MSC no and logical 

o m m u n c a t o n requirement l i k . The transport networ onsis of digital s s o n t s 
DXCs) nod an h s i c a l t r a n i s s i o n line l i k s DXCs are ver flexble network om­
onent which automatca l ly ma "c ros sonnec t " tal signal from incomng to outgoing 
ort This is done according to a ma tored n electronc form. ith each node of the 

i t chng network there i DXC a t t a c h e , w h c h i responsible for d d n g signal from or to 
rop signal to the i t chng n o e . A logical li of the t c h n g network i realzed in the 

transport network over ath between the d i i t a l c r o s s o n n e c t attached to the e n d n o d of 
the k 

gure 1. l l t r a t e the nterworking of t c h n g an transport networ for the comm 
cation between er MSA and MS of F g u r e 1.2 on the NSS level The d h e d lines i 
igure 1.3 r e r e e n t the logcal a th MSCA MSCC MSC of Figure 1.2 on the NSS level 

For both logcal l i k in this ath, a t r a n i s s i o n ath m u t be rovided in the transport net 
work. In our e x a m l e the a th are r e r e e n t e by traight line One t r a n s s i o n ath 
MSCA DXC A DXC C MSC C for the logical l n k MSCAMSCC and another t r a n i s s i o n ath 
MSCC DXCC DXCD DXCB MSCB for the logcal l MSCC MSCB. Both path tar t 
an en w t h the l between the MSC and it attached DXC. In between, a t r a n i s s i o n ath 
never i s i t " an MSC. In our e x a m l e , the econd t r a n i s s i o n ath s s s DXCD, but i doe 
not u a l k between MSCD and DXCD 

MSC A —| DXC A DXC B |— MSC 

gure 1.3: S w t c h n g an transport networ 
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S o u r c o f fa i lure 

n the n t r o u c o n of th thesis, we be the ortance of network s u r v v a b y w t h 
the lanning r o c s s an r e e n t e d a b r e f l i t of network f l u r e that happened n the t. 
Knowing technical eta of the network structure and the ifferent network o m o n e n , we 
can now d b e ourc of network failures in more detail. A good network sign houl tak 
care of the evere f i l u r e categori and rovid trateg and r e o u r c to ecrea erv 
d i s r u t i o n t m e . We distinguish between two categori of networ f i l u r e roblem due to 

fficent network r e o u r c , and ervi d i s r u t i o n of network fac 

etwor outage ue to overloa of ome networ r e o u r c are the r e u l t of an u n e r -
mensione n e t w o r . It is difficult to mate the financial loss c a u d by overload of network 

facilit sinc none of the communicaton i rogress i f fec te . The network s i l y doe not 
a c c t any further ommunica ton r e q u e t that r e q u r e free r e o u r c at one of the over loadd 
network f a c i l i t i . The ma ourc for thi category of f i l u r e are the following: 

There is no a v a a b l e radio channel at the BTS to erve the c o m m u n c a t o n r e q u e t of 
articular MS n this c a e , the network planner hould have assigned more r a d o channel 

to the BTS, or houl have i t a l l e d more BTSs ithin the bottleneck area 

The c a a c y of a t r a n s i s s i o n l k may not uffice to tablish a d d o n a l o m m u n c a t o n 
r e q u e t s which u e this In this c a e , the networ lanner hould have i n c r e a d the 
t r a n i s s i o n c a a c i t y of the l k , or hould have route less ommunca t ion reque over 

a th w h c h u e this l i k 

The MSC ght to o e r a t e becau of too man call a t t e m p . Recall an MSC can only 
h a n l e a c e r t a n number of b y hour call a t t e m t In this c a e , the network planner 
hould have c h o e n an MSC th a larger maximum number of b u y hour call a t t e m t 

or hould have talle more MSC ithin the bottleneck area 

The c a a c y of the VLR may not uffice to handle all u e r w h c h are currently t h n the 
area overed by the associated MSC. In this c a e , the network d s i g n e r hould have c h o e n  

larger c a a c i t y for the V L , or hould have talled more MSC thin the bottleneck 
area 

The econ category of networ fa lure o m i s the f l u r e of networ fac ue to the 
following r e a o n 

Human error ike a cable cut or ower pply r u o n . 

atural i s t e r lik an earth quake, a fire, a hur rcane , etc.  

A bug n the ofware control lng the t c h n g no or tal c r o s s o n n e c  

A bug n the h a r w a r e of the t c h n g no or tal c r o s s o n n e c 

nce 199 is m a n a t o r y for networ erators in the U n t e tate to r e o r t on networ 
fa lure a f f e c n g more than 30 000 c u t o m e r to the US Federal Communication Commission. 



on t h o e fa lure r e o r t uhn, 1 9 9 ) showe that networ fa lure ue to overloa of 
ome networ f a c t i s account for 44% of all t u m e r - i n u t e outage Human error account 

for 28% and natural i s t e r for 1 8 . I n t e r e n g l y , ofware and h a r w a r e failure are rather 
rare. t % of c t u m e r - i n u t e outage are due to ofware f u r e and 7 ue to hardware 
failure 

l a n g r o c 

we have een o far, the sign of a t e l ecommunca ton network involve man ecision 
The include the loca ton of BTSs BSC MSC DXC VLR and L R , the d i u a l c a a c 
it of this equipment, the t r a n i s s i o n c a a c y between these loca ton an the aths in the 

tching and transport networ which are u e d to e t ab l i sh r e q u e t e d ommunication The 
ecision are not dependent from each other, but from rac tca l int of view the overall 
roblem is too c o m l e x to be h a n l e d ithin a single t e . A natural approach is the decom­

s i i o n of the roblem into a eri of u b e q u e n t roblems such that each i d i u a l roblem 
can be handle The resulting equenc of s u b r o b l e m s should be iterate un reasonable 
o m r o m i s e between c t , man t enanc ffort, and q u a l y ha been found A t p i c a l equenc 

of u b r o b l e m for network d s i g n is shown in F g u r e 1.4. 

Node locations Traffic forecast Switching network Transport network Node locations Traffic forecast Switching network Transport network 

gure 1.4: equence of u b r o b l e m for networ sign 

t, a goo c h o e of no l o c i o n together th an assignment of BTSs to BSC an 
BSC to MSC t be de t e rmned uch that a c t -e f fec t ive an manageable networ can be 

e t e r m n e n the u b e q u e n t l a n n n g teps. Th ecision d e n d on the e x e c t e d number of 
u b b e r and the e x e c t e d o m m u n c a t o n traffic. N d e location are u u a l l y fix for a long 
er an are not ubject to frequent r e s i g n . I o n t r a t , the r e t of the l a n n n g r o s s is 
e r c a l l y appli 

The traf for ha to be erforme for each t of e r v e w t h the networ Dif­
ferent t p are, for t a n c , t e l ehony , signaling, or vate networks The forecat d e n 
on the network structure, marke tng data, and data from traffic accounting in the o e r a t n g 
network. The r e u l t of this planning tep i emand matri (in Erlang5) for each ifferent 
t of e r v i e . 

ven a eman m a t r x for each ifferent e r v e , together w t h ality ervi Qo 
requremen and routing trategi as i u t , the cal onnec ion between the wi tchng 
n o d s and the ial a th to route the e t i m a t e traffic are determined in the w i tch ing 

work l annng . A mo i o r t a n t QoS requrement an upper boun for the robabilit 
that a communication reque ha to be rejecte m u t be respected. This bound is calle 

6 Agner Krarup Erlang (1878-1929) was a Dan ih mathematician and the pioneer for dimensioning telephone 
networks. He developed the fundamental Erlang-B formula (Erlang, 1917) to estimate the capacity of a t a n s 
mission link for given probabilit distributions of call attempt and call durations. For ore information on 
E lang ee the biography ( e y e r et a l , 1948) 
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blki prabil an m u t be specfie by the networ signer. By mean of some var ia ton 
of the Erlang-B formula (see S e c o n 1 .3 , a demand in term of channel that atisfie this QoS 
requirement can be calculated 

a r e u l t of the t c h n g network p lannng , an ut eman matrix n term of Erlan 
ha been t r an fo rme nto a demand matri n term of channe l . The t r r t twork 

lanning is in charge to rov h s i c a l t r a n i s s i o n c a a c i t y that is ither r e n t e , or stalle 
sing rowaves or f i b e r - o c l Sufficent c a a c i t y m t be r o v d d to ensure that each 
o m m u n c a t o n requirement can be routed accordng to specified u r v v a b l i t y requirement 

1.1 e locations a their ierarc 

n the al etu an n the major e x a n s i o n teps of a telecommuncation network i is 
necs sa ry to ecide the location of the ermanent network equipment. In a GSM networ the 
are the antennas (BTSS) , node of the itching network (BSC a d MSCs), a d d i o n a l nod of 
the transport network (DXCS) , and data ba (VLR and Rs). Smul t aneou ly , the logcal 
hierarchy of the networ m u t be etermine That is t h n the ame lanning te the 

ssignment of BTS to BSCs and the ssignment of BSC to MSC m u t be erformed 

The ecsion about the BTS loca ton en on the tumer of the n e t w o r . It is not 
necs sa ry to cover the c o m l e t e o t en t a l e r v e area of a network which is often a whole 
ountry. I n t e a d it ffic to over t h o e areas in which the c u t o m e r s (or e x e c t e d tumers) 
pically move. T h e e area are, for i t a n c e , the c t i , the main traffic road ike highway 

an r a l w a y , and tourist a t t r a c i o n 

The ecision about the BSC loca ton en on the TS l o c a t o n . It is n e c s s a r to plac 
BSCs such that is p s s i b l e to ssign each BTS to BSC. This ssignment o n t r a i n e d by the 
c a a c t y of a BSC. A we a l r e a y m e n t i o n e , a typical BSC t o a y can control up to 128 TRXs 
and there are u to 12 TRX at each BTS. Hence, one can only assign about 10-12 BTS to a 
single BSC. An o t i m i z a t o n roblem ould be to f i d the m i i m u m number of BSC location 
uch that an assignment of BTS to BSCs is p s s i b l e and no BSC t ontrol more than 12 

TRXs 

The ecision of the MSC locatons inclu the ecsion about the VLR loca ton sinc one 
VLR is s s a t e d ith each MSC Conequently, it is eful to decide the respectve location 
simultaneouly. Analogou to the revous problem, necessary to lac MSC uch that 
is p s s i b l e t ssign each BSC to an MSC, and again, this decision is o n t r a n e by c a a c i t i 
n this c a e , the c a a c i t are the maximum number of b u y hour call a t tem an MSC can 

handle an a m a x m u m number of u e r VLR can handle. T h u , the um of b y hour call 
a t t e m t generated at the BSC assigne to an MSC m u t not e x e e d the maximum the MSC 
can handle, and the um of c t u m e r of thes BSC must not excee the c a a c i t y of the VL 
Tp ica l ly , there are everal t of MSC or VL available, each t e with a a r t cu la r c a a c 

at a certain c t . T h u , the c h o i e of the c a a c i t y of the equipment belong to the l a n n n g 
decision 
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The DXC loca ton are almo e t e r m n e th the ecision about the MSC l o c a t o n . Each 
MSC i onnected th a DXC in order to rovid the onnection between the t c h n g and 
the transport network. Therefore, is r eaonab le to lace a DXC at an MSC location. The 
location of the HLR are not a r tcular ly r e t r i t e d 

All men tone loca ton roblem en on the loca ton for the equipment. ot 
ever place w i t h n the network area table loca ton for a n o e . The lace m t ither be 
owne by the network perator or avalable to rent. In any c a e , there m t be enough h s i c a l 
spac for the entire equipment. 

1.2 T r a f reca 

p p e that the loca ton of the networ no an the assignment of BTSs to BSC an BSC to 
MSC, respectively, have been determine in the i a l lanning h a e . Then the c o m m u n c a t o n 
traffic between i of loca ton ha to be e t m a t e d n o r e r to obtain a itable basis for the 
decision of the nk size and the ommunca t ion a t h . The traffic is m e a u r e d in the uni 
Erlg which is fined follow 

Erlang : u t z a t o n t m e ) / (length of me nterval 

an e x a m l e , f a tumer generate 12 m n u t e traffic u r n g one hour, this amount to 0 
= 12 / 60 Erlang. This unit d e n on the length of the time interval, an the amount of 

traffic end on the onsidered ime nterval. But, for which time interval hould a network 
be d s i g n e d To our knowledge, there are no recise model to a n w e r this question, but 
e x e r e n c e has shown that t h o e conecut ive 60 inute d u r n g a day are a p p r o i a t e , n which 
the network generate the maximum amount of traffic. The 60 minute are called peak hour 
or us hour 

The traffic o r n a t n g at a a r t cu l a r BTS (or n a c e r t a n area c o n t a n g everal TSs) 
end on regional d e m o g r a h c c h a r a c t e r s such the number of i n h a b t a n t or c t u m e r 

how many are self-emloyed, e m l o y e d t u e n , unemloyed , etc. Given the traffic foreca 
of the B T S , it is rather e a y to r o a g a t e it through the herarchy of GSM network. For each 
BSC, the traffic of the controlled BTSs is accumulated an s i l a r l y , for each MSC the traffic 
generated at the erved BSCs is accumulated. A certai ercentage remai thin the BSS 

e r v d by this MSC and the re s split among the other MSC and the external networks. This 
way, emand m a t r s (in term of Erlang) for the NSS an for each BSS can be e t i m a t e d 

In the etup pha of the networ the rough e s t m a t o n are the b s i s of the traffic forecat . 
If the network is erating for everal y e a r , the traffic forecat become easier in the e n e that 
i u t da ta can be o b t a n e d from accountng at the network nod 

1.3 S w i n g n e r k 

For every t e of e r v e , the traffic foreca el eman matr n term of Erlang. In the 
itching network planning, t h e e matri are t r an fo rme into emand m a t r i s in term of 
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channe l , where one channel correspon to a t r a n i s s i o n rate of / s . The ecision to 
be mad during the itching network planning are the following: 

For each c o m m u n c a t o n eman et of a l t e rna tve a th be c h o e n together w t h 
the fraction of the demand route over each of the a th 

The m a x m u m b l o n g r o b a b y m u t be s p e c f i e , w h c h is the r o b a b y that a call 
a t t e m t m t be rejecte 

The e m a n s in term of channel t be calculate uch that is guarantee that 
call cannot be rejecte ith a r o b a b t y larger than the maximum b l o k i n g robabil iy. 

we men tone before, the logcal c o m m u n c a t o n aths in the BSS of a GSM networ are 
r e e t e rmined . In the NSS there i need for lanning of a logcal r o u t n g between the MSC The 

logcal communication ath are ually c h o e n according to d e t e r m i i t i c r u l e . For e x a m l e , 
pical rule is to route each demand on exactly two n o d j i a t h , where the imar 

ath carri the bgger f racton of the demand ( u a l l y about 0% an the econdar ath 
carri the r e m a n g demand. For this rule, the number of n o d j a th an the way 
the emand is d t r i b u t e d over the ath t be determined 

ven uch rule is fficult to e t e r m n e the a r t cu la r a th to u e . The r e a o n 
for this i twofold. There are many alternative way to route a communicaton demand on, 
ay, two n o d d i s i n t a th and there doe not exist a w e l l d n e d c t functon to gui the 
ecision since the c d e n on the t r a n i s s i o n facilit n this planning t e , however, 

t is not yet specifie w h c h t r a n i s s i o n f a c i e are nee to atisfy the communication 
emand In fact, th belong to the d s i g n ecision w i t h n the transport network p l annng . 

To overcome the roblem of the issing c t f u n c o n , it is ommon r a c i to approxmate the 
t function of the transport network. There, the c t of a c e r t a n c a a c t y u u a l l y d e n d 

on the length of the hysical onnection and the c a a c t itelf. Economi of cale apply since 
the c t s per channel monotonically decrea ith increasing c a a c i t y . To approxmate this 
t e of c t function one often choo the length of a hysical connection a t er channel 
and a t tem to bundle the (Erlang- demands in o r e r to take advantage of the mentioned 
economi of cale. Bundling mean to c h o o e the logcal r o u t n g of different communcat ion 
deman uch that the ame l i k is d b many a t h , and uch that the number of u d l i k s 
is small Thi has several advan tage . F r t , if everal ( i e n d e n t ) ommunication eman 

e the ame l k for t r a n s s i o n , then is p s s i b l e to g a n from multiplexing since the c a a c 
of a l i k is c h o e n uch that the b l o k n g requrement is satisfied on average. For i d e n d e n 
ommunication demands it is unlikely that call a t tem alway arrive simultaneouly, an 

therefore, the ame t r a n i s s i o n c a a c i t y can often be u d for both emand A further 
dvantage of bundling the Erlang-) demand it become easier to manage the networ the 

number of logcal communcat ion l k s decrea 

ven the specf ica ton of the logcal r o u t n g , the c o m m u n c a t o n e m a n s in term of chan 
nel have to be calculated uch that the b l o k i n g robabl i t doe not excee specfied max­
imum value. It is p s s i b l e to view a communicaton li of c a a c i t N (see F g u r e 1. 

tem in which call a r r v e a c c o r i n g to a P i s s o n r o s s th average a r rva l rate A, an 
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call alway free r e o u r c avalable u n t l all channel are ccupi al are blo 
all N channel are o c c u i d 
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gure 1.5: C o m m u n c a t o n l 

Let uch a o m m u n c a t o n th c a a c i t be r e r e e n t e by a finte queue w t h tate 
N (0 r e r e e n t the ta te that no call is erved by the li Furthermore, p p e that 

the call h o l i n g t m e r o c s s is exonen t i a l , w t h arameter \x. F g u r e 1.6 isualze the tate 
diagram of uch a queue. 

A ^^^^ A _^_^^ A 

o r " I I J ~ 1 2 ) • • • (N-IT I N 

V- 2/i N/i 

gure 1 . : State agram of a queue 

There is a rate A of m o v n g to the next larger tate, ue to call a r rvals , an there is a rate k/j 
of moving from ta te k to ta te k 1, due to call comle t ion . Apparently, if the queue is e m y , 
it i only possible to move to ta te 1, and if the queue is full is only ssible to move to tate 

1. Let pk k 0 A", be the robability that exactly call are the queue. Then the 
robability pj is the blocking robabilit since the queue i ta te A" i full, and any further 

a r r i i n g call m u t be b l o c d . The robabiliti t atisfy the normalization equation 

w L 1 

a r r y n g out a more e t a l e analysis, the v a l y of the followng e q u a t o n can be hown: 

fip Xp 1. 

)pk \pk + / ( & + lpk 1. 

NpN \pN 1.4 

o t e , however, t h e e e q u a t o n can al be e r v e by s p e c o n from the ta te agram 
igure 1.6 J u t consider each ta te of the queue i n d u a l l y , and pply that for each ta te the 

um of the ou tgong and ingong rates (weighted by the respectve ta te robabi l i t i s ) t be 
zero. Now, calculating p^ k 1 A" i d e n e n c e of p from 1.2) (1.4) el 

Pk u. U 

file:///pk
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an u b t u t n g p^ for 1 . 1 , we obta 

an thu the b l o n g robab pp is 

Let u o n s i e r an e x a m l e . p p e that the c a a c of (small t h call a r rva l 
rate of A 720 c a l l / h o u r an an average holding time of l 3 m n u t e c a l l hould be 
determine This ve demand of A/ 720 3/60 = 3 Erlang. How many channel 
guarantee a m a x m u m blocking of %, for tance? Table 1.1 how that 48 channels suffice to 
achieve a blocking r o b a b i l y less than 1% and th decreasing number of channel the b l o k i n g 

robabilit increa much f a t e r than lnearly. T h s i d i c a t e that the b l o k i n g r o b a b i y for 
f i x d demand in Erlang is strongly d e n d e n t on the c h o e n number of channel 

umber of channel 24 30 54 
l o n g robab (i 37.40 23. 12.1 4.4 11 

Table 1.1: of b l o n g robab an channel for 3 Erlang 

Furthermore, Table 1. how the r e q u r e number of channel for v a r o u b l o n g roba­
iti and demand 

Erlang 
l o n g 20 40 100 150 200 300 400 

30 53 75 11 70 221 324 
105 154 202 

10% 23 88 27 370 

Table 1.2: hannel value for ifferent b l o n g robab an E r l a n g - e m a n 

The r a t o between r equ re channel an E r l a n g - e m a n d s i ecreasing for ncreasing Erlang-
emand and f i x d b l o k n g r o b a b i t i For i t a n c e , for blocking robability 1% and 
eman of 20 Erlang this rati is 3 0 2 0 1 5 , and for 400 Erlang the rat decrea to 
26/400 106 A blocking robabi l iy of 10% yields s i l a r v a l u e ; the rati ecrea from 

23/20 7 for 20 Erlang to 370400 = 0 9 3 for 400 Erlang. This i d i c a t e that t might 
ay to sign s p a r e network concentra tng the Erlang-demand on a mall number of logical 

ks 
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1.4 T r a n s p r t n e r k 

The transport networ onsis of the hysical equipment and the hysical l k s to t r a n f e r 
the d i i t a l s igna l . G v e n logcal deman n term of channels ( a r e u l t of the i t chng 
network planning), the t oo logy , the t r a n i s s i o n c a a c i t i an the t r a n i s s i o n ath to 
route each of the demand have to be determined n the transport network p a n n n g . The 
nod of the transport network are d i i t a l c r o s s o n n e c t , and the l i k s ( o n n e c i o n between 
transport networ n o d s ) can be lea l i n e , m r o w a v e i k s , f i b e r - o i c cable etc. The task 
is to sign the transport network in the m o t c t - e f f i c e n t way, w h l e atisfyng the followng 
o n t r a t 

rov et of t r a n i s s i o n ath for each eman an ssign a channel value to each 
of the ath uch that the um of channel over all a th is at l e a t the value of the 
deman 

r o v e a l te rna tve t r a n i s s i o n a th for tho enar of networ ure w h c h are 
o n s i e r e d i o r t a n t . 

rov c a a c for a ta t r a n s s i o n uch that for each network o m o n e n t the c a a c  
at l e a t a g a the um of channel over all ssing t r a n i s s i o n a th through the 

o m o n e n t . This t a l o be a t i f ied n the o n s i e r e d f i u r e enar 

The c arameters in this p l a n n n g h a e are rather accurate. The networ no have 
iven b the different v e n o r , l e a d nes have a given t tructure, and the c of mi rowave 
o n n e c o n end on the number of required r e e a t e r Hence, it is ssible to t z e ith 

respect to the t of the network inf ra t ruc ture n the transport network p l annng . 

T o a y , the available t r a n s s i o n c a a c are fine n two ifferent h i e r a r c h : the 
plesironus diitl hierarch PDH) and the n c u s diital erarh (SDH) Before 
we ribe t h e e h e r a r c h , we briefly review the or of tal signal t ranmiss ion . For 
long me, the analog signal w the basis for voi t r a n i s s i o n . In the early , the firt 
network b d on d i t a l t r a n i s s i o n were i t a l l e d and since then there ha been a clear d f t 
toward the more re lable d i t a l t r a n i s s i o n . However, there has been a need to integrate 
the d t a l t r a n i s s i o n technologis an the analog terminal equipment (e.g. t e l e h o n e of 
the e n e r ) . Therefore, the nciple of pul de dultion P C M ) ha been n t r o d u c d 
(see ( I T U T - G . 7 1 1 , 1988)). It t r a n f o r m an analog signal nto a tal signal, w h c h is then 
t r a n t t e to the r e c v e r and there re t ranforme nto an analog signal. The technical term 
for t h e e t r a n f o r m a t o n are modulation and demodulation. Already at the early tage of 
d i i t a l signal t r a n i s s i o n deve loment , the tandardization organzat ion agreed to a m l e 

ata at a rate of 8 kHz, that is 000 t m e s per e c o n , and to allocate 8 t to i z e each 
a m l e . T h e e value have been t anda rdzed i ( I T U T - G . 1 1 , 1988). Therefore, the length of 

one a m l e is 125/s ( l /8000 and a m l n g rate and length etermine the size of a channel 
to be b / s 8000 / s • 8 bit. From the beg innng of ital t r a n i s s i o n it s clear 

that there is a nee for t r a n i s s i o n rate igher than 64 k b / s and therefore the nciple of 
mult iplexng s introduc through the PDH 
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esiochronous it arch PDH 

n general, a mulxer (MUX) r e c v e er tan number of equal rate ata tream as input 
and ield one ata tream at a higher t r a n i s s i o n rate a o u t u t . The a s s i a t e d deuliplexer 
(DEMUX) recover the o r i n a l rate data tream from the high t r a n i s s i o n rate ata tream, 
ee Fgure 1.7. Di i ta l multiplexng is b a d on the nciple of division uliplexing 
TDM). The high t r a n i s s i o n rate data tream is id nto uccssive nterval, each c a r r n g 
nformation of uccssive channel. The interval ssocated ith a articular channel appear 
eridically an thu the demultiplexer i able to n te r re t the ata tream correctly. Obvouly, 

the t r a n i s s i o n rate d e n on the length of a t m e nterval and n conequence, maller t m e 
interval lea to higher t r a n i s s i o n rate 

32 • 64 kbit/s 

MUX 

2 Mbit/s 

DEMUX 

32 • 64 kbit/s 

gure 1.7: (D Multiplexng of /s into a mary rate tal signal 

The PDH evelo n the 1 an t a n a r z e ( I T U T - G . 0 2 88). However, 
not ssible to acheve a common agreement about the multiplexing herarchy among the 

three ma a r t i s North America, E u r o e and J a n , and therefore, there exist three different 
hierarch ith different data t r a n i s s i o n rate at the respective d i i t a l signal level. Table 1.3 
how the value of the ital signal level 

eve Europe orth America Japan 

48 44 44 
448 

44 32 
92 92 

Table 1.3: Internatonal lesiochronou tal h e r a r c h s (i /s) 

The p m a r y rate tal signal n E u r o e is 2048 k / s 6 . This t ranlate to 32 /s 
However, the c a a c i y for data t r a n i s s i o n is only 30 channels since two channel are reerve 
for frame nchronzation and signalng. For i t a n c e , the information which b t belong to 
whch tream must be conveye to the receiing emultiplexer, and nchronzation of the data 

6We wite 2048 instead of 48 or 2048 to avoid miiterpretation as ecomended in ( T U T G . 1993) 
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tream be erforme. In general, the aggregate rate must be a l t t le gher than 
the um of the i u t rate to accommodate the overhea multiplexing informaton. Rewriting 
the number of channels in the higher level of the hierarchy as sum of u e r data and overhead 
data ield 

30 /s /s 2048 k / s 
2048 k / s /s 8 k / s 

8 k / s /s 3 4 8 k / s 
3 4 8 k / s /s 13 /s 

th ifferent value this a l o app to the PDH i orth Amerca an J a a n , respecvely. 
We ish to int out a roe r ty of the available u e r channel of the PDH (which a l o appli 
to the SDH we will ee oon). Cuttng out the overhead channel the following one-to-one 
orresponence between t r a n i s s i o n rate and c a a c i t i s in channel can be een: 

2048 k / s 
8 4 8 k / s 

3 4 8 k / s 
13 /s 

30 channel 
120 channel 
480 channel 

20 channel 

The number of u e r channel of each tal signal level is an er multiple of the number 
of u e r channel of each maller d i i t a l signal level. This is i o r t a n t to note sinc it i ssible 
to take mathematcally advantage of this proerty. We wll ee this i more eta the 
ubequent cha te r 

nchronous git rch SDH 

The nchronou tal herarch (SDH) evelo n the 198 an t a n a r z e (ITUT 

G . 8 , 1997). The ing forc were the nee for hgher transmission rates than tho rov 
by the PDH and ome dficienc of the PDH. The SDH is agan a multiplexing hierarchy w t h 
the levels shown in Table 1.4. 

Level STM ST STM STM 

/s 155520 220 2488320 99532 

Table 1.4: Synchronou tal herarch 

The basic un is the o-called snchronus t r a r t mdule (STM) whch is able to transport 
o-called virtal ontairs (vcs). The capacy of an STM4, STM16, an STM64 is exactly 

four t m e the capacy of an STM1, STM4, and STM6, respectively. There is no overhead 
sinc the multiplexing information is ontaned n the VC whch build themelve a hierarchy 
of t r a n i s s i o n rate s shown n Table 1.5. 

The value of the vrtual contaner reflect the nee to ntegrate the tal signal level of 
the different PDH'. For i t a n c e , the tal signal level 1 of the North American PDH fits into 
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Level VC11 VC VC VC VC 

/s 2240 15033 

Table 1.5: Virtual Con taner Herarchy of the SDH 

an VC11, an the E u r o e a n tal signal level fits into an V C . Four V C l l , three v c 
or one i i t a l signal level 2 of the North American PDH can be multiplex nto an VC w h c h 
i t e l f fits seven times into an VC3. Finally, three VC are multiplex nto an VC4 w h c h then 
is transported over an STM1. 

One of the rovemen of the SDH over the PDH i the e l n a t o n of the requremen 
to demultiplex the c o m l e t e herarchy n order to get a c c s s to articular channel I t e a d 
is p s s i b l e to extract a low b t - r a t e virtual container from a h g h e r bit-rate d i i t a l signal w t h 
o-called adddr ultiplexers (ADMS) 

t r u c t u r e 

The a v a a b l e c a a c of the transport networ ome at ifferent c t . The nformaton about 
the c of t h e e c a a c t i s is rather accurate for every articular t e of communication l i k 
the tructure of the c t can be d i b e d by length and c a a c i t endent t function 
T h e e function are tructurally ifferent on mirowave k lea ne or fiber-otic cable 
In this s e c o n , we r e e n t ome pical c t function for two i o r t a n t t of l k s lea 
ine and icrowave l k 

sed l ines 

m o b l e o m m u n c a t o n network erator may ren art of networ from a lea ne 
rovider. As i l lu t ra t ive e x a m l e , Figure 1.8 show a t p i c a l c t t ructure of D E U T S C H E 

TELEKOM, the only l e a d ine rovder in Germany when we tar ted working on this prob­
lem. The c t t ructure of new lea l n e roviders (who tar ted business after the German 
telecommuncation market ha been eregulated n 1998) is s i i l a r . 

/ 1 

gure 1 . : T p i c a l c tructure for lea ne 

length 

gure 1.8 i l lu t ra t e s that the t p i c a l c tructure for a a r t cu la r c a a c uch a 30, 
0, or 1920 channel 2, 34, or 140 Mbi t / s is piecewis linear and monotonically increasing 
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th the length of the The l o e , however, ecrea th the length of the . In more 
etail i decrea at specfied lengths such a fah m F g u r e 1.8 Changing the iew from  

a r t cu la r c a a c t to available c a a c t i on a pa r t cu la r l i k , as i l l u t r a t ed in Figure 1.9 for 
the d i i t a l signal level 1, 3, and 4 of the PDH it is e a y to ee that economi of cale are large. 
It end on the distance between two e n d n o of a l i k , but rule of thumb, a c a a c i t 
of six to e g h t time 30 channels is more e x e n s i v e than a c a a c y of 480 channel, and three 
time 480 channel are more e x e n s i v e than 1920 channel 

cost i, 

18 48 92 channe 

gure 1 . : T p i c a l c tructure for lea ne on a l 

ic 

The st t ructure for m r o w a v e s is ifferen since the m a x m u m t r a n i s s i o n istance through 
the is l i i t e d . To guarantee a specfied qua l t y of the signal it is necssa ry to e r id ica l ly 
a m f y the d i t a l signal. So-calle r e e a t e r are need after ever interval of c o n t a n dis 
tance. For tance, f the maximum distance without a m i f i c a t o n of the signal is 50 kilometer, 
two r e e a t e r are necssa ry on a l of length 130 kilometer. The necssa ry a m c a t i o n of 
the d i t a l signal d o m n a t e the tructure of the c t function for m r o w a v e . F g u r e 1.10 
i l l t r a t e a t p i c a l co tructure of mi rowave for a articular c a a c y . The i d e n 

ence of the length is t a i r c a e f u n c o n with equal idth intervals of c o n t a n t c t . The 
idth l is the distanc at which a r e e a t e r become necssary, and k = i l 

/ 1 

h h h h h h length 

gure 1.10 pical c tructure for m r o w a v e c o n n e c o n 

gure 1.11 l l u t r a t e the c tructure of a m r o w a v e c o n n e c o n for a a r t cu l a r l 
lar to lea ne i is t a r c a function with considerable economi of cale. 
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48 channe 

gure 1.11: T p i c a l c tructure for m r o w a v e on a l 

The l l u t r a t e c a a c y an tructure add signficant o m l e x y to the sign of a 
transport n e t w o r . I the e n e of comlex i t y theory, the roblem become difficult b e c a u e of 
the i s r e t e tructure of the available c a p a c t i . It is not ssible, for i t a n c e , to i t a l l 3 0 5 
channe l . Even if this is a r equred value, the network d s i g n e r m u t c h o o e between 30 an 
60 channe l . The i l l u t r a t ed economi of cale cau further d i f f icu l t s sinc it is not clear at 
which o i t it is a p p r o i a t e to c h o o e a 480 channel link i t e a d of everal 30 channel l i k s 
Of c o u r e , as shown in F g u r e 1.9, there e x t s a b r e a - e v e n p i n t from which on it is c h e a e r 
to u e the h g h e r c a a c i y link, but it might ay to choo this higher c a a c i t y even below the 
break-even int becau of the dditional c a a c i t y . Using the larger c a a c y of 480 channel 
i t e a d of six to eight t m e 30 channe l , a d d i o n a l 240 300 channel are available at relatively 
mall extra c t . B e c a u e of thi add i tona l c a a c i t y on one l i k it m g h t be ssible to decrea 

c a a c i on other li and thu the overall network t m g h t ec reae . 

uting r v i v a b l i t y 

Besi the c a a c ecis ion, t r a n s s i o n ath to atisfy logcal o m m u n c a t o n eman 
are ettled ithin the transport network pann ing . For the emand in term of channel 
w h c h are gven a o u t u t of the itching network planning, one or everal t r a n i s s i o n ath 

t be rovid uch that the value of each communication demand is less than or equal to 
the um of channel assigned to the i d i i d u a l a th of a emand 

Several issue are relate to the r o u t n g ecisions. O b v o u l y , the t r a n i s s i o n path 
only u e l k s th available t r a n i s s i o n c a a c i t y , and f one consider a l k between two 

articular no of the transport network, an um the value of t h o e t r a n i s s i o n ath 
sing the l i , then the c a a c i t y of the li t be at l e a t a large a this sum. Noti 

that additional c a a c i t y m g h t be necssa ry to a t i f y u r v i v a b i l y r e q u i r e m e n ) In fact, the 
c a a c y and the r o u t n g ecision houl s imul taneouly be erformed since only d i s r e t e unit 
of c a a c i t i are a v a a b l e an econom of cale can be huge. It m g h t be less expensive to 
route ome communcat ion demand on t r a n i s s i o n a th which are, at firt glance, e x e n s i v e 
in the s e n e that the a th are longer in term of d l k and geograh ica l distanc 
However, the overall olution might be less exens ive . 

We alrea be n the n t r o u c o n of this thesis that the act of a networ o m o ­
nent failure can be t r e m e n d o u . Hence, a dd i tona l planning requrement , today ommuni 
cation networks t be urvivable i the e n e that it is p s s i b l e to eal ith single c o m o n e n t 
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f a l u r e . If only a single t r a n m s s i o n ath is to atisfy a a r t cu l a r ommuncat ion 
mand, then no communication is p s s i b l e if any networ o m o n e n t node or l i k ) of this path 
doe not o e r a t e . The trateg to eal with this problem fall in two mai categories. F t , i 
is p s s i b l e to c h o o e t r a n i s s i o n a th which u ifferent network o m o n e n t . This rov 

a r t a l urvivabil sinc the failure of a single network o m o n e n t cannot r e u l t n c o m l e t e 
loss of c o m m u n c a t o n . However, a drawback of uch an approach, it i not ssible to rotec 
all communcat ion. A a l te rna tve approach, the network planner can rov routing for i 
d i i d u a l fa lure enar In this c a e , the network management i more c o m l e x , but it can 
be handle in modern communcat ion networks since the equipment is ontrolle by ofware. 

r e i e w 

In the rest of this thesis, we focus on the problem of planning the transport network of a 
telecommunication provider. We present mathematical models integrating the described topol 
ogy and capacity decisions together with routing planning under survivability requirements. 
Afterwards, these models and the sets of solutions for the different problems are investigated 
and eventually, algorithms to solve the problems are developed. We focus on the transport 
network design problem because of its relevance within the overall network design process. The 
optimization target in this planning step is minimization of costs that can be specifed with high 
accuracy. Furthermore, the structure of solutions is too complicated to be handled ithout the 
support of sophisticated mathematical models and algorithms. 





hapter 

Mathematica Models 

As we have seen in the previous chapter, the design of a (mobile-) communication network 
contains a series of complex problems. In the remainder of the thesis we focus on one particular 
subproblem: the transport network design problem. That is, given the result of the switching 
network planning, the target is to choose simultaneously the topology of the transport network, 
the capacities to install on the transmission links, and the routings of all logical communication 
requirements for normal operation and all single network component failures, such that the cost 
of the network is minimal 

In this chapter we first present the mathematical models developed in cooperation with 
E-P lus Mobilfunk GmbH. We consider two ways to model the discrete capacity structure and 
three ways to achieve survivability in the network. Any combination of a capacity and a surviv­
ability model leads to a different mixed-integer programming formulation. (All combinations 
have been integrated in our network dimensioning tool DlSCNET.) We integrate the routing 
planning in the normal operation and all single network component failures. In contrast to 
other models described in the related literature, we do not assume a given routing for the nor­
mal operation and deal with the capacity expansion and routing planning for failure situations 
only. The integrated planning makes considerable investment cost reductions possible, and with 
our models, it is possible to accomplish these cost reductions. At the end of this chapter, we 
survey the related research that focuses on theoretical and practical results for mathematical 
models which integrate the topology decision, the capacity planning and the routing problem 
for the communication demands. 

2.1 Supply graph, demand graph, and operating states 

The considered problems have the following in common. The input consists of two graphs on 
the same node set V, the 

supply graph G = (V, E) and the  

demand graph H = (V,D) 
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The set V c n s i s t s of the nodes of the transport network. In our case, V often correspond to 
the locations of the digital cross-connects (see page 15). The edge set E of the supply graph G is 
the set of all physical links which may be used (in the planning period). Different transmission 
links (representing different technologies, eg . , microwave connections, fiber optic cables, leased 
lines of different providers) are represented by parallel edges. The demand graph H (for the 
planning period) contains an edge whenever there is a positive demand in terms of channels 
between its two end-nodes. For each edge uv £ D of the demand graph, the value 

• duv £ Z + is the communication demand between nodes u and v. 

We denote by VD '•= {v £ V : 3u £ V and uv £ D with duv > 0} the subset of the nodes 
V with at least one positive emanating demand. While the characteristics of the supply graph 
are relatively stable (they change, e.g., with hardware and suppliers), demand predictions are 
based on statistical analysis and forecasting. They are revised frequently, and scenario analysis 
has to be made to take different possible evolvements of the market into account 

In practice, different service classes arise such as voice traffic, signaling traffic, data traffic, 
etc. In a model appropriate to cover different classes of services, it is necessary to allow parallel 
edges in the demand graph as well. From a modeling point of view this is no problem. However 
to reduce the size of the problem instances and the complexity of the model, we decided in the 
initial phase of the project to aggregate the demands of different service classes between the 
same pairs of end-nodes into a single demand. 

As a major planning requirement, the network to design should be well-prepared against 
failures of single nodes or edges. For each communication demand, a routing in all operating 
states S must be provided. These are the normal operating state, where all nodes and supply 
edges are operational, and a subset of the failure states, in which a single node w £ V or a 
single supply edge e £ E is non-operational We denote these operating states by s = , s = w, 
and s = e respectively. By definition, 

S C{0}UE . 

Note, for each edge and each node of the supply graph the network designer can specify whether 
its failure state should be considered, that is, whether routing tables must be provided for the 
state in which this particular node or edge fails. For every s £ S, we denote by Gs = (VS,ES) 
the supply graph in operating state s where Vs is the set of nodes that are still operational 
in operating state s, and, likewise, Es is the set of the operational edges in operating state s 
Similarly, the demand graph in operating state s £ S is Hs = (VS,DS), where Ds is the set of 
surviving communication demands. (A demand uv £ D is surviving in operating state s £ S, 
if none of its end-nodes failed, that is if s £ {u, v}) 

E x a m p l e 2.1 See Figure 2.1 for an example of a supply and a demand graph. The demand 
graph has three edges with associated communication demands dac = 120 dce = 80, and dcd 
30. The eight edges of the supply graph represent the potential physical links. The available 
capacities are not specified, yet. We assume that the set of operating states is S = {0} U V; no 
edge failure situations have to be considered. Notice that it is possible to reduce the set S to S 
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= {0} U ( V \ { c ) in this e x m p l e since the d e m a d graph H = (V D) h s an empty dema 
set D 

Q 

ax L ® 120 
\ 

80 

®-30^c) 

igure 2 : Example of a supply and a demand graph 

2.2 Capacity models 

In the target network, sufficient capacity must be installed on the edges of the supply graph such 
that these can accommodate a feasible routing of the communication demands. In principle 
a leased line provider might offer arbitrary capacities and in this case we would introduce 
continuous variables to model the capacity decision. However, not a single provider offers 
arbitrary capacities and, in fact, it is common to offer capacities of the hierarchies PDH and 
SDH. From D E U T S C H E T E L E K O M , for instance it is possible to rent as PDH capacities multiples 
of Mbi t / s links (3 channels), multiples of 34 Mbi t / s links 4 0 channels) and multiples 
of 140 Mbi t / s links (19 channels). Consequently, we decided to model a discrete capacity 
structure 

In the following, we distinguish between two different capacity models to cope with this 
discrete structure. In the first case, the set of possible capacities for each edge of the supply 
graph is given as a finite set. This model was introduced in (Dahl and Stoer, 1998). In the 
second model a small set of "basic capacities" is given. These basic capacities must satisfy the 
property that each one is an integral multiple of all smaller basic capacities. As we have seen 
in Chapter 1 this is a reasonable assumption for many network design problems. Special cases 
of the second capacity model (without survivability requirements) have been investigated by 
several researchers as we will see in ection 2 6 

Exis t ing network 

Designing a telecommunication network is a dynamic process. Changes in the demand forecast 
or new offers of transmission capacity suppliers make redesigning the network necessary once 
in every planning period. Although it is theoretically possible to design the network in every 
planning period from scratch, it is reasonable to assume that parts of the network exist and 
cannot be changed in the short run. 
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T h e are two main reasons for this assumption. First, there might exist long term contract 
with a supplier which have to be fulfilled. Second, but equally important, it is necessary 
to guarantee a certain stability in the network in order to reduce the maintenance effort for 
switching to a new network topology. It is not desired to change the whole network just because 
of small changes in the demand forecast 

To model this planning requirement, we assume that every edge e G E of the supply graph is 
already equipped with an initial capacity C® G Z + (possibly Cg = 0), the so-called free capacity 
This assumption applies to all capacity models formulated in this thesis. Of course, the free 
capacity has a certain cost. However, since this cost can be predetermined, it is not part of the 
optimization and can be ignored. We set the cost K to install capacity C on edge e to zero 
that is, Kl := 0 

Similarly, it might be desired to fix part of the routings of the logical communication demands 
in order to reduce the maintenance effort when the network has to be reconfigured. However 
we do not consider such a planning requirement here 

a i n t a n c e C o s t s 

It is an option to include maintenance costs in the mathematical model. Such an issue can 
be modeled with cost coefficients either on individual routing paths or on the flow through 
transmission links. However, we do not add such cost coefficients to our models, since we 
believe that it is problematic to model maintenance costs in this way It is too difficult to 
provide accurate data 

2 . 2 . 1 D I S C R E T E C A P A C I T I E S 

As we already noted, the available capacities in many practical applications have a discrete 
structure since the equipment (multiplexer or digital crossconnect) is technologically restricted 
to certain capacities. The capacity model D I S C R E T E C A P A C I T I E S provides the most general 
form to deal with such an underlying capacity structure. For every supply edge, the set of 
capacities that might be installed on this particular edge is given as a finite set. Installation 
costs are associated with each capacity 

For each e G E, there is a finite set of capacities specified by the following data: 

• Te G Z_|_ is the number of possible capacities that can be installed in addition to the free 
capacity 

C* G Z_ 1 < t < Te, are the potential capacities (we assume C® < C\ < • • • < Cje), and 

G Q+, 1 < t < Te are the respective cost of installing capacity C 
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Instead of t e oiginal v a l u , it is u f u l to c n s i d r the incmentl c t y a t valu 
and values 

Cl - Ct\ 1 < t < Te 

• k ^Kt-K*-1 <tTe 

For notational convenience, we set cü
e : C® and h® := K®. The capacities C\ C j are 

the breakpoint capacities and Te is the number of breakpoints 

Variables 

For each edge e € E, we introduce an ordered set of integer capacity variables, the 0/1-variables 
x(e,0) > x(e, 1) > • • • > x(e,Te). Since we assume that a free capacity C° is always installed, 
we set (e,) := 1. Choosing capacity CJ for some breakpoint 0 < r < Te is equivalent to 
setting (e 0) = (e 1) = • • • = (e ) = 1 and a(e r + 1) = • • • x(e Te) = 

athematical formulation 

The objective is to minimize the total cost of installing the necessary capacities on the edges of 
the supply graph. This is formulated as 

™ E E ^ i (2 
e£E t=\ 

For every supply edge e £ E, the associated variables must satisfy the ordering constraints  

(e, ) > [e, ) > • • • {e Te) > (22) 

and the integrality constraints 

( e ) e { , (2 

for all Te For notational convenience, we introduce continuous capacity variables 

Te 

( e ) : ^ ( e ) , (2 
t=o 

for all e £ E. These (auxiliary) variables represent the capacity installed on supply edges 

2.2.2 D I V I S I B L E B A S I C PACITIE 

The number of capacity variables for DISCRETE CAPACITIES becomes large if it is possible to 
install any combination of the capacities of the PDH. Even if one only considers those capacities 
which are not dominated by larger capacities (at smaller cost), one typically needs more than 
20 integer variables to model the potential capacities of a single supply edge. To overcome 
this problem of too many integer capacity variables, we introduce the second capacity model 
DIVISIBLE BASIC CAPACITIES which can be employed if a set of "divisible" capacities is given. 



36 2. MATHEMATICAL MODELS 

We denote by T = {TI , . . . , r n } 7̂  0 the set of technologies, one for each different type that can 
be installed on a supply edge. Associated with each technology T G T are a basic capacity C 
and edge dependent installation cost which include a fixed cost and a length-dependent cost 
which varies with the total length of an edge. For this capacity model, the basic capacities 
must satisfy the divisibility property. Tha t is, the increasingly ordered basic capacities Cn 

CT2 <••• <CTn, must satisfy 

n+ 

"OS" 6 2-
for all i = 1 , . . . , n — 1. We refer to the smallest basic capacity CT as the unit capacity. 
The available capacities for a particular supply edge are the integer combinations of the basic 
capacities of the technologies For each supply edge e £ ß , 

Q_|_, , is the cost of installing one unit of capacity CT 

For notational convenience, we assume that all technologies r G T are available for all 
supply edges. This assumption is not necessarily satisfied in practical application, but it can 
be assumed without loss of generality. If a technology T T is not available for a supply edge 
e G E, one can easily overcome this problem by setting = 00 

Variables 

We introduce a non-negative integer capacity variable x(e,r) for every supply edge e G E and 
every technology to denote the integer multiples of C r combined into the capacity of 
edge e 

athemat i ca l formulat ion 

Again, the objective is to minimize the total cost of installing the necessary capacities on the 
edges of the supply graph. This is formulated as 

eeE 

The constraints that must be satisfied for every supply edge e G E and every technology 
are the integrality constraints 

( e ) G Z + . (26) 

For every supply edge e G E, the continuous capacity (e) is calculated from 

(e) = ( e ) . (27) 
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2.2.3 A note on the capacity models 

Both capacity models have advantages and disadvantages. With D I S C R E T E C A P A C I T I E S a finite 
set of available capacities is given for every supply edge. This model is very general and provides 
the flexibility to cover every practical situation with a discrete capacity structure. It is possible 
to employ this model even if the network designer incorporates different transmission capacity 
suppliers which provide different capacities that do not satisfy the divisibility property. As a 
further advantage of D I S C R E T E C A P A C I T I E S , it is possible to model the capacity structure of 
future networks It is worth mentioning, that the capacity structure of links with wavelength 
division multiplexers at both end-nodes can only be covered with this capacity model and not 
with the model DIVISIBLE BASIC CAPACITIES 

If many capacities are available, however, the size of the resulting problem instance may 
become too large to be handled within a cutting plane algorithm (our solution approach). In 
order to obtain reasonable upper bounds on the optimal objective function value in acceptable 
running times it might be necessary to considerably reduce the number of available capacities 
beforehand. As a drawback of such a step, the lower bounds for the optimal solution value of 
the restricted problem instance are not necessarily lower bounds for the optimal solution value 
of the original problem. For instance if an optimal solution for the restricted problem is not 
optimal for the original problem. 

The second model, DIVISIBLE B A S I C C A P A C I T I E S , is a special case of the first capacity 
model. If the available capacities have a particular structure, it provides a way to handle 
large numbers of capacities without reducing them artificially in a preprocessing step. As we 
already mentioned, we encountered such a structure in many (but not all) problem instances 
Despite the advantages of D I V I S I B L E B A S I C C A P A C I T I E S , there are practical situations where 
the available capacities do not satisfy the divisibility property. This happens, for instance, if 
one incorporates transmission capacities from the PDH and the SDH in the same network design 
problem. In this case, the model D I S C R E T E C A P A C I T I E S has to be used. We shall further note 
that even if the capacities satisfy the divisibility property network designers sometimes prefer 
to use D I S C R E T E C A P A C I T I E S since any integer combination of the basic capacities might not 
be appropriate 

2.3 Combining capacities, demands and routings 

In addition to the selection of a capacity for each supply edge, a feasible routing for each commu­
nication demand must be computed for a solution. For each operating state all demands must 
be routed simultaneously, and the capacities must suffice to accommodate the routings. This 
suggests a multicommodity-flow formulation of the routing problem with variables expressing 
the flow on a path or over a supply edge 

Even though the routings are inherently integral, we model them with continuous variables 
since a model with integer routing variables cannot be solved to a satisfactory degree with 
the available mathematical methods. It is possible to formulate the problem with integer 
variables, but not to solve it. Instead, we suggest to solve the network design problem with 
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continuous path variables and to employ a postprocessing algorithm to deal with the non-
integral routing variables. Our computational experiments revealed that the required changes 
in the postprocessing are not too extensive since the routings are often "almost" integral for 
"practical" parameter selections 

Combining any of the two capacity models with multicommodity-flow conditions for the 
non-failure situation, we now state the basic mixed-integer programming formulations. These 
do not include survivability requirements beside a restriction on the number of supply edges 
in the paths that can be used to route a particular demand. Such restrictions should be 
employed, if the transmission time depends on the number of edges in the transmission path, 
or if one wants to avoid long paths in order to decrease the probability of a failure of a path 
component. Typically, the length of valid paths is only restricted in the normal operating state 
In exceptional cases, like failure situations it is satisfactory to provide any routing 

For each demand uv £ D, the pathlength restriction parameter 

£uv £ N is the maximum number of supply edges allowed in any uv-p&th on which parts 
of the demand between the end-nodes u and v is routed in the normal operating state 

For each operating state s £ S and each demand edge uv £ Ds, let V^ denote the set of 
valid uv-paths in Gs. If s is the normal operating state (s = 0), a ira-path in G = Go is valid 
if its length (number of edges) is at most £uv We call such a pa th short. If s is a failure state 
then any uv-p&th in G is valid 

Variables 

For each operating state s £ S, each demand edge uv £ DSl and each path P £ Vfv, we define a 
variable / " " (P) , called flow or path variable, representing the communication demand between 
the nodes u and v routed on pa th P in operating state s 

athemat i ca l formulat ion 

The constraints for the routings in the normal operating state are the capacity, demand and 
non-negativity constraints. The capacity constraints 

V(P)(e), (28) 
£V%v: 

for each supply edge e £ E, express that the sum of the flow values over all paths containing 
edge e in the normal operating state must not exceed the capacity y(e). For each demand 
uv £ D, the values of the pa th variables must sum up to the value du in the normal operating 
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. This y d s the dmand c n t 

v(P) = duv (2 
eVuv 

for every demand uv G D. Additionally, for every demand uv G and every path 
the pa th variables must satisfy the non-negativity constraints 

(P) > (2 

We now formally define the two network design models that do not cover survivability require 
ments. The model for DISCRETE CAPACITIES is 

m i n E E ( e 

e£E t=\ 
(e (e G E , . , Te 

(e £E, Te 

X M (e), £E 
t=i 

E E Sv(P) i*). e ̂  
V(p) uveD 

T{P) uv£D,P€VSV 

and the model for DIVISIBLE BASIC CAPACITIES is 

m i n E ^ 

( e ) Z + , €E, 

Me {e), €E , 

(p) (e), €E , 

%v 

(p) " « l uv G D 
e - u v 

(P) uv <E D, G 

The path formulation of the continuous multicommodity-now problem has, in general, an 
exponential number of path variables. However, it provides an easy way to model path-length 
restrictions and other survivability constraints, as we will see in the following section. In Chap­
ter 4, we describe the column generation approach suggested by (Minoux, 1 9 8 ) to solve non-
simultaneous continuous multicommodity-flow problems with path variables In some cases 
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this approach can be t imeconsuming and therefore, we also make use of a polynomial formula 
tion of the multicommodity-flow problem for the normal operating state (without path-length 
restrictions). This formulation contains edge-flow variables, and demands are aggregated with 
respect to their end-nodes. The following paragraph describes this in more detail 

A set Q C V is an aggregation of the demands if there exists an assignment of the demands 
uv € D to either n o r » such that the union of the assigned end-nodes equals Q. The nodes 
in Q are called commodities. (For simplicity, we assume that uv £ D is always assigned to u) 
Furthermore, for every commodity k E Q and every supply edge e = ij € E, the two edgeflow 
variables fk(ij) and fk(ji) represent the directed flow over edge e to satisfy part of the demand 
of commodity k. Wi th this notation, constraints (28) (210) of the multicommodity-flow 
problem can be substituted by the constraints 

E/f(^)-E/*fe) { dT Se^' k u i = v' keq,ev, 211 

£ ( / & ) + /Ü*)) <y(e) e = jeE, 2 

y(e)fk(ij),fkUi) > 0 keQ,e = ijeE, 2 

where the capacity y(e), e G E, in (2.12) is calculated from (2.4) or (2.7) for integer xvar iables 
This formulation is polynomial in the size of the input since it contains 2|Q||Ü7| edge-flow 
variables and |Q| |V| + \E\ constraints. In consequence, the linear relaxation of this mixed-
integer program can be solved in polynomial time (see (Khachyan, 1 9 7 ) ) . Note, this mixed-
integer program is a formulation of the capacitated network design problem without survivability 
requirements, if no path-length restrictions for the demands have to be satisfied. 

2.4 Survivbility models 

In the capacitated network design models presented in the previous section we have ignored sur 
vivability requirements. Now, we focus on survivable network design. As we already described, 
the available transmission capacities increase while the respective costs of capacity substan­
tially decrease. Hence, optimal networks with respect to network cost tend to be very sparse 
with huge capacities on a few number of transmission links and, in consequence, the failure of 
a network component causes severe losses in terms of money and costumer confidence. It is 
necessary to cope with network component failures at the planning stage, and over the past ten 
years different models to increase the quality of a network through protection and restoration 
mechanisms have been proposed in the literature Survivability can be introduced in two steps: 
in the normal operating state with constraints imposed on the routing, and in case of a single 
node or edge failure through (partial) rerouting of surviving demands. 

The survivability model DIVERSIFICATION imposes restrictions on the routing in the normal 
operating state. For every demand, the routing is diversified on several paths such that the 
failure of any network component does not affect more than a specified percentage of the 
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demand. The two survivability models RESERVATION and P A T H R E S T O R A T I O N use differen 

strategies to reroute part of the demand in a failure state. In both models, no restrictions on 
the normal operating state routing are imposed. RESERVATION makes use of complete rerouting 
since it is admissible to change parts of the routing of a demand even if not affected by the 
particular failure. In contrast, P A T H R E S T O R A T I O N partially reroutes demands affected by 
particular failure, and maintains the unaffected routings of the normal operating state. T 
the best of our knowledge, the survivability model D I V E R S I F I C A T I O N has been introduced in 
(Dahl and Stoer 1998), the model RESERVATION in inoux, 1 9 8 ) , and the model P A T 

R E S T O R A T I O N in (W 1992) 

2 . 4 . 1 D I V R S I F I C A T I O N 

The survivability model D I V E R S I F I C A T I O N is based on the following idea. If the maximum per 
centage of a demand value that is allowed to flow through any network component is restricted, 
then the maximum loss of this demand is restricted if any single network component is not 
operating 

For every demand edge uv G D, the diversication parameter 

• Suv, 0 < 5UV < 1, is the maximum fraction of the demand duv allowed to flow through any 
edge or node (other than nodes u and v) of the supply graph. 

40 / 
/ 40 

(T— 
\ 

igure 2 2 : Example routing f r D I E R A T I 

Figure 2.2 shows a feasible routing of the demand edge ac from Example 2.1 with diversi 
fication parameter Sac = 2 /3 . The demand dac = 120 is routed on three paths, each carrying 
40 channels. No two paths are node-disjoint, but there is also no component with more than 
2/3 120 = 80 channels flowing through it. The flow through node b, for instance, is equal to 
66.6% of the demand since only two paths, both with flow value 40, have b as inner node 

As in the example above, it is not required to route a demand on pairwise nodedisjoint 
paths. The diversification parameter only imposes a restriction on the sum of the flow values 
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of all p a h s p a i n g through a network c m p o n e n t . Howev if a demand uv £ D is routed 
on exactly \1/6UV paths then these paths are node-disjoint. Therefore, we sometimes say that 
D I V E R S I F I C A T I O N implements survivability by means of a "nodedisjoint" routing 

athemat i ca l formulat ion 

For every demand uv £ D and every node w £ V\{u, v , the nodefow constraints are 

v(P) Suvduv (214 

and for every demand uv £ D and every pa th P £ VV with \ = the edge-flow constraints 
are 

(P) Suvduv (215 

For a demand uv £ D and a node to € V \ { u , « } , the summation in the nodeflow constraints 
is over all short paths between the demand end-nodes u and v that contain node w as inner 
node. These constraints restrict the amount of flow dedicated to a particular demand that goes 
through a particular node, that is, they ensure a flow of no more than a fraction Suv of the total 
demand duv through a single node w in the normal operating state. The nodeflow constraints 
imply that every edge e £ E carries no more than Suvduv of the demand uv £ D, unless it is 
a supply edge between the demand end-nodes u and v. To cover the latter case, the edgeflow 
constraints are used. These only exist, of course, if E contains edges between u and v. The 
constraints (214) and (2.15) ensure that the flow between u and v is diversified that is routed 
on at least [ 5 U V ] paths 

2 .4 .2 R E S E R V A T I O 

No restrictions on the routing in the normal operating state are imposed for the survivability 
model RESERVATION. Instead, spare capacity is used (that has to be provided) to reroute the 
surviving demands if a single node or single edge of the supply graph is not operating. For every 
demand edge, the network designer specifies the percentage of the demand value that should 
still be routable in case of such a failure. A feasible solution must contain enough spare capacity 
to accommodate the routings of all demands uv £ D in all failure situations s £ S\{0} 

For every demand edge uv £ D, the reservation parameter 

• Puv-, 0 < Puv < 1, is the fraction of the demand duv tha t must be satisfied if a single node 
or a single edge of the supply graph fails 
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0 \ © 
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i g r e : Example routing fo RESERVATIO 

Figure 2.3 shows a feasible routing of the demand edge ac from Example 2 for the normal 
operating state and the failure state s = b with reservation parameter pac = 2 /3 . The routing 
of this demand in the failure state s = b is different from the routing in the normal operating 
state, even though no path of the normal operating state routing is affected by this failure 
situation. 

athemat i ca l formulat ion 

For every failure state G S\{0} and every supply edge G E the capacity constraints are 

E r(P)(e)- ( 2 6 ) 
£ve£ 

For every failure state G S\{0} and every demand uv G D, the demand constraints are 

V(P) = Puvdu ( 2 7 ) 
e-nv 

and, additionally for every valid path P ™ the nonnegativity constraints are 

(P) > ( 2 8 ) 

No path-length restrictions are imposed in failure situations. Therefore, the summation in 
inequalities (2.16) is over all variables that correspond to paths containing a particular supply 
edge. Notice that only surviving demands of operating state s have to be routed and that 
the paths only use supply edges operating in state s. Recall, if s = w for some w G V, the 
demand and supply edges emanating from w in the demand graph H and the supply graph G, 
respectively, are not surviving. Inequalities (2.16) guarantee in failure situations that the flow 
through surviving supply edges does not exceed its capacity. Inequalities (2.17) guarantee for 
all surviving demand edges that the specified percentages of the demands survive the failure 
with state dependent routings, and inequalities ( 2 8 ) formulate the necessary non-negativity 
of the flow variables in all failure situations 
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2 . 4 . 3 A T H R E R A T I O 

The survivability model P A T H R E S T O R A T I O N can be viewed as a compromise between the two 
extreme models D I V E R S I F I C A T I O N and RESERVATION. Similar to the model RESERVATION 

no restrictions on the routings in the normal operating state are imposed, and a specified 
percentage of each demand value should still be routable in case of a single component failure 
However, in contrast to the previous model, the normal operating state routing is linked with 
the failure state routing For every failure state s G S\{0}, the routings that do not contain 
s have to be maintained and only those routings that are affected by the failure of s can be 
rerouted. 

The capacity of those paths affected by a failure are released and can be used for rerouting 
Therefore, the spare capacity of an edge e G Es in a failure situation s G S\{0} is the sum of 
the spare capacity from the normal operating state plus the released capacity of those paths 
which include e and s that is 

i*) E E v(p) E v(p). 
uv e£ uv £V%V :P, 

is the spare capacity of e G Es in s G »S\{0} Recall, a failure state s G S\{0} is a component 
of the supply graph, and thus we can write s G to denote that the failing component s is 
contained in path P. 

For every demand edge uv G D, the path restoration parameter 

• Ouv-, 0 < Ouv < 1, is the fraction of the demand duv that must be satisfied end-to-end 
in a single node or single edge failure without rerouting the paths not affected by the 
particular failure situation 

igure 2 : E x m p l e r o t i n g for PAT RESORATION 

Figure 2.4 provides a feasible routing of the demand edge ac from Example 2.1 with restora­
tion parameter aac = 2 /3 . The left part shows a routing for the normal operating state ince 
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the "surviving ow" in the failure states s = d, s = e, s ae, s = ed, and s = dc is greater 
than or equal to aacdaci the normal operating state routing already provides a feasible routing 
for these failure states. However, in the failure states s = b, s = a and s = be, at least 4 
channels of the demand must be rerouted to satisfy a minimum of 66 6%. This is satisfied 
through the additional path P = { with the flow value f{?c(P) = as illustrated on the 
righthand side of Figure 2 

athematical formulation 

Here, the capacity and demand constraints for failure situations have to respect the unaffected 
normal operating state routings. Since a restriction on the length of the paths used to route a 
demand in the normal operating state is possibly imposed, we denote by VQV n Vfv the set of 
surviving short paths in Vfv for each failure situation s £ S\{0} and each demand uv £ Ds 

That is, P £ V$v n Vf if and only if P £ Vf and P has at most luv supply edges. The 
following constraints are needed for every failure state s £ 5\{0}. For every surviving supply 
edge e £ E, the capacity constraints are 

E V(P) r(P)(e) (219 

These constraints express that the installed capacities must suffice to accommodate all short 
paths of all surviving demands which are not affected by the failure and those paths used to 
reroute part of the failing flow. For every surviving demand uv £ D, the demand constraints 
are 

E V(P) V(P)>Vuvdu (2 
ev%vn™ &Vfv 

and, additionally the non-negativity constraints for every £ V^ are 

(P) > (2 

Constraints (2.20) express the guaranteed survivability for each demand. The sum of the 
values of the unaffected short paths together with the paths used to reroute part of the failing 
flow must be at least the specified percentage of the demand value Notice that no rerouting 
of a demand uv € D in failure state s £ S\{0} is necessary, if the surviving part of the 
normal operating state routings suffices in this particular failure situation. In this case it holds 

£'!(vuv \ ) — &u""iiv 

2.4.4 A note on the surv ivabl i models 

The survivability models aim at different kin of protection against the failure of a single 
network component. Setting the diversification parameter 6UV for the demand edge uv £ D, 
we require that at most 100 Suv% of the demand value duv is routed through any node (other 
than u and v) or any edge of the network. This implies routings which provide "nodedisjoint 
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p a h s , each of them carrying at most 8uduv, and therefoe, only this part of the d m a n d can 
be lost if a single node or single edge of the supply graph fails. Hence, (1 Suv)duv channels 
"survive" without any rerouting effort. There are two drawbacks, however. First setting the 
diversification parameter to Suv implies that the demand will be routed on at least \1/5UV\ paths 
Second, we cannot achieve 100% survivability with this parameter. In practice, diversification 
values below 1/3 are undesirable, because this would force at least four paths each of them 
carrying only a small fraction of the demand. 

Using RESERVATION the network designer takes advantage of possible redundancy in the 
network by allowing rerouting in failure situations. The advantage of this method is the design 
of low cost networks, but as obvious disadvantage, there is need for rerouting in case of a 
failure situation. In fact, this rerouting may be extensive and the network management is 
rather difficult for this survivability model. Furthermore, the available equipment and software 
cannot change the normal operating state routings appropriately fast to considerably different 
failure state routings. Hence, the cost of the solutions obtained using RESERVATION currently 
serve as a lower bound to the necessary capital investment to achieve a specified survivability 
in the network. As soon as such equipment will be available, however, it will be possible to 
practically take advantage of the low cost solutions using RESERVATION 

The best compromise between cost and maintenance effort can be obtained with the surviv­
ability model P A T H R E S T O R A T I O N . A S we will see in Chapter 4, the solutions are comparable 
to the respective RESERVATION solutions, and the rerouting effort is relatively small. However 
there is a drawback of this method in the network planning stage. Much more computation 
time is needed to achieve good solutions, since it is much more difficult to test whether a given 
set of capacities permits a feasible routing in all operating states We describe this in more 
detail in Section 4.4 

Finally, the survivability model LIN RESTORATION (see (Wu, 1992)) is worth mentioning 
This model is similar to P A T H R E S T O R A T I O N and can be employed to deal with single edge 
failures. In contrast to P A T H R E S T O R A T I O N , the failing flow is not rerouted end-to-end (between 
the end-nodes of the affected demands), but between the end-nodes of the failing edge. In other 
words, a failing edge generates a demand between its end-nodes. Obviously, capacities that 
suffice to accommodate routings with respect to these requirements also suffices to accommodate 
routings with respect to the requirements imposed by PATH RESTORATION. Thus, solutions 
for L I N K R E S T O R A T I O N tend to be more expensive. The practical advantage is, however, tha t 
faster restoration is possible since only communication between the end-nodes of the failing 
edge is necessary to establish a failure routing 

In practice, it is reasonable to combine D I V E R S I F I C A T I O N as survivability model for the 
normal operating state with either RESERVATION or P A T H R E S T O R A T I O N . In these cases, a 
minimum survivability is achieved by the diversification parameter setting, with the advantage 
of easy network management. Additional survivability is introduced by the respective "fail 
ure" parameter setting. In case of a failure situation, the operator has to decide whether to 
reconfigure the network or not. This decision depends on various aspects, e.g., on the affected 
demands the expected recovery time, and the required effort to reconfigure the network. 
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2.5 Valid odel combinations 

A particular instance of a survivable capacitated network design problem contains a combination 
of the capacity and survivability models presented in the previous sections. Figure 2.5 illustrates 
the valid combinations. Any instance contains either DISCRETE CAPACITIES or DIVISIBLE 
B A S I C C A P A C I T I E S as capacity model, and the routing constraints for the normal operating 
state (Nos R O U T I N G in the figure). This is shown in the upper part of Figure 2.5. Optionally 
the survivability model D I V E R S I F I C A T I O N can be used to constraint the normal operating state 
routing and, in addition, one of the failure state survivability models RESERVATION or PAT 
R E S T O R A T I O N can be used to reroute flow in single component failures 

D I S C R E T E C A P A C I T I E S | DIVISIBLE B A S I C C A P A C I T I E S | 

N o s R O U T I N G | 

(+) 
I 

D I V E R S I F I C A T I O N | 

(+) ^ (+) 

RESERVATION | P A T H R E S T O R A T I O N | 

igure 2 : Valid combinations of capacity and survivability models 

2.6 Survivble capacitated network design: A survey 

In the following chapters we will investigate the network design models described in the previ 
ous sections. The research community considered, of course, alternative models that are closely 
related to ours. In this section, we give a brief overview on the research in the area of sur 
vivable capacitated network design, where the inherent routing problem can be modeled as 
multicommodity-flow problem. We omit other interesting and closely related research areas 
since there already exist excellent surveys 

A very special case of network design problem is the Steiner-tree problem. Many researchers 
have been at tracted by this problem and therefore the huge amount of existing practical and 
theoretical results in this area is not surprising. For a general overview of this topic, we refer 
the reader to the book (Wang et al. 1992), and for polyhedral methods to solve this problem 
exactly to the overview in (Koch and Martin, 1998). More general problems arise in the design 
of uncapacitated survivable networks which are interesting for f iberoptic cable networks if no 
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routing and capacity issues a e considered. Uncapacitated network design problems are often 
modeled by means of k-node (kedge) connected networks and surveys on related optimiza­
tion problems from a theoretical and practical perspective can be found in ( t o e r 1992) and 
(Grötschel et al 1995) 

The design problem for selfhealing-ring networks fits into the category of capacitated sur 
vivable network design. In this context, however, the important subproblems are ring-covering 
and ring-loading problems (see ( I T U T - G 4 1 1995)), but not multicommodity-flow problems 
The interring-routing problem (lTUT-G.842, 1997) could be considered as multicommodity-flow 
problem, but we are not aware of optimization models which integrate interring-routing ring-
covering and ring-loading 

2.6.1 o m p t a t i o n a l c o m p e x i t y 

Very basic versions of capacitated network design problems are already AP-comple te . The 
following complexity results do not even take survivability constraints or path-length restrictions 
into account, and the capacity model is always DIVISIBLE B A S I C C A P A C I T I E S with \ 2 

We start with a polynomially solvable special case (Magnanti and irchandani 1993) 
showed for the single-demand case with one technology that is, for \D\ = 1 and \T\ = 1, tha t 
the network design problem reduces to a shortest-path problem, if there are no routing costs 
However, if routing costs are incorporated, even this s ingledemand case with one technology 
is theoretically difficult 

heorem 2.2 (Chopra et a l , 1998) The capacitated network design problem for D I V I S I B L E 

B A S I C C A P A C I T I E S with \D\ = 1, \ = and routing costs is NVhard. 

heorem 2.3 (Chopra et a l , 1998) The capacitated network design problem for D I V I S I B L E 

B A S I C C A P A C I T I E S with \D\ = 1 and < 2 is Nhard even if the routing costs are always 
ero. 

Both preceding results have been proven through reduction from the minimal cover problem, 
see (Garey and Johnson, 1 9 9 ) 

In practice, economies of scale often apply for the basic capacities, that is, usually the 
inequality K^ CTJ jCTi > Kl3 is satisfied for all edges e £ E and TJ TJ G T with CTi > Cn. If 
this inequality holds at equality for all supply edges then a result of (Magnanti and Mirchandani 
1993) shows that the capacitated network design problem in the s ingledemand case reduces 
again to a shor t e s tpa th problem. 

Turning to capacitated network design problems with more than just a single demand, we 
already know from the previously mentioned results that these optimization problems are HV 
hard. However this already holds for series-parallel graphs. (A graph is seriesparallel, if it can 
be constructed from a single edge by adding parallel edges and substituting edges by simple 
p a t h s ) The following theorem has been proven through reduction from the knapsack problem. 
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T h e o r e m 2.4 ( B e n s t o c k et al., 1998) T cacitated network design problem for th 
model D I V I S I B L E B A S I C C A P A C I T I E S with \ = is eakly) MVhard on seriesparallel supply 
graphs. 

2 .6 .2 o n t i n u o c a p a c i t i e s 

In this section, we abstract from a particular discrete capacity model and assume the possibil 
ity to install arbitrary (continuous) capacities on the supply edges. Under this assumption the 
network design problem for the normal operating state without path-length restrictions is poly-
nomially solvable. It can be considered as a continuous multicommodity-flow problem, which 
can be solved in polynomial time with either the ellipsoid method of (Khachyan, 1979) or the 
interior-point algorithm of (Karmakar, 1984), since it can be formulated as linear program with 
a polynomial number of variables and constraints. (For instance, the constraints (211) — (2.13 
provide such a formulation.) Furthermore, there exists an exact characterization under which 
conditions a capacity vector suffices to accommodate a feasible (continuous) routing 

T h e o r e m 2.5 (Iri, 1971) , (Kakusho and Onaga, 1971) A capacity vector is feasible for 
the continuous capacitated network design problem if and only i 

^ { e ) Yl nuvdu (222) 
D 

for all edge weights fie > 0, e £ E, where, for every uv £ D is the value of a shortest 
uvpath in G with respect to these edge eights 

The proof of this theorem is a simple application of the duality theorem of linear program 
ming (see Theorem 0.1). Inequalities (2.22) are called metric inequalities and can be interpreted 
as follows. If the weight fie for a supply edge e £ E defines the cost for one unit of capacity 
on this edge then the total network costs for capacities y(e), e £ E, are YleeE ßeV^)- The 
right-hand side of a metric inequality sums up the cost if we could route each demand uv £ D 
on a cheapest path between u and v. Thus, this sum provides a lower bound to the cost of 
feasible solution. 

ome special cases of metric inequalities are important uppose that a fcgraph-partition 
V i , . . . , Vfc of the supply graph G = (V, E) is given (see page ) and define supply edge weights 
by setting 

e e ^ ^ ) ,  
else . 

Furthermore, let the subset of the demand edges with end-nodes in two different shores of the 
fegraph-partition be 

S H ( V V ( J 5H(VV). 
l<<j<k 
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The values of all shortest ««-paths are one, if 6a{Vi, Vj) ^ 0 for every uv SH(V V) with 
u € Vv € Vj. In this case, the corresponding metric inequality reads as 

Y, (e) E *«« (2 

M V ^ ) « v < 5 H ( V V f c ) 

For general fc, (2.23) is a kgraph-partition inequality, and for fc = 2 a c«f inequality. Several 
researchers investigated the interesting question under which conditions a capacity vector is 
feasible if and only if all cut inequalities (or &-graph-partition inequalities, k < I, for some fixed 
I G N) are satisfied. Well-known results are the famous a x - l o w - i n - C u t Theorem and its 
extension to two demands 

T h e o r e m 2.6 (Ford and Fulkerson, 1962) For \D\ = 1, a capacity vector y is feasible for 
the (continuous) capacitated network design problem if and only if satisfies all cut inequalities. 

T h e o r e m 2.7 (Hu , 1963) For D\ = 2, a capacity vector y is feasible for the (continuous) 
capacitated network design problem if and only i satisfies all cut inequalities are satisfied. 

In addition, there exists a huge number of characterizations for which structure of demand 
and supply graph a capacity vector provides a feasible routing if and only if all cut inequalities 
are satisfied. We do not further extend this list of results and refer to the excellent overviews 
Frank, 1990; Frank, 1995 and (Schrijver, 1990) for a thorough presentation of related results 

In Section 2.3, we formulated the continuous capacitated network design problem with path 
variables and, as we already noted, there might be an exponential number of them. In general 
it is therefore impossible to solve this linear program if it includes all pa th variables. (Mi-
noux, 1981) suggested a column generation approach which is applicable to non-simultaneous 
multicommodity-flow problems such as given for the survivability models DIVERSIFICATION and 
RESERVATION Minoux presented computational results with instances up to nodes 

Large network design problem instances (e.g., more than 00 nodes) are difficult to solve by 
means of linear programming. However for these cases, there is the interesting e-approximation 
algorithm proposed by (Leighton et al., 1991). The running time of this algorithm scales up to 
a logarithmic factor linear with the number of demands. ((Leighton et al., 1991): " . giving the 
surprising result that approximately computing a \D\-commodity maximum flow is not much 
harder than computing about \D\ single commodity maximum flow problems") 

T h e o r e m 2.8 (Leighton et al. , 1991) For any fixed e > 0, a (1 — ^approximation algorithm 
to the continuous capacitated network design problem for supply graph G = (V, E) and demand 
graph H = (V,D) can be found by a randomized algorithm in ö(\D\\E\\V\log\D\logs\V\) time 
and a deterministic algorithm in OdD^lEWVllogDllogVl) time, where the constant depends 
on e 

This is a theoretical result. Several researchers, however, put emphasis on fast and practical 
implementations of this eapproximation algorithm. First successful computational experiments 
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on r a m l y generated data have been presented in (Leong et al., 1993). More r e n t l y , (Bien-
stock, 1999) solved this problem for a large-scale problem instance with more than 00 nodes. In 
fact he employed the eapproximation to compute solutions for a D I V I S I B L E B A S I C C A P A C I T I E S 

with T = {r and CT = 1. This problem size is not tractable otherwise 

2 . 6 . 3 i s c r e t e c a a c i t i e s 

In this section, we consider network design problems with a discrete capacity structure. As 
the complexity results reveal, these problems are much more difficult than their continuous 
counterparts. Even single-demand cases are jV'P-hard, and hence it appears natural to devise 
heuristic algorithms. However, we do not know of any elaborate combinatorial heuristic with 
proven quality guarantee. The only "heuristics" we know are based on linear programming 
relaxations and are (partial) branch&bound or branch&cut algorithms. These are also the 
most successful approaches we are aware of 

Many researchers identified valid or even facetdefining inequalities for polyhedra associ 
ated with some version of a capacitated survivable network design problem. It is worth men­
tioning that in some sense, all known inequalities can be viewed as either an application of 
(mixed-)integer-rounding (see (Gomory 1969; Chvätal 1973; Nemhauser and Wolsey, 1990)) 
to an adaption of the fcgraph-partition inequalities (2.23), or as an adaption of the minimal-
cover inequalities for the knapsack polyhedron (see (Balas 1975; Hammer et al., 1 9 5 ; Padberg 
1975; Wolsey, 1975)). There are not many special cases of network design problems for which a 
complete description of the associated polyhedron is known. We cite two results about complete 
descriptions In both cases, the supply graph contains not more than three nodes 

In the next chapter, we provide a coherent presentation of the polyhedra associated with 
capacitated network design problems. We will present several classes of inequalities, some 
of them are new, others are from the literature. Notice that most polyhedral investigations 
are concerned with the capacity model D I V I S I B L E B A S I C C A P A C I T I E S with one or two basic 
capacities only, even though the capacity model D I S C R E T E C A P A C I T I E S is more flexible (see 

ection 2 2 ) . Only Dahl and toer investigated the latter model 

els t h o u t u r v i v a b l i t y 

As we already mentioned, not much is known about the structure of optimal solutions or the 
quality of heuristics even if one does not include survivability considerations. However, for a 
problem defined on three nodes there exists a complete description of the associated polyhedron. 

T h e o r e m 2.9 (Magnant i et al. , 1993) For a network design problem on a supply graph 
G = (V,E) and demand graph H = (V,D) with \V\ = 3 for D I V I S I B L E B A S I C C A P A C I T I E S with 
\T\ = 1, the convex hull of all feasible integer capacity vectors is completely described by cut 
inequalities, 3graph-partition inequalities and the non-negativity constraints. 

Bienstock et a l , 1998) proved a similar result for directed supply graphs on three nodes In 
this case, so-called total capacity inequalities are needed to provide a complete description. 
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How about practically solving this type of problem? We briefly summarize the l i t e rau re 
of computational experiments with linear programming based approaches; all of them for the 
model D I V I S I B L E B A S I C C A P A C I T I E S with one or two basic capacities. (Bienstock and Günlük, 
1995) solved sparse ATM network design problems with real-life da ta for instances of up to 16 
nodes to optimality. Their model included flow costs and the capacities are given as combina­
tions of the two basic capacities OC3 and OC12. They presented many classes of facet-defining 
inequalities, including different versions of cut inequalities, flow-cutset inequalities and 
graph-partition inequalities 

(Magnanti et a l , 1995) investigated the network design problem with two basic capacities 
They compared a Lagrangian-relaxation approach with a cutting plane approach. For the 
cutting plane approach, (Magnanti et al., 1995) included cut inequalities, arc residual inequali 
ties, and 3-graph-partition inequalities The computational experiments on randomly generated 
problem instances with up to 15 nodes revealed that the cutting plane approach provides better 
lower bounds. The integrality gaps were about 5-20% for the 15 node problems and the inte­
grality gap of the Lagrangian-relaxation approach was about 4% worse on average. However 
their experiments indicated that the running time of the cutting plane approach is more sensi 
tive to the problem size. With increasing problem size the time to solve the problem instances 
with Lagrangian-relaxation increased more slowly than those of the cutting plane approach. 
(Barahona, 1996) considered a linear relaxation for a network design problem with one basic 
capacity that includes only cut- and fcgraph-partition inequalities. The flow variables were 
projected out, and instead of separating all metric inequalities only the mentioned subclasses 
were employed. No algorithm was mentioned to test the feasibility of a capacity vector (e.g 
by means of separation of metric inequalities). Instead, Barahona described sophisticated sep­
aration algorithms for the two inequality classes and used these in a cut&branch algorithm. 
(In contrast to a branch&cut algorithm, a cut&branch algorithm uses cutting planes only at 
the root node and uses a pure branch&bound algorithm afterwards.) Problem instances up to 
64 nodes with complete supply and demand graphs were solved with an accuracy of 510%. 
(Günlük, 1999) presented a branchfccut algorithm to solve the network design problem with 
two basic capacities. Beside the previously known classes of metric and fcgraph-partition in­
equalities he proved that inequalities based on the principle of mixing mixed-integer inequalities 
(see (Günlük and Pochet, 1997)) are facet-defining for the associated polyhedron. Besides, a 
new branching rule was presented, the so-called knapsack branching. The computational tests 
on three realworld data sets ((i) 15 nodes, 22 supply edges, (ii) 16 nodes, 4 supply edges, (iii) 
27 nodes, 51 supply edges) revealed the strength of branch&cut compared to cut&branch or 
branch&bound for this type of problem. (Bienstock et al., 1998) studied network design prob­
lems with one basic capacity. An interesting point in this paper is the computational comparison 
of two different formulations of the problem: one with edge-flow variables (see page 40), and 
one in terms of metric inequalities The tests on two data sets, the "New York area" problem 
with 15 nodes, 44 supply edges, 210 demand edges, and "Norwegian" problems with 27 nodes 
102 supply edges, 19 demand edges (supplied by Mechthild Stoer) showed that the problems 
can be solved to optimality with both formulations. The formulation without flow-variables 
however, outperformed the other in terms of branchfcbound nodes and computation time 
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els th urvivability 

First, w consider the case of a single basic technology of unit capacity, that is, T = T} 
and CT Let G = (V,E) be the supply graph, H = (V,D) the demand graph, and let 
8G{W), 8H{W) be cuts for W C V in G and H, respectively. Furthermore, the value d represents 
the demand across the cut in the normal operating state, and for the supply edges g 6Q(W) 
the value dg represents the demand across the cut in failure state g. The definition of these 
values depends on the survivability model for failure situations. For the model RESERVATION 

these are defined as 

uv 
8H{W 

^2 Puv (W 
8H{W 

For the model PATH RESTORATION, suppose that a fixed normal operating state routing is 
given, Hence, a value fov(e) is given for each supply edge e € SH{W) and each demand edge 
uv £ SH(W), which represents the flow through e that is dedicated to the demand uv. In this 
setting the definition of the above mentioned demand values is the following: 

Y m a x { ( ™ ^ ™ (W 
8H{W 

Under these assumptions, the following constraints provide a general formulation of a survivable 
network design problem on a cut W C V for the models RESERVATION and PATH RESTORATION 

(e dg (W), (2 
ee(W)\{g} 

Y (e (2 
SG(W 

(e) G Z + , e G {W (226) 

For the first case, RESERVATION, Bienstock and Muratore characterized inequalities through 
lifting (with simple lifting coefficients) such that the derived inequalities provide a complete 
description of the convex hull of all feasible solutions of (2.24) — (2.26), if all values dgig G 6Q(W), 

are equal In the other case, for PATH RESTORATION with fixed normal operating state routing 
agnanti and Wang provided a complete description. 

Theorem 2.10 (Bienstock and Muratore, 1999) For constant dg,g G Sc(W), the conve 
hull of all solutions of the system (2 (226) is completely described by inequalities (22 
and inequalities of the form 

^ ( e + a ^ (e ( 2 7 ) 
£F EF 
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for F (W),F = 0 and approprite nd 

Inequalities (2.27) can be obtained from sequential lifting applied to one particular (non-
trivial) type of inequality. We do not want to go into further detail, but Bienstock and Muratore 
described the inequality to start the sequential lifting procedure with, xactly calculated the 
lifting coefficient, and proved that all facets can be obtained this way 

T h e o r e m 2.11 agnant i and W a n g , 1997) For d = 0, the convex hull of all solutions 
of the system (2.24 (2.26) is completely described by non-negativity inequalities inequalities 
( 2 4 ) and so-called Q-subset inequalities. 

Q-subset inequalities can be interpreted as the result of mixed-integer rounding applied to 
the sum of inequalities (2.24) for the edges in Q C 6Q(W). Magnanti and Wang also proved 
a generalization of this theorem. With slight modifications the same result is true for series 
parallel graphs 

Next, we review some computational experiments for survivable capacitated network design 
with different combinations of models. Interestingly, integrated approaches which at tempt to 
find a cheapest network such that a routing for the normal operating state and the failure 
states is possible are not often considered. Such integrated approaches are more complex and 
practically more difficult to solve. However, it has also been noted in (Murakami and Kim, 
1995) and (Poppe and Demeester 1997) that solutions of an integrated approach tend to be 
considerably cheaper 

(Stoer and Dahl, 1994; Dahl and Stoer, 1998) investigated the capacity model D I S C R E T E 

C A P A C I T I E S and the survivability models D I V E R S I F I C A T I O N and RESERVATION without path-
length restrictions for the Norwegian Telecom Research. These models have been the basis 
for our work. Dahl and Stoer identified several classes of inequalities like band inequalities 
(see (3.8)) and fcgraph-partition-band inequalities (see (3.10)), and solved a large number of 
instances (from 37 up to 118 nodes with a very sparse supply graph) to optimality. However 
they also report on difficulties for problem instances with denser supply graph. Beside Dahl 
and Stoer and ourselves, there are only a few other references to integrated approaches, all for 
D I V I S I B L E B A S I C C A P A C I T I E S and one basic capacity. (Poppe and Demeester, 1997) investi 
gated the joint problem of installing capacities (one technology) such that a normal operating 
state routing and a routing for all single link failure is possible with respect to the survivability 
model L I N K R E S T O R A T I O N . Their mixed-integer programming model contains continuous path 
variables for the flow in the normal operating state and integer variables for the capacity deci 
sions. They proposed a branch&cut approach with inequalities arising from the uncapacitated 
network design problems of (Grötschel et al., 1992) and sum-and-divide procedures. Nothing is 
proven about the strength of the inequalities. The problem sizes in the computational studies 
ranged from 8 nodes, 13 supply edges, 13 demand edges to 20 nodes 54 supply edges, 7 de 
mands. Optimality was proven for the small problem instances and the maximal integrality gap 
was 37%. For P A T H R E S T O R A T I O N , (Xiong, 1998) formulated the integrated optimization of 
the normal operating state and the failure states with pa th variables. The routing is supposed 
to be non-bifurcated, that is for each demand and each operating state there is a unique pa th 
Since no column generation for the pa th variables and no cutting planes to strengthen the 
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linear relaxation were employed, the author preselected for each demand 10 a l te rna ive paths 
The tests on two sparse problem instances (11 nodes, 23 supply edges and 28 nodes, 45 supply 
edges) yield gaps below 5%. (Filho and Tavares, 1998) considered the integrated problem for 
L I N K R E S T O R A T I O N . On two sparse test problems with large demands (compared to the basic 
capacity STM-4) the gap between the initial linear programming relaxation and the solution of 
a simple rounding heuristic was below 2%. 

All of the following references are based on the capacity model D I V I S I B L E B A S I C C A P A C I T I E S 

for one or two basic capacities, and the survivability model L I N K R E S T O R A T I O N or P A T H R E 

STORATION with fixed normal operating state routing 

(Sakauchi et al., 1990) considered L I N K R E S T O R A T I O N . Their optimization target was to 
minimize the total number of spare capacity units (one basic capacity) needed to accommodate 
the failure routings. No costs were involved. As solution method they used a linear programming 
relaxation based on cut inequalities which were separated with a maximum flow algorithm. 
No extension to metric inequalities was shown for P A T H R E S T O R A T I O N . To compute feasible 
integral solutions the authors employed a rounding procedure to make the variables of the 
final linear programming solution integral, followed by an improvement algorithm to find a 
solution with less spare capacity Nothing was reported about the criteria used and the quality 
guarantee obtained. (Lee et al., 1995) considered the capacity expansion for L I N K R E S T O 
RATION. Combinations of two basic capacities (STM-1 and STM-4) are allowed and, in addition 
to other models, capacity constraints for the nodes of the supply graph have been added to 
the model. Cut inequalities are proven to be facet-defining for the associated polyhedra and 
these inequalities are then used in a branch&cut algorithm which was tested on two networks 
stemming from the literature. The problem sizes were 11 nodes, 23 supply edges, and 26 nodes 
42 supply edges. The number of demands was not reported. The variants with one basic 
capacity could be solved within a few seconds and those with two basic capacities within an 
hour. (Balakrishnan et al., 1998) used the polyhedral investigations of (Magnanti and Wang 
1997) for L I N K R E S T O R A T I O N , presented separation algorithms and reported on computational 
experiments with a cutfcbranch algorithm. The size of the real-world problem instance was 41 
nodes, 6 supply edges (unknown demands) and the size of the random instance ranged from 
20 up to 50 nodes with an average connectivity of 4, with random demands between any pair 
of nodes. The value of the initial linear programming relaxation was almost always below 10% 
and the cut&branch algorithm solved all problem instance within a few minutes to optimality 





hapter 

l y r a Invest igat ion 

The convex hull of all solutions that satisfy the constraints for a particular combinaion of 
capacity and a survivability model is a polyhedron. In fact, these solutions provide an "inner" 
description of this polyhedron. By a wellknown theorem in polyhedral combinatorics (Weyl 
1935), an "outer" description in terms of linear inequalities exists as well. Thus, if such an 
outer description is known, it is in principle possible to solve the problem by means of linear 
programming. However, in general it is not possible to provide such a description, and even if 
it is known, its number of inequalities is too large large for stateof-the-art linear programming 
solvers. Despite these problems, an optimal solution in terms of integer capacity variables 
can uniquely be described by a small number of linearly independent inequalities and thus, it 
suffices to identify inequalities that determine such an optimal solution. 

A cutting plane approach seeks a partial description which approximates the (complete) 
description as well as possible. The success of this approach depends on the extent to which the 
structure of the polyhedra is known, and therefore we focus in this chapter on the investigation of 
the polyhedra associated with the survivable capacitated network design described in Chapter 2 
We present classes of valid or even facet-defining inequalities for the original polyhedra, for 
projections to subspaces and for particular relaxations 

The polyhedra depend on the structure of the supply and demand graphs, the capacity model 
and the survivability model. Given a supply graph G and a demand graph H a capacity model 

AP and a survivability model SUKV, we denote the polyhedron by 

P(G, H, CAP SU 

To keep the exposition simple, we ignore edge dependent parameters such as individual capac 
ities of the supply edges, demand values or survivability parameters in the format. These are 
implicitly given. 

The variables are the integer capacity variables x, the continuous pa th variables / , and the 
auxiliary continuous capacity variables y We denote by F I N and B A S the capacity models 
DISCRETE CAPACITIES and DIVISIBLE BASIC CAPACITIES, respectively and by Div RES , and 
PATH the survivability models DIVERSIFICATION, RESERVATION, and ATH RESTORATION 

respectively dditionally, we denote the normal operating state by N s We consider the 



58 3. OLYHEDRAL INVESTIGATIONS 

following p o l e d r a in the subseqent sectios 

P[G, H, F IN, S) conv {(,f) : ( ) satisfies (2.2), (2 . ) , (2 . ) 

( , / ) satisfies (28), ( 2 ) (2. 

P(G, H, FIN, Div conv {( , / ) : ( , y, / ) G P(G, ff, FlN, Nos) 

/ satisfies (214), (215) 

P(G,H, F IN, RES) conv { ( , / ) : ( , / ) G P(G,H, F IN, NOS) , 

( , / ) satisfies (216), ( 2 7 ) , ( 2 8 ) 

P ( G , # , F I N , A T H ) conv { ( , / ) : ( , / ) G P (G, i J ,F IN ,Nos ) , 

( , / ) satisfies (2.19) (2.2) (2 

P(G, H, BAS S) : conv {( , / ) : ( ) satisfies (2.6), (2.7), 

( , / ) satisfies (28) (2.9) (2. 

P(G,H, BAS DIV conv { ( , / ) : ( , y , / ) G P(G,H, BAS S) 

/ satisfies (214), (215) 

P(G,H, BAS RES) conv { ( , / ) : ( , / ) G P(G,H, BAS, NOS) , 

( , / ) satisfies (216) ( 2 7 ) , ( 2 8 ) 

P[G,H,BASPATH) : conv { ( , / ) : ( , f ) G P ( G , ^ " , B A S , O S ) , 

( , / ) satisfies (219) ( 2 ) (2 

For notational convenience, we do not distinguish between the flow vector / and its projection 
to the normal operating state, and we omit the dimension of the vector space of the solutions 
(x,y, / ) , since it depends too much on the structure of a particular problem instance. Without 
enumeration of all valid paths for all operating states, it is difficult to determine the number of 
path variables. Obvious relations between these polyhedra are 

P(G,H, F IN, DIV P(G,H, F IN, S) P(G,H, BAS DIV P(G,H, BAS S) 

The above polyhedra are very high-dimensional, becase of the huge number of path vari 
ables. As we already pointed out, the objective function coefficients of all path variables are 
zero (see (2.1) and (2.5)), and only cost coefficients of integer capacity variables are positive 
In the space of the continuous capacity variables we define the following polyhedra 

/ such that ( , / ) satisfies (2.8) (29) (2.10) 

/ such that ( , / ) satisfies (2.8) ( 2 . ) , (2.14) ( 2 1 5 } 

/ such that ( , / ) satisfies (2.8) ( 2 . ) , (2.6) (2.8) 

/ such that ( , / ) satisfies (28) ( 2 ) (219 (2 

Y(G,H,s) = { £ R 
Y(G,H,Dw) = { G R 

Y(G,H, RES) = { G R 

y(G,iJ,PATH) = { G R 

For each survivability mode, the above polyhedron is the sum of the positive orthant 
and the respective projection to y-variables. Notice that these polyhedra are independent from 
the capacity model and defined by the set of feasible continuous capacity vectors Obvious 
relations between these polyhedra are 



Y(G, H, Div) C Y(G, H, Nos) and Y(G, H, ) C Y(G, H, R E S ) 

Furthermore, we define polyhedra in the space of ^var iables . Let T(E) := {(e, t) : e G 
E,l < t < Te} be the index set of the integer capacity variables for the model D I S C R E T E 

C A P A C I T I E S and define 

(G, H, FIN, N O S ) conv { G { (e • • • (e Te) e G E, 

E (e ))eE G y(G, if, s) 
t=i 

(G, H, FIN, Div conv { G { (e • • • (e Te) e G £ , 

T 

E (e ) ) ^ G y ( G ' ̂ ' D lV) 
t=l 

(G, H, FIN, R E S ) conv { G { (e • • • (e Te) e G £ , 

E (e ) ) ^ ^(G, #, RES) 
t=i 

(G,H,FIN,PATH) : conv { G { (e ••• ( e T e ) e G £ , 

T 

E (e ) )eß ^(G, # , PATH 
t=i 

Similarly let (E) : {(e ) : e G E, T } for the DIVISIBLE BASIC CAPACITIES and 

define 

(G, H, BAS NOS) := conv { G Z : ( (e ))eeB G ̂ ( G , # , Nos) 

(G, if, BAS Div = conv { G Z : ( fo ))eeB G F (G, # , Div) 

(G, tf, BAS RES) = conv { G Z : ( ( e ))eeB G Y(G, H, R E S ) 

(G, H, B A S P A T H ) := conv { G Z : ( (e ))eeE G Y[G, H, P A T 

For each combination of a capacity and a survivability model these are the projections to 

variables gain, the obvious inclusions are 

(G, H, F I N , D I V ) C X(G, H, F I N , S) , X(G, H7 F I N , P A T H ) C X(G, H, F I N , R E S ) 

(G, H, B A S D I V C X(G, H, B A S S ) , X ( G , H, B A S P A T H C X[G, H, B A S R E S ) 

If the particular survivability model is not important we use the notation 

P(G,H,FIN,)P(G,H,BAS) (G,H,FIN,),X(G,H,BAS) Y(G,H,) 
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p e i l y . I he p a i c u l a r capaity m o l is also n t impo we us 

P(G,H,) (G,H,) 

respectively. These three types of polyhedra are related with each other. The polyhedra 
X(Gj H7 •, •) are the projection of the respective polyhedra P(G, H, •, •) to the space of integer 
capacity variables. Furthermore, there is a canonic way to embed the polyhedra X(G,H, , •) 
and P(G, H, , ) into the (continuous) polyhedra Y(G, H7 ). This implies the following lemma 
the proof of which is obvious 

e m m a 3. 

(a) mm{ : ( , f) £ P{G, H, = mm{ (G, H, 

(b) valid for P(G, H, <$= valid for (G, H, 

(c) y valid for Y(G, H, ) = 
eeE l=i (e t)>a e B C°e valid for (G, H, F IN, ) and P(G, H, FIN, 

(d) y valid for Y(G, H, ) = 
eeE ae x(e T) > a eE aeCe va^ for (G, H, BAS ) and P(G, H, BAS ). 

Notice that in statements (c) and (d) of Lemma 3.1 a valid inequality for a polyhedron 
Y(G,H,-) is transformed into a valid inequality for the respective capacity model dependent 
polyhedra X(G, H, FIN, ) X(G, H, BAS ) P(G, H, FIN, ), and P(G, H, BAS ) 

3.1 Continuous capacities: Y(G,H,-) 

In this section, we investigate the polyhedra Y{G, H, ) for the different survivability models 
We present in each case a complete description of Y(G,H,) by means of some variation of 
so-called metric inequalities. The original results of (Iri, 1971) and (Kakusho and Onaga 1971) 
state that metric inequalities suffice to describe the polyhedron Y(G, H, Nos). The proofs 
are based on linear programming duality applied to the appropriate formulation of the decision 
problem whether some capacity vector y satisfies y € Y(G, H, Nos). This result can be adapted 
for the survivability models DIVERSIFICATION, RESERVATION, and PATH RESTORATION. 

At the end of this section, we illustrate the difference between the survivability model depen­
dent classes of metric inequalities based on the following small examples. Let a complete supply 
graph on four nodes a, c, and be given, and suppose that there are two demands ac and b 
with values da 2 and d^ 1. Furthermore let the survivability dependent parameters b 
Sac = a = 0 , pac = Pbd = 0-5, and aac = Obd = 0.5 for DIVERSIFICATION, RESERVATION, and 

PATH RESTORATION, respectively. In this example, no path-length restrictions are considered. 
The four capacity vectors (the labels at the edges represent the capacity) shown in Figure 1 
satisfy 
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( ^ ©, A A 
2 2 1 1 1 1.5 

@^2^® @^3^® O ^ 1 ^ © O ^ 1 ^ © 
2 2 1 1 1 2 

\s> \s> w W 
(a) (b) (c) (d) 

igure : Example capacities 

(a) is infeasible for Y(G, H, Nos), 
(b) is feasible for Y(G, H, Nos), but infeasible for Y(G, H, R E S ) , 
(c) is feasible for Y(G, H, RES) but infeasible for Y(G, H, PATH) 

(d) is feasible for Y(G, H, PATH) but infeasible for Y(G, H, Div) 

To verify the claimed feasibility for Figure 3 ( b ) ( d ) , see Figure 

2(a) for a feasible routing for the normal operating state and the capacities of 
Figure 3.1(b). 

2(b) for a feasible routing for RESERVATION in edge failure state s = bd for the 
capacities of Figure 3 ( c ) The routings in all other operating states are 
obvious. 

2(c) for a feasible routing in the normal operating state for the capacities of 
Figure 3.1(d). For PATH RESTORATION, this routing is feasible for the failure 
states s € {a, c ad, ac cd} without any changes. For the edge failure states 
s = ab and s = be, and the node failure state s = b, a feasible routing is 
obtained by rerouting 0.5 units of demand ac over the path a — d — c. Finally 
in the edge failure state s = bd, a feasible routing is obtained by rerouting 
05 units of demand over the path c 

2 0.5 0.5 0.5 1.5 

V • • • • 1 • • • • ' \ 0.5 0.5 / 
2 \ . • ' 0.5 1.5 

^ 0.5 0.5 

Xs) ^ ' © 
(a) (b) (c) 

igure 2: Example routings 

At the end of this section, we will prove the claimed infeasibilities of the capacity vectors of 
Figures 3.1(a)(d). For each of the four cases, we present a metric inequality which is valid for 
the particular polyhedron Y(G,H1 ), but which is violated by the particular capacity vector 
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3 . 1 1 v i v a i l i t r e s t t i o n 

The polyhedron Y(G, H, N s ) consists of all continuous capacity vectors y G K which suffice to 
accommodate a continuous multicommodity-flow. Theorem 2.5 states that y G Y(G, H, Nos) 
if and only if all metric inequalities (2.22) are satisfied. This result is formulated without 
path-length restrictions but can easily be extended to cover this case 

3 . 1 2 D I V R S I F I C A T I O N 

Next, we consider the polyhedron Y(G,H, Div) for the survivability model DIVERSIFICATIO 

In this case a capacity vector y is feasible, if there exists a routing vector / such that (y, / ) 
satisfies the constraints (2.14) and (2.15), in addition to the normal operating state constraints. 
The following theorem is an extension of Theorem 2.5 that has been proven in (Dahl and toer 
1998), rephrased here to include path-length restrictions 

Theorem 3. capacity vector y is feasible for DIVERSIFICATIO with pathlength restri 
tions that is G Y(G,H, Div) if and only if 

^ { e ) duv Y Suvduv 7«« 
£E uv \ \{ 

for all [ > 0, e G E, *y™v w G ] } , i f l £ V\{u,v}, and 7 ^ > 0 , w £ l ) , e £ G{U) F\G(V) 

with nuv is defined as follows: Given uv £ D we assign to each edge e G E\{6G(U) Sc{v) 
the eight fie to edges e G SQ{U) fl SG(V) the weight /j,e + 7 ^ , and to each node w G V\{u,v} 
the weight 7 ^ Then TUV is the value of a shortest among all uv-paths in G with at most uv 

edges 

We refer to inequalities (3.1 as metric inequalities too since these are the obvious extension 
for the survivability model DIVERSIFICATIO 

3 . 1 3 RESERVATIO 

Next, we consider the polyhedron Y(G,H, R E S ) for the survivability model RESERVATION. In 
this case, a capacity vector y is feasible, if there exists a routing vector / such that (y f) 
satisfies the constraints (2.16), (2.17), and (2.18) in addition to the constraints for the normal 
operating state. These constraints nicely decompose into a separate set of constraints for each 
operating state Hence, the extension of the previous results to Y(G, H, RES) is the following 

Proposition 3.3 A capacity vector is feasible for the survivability model RESERVATION that 
is G Y(G, H, R E S ) if and only i Y(G, H, os) and for all failure states G <S\{0} 

Y !7(e) Puvduv 2) 
eE uv 

for all [is
e > e G Es, where K^ is the value of a shortest uvpath in Gs with respect to the 

edge eights s for every uv G D 
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We refer to inequalities (3.2) as metric inqua l i t i e to since t h s e are the o i o u s x t e s i o 
for the survivability model RESERVATION 

3 . 1 4 A T H R E R A T I O 

inally, we consider the polyhedron Y(G, H, P A T H ) for the survivability model P A T H R E S T O ­

ATION. In this case, a capacity vector y is feasible, if there exists a routing vector / such that 
( y , / ) satisfies the constraints (219) and ( 2 ) , in addition to the constraints for the normal 
operating state. 

The previously introduced metric inequalities (222) , (31) , and (3.2), are of the following 
form. Given are supply edge weights (for individual operating states), which define the coeffi­
cients for the continuous capacity variables. The value of the right-hand side is then defined as 
the sum of weighted demand values, where the weights are the values of shortest paths between 
the demand end-nodes. This construction is not possible for P A T H R E S T O R A T I O N , but the set 
of feasible solutions can also be described by a single class of inequalities. In this case, the 
coefficients reflect that the routing for the normal operating state is linked with the routings of 
the failure states 

Propos i t i on 3.4 capacity vector y is feasible for the survivability model P A T H R E S T 
ATIO that is Y(G,H, P A T if and only if 

E ^ ^ ^ < k v VuvduvKv 
e&E uv \{ 

is satisfied for all s G S £ E and r*r s £ 5 \{0} uv £ D that satisfy 

< « s£S\{0}uv£D£V?v 

^ e ,w<=D,P£$v 

\ { $ 

Proof. We just sketch the proof, which is a simple application of linear programming duality 
Suppose that the decision problem whether a capacity vector is feasible for P A T H R E S T O R A T I O N 

is formulated as linear program with path variables such that the additional capacity needed 
on a single supply edge is minimized. See (4.14) (420) on page 110 for such a formulation 
including DIVERSIFICATION Then, the constraints (3.4) and (3.5) are the non-trivial constraints 
of the associated dual linear program, and (33) corresponds to the dual objective function. The 
result follows, since (3.3) is violated if and only if the optimal dual objective is strictly positive 
that is if and only if additional capacity is needed on at least one supply edge 

In the small examples at the beginning of this section, we claimed infeasibility for the capac 
ity vectors in Figure 3 ( a ) ( b ) ( c ) and (d) for the normal operating state and the survivability 
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m d e l s RESERVATION, P A T H R E S T O R A T I O N , and D I V E R S I F I C A T I O N , respectively. For each ex­
ample, we prove the infeasibility by presenting a metric inequality that is valid for the particular 
polyhedron Y(G,H, ), but which is violated by the capacity vector 

Let fiac = [iad = \ihc = ßbd = 1 and 0, otherwise. The values of shortest paths 
between the demand end-nodes are nac = 1 and 7rM = 1, and hence, the capacity vector 
in Figure 1(a) is not feasible for normal operating state, since the metric inequality 

c) ad c) + 1 

is valid for Y(G,H, Nos ) . However, this inequality is violated for the capacity vector in 
Figure 3 ( a ) . The lef thand side evaluates to 2 

For the node failure state s = b, let ßac = j , a d = 1. Otherwise let ßs
e = 0. For these 

supply edge weights, the value of a shortest a c p a t h in Gb is -Kb
ac = 1. The capacity vector 

in Figure 31(b) is not feasible for RESERVATION since the cut inequality 

c) ad 

is valid Y(G,H, R E S ) , but violated for this capacity vector. The lef thand side evaluates 
to 

For the next case, let 

4 , s = e = c , 
2 , s = e = d 
1 s = e ^ c and 

, s = b e = ad be 
, else . 

It is straightforward to verify that these values satisfy the constraints ( ) and ) of 
Proposition and thus the inequality 

+4c) + l ) ( a d c ) (c)) 4 

11 

is valid for Y(G, H, P A T H ) . However, this inequality is violated for the capacity vector in 
igure 3 ( c ) . The lef thand side evaluates to 

inally, let d cd 2, and ße = 0, otherwise. Furthermore, let 7 ^ = 1 
•yac = 2, and 7 ^ = 7^, = 7 ^ = 7 ^ = 0. For these edge and node weights, the values 
of shortest paths between the demand end-nodes are irbd = 1 and irac 2. Hence, the 
capacity vector in Figure (d) is infeasible for the survivability model D I V E R S I F I C A T I O 

since the inequality 

ad {c c) + 1 2. 

is valid for Y(G, H, Div) , but is violated for the capacity vector in Figure (d). The 
lef thand side evaluates to 2 



3.2. ISRETE APACITIES: X H , I N 

3.2 DISCRETE CAPACITIES: X(G, H, F IN, •) 

For each survivability model, we investigate in this section the projection X(G, H, F IN, •) of 
the respective polyhedron P(G, H7 F IN, ) to the space of integer capacity variables. We present 
classes of valid and facet-defining inequalities for X(G,H, FIN, •). As we already pointed out 
in Lemma 3.1, there is a canonical way to derive a valid inequality for X(G, H, F IN, ) from a 
valid inequality for Y(G,H,), and obviously each of these inequalities induces the following 
relaxation of X(G, H, F IN, ) 

Definition 3.5 Let fj, G M^, YleeE ßeV{e) > ^ be a valid inequality for Y(G,H,) and set 
F := s u p p ) . Then we can define the induced knapsack-relaxation for DISCRETE CAPACITIES 

as 

QF = conv{ € { eeF V Y%=\ {et) > X) e e F 

(e ) > • • • (eTe) > , e £ 

Notice that we assume an implicitly given valid inequality YleeE PeVi6) ^ ^ f° r Y{G,H, ) 
whenever we write QFw(fj,,d) Often, we focus on such a relaxation, derive classes of valid 
inequalities for it and attempt to prove that these are facetdefining for this relaxation. Setting 
all coefficients in T(E\F) to zero, valid inequalities for this relaxation can be extended to valid 
inequalities for X(G,H,Fm,) Under additional conditions the resulting inequality is even 
facet-defining for X(G, H, FIN, •). Table 3.1 shows the classes of valid inequalities presented in 
the sequel together with the reference of its first publication. 

el I n e q l i t y class Reference 

Strengthened metric inequalities 
Band inequalities 
2-Band inequalities 

graph-partition bandinequal i t ies 

Alevras et al., 1996) 
Dahl and Stoer 1998) 

Section 3.2.1 
toer and Dahl 1994 

D I V E R S I F I C A T I O N Diversifcation-band inequalitie ectio 

RESERVATIO trengthened band inequalities 
trengthened 2-band inequalities 

Dahl nd Stoer 199 
Section 3 2 

ATH R E S T O R A T I O see RESERVATIO 

able Classe n-trivial valid inqualities fo (G, H, FIN, 

en looking at the c l a e s of valid inequalities p r e s e n d Table 3.1 it is important to recall 
from Lemma 3.1 that valid inequalities for X(G, H, F IN, NOS) are valid for the survivability 
model dependent polyhedra X(G, H, F IN, DIV) , X(G, H, F IN, RES) , and X(G, H, FIN, PATH) 

respectively, and valid inequalities for X(G, H, FIN, RES) are valid for X(G, H, F IN, PATH). For 
the survivability model PATH RESTORATION, no other classes of inequalities than those for 
RESERVATION are presented, since it turned out to be difficult to identify new classes reflecting 
that the normal operating state routings must be preserved in failure situations. In the fol 
lowing, we assume that Cje is for each e £ £ appropriately large Furthermore, the incidence 
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vector X
9,k G { for ( (E) is defined by *(e ( e ) G ( £ ) , if and only 

if e = and k 

t r e n g t h e n d metr i i n e q a l i t i e s 

The first class of inequalities is the result of a divide-and-round procedure applied to metric 
inequalities (2.22), (3.1) and (3.2). These inequalities are called strengthened metric inequalities 
and they are valid for the respective polyhedron (G,H, ). However no general conditions 
are known under which they are facetdefining 

ropos i t ion 3.6 Let fi £ M F := supp(//) and ^2eF (e) > be valid for Y(G,H, with 
* £ N for all e £ , 1 < t Te Furthermore set 

^ 

max{ < t Te d} for all e £ E 

: e £ F 1 < < t 

en th t r t h tric i n l i t y 

E 
£F 

e( C°e) on 
e e t + l ^ ^ e t 

d 

9 
6 

is valid for G, H, IN, 

Notice that for every supply edge e £ E the breakpoint te is largest such that its weighted 
capacity / / e * does not suffice to satisfy the underlying inequality for Y(G,H, ). 

P r o o f Let x £ { 0 , 1 } T (G, H, F I N , •). We distinguish between two cases 

• If there exists a supply edge e F with ~ t e + 1) = 1 then inequality (3.6) is satisfied 
because 

a& ß(cc! 
t 1) 

4 ß(c 

j c ! ) - n 
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therwise if (e te + 1) = 0 for all e € F w define y(e) := C® + Ylt= f ° r every 
€ i and ) := for every e <E E\F. Clearly y <E Y(G, H, •) and 

£ / (C _ t 1} Ml ^ ) 

ow th validity of inequality (3.6) follow from ith th integrality of 

If the underlying inequality is a k-graph-partion or a cw£ nequality, we refer to the associ 
ated inequality (3.6) as a strengtened k-graph-partition or a strengtene cut nequality 

It is difficult to provide sufficient conditions such that an inequality (3.6) is facet-defining 
for X(G, H7 FIN, •), even if the underlying inequality is a cut inequality. However, by definition 
there exist feasible solutions in the face induced by a strengthened cut inequality if the two 
shores of the cut are connected, and therefore strengthened cut inequalities induce n o n - t r i i a l 
faces of X(G, H, F I N , •) under these conditions 

From a computational point of view, it is interesting to note that strengthened metric in­
equalities have dense support Often almost every integer capacity variable xe,t) of the sup­
ply edges e in the support F of the underlying valid inequality for Y{G,H, •) appears in the 
strengthened metric inequality. As a consequence, we observed stronger relaxations and nu­

erical instabilities whenever we employed these inequalities in the cutting plane algorithm 

2 1 s u r v i v i l i t y r e s t r i c t i o 

We start the investigation of X(G,H, F I N , N O S ) with its dimension and the property that the 
ordering constraints are indeed facet-defining. Then we derive several classes of inequalities 
valid for X(G, H, F I N , Nos) which are based on valid inequalities for Y(G, H, Nos ) . The class 
of band inequalies is similar to minimal cover inequalities for the knapsack problem (see, e.g. 
(Padberg, 1975)) and was first presented in (Stoer and Dahl, 1994) for network design problems 
based on the capacity model D I S C R E T E C A P A C I T I E S . It was also proven in this paper that band 
inequalities are under rather natural conditions facet-defining for QFlK(fi,d). n addition, we 
present sufficient conditions for band inequalities to be facet-defining for X{G, iJ , F I N , Nos) 
and introduce 2-band inequalities and k-graphartition band-inequalities as generalizations of 
band inequalities. 

The following basic properties of X(G1H, F I N , Nos) have been proven in (Stoer and Dahl 
1994) for the case for all e<EE 
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r o i t i o n 3 7 T lto G, H, F I N , Nos) is fulldimio ly if f ll 
G E polytope 

X{G, H, F I N , N O S ) : x{e, 1) = 

is non-emty 

Propos i t i on 3.8 • For every e G E, e inequalities x(e,l) ••• x(e,T are 
facet-defining for X(G, H, F I N , N O S ) 

• For every e G E, the inequality x(e,Te) > is facetdefining for X(G, H, F I N , Nos) if 
and only if the polytope X((VE\{g}),H,FlN,Nos) D {0 , l} T ( ß ) x(e,T is 
non-emty for all G E\{ 

A s s u m p t i o n 3.9 We assume that X(G, H, F I N , Nos) is fulldimensional throughout the re 
mainder of Section 3.2.1. 

The following proposition provides sufc ien t conditions under which a facetdefining inequal 
ity for Q¥( is facetdefining for X(, iJ , F I N , N O S ) as well 

Propos i t i on 3 1 0 Let W C V, ^2eesG(w)y(e) ^ ^2ueS(w) &v ='• be te associated cut 

inequality, and aTx > a be facet-defining for QFm (XSG ^W\ ) . Then a > a is facetdefining 

for X(, H, F I N , N O S ) if for all supply edges G E(W) U { V ) 

X ( G , t f , F l N , N o s ) : x{g,l) 0} 0 . 3.7) 

P r o o f et b > ß b facetdefining for X(G, H, F I N , Nos) and suppose 

Tb •= X(, H, F I N , N O S ) : 

X(, H, FIN, N O S ) : =: Ta 

We show that b > ß is a positive multiple of a > a et G E 

9 $ SG(W): We show 6 = for a l H = 1 , . . . ,Tg. W . l . g . g G E(W). Since there exists 

a solution 5 with s ( , 1) 0 the claim follows from x + Y^t f ° r a n 

A = 1 , . . . , g 

9 £ f ( W 0 : Follows from the fact that a > a is facetdefining for Q F O ^ ^ \ and 
* = 0 for all e £ fc(W and i = 1 , . . . , T 

Condition (3.7) is very general. For sufficiently large capacities this condition is satisfied 
for instance, if both subgraphs G[W] and C T [ V W ] are two-edge connected. Furthermore, the 
requirements are weaker, if there exists a bridge e G E\6(W such that there exists a solution 
needing the free capacity of this edge only 
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B a n d inequal i t ie 

(Stoer and Dahl 1994) first introduced the class of band inequalities. These inequalities are 
valid for QF( and under rather weak conditions also facetdefining for Q F ( ) . 

Propos i t i on 3.11 (Stoer and Dahl , 1994) Let i G Rf, F := supp(/i), d G R+, and 
Tx > a be facet-defining for Q . If aT > a is not a non-negative multile of one of 
e ordering constraints en 

> for alle €F, = l,...,T  

for aH e G F 

That is, all non-redundant inequalities for QFIN(A45^) have non-negative coefficients, if these are 
not equivalent to one of the ordering constraints, and the sum of the coefficients of all edges in 
the support of such an inequality is equal to its r i g h t h a n d side 

Defini t ion 3.12 Let \i G R+, F := supp( j ) and YleeF / i 2 / ( e > d be a valid inequality for 
Y(G,H, Nos ) . Then an assignment B : F -5- Z with B(e) { 0 , . . . ,T e - 1} is a band. We 
often write te or tf to denote the reakpoint B(e of a and B Furthermore a and B is valid 
for (/i if ^ e F Cle < 

Figure 3.3 visualizes the id f a band A 
and valid for (/i, d) is simply a selection of 

breakpoints for all supply edges in the support 
of /i such that the sum of the weighted break­
point capacities is less than d, tha t is, does not 
s u f c e to satisfy the underlying valid inequality 
for Y{G,H, Nos ) . The fact that we have to in­
crease the capacity of at least one supply edge 
is the interpretation of a and inequality 3.8). 

J . 

' ( 1 

• • • 

' ( 1 

• • • 

' ( 1 

• • • 
^->ep 

/"•re 2 
O e 2 

1 

• • • 
^->ep 

F i g r e 3.3: A 

L e m m a 3.13 (S toer and Dahl , 1994) Let G M.+ , F := supp( and YleeF /ie?/(e) > d be 
a valid inequality for {G, iJ , N o s ) . If a band B is valid for ( en e band inequality 

J2^t 1) 3.8) 

is valid for (G, H, F I N , N O S ) 

B a d inequalities are similar to cover inequalities for the knapsack problem with generalized 
upper bounds (see (Wolsey 1990)). As proven in (Stoer and Dahl, 1994), band inequalities 
are facet-defining for Q , under conditions similar to those of cover inequalities for the 
knapsack polytope 
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Defini t ion 3.14 Le ß G R+, F := s u p , and + alid B fo <i) is 
tB 

maximal if there does not exist a valid and for ( with Ce
e < for all e and 

GF C GF 

By definition, maximal bands are maximal with respect to the componentwise order of the 
capacities associated with the reakpoints of the and 

Propos i t i on 3.15 Let ß M+, F := supp( i ) and Y^eeFßeV(e > d be a valid inequality for 
Y(G, H, Nos ) . If a band B is valid for ( and B is maximal en te band inequality (3.8) 
is facet-defining for QF( d) 

2-band inequal i t ie 

The idea of band inequalities can be generalized to &-band inequalities Instead of exactly one 
breakpoint, exactly k breakpoints are assigned to each supply edge. The formalism to prove 
that a &-band inequality is facetdefining for QF( is very technical for a general k. W 
decided to consider the case k only 

Defini t ion 3.16 Let ß G M+ := supp(//) and ^eeF ßy{e > e a valid inequality for 
(G,H,Nos). An assignment B F - Z\ with B(e) = (i G { 0 , . . . ,T - l } is a 2-band 

if t < t for all . A and B is valid for ( if eFUq} for all 
ge 

Figu 3.4 visualizes the idea of a 2-
band. A band is simply a selection of ex­
actly two breakpoints for all supply edges 
in the support of ß. It is valid for (ß,d) 
if for each supply edge g in the support of 
ß, the band g := ) U (e 

F\ is valid for { ) . 

Fig 3.4: A 2 

L e m m a 3.17 Let ß G M+, F := supp and ^ ^ y { e ) > be a valid inequality for 
(G,H, Nos) For every ua/id 2-band ( t ) : for ( he 2-bad inequality 

Yx(e +x(e 3.9) 
£F 

is valid for QF ( 

Proof. Let ^ G QPlN(/i,<i) (~1 { 0 , 1 } T ( F ) . If there exists a with x(g,t2
g + ) = then (3.9) 

is satisfied since the ordering constraints impl x ( ] + therwise \fx{ ) = 

j . 
' C J ' C 

• • • 

t2 

^ep t2 

' C 

• • • 

t2 

^ep t2 

t2 

r< e2 
^e2 

• • • 

t2 

^ep t2 

t2 

r< e2 
^e2 

• • • 

r ei 

t2 

r< e2 
^e2 

• • • 

r ei 
A 

r< e2 

• • • 



2 IS ITIE (GHFIN-) 71 

suppose that t2) = 1 for at most one , and {e 1) = 0 for all other G F\ 

hen (G7H, Nos) , for y(e) : = C 4 « ( e . e and y(e) := e F \ F 

As for bands, we now define conditions for ands such that the associated inequality (3.9) 
is facetdefining for Q ? ( ) . 

Defini t ion 3 . et \i G := supp K+. A valid and is maximal if 

(a + E e F \ { for all and 

for all there exists a n / F \ with ßh eF\i 

Defini t ion 3.19 et (i£RfF := s u p p / i ) , d G M , and suppose that -B is a maximal 2-band 
valid for (/i, d). An odd-cycle cover of _ is defined as an odd-cycle nodecover (see page 10 
in the associated directed graph G(B) (V(),AB)). The nodes V(B) are "identical" to 
the edges F , and there is a directed arc (h,g) G A ) between the nodes h and of V( 
whenever and h satisfy condition (b) of Definition 3 . 8 . 

Propos i t i on 3.20 Let fj, G M+, F := supp(y and ^eeF ßey{e) > d be a valid inequality for 
Y(G,H, Nos) Furthermore, let B = (tl,t2) : e G F } be a valid and maximal 2-band for {ß^) 
If there exists an odd-cycle cover of B as defined in 319 en t 2-band inequality (3.9) is 
facetdefining for QF( 

P r o o f et a « b e valid for Q F ( and suppose 

Fa = Q F l { ) : aTx a} 

) : x satisfies (3.9) at equality = : T'. 

et . We distinguish etween four cases 

t <tg: We show ag = 0. Let us define G T by setting ir(/i, T/J := 1 for some h G F\{g 
and ä;(e := for all e G F\ learly ~ and thus the claim follows from 
5 f + £ G.F for f 

i > + 1 We show 0. et us define x(e,tl) := lx(etl + 1 := 0 for all G 
F \ { g } , and x(t2 + 1) := l,x(g,t2 + 2) := 0. We conclude f from condition (a of 

efinition 3 . 9 . Now, the claim follows from x + £ i = T ior k 2, ,T 

< t < t2: We show a* Due to condition ( of Definition 3 . 8 there exists an 
he F such that G for ä ( 7 , ) := 1, ̂ ( +1 ) := x(, tg + 1 ) := l,x(, tg + 2) := 
and x(el) := ~x{e,t ) := 0 for all F \ { . Again, the claim follows from 

E t X ^ for k l + 2, t2 
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t 

t = tg or t g We show = 2a / = a For every the vector if 
defined x(g,Tg) := and x~(e, 1) := 0, for all e - F \ , satisfies ä . Therefore 

/ 9 a n ( " remains to show that ag ag 

Let o i , . . . , <?2A;+i5 A; € N an odd cycle in the graph G(B) of Definition 3.19. f the 
coefficients of the edges g,,l < % , are all equal, the claim follows from the 
existence of an odd-cycle cover 

To show that all these coefficients are equal, notice that for an h satisfying 
condition ( of Definition 3 . , the vector ~x defined by ~x[h := x(g,tfl + := 
x(g,tg + 1) := 'x(g 2) := , and x{e,t\) := l,x{e,t\ + 1) := 0 satisfies x 

Furthermore := x + x h t + ^ F•> according to condition (a of efinition 3. 

and thus a since a 0 
1 2 

n consequence / 4 a / t + = g
l+ , for all k, and in particular 

2i since the cycle is odd 

- g r a p p a r t i t i o n and inequalities 

(Stoer and Dahl 1994) presented inequalities based on fc-graph-partitions (see Definition on 
page 10). Let ( V i . . . , V ) , i = l . . , k , be a partition of the node set and denote b F := 

{VI, • ,Vk) the edges between the shores of the partition. Let G = (V the graph 
obtained by identifying the nodes of each V,i = 1, . That is, each node v V represents 
one of the k node sets in the partition, and an edge e £ £ represents the edges etween pairs 
of nodes in the node sets of the two end-nodes. Similarly, the demand graph H = ( D) is 
defined. Notice that edges etween nodes of the same node set are not represented in and  

respectively. A and := ( e ) : is called a ? ban and is valid if 

E 
e&ä(W) e5w(W) 

for every W 

Lemma 3.21 Let V be a k-artition and B valid V an Then t-graphpartitio 
band inequality 

^2x{et - 1 3. 
£F 

is valid for X(G, H, FIN, NOS) 

Proposition 3.22 Let V be a k-graph-partition and B a valid V — ban Then te k-graph 
artition band inequality (3. is facetdefining for X(G,H, FIN, Nos) 
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G[V is edge-connected for all  

G[Vb] is 2-edgeconnected  

is 2-node-connected 

"5" iF 
There is no valid ban B wit for all e F, and ^ e F eF 

3 .2 .2 D I V E R S I F I C A T I O N 

The investigation of the polyhedron X(G, H, F I N , Div) is based on relaxations defined by cut 
inequalities. Let W C V be a cut with SH{W) ^ 0 and suppose the two shores of the cut are 
shrunken into two nodes, all supply edges with end-nodes in distinct shores are kept as parallel 
edges, and the demand edges with end-nodes in distinct shores are aggregated into a single 
demand with parameters 

:= ^2 d := ^ Sd 
eö(w) eö(w) 

hen, the p r o l e m can e viewed as shown in Figure 3.5. 

© © 
Fi 3.5: ly and demand graph to represent a cut 

The supply graph is ({U,V},SG{W)). The nodes and v represent the shores of the cut 
and the edges are exactly those from the cut (just with redefined end-nodes). Analogously 
the demand graph is ({u,v},uv). This supply and demand graph is given in the remainder 
of this section and, as usual, these two graphs are denoted by G = (V,E) and H = (V,D). 
Furthermore, since the edge set of the demand graph contains only one edge, we omit unnec 
essary indices in the following d is the demand value, 5 is the diversification parameter and 
/ ( e ) , e G E, are the flow variables associated with the supply edges. We are interested in the 
situation, where the diversification parameter of the demand edge induces a diversified flow, 
that is, S < 1. In this case the flow through any of the parallel supply edges between u and v 
is bounded from a o v e and, therefore, it is interesting to investigate the polytope 

3/ f : Ee (e and for a11 e 

XFm ) := c o n v ^ : / ( e < min{c° + ^ {e ) , Sd 
1 (el >••• >{e,T 

We start our i s c s s io th l t o with its i m s i o n a resent afterwa 
valid inequalities 
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L e m a 3 . 3 \E < \/$] = ) = 0. 

Proof. For every supply edge e G E, it holds / ( e ) < Sd. Thus, the maximal flow is  
(e which contradicts the existence of a solution 

L e m m a 3.24 min X F i N ( ^ 

Proof. The vector x with x(e,) = for all , i , T , is in XFi if the 
condition of this lemma is satisfied 

L e m m a 3. et and If 

m m } + ^ mm 
g} 

en 

XFm( conv {0 l } ( ß )
 g + 1) = 1} 

Proof. capacity less than or equal to on edge g implies XFw(1d) = 0 . 

Lemma 3 2 5 can e used in the preprocessing. If there exists a supply edge g G E and a 
breakpoint 0 < tg < Tg with YleeE\q m in{Cj e , Sd} + m i n { C / , Sd} < d then breakpoint tg can 
be removed. However, the cost and capacity coefficients of this supply edge must be redefined 
by setting kg := kg kg

g,c := cg cg, removing reakpoint t , and shifting all 
reakpoints greater than t to the next smaller reakpoint 

L e m m a 3 . 6 Th olytoe Xpj is fulldimensional if and only 

m i n } + J2 min 
\{g} 

for all 

Proof. The necessity follows from Lemma 3 2 5 . To see sufficiency, we o s e r v e that for all  
and t = , Tg the vector defined 

(e ,r) = £ \ ) = + 1) = 

is in X-pj). 

A s s u m p t i o n 3.27 hroughout the remainder of Section 32.2, we assume that -XVIN( is 
fulldimensional 

L e m m a 3.28 For every e ordering constraint is facet 
defining for X F I N ( 
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P r o o every ef th vecto settin 

(e : = 
if e  
else 

Together with the vector of all l 's this yields to |T(.E)| + 1 affinely independent vectors where 
each ordering constraint is satisfied by | | vectors at equality 

L e m a 3 . 9 L > a e f ng f ta-

P r o o Suppose a and > Sd. Let x G 5, d) : a } with 
(such a xists sin t h r w i s e the equality is implied). define 

x 

;hat eve 

this yield th contradiction ( 

n, 

s i r f l e f s a le ) . H 

Next we introduce d ivers i fca t ion-bad inequalities, which are a generalization of band in 
equalities (3.8) from Section 3 . 2 . . The idea is the following Let us assume for each supply 
edge e £ E an installed capacity C * , where 0 < te < Te. Then there are two remarks in order. 
First, even if C , only 5d units can flow over e to satisfy part of the demand d. Second, 
if the sum of min{C*e, S over all supply edges is smaller than the capacity of some supply 
edges must e increased 

Defini t ion 3.30 B = {(e, i e) : e G E, 0 e Te is a diversification-band, if C for all 
E and if the residual band-demand r() := d Y^ 1S greater than zero 

The residual b a d - d e m a n d is e x a l y the 
part of the demand that still has to be sat 

t 
isfied if the capacity Ce

e is installed on each 
supply edge e G E In principle, it is not nec­
essary to insist on a positive residual band-
demand in the definition above, but without 
this condition, we yield trivially satisfied in­
equalities with r i g h t h a n d side zero Further 

tB 

more, the condition Ce
c < Sd in 3.30 is not 

necessary to prove the validity of the asso­
ciated diversification-and inequality. How­
ever, due to Lemma 3.29 this condition is 
necessary to get a facetdefining inequality 

8 A -8 a 

^e2 
• • • 

Figure 6: t ructure of a iversifcatio 

As we already mentioned, the maximum flow through an of the supply edges is Sd. Thus 
it follows immediately that the capacity of at least r{B)/S edges must e strictly greater 

n a f 
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L e m a 3.31 Let be diversicationban en inequality 

r( 

is valid for X F I N ( 

For some diversificationbands, the right-hand side of inequality (3.11 can be further in 
creased No matter which breakpoints are chosen in a diversification-band, an upper bound on 
the flow through a supply edge remains d If the chosen breakpoint capacity C*e is strictly 
greater than zero for some supply edge e G E, then the possible additional flow d e through 
this supply edge is less than Sd. In such a case, additional capacity on \r{B/Sd~\ edges (as 
required by the right-hand side of inequality 1)) might not suffice to satisfy the demand 

n example of this situation is the following 

E x a m p l e 3.32 Suppose that E\ = 10,d = 30,6 0.1, C , C 2, and e = 4, for all 
G E. Then inequality ( for diversification-and B := (e ) : with r(B) 
- 10 10 reads as 

(e,2) 4 

but obviously, the capacity on all supply edges must e increased to ence, the 
stronger inequality 

(e,2) 

is satisfied all solutions 

This observation results in the definition of a minimal residual band-demand cover, which 
is the minimum n u m e r of supply edges needed to satisfy the residual and-demand 

Def in i t i on 3.33 Let B be a diversification-band with residual and-demand r( as in 
e f i n i t i on3 3 . Then the optimal solution value cov(B) of 

min h(e 

^h(e r( 

h(e) {0,1} , for all e E , 

is the minimal residual band-demand cover very solution h (h(e)) is called residual 
and-demand cover for 



2 IS ITIE (GHFIN-) 

With this definition, the strength of the inequalities can e improved 

L e m m a 3.34 Let be a diversification-band Then e dersificationband inequity 

(e + l cov( 2) 

is valid for X F I S, d 

Proof. Let x G X-pm(d) H { 0 , 1 } ( B ) and suppose that ^eeEx(e,te + ) = : k* < cov(B). 
Through each edge with äf(e te + 1 = 0 at most C can be routed, and through each 
edge e G E with x(e 1) = at most can e routed Summing up these values over all 
supply edges yields 

e G B : x ( t e )= B : x ( t e B : x ( t e 

< dr( r( 

where the strict inequality follows from k* cov(). This contradicts - X F I N ^ ) . 

Next, we show that diversification-band inequalities are under rather weak conditions facet 
defining for X-pi]si(6,d). The key notion is a generalization of the maximality condition for 

ands, introduced in Section 3 2 . 1 . A diversification-and B dominates a diversification-band 

if B V and for every 

L e m m a 3.3 et be diversification-bands suc at B dominates B. Then cov( 
cov( 

i Proof. By definition, r( — r(B ) = Yje&E{Ce Ce ) holds and therefore every diversi 

fication cover { 0 1 } ( B ) for is a diversification cover for since 

h(e ))h{e 

^ ( e ^ ( e 

e£ 

r ( r ( r ( ) ) ri 

Suppose that two diversification-bands B, B are given, where B dominates B and cov(_B ) = 
cov(-B). n this case, the diversification-band inequality ( 2 ) for B is the sum of inequality 
(3.12) for B and the appropriate ordering constraints Thus, inequality (3.12) cannot be 
facet-defining if there exists a dominating diversification-band with the same minimal residual 

and-demand cover. This gives rise to the following definition of maximality 
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Defini t ion 3.36 A iversification-bad B is aximl if ld fo ry 
diversification-and B tha t dominates 

This definition of maximality is a generalization of the maximality for ands, since the 
minimal residual band-demand cover is always equal to one for a band valid for d. The following 
lemma states a property of maximal diversification-bands needed to characterize facet-defining 
diversification-band inequalities. For every e with capacity C*e, there exists a solution in 
the face induced the associated inequality 2). 

L e m m a 3.37 Let B be a maximal diversification-band and wit andt 
Then 

XFm(d) : ( e + l) = c o v { ) , + 1) = 2) = 0 
e 

Proof et us define a diversification-and B that dominates setting 

:= + l 

and choose an optimal residual band-demand cover for B Since B is maximal, we know that 
' i i 

cov(B ) < cov(5) which implies (Sd — C (e r(). First, we prove that h () = 
To the contrary suppose that h ) = . Then 

r( r( 

Y, d - ( e 
\{ 

J2 d ( e 
\{g} 

(e 
ee 

r{B) 

ence h () = . In this case, a minimal residual and-demand cover h for is defined 

H(e := £,- e = 
) , else 

bviously YleeE^ (e r( W define a solution in the considered set setting 

(e, Te) = if h (e) = x{g ) = + 2) = and x(e, te) = l,x(e, te + 1) = else 
bviously Xpm( and ^ ( e ) = cov( which proves the lemma 

Using this lemma, we now state a sufficient condition such that a maximal diversification-
and induces a facetdefining inequality 
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Propos i t i on 3.38 Lt B be a maximal diversi div 
band inequality (312) is facetdefining for XFIN ( 

XFm(d) : ( e + l) = cov(), ) = 

for every 

Proof. We proved the validity of ( 2 ) in emma Suppose that a valid inequality 
> a for X p i N ^ exists with 

Fa = ^ F I N ( d) : 

l F i N ( M ) : (e + 1) = cov( = : T. 

Let (e, t) G To show that > a is a positive multiple of ( 2 ) we distinguish etween 
three cases 

+ 1 We show a By hypothesis there exist solutions with 

(e — 1) = ä(e ) = ( e ) = äf(e + 1) = 

and otherwise. Thus it follows a ) = 

t > te + We show \ = 0. If C*_ 1 > <W, this follows from Lemma 3.29. Thus 
we assume < Sd Because of the maximality of and emma 3 3 , there exist 
solutions with 

(e — 1) = (e) = (e) = 3f(e + 1) = 

and ~ otherwise. Again, we conclude a x) = a — 

t = te + 1: We show c o v ( a = By hypothesis, for every two edges there 
exist two solutions 3f with 

( e ) = ( e , T ) = f ( e ) = f ( e , T ) = 

and ä; = x otherwise. To see this, recall that we can exchange e\ and e2 in a solution 
since the largest breakpoint capacity is greater than d. Therefore, we get a = from  

Now, the definition of the diversification-and inequality implies cov( 

If there exists a solution ~ with 'x{g11) = and YleeE ^ ( e ' ê + 1) = cov(ß) for every g G E 
then the equality x~(g, = 1 is not implied, Obviously a necessary condition to get a facet 
defining diversification-band inequality Proposition 3 states that this condition is sufficient 
if the diversification-and is maximal 
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23 IO 

For the survivability model RESERVATION the entire routing of a demand can be affected by 
a failure, but a minimum percentage must be reroutable. For this case, we present valid in­
equalities for X(G, -ff, FIN, RES) ased on the ideas of (Gomory 1969; Chvätal 1973). Suppose 
that for each failure state s G S'\{0} an inequality ajx > as is given, which is valid for the 
particular failure state. (In some failure states, this inequality might 0Tx > ) Then, 
the sum of these inequalities is X^eSUOj aJx — SseSUOj a*> which is by definition valid for 
X{G, iJ, FIN, R E S ) . If these inequalities are well-chosen, the non-zero coefficients are all equal 
or an integer multiple of the smallest non-zero coefficient. this case, it is possible to take 
advantage of the integrality. For example, if there exists a f with X ] e \ { ( a {0 
for all e then the inequality 

E — — > , 
^ 

£S\{ £S\{ 

is valid for X(G, H, F IN, RES) . The classes of strengtened band inequalities and strengtened 
2-band inequalities are the result of such an argument 

t r e n t h e n e d and inequalitie 

The class of strengthened band inequalities has been introduced in (Stoer and Dahl, 994). 
In the way descried ove inequalities of this class can e o ta ined as the sum of and 
inequalities 

Proposition 3.39 Let \i € R such that F := supp(p C S, that is all supply edges in t 
support of i are in te set of oerating states. Suppose tat for all F, e inequality 

^2 V(e 5Z ^Pd =• 
£F\{ D 

is valid for Y(G,H, R E S ) , ere ir is te value of a shortest v-path w.r.t. in g for every 
uv D. Furtermore let B = {(e, te) : G be a band such hat for every g G F, the band 
B9 := (e ) : F\ is valid for ( Then e strengthened band inequality 

^ ( e 

is valid for X(G, H, F IN, ES) 

t r e n t h e n e d 2-band inequalities 

he application of the same idea to the class of 2-band inequalities yields the strengthened 
band inequalities et G and rd e given such that := upp , and 
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s u s e t h t for all the ineqality 

£ y(e rd 
eF\{ 

is valid for Y(G, H, R E S ) . urthermore let (e ,^ F, t\ e a 
2band such that for every # G .F the 2-band := {e,t\,t2

e) : e G F\{g}, 0 < i < Te} 
is valid for (,rd) (according to Definition 6). hen, the sum of the respective and 
inequalities ( 9 ) is 

£ E (e + l ( e + l)) E 
£F £F\{ £F 

- l J 2 ( e + l { e )) 2 

fo 

£ ( e + l ( e )) 4) 

is valid for X(G, iJ, FIN, ES). n e q l i t i e s 4) can e imroved with feren e f i t i o 
of the validity of a 2 a n d 

Definition 3.40 et such that := upp Suppose that for all the 
inequality 

£F\{ 

is a valid inequality for (G, H, ES). Then a and 5 (e ) : 
is valid for ( rr if 

] rd 

eF\{ 

for all and all F \ with 

Proposition 3.41 Let ß,F,rd and the 2-band be valid for (rd as in Definition -40 
Then e strengthened 2-ba inequity 

E M + l M + l)) 
£F 

is valid for X(G, H, F IN, ES) 

5) 
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P r o o Fir ic at for a it 

F\ 

(e == {51 
£ \ F 

is nof feasible, that is, c ^ {G, H, ES) since it violates the inequality YleF\(q\ Vi6) ^ fd-, 

which is by assumption valid for Y(G,H, R E S ) . Let x G X ( G , iJ , F I N , E s ) n { 0 , 1 } ( B ) be given 
and let y be the associated capacity vector, tha t is y(e) = X)t=o ce^( e i ^) f ° r a n e E E. For the 
rest of the proof, we assume that violates ( 1 5 ) and distinguish etween the following two 
cases 

First, suppose that there exists G F with x + 1 = Since violates ( 5 ) , there 
exists at most one supply edge, say , in F with a; (31, + 1) = 1 and ,t^ + 1) 0. In 
this case (G, H, ES) since c for the defined the chosen and an a r i t r a r y 

e 

Now, suppose that + 1) = for all € F. In this case, there exist with 

y(e) for e G g,gi,g and y(e) < C for e F \ . Again, ä (G,tf, ES) 
since for the defined these edges 

3.3 DIVISIBLE BASIC CAPACITIES: X(G, H, BAS, •) 

For the capacity model D I V I S I B L E B A S I C C A P A C I T I E S , we proceed in the same way as in 
Section 3.2. Tha t is, we investigate for each survivability model the projection X(G, H7 B A S , • 
of the respective polyhedron P ( G , i J , BAS, •) to the space of integer capacity variables and 
present classes of valid and facet-defining inequalities for X(G, H, BAS, ). Similar to Section 3 2 
we start with the definition of a relaxation induced b a valid inequality for Y{G, H, ). 

Def in i t i on 3.42 Let ß G K+, := s u p p , a n d V { e e a valid inequality for 
(G, H, )• Then the polyhedron 

Q B ( ) := conv ^ (e, r ) d ^ 
e 

is called the induced nasacrelaxation for VISIBLE B A S I C C A P A C I T I E S 

Again, we assume an implicitly given valid inequality Y^eeE ßeV{e) ^ d for Y(G, H, •), when­
ever we write <5BAS(A<,^)- In what follows, we first prove that some inequality is valid for 
QBAS(A*, d). This implies that the same inequality is valid for X(G, H, B A S ), if we set the coef 
ficients in T{E\F) to zero. Then we at tempt to prove that the inequality is facetdefining for 

S ( * d and try to find conditions such that the inequality is facet-defining for X{G, H, BAS ). 
le 2 shows known classes of valid inequalities for each surv iva i l i ty model 
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el lity class Refe rece 

N o s Strengthened metric inequalities 
Knapsack-partition inequalities 

(Alevras et al 1998 
(Pochet and Wolsey 995) 

IVERSIFICATION Diversification-cut inequalities 
Diversification-partition inequalities 
Lifted diversification-cut inequalities 

Section 3 2 
Section 3 2 
Section 3 2 

ESERVATION t r e g t h e d artition i n l i t i e s ction 3 

ATH E S T O R A T I O N see ESERVATION 

le 2: Classes of n o n - t r i i a l valid ineqa l i t i e s for (G, H, B A S , 

Again, any valid inequality for X(G, H, BAS, N O S ) is valid for th survivability model depen­
dent polyhedra X(G, H, BAS, Div) , X(G, H, BAS, R E S ) , and X(G, H, BAS, P A T H ) , respectively 
and any valid inequality for X(G, H, B A S , R E S ) is valid for X(G, H, B A S , P A T H ) . For the surviv­
ability model P A T H R E S T O R A T I O N , no other classes of inequalities than those for RESERVATION 

are presented. It turned out to be dificult for this capacity model as well, to identify new classes 
reflecting that the normal operating state routings must e preserved in failure situations. I 
this section, the incidence vector xg,t £ { 0 1 } T ^ for ( is defined by x ( e , r ) = 

(e, r ) (E if and onl if e g and t 

t r e t h e n e d m t r i c i n e q u a l i t i e 

Before we consider the polyhedra for a particular survivability model, let us mention a canonical 
way to derive a valid inequality for X(G, H, BAS, through a divideand-round procedure 

P r o p o s i t i o n 3.43 Let [i G M+, F := supp( i ) and J2eeF y(e be valid for (G,H, 
wit G N for all and Furtermore set 

:= Y 
e£F 

:= { F , T T, with 

Then e strengthened metr inequity 

E m i n 

a 

(e,r) 6) 
ET 

is valid for X(G, H, BAS, 

P r o o f nalogous to inequality 6) for the capacity model D I S C R E T E C A P A C I T I E S 

tice th is by definitio the greatest common divisor, if the u e r l i n lid i n e q a l i t y 
y ( e m Proposition 43 is a A:-graph-partition inequality 2.2 
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3 1 s u r v i v i l i t y restrictio 

Next, we present basic properties of the polyhedron X(G,H, BAS, NOS) such as its dimension 
and a characterization of the existence of a solution, followed by the class of napsackpartition 
inequalities. These latter inequalities are based on valid inequalities for (G,H7 Nos). 

Proposition 3.44 et H[Vi\ = (ViDi),i = l,...,k, be the connected comonents of de 
mand graph H (VD) (see age 32 for te definition ofVo) Then 

(G,tf,BAS,Nos) + % G[Vi] is subgraph of an edgeconected subgra of G 
for all 

Proof. Let i G { such that G[Vi] is not subgraph of an edge-connected sugraph of 
G. Then a demand uv G D exists such that no path between its end-nodes u V% C VD 
exists. Thus, it is not possible to satisfy uv, which implies X{G, H, BAS, NOS) = 0. For the 
reverse direction, suppose all G[V G { , }, are sugraph of an edgeconnected sugraph 
of G. Then, it is obvious that X(G, H, BAS, Nos) for (e,r) ^ d , for 

G E and r G T 

Suppl raph @—(w)—(v) 

Demand raph (u) (v) 

Figure 7: G[Vb] not edgeconnected, 
X(G,iI , BAS, Nos) ^ 

Note, i f ( G , H , BAS, Nos) ^ 0, the subgraphs 
G[V$], i ...,k, are not necessarily edge-
connected. As an example consider the sup­
ply and demand graph in Figure 3.7. The de 
mand graph H = (VD,UV) contains a single 
component only, which is identical to H. The 
associated subgraph in G is GfVo] = (VD,0) 

that is, it has an empty set of supply edges and 
is not edgeconnected. owever, obviously it 
holds X(G, H, BAS, Nos) + 0. 

Proposition 3.45 X(G,H, BAS, Nos) ^ 0 ^ dim(X(G,iI, BAS, Nos)) = \ 

Proof Obviously, X{G, H, BAS, Nos) ^ 0, if it is fulldimensional. For the reverse direction, 
let X(G, H, BAS, Nos). Then, i a n d i + x9,T G X{G, H, BAS, Nos), for and r £T 
are \T(E)\ + 1 affinely independent vectors in X(G, H, BAS, Nos). Thus X(G, H, BAS, Nos) is 
fulldimensional that is dim(X(G,H, BAS, Nos)) = | 

Proposition 3.46 Lei fj G K.+ , F := supp(/i and ep ßey{e be a valid 
(G, H, Nos) If aT > a is facetdefining for Q B ( and i 

X(G,H, BAS, NOS) : , r) = ^ 7) 

for all E\F an en a > a is facetdefning for (G, H, BAS, NOS) 
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Proof et b > ß be facetdefining for (G, -ff, BAS, Nos) and suppose that 

:= X(G, H, BAS, NOS) : X(G, i7, BAS, Nos) : 

he claim follows, if bTx > ß is a positive multiple of a a > a. To see this we first consider 
g £ and r G T. In this case, ^ = 0 follows, since x G -T7 «̂ exists and + x £ -^a,«- Thus 
bT

g b(x9,T ~%) = Knowing this the claim easily follows since a > a is facetdefining 
for QB(x d and ¥ 0 for all and 

ondition (3.17) is easily satisfied. For instance suppose that the underlying valid inequality 
for Y(G, H, Nos) is a cut inequality with W C V, F = Sc{W). Then, this condition is satisfied 
if either the two subgraphs G[W] and G^VVF] are two-edge connected, or if these two sugraphs 
are edgeconnected and T\ > 1 

Knapsackpartition inequalitie 

The class of knapsack-partition inequalities is ased on the work of (Pochet and Wolsey 995). 
et 

:= C 

be satisfying the divisibility property (see page 36), that is, • • • c and J G N 
for every = 1 , . . . , n 1. Furthermore, for d G N, let r(d) := max{i : Cj < d < < n} be the 
maximum index such that the associated coefficient is less than or equal to . A partition of 
the index set of M consists of t consecutive ordered locks 

{ , j } { , j 

such that = l, r(d),jt = n, and = j for k 2, For this partition of 
the index set M set := and define 

:= Q 8) 

for k = . , 1. With this notation, we now formulate two important results presented in 
(Pochet and Wolsey 1995). 

Proposition 3.47 The inequality 

t - i * 

/ i = Q p 

is wa/id for conv = : Qi^ 

d_ 
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eorem 3.48 The polyhedron Q(M,d is completel escribed by set of ll inequalities 
9) and te non-negativity constraints for 

With Proposition 47, we are in position to present knapsack-partition inequalities 

Propos i t i on 3.49 Let V i . . , 14 be a k-graphpartition of G set F := SG(VI, . . and := 

T,uve6(vu
 du ForaPartiUon ilU •, j}, • • •, { , jt of the index set of{C\..., CTn 

w.r.t d, let Kt be defined as in ( 8 ) and for i = 1 , . . n, letp(i) be the partition index 
of tecnology at is { ,j Then e knapsck-partition inequlity 

£F =l 

is valid for X(G, H, B A S , N O S ) 

3 .3 .2 D I V E R S I F I C A T I O N 

Similar to Section 3.2.2, the investigation of the polyhedron X(G, H, B A S , IV) is based on a 
relaxation defined by a cut inequality We consider a polyhedron associated with the particular 
supply and demand graph structure shown in Figure 3.5 (page 7 ) . For the capacity model 

VISIBLE ASIC CAPACITIES this polyhedron is defined as follows 

^ B A S ( := conv ( B ) / f st 
(e m m , C ( e , T ) f o r all e 

As shown in the following two lemmata, this polyhedron is non-empty if there are at least 

/S~ supply edges and it is fulldimensional if it is non-empty 

L e m m a 3.50 < \/6] XBAS(5,) = 0. 

P r o o f The maximum flow over the supply edges in to satisfy the demand d is \E\ • Sd 
onsequently, XBAS(5) = 0 if \l/8] since E\ • Sd < \l/5] - d < . Conversely, if 

\E\ / 5 ] , a solution ~x G ^ B A S c a n easil e defined by setting äf(e, r ) := for 
alle and 

L e m m a 3.51 /S~ X B A S ( f) is fulldimensional 

Proof. learly E\ /8 is necessary due to emma . T see sufficiency, we o s e r v e 

that X B A S (, ) = X B A S M ( B ) 

For every e G and T € T, the trivial inequalities x(e, r ) 0 are almost always facet 
defining for X B A S ( < W ) - The only exception to this rule occurs if \E\ = \l/5\ and \T\ = 1 
this case, the r i g h t h a n d side must e appropriately increased such that the face induced 
the trivial inequality is non-empty 
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Propos i t i on 3.52 Let > /ö an Then 

d - l 
1 T) max 2 

E, ing for X B A S /$ 

{e,r) 22) 

is for every e and every facetdefining for XBAs{ 

P r o o f Set k := max{0 ( - l / ] } and let 

2 : Let T = } and set T := {x XBAS(6,d) : ,r) } The validity of ( 2 
is obvious. We define x G -^BAS(<5, d by setting x(,r) := k and x(e,r) := \5d/C 
for every e G E \ } By definition, x G T. he same is obviously true for every 
x~ + xe,T £ X B A s ) 5 G . E \ . Thus, there are | affinely independent solutions 
contained in 

22): Assume that \T\ > 2, choose n G T, and set T := {x £ XB AS (Sd) : z ( s , n ) = 0}. The 
validity of (3.22) is again obvious. Similar to the the previous case we identify sufficiently 
many affinely independent solutions in First, we define - X " B A S ^ by setting 
x ( e , n ) := \5d £\{<?}, X ( S , T ) := 0, and ( e , r ) := 0, e G , r 2 G \{n} 
By definition, x G addition, a e 'T G -X"BAS( O H T for every e G E \ { , and 
x + x G X B A S ( M ) n ^ for every e G and T \ { . Again, there are T( 
affinel independent solutions contained in 

To exclude technical details we make a few (practically r e a s o n a l e assumptions 

s s u m p t i o n 3 . n the remainder of Section 3 2 we assume that 

-^~BAS ( is fulldimensional  

Ce° for all e and 

/S] or 2. 

The following lemma accumulates some results a o u t the structure of coefcients of facet 
defining inequalities for X B A S ^ O -

L e m m a 3.54 Let a > a be facetdefining for XBAs{ and E: 

. O for every 

If en eiter a 0 for all or a for all 

If en for all UT wit 



P O L Y H L I I G I O 

Proof Let T := XBAS( ) : } , G f , and e £ 

Suppose that with aT exists. Then we get the following contradiction 
( x ) = l < a 

2. Suppose that i,T2 G T such that p = 0 and ap > 0 exists. W we can assume 
~ { e , T therwise 5(e, T) = is implied.) Then we get with 

f := ä - X XBAS( d), 

a contradiction since ( ) = 

. The ineqality a£ follows i m i a t e l y fro CT2. To prove the other 
inequality (ap let us assume w x(e,Ti) > (We can assume this, since 
otherwise (e,T) = is implied) Since it holds 

:=x + XBAS), 

and thus the claim follows from i 

The central notion needed to define different classes of valid and facet-defining inequalities 
for XBAS (S, d) is a minimal diversification cover which is ased on the following question: how 
many units of a capacity C are needed to satisfy a demand d, if there are k supply edges and if 
the diversification parameter is 6? The value of the minimal diversification cover is important 
since it often defines coefficients or righthand side of valid and facetdefining inequalities 

Definition 3. et , C with k /8] . A solution to 

k \Sd/C 

E E tz 

* 
SdM/C] tCz 2 

24) 

Sd/ 25) 

is a diversifcation cover tima solution a its lue are called minim diversicatio 
cover and abbreviated öd C k). 

Obviously, every solution ~z for the {0 l}program in Definition 3.55 is completely determined 
through the unique 1 , . . , k with ~ = 1. This justifies the notation ~z = (ti, . . .£&) for 
such a solution. Let G T such that C = C and let z = (i £& a diversification cover 

hen, the associated CT -solution ~ G -X"BAs(<̂  is defined 

{e,r) := T = 

else 
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for every ej G E = { e . . . , e and £ T. Thus the capacity for each supply edge is 
(eT) and the flow vector defined 

(e := m i n i f ( e r ) , W 

for every , satisfies the capacity and flow bound constraints. ence, x G X B A S (<̂  d 
follows if (e (justifying the notion "associated so lu t ion ) which is true since 

6d/C 

(* m i n ( e r ) , ^ W M / < 7 tC 
t \ 

he following lemma is important for the forthcoming proofs 

L e m m a 3 . 6 Let C T. If there is a unique minimal diversification cover (d,Sd,CT, \E\) 
hen this is~z = S d / , . . . , \8d/ erwise, two different minimal diversification cover 

exist for Sd T and every E, ose associated CT-solutions and H satisfy 

~ x — T 

P r o o f First, suppose that the minimal diversification cover J is unique and < \Sd/CT\ for 
some { 1 . . . , k}. Then, choose j G { , k} with i ^ j and ~Zj > (Such a j exists, since 
Sd < d.) It is easy to see that ~ — x^' + X satisfies constraints (3.23) — (3.25) and is thus 
a minimal diversification cover; contradicting the uniqueness. Knowing this, the other claim 
follows easily. Just notice that the same exchange argument can be applied since the supply 
edges are in terchangeale 

lower bound on the value of a minimal diversification cover is obviously d/ since this 
n u m e r of units of is even without diversification restriction needed 

L e m m a 3.57 ( Sd C, d/C] 

P r o o f f we relax in ( 2 the coefcient Sd to Sd/C, we get 

EfW ^ 

Sd mm t h,x "-

5d/ 

th l e m a f o l l o s fro 

k \6d/C k 6d 

e i 

som cases, the value (d, Sd, C, k) can immediately be etermined For instance, if th 
flow ound Sd is an integral multiple of the capacity C and if Sd 
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Lemma 3.58 Sd/C G Sd ) = d/ 

Proof define a minimal diversification cover J (t of value d/ we set 

r ^ / , , . . / < 5 j 
:= (d/8\Sd » = / 5 J 

else , 

for = l,. By definition constraints (.24) and (.25) are satisfied. The same holds for 
2 since 

Sd 
/S\Sd 

/ö\Sd /6\6d 

hus the claim follows from 

k Sd/C] 

E 
k 

i /8\8d 

The following lemmata provid obvious bounds for the minimal diversification cover and a 
formula to recursively calculate its value. These will e used in the validity proofs for some 
classes of inequalities 

Lemma 3.59 8d = 8d ) = /8~ 

Lemma 3 . 6 0 S d SdSd Sd/ 

Lemma 3.61 If Sd, we ave 

d/ 
Sd ) = 

if kSd/  
Sd/ 8d/ 8d 8d/ ) , else 

Proof. The first case is obviou. If we use on each of the k edges the capacity [8d/C C 
then there remains a demand of kC8d/ and the remaining ound on the flow is 
8 d 8 d / \ 

Note, the calculation rule in Lemma 3.61 is satisfed for 8d as well ut in this case the 
equality is not very informative since it reduces to (d, Sd, C, ) = (d, Sd ) . Summarizing the 
previous results the value of a minimal diversification cover satisfies 

8d 
Sd 
C 

26) 

here the left inequality is tight for Sd/C € N , and the right inequality is tight for C > Sd 
For C < Sd (the usual case in our practical application we construct a small example showing 
that the upper bound can e attained 
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E x a m p l e 3.62 L = 5 th ma a r a t e r s le = 2. 
n this case 

d, 8d k) = , 2 , 2 ) = 2 /6~ 8d/ 

t is not p o s s i l e to achieve 6d ) = since the est c o m i n a t i o n of units of 3 is 

+ 1 2 7 ) = 55 < 5 

since the flow through an of the supply edges is ounded from ove by 

After the characterization of the minimal diversification cover we now turn to valid inequal 
ities for the polyhedron X B A S ) -

L e m m a 3. The dierscatiocut inequlity 

m i n ^ ^ T ( e ' T ) 5d 

is valid for X B A S 

27) 

P r o o f et x € - X " B A s ( ^ ) ^ ) n ^ We define a vector ~z = (t\,... ,tk), which satisfies 
for C the constraints ( 2 ) 25) and which further satisfies 

. 5d _ . 
,T) 28) 

for all e this ase th laim follo sin th su f i n a l i t i e .28) for all 
satisfies 

m i n ^ r ^ r ^ - T ) sd 
EEe 

et ~ e defined 

T M ^ ' ^ ' 
öd 

CT 

for € E. By definition, constraints ( 2 4 ) an ( 2 5 ) are satisfed. To see that constraint 
(3.23) is satisfied, let h := Sd/ i < and h := hen ( 2 
reduces to 

S d ^ 

since otherwise X B A S ^ Q - Recall t h maximu ow through a s u l y edge is 8d) 
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E x a m p l e 3.64 nequalities 3.27) are not facetdefining, in general. A counter example is the 
following: Let = 564 75, \E\ = 2, T = {TUT and CTl = 3 48 t is easy to 

verify that (8dCT ) = and thus inequality 27) reads as 

( e , r m i n 6 , ( e , T ) ) 

owever, this inequality is not facetdefining since it is dominated by the valid inequality 

(e,T + 1 ( e , T ) ) 
e£E 

To see the validity of the latter inequality, consider the possible choices of a feasible solution Let 
~ be such a solution with x(g, T2) > 1 for exactly one g G E (the other cases are obvious). Then, 

a flow of Sd = 3 can be routed over g, and the remaining demand of value 64 — 423 = 141 
can be satisfied by installing five units of capacity 30 or one unit of capacity 48 on the other 
supply edge. I both cases the inequality is satisfied 

Suppose that a capacity larger than or equal to 5d is chosen on k < l/6~ supply edges 

he maximum flow over these edges is k Sd and the remaining demand is d := d — kSd < Sd 

This must be satisfied with the edges in Ekl which are all supply edges but those with a 

capacity larger than Sd. Then, any inequality valid for the polyhedron convjx G Z+ 

C(e,r) > dk} is valid for X^Asi^d). Furthermore, every parti t ion of the index set of 

{C Tn r.t. gives rise to knapsack-partition inequality (3.20) which is valid for 

conv ^2e CT(e,r) - This proves the following proposition 

Propos i t i on 3.65 Let < \l/8] l,E C E with \Ek — and set dk := — Sd For a 

partition {l\,..., j i } , . , {h, • ,j of te index set of T 1 , . . . , Cn} w.r.t d, let « Kt 
be defined as in ( 8 ) and for 1 . . , let p ) be the partition index of tecnology n, at 
is { , 3 Then e dierscatiopartitio inequlity 

m i n 7 7 c r (e>T 29) 

is valid for X B A S 

For a particular knapsack-partition inequality it is p o s s i l e to prove that the diversification-

partition inequality is facetdefining for X B A S ( ) -

Propos i t i on 3 . 6 Let k := /<f wit and set := 8d Then 

(e,r) S d ) ) 

is ftdefing f -XBAS 
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Proof he validity of (3.30) follows from Lemma 357 and Lemma 3.63 applied to the supply 
graph Gk = (V, E^) with demand 4 - To prove that it is facetdefining for X B A S ( ) let us 
assume the existence of a valid inequality a > a for XBAS { with 

Fa '= X-BAsi) : 

XBAS(d) : m i n == T. 

Notice that T ^ since the demand can be satisfied by setting x~(g,Ti) = \dk/CT1~\, for a 
single Ef and (e, r) = for e or We distinguish between two cases 

e E\E and n this case we get aj ecause for every 
(aj 5J a = 

and T We define a solution ä ^ B A S by setting 

W/ ^ \ ^ 
,T) := 4 e = , r 

else 

(Such a solution exists since it is ossible to route over th edges E\E an 
over edge ) bviously ~ since 

m i n L (e, r) = min 

Since C . T - ^ , it follow 4 p = - To complete the proof, it remains to show 
that a j = m i n C T / C C T I et f XB As( by defined b 

W:= T min ^ 

x defines a solution since the induced capacity on each supply edge is at least the capacity 
induced Furthermore x since 

mi 
. 
i n  

is imlies 

j min j 
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hus a > a is an integral multiple of which proves the proposition 

The support of inequalities (3.30) is defined on E\ — |l/<f| + 1 supply edges and therefore 
the coefficients of at least one supply edge are zero. The next task is to extend the support 
of these inequalities to some of the "missing" edges. There are two remarks in order. Since 
each inequality (3.30) is facet-defining, the lifting coefficient of any of the variables not in the 
support is zero as shown in the proof of Proposition 3.66. Second, if we extend the inequality 
to an edge (not in the support we have to find positive coefficients for all available technologies 
of the edge, as we know from Lemma 54 Before we formalize the construction of a new valid 
inequality let us consider an example 

E x a m p l e 3 .67 Let \E\ = 3 and , T , T , and 
TZ = 0 Due to Proposition 6 

(e , r ( e , r ( e ,T ) ) 

{ , } 

is facetdefining for X B A S ( ) - Furthermore due to emma 3 6 3 

(e,T ( e , T ( e , T ) ) 

i,e2 

is valid for X^Asi). However, this inequality can improved et us consider the valid 
inequality 

(e,T (e,T ( e , r ( e , r ( e , r ) ) 

,e2 

and lift the v a r i a l e {e,T). The lifting coefficient is defined 

min ( e , r i ) + (e,T ( e ! T ( e , r ( e , r ) ) : 

XBAS),(e,T) = 
= - 4 3 

hus we have proven that 

( e , n ( e , r ( e , r ( e , r ( e , r ( e , r ) ) 

{,e2} 

is valid for X B A S (<̂  d) in this example. In this particular case the last inequality is also facet 
defining. This will follow from Proposition .7 

Following the reasoning of the previous example, we now construct a new inequality which 
is often facetdefining for XBAS(<$I^)- Let k /8~ with E\ k, and 

:= Sd Proposition 6 implies that 

(e , r ) 8d min§T 
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is facet-defining for X B A S ( ^ ^ ) - If we relax the coefficients T1\ to \5d/CT1\ and extend 
the resulting inequality to some v a r i a l e s (~T) of an edge and all technologies 
with CT Sd it remains true that 

T<5d 
,r) m i n ^ 

fo (e , r ) ^ ^ 

is valid for X B A S ( ^ ^ ) - This inequality is of course, not facet-defining and thus we try to lift 
the missing coefficients for r G T with CT öd into this inequality First we note that the 
coefficients for all these variables x(e, r ) are equal, as we know from Lemma 3.54. Thus, it 
suffices to consider the case, where all these v a r i a l e s are set to zero and we have to cover a 
demand of (k 8d et us define 

{k Sd Sd Sd Sd 

By e f i t i o n , Sd/ for every with /S] 

L e m m a 3. (k 8d Sd ) 

kU 

. CT 

i n  
Sd 

(e,r) : XBAS(d), ,r)= 

Proof. Every optimal solution to d—{k — Sd, Sd, CT1 Ek\ + 1) defines a solution satisfyin 
the conditions of the right-hand side. Thus, ' > ' is proven. For the reverse direction we remark 
that every solution of r i g h t h a n d side can easil e transformed into a minimal diversification 
cover for (k Sd Sd and + 1 

Propos i t i on 3.69 For every k G with k /S] , E it an 
E\E the lifted dierscatiocut inequlity 

mm —— ,r) 
Sd 

(e,r) 

(kSdSd 2) 

is valid for X B A S 

P r o o et X-BAs). istinguish etween tw cases 

For T>Sd'T) = ^ n e v a n d i t y follows immediately from emma 368 . 
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In th other case, there exists T ET with C > Sd and x(e, r) 1. Then, it is possible to 
route Sd over e and, in consequence, at most a flow of value kSd over the edges in E\E 

he remaining demand ( od must e routed over the edges in . Thus 

m i n — b , r ) m i n c ^ 7^ N e ' T ) 

SdSd  

(d-{k)Sd,Sd,C\ + l 

by definition of and Proposition 66. 

We observe that ~x G -XBAS(<^) satisfying (.32) at equality exists, since the solution 
associated with a minimal diversification cover for (d — (k — )S, Sd CTl -Ê I + 1) satisfies 
(3.32) at equality Under further assumptions, inequalities ( 2 ) are even facetdefining for 
XBAS{). 

Proposition 3.70 For k = \1/S] , E C E with \Ek = \E\ — k and e G E\Ek, inequality 
2) is facetdefining for X-QAo{S,d), if there exist two diferent optimal solutions for (k 

l)Sd,Sd,C ) and an otimal solution ~z for (SdSdCT wit~\ 
for some . 

Proof Suppose that a > a is a valid inequality for XBAS { with 

:= X B A S ( ) : satisfies ( 2 ) at equality 

{ XBAS (d) : x = } . 

Let G We distinguish etween five cases to show that a is a positive integer multiple 
of ( 2 ) 

}, r bviously a 0, since x9 f° r every ~ T 

r = T\\ Choose e\ ^ e<i E We show d Lemma implies that two 
minimal diversification cover ~ ~ for [d (k Sd Sd CT \E\ + 1) exist such that 
the associated solutions ~~ satisfy xi' + - Therefore it follows  

) = 

g = e,T E r We show a | mm{CT/CT ^ et z b e a minimal diversification 
cover for (d — (k — l)Sd Sd, Cl, \Ek\ + 1) with ~z\_ = is the index of edge e) and let 
H T e the associated CTsolution By definition, ~x(e, T > 0. Furthermore, define 

x := mm{CTCT, Lk} + X £ ^ bviously, satisfies (3.2) at equality 
and x E - X B A S ( ^ ) since m i n T 1 . Thus, the claim follows from 
\ m m C T C T l f ) = 

g E Ek,r E T,CT < Sd: We show CT Since CT < Sd there exists a 
minimal diversification cover ~z for ( — [k — )Sd,Sd,CT, \Ek\ + 1) with ~ = 1 (ig is 
the index of edge for = CT/Cl. For the associated CTl-solution x E T we define 
He : = • As in the previous case T and thus the claim follows 
from x~) 
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g G ,T G T,T > öd = I S d / ^ . hoose a minima iversificaio 

cover ~z for (dköd, öd, C T l , l-Ejtl) with ~\ = 1. Such a solution exists by assumption, 

since it exists for at least one edge in E^. Wi th the associated CT1 -solution ~ and 

:= x öd/l~\x the result follows as in the previous cases 

The assumption of two optimal solutions for the minimal diversification cover [ öd CT 

in Proposition .7 is necessary as we see in the following example 

E x a m p l e 3.71 Let \ T = , T } , = 220,8 = 0.5, CT1 = 30, and CT2 90. In 
this case (dödCTl \E\) = 8 and ~z 4,4 is the minimal diversification cover Due to 

Proposition 3.66 the inequalities x{e\,T\) + 3x(ei,T2 > 4 and x(e2,Ti) + 3x(e2,T > are 
oth facetdefining for X B A S ( : a n d therefore, inequality (3.32), which reads as {e,T 

(e,T (e,T ( e , T > 8, cannot facetdefining for X-BAs{d). 

3 3 R E I O 

Similar to Section 3.2.3, we derive valid inequalities for the polyhedron X(G, H, B A S , R E S ) 
based on the ideas of (Gomory 69; Chvätal, 1973). In this case, these are the classes of 
strengtened metric inequalities 5) and strengtened nasacartition inequalities 6) 

L e m m a 3.72 Suppose that F C S E, for every and is given suc 
at for every F, e inequality 

2_ (e,r) 
£F\{h} 

is valid for X(G, H, BAS, ES) Then e inequality 

4) ^ ( e , r ) 

is valid for (G, H, B A S , ES) 

Proof. Sum up (3.33 for all G F and divide the resulting inequality . The 
validity of ( 4 ) for X(G, H, B A S ES) follows from the integrality of 

t r e t h e n e d m t r i c inequal i t ie 

pplying emma .72 to metric inequalities yields the class of strengthened metric inequalities 
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Proposition 3.7 Let /i G f wit F := supp S, and for every h G F and u D let 
r^v be the value of a shortest uv-path in G {V wit respect to te edge weigts Then 

e strengthened etric inequality 

£F 

(e,r) 5) 

or XG, H, BAS RES) , g is mm ivis CT F,T 
an := m i n £ u „ e r%pd eF\{ F} 

Proof Set := and := mm d / , r T, in emma 72. 

t r e t h e n e d knapsackpartition inequalitie 

Similarly, the class of strengthened knapsack-partition inequalities is the result of applying 
emma 72 to the class of knapsack-partition inequalities ( 2 

Proposition 3.74 Suppose tat a k-graphartition is given for some k suc 
at := SG(V et 

:= min ^ pd ^ 
eS £F\{h} 

For a artition {l\,.., j . . {It,.., jt of the index set of C T , . . . , CTn} w.r.t d, let 
K\ be defined as in ( 8 ) and for i , . . . n let p be th partition index of tecnol 
ogy at is { , j Then t trengthened knapsck-partiti inequlity 

C 

GF 

is valid for X(G, H, BAS, ES) 

6) 

Proof. The partition of the index set of {CT1,..., C} w.r.t d is independent from the 
supply edges. Hence for every h the knapsack-partition inequality 

i)-

Y, m i n 7 ^ 7 (e,n 
F\f h} 

is valid for X(G, H, BAS ES). The result now follows from emma .72 for := Y a n d 

:= m i n 1 C ^ O 
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lgorith an omutational 
sults 

The last two chapters focused on theoretical aspects of network design problems setting up 
appropriate mathematical models and describing the convex hull of the set of feasible solutions 
This chapter concentrates on algorithmic aspects. There are several theoretical results contained 
in this chapter, ut practically computing cost-minimal solutions is the driving force now. The 
general approach integrates a cutting plane algorithm with heuristic algorithms, and therefore 
a quality guarantee for the solutions computed with the heuristic algorithms can be provided 
since the cutting plane algorithm yields a lower bound for the cost of an optimal solution. 

The structure of this chapter is as follows. In this introductory part , we describe the prac 
tical problem instances used to evaluate the algorithms. Afterwards, we present an overview 
of the general approach to solve the survivable capacitated network design problems described 
in Chapter 2, followed by a description of algorithmic aspects of five important subproblems 
preprocessing, initialization of the linear programming relaxation, feasibility of a continuous ca­
pacity vector, separation algorithms for the different classes of valid inequalities and eventually 
heuristic algorithms to compute feasible solutions. 

The performance of the algorithms to solve the bove mentioned subproblems depends on 
various parameter selections. As a common testing platform for the evaluation of these pa­
rameter dependencies, nine network design problem instances are used, all based on real-world 
instances supplied by E-Plus. The structure of the original instances is maintained, but the 
problem instances are slightly perturbed such that disclosure agreements are not violated Fur 
thermore, values such as lower bounds and solution cost are scaled such that it is imposs i l e to 
estimate current network costs from the results presented 

The nine problem instances fall into three different classes. Three problem instances, ml 
m2 and m3, are medium-sized, three problem instances, p i , p2 and p3, contain many parallel 
supply edges, and three problem instances, 11,12 and 13, are considered largesized. The problem 
sizes in terms of nodes, supply edges demand edges, integer capacity v a r i a l e s and continuous 
path variables are shown in Table 4.1. The supply graphs range from 15 to 3 nodes and 46 to  

edges. The number of demand edges ranges from 48 to 35. The total n u m e r of integer 

99 
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capacity variables and continuous path variable d e p n d s on the capacity and survivability 
models. Different types of communication links are used between pairs of nodes. These represent 
multiple leased line providers and microwave connections. The capacity choices reflect the 
available capacities of the P D H (see page 24). For the capacity model D I S C R E T E C A P A C I T I E S 

the capacities 30, 60, 480 and 920 are used for supply edges corresponding to leased 
lines and the capacities 60, 120, 240, 480 are used for supply edges corresponding to microwave 
links Similarly, for the capacity model DIVISIBLE BASIC CAPACITIES, the basic capacities 

480 192 are used for supply edges corresponding to leased lines, and the capacities 60, 
1 2 , and 480 are used for supply edges corresponding to microwave links. With this selection, 
the number of capacity variables is, of course, larger for D I S C R E T E C A P A C I T I E S , but , these 
are {0, l}-variables instead of general integer variables for D I V I S I B L E B A S I C C A P A C I T I E S . The 
number of path variables is computed for unrestricted length of valid paths. For the normal 
operating state, the number of pa th variables ranges between 3.9 million and more than 200 
billion(!). Summing up over all operating states, tha t is, over the normal operating state 
all supply node failures, and all supply edge failures, the number of path variables ranges 

etween 153 million and more than 20000 billion(!). (We computed these values with an upper 
bound of 10 billion paths for the normal operating state, and roughly estimated the correct 
number based on the n u m e r of demands. Hence, not for all instances the exact n u m e r s 
of pa th variables is k n o w . ) The survivability model dependent parameters are 0.5 and 0.75 
for DIVERSIFICATION, and .5 and 1 ESERVATION and PATH ESTORATION, leading to the 
p r o l e m instances ld50, m l d 7 , pld50, pld75, lld50, Ud75 for DIVERSIFICATION, and mlr50 
mlrlO plr50, plrlOO, llr50, llrlOO for RESERVATION and PATH RESTORATION. (In the latter set 
of problem instances, the interpretation of the failure parameter depends on the survivability 
model.) As already mentioned, the set of operating states comprises the normal operating 
state all supply node failures and all supply edge failures 

Pro l em 
\ variales l variales 

P ro l em 
FIN AS E S / A T H 

22 898 2 8 2 

77 24 9 77 84 48 

48 44 7 575 72 459 69 

48 64 

22 67 577 

24 97 67 29 

79 64 782 82 567 

48 

82 69 

le : T le in 

The u s d linear o g r m i n g l r i C P L E X 6.5.3, a d a o m p i o l e e r e n t s ar 
performed on S U N - l t r a s ( 5 9 z S W U l t r a S P A R C I ) with or 2 4 B main 
memory 
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Overview 

Suppose that a fixed capacity model and a survivability model are given. From an abstract 
point of view, solving the associated survivable capacitated network design p r o l e m s reduces 
to solving a mixed-integer programming p r o l e m of the form 

min{A f > integer / > (41) 

where x represents the integer capacity variables, / the continuous pa th variables, C and D 
are appropriate matrices, and kx is the linear cost function. In Table 4 . , we have seen that even 
for moderately sized supply and demand graphs the number of variables in the associated mixed-
integer program is huge1 . The reason is the number of paths which is potentially exponential in 
the input size of the supply graph. As a consequence, it is impossible to follow the typical linear 
programming approach of relaxing the integrality constraints, and solving and strengthening 
the linear relaxation. Instead, we follow an approach which integrates decomposition techniques 
with cutting plane techniques and linear programming ased heuristic algorithms 

The objective function coefficients of all pa th v a r i a l e s are zero Therefore (41) is equivalent 
to the optimization p r o l e m s 

min{k integer : Df > Cx f > ^ 0 (42 

mm{ integer, A : Df > f > ^ (4 

where Ax > a} is a relaxation of the polyhedron X(G,H, -, •), tha t is, X,H, •, •) C 
{ : x > a}. (Benders, 1960; Benders, 1962) suggested to decompose problem (4.3) and to 
solve a te rna te ly the r eaxed integer program rain{kx : x integer, Ax > a} and the decision 
problem / : Df > d — Cx, f > 0} ^ 0. The important point of Benders approach is the 
following. Whenever an optimal sou t ion of the relaxed integer program is given then either 
op t imai ty can e proven or a so-called Benders cut can be derived which is violated by this 
optimal solution. Thus, one yields a new and stronger relaxed integer program when adding the 
Benders cut. Our approach is similar. In contrast to Benders decomposition, however we do 
not solve integer programs. Instead, we seek for a good linear approximation of the polyhedron 
{ integer, Ax > a}. That is, we compute a lower bound to the optimal solution value of the 
relaxed integer program. Notice that a lower bound to the relaxed integer program is a lower 
bound to the optimal solution value of the considered network design problem 

In the context of network design, the above mentioned decision problem is the following 
given a solution s o f a linear programming relaxation of X(G, H,-,-), it is necessary to decide 
whether a feasible routing exists. Tha t is, given a continuous) capacit vector y obtained from  

with (2.4 or (2.7) the following feasibiit p r o b e m must be soved 

Def in i t i on 4 .1 (Feas ib i l i ty p r o b l e m ) 
Given the survivabiity model RESERVATION or P A T R E S T O R A T I O N and a (continuous) capac­
it vector y ) , e G E: Decide whether y € Y(G, H, Div) C\Y{G, H, R E S ) or y G Y(G, H, Div) n 
Y(G,H, P A T H ) , respectively, that is, decide whether there exist routings for all demands in all 
operating states sa t i s f ing the pa r t i cua r routing and survivabilit constraints 
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Initialize 
LP-relaxation 

1 ' 

Solve 
LP-relaxation 

Augment 
LP-relaxation 

Separation 
algorithms 

Solve 
LP-relaxation 

Augment 
LP-relaxation 

Separation 
algorithms 

1 ' 

iL 
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i , 

Separation 
algorithms 

s^inequalities^^ Separation 
algorithms 

s^inequalities^^ 

NO 

' N O 

Run 
heuristics 

Run 
heuristics 

Solve feasibility 
problem 

i g r e 1 ow chart of the a o r i t h m . 

Our algorithmic approach, sketched in the flow chart of Figure 4.1, utilizes this way of 
decomposing the network dimensioning problem as follows. Starting point is an initia relaxation 
{x : A$x > ao} of X(G, H, •, •), for which an optimal solution x can be identified by means of 
inear programming. In the next step, the following separation problem for the optimal solution 

~x of the current relaxation, and some of the casses of valid inequait ies for the pa r t i cua r 
polytope X(G, H, •, • is solved. 

Def in i t i on 4.2 ( S e p a r a t i o n p r o b l e m ) 
Let C be a class of valid inequalities for the polytope X C  

for all (c, 7 G C} and € W Decide whether T~ 
) G C with Tx < 

that is X C {x £ W1 : cTx  
for all ( G C or identif 

If one or several separation algorithms identify violated inequalities then these are added 
to the current relaxation. This way, a larger and stronger relaxation is obtained. As most 
important property, the new relaxation does not contain x and thus the optimal solution value 
of the new relaxation provides an improved lower bound for the optimal solution value of the 
considered problem instance. These two steps of solving the linear relaxation and the separation 
problem are iterated, until no further v ioa ted inequality can be identified. Then, a capacit 
vector y is calculated according to either (24) or ( 2 ) and in the next step the feasibiit 
problem for y is solved. 

Often, if the capacity vector y is not feasibl a v a i d metric inequai ty for the respective 
polyhedron Y(G,H,-) can be derived. In fact for D I V E R S I I C A T I O N and RESERVATION a 
violated metric inequality can always be derived, and for P A T H R E S T O R A T I O N this is under 
further restrictions possible. Given a metric inequality that is violated by y, it is a w a y 
possible to identify a valid inequality for the respective polyhedron X(G, H7 •, •) that is violated 
b x; see Sections 3 2 and 3 3 ummarizing the agor i thm to solve the feasibiit problem for 

The memoy o s w o s d s n t e n sffice to s e t e a d m i r p a m s 
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a capacity vector y serves as a separation algorithm for 'x as well. Again, identified v ioa ted 
inequalities are added to the current reaxa t ion and the new stronger relaxation is resolved. 
There are two possibilities if the capacity vector y turns out to be feasible. If x is integral, the 
solution is optimal. In this case, feasibe routings can be computed with the algorithm to solve 
the feasibility problem for the capacity vector y. f ~ is not integral heuristic agor i thms are 
applied to find "reasonable" integra sout ions 

The cutting plane phase provides a lower bound ZLP = kx, where ~x is an optimal solution 
of the final linear programming relaxation; and the best heuristic sou t ion provides an upper 
bound ZIP to the unknown optimal solution value. Thus, a quality guarantee for the best 
solution found by the algorithm can be provided which is an upper bound on the gap between 
the values of an optima sout ion and the best solution found. This q u a i t guarantee is given 

the quantit 

4.2 reprocessing 

The purpose of preprocessing is twofold. Given a particular problem instance, the first target 
is to decide whether there exists a feasible solution, or not. If infeasibility of the problem can 
be proven the overall gorithm terminates. The second target is to reduce the p r o b e m size 

4 . 2 . 1 D e t e c t i n g i n f e a s i b i l i t y 

The initial step of the preprocessing consists of soving the feasibility problem from Definition 4 1 
for a particular capacity vector. For the capacity model D I S C R E T E C A P A C I T I E S , this capacit 
vector consists of the largest capacities Cje for all supply edges e G E. For the capacity mode 
DIVISIBLE B A S I C C A P A C I T I E S , this capacity vector consists of sufficiently large capacities ( eg 
the smallest valid capacity larger than the sum over all demand values). This task is difficult 
however since a subproblem of the feasibility problem is already A r 'P-complete. As we will see in 
Section 4.4, the algorithm to solve the feasibiit problem so solves the following uncapacitated 
network design p robems 

Defini t ion 4.3 ( U n c a p a c i t a t e d network des ign problems) 
Let the topology of a supply graph G = (V, E), and a demand graph H = (V, D) together with 
the demand edge dependent survivability parameters be given. Then the following decision 
problems are uncapacitated network design problems 

o there exist |"1/<5M„1 nodedisjoint paths of length at most £uv1 

oes there exist a uv—path in Gs for all s € S'\ with uv € Ds and puv > 0? 

Definition 4.3 asks for the existence of sufficiently many node-disjoint paths in all operating 
states for all demands Obviously the existence of a sou t ion for this uncapacitated network 
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design problem is a necessary c o d i t i o n for the existence of a f e i b l e solution for the s i v a l e 
capacitated network design p robems presented in Chapter 2. As shown in (Itai et al., 1 9 8 ) 
the first problem in Definition 4.3 is A/P-complete nstead of an exact method, we employ 

lgorithms from the software library developed by (Bley, 1997), which contains a set of heuristic 
lgorithms to solve various "nodedisjoint length-restricted pa th p robems" 

An obvious algorithm to solve the second problem of Definition 4.3 is the following: For each 
failure state s G S\{0} and each demand uv G Ds with puv > 0, test whether u and v b e o n g to 
the same component of the supply graph Gs. This can obviously be done in polynomial time 
but it is rather time consuming. The following sufficient criteria for the existence of a uv—path 
in G for all s G S { 0 with uv G D and puv > 0 h e p improving the computation time 

is two-node connected.  

For all uv G there exist two n o d e d i s o i n t paths in between u and v 

= $ and is two-edge connected. 

= $ and for all uv £ there exist two edgedisjoint paths in between u and v 

Given the existence of a solution for the uncapacitated network design problems from efi­
nition 4.3, the algorithms described in Section 4 are used to solve the feasibiity problem for 
the above mentioned vector of large capacities. As we will see in Section 4.4, the feasibilit 
algorithms for the survivability models D I V E R S I F I C A T I O N and RESERVATION are exact, tha t is 
this capacit vector is feasible if these algorithms do not prove the infeasibility. For P A T H R E ­

STORATION, however, the agor i thm is not exact that is in some cases the ago r i t hm terminates 
without proof of feasibilit or infeasibiit 

A s s u m p t i o n 4.4 Throughout the rest of this chapter, we assume the existence of a feasib 
sou t ion for the considered survivable capacitated network design problem instances 

4 . 2 . 2 P r o b l e m r e d u c t i o n 

There are various ways to reduce the problem size. By means of decomposition, it might be 
possible to obtain a series of smaller subproblems which are easier to solve, and the parameters 
of the supply and demand edges might allow to reduce the set of operating states to remove 
some of the valid capacities or to decide the routing of a demand beforehand. 

It turned out, however, tha t none of the following reduction techniques applies in our test 
problem instances Obviously the E-Plus engineers had alread done a good preprocessing 
themseves 

D e c o m p o s i t i o n 

uppose that the supply graph of the problem instance has the structure illustrated in 
Figure 4 2 that is, there exists an articulation node w V. Hence there exist Vi, V2 C 
with V]_\ V and V { and 8G{V SG(V SG 
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ig mpoition w . t . an a i c i o n n 

If all demand edges in 8H{V\ e nt p h r i c e p mpo 
into two subprobems 

( V ( V ) ) {VUD{V{V{)) 
(V(V)) (V,D(V(V)) 

Each supply edge appears in exactly one subproblem, the parameters of each supply edge 
are exactly those from the original problem, and the parameters of a demand are those 
of the associated demand in the origina probem. 

uppose that the supply graph of the problem instance has the structure illustrated in 
Figure 43 , that is the node set V of the supply graph G = (V, E) can be partitioned into 
subsets Vi,V2 C V with V\ n V2 = 0 and V\ V2 such that two articulation nodes 
v\ £ Vi,v2 £ V2 exist which satisfy 5G{VI) = 5G{V2 6G{) f SG(). The only supply 
edges in the cut 5G{V) are those between the nodes and 

igure 3: Decomposition w.rt . a multibridge 

Again, if all demand edges in <5#(Vi) are not path-length restricted, the probem decom­
poses into three subprobems with the following supply and demand graphs 

( V ( V ) ) (V,D(V M V V ) ) ) 
( ^ ( ^ ) ) (V7D(V H(V\S))) 

G3 SG) nöG)) , H3 V2{V)) 
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Each supply edge appears in exactly one of the t r e e subproblems, and the parameters o 
each supply edge are exactly those of the original problem. The three demand graphs are 
a little bit more complicated since every demand that crosses the cut appears in two or 
three of the subproblems. For each demand edge of one of the three subproblems there 
is a unique associated demand edge in the original problem and each demand inherits its 
parameters from this associated demand. 

f some demand edges in 8H{VI) are path-length restricted, the problem still decomposes 
if (w.l.o.g.) Vi {v\}. In this case, the decomposition is defined as above with the small 
change that the length parameter for the demand edges UV2 € SH(V2)\SH{V2) has to be 
set to £UVl — 1, where £UVl is the length parameter of the origina demand edge between 

and u which has been propagated to node V 

P a r a m e t e r d e p e n d e n t reduct ions 

If the demand graph H = (V, D) is a star that is, if there is a node v £ which is 
end-node of all demand edges then Dv = 0 and therefore we can set 

S\ 

Practically, this situation comes up in the p a n n i n g of BSS-networks. Recall from Chapter 1 
that all BSCs within a BSSregion are ogically connected to a single MSC. 

If the respective diversification and failure parameters satisfy 1 — Suv > puv for all demand 
edges uv € then it suffices to consider the normal operating state. In this case 

since any feasibe routing for the norma operating state is feasibe for all fa iure states 

f the capacit model is DISCRETE C A P A C I T I E S it is poss ibe to remove breakpoints 
£ l . . . , T l ] if either 

C\ < Cl+ and K\ Kl
e
+ or C*_ max{ J ^ 8uvduv ^ puvduv 

uv£ uv£D 

tha t is, either if there is a larger capacity at smaller cost (modulo equality) or if there 
is a smaller capacity that is already larger than the maximum possible flow through any 
supply edge. If the capacity model is D I V I S I B L E B A S I C A P A C I T I E S a similar argument 
applies. It is possible to remove technology r £ T, if m • KT

e < i f j , for some r € T and 
some 1 < • CT < CT, where m must be arger than the maximum possib flow 

through an supply edge 

If there are exactly 1/8UV G N supply edges between u and t>, the routing of all demands 
uv £ D with length restriction £uv = 1 and puv = 0 can be decided immediately. More 
generally, if there is only a unique routing for a demand, then these routings can by fixed 
and the demand edge can be removed from the demand graph. Notice that it is necessar 
to appropriately update the free capacit of all supply edges used in the routing 
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4. near p r o g r m m n g r e l a t i o 

The running time of the cutting plane algorithm depends on the selection and the initialization 
of the linear programming relaxation. In this section, we present our choice of the linear pro­
gramming relaxation. The mathematical models presented in Chapter 2 contain an exponentia 
number of variables. Hence, it is not practica to consider the canonic linear programming re­
laxation which comprises all constraints and all variables with r eaxed integrai t constraints 
This would simply be too large. 

The relaxed variables x(e,t), e £ E, t £ { 1 , . . . , T e } , together with the ordering constraints 
are part of the used linear programming relaxation for the capacity model DISCRETE CAPACI 
TIES and similarly the relaxed variables for the capacity mode DIVISIBLE B A S I C C A P A C I T I E S 

are x(e,r), e £ E, r £T. Using only these variables, the initial relaxation yields a very weak 
lower bound, since the 0-vector is feasible for both capacity models. Therefore, additional vari 
ables and constraints are needed to obtain a relaxation with a stronger initial lower bound. The 
following relaxation is a compromise between the size in terms of variables and constraints, and 
the quality of the initial lower bound. It is based on the formulation for capacitated network 
design without survivability requirements presented in Section 3 page 4 

Let Q C be an aggregation of the demands (each demand uv £ D is assigned to one of its 
end-nodes in Q), and let fk(ij) and fk(ji) be edge-flow variables for all aggregated demands 
k £ Q and all supply edges e = ij £ E. The reaxa t ion is enarged b these variables and the 
constraints are 

£ Q, i V, (4 

e = ij£E ( 45 

£ Q ij £E (46 

wh 

Cg + YtL f° r ISCRETE CAPACITIES , 

Cg +J for IVISIBLE BASIC CAPACITIES 

The node-set Q can be obtained in various w a s . As one and only requirement at least 
one of the two end-nodes of each demand uv £ D must be contained in Q, that is, Q must 
define a node-cover of the demand graph. Obviously, a smaller node-cover leads to a smaller 
number of constraints and coefficients in the linear programming relaxation. However, since the 
problem of finding a minimal cardinality nodecover is an A/'P-compete optimization problem 
see (Garey and Johnson, 1979), a s i m p e greed heuristic is e m p y e d which ut i izes the degree 
of the nodes in the demand graph. 

Notice that the variables y ( ) , e £ E, are only auxi ia ry variables needed for notationa 
convenience. These are not included in the relaxation. As we mentioned before, a feasible 
sou t ion of this reaxa t ion provides capacities which are feasible for the normal operating state 

ev jev 

( i j U i 

v D, 7t 
se 
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without path-length rest r ic ions and diversifcation c o t r a i n t s . Hence, Theorem 2.5 implie 
that these capacities satisfy all metric inequalities and all cut inequait ies defined on the supply 
and demand graph of the normal operating state 

4. Feasibility of a apacity v t o r 

n this section we discuss the most time-consuming subproblem: solving the feasibility problem 
(see page 101) for a capacity vector y(e), e G E, that is, deciding whether there exist routings 
for all demands in all operating states that satisfy the routing and survivability constraints 
Depending on the survivabii t model we c o u d distinguish between the feasibiit p robems 
for 

y G Y ( G , t f , D i v y£Y(G,H,REs y G Y(G,H,PATH 

but we consider two combinations only. One for the norma operating state and the other 
for the failure states. We distinguish between the two versions 

y G Y ( G , t f , D i v ) n ( G , t f , R E s and y G Y{G,H, Div) n (G,H, P A T H 

of the feasibiity p robem. The particular capacity model is not important for the feasibility 
problems. Only the absolute values of the capacities of the supply edges are important . How­
ever, these capacities are implicitly defined in dependence of the capacity model. For D I S C R E T E 

CAPACITIES with variables x(e, t), e G E, t G { 1 , . . . , Te}, or IVISIBLE BASIC CAPACITIES with 
variabes äf( e G E T, the capacit vector is given b 

17 £ ä f or 
t= 

respectively. We formulate the feasibility p robems as linear optimization problems in terms 
of path variables (see Section 2.3), and therefore it is in principle possible to solve these prob­
lems with any commercial software package for linear programming. This approach, however 
has a major drawback: the linear programs are extremely large since the number of pa th vari 
ables might be exponential in the size of the input. To solve these linear programs despite the 
number of variables, we adapt the c o u m n generation approach for continuous multicommodity-
flow problems described in (Minoux, 1981). In the following sections we present the formula­
tions of the feasibility problems, the c o u m n generation procedure implementation detai and 
results of computationa experiments 

4 . 4 . 1 u l a t i o n o f t h e f e a s i b i l i t y p r o b l e m s 

We formuate both versions of the feasibility problem as linear optimization problems with 
an auxiliary variable a. This variable measures the minimum amount of additional capacit 
needed, on at least one of the supply edges, to make the capacit vector y feasibe. The minima 
v a u e ä of this aux i ia r variable will satisf 

y feasible <^= ä 0 . 
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I V E R S A T I O N and R E I O N 

In this case, the decision p r o b e m y € Y(G, H, Div) Y(G, H, R E S ) can be formuated as the 
following linear program 

E E (p) y ( e ) , s e S e e E 
uv£Ds eTgv: 

E oV(P) duv uv£D, 
eVuv 

E V(P) Puvduv £ S\ uv£ 
e-puv 

E ov(p) Suvduv uv£D, 

Sv(P) Puvduv uv£D, 0™, | 

(P) e 5 ™ e 

(4 

(4 

(49) 

(410) 

(411) 

(41 

Constraints (4.7) differ from those in the mathematical model in Chapter 2. Here, the 
capacity on a supply edge e € E is the sum of the constant value y(e) and the variable a. All 
other constraints are identical to those in the mathematical model The linear program above 
has the block diagonal form illustrated in Figure 4 4 

D 

Figure 4 4 tructure of the feasibilit P ( I V E R S I F I I O N an R E S E R V A I O N ) 

Each block corresponds to one operating state, tha t is ch block in Figure 4.4 represents 
the subset of constraints for a particular operating state. Obviously, this feasibility problem 
decomposes with respect to the operating states and it suffices to solve the smaller feasibility 
problems for all operating states. The capacit y is feasible if and onl if it is feasible for all 
operating states 



4. A G O R I T H M S AND C M P A T I O N A L R E 

I V E R S A T I O N and P A R E T O R A O N 

In this case, the decision problem y E Y(G, H, Div Y(G, H, P A T H ) can be formulated as the 
following linear program: 

E E ftv(P) <a + y(e) etE 
uv£D eV%v:P 

T ( P E f"v(p)) < a + y(e), s G S\{0} e G E 

E v(P) =duv vGD 
Gvr 

V(P V(P)) > °uvduv € S\{0}, UV G D 

uvGD £VXv™v 

err 
v(P) <Suvduv v£Dw&V\{u,} 

413) 

4 

4 5 ) 

416) 

4 7 ) 

4 8 ) 

%v 

v(P) < öuvduv v£D P G VSV, \ \ = 1 
4.19) 

™(P) > 0 , u ?v 420) 

Figure 4.5 illustrates that the linear program above has again sort of a block diagonal form. 
However, this linear program is more complicated to solve since the failure states are linked 
with the normal operating state and consequently, it is not sufficient to solve linear programs 
individually for all operating states 

D 
Figure 4 5 : t ructure of the feasibility P ( I V E R S I F I C A T I O N an P A T H R E S T O R A T I O N ) 

The first "row" in Figure 4.5 consists of the constraints (4.14) and (4.16). Each of the fol 
lowing "rows" consists of the constraints (4.15) and (4.17), which connect the normal operating 
state with the particular failure state Notice that this linear program again decomposes into 
a sequence of maller linear programs if the normal operating state routing is fixed. 

4.4.2 olving the feasibility problem 

The number of path variables is, ven for moderately sized network design p r b l e m s quite large 
Thus it is not practical to solve the linear programs from scratch that is to enumerate the 
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variables for all valid paths in all operating states for all demands, and to execute a commercial 
software package like C P L E X . A S we already noted we adapt the column generation approach 
described in (Minoux 1 9 1 ) 

Suppose that the primal feasibility problem for a subset of the variables (valid paths) has 
been solved and ä is the optimal objective function value for this restricted problem. Obviously 
the true optimal value of a (involving all pa th variables) is at most as large as the one obtained 
with the restricted number of variables, and thus y is feasible if ä < 0. Otherwise, if ä > 0, it 
might be necessary to identify missing pa th variables in order to find the optimal value of a. 

For this purpose, all constraints of the complete dual program (including all pa th variables) 
must implicitly be evaluated for the dual variables of the optimal solution of the restricted primal 
problem. Optimality of cü > 0 and hence infeasibility of y is proven, if all dual constraints are 
satisfied. In the other case, if the dual variables do not define a dual feasible solution, a is 
not necessarily optimal for the primal problem including all pa th variables If violated dual 
constraints can be identified, the associated primal path variables are added to the restricted 
primal problem and this enlarged linear program is resolved. The whole procedure is iterated 
until either cü < 0, or no violated dual constraint can be identified. For the latter case there 
are two alternatives. Either the method to identify such dual constraints is exact and the 
infeasibility of y is proven or the method is heuristic and it cannot be decided whether y is 
feasible 

IVERSIFICATION and RESERVATION 

As we observed, the feasibility problem for this combination of survivability models can be 
decomposed and it suffices to solve the feasibility problem for each operating state individually 
Hence, let s G S be a fixed operating state, and let \is

ei for all supply edges e e £ s , and TT^V, for 
all demand edges uv £ Ds, be the dual variables associated with constraints (4.7) and (48) or 
(49) respectively. The dual program for a particular failure state € S'MO} reads as follows: 

max ^2 (e)ß ^ Puv^uvKv ( 4 2 1 ) 
£EB uv£DB 

<v uvGDS7 C (422) 

J > (423) 
£Es 

e£E (424 

Constraints (4.22) are important . For those paths which are in the restricted primal prob­
lem, the corresponding dual constraints are satisfied. But how about the missing paths? All 
constraints (422) for a particular demand uv € D can be rewritten as 

r„„ 
J 
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Thus it suffices to calculate the shortest uvath P in . I 

^ ^ 

then the associated dual constraint (4.22) is violated and in this case, the column for the 
path variable f^(P) must be added to the restricted primal formulation. 

For the normal operating state, all paths must satisfy the path-length restriction, and the 
primal problem contains additionally the diversification constraints (4.10) and (4.11). Let 7^, 
for all demands uv G D and all nodes w £ V\{u,v}, and 7 ^ , for all demands uv G D and all 
supply edges e € SG{U) n SG{V), be the dual variables associated with constraints (410) and 
(411) respectively. Then the dual objective reads as 

max ^(e)^/^2duvTTuv/^6uvduv J ^ llv /^ luv 
uveD uveD eöc()nÖG() £V\{u} 

Furthermore, for every demand uv G and QV with e G {U) (V), the 
constraints (422) change to 

7«« > ^uv (425) 

and for all other P G V$ to 

^ >T«» ( 4 26) 

Similar arguments as above sho how to identify violated dual constraints and therefore 
missing path variables. In the normal operating state, for every demand uv £ D a length-
restricted shortest pa th with respect to the following suppl edge weights must be calculated: 

luv, U = VV=V OTU = VV = V , , 
v 1 v 2 e l g e ^Zl> 
v,v uv e l ö t 

for all e = v\v2 G E. 

R e m a r k 4.5 / / the capacity vector y is infeasible for a failure state s S'\{0}, in which case 
the optimal value of the primal feasibility problem is strictly positive the inequality 

^2 PuvduvKv ^2 (e)ß 
uveDs Ee 

is satisfied. Thus, the dual objective function induces a metric inequality (3.2) that is violated 
by the capacity vector y. In other words the algorithm to solve the feasibility problem for y is 
also a separation alorithm for metric inequaltis. The same is true for the normal operating 
state 
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V E R S A T I O N a n P A R E T O R A O N 

As before, suppose that dual variables / e £ E u,s £ S\{0}e £ E, -KUV1UV £ D, KUV,S G 
5 , \{0};nu G .Ds, 7^,,-uv £ D,w £ V\{u,v}, and j^vuv £ D,e £ SQ(U) f] 5G{V), are associated 
with constraints (4.14), (4.15), (4.16), (4.17), ( 4 . 1 ) , and (4.19), respectively. Furthermore 
suppose that juv(P) denotes the sum of those dual variables associated with inner nodes and 
edges in the path P £ VQV between the end-nodes o demand uv D. That is juv(P) = 
Yswapluv i f \ > !> a n d luv{P) = luV P { } for e G 8G{u) 8G(v). Then the dual 
linear program is the following: 

max Y, d»vKuv - J2 V(e)ß £ öuvd™ J2 7«„ £ 7™ 
uv£D £E uv£D €Sa(u)6o(v) £V\{u,v} J 

£ £ ^uvduvKv £ £ y^ß 
£S\{uvGDa £ S \ { £ E a 

G 5\{0}, uv £D G VT 

428) 

veD G Vtfv 429) 

430) 

e G E , 4.31) 

s G 5\{0} e G P 432) 

The dua o n s t r i n t s (4.28), (4.2 and (430) are associated with the primal variables f™v(P) 
QV(P) and a, respectively. Again, the primal solution is optimal if the dual variables define 

a dual feasible solution. That is, to prove optimality of the primal solution it is necessary to 
implicitly evaluate the dual constraints for all pa th variables. By linear programming duality, 
the non-negativity constraints (4.31) and (4.32), as well as the ' a ' constraint (430) are satisfied. 
Therefore, it remains to solve the "separation problem for constraints ( 4 2 ) and (429) 

The separation problem for constraints ( 4 . 2 ) is exactly solvable. For each failure state 
s £ S\{0} and each demand uv £ Ds, it reduces to computing a shortest uv-path in G w.r.t 
non-negative edge weights \i\. If the dual constraint (4.28) for the shortest uu-path P* £ Vf 
is violated, the variable ffv(P*) must be added to the primal linear program. Since this is an 
exact method, we can assume in the following that all constraints (428) are satisfied. 

The separation problem for the constraints (429) is decomposable into a sequence of sep­
aration problems: one problem for each demand uv £ D However, w are not aware o an 
e fc ien t method that solves these problems exactly 

<v ° 

(Puv £ K« ' 0 
£S\is<? J £S\{s<£ 

£ S \ { G E , GE 

0 
0 
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Propos i t i on 4.6 Let uv G D, and assign a weight we to each supply edge e G E according to 
(427). Suppose thai P* G QV is a shortest path-length restricted uv-path in G .r.t these 
ede weights If iruv < ^en ^ e dual constraints (429) ar satisfed for tis demand 
uv 

Proof. Let P be a path-length restricted w - p a t h in . The associated dual constraint (429) 
is satisfied because o 

TUv E 7uv{P) E (Kv 

P* £S\{s$  

Proposition 4.6 provides a sufficient criterion to state that for a demand edge uv G there is 
no violated constraint (4.29). Next, we provide a sufficient criterion to state violation which is 
based on a shortest pa th with respect to the following supply edge weights. For every demand 
uv G D and every supply edge e = v\V2 S E, let the edge weight be defined by 

UKIIUD , =U, V2+V , 
Ml 7$), =V,V1?U, 
S«, V1=U,V = V, 

uv uv uv uv) ' c l c ' 

r o p o s i i o n 4.7 Let uv G and P G QV be a shortest uv-pat in G rt e edge weigh  
e G E efied above If 

nuv E ^ 
£S\{uv£Ds 

then te dual constraint (429) for demand edge uv G and pat P G QV is violated 

roof Follows immediatel from 

^uv ^uv 

E 
es\{ 

E 7«»(i') 
eS\{ 

s 
uv 

E 7uv(P) <v E (̂ «f " ^ 
eS\{ eS\{uveD 

E 7̂ (p) E ^ E 
€ S ' \ { s ^ € S ' \ { s ^ e 5 \ { M D e D 

s 

UV 

s 
uv 
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4 . 4 . 3 p l e m e n t a t i o n i s s u e s 

There are several subproblems to discuss for an efficient implementation of an algorithm to test 
the feasibility of a capacity vector The important issues for the column generation are the 
initialization of the restricted problem, the algorithm to solve the shortest-path problem with 
path-length restrictions, and the column generation strategy. Furthermore we discuss in this 
section the order of the operating states in which the feasibility problems for the individual 
operating states are solved. The computational experiments revealed that solving these linear 
programs with column generation belongs to the most time-consuming parts of the overall 
algorithm. Thus, there is need for alternative criteria to decide the feasibility of a capacity 
vector in a single operating state which are faster to evaluate than the linear programs We 
present some o these criteria at the end o this section. 

a l i z i o of t h e a m 

The respective linear programs used to solve the feasibility problems are initialized with a small 
subset of the pa th variables. For the running time of the column generation algorithm, it is 
crucial to find the the right balance between the number of added pa th variables and the mber 

f iteration steps needed to generate the missing columns We aim at two targets. 

The initial pa th variables must guarantee the existence o a solution for the initial re 
stricted problem. 

The number o unnecessary" reoptimizations due to missing pa th variables in the re 
stricted problem formulation should be small 

It is difficult to accomplish the first target for the normal operating state, since an HV 
complete subproblem must be solved. Recall, the problem of finding the maximum number o 
path-length restricted nodedisjoint paths between two nodes is A r 'P-complete (see ( t a i et al 
1982)). For each demand uv € D, the initial set of paths is computed with Algorithm 1, and 
different strategies to accomplish the second target are evaluated in ection 4 4 4 

A o r i t h m 1 I N I T I A A T H V A R I A B L E S 

R e q i r e : uv D 

max{r^" | [>«H, l 1} 
if uv > \V\ - 1 t h e n 

nodedisjoint path algorithm (see ( u u r b a l l e 974)) 
e if tuv < 4 t h e n 

exact algorithm (see (Itai et al 2)) 
se 
heuristic framework (see ( l e y 997)) 
d if 
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or a t h p r o b t h a t h - t h r i 

One auxiliary problem the column generation procedure is the shortest pa th problem with 
path-length restrictions The problem is defined as follows. Given a graph G = (V, E), a node 
u £ V weights j e £ M_|_ and lengths Ae £ M_|_ for each edge e £ E, find the minimum-weight 
path of length at most £uv from to every other node v £ V. The problem of deciding whether 
a pa th of weight at most M and length at most L exists between two specified nodes is HV 
complete. H o e v e r it is polynomially solvable if all weights or all lengths are equal; see (Garey 
and Johnson 979) n our case, A for all e £ E, and thus the problem is polynomiall 

solvable 

o r i t h m 2 P A T H L N G R E S T R I C T E D S H O E S A T 

U ,R {v £ : (v) £ E 
for al 

v = 
if e = (u v) £ E  
otherwise  

for 
h i le R / 0 d o 
find v £ R and 1 < i < £ such that Vw <E R 

(i) di(v) w) and 
(ii) di(v) = (w) = > 

U =U-{v},R=R{v 
for a l neighbors £ U 

for all j with i 1 < j £ d 
(w) = mm{dw)d(v) 

d for  
d((w) < t h 

=R 
d if  
for 

Algorithm 2 shows the modification of the wellknown algorithm presente in (Dijkstra 
1959), used to solve the shortest pa th problem with path-length restrictions. The target is a 
shortest pa th subtree such that each node in the tree can be reached from « o n a path with at 
most £ := min{^<j„ : uv £ D} supply edges In every iteration of the algorithm, a shortest pa th 
that satisfies the path-length restriction is determined for exactly one node. This node will be 
called labeled. The algorithm terminates if all nodes are labeled that can be reached from on 
a path with at most £ edges. 

In more detail, for every v £ V, let di(v) be the shortest distance from uto v using at most 
edges in the current iteration of the algorithm. Denote by U the set of all unlabeled nodes and 
define R := {v £ U : B < £ with dk(v) < o} C U. Tha t is, R is the set of unlabeled nodes that 
can be reached from u using only labeled intermediate nodes. Initially, set U := V {u}. In 
each iteration o the algorithm, the node with the smallest distance from is labeled breaking 
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ties by s l ec t ing the one c o r p o n d i n g to the path with the ewest edges. At he end of ach 
iteration, the distance labels di(v) of its unlabeled neighbors are updated. At the end of the 
algorithm, a length-restricted shortest paths from u t o » £ V\{ can be easily determined by 
keeping track o the predecessors for each v G and each I 

io eg 

Suppose that the feasibility problem for a particular operating state must be solved. As we noted 
in Section 4.4.2, the primal feasibility problem has not yet been solved to proven optimality 
whenever a violated dual constraint has been identified, I this case, it is necessary to add 
columns corresponding to path variables, and to reoptimize the primal problem. The number 
of necessary reoptimizations depends obviously on the way the new columns are generated. The 
question arises, how many missing path variables should be added for how many demands in 
a single iteration. No computational experiments for this runtime parameter are presented in 
Section 4.4.4, we only note that it turned out to be advantageous to solve the shortest pa th 
problem (with path-length restrictions in the normal operating state) for all surviving demands 
in the particular operating state and to add all identified pa th variables corresponding to dual 
constraints which are violated by the computed shortest paths 

der of o p 

As described in Section 4.4.2 the algorithm to solve the feasibility problem for a capacit vector 
is based on solving feasibilit (sub-)problems for individual operating states. The number of 
solved subproblems depends on the sequence in which the operating states are considered. 
I more detail, the subproblems of all operating states must be solved if a capacity vector 
is feasible. However, if the capacity vector is not feasible, that is, if it is not feasible for 
some operating states, the algorithm terminates as soon as the first infeasible operating state 
has been determined. Hence, efficient implementations of this algorithm should manipulate the 
sequence of considered operating states such that infeasibility is determined as soon as possible 
For this purpose, the (adaptive) sequences described in the next paragraph are compared in 
Section 4 4 4 . 

Suppose that a capacity vector y and a list o operating states S are given. The operating 
states are increasingly ordered with respect to weights w(s) G Q+, s G S, which represent a 
measure of the feasibility of the particular operating state. To achieve the described effect that 
infeasible operating states are more likely to be considered early, these weights are frequently 
updated. The weights are initialized by setting w(s) : 0, for all s £ S. As initial sequence 
the normal operating state is first, followed by all nodes £ 5 and all supply edges e G S. The 
initial order of the nodes and edges is arbitrary. 

AR et w( = w( , i is infeasible. 
et w( = w( i is feasible and w( = w( i is infeasible 

DEF et w(s) = w() 

ARO is called adaptive reuse order since the weight of an infeasible operating state is not 
changed implying that this operating state will be reused in the next application o the algo-
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r i thm to solv the feasibility problem. In contrast, ASO is called adaptive sequential order since 
the weights of infeasible operating states are increased as well, implying that operating states 
with equal weight (such as all operating states after the initialization of the weights) are con­
sidered in sequence. Only if there are no other operating states with equal weight, an infeasible 
operating state will be reused in the next application of the algorithm to solve the feasibility 
problem. Finally, the default order DEF maintains the initial weights Since the weights are 
never changed, the order does not change as well 

ve c r i r i d e d e s i b t y of t h ty ctor 

Solving the linear programs with column generation is the most t imeconsuming part o th 
overall algorithm since it is frequently necessary to test the feasibility f a capacity vector and 
since the respective linear programs are considerably large. Thus, whenever possible other 
criteria should be applied to determine feasibility or infeasibility of a capacity vector in all or 
some operating states n the following we present some simple criteria that can be applied for 
this decision. 

Suppose that a feasible capacity vector c(e), e E, is given. A capacity vector y is 
feasible if y(e) > c(e) for all e £ E . Furthermore, y is infeasible, if c is a minimal feasible 
capacity vector with respect to the componentwise order and if a supply edge g E E with 
y{g) < c(g) and y(e) = c(e) for all e E E\{g} exists t is worth mentioning that these 
trivial tests speed up the improvement heuristics 

Suppose that y is feasible for the normal operating state, and let / be a corresponding 
feasible routing for this operating state. Furthermore for e E E V and E , set 

fov\e) = er%v ov\P) > (e) 2UveD ove) > 

o U » e T o M ( f ) > / M U ^ D O " » -

That is /o( e) a n d fo(w) a r e the flow through e E E and w E V, respectively, while f™'{e) 
and fov(w) are the respective flow values for a particular demand uv E D. For e E E and 
w E the respective values / ( e ) a n d fw) a r e easily calculated from (47) or ( 4 1 ) by 

(e) : (e) - slack(e) and 2 • fw) ^ (e) - ^ du 

here slack(e) is the slack o constraint (47) or (4 for supply edge e Furthermore 

oV(w) öuvduv ~ s l a c k ( v w ) 

can be obtained from ( 4 8 ) for all demands uv E D with Suv < 1 and all w E V\{v} 
where s\ack(uv,w) is the slack of constraint (4.18). For ^ ( e ) , e £ E there is no fast 
computation. Now, y is feasible for an operating state e E E fl S 

(e) - Puv)duv u (433) 

and feasible for an operating state 

H - A«« du« (43 
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4.4.4 utational tes t s 

We report in this section on computational experiments with different parameter selections for 
the algorithms solving the feasibility problem. As main performance measures 

the accumulated time to solve the feasibility problems 

the mber o linear programs solved and 

the size o the linear programs in terms o columns and coefcients 

are used. The tests are performed for the problem instances , 11, and p with survivability 
parameters 8 = 0.5 and 5 = 0.75 for D I V E R S I F I C A T O N and p = 0.5 and p = 1.0 for RESERVATION 

and P A T H R E S O R A T The respective problem names associated with these parameters are 
ld50 l d 5 , Ud50, Ud75, pld50, and pld75, for DIVERSIICAT and mlr50, mlrlOO, llr50 

llrlOO, plr50, and plrlOO for RESERVATION and PATH ESTORATION It is not necessary to 
consider different problem instances for the two capacity models, since the feasibility problem 
is independent from the particular model. Only absolute capacity values are important and not 
how a particular capacit has been obtained. 

It is d i f c u l t to choose a good testing environment, since the performance o the algorithms 
to solve the feasibility problem depends on the applications using this problem as a subprob-
lem. In particular, the sequence o capacity vectors tested for feasibilit matters, and this 
sequence depends on other algorithms applied, such as separation algorithms, or starting and 
improvement heuristics. Further difficulties arise since the employed linear programs are also 
used within separation algorithms for metric inequalities. (We already indicated this relation 
in Remark 4.5 and we will further discuss this in Section 4.5.) To provide an environment 
that only evaluates the influence of different run-time parameter selections for the algorithms 
solving the feasibility problem, the following tests are performed on a fixed complete sequence 
of algorithms. (This sequence comprises the lower bound calculation, and a fixed subset of all 
starting and improvement heuristics.) Furthermore, a special implementation has been used 
which ensures that the linear programs used for solving the feasibility problem are independent 
from other algorithms such as separation algorithms for metric inequalities 

The computational results are presented in Table 4.2 which has the following format. Col 
umn 1 (NAME) gives the name of the problem instance which also encodes the survivability 
parameters Columns 2 and 3 provide the selection f run-time parameters. In more detail 
column 2 ( O R D ) gives the applied strategy in which the operating states are ordered. Th 
considered alternatives are the adaptive reuse ordering ARO, the adaptive sequential ordering 
ASO, and the default ordering DEF. Column 3 (INI) encodes the initial set of path variables 
for the related linear programs. This initial set always contains a set of nodedisjoint length-
restricted paths ensuring a feasible routing using only these paths if sufficiently large capacities 
are installed on the supply edges NDB encodes that such a minimal set of paths is used, while 
NDBTWO and NDBTHREE encode that all variables corresponding to paths up to length 2 and 
3, respectively, are added to the initial linear programs. Five to seven columns with statistics 
are following for each of the three survivability models. From left to right these are a subset 
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the a c u m u l a t e d time to solve the feasibility problems ( T I M E ) , the number of linear programs 
solved ( L P ) , the accumulated number o operating states decided by one of the alternative cri 
teria described in the previous section (ALT) , the number o rows in the final linear programs 
(ROWS), the number of columns in the final linear programs (OLS) and the number of non-zero 
coefficients in the final linear programs ( C O E F F S ) . For RESERVATION there are two times the 
columns OLS and OEFFS. The reason is that two independent linear programs are needed for 
RESERVATION. One for the normal operating state (including path-length restrictions) and the 
other for the failure states 

The main observation is the following: The running-times strongl depend on the initial 
ization of the linear programs used to solve the feasibility problems In most cases, the times 
for NDB are smaller than those for DBTWO, which are themselves much smaller than those 
of NDBTHREE. In fact, the times for N D B T H E E are orders of magnitudes worse than those o 
the other two alternatives. Considering the p instances we observe that the times for NDB 
are between 20 and 50 times smaller than those for NDBTHREE, and even worse, for P A T H R E ­

STORATION it is impossible to compute a single solution within 48 hours since the intermediate 
linear programs are extremely difficult to solve Summarizing, the column generation algorithm 
is powerful enough to compute the missing columns It pays to start with a small set of column 
and to let the algorithm decide which ones to add. This makes the difference between finding 
a solution or not 

Closely related to the previous observations, the final linear programs are surprisingly small 
For NDB, the best initialization strategy the number of path variables is app ro ima te ly 10 
for I V S I F I C A T I approximately 10000 for RESERVATION, and between 2 0 0 0 and 250000 
for P A T H R E S R A T I N , according to Table 4 there are between 4 million and 5 billion path 
variables for D I V E R S I F I C A T , and between 10 billion and 2 0 0 billion path variables for 
the survivability models R E S E R V A T O N and P A T H R E S T O R A T . In other words in some cases 
fewer than 10~6 percent o the pa th variables are needed 

In general for fixed initialization of the linear programs, the running times are almost inde 
pendent from the order in which the operating states are considered. The number f successful 
decisions due to alternative criteria only matters for the survivability RESERVATION. For this 
case, we can observe from Table 4.2 that these are independent from both the initialization o 
the linear programs and the order of operating states. Alternative criteria apply for the 1 and 
ml instances for approximately 1/4 of the decisions, and for app ro ima te ly 1/2 — 2/3 of the 
decisions for the pi instances. Finally, we observe that the number solved linear programs is 
almost independent from the considered parameters 

In the following, the operating states are solved in the order defined by ARO and the linear 
programs are initialized with DB 
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e p i o n lgori thms 

In Chapter 3, we presented polyhedra associated with different models for survivable capacitated 
network design problems. For each polyhedron, we listed known and developed new classes 
of valid or even facetdefining inequalities. n principle, all these inequalities are useful to 
strengthen the linear programming relaxation but it is necessary to devise for each individual 
class of inequalities an algorithm which solves the separation problem (see Definition 42 ) 
this section we describe our separation algorithms 

The classes o valid inequalities for the polyhedra X(G, H, F I N , •) and X(G, H, B A S , •) are 
based on valid inequalities for the corresponding polyhedra Y(G, H7 •). In Sections 3 2 and 3 3 
we derived valid inequalities for the knapsack-relaxations induced by a valid inequality fiy > d 
for Y(G,H,-) (see Definitions 3.5 and 342) . Let C([d) be such a class o valid inequalities 
and define the class C to be the union of all classes C((i7d) of all inequalities (iy > d tha t 
are valid for Y(,H,-). n principle, we seek for a separation algorithm for such a class C 
which simultanously finds an inequality (iy > d and a violated inequality in C((i7d). H o v e r 
even for classes C(/J,d) the separation problems are difficult and in fact, some o them are 
J\fVcomplete Therefore we decided to use the approach sketched in Algorithm 3 

A l g o r i t h m 3 B S I C S E P A R A T I O N 

Require: pool of valid inequalities for Y(G, H, • 
Require: separation algorithms for some classes C([i,d) 

hile separation algorithms are sufficiently successful do 
for all inequalities \iy > d in the pool and al separation algorithms d 

apply separation algorithm for C(,d) 
update and solve the relaxation 

end for 
update the pool (add and delete) 
d ile 

The b i c v e r i o n of he s e p a r t i o n algorithm maintains pool of inequalities valid fo 
Y(G,H, •). These are inequalities which have proven to be useful at run-time n addition to 
the pool, a set of separation algorithms for some of the classes C( / , d) is given. The main loop 
of the algorithm iterates in some order (to be made precise) over the inequalities in the pool 
and these separation algorithms. The current separation algorithm is applied to the current 
class C(fj1,d). dentified inequalities are added to the linear programming relaxation, if these 
are violated by the current optimal solution. After each iteration of the main loop, the pool o 
valid inequalities for Y(G,H,-) is updated. This means, inequalities for which the separation 
algorithms were too often unsuccessful are removed, and new inequalities for the pool are 
generated with a separation algorithm for metric inequalities. The algorithm terminates, 
the objective function value of the linear programming relaxation increased less than a certain 
threshold during the last iteration of the main loop 

Apparently, the effciency of Algorithm 3 is influenced by the selection of run-time param­
eters such as the applied separation algorithms, the number of violated inequalities added in 
each iteration, the way the pool is updated etc. We discuss the influence of these parameters in 
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Section 45.4, where we describe our comptational experiments. Beforehand we present in Sec­
tions 4 5 1 , 4.5.2 and 4 5 3 the separation algorithms for individual classes of valid inequalities 
for Y(, H, •) , H, FIN, •) and , H, B S , •), respectively 

4.5.1 Inequalities for Y(G,H, •) 

We present separation algorithms for metric inequalities (.22) (including its variations (3.1) 
(3.2) and (3.3)), and for the subclass o g r a p h p a r t i t i o n inequalities ( 2 3 ) . Suppose that a 
capacity vector (e), e £ E is given 

etric iequal 

In Section 4.4.2, we described an algorithm to solve the feasibility problem for a capacity vector 
y, and we already mentioned in Remark 4.5 that this algorithm serves as a separation algorithm 
for metric inequalities as well. The metric inequalities (2.22) for the normal operating state, 
and (3.2) for a failure state s £ S\{0}, are special cases of the metric inequalities (3.1). Thus 
we first describe the separation algorithm for the latter class, and then the one for metric 
inequalities (3.3). 

Suppose that the algorithm to test feasibility of y for the normal operating state including 
the diversification constraints terminates with objective function value ä < 0. In this case 
y is feasible, and no metric inequality ( ) is violated due to Theorem 2. In the other 
case, if cü > 0, the dual variables //e,e £ E, nuv,uv £ D, *y™v,uv £ D,w £ V\{v}, and 
j^v,uv £ D,e £ 5G{U) fl 8G(V) which are associated with the constraints (47) for s = 0 (48) 
(410 and (4 respectivel satisfy 

S()n6a() V\{} E 

This follows immediately from linear programming duality (see Theorem 0.1). According to 
Theorem , the dual variables define a violated metric inequality (31), if all dual variables 
TTUV, uv £ D, are the values of shortest icu-paths in G with at most £ edges and with respect 
to the supply edge weights 

U = 

+ T"2 else 
^ 

for all e = v\V2 £ E his follow since all dual constraints (425) and (426) are satisfied 
by the dual variables 

The separation algorithm for metric inequalities (3.3) is based on similar arguments. The 
capacity vector y is feasible for PATH RESTORATION if the respective algorithm to test feasibil 
ity of terminates with objective function value ä < 0. In this case no metric inequality ( 3 ) 
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is violate The oth case, a > 0 is ore complicated. Let fie,e G E, [is
e,s G S\{0},e € Es 

TTUV,UV G D, 7r*„,s G S l\{0},«u G be the optimal dual variables associated with (414) 
(4.15), (4.16), and (4.17), respectively. (We ignore possible diversification constraints here.) I 
all dual constraints (428) and (429) are satisfied then H is optimal and the dual objective 
function satisfies 

D E £ S \ { } D s £S Es 

Thus, the dual objective function induces a violated metric inequality (3.3), since the dual 
constraints (4.28) and (4.29) are exactly the conditions of Proposition 3.4. (Again, we ignore 
possible diversification constraints.) The main difficulty is the verification that all dual con­
straints (4.29) are satisfied. Proposition 4.6 provides a sufficient condition for the dual variables 
to satisfy constraints (4.29). Hence, if these conditions are satisfied the separation algorithm 
terminates with a violated metric inequality (33) . Otherwise the algorithm fails to solve this 
separation problem 

fc-graphpartition ineqal i t i es 

The class of fc-graph-partition inequalities (2.23) is the most important subclass of metric 
inequalities. In particular, if these are cut inequalities, tha t is, if k = 2. In principle, there 
is no need for another separation algorithm for these subclasses since an exact one for metric 
inequalities is known. There are, however, at least two arguments why one should be willing to 
apply a different separation algorithm. First, a metric inequality is nasty in the sense that its 
support is often almost the entire set of supply edges, and even worse, metric inequalities often 
have "wild" coefficients which can cause numerical instabilities. Second the above separation 
algorithms are time-consuming in practice since the feasibility problem for a capacity vector 
must be solved subproblem 

We employ a heuristic separation algorithm (see Algorithm 4) for fc-graph-partition inequal 
ities suggested by Dan Bienstock. The algorithm is based on two arguments. First, if the 
number of nodes in the graph is small, e.g. less than 10, then the time to enumerate all k 
graph-partitions for some fixed small k is small as well and therefore, it is practically possible 
to apply complete enumeration as separation algorithm. Second, it is likely that supply edges 
e G E with large capacities y(e) are not in the support of violated fe-graph-partition inequali 
ties. Thus, it is reasonable to shrink supply edges with large capacities and to enumerate all 

g raphpar t i t ions afterwards 

Typically, we use the values k = 2 3 and p 1 . As supply edge weights w(e) G E 
we consider the following alternatives 

w(e) (e) or 10(e) (e) ^ d 

D:Puv 

where Puv is a shortest u-path with respect to geographical distances for demand edge 
v G . In the first step of lgorithm the supply edges are sorted in decreasing order with 
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lgor i thm 4 A ; - A R I O N S E P I O 

Require: p, k G N, k >2,p>k 

sort edges in decreasing order with respect to weights w(e) G E 
set J F , £ (V 

hile \V\ > p do 
shrink endnodes of the nexi edge with largest weight  

hile 
for all /c-graph-partitions V . , V\~ in G do 

evaluate the corresponding g raphpar t i t ion inequality (223) in G  
for 

respect to these weights. f the weights of wo d i f f e n t s u p l y e d g s are equal, the geographica 
distance between the end-nodes is the tie-breaker. Then, the end-nodes of supply edges with 
the largest weights are identified, until the number of nodes in the resulting multi-graph (each 
node represents a set of nodes and each edge the set of edges between the two sets of nodes) 
is equal to p. Eventually, all ft-graph-partitions in the final multi-graph are enumerated and 
for each fc-graph-partition the corresponding graphpar t i t ion inequality (223) is evaluated in 
the original supply and demand graph 

4 . 5 . 2 I n e q u a l i t i e s for X(G, H, F I N , •) 

In this section we present separation algorithms for classes of valid inequalities for the poly 
hedra X(G7 H7 F I N , •). In particular, for the classes of strengthened-metric inequalities (36) 
band inequalities (38) , 2-band inequalities (39) , 3graph-partition band inequalities (310) 
diversification-band inequalities (3.12), strengthened band inequalities (3.13), and strengthened 
2-band inequalities (315) Throughout this section (fractional) vector x(et € Et 
l T is given 

t r e g t h e n e d etri i n e q a l i t i e s 

The separation algorithm for strengthened metric inequalities (3.6) is completely determined 
by the separation algorithms for metric and fc-graphpartition inequalities presented in the 
previous section. The first step a t tempts to separate y from Y(G, H, Nos ) , where y(e) := 
^ { = 0 4 a ; ( e ) * ) ) e e -^ with a separation algorithm presented in the previous section. However 
with a small change of the output: the separation algorithm always returns a metric inequality 
If there is no violated metric inequality, the algorithm yields one with minimal s l a c . Eventuall 
the associated strengthened metric inequality is evaluated for 

and i n e q a l i t i e s 

the separation algorithm for band inequalities (38) , we assume a given valid inequality 
Z^eeFA«el/(e) ^ d for Y(G, H, Nos) with /ie > 0 for all supply edges e G F C E. This means 
the separation algorithm identifies only those band inequalities which are valid for a particular 
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induced knapsack-relaxatio (see page 65). The separation problem for band inequalities ca 
be formulated as a multiple-choice knapsack problem. A formulation as an integer program 
with strict inequalities is the following 

mm E E ^e *)$ 
eF t= 

Te 

E E eC^ (435) 
eF t= 

Te 

E 1, (436) 
t= 

{ 0 1 } e F t 

This optimization problem is TVP-complete (see (Garey and Johnson, 1979)). Given a solu 

tion e G F, t = 1 , . . . , Te, there is a unique breakpoint for each supply edge e G F with 

1 and therefore we can define the corresponding band 

B{ß) { ( e i e ^ 

The band inequality (38) for band B(ß) is violated if and only if 

E E ^ * ^ E^e + 1)-

Due to Proposition 3.15, maximal band inequalities are facet-defining for the induced knap 

sackrelaxation Thus the question arises whether the band B(ß) corresponding to an optimal 

solution ße, F7 t = 1 . . ,T e , is maximal. In general, this is not true. For instance, if a 

supply edge g G F with ~x(g, tg) = x(g, tg + l) exists such that the weighted incremental capacity 

ßgCg9 is smaller than the slack in inequality (4.35), that is, if figCg3 + YeF eC then 

the band B (ß) corresponding to the optimal solution ß is not maximal. 

We apply dynamic programming (see (Bellman and Dreyfus, 1962)) to solve the multiple 
choice knapsack problem. Assuming integer data, in a straightforward implementation (see 
(Martello and Toth, 1990)) one would define an order F = { e i , . . , e ^ } , and then iteratively 
calculate for i = 1 , . . . , |.F| and c = 0 , . . . , d, the value /j(c) which is defined as the optimal 
solution value of the multiple-choice knapsack problem defined above for the restricted edge 
set { e i , . . ,ej} (instead of F) and r i g h t h a n d side (instead of d) in (435) This value can 
recursively be calculated through 

fi( m m { f i C t x(eit) l , T c > C t
e 

where /o(c) := 0, for 0 . . . , d. Eventually, the optimal solution value of the multiple-choice 
knapsack problem is f\F\{d). In our case, this algorithm is very time consuming since it depends 
on the value d which is potentially a large value 
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Our implementation, which is sketched fa ( , 
in Algorithm 5, relies on the following ob 
servation For fixed i G { 1 , . . . , | F | } , the 
values fa (c), c G M_|_, define a staircase func 
tion as illustrated in Figure 4.6 That is 
a finite set of breakeven capacities exists 

such that the objective functio ue c 

monotonically decreasing and constant be Figure 4.6: Multiplechoice knapsac bjective 
tween two succeeding break-even capacities function for fixed 1 | 
Therefore, it suffices to calculate the break­
even capacities The outer for-loop of Algorithm 5 iterates over the supply edges in some order 
say F = { e i , . . . , e ^ } and in the two inner forloops, the list of break-even capacities is main 
tained and updated. In the i—th iteration, for = 1 , . . . , \F\, the list of breakeven capacities 
of the (i — 1)—th iteration is given Together with the breakpoint capacities C®.,..., C e / new 
break-even capacities are calculated. A new break-even capacity is added to the current list, if 
it is not dominated by an existing break-even capacity. It is not described in Algorithm 5, but 
further da ta associated with break-even capacities must be maintained such that an optimal 
solution can easily be constructed after the \F\— th iteration. As we noted above, the computed 
band is not necessarily maximal Hence, the band-breakpoints te, e G E, are increased until the 
constructed band is maximal. Notice that the objective function value of the maximal band is 
equal to d) 

lgor i thm 5 B N D S E P R A T I O N 

Require: YleeF Vie) d and x(e t F t 1 T 
Define order F {e 
/ 0 ) G % 

for all 1 . . F do 
for all = l , . , T e do 

for all b reakeven capacities do 
if + / C _ < d an (a) > + x(eit), for all a with a eiC

f~ 
t h e n 

add break-even capacity c + ^ C T and remove all b reakeven capacities a with 
a > fil' and fi{a) > / , x(eit 

en 
end for 
d for  
for  

f\F\(d) < 1 t h e n 

initialize band B(ß) (corresponding to d)) 

construct maximal band above B(ß) 
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an ineqal i t i e s 

Our heuristic separation algorithm for 2-band inequalities (3.9) is based on Algorithm 5. Given 
a valid inequality YleeF Pe{e) — ^ f ° r Y(G,H, ~Nos) as input, the application of Algorithm 5 
yields a band B = {(e, te) : e G F}. For each e G F with te > 0, the construction described 
in the next paragraph is performed. If no such supply edge exists, tha t is, if te 0 for all 
e f f , the separation algorithm fails to identify a violated 2-band inequality (3.9). Output of 
the separation algorithm is the maximal violated among all constructed 2 b a n d inequalities. 

For g G F with tg > 0 interpret B as {(g, t2
g)} U { ( e i e G F\{g}}, tha t is, tg tg and 

ig for all e G F\{<7}. Now, for each breakpoint and each supply edge h G F\{g} 
let be the maximal breakpoint of h with 

eF\{ 

If there is no such i | for a supply edge /i G F \ { 5 } , then no 2-band is constructed for this 
choice of ti. Notice that t\ is defined such that the validity requirements of Definition 16 are 
satisfied and hence this choice of breakpoints defines a valid 2 b a n d for (/ d) 

graphpartition an ineqal i t i es 

Suppose that a 3graph-par t i t ion with shores Vi V V3 is given as input of the separation algo 
r i thm for 3graph-par t i t ion band inequalities (3.10). The target of this algorithm is to construct 
a valid V — band (see Definition . 2 1 on page 72) such that the corresponding inequality (3.10) 
is violated by x. In the first step, Algorithm 5 is applied for each pair (V Vj), 1 < j < 3 
of shores with inequality 

X (e) £ d 

e S ) S H ( V j ) 

and x restricted to the supply edges Sa(V Vj) between the two shores as input ach of these 
applications yields a (partial) band 

Bj {(et SaiVuVj)} 

Notice that each supply edge e <JG(^I5 , V3) appears in exactly one of these partial 
bands Thus, the union B := _B12 U -B13 U -B23 defines a — band, which is by construction 
valid. The remaining steps of the separation algorithm for g raphpar t i t ion band inequalities 
(310) maximize this initial — band 

i v e r s i f a t i o n b a n ineqal i t i es 

Suppose that a cut inequality YleeFV(e) — ^ with F := SG{W) for 0 C W C V and d = 
S w) d is given as input of the separation algorithm for diversificationband inequalities 
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(3.12). Furthermore, let 8 := (Y.uve5G(w) Suvduv) I \J2Uv£SG{w)duv) and assume 0 < 8 < 

For this setting the target of this separation algorithm is to construct a diversificationband 

= {(e, t) F, 0 < e e t C\e < d} 

such that the associated diversificationband inequality 

^x(et + 1 cov(S) 
e£ 

is violated. Recall, cov(B) is the minimal number of edges e € F on which a capacity larger than 
C*e is needed to satisfy the underlying cut inequality. For band inequalities, cov(B) = 1 always 
holds, but, in general, cov(B) at tains a value in { 1 , . . . , [1/5]}, since the maximum flow through 
any supply edge is bounded from above by Sd. In the main loop, this separation algorithm 
iterates over the possible values of cov(B) and at tempts to identify a violated diversification 
band inequality (3.12). As a subproblem, an adaption of the multiple-choice knapsack problem 
is solved which can be formulated for fixed k = 1 [ 1 5 ] as the following integer program 

mm E E x(et)ß 

e - t = T e C t
e ~ 1 < 

E E t~ )5 
e i t = C * - 1 < 

E 1, eF 
t=TeC

t 

ßt G { 0 1 } <E F t < 

This integer program is similar to the one formulated for the separation problem for band 
inequalities. Just the right-hand side d in (4.35) is substituted by d— (k—l)Sd and the admissible 
breakpoints for a supply edge e € F are restricted to those breakpoints t € 1 , . . . ,T e } with 
capacities C*_ . Let ß be an optimal solution of this integer program and denote by 

B(ß) := {(e, te — 1) : e € F,ß = 1} the associated diversification-band. (Note B(ß) is by 
definition a diversification-band, since Cf

e
e < 8d for all e G F.) The r i g h t h a n d side d— )8 

is chosen such that the residual b a n d d e m a n d satisfies r(B(ß)) > )< and thus 

E*(e + 1 
£F 

is a valid diversification-band inequality due to Lemma 3.31. This might be violated by äf, but 
there are several opportunities to improve it. As we illustrated in Example 3.32 (see page 76) 
cov(B(ß)) > might hold and thus cov(#(/?)) needs to be computed to obtain the inequality 

E > ( e + 1 cov(B(ß)). 
£F 

Due to Proposition 3.38, maximal diversification-bands (see Definition 3.36) are candidates 
to induce facet-defining inequalities. Thus, band-breakpoints te,e € F7 are increased in the 
next step until a maximal diversificationband with respect to cov(B(ß)) is constructed 
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trengthene an ineqal i t i es 

et a cut inequality ^2ieepy{e) > d with F := 8Q{W) Q S for some 0 C W C V, and d = 
Suuefe (w) ^™ ^ e giy e r i a s Pa r^ °f the input of the separation algorithm for strengthened band 
inequalities (3.13). For every g G F, the inequality ^eeF\{9} y(e) > YluveSH(w) Puvduv =: rd is 
valid for Y(G i/, RES) and by definition of (3.13) the target of this separation algorithm is a 
band B = {(e£ : G F} such that for every g the (partial) band B\{(gt)} is 
valid for ( x F U d ) that is 

GF\{ 

for all g £ F. The separation algorithm proceeds as follows. First, a supply edge g G -F is 
selected such that C° < Cg for all e € F. Then, Algorithm 5 is applied to the edge set e G 
.F\{g}, the failure demand rd, and the vector ~x. The result is a band {(e t G -\{ff}} 
which induces the valid strengthened band inequality 

z ( s l E ^(e< + l 
GF\{ 

since C° < ° C for all e G F. Again, the target is a maximal band and therefore a 
maximal i9 G {0 , . . . , Tg — 1} is chosen, such that the band := {(# i s)} remains valid 
This procedure is iteratively applied to all supply edges with for all e \{<7} 

trengthene ban ineqal i t i es 

et a cut inequality ^^pVie) > re? with F := <5G(VF) C 5 for some 0 C W C V, and rd = 
S«ve<5 (w) Puvduv be given as part of the input of the separation algorithm for strengthened 

band inequalities (315). The target of this algorithm is to construct a 2band B {(e t t  
G F 0 < } satisfying 

eF\{} 

for all g G F and all <7i, 52 € F\{g} with g\ / #2, such that the corresponding inequality (315) 
is violated by ~x. In the first step, Algorithm 5 is applied to the cut inequality YleFV(e) — rd 

and x. The resulting band B = {(e,te) : e G F} is interpreted as partial 2-band. Two 
supply edges g and h with strictly positive band breakpoints are chosen such that the difference 
m(e,t — ) ~x(e,t + 1) is minimal With this choice, the band B is interpreted as partial 2 
band {(gt , i ) } U {(e,£g) : e G F\{g,h}}, that is, t := tg,

 2 and for all 
G F\{g ow let r{B) be the residual banddemand that is 

r{B) r d ^ 0 . 
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Given this interpretation of the band B and a choice of t lower breakpoints for d h 
next step of the algorithm at tempts to identify breakpoints for all supply edges e \{g 
such that 

j r(B) min{ \ k M ) 

is satisfied for all e 2 G F and 

eF\{g, 

is minimal. A greedy heuristic is applied for this purpose 

4 . 5 . 3 I n e q u a l i t i e s for X(G, H, B A S , •) 

In this section we present separation algorithms for classes of valid inequalities for the poly 
hedra X(G,H7 B A S , •). In particular for the classes of strengthened metric inequalities (3.16) 
knapsack-partition inequalities (3.20), diversification-cut inequalities (327) , diversification-par 
tition inequalities (3.29) lifted diversification-cut inequalities (332), and strengthened knapsack 

artition inequalities (336) Throughout this section a vector x(er G E, r T, is given 

t r e n g t h e n e d etri inequal i t ies 

The separation algorithm for strengthened metric inequalities (3.16) is almost identical to the 
one presented for strengthened metric inequalities (36) in Section 4 . Instead of (36) 
inequality (316) is evaluated for 

n a p s a c k p a r t i t i o n inequal i t ies 

Suppose that a fe-graph-partition V\,..., V\~ is given as part of the input for the separation 
algorithm for the class of knapsack-partition inequalities (320) . The separation problem for 
this class of inequalities reduces to finding a violated inequality (319) for 

(M d conv{z G Z™ CZi 

and where 

C T C ^ 

y ^ 
sH(Vvk) 

^ x(eT) l 

S ( v v h ) 
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(Pochet and Wolsey, 1995) proposed an exact separation algorithm to solve the separation pro 
lem for the vector ~z and the class of inequalities (319) . We briefly summarize this algorithm 
but refer the reader to the original paper for details The algorithm is based on decomposition 
arguments and the following proposition. Let r(d) := max{i a < d, 1 i < n} be the maximal 
index such that the capacity Cj is less than or equal to d. 

ropos i t ion 4.8 G N, the { z G l * J ) + 1
 zi }-

hus if d G N the separation problem reduces to the evaluation of the inequality 

) 

Zi 2_, z% 

) + l 

for ~. In the other case if ^ & N and if 

d)+l 

then z G Q(M7 d). If both these arguments do not appl then /c^ ^ and 
For this case (Pochet and Wolsey, 1995) proved that ~ (Md if 

J2 

Now s u p s e that th separatio p r o l e m c a n o t b solved ith f th preceding argu 

ments. Then, £ = r ( d ) + i ^ < MAV(d) £ N and E j = i c i ^ > i1 ~ H]=r(d)+izi)ld/cr(d)\cr(d) 
In this case, the vector ~z can be decomposed such that the separation problem can be reduced 
to a smaller subproblem Therefore let ~z be decomposed into 

(0 +i 

C ) + i 

(437) 

(438) 

m ^ <n 

and ä „ is chosen such that X)?=i c«"« = L^/c(d)Jcr(d)- According to the following proposition it 
then suffices to solve the separation problem for the "smaller" vector and reduced r i g h t h a n d 
side 
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g o r i t h m S A I O N S I O 

Require: i, ~ GM 
repeat 

r(d) max{i Cj < 
) G N t h e 

E S *J« + rfEr=r(d)+i «< > d t h e 

s top 2 satisfies all inequalities (319) 
else 

t o p construct violated inequality 
end if 

lse if E"=r(d)+i Zi>l t h e n 
t o p ~z satisfies all inequalities (3.19) 

lse if ^j=l cm < (1 - E " = r ( d ) + i ^ ) L c d ) c d ) t h e 
s top construct violated inequality 

lse 
set = min{fe : E j ä + i c&i < i1 ~ ) + i ^ ) L d ) d ) I < n} 
set ü according to (437) such that i c « " ) d ) 
set J , J „ _ , J „ a J ) + i J of (438)) 
set c ) c ) 

end if 
until stop 

ropos i t ion 4.9 7 G (Md ) c r d ) anc^ o n % * ^ (Md) 

lgorithm 6 summarizes the separation algorithm for inequalities (319) . 

Suppose that Algorithm 6 yields a parti t ion {Zi , . . . , j i } , . . . , {^,... ,jt} of the index set of 
{ C T l , . . . , CTn} w.r d such that the corresponding inequality (3.19) is violated. Let K±7 .. 
be defined as in (318) and for = 1 , . . . , n, let p(i) be the parti t ion index of technology 
that is {l Then the knapsackpar t i t ion inequality (320) 

£F 

is violated by ~ 

i v e r s i f a t i o n r e l a t e d inequal i t ies 

Suppose that a cut inequality YleeFV(e) — d, for Tl7 C F and F := SG{W), is given such that 
the diversification parameter is less than one for some demand edges with endnodes in two 
different shores that is, 

^ Sd ^ d 
sw) w) 
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For S := d/Sd, the target of the following separation algorithm is to identify violated inequality 
among all inequalities ( 2 7 ) , (3.29) and (332). The separation algorithm for these classes of 
inequalities requires the calculation of minimal diversification covers. For d G N, öd Q+ 
C N, k G N, the minimal diversifcation cover i calculated as follow. According to 26) 
and emma 358 if \1 ] or S G N then 

d, d, 

it llo 59 th 

d, d, 

17 7 — — 

none of th prevous rgumen ppled, then [5 > 0 and em 
m p e s 

d, d, =k 

In the s e p a t i o algoith to identify o l a d inequ i ty amon all nequi t ies ( 2 7 ) , 
(3.29) nd (3.32) th following tep are a p p e d . In the firs tep inequ i ty 27) is eva lued . 
A f t e r w s , for ever k 1 [15]} nd ever F^ F ith = F\ — one inequ i ty 
(329) one nequality (3.32 is eva lued . The inequality 29 the resul f Algorith 
th s e p a t i o n lgorith for k n a p s a c k t i t i o n nequi t ies 2 p p l d t 

Eventally setting Lk - )Sdd d,d, th 
n e q u i t y ) c n be e v a l u d . 

trengthened n a p s a c p a r t i t i o n inequalities 

Suppose that a graphpr t i t ion V...,Vk s gven such that th reservation p a m e e r 
g r e e r than zero for some em ges with e n n o e s differen ores that i 

/ j P 

S V v h ) 

0. 

The s e p a t i o algorith strengthen titi e q i t i e s 36 se 
lgorith hich i appl ith 

Ci 

~Zi 

, i 

e e S ( V i , . . ) ( e , 

H 6 v Pd M V i \ { y * ) } 
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a t result of l g r i t h l e . . j i } , jt e a p t i t i o the 
se C l , CTn} w . r t . d7 let K, . , /% be efine 18), d for 1 le 
th tition ex o ecno logy T, that i {l 

. If 

J ] - ^ — {eT 
£F 

then ol n e q u i t y 36) as been identified. 

4.5.4 Computat ional tes t s 

In th preceding sections we presente separation algorithms fo i c a r asses o quali 
ties. ow, we focus on the problem how o combne these algorith in order t c o m p u e a lower 
bound with the c t t i n g p l n e lgorith efficen ith respec th followng performance 
m e s u r e s 

th al the fin lower boun 

the time needed compu thi lower boun 

th siz the fin nea p r o g r n g r e l a t i o n erm ro c o e f e n 

we sketche i lgorith see page 122) the g e n e r l s e g y o main a pool of 
alid nequalities for Y(7H7 • and o use them o identify alid inequl i t ies for X(G7H7 •, •) 

w h i h are v i o l a d by the current opti solution of the line p r o g r m n g r e l a t i o n . In each 
iteration of thi algorithm, the pool of valid nequalities for Y (G7 H7 ) is u p a t e and a sequence  

s e p a t i o n algorithm s app led for v a i d i n e q u i t i e s f the k n a p s c k r e l a t i o n s induced 
by th inequalities n the pool (see Definitions 3 3 . 4 . At th end each iteration, 
nequ l i t i e s are removed from the pool if specfied m a m u m number f s e p a t i o n lgorithm 
aile for th respective uced k n a c k - r e l a x a t i o n , and identified v o l n e q u i t i e s are 
dde the line p r o g r m i n g r e l a t i o n which i then r e o p t i z e d . 

The influence of differen un-time p a r a m e e r selections on th mentioned performance mea 
sures is e v u a t for the wo main components of th cutting plane algorithm: th separation 
algorithm for v a i d inequalities for Y(G7 H, •) and the separation algorithms for valid inequa 
ities for X H7-,-). We present results o c o m p u a t i o n l experiments for c o m a t i o n s of th 

acity odels D I S C R E T E C A P A C T I E S and DIVISIBLE B A S C C A P A C I T E S and the surv 
ab i i ty models D I V E R S I F I C A T I O N and RESERVATION. Additional experimen for P A T H R E S T 

RATION are not necessa nce no inequalities ther t h n those presente for RESERVATIO 
are known for the polyhed X(G H7 F I N P A T H ) an XG7 H, AS, P A T H ) The tes are per 

formed for th problem i n s n c e s m 1 d p ith the surv iva i l i ty rameters 8 = 0.5 an 
Ö = 0 7 5 for D I V E R S I F C A T I O N , and 5 a d p = 1 for RESERVATION. The respective prob 
lem mes ssoc ith these p a r a t e r s are m2d5 m 2 d , 12d50, 12d75, p2d50 and p2d 
for DIVERSIFCATION 2r50, m2r00 12r5 12r00 2r5 d p2r for RESERVATIO 

^ 
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u n t i m p a r a e t e r for s e p a r a t i o n e t r i c i n e q u a l i t i e s 

rst, r u n t i m e p m e t e r for s e p a t i o n algorith rel c l s s e s of valid inequait ies for 

Y,H,- are examined. For m e r i c n e q u i t i e s (3.1 an 3.2) the respective versions for 
th s u r v i v a b i t y m o e l s D I V E R S I F C A T I O N nd RESERVATION) we presen ection 45 .1 

exa s e p a t i o n algorithm sed on the algorithm o test f a s i t y a p i t y vector 
nd for g r a p - p a r t i t i o n inequalities (223) we p r e s e n d Algorithm 4, euristi separation 
lgorithm base on s r i n k n g Both algorithms are app led , the one for metric inequalities every  

iterations, d the one for fcgrphpartition i n e q u i t i e s ever P iterations For both these 
p a r a m e r s th ues , 5, d 1 re c o m a r e d . The arge number of n o e s i the s h u n k e n 
suppl nd demand graphs ithi lgorithm 4 i set t set to 2. A generated 

g r a p h p t i t i o n i n e q u i t y i a d d d th pool if its righ s i e is no more th 3 percen 
arger than the left-h side e v a l u a t d with the curren p a i t y v e c o r y (which i o b t a n e d 

from the curren linea p r o g r m m n g r e l a t i o n ) The initia pool of v a i d inequalities for 
(G,H, •) comprses all m i l cut inequalities with no more than wo n o e s n the smaller 

shore an all m l 3 g r t i t i o n n e q u i t i e s with no more th wo n o e s in l bu 
th arges hore 

For classes valid inequalities for G, H, •, •) the applied s e p a r t i o n algorith are te 
n les 4.3 nd 4 4 The left nd ht column o able 4 3 show th applied s e p a t i o n lgo 
ithms for the s u r v a b i t y m o e l ERSIFCATION combination with the c i t y m o e l s 

CRETE C A P A C E S D I V I B AS C A P A C E S respectively 

SC C A P I T I V I B L E B A C A P I T 

strengthened metric inequaties (3.6) 
diverification-band inequalities (3.12) 
3-graphpartition band inequalities (3.0) 
2-band inequaities (3.9) 

strengthened meric inequaliies (3.6) 
diverification-cut inequaliies (3.27) (3.32) 
k n a a c k - a r t i o n i nequa i e s (3 .0) (3.29) 

le I V I F I I O N s e p a t i l g i t h H, • iv 

Analogo he left and right ol T a l e 4 sh t e app s e a r a o n algorithm 
for the s u r v i t y del RESERVATION combination with the c i t y m o e l s DSCRETE 
C A P A C I E S VIIBL AS C A P A C E S respectively 

SC C A P I T I V I B L E B A C A P I T 

strengthened meric inequaties (3.6) 
strengthened band inequalies (3.13) 
strengthened 2-band inequa i e s (3.15) 

strengthened metric i nequa i e s (3.16) 
strengthened k n a a c k - a r i o n inequai 
ies (3.36) 

le 4 IO s e a t i a l g i t h H, • 

hes e p i o n a l g o r i t m s are a l i e in the o e r i m p l i i t y d e n e n the T b l e s 4 and 
4.4 from op o bot tom). In this firs test seres , t h number of possbly entifie nequ l i t i e s 
in a sng le iteration s unbounded, and every identifie violated inequality s adde o the ne 
p r o g r a n g relaxation Furthermore, nequalities are never removed from th pool The 
cutting p n e algorith e r m e s , if no mprovemen th lower boun alculation c be 
o b n e d . 
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Name DISCRETE CAPACITIES DIVISIBLE BASIC CAPACITIES Name 
KI LOWER TIME TER ROWS COEFFS NI LOWER TIME TER ROWS COEFFS 

2d5 84 27 84 
84 48 84 8. 
84 84 84 112.29 44 
84 44 84 
84 84 44 
84 75 84 
84 777 84 
84 84 8. 88 
84 102.33 48 84 

2d75 84 4. 112 27 84 55 71 77 
84 17 84 
84 94.52 75 84 84 25 
84 84 4. 57 
84 84 88. 
84 27 84 4. 57 
84 4. 84 101.31 55 77 
84 25 84 
84 4. 75 84 77 

2d5 8.55 12 1257 11 8. 133.52 11 52288 
8.55 55 8. 8. 
8.55 124.12 57 88 8. 
8.55 277 8. 
8.55 8. 84 
8.55 8. 
8.55 25 8. 25 
8.55 48 7557 8. 8. 
8.55 8. 133.52 88 

2d75 8.55 107.44 484 44 8. 121 21 48 
8.55 4. 55 488 8. 8. 25 75 
8.55 8. 
8.55 557 8. 
8.55 8. 
8.55 8. 
8.55 77 8. 22.02 
8.55 4. 84 55 8. 8. 75 
8.55 8. 55 48 

2d5 8. 105.65 275 8. 112.95 522 1 7 1 2 
8. 8. 
8. 4. 8. 2.95 
8. 17 77 8. 48 
8. 4. 55 8. 
8. 75 8. 48 
8. 77 25 277 8. 112.95 
8. 25 8. 
8. 4. 48 25 8. 112.95 

2d75 8. 1217 2288 8. 108. 22 
8. 4. 8. 48 48 
8. 17 8. 108.47 
8. 8. 
8. 8. 48 484 
8. 17 8. 
8. 97. 25 8. 108. 
8. 48 25 8. 48 48 
8. 88 8. 108.47 

le 4. I V I F I O ati a l g i t h r YH: • 
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Name DISCRETE CAPACITIES DIVISIBLE BASI CAPACITIES Name 
KI LOWER TIME TER ROWS COEFFS NI LOWER TIME TER ROWS COEFFS 

84 92.56 15 11 84 86.39 
84 88 84 
84 84 86.39 
84 92.56 84 86.39 
84 88 84 
84 84 86.39 
84 92.56 84 86.39 
84 88 84 
84 84 86.39 

84 127 44 155 84 133. 27 
84 27 84 25 
84 27 84 133.22 27 
84 84 
84 10 755 84 
84 84 
84 27.90 84 133. 27 
84 44 48 55 84 25 25 
84 27 48 84 133.22 27 

8.55 27 1222 15 8. 12 12 
8.55 8. 25 8. 92.03 25 
8.55 57 8. 
8.55 55 17 8. 48 
8.55 55 8. 84 88 
8.55 25 8. 48 
8.55 48 575 8. 
8.55 8. 27 8. 92.03 25 
8.55 102.33 8. 

8.55 8. 48.77 52 2 2 8 4 
8.55 44. 25 8. 
8.55 8. 150.44 48 
8.55 30 77 8. 48 
8.55 8. 84 88 
8.55 8. 48 
8.55 145.78 8. 
8.55 44. 257 8. 
8.55 8. 48.77 55 84 

8. 95.22 17 111 8. 96.67 72 
8. 4. 84 8. 4. 
8. 4. 77 8. 96.67 
8. 8. 44 
8. 4. 848 8. 44 48 
8. 4. 8. 44 
8. 8. 96.67 
8. 4. 848 8. 4. 
8. 4. 8. 96.67 

8. 29.19 77 17 52 8. 133.83 
8. 8. 27 2 5 5 7 
8. 8.55 27 8. 133.83 
8. 44 8. 
8. 44 8. 
8. 2:11 8. 
8. 8. 8. 133.83 
8. 8. 75 57 8. 2 5 5 7 
8. 88 8. 133.83 

le 4. IO ti a l g i t h H, • 
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e m p u t a l res ar p n t e T l e s 4.5 4. Both tables av the l l o n g 
format. Column 1 ( A M E ) gives the name of the problem whic also encodes the s u r v i v i t y 
p a m e t e r s . The nex two columns provide run-time p m e t e r s The number the secon and 
thir column specify after ow m n y iterations the s e p r a t i o n algorithm for metr i n e q u i t i e s 
(M) g r p a t i t i o n nequalities (P) s appl x columns with atistics are f o l l o n g 
for of th wo c a c i t y models. From left to right, these columns give the scaled2 value 

the initial ( INIT) a the final lower bound (LOWER) the ti to c o m p u e this lower bound 
( T M E ) , the number f iterations (TER.), the number of row in the final line p r o g r n g 
relaxation OW) d th number non-zero coeficien thi r e l a t i o n ( F F S ) 

T h mai observation s th followng: Without application of the s e p a t i o n lgorithm for 
me nequ l i t i e s M = 0) the lower bound s 10 — 0 percent smaller than n the ther c s e s 
(M = 5,10) The fluence of the s e p a t i o n algorithm for graph-partition nequ l i t i e s i of 
m n o r mportance. For all problem nstances, the value o the lower bound s l g e r for P > 0 
but the improvemen only about 1 percent. I e r e s t i n g l th lower boun o b a i n e d with th 
initial pool of t - g r a p a r t i t i o n i n e q u i t i e s M = 0 s often close t the lower boun 

o b t n e d u s n g the s e p a t i o n algorithm for t - g r t i t i o n n e q u i t i e s onl M P > 

Thi d i t e s that th i t i l pool is wellchosen 

arge improvemen of the i n i t i l lower bound can be observed. I ll cases shown i Tables 
4.5 and 4.6, the fina lower bound i more than 250 percen larger than the i n i t i l lower bound. 
S n c e th i n i t i l linear p r o g r m m i n g r e l a a t i o n con tans onl n o r a l operating s t e cons t ra ins 
it is no surprising that th mprovemen for the 8 = 0.5 and = 1 0 instances are arger th 
those o the corresponding S = 75 and = 0.5 instances. Th unning times are small; 1 — 10 

nutes are n e e d d to c o m p u e th bes lower bounds For ach problem instance and for 
M > 0 the t i e s are almost identical. A expecte this dicates that most time s spent i 
the s e p r a t i o n algorithm for metr nequalities The ther values the number of iterations a d 
the number of ro coefficents o the fina nea p r o g r n g r e l a t i o n , are smaller if 

= 0 bu for all these values are n the same ange 

The following parameter setting th consequence these tests: l subsequen compu­
ations, t h separation algorithm for metric inequait ies applied ever 5 iteration for DIVERSI­

FCATION an every 1 iterations for RESERVATION nd P A T H R E S T O R A T I O N ) . Furthermore 
the s e p a t i o n algorith for f g r a h - p t i t i o n n e q u i t i e s appl every 1 iterations ( i n e 
p e n e n from th s u r v i t y m o e l ) 

n e r a l r u n t i m p a r a e t e r s for s e p a r a t i o n 

The secon tes seres aims t th influence of more general run-time p a m t e r s . The separation 
lgorith for v a i d nequai t ies for Y(GH, •) are a g n applied in the o r e r that is m p l i i t l 
efined Tables 4.3 and 4.4 from op t bot tom). I this es series th number of possibl 

identified v i o l e d n e q u i t i e s single iteration a t t n s the alues 10 an 50. An identified 
v o l d inequai ty only added t the l nea r p r o g r n g r e lxa t ion , if th iolation arger 
than specified m i m u m percenage o its r i g h t h a n ide. The values 1 percent d 0.1 
percent are c o m p r e . The c t t i n g plane lgorith e r m e s if the mprovemen th lower 

A11 lower bounds and soution vaues are scaed to comp with discosure agreements. 
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bound ngle iterat alle a l u s 0 1 
percent nd 5 percent. 

The results of thi est series are p r e s e n t d i ables 4. and 4.8, whi ave form si 
to that Tables 4.5 and 4 . . In c o n t to the latter les columns and are repaced by 
three ne columns These s o w the maximum number of v o l e d nequalities a d d d in sngle 
iteration (vio) th required nimum percentage violation of added nequalities ( L A C ) 
the r equred m i n m u m percenage th lower bound improvement i a sng le iteration ( IMP) 

The in observations are the following: T h running times t compute lower bound for 
th o p t i a l solution value can be further decrease by app rop ra t e p a m e t e r settings. For 

IVERSIFICATION all lower bounds are alcul in less tha minute and for RESERVATION 

n less than 3 m n u t e s n ll insances bu 2rl00, where lmost 8 nutes are n e e d e . Impor 
o no that the quality f th compu lower bounds is the sa as presented for in Tables 4.5 

and 4. The lower bounds are in some ases arger nd in some cases smaller t h n the p revous 
ones C o m n g the lower bound in d e p e n e n c e of the capacity m o e l we observe that th 
lower bounds for I V I I B L E B A S C C A P A C I E S tend to be better th those for S C R E T E 

C A P A C I T I E S . This s ineres t ing s n c e there are more possible c a p i t y c c e s for D I V I B 

A S C C A P A C E S This d i c t e s that the ( m i x e d - n t g e r rounding nequalities for D I V I S I B L E 

ASIC C A P A C I T I E S are p r t i l l more successful th th k n c k - c o v e r ) n e q u i t i e s for 
S C R E T E C A P A C E S 

T h uence o the number nequai t ies added one iteration s s m . The same hol 
for the min s l c k such th nequa i ty s considere olat The m i n m u m require 
improvemen f the lower boun a single iteration h the argest fluence on the quality o 
the c o m p u d lower bound. T h cutting plane algorithm t e r m i t e s too fast if the respective 

arameter s set o 0 5 percent. The ther values the number of i t e r t i o n s nd the number 
of rows c o e f c i e n s o the f i n l l n e p r o g r n g r e l a t i o n , are e p e n e n from these 
un-time p m e e r 

The following p a r a m e e r setting the consequence o these tests: all subsequent com 
putations the cutting p a n e algorithm e rminaes if the improvement sngle iteration i 
less than 0 1 percent an entified vo la ted inequai ty is only dded to th linear p r o g r m n g 
r e l a t i o n , if th olation arger than 0 1 percen mum of 1 n e q u i t i e s add 

iteration 
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NAME VI SLAC MP 
DISCRETE CAPACITIES DIVISIBLE BASIC CAPACITIES 

NAME VI SLAC MP 
NI LOWER TIME TER ROWS COEFFS NI LOWER TIME ITER ROWS COEFFS 

2d5 3684 12 3684 57 
84 84 
84 15 84 57 
84 102.21 77 84 

84 8. 11 84 11 25 15 
84 88 17 12 84 111.06 84 
84 8. 27 11 84 
84 44 12 84 

2d75 3684 12 3684 96 
84 77 12 84 75 
84 15 12 84 22 
84 75 84 
84 25 84 12 

84 94.44 75 1284 84 12 
84 12 84 8. 75 
84 4. 17 48 84 0.43 55 844 

2d5 8.55 11 44 8. 122 

8.55 115 8. 122 25 
8.55 11 17 17 8852 8. 122 72 

8.55 118. 8. 122 25 
8.55 17 8. 125 
8.55 17 27 8. 5.22 884 

8.55 120.22 8. 122 88 
8.55 11 125 8. 12 25 72 12 

2d75 8.55 12 17 8. 115 19 15 84 17 
8.55 105.42 15 257 8. 7.37 88 

8.55 17 127 22 8. 115 15 84 17 

8.55 8. 7.37 57 
8.55 15 17 8. 115 844 175 
8.55 17 8. 84 17 
8.55 12 8. 15 

8.55 4.75 12 8. 11 172 

2d5 8. 88 22 12 2272 8. 512 66 
8. 25 125 8. 111.88 15 17 527 17522 

8. 12 155 8. 12 

8. 22 12 22 8. 1. 17 527 17522 

8. 11 8. 11122 15 22 525 172 
8. 105.70 8. 11122 22 525 172 
8. 16 12 27 8. 17 15 
8. 4. 2527 8. 17 15 

2d75 8. 4.84 12 122 22 8. 
8. 4. 15 122 15 8. 110.71 12 

8. 4. 12 12 8. 
8. 4. 12 12 8. 110.71 12 

8. 111 8. 15 

8. 97.30 12 8. 25 12 1 5 1 7 
8. 4. 15 8. 11 
8. 12 25 8. 15 

le 4.7: I F I O N n - m e me 
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NAME VI SLAC MP 
DISCRETE CAPACITIES DIVISIBLE BASI CAPACITIES 

NAME VI SLAC MP 
NI LOWER TIME TER ROWS COEFFS NI LOWER TIME ITER ROWS COEFFS 

3684 36 3684 39 257 
84 93.55 17 52 84 257 
84 12 84 257 
84 17 84 257 
84 22 84 88.47 12 57 
84 48 52 84 88.47 57 
84 84 11 571 
84 84 57 

3684 12155 16 17 3684 99 
84 12 27 15555 84 133.19 25 27 
84 12 25 15 84 15 
84 12 12 157 84 133.19 27 
84 12 84 77 
84 127.52 84 72 
84 127 84 722 
84 127 52 11 84 25 

8.55 84 43 11 12 15 8. 4. 55 12 77 71 
8.55 102.11 1277 1 7 5 2 8. 15 77 
8.55 43 11 1248 11 8. 77 57 
8.55 125 157 8. 77 57 
8.55 12 84 8. 55 15 
8.55 17 8. 55 15 
8.55 115 8. 98.87 55 15 757 
8.55 12 8. 98.87 17 757 

8.55 99 1544 2 2 1 7 8. 36 21 72 
8.55 88 27 8. 150.20 57 277 
8.55 :19 1517 225 8. 
8.55 22 52 8. 4. 27 17 
8.55 44. 15 17 8. 48. 12 2 5 5 7 
8.55 4.88 8. 2 5 1 5 
8.55 125 15 8. 75 
8.55 145.34 8. 

8. 11 1121 8. 39 22 88 
8. 11 8. 100.1 48 15 
8. 27 17 8. 88 
8. 4. 12 11 125 8. 100.17 48 15 
8. 11 848 8. 4. 16 11 12212 
8. 97.39 11 8. 4. 16 11 12212 
8. 88. 8. 4. 16 1217 
8. 255 8. 4. 16 1217 

8. 12111 01 15 25 8. 1 2 7 1 30 48 
8. 124.71 15 8. 134. 
8. 12 12 15 884 8. 12 30 52 
8. 124. 15 84 8. 4. 

8. 1 1 2 2 8. 44 27 48 
8. 128. 15 17 8. 25 
8. 11 8. 25 
8. 128.49 25 127 8. 4. 17 

le 4.8 ION n - m e me 
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4.6 Heuristics 

With todays computing power nd a t h e m t i methodolog it is impossible solve real 
worl problem instances for the survivable c p a c i t a t e nework design problem descrbe 
Chapter proven optimality. Hence, it is necessa o develop heuristi algorithms to 
compute feasble solutions. Almos all eurs t ics descrbed thi section depend on the c t t i n g 
plane algorithm, nce th value the tional) city v a b l e s s e x p l o i t d to guid run­
time ecisions. I s out scope to g u r a n e e o p t i i t y f the best solutions c o m p d , bu 
as go news, th employed cutting ane algorith t e r m a t e s with lower boun for th 
opti solution lue, mplying th q u a i t y g u e e can be p r o i d 

We o no evse any andomze h e u r t i c algorithms, like simated annealing genetic 
algorithms tau search, etc., since the applca t ion f such algorithms most uccessful if no 
much about s r u c t u r a l properties of the underlying problem known. T h theor evelope 
n C h p t e r 3, owever, p a t i c u l y f u s e s on th s t u c t u r e f s u r v a b l e c a p a i t n e w o r 
esign problem i t se l , this no a s u f e n reason o neglect this type of r a d o m i z e d 

heuristics, but , a further d i u l t y for th network de sgn problems u n e r consideration, 
it s time consumng est e a l i t y of c a p i t y vectors, see ection 4.4. Thi is a serous 
d a w b c k , s n c e these domized h e u r t i c s ca only provide go solutions if it s possble 
searc l a g e n e g h b o r s o solutions or time 

We proceed now as follows. r s , the starting h e u r t i c s use o calculat i i t i a l f s i b l e 
solutions re p r e s e n t d in Section 4 . 1 Th subsequen Section 4 .62, con tans the descrpt ion 
of improvemen h e u r t i c s , which ob input feasble solution nd modify this solution, 
until it is l o l l y optimal with respec ven n e h b o r . F a l l results o c o m p u t i o n 
expe rmen re repor ection 4. 

4.6.1 tart ing h e u r s t i c 

We mplemente one class o starting heur i t i c s the s o - c l e d ranch !k cut path heuristics. These 
heuristics epen the linear p r o g r a n g r e l a a t i o n the s e p a t i o n algorithms. I fact 
these euristics are based on the i d a s o b r a n c c u t algorith A e u r i t i c of thi class 
follow a specfic path i the b r n c h & b o u n ree and applies t e a h n o e of the tree a c t t i n g 
plane algorithm. In c o n t to b r a n c h f u t lgorithm, the h e u r t i es no e x m i n e er 

ative sub rees gener escrpt ion th branc ath h e u r t i g v e n lgorith 

every iteration, ( c t i o n a l ) capacity variables are given as the solution the curren 
line p r o g r m m n g r e l a t i o n . According to some criterion, upply edge e £ f ith a leas 
one tional c p a i t y v a l e x(e t) is selected. Here the i e r p r e t a t i o n t d e p e n s on 
the capacity model Either 1,. ,T e } for D S C R E T E C A P A C T E S or t for D I V S I B L 

A S C C A P A C I T E S Then, a n t g e r lower bound (e t € N for at le one c a p i t y able 
edge is determine such th the curren solution He is no longer valid th s, ~x{e t) < (e, t) 
These lower boun for th i n t g e r acity variables are then set in the urren r e l a a t i o n 
Ip. the en e iteration s e p r a t i o n algorithm are use o identify alid nequalities 
for X(G,H, •, • which re v i o l e d y th current ~x. However, in o r e r to reduce the overall 
u n n n g time these s a r t i n g e u r t i c s no all s e p a t i o n lgorith are use thi ep 
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g o r i t h m H A N D C U A T H H E U 

R e q u i r e : ity v a a b l e s äf solution th urren r e l a t i o n 
h i le ~x n o t i n g e r d o 

h o s e supply edge G E i th c t i o n l capacity le 
choose lower bounds for th c a p i t y riables of 
set th bounds of these varables the r e l t i o n accordingl 
un th t t ing plane algorith up äf 

e n d hile 
c o m p t cities y from according 2.4) or 2.7)) 

y n o t easible t h e 
postprocessng 

ven ta l ly , al c a p c i t y able are r. If a s s c i d ity vector y, which 
lculated from equation (2.4) or (2.7), is f e b l e the e u r t i c t e r m i n t e s . However, the fin 

integer solution m y not be feasible, since the entified olated inequait ies no n e c e s s a r y 
suffice describe the respective p o l y h r o n (G,H,-. This ay happen, for insance , if 
no s e p a t i o n lgorithm for metri nequai t ies is used d u r n g the t t ing p l n e algorithm, or 
if P A T H R E S T O R A T I O N is the s u r v v a b i t y model. To overcome the problem of nfes ib le 
solution t the en of these s t t i n g euristics, postprocessng algorith t i z e compu 

ble solution from the fin ger but i b l e solution 

n wha follows we descrbe th selection criteria for th suppl dges with ction pacity 
v a b l e s , a d the different trategies to set i g e r lower bounds for the c a c i t y ariables o 
the chosen edge. We present these criteria sepaa te ly for the wo capacity m e l s d descrbe 
a f t e r w d s th p o s p r o c e s s n g d th r e s u l s o c o m p a t i o n l expe rmen 

C R E T E C A P A C E S 

uppose th c a p i t y v a b l e s äf(e£), e G E, t = 1 , . . , T the solution f the current 
r e l a t i o n are given, nd le (e), e G E be the corresponding city vecor . Furthermore 
le be th subse suppl ges with l e s t one tion ity le that is, 

e G - : 3 l T ith äf(e i 

T h selection criter for suppl ge from are th f o l l o n g : 

M A X R A C ose suppl ge ith th arges tion le th s (e, (F 
uch th 

äffe, m äffe, : 0 äffe, 
e,t)e 

M A X U M R A C ose suppl ge ith th arges um tion ables that is 
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E (e, 

t = l T e ( e t ) t = l T e t ) 

C A P C h s e a p ed with f t i o n le suc tha th itional a p i t y 
n e e d t ke (e b r e p o n t ity mal t h t is (e, (F) suc th 

(e m {& (e) : (e)} 
e,t)e) 

C O S T Choose a uppl edge with tion able such that th dditional cost incurre 
from n c r e n g th respective ity l that is (e, (F) such th 

-

N R E L C O S T C o s e a suppl ge with tional variable suc that the addition cos 
relative th ddition ity i tha t is (e, (F) such th 

5 > ( e ) ) ™ Y { e ) ) : { e 

N I N C C O S T Choose suppl edge with tional v a r l e suc th th ddition ncre 
en cost is m l that is (e, (F) such th 

(e,)) m (e,)) : 0 (e, 
e,t)£ 

N R E L C A P hoose a suppl edge ith action v r i a b l e such t h t th ncrementa pac­
ity for th s m l l e s t b r e p o c p a c i t y g r e e r than or equ (e relative thi 
b r e p o ity is m that is (e, (F) such th 

(e)) m { e ) ) { e ) > l - 1 

t ) ( 

uppose that th suppl edge e G E decided. Then the integer lower bound for the 
c a p a i t y varables of must be hosen such that the curren solution ~ es no t i f y these 
boun Thi one ccording one th following wo es 

G R E E D Y S t x(e,t) 1 for the larges b r e p o i n t G , . , T e i th C\ < (e. If th 
urren solution l r e d y atisfies (e, then se (e,t + 1 

C O V A T V E (e, for th smalles b r e p o Te i th (e, 
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IVISIBL 

Suppose that p c i t y ables (e, T ) , e £ £ , T the solution f th urren relaxation 
are given, let (e) e G be the corresponding c a i t y vecor . A n , a supply edge with 
r a c t i o n l capacity riable s e l e c d in the firs step, d a f t e r a r d s nteger lower boun are 
e c i d d according to two s t ra teges I t h following, (e)~ e n o e s th s m l e s id ity 

arger th (e for every suppl ge e e that is 

(e)l Tm(e, : m(e G Z for 

thermore, m(e, r e n e s for ever E every G this er o t i l e s o 
c a p i t y C c o m n e the c e i n g c a c i t y (e)~\, th s, (e)~ Y^ET CT(e r ) for 
ever e Finaly, let be th subse uppl ges ith le one tion 

ity able that is 

e £ : 3 i t h ( e , ^ 

A X R A C se su ith th arg ti le th (e, (F 

uch th 

(e, ( e , ) i (e £ Z 

C A P ose the t i o n l varab le suc that the addition ity nee ake (e 
ity i that is such th 

y(e)l - V(e (e)] (e e £ 

C O S T Choose a uppl e g e with ction able such th th addition cost incurre 
from n c r e n g th c e n g c i t y i that is such th 

(e, {e,)) {e {e)) 

N R E L C O S T hoose a s u p p y e g e ith ractiona a r a b l e such that additional cos ncurre 
from ncreasing th c e n g ity r e l t i v e th d d i t i o n l c i t y i l t h 
s such th 

( £ , 5 ( £ , ) ) ( £ ) l - ! ( £ ) ) 

^ ( e ' ) - ^ e ' ) ) (e)l (e)) 
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upp s u p l y e e € is cid Then, i n g e r low nd f he capacity 
variables of must be de te rmned suc t h t the curren solution es no a t i f y these 
boun Thi one ccording one th following wo es 

G R E E D Y Se th i n g e r lower boun for (e) T according th mult iplers th 
c e n g c i t y (e)~| that is (e (e for ll 

C O R V A T V E et the i e g e r lower boun for th t. it ity 
ith positive mul t ip ler (e, (e,T (e, 

o s t p r o c e s s i n 

If the capacity veco r that corresponds to th fi ger city veco r x is not 
ble, a posprocessing step is necessary in order to fin a f e l e integer c a p c i t y vecor . 
d i t i n g u b e w e e n wo different versions. ne for th s u r v i t y m o e l s D I V E I F A T  

RESERVAT and th ther for PATH S T O A T O N 

It is known from Theorem 2 roposition that t h m e t c inequalities 1) and .2) 
suffice esc rbe the p o l y h r a (GH,T)TV) a Y(G H, R E S ) for the s u r v i i l i t y m o e l s 
D I V E R S I F I C A T I O nd ESERVATION, respectivel Furthermore the separation algorithm for 
these classes s e x a c , that is whenever there ex olated m e c inequality, the algorithm 
identifies one Thus the heuristi e v e n u yields an i n g e r feasi solution, if this s e p a t i o n 

lgorithm dd o those a p p l d i th cutting plane algorith 

If P A T H R E S T O R A T O N s t h chosen s u r v i a b i i t y m o e l the postprocessng procee a 
before the sense th the s e p a t i o n algorithms for me n e q u i t i e s 2.22) d 3.2 are 

dd those appl the cutting plane algorithm. gain, the h e u r t i c m h t end up 
with an i e g e r , bu nfas ib le solution I this se, t h postprocessing makes also use of 
s e p t i o n algorithms for nequai t ies that are lmost metric inequait ies. As escribed before 
the f e b i l i t y es serves as separation algorith for the differen versions o metri nequai t ies 
For th s u r v a b i l i t y models DIVERSIFIAT RESERVATON this separation algorithm 

exact nce th column generation p r o c e u r e l identifies m s s n g th ables. For P A T H 
STORAT th column g e n e r t i o n m t f to identify uc les 

Suppose that the a th v a b l e s in the near progra the f i b i t y tes are fixe a 
no column generation appl identify missng path v a l e s For the c i t y v e c o r y 

that correspon t the curren ger c a p a i t y variables x, it es not e x s t a feasible routing 
u s n g onl th tha correspon to iables in the linear program. (Otherwse, we would have 
ta that thus is a sb le Therefore the opti objective function value o this 

line progr r i c t y g r e t e r th zero nd the d v a a b l e s define a inequality (33) 
tha is violate y. I no ath v a b l e is issing (and thi could jus no be proven) 
thi i n e q u i t y i also alid i n e q u i t y . The postprocessing branch&cut a th heu r s t i 
for P A T H ESTORATIO gnores that some of these varables m g h be mss ing th th 
nequality is not necess valid m e r i c inequality. The inequai ty (3.3) efine by th dua 

ables s c o n s u c then the corresponding rengthene me n e q u i t y 6) or 
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(3.16 s adde to the current r e l a x a t i n . Thi th in solution x of I t a t i 
these eps th p o s p r o c e s s n g e v e n l l y yiel ger ble solution 

o m t a t i o n a l tests 

W repor this section on c o m p a t i o n a l experments with differen er selections for 
th b r n c ath h e u r t i c s . pe r fo rmnce m e s u r e s 

th ue th compu solution  

th time e x e c e th h e u r t i 

re use For both c i t y m o e l s , the es are performe on the problem nstances m  
ith the s u r v i a b i i t y p a r m e e r = 5 a d 8 = 0 for D I V E R S I F I C A T I O N , an 

0 a 1.0 for R E V A T I O N an P A T H R E S T O R A T O N . The respective problem 
mes ssocia ith these p a a m e e r s are m 3 d 5 , m 3 d , 13d50, 13d p3d5 d 3d for 

DIVERSIFICATIO 3r50, m3rl00, 13r5, 13rl00 3r5 d 3r for R V A T 
P A T H R E S T O R A T O 

Ever k iterations, the t t ing plane algorithm is partiall e x e c t e d The p a m e e r 
whic e t e rmnes after ow man iterations th t i m e c o n s u m n g sepaa t ion algorith for m t r 
inequalities e x e c t e d ncreased to 10. (Recall thi parameter has been se to for th 
lower bound lculation. Furthermore only r e s t i c number of iterations th tt ing 
plane algorithm perform Other separation algorithm for id i n e q u i t i e s (G 

are use ith th ul p a a m e e r settings efined at th en ection 4 . 4 . 

The compuat iona l resul are presented in ables 4.9 and 4.1 i the following format. 
Column 1 ( N A M ) gves the ame of the problem which also encodes th s u r v i t y parame 
ers. Columns nd 3 provid th selection o run-time arameters In more , column 

DGE) gves th applied gy to selec the nex edge for whi some o th tional ca 
p c i t y bles will be fix Column 3 FIX) p r o i d e s w e t h e r the fixing s t r a t y i R E E D Y 

or C O N S E R V A T V E . For e a h the three s u r v b i t y models are three columns with t a t i t i c s 
following. From left o r h t these columns give the r u n n n g time of the s t a t i n g e u r t i 

) th scale ue th compu solution ) an th number of iterations ( ) 

From ables 4.9 d 4.10 can be seen that th cost of the ting solutions depen on 
th applie c r i te ron to select the supply edge, but no on the s a t e g y to fix i n g e r c a i t y 
v a a b l e s o the hosen s u p p y edge. The winning s e s to select the nex upply ge 
are M A X F R A C , A X U M F R C , and C A P for D I S C T E C A P A C T I E S and M C A P nd 

M I N C O S T for D I V I I B A S C C A P A C I E S . The values of the s a r t i n g solutions o b t n e with 
these criter re all es n sances mos percen worse th the bes ting 
solution 

lly, we observe th the u n n n g times and the number of iterations nee o compu 
th rting solution are e p e n e n from both th c r i te ron o selec th supp ge d th 

ategy to fix les 

A11 lower bounds and soution vaues are scaed to comp with discosure agreements. 
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NAME EDGE FI 
D I S I R E S E O N ATH REST 

NAME EDGE FI 
I ME 1 1 ME 1 1 ME 1 

3 d50/r50 MAXFR GREDY 226 53 58 19 45 39 19 2:50 40 
MAXSUMFR GREDY 34 05 54 182 37 40 22 40 

EDY 226 8 40 19 22 31 09 
N C O GREDY 39 58 40 195 ir 22 19 
N R E C O GREDY 38 18 47 30 
N l C O S EDY 09 55 04 34 41 222 10 44 
N R E C A G R 35 59 3 19 29 04 15 27 

MAXFR 222 09 51 194 34 15 3018 44 
MAXSUMFR C O 21 50 188 26:01 

N C A C O 15 18 30 2ÖÖ 35 
N C 38 15 54 19 47 15 1539 
N R E C O C O 18 59 04 45 41 6:29 
N I C O S C O 58 190 22 31 45 
N R E C A C O 38 54 00 26 41 15 1057 44 

3 d75/rlOO MAXFR GREDY 30 49 53 44 26 1026 
MAXSUMFR GREDY 31 47 53 14 44 262 6:55 44 

N C A GREDY 22 44 26 48 80 8:42 31 
N C O GREDY 222 38 38 35 81 00 
N R E C O GREDY 85 35 41 26 47 318 4417 35 
N I C O S GREDY 22 41 53 266 00 49 75 35 49 
N R E C A G R 07 34 26 38 26 26 24 

MAXFR C O 22 38 54 58 47 39 94 1400 49 
MAXSUMFR C O 201 39 44 49 85 47 

N C A C O 05 51 26 00 45 75 2: 45 
N C O C O 22 48 55 300 0017 54 
N R E C O C O 59 53 59 26 48 48 75 2: 
N I C O S C O 31 51 26 50 51 08 55 
N R E C A C O 15 38 49 24 34 39 26 1 in 39 

3 d50/r50 MAXFR GREDY 19 04 59 15 41 
MAXSUMFR EDY 222 05 01 57 18 3:3 57 

N C A GREDY 30 05 50 11 8 47 213 51 44 
N C O GREDY 21 6 222 54 47 39 14 50 
N R E C O EDY 54 2 222 07 37 31 15 36 
N I C O S GREDY 22 22 14 57 1005 62 
N R C A 15 54 14 45 17 6: 

MAXFR C O 30 05 17 22 14 
MAXSUMFR C O 26 04 55 22 10 58 

222 26 2ÖÖ 39 51 19 14 
N C O C O 34 22 39 35 1731 
N R E C O 57 62 22 14 47 226 44 
N I C O S C O 44 18 41 59 17 59 
N R E C A C O 39 11 49 22 1158 49 

3 d75/rl00 MAXFR GREDY 44 37 35 51 2:31 
MAXSUMFR GREDY m 229 01 05 

EDY 37 57 2: 59 26 6:07 
N C EDY 04 47 45 2: 62 59 18 57 
N R E C O GREDY 18 40 1:35 46 84 51 
N I C O S GREDY 07 34 47 54 71 
N R E C A G R 15 47 58 51 2: 71 44 

MAXFR C O 01 47 62 34 2:26 44 4410 
MAXSUMFR C O 189 58 2:40 243 1555 

N C A C O 07 53 39 2:38 57 6: 73 
N C O C O 198 51 62 50 2:44 74 54 1414 73 
N R E C O C O 05 47 54 71 2: 70 1817 
N I C O S C O 04 01 66 2:44 48 3550 
N R E C A C O 00 2:37 262 2: 

3 d50/r50 MAXFR GREDY 144 2:01 54 181 2:57 54 
MAXSUMFR GREDY 80 161 35 177 

N C A GREDY 07 45 66 18 187 50 
N C O GREDY 09 17 18 26 
N R E C O GREDY 22 26 50 19 40 19 58 37 
N I C O S GREDY 2:19 80 170 18 
N R E C A G R 00 1:12 51 175 51 39 191 39 

MAXFR C O 55 71 51 18 
MAXSUMFR C O 2: 74 53 177 53 

N C A C O 22 2: 79 22 59 184 05 59 
N C 194 2: 70 66 05 59 181 59 
N R E C O C O 14 50 19 45 54 19 35 51 
N I C O S C O 09 2: 80 170 09 18 
N R E C A C O 11 55 71 185 05 01 

3 d75/rl00 MAXFR GREDY 188 57 198 57 09 
MAXSUMFR EDY 188 148 34 66 08 66 

N C A GREDY 18 50 58 05 2:50 58 222 
N C EDY 18 51 59 11 58 222 15 
N R E C O GREDY 1 6 2:38 57 89 4754 59 
N I C O S GREDY 00 18 31 79 88 31 89 
N R C A 54 04 18 34 18 54 

MAXFR C O 07 20 1438 
MAXSUMFR 184 70 22 

N C A C O 00 10 14 74 22 1130 77 
N C O C O 184 11 10 81 2 : 6 : 88 
N R E C O 04 62 45 78 59 5815 79 
N I C O S C O 197 19 74 22 5931 80 
N R E C A C O 19 58 70 48 5041 

le 4.9 S: mp 
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NAME EDGE FI 
DIVERSIFICATION RESERVATION PATH RESTORATION 

NAME EDGE FI TIME YAL TER TIME VAL TER TIME VAL TER 

d 5 0 / r 5 0 MAXFRAC CONSERVATIVE 21 26 01 31 15 10 10: 
NCA CONSERVATIVE 230 21 19 23 15 35 54 
NCOS CONSERVATIVE 35 195 38 
N R E L C O S CONSERVATIVE 307 39 30 09 19 

MAXFRAC GREEDY 26 31 22 6:10 
NCAP GREEDY 189 31 19 30 35 
NCOS GREEDY 39 35 31 19 26 209 07 26 
N R E L C O S GREEDY 54 07 34 85 3 4 4 5 

d 7 5 / r l 0 0 MAXFRAC CONSERVATIVE 17 26 58 18 85 6: 
NCAP CONSERVATIVE 211 11 21 266 10 85 10 
NCOS CONSERVATIVE 226 15 262 84 19 
N R E L C O S CONSERVATIVE 26 26 10 262 

MAXFRAC GREEDY 26 73 2: 19 
NCAP GREEDY 14 19 26 35 75 1 7 4 4 
NCOS GREEDY 18 26 26 39 70 4 9 5 0 11 
N R E L C O S GREEDY 39 35 70 19 26 4 4 5 4 11 

3 d 5 0 / r 5 0 MAXFRAC CONSERVATIVE 309 222 39 31 226 6:00 31 
NCAP CONSERVATIVE 231 45 31 22 2: 30 1 0 5 0 35 
NCOS CONSERVATIVE 57 00 226 00 38 53 39 
N R E L C O S CONSERVATIVE 40 35 45 266 1 4 0 8 

MAXFRAC GREEDY 39 220 31 1 4 3 1 34 
NCAP GREEDY 59 18 35 37 22 6:05 
NCOS GREEDY 22 04 38 22 18 
N R E L C O S GREEDY 2 01 45 47 08 34 1 4 1 1 38 

3 d 7 5 / r l 0 0 MAXFRAC CONSERVATIVE 79 11 34 26 01 34 
NCAP CONSERVATIVE 21 34 48 47 26 27 
NCOS CONSERVATIVE 223 31 51 15 26 35 31 
N R E L C O S CONSERVATIVE 34 40 26 2: 2:15 35 

MAXFRAC GREEDY 55 34 26 262 0 7 4 5 30 
NCA GREEDY 30 31 45 2: 28 55 2 : 3 5 3 7 
NCOS GREEDY 38 31 34 48 2:23 31 54 57 
N R E L C O S GREEDY 26 49 41 57 266 58 35 

d 5 0 / r 5 0 MAXFRAC CONSERVATIVE 22 45 32 66 18 2:07 
NCAP CONSERVATIVE 34 48 40 178 
NCOS CONSERVATIVE 05 38 178 38 35 184 47 
N R E L C O S CONSERVATIVE 05 37 173 26 00 

MAXFRAC GREEDY 50 49 22 18 49 30 
NCAP GREEDY 00 44 34 62 00 18 30 
NCOS GREEDY 19 57 18 34 188 37 34 
N R E L C O S GREEDY 01 51 35 19 50 40 199 49 37 

d 7 5 / r l 0 0 MAXFRAC CONSERVATIVE 190 37 04 2: 34 226 40 35 
NCAP CONSERVATIVE 178 37 189 2:04 30 20 44 26 
NCOS CONSERVATIVE 31 48 190 37 
N R E L C O S CONSERVATIVE 38 58 22 48 39 

MAXFRAC GREEDY 01 35 37 59 45 18 
NCA GREEDY 180 38 190 34 30 3 0 5 7 
NCOS GREEDY 191 31 00 2:04 37 
N R E L C O S GREEDY 39 05 1:19 37 37 1 8 1 0 40 

Table 4.10 I V I I B L E B S: mp 
tics 
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6 2 pr ur 

mplemented one class of improvement heuristics the s o - c l e d decrease heuristic ven 
feasible integer solution, these heuristics p r o u c e l o a l l y optim solution w h i h are minima 
ith respect t the c n o n ti o r e r <E o n d i m e n s o n vecors Thi t i l o r e r 

efne 

<Ey2 « = ( e y 2 ( e e€ 

ever G M lgorith gener e s c r t i o n e c r e s e e u r t i ven 

g o r i t h m D R E A S E S T 

R e q u i r e : f s i b l e solution C ( e e G E 
identify th set R r e u c b l e ges 

h i le / d o 
select e G R 

select tempor valid c i t y for e with (e (e 
est fasibi l i ty empor ity veco r 

f e b l e t h e n 
up C 

e n d i 
upd 

e n wh i l e 
p o s p r o c e s s n g 

The input o d e r e a e c ts of int acity v a l e s T 
corresponding c a p a i t y vector ul ccording (2.4 or 2.7)) is feasib L t C G K.+ 
be th city vector efine by (e) y(e) for all G E. preprocessng ep identifies 
the set R C E of reducie edges w e r e a supply dge s define o be r e u c b l e if onl if 
it ha no been proven, et t h it s impossble to r e u c e its ity. nitiall = { 
E : C(e C°(e)} the main loop, the heuristi a t temp to decrease th apacity 
r e u c b l e e g e s until R i empty. According o some criterion, upply edge is seleced 

iteration. For thi supply ge th capacity is emporar se to some p a i t y C with 
C°(e < C(e) d to this new acity v e c o r the algorithm t est feasibility pplied 
f it i ble, this a p i t y is set, th s, C(e) := . Furthermore i removed from R either 

if C = °(e) or if the c p a i t y veco r has no been f e a b l e E v e n a l l , R is empty, since the 
h e u r t i c never adds an edge R d in ever iteration ither th ity for one suppl ge 

R ecreases or one supp ge remove from 

The lgorithm to est f e a s l i t y a c i t y vector for the s u r v b i l i t y model P A T H R E 

STORATION deserves dditional r e m a r k . descrbe n ection 4.4 thi algorithm ca be 
time-consuming s n c e very large-scle l n e r p r o g r m s mus be solve In consequence th 
column generation p r o c e u r e s not use uring a ecrease h e u r t i order o r e u c e th 
compua t ion time. That s uring suc a e u r i t i c the se pa th variables in the line 
progr r e m n s u n c n g e plying that th routing n a le solution onl use th 
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path o c i t e with ose p a h variables h v e ither b e n ini ta l ly dded t 
progr or which have a l r e d y been gener ith th column generation lgorith 

In the remainder thi section on d e c r e s e eurs t ics we describe th selection criter for 
the reducible suppl dges nd the different eges choose the temporar capacity. 
describe these c r i t e ra s e p e l y for th wo c i t y els presen a f t e r w s resul 
compua t ion expe rmen 

APAC 

Suppose th a le p i t y veco r C(e G the given, and let t < Te be 
th b r e p o i n t with = C(e for every s u p p y e g e e € Furthermore, let x~(et), e G 

1 , . . Te, be th ( f c t i o n l ) solution o th near p r o g r n g relaxation. T h criter 
ose th suppl ge are th f o l l o n g : 

ose r e u c b l e supply ge ith s m l e s tion ity able th s 
(e, (F i th R such th 

(e, ä(e, ) : e G 

U M F R A Choose reducible supp ge with smalles sum tion ity 
les that is uch that 

y (e, (e) : e G 

t = l T < ( e t ) t = l T e e , t ) 

A X O S T Choose a reducble suppl ge whose ity r e u c t i o n p o e n t i l l y incur th 
arges cos r e u c t i o n that is such th 

e G 

A X E L C O S T h o s e a reducible supply ge whose capacity reduction potentiall ncurs th 
arges cos r e u c t i o n relative its c i t y r e u c t i o n that is G such th 

A X I N C C O S T ose a reducble supply edge whose pacity r e u c t i o n o the next s m l l e r 
b r e p o i n t c i t y poen t ia l l ncurs th arges ncremenal) cos r e u c t i o n , th s  

such th 

jA e G 

A X R E L I N C C O S T oose reducble supply ge whose capacity reduction o the next smaller 
b r e a p o n t c a a c i t y potentiall ncurs the l a g e s ncremenal) cos r e u c t i o n relative 
its c i t y r e u c t i o n t h t is such th 

jA e G 
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AX Choose r e l e su ith nti ity r e t i th  
such th 

Suppose the supply ge R is hosen Then, one th followng wo es 
a p p l d t ose th b r e p o hich defines th empor ity on 

G R E E D Y Se ncreasng order C(e) = . . ,te , unti the c p a c i t y veco r with 
temporary c a c i t y (e) on e g e ble If none th city vecors ble 
then remove from 

C O R V A T V E Se (e) = C* e _ 1 If t h ity veco r with thi empor ity on 
ge not f b l e remove from 

I V I B 

o th e f i t i o n s on page le (e, ) be the number multiples of e c n o l 
og nee to c o m n e the c i t y C(e for supply edge e G that is C(e) 
X T (e s s o d with this capa i ty , (e) d e n o e s the cos city (e) th 
is K(e) T ^ e ^ ( e 5 T - Furthermore (e denotes for ever e G ith C(e C 
the larges ity s m l l e r th (e), and ( e J denotes the cos associat with ity 
|_C(eJ. Let ~(e, ), i£, r T, be the actional) solution the l n e p r o g r n g 
r e l a t i o n . T h criter selec suppl ge are: 

ose a r e u c b l e suppl ge ith s m l e s tion ity able th s 
(e, s u c t h 

(e,T äf(e, ) : (e, 

U M F R A Choose reducible supp ge with smalles sum tion ity 
les that is uch that 

(e, (e 

^ + ^Z + 

A X O S T Choose a reducble suppl ge whose ity r e u c t i o n p o e n t i l l y incur th 
arges cos r e u c t i o n that is such th 

f (e {{e e G 
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A X E L C S T h o s e a r d u i b l e ply w o s capacity d u c t n p t e n t i a l l 
arges cos r e u c t i o n relative its c i t y r e u c t i o n that is G such th 

f (e (e ~(e (e) : 

A X I N C C O S T ose a reducble supply edge whose pacity r e u c t i o n o the next s m l l e r 
b r e p o i n t c i t y poen t ia l l ncurs th arges ncremenal) cos r e u c t i o n , th s  

such th 

(e (e f (e (e 

A X R E L I N C C O S T oose reducible supply ge whose capacity reduction o the next smaller 
b r e a p o n t c a a c i t y potentiall ncurs the l a g e s ncremenal) cos r e u c t i o n relative 
its c i t y r e u c t i o n t h t is e G such th 

( ( e i m ( e - [ ( e _ 

f ( e ) - [ ( e (e {e) : e G 

A X A P Choose r e u c b l e supp ge ith poen t i a l c i t y r e u c t i o n , that is 
such th 

(e Ü(e 

Suppose the supply edge hosen Then, one th follong wo es 
a p p l d t ose th empor ity on 

G R E E D Y n c r e s e (e empor unti the c i t y v e c o r ble A f t e r w s , remove 
from 

C O V A T V E Set temporar (e) : (e If th ity ble then se (e 
(e else remove from 

4.6.3 Computat ional tes t s 

In this section, we report on computational experiments with differen m e e r selections for 
th mprovement h e u r t i c s s pe r fo rmnce m e s u r e s 

th ue th compu solution 

th time exec th mprovement h e u r t i 
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u The tests e p p l e m nc it 
vivabii ty a r a m e e r s 8 = 0 and = for D I V E R S I F I C A T I O N , a = 5 1. 
for R E R V A T I O N and P A T H R E S T O R A T O N . The respective problem ames ssoci ith 
these p r a m e t e r s are m 3 d 5 , m 3 d , 13d50, 13d75 p3d5 an 3d for IVERSIFICAT an 
m3r50, m3rl00 13r5, 13rl00, p3r5 an p3 r00 for R V A T I O N an PATH RESTORATION Th 
performance of the mprovemen heuristics i evalu for the bes ting solution comp 

one the b r n c h & path e u r t i c s 

The compuat iona l resul are presented in bles 4.11 and 4.12 i the f o l l o i n g format. 
Column 1 ( N A M ) gves the ame of the problem which also encodes th s u r v i t y parame 
ers. olumns nd 3 provid th selection of run-time pa ramee r s . more ail, column 2 

( E D G E gives the applied strat select the nex edge for which som of th c t i o n l capac 
ity v a a b l e s are f i xd . olumn 3 IX) provides ther the a p p l d fixing s t r a t g y i R E E D Y 

or CONSERVATIVE. For ac of the three s u r v i a b i t y m o e l s are four columns with t a t i t i c s 
followng. From left t ht these columns g v e th scaled4 alues of ting solution START) 

computed solution ) th u n n n g time th ting e u r t i ) t h number 
f iterations T E 

T h observation is the following: Given the bes s t a t i n g solution obtained with a 
branch& path heuristic, onl inor improvements are p o s s l e with the decrease euris 
tics T h argest i p r o v e m e n t i 10 percent and can be observe for 3r50 for the combination 
D I S C R E T C A P A C I E S and R E S E R V A T I O . Often, the provemen is less than 1 percent. I 
other w o r s , the s t a t i n g solutions o b n e ith b r a n c & ath h e u r t i are almost l o l l y 
opti ith respec n e h b o r s o b n e n g n g th ity on ngle suppl ge 
onl 

All pe r fo rmnce measures th final s o l t i o n v l u e the number of iterations nd the run­
ng t i e s , are i n d e p e n e n from both th criterion to select th next supply dge nd the 
r a t y how smaller c a i t y select for the chosen supply dge. Th u n n n g t i e s for 
I V E R S I F I A T I O N a R E S E V A T I nstances re small, r n g i n g b e w e e n fe s e c o n s and 

10 minutes In most case, the time is abou 1 m i n u . For all P A T H R E S T R A T n sances 
wever no mprovement is possible withi th time it n u e s 

ower bounds and soution vaues are scaed to comp with discosure agreements. 
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NAME EDGE 
D I S I RESE R E S T 

NAME EDGE 1 | ME | | | ME | | | ME | 

3 d 5 0 / r 5 0 N F R G R E D Y 21 14 •a 181 18 38 40 200 00 0 1 1 4 
N S U F R G R E D Y 21 14 6 •a 181 18 40 200 00 01 21 

MAX EDY 21 14 57 •a 181 18 40 200 00 2: 21 
M A X R E C O G R E D Y 21 14 •a 181 18 40 200 00 01 22 
M A X I C O G R E D Y 21 14 55 •a 181 18 40 200 00 10 
M A X L I C O EDY 21 14 00 •a 181 18 40 200 00 2: 
M A X C A G R 21 14 •a 181 18 31 40 200 00 00 

N F R 21 14 39 34 181 18 200 00 0 4 0 7 30 
N S U F R CO 21 14 34 181 18 200 00 2: 

M A X C O CO 21 14 51 34 181 18 200 00 0 1 1 7 22 
M A X R E 21 14 55 34 181 18 30 200 00 2: 
M A X I C O CO 214 14 50 34 181 18 28 200 00 01 
M A X R E L I C O CO 214 14 53 34 181 18 200 00 1:00:0 
M A X C A CO 214 14 34 181 18 200 00 2:09 

3 d 7 5 / r l 0 0 N F R G R E D Y 2Ö1 01 47 40 47 20 29 58 26:48 
N S U F R G R E D Y 2Ö1 01 47 58 01 

M A X C O G R E D Y 2Ö1 01 47 58 2: 
M A X R E C O G R E D Y 2Ö1 01 47 58 1 9 1 9 
M A X I C O G R E D Y 2Ö1 01 47 58 01 
M A X R E L I C O G R E D Y 2Ö1 01 47 58 26:35 
M A X C A G R 2Ö1 01 47 58 0 8 3 1 

N F R CO 2Ö1 01 47 58 1:00:02 
N S U F R CO 2Ö1 01 47 58 0 7 0 8 

M A X C O CO 2Ö1 01 47 58 26: 
M A X R E C O CO 2Ö1 01 47 58 6: 
M A X I C O CO 2Ö1 01 47 58 6: 
M A X R E L I C O CO 2Ö1 01 47 58 0 4 5 5 
M A X C A CO 2Ö1 01 47 58 0 8 5 1 

3 d 5 0 / r 5 0 N F R G R E D Y 10 14 77 190 00 10 214 0 1 1 9 55 
N S U F R EDY 10 14 77 190 00 214 2:10 54 

M A X C O G R E D Y 209 14 54 77 190 00 214 04 11 
M A X R E C O G R E D Y 209 14 2:51 77 190 00 214 0 0 4 9 14 
M A X I C O EDY 209 14 2:2 77 190 00 6: 214 05 14 
M A X R E L I C O G R E D Y 209 14 2: 77 190 00 6:04 214 57 
M A X C A 11 14 2:58 77 191 00 7 214 01 14 

N F R CO 10 14 2: 79 190 00 75 214 0 5 4 7 
N S U F R CO 10 14 2: 79 190 00 39 75 214 2: 18 

MAX 209 14 00 79 190 00 214 1:00:6 11 
M A X R E C O CO 209 14 08 79 190 00 47 75 214 0 5 1 9 14 
M A X I C O 209 14 2:44 79 190 00 07 214 
M A X R E L I C O CO 209 14 10 79 190 00 6:01 75 214 2:26 
M A X C A CO 11 14 2: 79 191 00 58 214 55 14 

3 d 7 5 / r l 0 0 N F R G R E D Y 184 189 26 72 229 22 1:2 72 1:00:10 18 
N S U F R G R E D Y 184 189 04 72 229 22 0 1 1 7 10 

MAX EDY 184 189 18 72 229 22 39 
M A X R E EDY 184 189 72 229 22 2:08 14 
M A X I C O G R E D Y 184 189 72 229 22 
M A X R E L I C O G R E D Y 184 189 72 229 22 2:15 10 
M A X C A G R 184 189 72 229 22 15 

N F R CO 184 189 so 229 22 0 4 1 9 11 
N S U F R CO 184 189 59 229 22 2:59 

M A X C O CO 184 189 19 73 229 22 2:44 
M A X R E C O CO 184 189 17 73 229 22 01 6 
M A X I C O CO 184 189 18 229 22 05 i i 
M A X R E L I C O CO 184 189 19 229 22 3 0 1 0 
M A X C A CO 184 189 72 229 22 22: 10 

d 5 0 / r 5 0 N F R G R E D Y 192 194 15 2:51 177 177 402 
N S U F R G R E D Y 192 194 31 15 2:55 177 177 

M A X C O G R E D Y 192 194 41 155 04 177 177 
M A X R E C O G R E D Y 192 194 37 155 2: 177 177 
M A X I C O G R E D Y 192 194 15 2:04 177 177 
M A X R E L I C O G R E D Y 192 194 34 155 2: 177 177 
M A X C A G R 192 194 39 5 15 2: 177 177 

N F R CO 192 194 1:17 54 15 2:18 177 177 
N S U F R CO 192 194 54 15 2:58 50 177 177 

M A X C O CO 192 194 54 155 01 51 177 177 
M A X R E 192 194 54 155 2: 51 177 177 
M A X I C O CO 192 194 41 54 15 2:05 0 177 177 
M A X R E L I C O CO 192 194 35 54 55 2: 51 177 177 
M A X C A CO 192 194 30 54 15 2:01 0 177 177 

d 7 5 / r l 0 0 N F R G R E D Y 179 184 51 Gl 196 198 2Ö 04 0 7 4 1 
N S U F R EDY 178 184 61 196 198 18 20 04 1:00:6 17 

M A X C O G R E D Y 178 184 51 61 196 198 09 20 04 2: 
M A X R E EDY 179 184 48 61 196 198 20 04 01 
M A X I C O G R E D Y 178 184 61 196 198 57 20 04 09 15 
M A X R E L I C O G R E D Y 179 184 51 61 196 198 20 04 01 
M A X C A 178 184 47 61 196 198 8 20 04 2: 10 

N F R CO 179 184 29 61 196 198 49 20 04 0 1 4 1 11 
N S U F R 178 184 49 62 196 198 01 49 2Ö 04 6: 10 

M A X C O CO 178 184 51 62 196 198 41 49 20 04 0 5 3 9 10 
M A X R E C O CO 179 184 49 61 196 198 01 49 20 04 0 4 3 1 11 
M A X I C O 178 184 62 196 198 49 20 04 2: 11 
M A X R E L I C O CO 179 184 51 61 196 198 01 49 20 04 2: 14 
M A X C A CO 178 184 47 62 196 198 49 20 04 04 11 

le 4.11 S: mp m p m e 
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NAME EDGE CAP 
DIVERSI RESE R E S T O N 

NAME EDGE CAP 1 | ME | | | ME | | | ME | 

d 5 0 / r 5 0 N F R G R E D Y 228 30 SI 182 189 28 204 09 1:00:01 
K S U F R G R E D Y m 30 41 182 189 28 204 09 09 

M A X C EDY m 30 44 41 182 189 26 28 204 09 0 5 4 9 11 
M A X R E C O G R E D Y m 30 47 41 182 189 26 28 204 09 
M A X I C O G R E D Y m 30 49 41 182 189 28 204 09 09 11 
M A X R L I C O EDY m 30 41 182 189 26 28 204 09 0 8 4 1 
M A X C A G R 228 30 41 182 189 28 204 09 08 

N F R 228 30 34 182 189 30 204 09 01 17 
K S U F R C O 228 30 182 189 30 204 09 07 19 

M A X C O C O 228 30 48 182 189 26 30 204 09 00 
M A X R E m 30 182 189 26 30 204 09 2:47 
M A X I C O C O m 30 48 182 189 30 204 09 00 
M A X R E L I C O C O m 30 182 189 30 204 09 0 0 0 5 11 
M A X C A C O m 30 182 189 30 204 09 30 14 

d 7 5 / r l 0 0 N F R G R E D Y 11 42 262 262 17 41 262 262 31 
K S U F R G R E D Y 202 11 42 262 262 0 262 262 15 11 

M A X C O G R E D Y 11 42 262 262 262 262 01 
M A X R E C O G R E D Y 202 11 30 42 262 262 262 262 59 14 
M A X I C O G R E D Y 202 11 42 262 262 262 262 
M A X R E L I C O G R E D Y 202 11 42 262 262 262 262 22:57 14 
M A X C A G R 11 26 42 262 262 262 262 0 7 3 9 

N F R C O 11 262 262 262 262 00 22 
N S U F R C O 202 11 262 262 262 262 58 17 

M A X C O C O 11 262 262 262 262 0 4 3 7 4 
M A X R E C O C O 202 11 30 262 262 262 262 1:00:14 
M A X I C O C O 202 11 262 262 262 262 0 0 2 2 
M A X R E L I C O C O 202 11 262 262 262 262 1 9 0 5 
M A X C A C O 11 262 262 262 262 0 1 4 9 17 

3 d 5 0 / r 5 0 N F R G R E D Y 241 31 18 59 220 22 54 225 22 1:00:06 17 
N S U F R EDY 241 31 220 22 22 22 0 8 3 7 

M A X C O G R E D Y 241 31 220 22 22 22 2:00 
M A X R E C O G R E D Y 241 31 220 22 22 22 6: 
M A X I C O EDY 241 31 220 22 22 22 0 5 0 7 
M A X R E L I C O G R E D Y 241 31 220 22 22 22 05 10 
M A X C A 241 31 220 22 22 22 1 0 0 7 10 

N F R C O 241 31 220 22 22 22 0 4 3 8 
N S U F R C O 241 31 220 22 22 22 6:39 

M A X C 241 31 220 22 22 22 0 7 0 8 
M A X R E C O C O 241 31 220 22 22 22 38 
M A X I C O 241 31 220 22 22 22 2: 
M A X R E L I C O C O 241 31 220 22 22 22 45 
M A X C A C O 241 31 220 22 22 22 6:57 

3 d75/ r lOO N F R G R E D Y 07 22 48 45 45 64 54 54 1 1 4 1 
N S U F R G R E D Y 07 22 10 45 45 54 54 0 7 5 1 

M A X C EDY 20 22 45 45 54 54 2: 
M A X R E EDY 07 22 45 45 54 54 08 
M A X I C O G R E D Y 07 22 245 45 254 54 
M A X R E L I C O G R E D Y 07 22 245 45 254 54 4 5 5 5 
M A X C A G R 07 22 11 54 245 45 254 54 1:00:01 

N F R C O 07 22 07 66 245 45 254 54 2:18 
N S U F R C O 07 22 04 66 245 45 254 54 1 9 0 5 

M A X C O C O 20 22 30 66 245 45 254 54 48 
M A X R E C O C O 07 22 245 45 254 54 4 9 3 0 
M A X I C O C O 07 22 26 245 45 254 54 4 0 3 7 
M A X R E L I C O C O 07 22 245 45 254 54 09 
M A X C A C O 07 22 66 245 45 254 54 00 

d 5 0 / r 5 0 N F R G R E D Y 144 194 47 157 17 37 178 178 41 
N S U F R G R E D Y 144 194 157 178 178 

M A X C O G R E D Y 144 194 157 178 178 
M A X R E C O G R E D Y 144 194 157 178 178 
M A X I C O G R E D Y 144 194 157 178 178 
M A X R E L I C O G R E D Y 144 194 157 178 178 
M A X C A G R 144 194 157 178 178 

N F R C O 144 194 157 178 178 
N S U F R C O 144 194 157 178 178 

M A X C O C O 144 194 157 178 178 
M A X R E 144 194 157 178 178 
M A X I C O C O 14 194 157 178 178 
M A X R E L I C O C O 14 194 157 178 178 
M A X C A C O 14 194 157 178 178 

d 7 5 / r l 0 0 N F R G R E D Y 178 178 40 184 189 20 04 2: 
N S U F R EDY 178 178 184 189 20 04 0 0 5 0 

M A X C O G R E D Y 178 178 184 189 20 04 1:00:20 
M A X R E EDY 178 178 184 189 20 04 0 7 0 1 17 
M A X I C O G R E D Y 178 178 184 189 20 04 0 1 0 0 
M A X R E L I C O G R E D Y 178 178 184 189 20 04 
M A X C A 178 178 184 189 20 04 04 11 

N F R C O 178 178 184 189 20 04 0 0 3 5 
N S U F R 178 178 184 189 20 04 05 

M A X C O C O 178 178 184 189 20 04 2:09 
M A X R E C O C O 178 178 184 189 20 04 0 8 1 7 
M A X I C O 178 178 184 189 20 04 04 
M A X R E L I C O C O 178 178 184 189 20 04 0 7 3 1 
M A X C A C O 178 178 184 189 20 04 34 

le 4.1 V I I B L S: m p m e 



158 . A L G O I T H S AND C O M P U O N A L SUL 

4. Computatonal results 

In the previous sections f thi c h p t e r , we escribe various algorith an e v e d 
the influence f s e v e r l p a m e t e r s After e h computational t e s , we fixed aul p a e t e r 
setting hich seem be a good compromse between compua t ion time, d q u i t y th 
computed solutions a lower bounds. With this default parameter setting, we no e v a l u t e 
lower b o u n s solution alues, computation times of the different algorith for ll 
est problem nsances escrbed n the i n t r o u c t i o n to this c p e r see page 100) 

For both p a i t y m o e l s , thi fin es seres performe on all n n e problem n s n c e s 
ith s u r v i v a i t y p a m e r s 8 = an 8 = 75 for D I V E R S I F I C A T I O , and p = 0.5 nd p 

= 1 0 for R E R V A T I N P A T H STORATION. Atogether these are 5 problem n s n c e s 
for ea ity m o e l . able 4.13 show resul for th two a p c i t y models D S C T E 

C A P A C I E S D I V I I B L A S C C A P A C T I E S c o m b a t i o n with the three s u r v i v i t y 
m o e l s D I V E R S I F I C A T I O R E V A T I O N P A T H R E S T O R A T O N The able as the following 
format. The firs column (NAME) ves the ame of the problem instance whi also encodes th 
s u r v v a i t y arameters For both c a p a i t y models are seven columns with a t i t i c s following 
From left to r h t , these columns ve th lower boun ) , th alue of th bes solution 

(VAL) the gap n percent compu A L O W R ) R • 100 ( G A P ) the unning 
times to c o m p u e the lower bound L - T I E ) o solve ll lity problems ( F - M ) d th 
average times to exec ting e u r t i S - T M E ) mprovement h e u r t i c ( I - M E 

There are wo n observations F r s t of all it s p o s s l e compute good solutions for suc 
argescale m - i n g e r p r o g r n g problem ithi ew i n u e s for the " e a e r " survi 

ability models D I V E R S I F C A T O nd R E R V A T ithin a f hours for the " d i f u l 
survivabiity m o e l P A T H STORATION econd, a lo ddition researc s necess 

c c o m p l h the l targe proven optim solutions 

From practi poi of v e w , the computation time o provide good solution portant . 
With our a p p r o c h this m p l e s th the average times to compute a lower bound arting 
solution, an an improved solution mus be added. The sum of these times i very small for the 
problem n s n c e s with D I V E R S I F I C A T I The s m l l e s largest times c be observe for 

ld75 and 12 respectively. These are 33 second nd 8 n u e s for D S C E T C A P A C I T S 

an 11 seconds a 13 m i n u e s for IVISIBL B A S C C A P A C S . The times for R V A T I O N 

are only a little bit larger Thi u r p r n g if one recall that th number of iables 
for the problem n s n c e s with RERVATION is wo o r e r s of a g n i t e larger th those 
for D I V E R I F I C A T O N (Th largest numbers were approximael 20 t r i i o n 00 b l l ion 
respectively; see Table 4.1). The times for P A T H R S T O A T are c o n s i d e r y larger Th 
smales rgest times can be observed for p3 r00 1 2 0 , respectively These are 1 
m i n u e s and ours for DISCETE C A P A C S nd minutes and 1 hours for DIVISIB 
B A S I C A P A C I T I E S . T h mportan point to mak is th following These times are arger than 
those for the other s u r v a b i i t y models but they are small enoug such th problem n s n c e s 

ith P A T H S T O A T be use ithi th nework e s g n process p r t i c e 

The gaps are l r g e . On th average the smallest aps c be observed for R V A T 

(between 10 and 47 percent nd the larges gaps for D I V E I F I C A T O N (between 11 an 
percen Thi s u r p r n g nce we e x p e c d th th ne n e q u i t i e s for the polyh 
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s s o i a t e with th s u r v i v i l i t y mod I V E I F I C A T I O a bett impact on the uality 
the lower bound. Very promising that aps below 20 percen are possble for P A T H 

R S T O R A T I O N . Recall, for the p o l y h e d a a s s o a t d with this s u r v i v l i t y m o e l there are 
no inequalities other than those erited from the respective p o l y h r a for RESEVATION 
Furthermore the line p r o g r m s to est f e a i b i i t y for PATH ESTORATON are extremely 
large, and therefore, it is ou o scope to run our mprovement heur i t i c s Thus, despite ll 
compromises, these relatively small gaps for a very lage-scale problem can be compute I 
r e m a n s th question whether the lower boun or the best heuristic solution s the reason 
for the g There is no serious answer thi question However ests on smaller problem 
instances (with weeks of compua t ion time and a lot f interactive ipulation) dica that 

the lower boun is r e spons i l e . Hence further researc on th p o l y h a l s u c u r e s u r v a b l e 
it n e w o r e sgn problem necess 

It is nteresting o compare the best solutions for varying p a i t y m o e l . For the hosen 
problem i n s n c e s feasible solutions for D S C R T E C A P A C I T I S are feasible for IVISIBL B 

SIC C A P A C E . Therefore, one woul expec t h t the best solutions for D I V I B L B A S 

C A P A C I T I E are the better ones and th th lower boun for D C A P A C I E S are th 
better ones To some e x t e n , the results are th ther wa a r o u n . In 2 / th c o n s e r e d 
problem nstances, the bes solution for D I S C C A P A C I T is better, an mos ses 
the lower bound for D I V I I B L E B A S C C A P A C better Our conclusion tha it ay 
to consider model ith a r e s i e d number of able cities if this s ease r to dle 
For D I V I I B E B A S C A P A C I E S there are much more city choices d it seems to be 
more diffcult o gu the heuristics the r g h t direction. O the ther and the better lower 
bounds with the c a p a i t y m o e l D I V I I B L E B A S I C C A P A C I E S i d i c e that th (mixe- integer 
rounding) nequalities for DIVISIBLE AS C A P A C I T are p r t i l l more successful th 
th a p s c o v e r ) n e q u i t i e s for D S C C A P A C S . 

50% 

DIVERSIFICATION 

RESERVATION 

176 

PATH RESTORATION 

Even more eresting s c o m p a s o n f the best soluti for g s u r v i t y m o e l 
gure 4.7 s o w th average over th bes solutions presented 

For m i n m u m s u r v i v i t y o percent (p = 
0.5 8 = 0.5), th average value of a bes solution 
for R E E R V A T is 1 The average for P A T H 

R E S T O A T I O bou 11 percent ger a d for 
D I V E S I F I C A T I about 20 percent arger. The 
resul for the m x i m u m survivbi l i ty of 100 per 
cent (p .0) hi an only be accompl i sed 
with R E S V A T d PATH RESTORATION, are 
very p r o m n g . On average th bes solutions 
for P A T H R E S T O R A T I O N are less tha 5 percen 
arger t h n th respective best solution for R S E 

VATION. That s, we accompli to comput 
solutions for the practi relev s u r v b i l i t y 
m o e l P A T H R E S T O R A T N , which are onl per 
cen more expensve th solutions compu for 
R E E R V A T 

100% 

RESERVATION 

PATH RESTORATION 

182 

193 

ure 4.7: n o th ity 
els 
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NAME 
DISCRETE CAPACITIES DIVISIBLE BASI CAPACITIES 

NAME 
LOWER VAL GAP L-TIME F-TIME STIME TIME LOWER VAL GAP L-TIME F-TIME S-TIME TIME 

d50 1 1 6 9 3. 1:55 69 4. 
d75 74. 4. 8.11 

d50 84. 05 1: 3. 34. 48 1: 
d75 70 57 1:00 48.88 4. 57 38 1:44 
d50 8.38 3. 8. 34 05 05 
d75 74. 113.05 38 4. 
d50 88 05 111 50 
d75 4. 38.88 1: 38. 1: 

d50 1 1 1 1 4. 74. 1: 88 8. 00 48 
d75 0000 38 1:0550 38 11 4. 1:38 05 
d50 0570 57 50 11 111 8.07 11 34 1: 1:48 
d75 70 1: 1: 4. 00 11 38 
d50 4.48 1:05 57 8. 44. 
d75 8. 38 44. 

d50 34 1: 3. 1: 
d75 34.57 3. 1: 84. 05 11 1: 
d50 1: 1:57 1: 4.50 48. 1: 
d75 8. 44 11:43 1: 83 8. 

50 75 3. 8. 
OO 1:48 11 50 

50 00 7511 3. 38 
OO 3.05 1:48 
50 3. 38. 1 : 5 5 1: 8. 48 1:11 

OO 57 11 3.77 1:57 1: 0705 57 1: 50 1:11 
50 1 1 7 7 1:57 88. 55 11 

00 8. 4. 3. 4.70 38 
50 38. 1:34 55 44. 1:38 

00 44.88 4. 11:38 34 4. 05 
50 3. 4. 48 

00 8. 4. 8. 1:38 50 3. 4. 
50 77 05 11 50 

00 48 4. 1: 1: 44 
50 1 : 0 0 1: 4.70 

00 8. 57 1: 05 48 1:48 
50 05 55 1: 1: 00 57 1:38 

00 1: 00 1: 

50 75 05 66 11 
OO 77 11 1: 55 

50 00 88.34 3.77 05 11: 1:00 48 1: 1: 
OO 4.70 1: 1 : 1 : 05 3. 1: 1: 1: 1: 
50 3. 34 8. 8. 3. 1: 

OO 57 1: 0705 8. 1: 55 
50 38. 50 88. 57 1: 

00 55 75 1:00 
50 1: 1:34 1: 1 : 1 : 55 3. 55 00 1: 1: 

00 4. 1: 05 1:00 
50 75 55 1:1:44 1:07 4. 70 

00 8. 11 11 1: 1: 3. 1:00 1 : 3 4 
50 00 1 : 1 : 57 1: 1 : 0 0 

00 8. 1: 1: 1: 1: 1: 
50 3. 44. 1: 1 : 1 : 4.70 1: 55 1:00 

00 8. 1: 44 1:0005 4. 1: 
50 05 77 3. 00 8. 8. 1:50 11 

00 4. 1: 1: 4. 1: 1: 1 : 1 : 

le 4.13 



onclusion 

t h , we n v e g a d the problem f dimens ble c a p a c i t d n e t w r k s . 
We sta with the p r a c t i a l problem, i n t r o u c e d linea mixd- in teger p r o g r m n g models 
i nves t i a t t h structure polyhe associate ith the solution set such nework de sgn 
problems and develope gr algorith e n r o n m e n hi now be use 
solve such problem 

For all c o m a t i o n s of two c a c i t y a three s u r v i v b i i t y m o e l s , w presen theor 
and lgorithms. W developed new c l s s e s of nequai t ies for severa polyhed relate t the 
considere networ design problems, an for these as well as for prevously nown c l s se s 
of i n e q u i t i e s , we develope s e p t i o n lgorithms t identify v o l nequai t ies at un­
time I ddition, we e x e n d a d ada prevousl now algorith solve the e c o n 
problem ther given c a p i t i e s s u f c e to a c c o m m o a t a routing that s t isf ies all capacity 
a s u r v a b i l i t y requirements. These algorithms are based on column generation. T comple 
th se a l g o r i t h s we develope s e v e r l s t i n g d mprovement h e u r t i c s 

We plemen th software tool D S C N E (Dimensioning Survivable C a c i t t e d NET 
works) in C++ a d JAVA provides an n t g r a t e environment that includes a g r a h i c a user 
in te race and all develope a l g o r i t h . With D I S C N E T it is possble n a y z e necessar invest 
m e n s the network i u c u r e ariation models an p a m e t e r s . Th cos reduction 
o b t a n e d using D S C N E T d i f f u l e s t i a t since its first p r o o t y p e implementations have 
been a p p l i d more t h n four years ago At that time, th firs applications on real-world problem 
n s n c e s with about 10 t a n s p o r t network nodes reveale potenti cost reduction of abou 

— 0% These values ave been o b i n e for D S C R E T E C A P A C I E in combnat ion ith 
D I V E R S I F I C A T O N or V A T O N ; the model c o m a t i o n s hich have been implemented 
th itial p r o o t y p e T a y , an mproved version of DISCNET s permanently used at E-P lus 
and nce no ther tool are used for th ame purpose an estimation of the cos reduction 
for the urrent neworks not possble this con tex , it is worth mentioning that curren 
networ re considerably larger. As we have seen, practica problem instances often l e d to 
the linea m i x e i n g e r programs with more th a trillion variables. Hence it seems obvious 
that even very s m t human being is no able dimension s u r v a b l e it n e w o r 

c o s f e c t i v e wa ithou ols such s D I S N T . 

R g a r d i n g the s u r v a b i l i t y m o e l P A T H R E S T O R A T there re two remar i order 
F r s t our approach o ut i iz ing RESERVATION as relax v a n of P A T H R E S T O A T N re­
vealed the o p p o r u n i t y o desgn low-cos s u r v a b l e neworks for thi model Thi s p a r t i u ­
arl t h case if hi level f s u r v i t y e s r e econ are no are nother 
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m p l e m e a t n that i n t e g r e s th p t i m i z t i o n o the network r th n - f l u r e c e and all 
single nework component falures. To our knowledge, our results pro th first i g r a t i o n 
for P A T H STORAT hic also n c l u e s lower boun alculation. 

The overall problem anno be solved to proven o p t i m i t y with th urrent theoretica 
nowledge e.g throug branch&cu Addition research necessary to ge closer thi 
arget. We see wo ma directions rst, the ger programming problem efine the 

line p r o g r i n g relaxation o b n e d as result of the cutting plane algorith seems be 
c o n s e r a b l y er o solve and consequence thi problem might be a p p r o a b l e by a 
e x t algorithm Closng the p by improving the lower bound is the main focus o suc 
an a p p r o h but it ght even elp to improve th upper b o u n , s n c e the resulting optim 
solution of th r e l e d problem can be used to o b a i solution whi is feasible with respec 
to all c o n s a i n s . e c o n , addition c l s s e s of f c e d e f i n i n g nequalities ogether with fa 
s e p t i o n lgorithm are n e e e d In particular, for the s u r v i v a b i t y m o e l P A T H R E S T O ­

R A T I . In this c o n e x it m g h t be worth considerng the concep m n g ger 
n e q u i t i e s presen ( G ü n l k a d P h e 997) 

There are at leas three major directions for m o e l extensions nd variations one for c 
ities, one for em and one for s u r v b i l i t y As we lready mentioned i C h t e r 

D I S E T E C A P A C I T I E S is a very flexble capacity model which even suffces model SDH ne 
works in whi wavelength division multiplexers are used on po in- to -po nks (no routing o 
wavelengths). However if additional h a r a r e t the nodes such as digita crossconnects or 
add-drop-multiplexers should be considere in th optimization then models for no a p a i t i e s 
become necessary. Furthermore, the inpu for th transport nework p l a n n n g u s u y c o n n s 

emand requiremen for different types o t ra such as user r a c , s g n a l n g trafic , or dat 
t r f i c . With our model it is necessa to a g g r e t e for e h air of n o e s th requirements o 
th differen types. This reduces the problem es considerably, but m i h t be insufficien if 
differen r a f c types nee differen protection gainst network componen failures If thi 

e s red m o e l extension u s n g llel e m s between p r s of nodes hould be used. F 

ally, the s u r v i v a i t y m o e l L I R S T O R A T (see page m h t be possble e x e n s o n  
descrbe it i a ria of th model P A T H S T A T for ngle e g e lures. 

Other ineres t ing research directions a r s e in th e sgn of s e l h e a n g rings (TUT-G.841 
1995 Thi op at tracted many researchers, bu as far as we know, there are no imple 
mentations ex solutions m e t h o s o the o v e r l l networ e s g n problem ncluding th 
interworking of th self-ealing r n g s see TUT-G.82, 997)). T p a l l y , only subproblem 
on sngle ring r e e c e d in m a t h e m a t i a l m d e l s for the optimization o s e l f - h n g r n g 
networks. Closel relat problems a i s e in the esign o optical n e w o r s . As soon as optica 
crossconnec nd o p t i a l a d d - r o p multiplexers become commercally vailable these n be 
use route wavelengths g e n e r d by wavelength d i i s i o n multiplexers From a mathematica 
p o n t o w, very complex, bu eresting, colorng problem see ( M e r e e 997)) mus 
be solve thi conex t . 



ISCNET rap se nterface 

In the main parts of this thesis, we described m a e m a t i c a l models, p o l y h e d l theory and op 
timization algorithms to solve the transport network design problem of a mobile-communication 
provider. The fact that the developed theory and the implemented algorithms to support the 
planning process are used in a real-world environment has another consequence. There is no 
doubt regarding the advantage of having the opportunity to run such state-of-the-art algo 
rithms, but in addition, network planners call for graphical user interfaces which support the 
basic work related to the planning process. To fulfill such non-mathematical requirements 
we supplemented DlSCNET with a graphical user interface implemented in AVA. Some of its 
features are the following 

Import and e p o r t of switching and transport networ  

raphical representation of switching and transport networ  

ialogs to modify all parameters related to costs, capacities and demands. 

Execution of all optimization algorithms presented in this thesis. 

Visualization of solutions in terms of capacities and routings. 

Postscript representation of switching and transport networ, solutions and routings. 
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We implemented a graphical representation of the switching and the transport network (in 
our terminology demand and supply graph). Both networks consist of graphical objects which 
can be moved, deleted, or selected to either edit the properties or to display related routings 

A typical application of DSCNET starts with the import of switching and transport network 
as data files. The switching network is part of the output of the planning step preceding 
the transport network planning (see Chapter 1), and the input transport network consists of 
potential communication links including possibly preinstalled capacities and a specification of 
available capacities (according to one of the capacity models presented in Chapter 2). All this 
input data can easily be manipulated; the network planner can add or delete links and nodes 
in both networks, and can change parameters of all or individual network components. As an 
important feature of D I S C N E T , the input can be analyzed regarding feasibility. As described in 
Chapter 4, beside some exceptional cases when the survivability model P A T H R E S T O R A T I O N is 
used, it is possible to decide whether there exists a solution for the particular problem instance. 
(Recall, we pointed out in Section 4.2 that the decision problem whether a specific number of 
nodedisjoint length-restricted paths exists between a pair of nodes is TV'P-complete.) 

a r m e r s 

The network planner can manipulate all data related to the optimization process. This includes 
the cost and capacity structure of different providers, capacity and survivability model, and 
individual parameters for nodes communication demands and potential t ransport edges 

Cost parameter 

Part of the input of a problem instance are cost values for all available capacities on all potential 
t ransport network edges. It would be exhausting and a source of mistakes if the network planner 
needed to provide all these values. To overcome this problem, cost functions are employed in 
D I S C N E T , from which individual cost values can be computed. As single requirement, such a 
cost functions for a particular capacity is piecewise linear and monotonically increasing with 
respect to the length. 

In DISCNET, the usage of many different providers is permitted. Each one offering different 
technologies or transmission capacities with different cost functions. To maintain these, the 
dialog shown in Figure 4.8 is provided. For a particular technology (basic capacity) of a partic 
ular provider, the network planner needs to specify the shown values; names of technology and 
provider, basic capacity, basic costs (which are fixed costs independent of the length), a maxi­
mum number of available units between a single pair of nodes and additional length dependent 
costs. These latter costs are specified for subsequent length intervals. Each one consists of the 
boundaries of the length interval together with fixed cost and length dependent cost which are 
incurred every kilometer. Notice that it is possible to maintain cost functions of leased lines as 
well as microwaves with this dialog. 
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Edit t e c h n o l o g i e s 

TECHNOLOGY DT-34Mbits _ . 

New technology 

PROVIDER | DeutscheTelekom —- j 

New provider 

TECHNOLOGY DT-34Mbits _ . 

New technology 

Di?LitS'i:hpTeli?l':om| 

Name 

DT-34Mbitg 

Capacity 

4SÖ 

Maximum multiples 

Multiples of unit: 16 

from tö fixed cost length cost 

IIP N |!0 |!0 

- j 150 10 If 
j.teo |I150 ° » 
1)50 llpoo » £_ 

Save | Add new interval 

Apply j Cancel 

i g r e 4.8: E x m p l e of th ialog to maintain cost f u c t i o 

o d a r a m e t e r s 

The parameters of a transport network node are maintained with the dialog shown in Figure 4.9 
Every node has a unique name and it is possible to specify its geographical coordinates. These 
are used to calculate the distance (in kilometer) between pairs of network nodes and thus needed 
to compute cost values of available capacities for potential t ransport edges. Additionally, the 
network planner can specify for each individual node whether its failure should be considered in 
the optimization. If yes then every feasible solution contains routings for the respective failure 
state. 

— Attributes of a node 

Name [Rostock 

Coordinate y : 54.125 

Can fail ? Yes — 

Ok • 

. 

igure 4.9: ample of th ialog to maintain n e s 
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S u p l y d g a r a m e t e r s 

Attributes of an edge 

Edge 155 

to Duesseldorf 

Can fa i l ? NO - J Can fa i l ? 

Installed capacity 

Provider 

0 Installed capacity 

Provider Unknow provider —i 

Installed capacity 

Provider 

Avai lable capacit ies m ^ ^ ^ ^ ^ M l Avai lable capacit ies 

64 

Provider Provider Provider DT DT 

Ok | 

Figure 4.10: Example of th ialog to 
maintain supply edges 

The parameters of a potential edge of the t r a s p r t 
networ are maintained with the dialog shown in Fig­
ure 4 . 0 . Every edge has a unique name and two end-
nodes (specified by name). As for nodes, one param­
eter specifies whether the network planner decided to 
consider the failure of this particular edge. Again, if 
yes, then every feasible solution contains routings for 
the respective failure state. The dialog shows, further­
more, a section to specify the available capacities of 
such an edge. There might be a positive preinstalled 
capacity and alternatives to expand the capacity of 
the edge. The interpretation of the shown capacities 
depends on the capacity model. For D I S C R E T E C A 

PACITIES, these capacities are exactly those considered 
in the optimization (see Section 2.2.1) and for D I V I S 
IBLE B A S I C C A A C I T I E S , the capacities represent the 
basic capacities see Section 2 2 2 ) 

e m a n d g a r a m e t e r s 

-\ 
Edge Edge 1 22 

f rom Bremen 

to Rostock 

Figure 4.11: Example of th ialog to 
maintain demand edges 

The parameters of a communicatio d e m a d are main­
tained with the dialog shown in Figure 4.11. Every 
edge representing a demand has a unique name, two 
end-nodes (specified by name) and a value. We shall 
note, that this value does not have a unit. The network 
planner is responsible for synchronization of capacity 
and demand unit. Additionally, the network planner 
can specify for each individual demand the survivabil 
ity parameters. These are for the normal operating 
state a value for D I V E R S I F I C A T I O N and path-length re 
striction, and for the failure states a parameter which 
is interpreted as either RESERVATION or P A T H R E S T O 

RATION parameter (dependent on the planners choice 
of the survivability model) 
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l g r i t h s & Solutions 

The network planner can choose among several algorithms to optimize the cost of the transport 
network typical sequence of algorithms comprises 

the calculation of a lower bound see Section 4.5) 

the execution of several starting heuristics see Section 4 . 6 ) , and 

the execution of several improvement heuristics (see Section 4.62), with one or several of 
the previously calculated starting solutions as input 

Select, please 

Start heuristics 

j minimum fractional capacity variable 

G minimum capacity increase 

] minimum cost increase 

[J minimum relative cost increase 

D minimum incremental cost increase 

Apply | Cancel 

As described in Section 4.6, the particular choice o 
starting and improvement heuristics depends on the se 
lected combination of capacity and survivability model 
These can be selected with the shown dialog. After the 
execution of this sequence of algorithms there exists a set 
of feasible solutions. Each consists of a choice of capac 
ities for all potential edges of the transport network and 
it is proven that these capacities suffice to accommodate 
a feasible routing in all operating states. Furthermore, a 
lower and an upper bound for the value of an optimal so­
lution have been calculated and thus a quality garantee 
for the computed solutions can be provided. 

In addition, feasibility can be tested for every admissible selection of capacities on all supply 
edges, and if feasible, routings can be computed for such capacities. The latter option is 
particularly important if the planner imported solutions from other projects or changed the 
value of some capacities. Recall, beside some exceptional cases when the survivability model 
PATH RESTORATION is used, the implemented algorithm to test feasibility yields an exact 
decision. That is, if there exist feasible routings for a given choice of admissible capacities then 
DlSCNET will compute such routings. In the other case if no routings can be computed, then it 
is proven that no feasible routings ist We are not aware of any other tool that implemented 
this feature.) For given routings, DlSCNET provides different views such as the table shown in 

igure 4 . 2 

M J | -1 Routing M J | 
Show Options 

State Name Source Target Value Flow Edges 
NOS 1 Duesseldorf Aachen 7.0 7.0 55 » NOS 3B Nuernberg Frankfurt 5.0 5.0 19 8 2 3 
NOS 35 Frankfurt Aachen 4.0 4.0 55 31 
NOS 34 Duesseldorf Hannover 5,0 5.0 29 7 13 
NOS 33 Magdeburg Kassel 2.0 2.0 7 
NOS 32 Berlin Magdeburg 4.0 4.0 47 
NOS 31 Magdeburg Erfurt 3.0 3.0 24 7 
NOS 30 Erfurt Frankfurt 7.0 7.0 27 
NOS 29 Dresden Erfurt 8.0 5.0 38 

1.5 37 42 43 
1.0 43 33 45 49 
0.5 24 7 47 49 

NOS 28 Kassel Frankfurt 11.0 11,0 18 -
A II operating st ates 

i g e 4 . 2 : Example of a v i s a l i z i o n o in 
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