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Deutsche Zusammenfassung

In der vorliegenden Dissertation untersuchen wir die Optimierung von ausfallsicheren Telekom-
munikationsnetzwerken. Wir préasentieren unterschiedliche gemischt-ganzzahlige Modelle fiir
die diskrete Kapazitatsstruktur, sowie fiir die Sicherung des Netzes gegen den Ausfall einzelner
Komponenten. Die Modelle wurden in einer Kooperation mit der E-Plus Mobilfunk GmbH
verwendet. Die theoretischen Resultate wurden in Algorithmen umgesetzt und in das von uns
entwickelte Netzwerksoptimierungswerkzeug DISCNET (DImensioning Survivable Capacitated
NETworks) integriert, welches seit mehreren Jahren in der Planung bei E-Plus eingesetzt wird.

Wir betrachten das Transportnetzplanungsproblem eines Telekommunikationsanbieters. Die-
ses Problem setzt auf logischen Kommunikationsanforderungen zwischen den Standorten (Kno-
ten) des zu planenden Netzes und potentiell installierbaren Verbindungen (Kanten) zwischen
derselben Knotenmenge auf. Ein Kapazitdtsmodell stellt die Information bereit, welche Ka-
pazititen auf den potentiellen Kanten verfiigbar sind. Wir betrachten zwei Modelle. Entweder
ist eine explizite Liste der verfiigbaren Kapazititen gegeben oder eine Menge von sogenannten
Basiskapazititen, die auf jeder Kante individuell kombiniert werden konnen. Die Basiska-
pazititen miilen paarweise ganzzahlige Vielfache voneinander sein. Man beachte, daf} diese
Eigenschaft von den internationalen Standards PDH und SDH erfiillt wird. Ein Ausfallsicher-
heitsmodell stellt die Information bereit, wie das zu planende Netz gegen den Ausfall einzelner
Netzkomponenten geschiitzt werden soll. Wir betrachten sinnvolle Kombinationen der Mo-
delle DIVERSIFICATION, RESERVATION und PATH RESTORATION. Das erste Modell garantiert
Ausfallsicherheit durch kommunikationsbedarfsabhangige Beschrankung des Prozentsatzes, der
durch einzelne Netzkomponenten geroutet werden darf. Bei den beiden anderen Modelle kénnen
Kommunikationsbedarfe bei Ausfall einer Netzkomponente auf unterschiedliche Weise neu ge-
routet werden. Ziel der Planung ist eine kostenminimale Kapazitatsentscheidung, die eine
Routenplanung aller Kommunikationsbedarfe gemafl den Ausfallsicherheitsanforderungen er-
moglicht.

Wir entwickeln ein Schnittebenenverfahren zur Losung der betrachteten Optimierungspro-
bleme. Zu diesem Zweck untersuchen wir Polyeder, die mit den verschiedenen Problemen
assoziiert sind. Wir prasentieren neue Klassen von Ungleichungen, entwickeln Separationsalgo-
rithmen und Heuristiken. Mit dem Schnittebenenverfahren werden untere und obere Schranken
fiir den Wert von Optimallésungen berechnet, und daher ist es moglich, Qualitatsgarantien fur
die berechneten Loungen anzugeben. Parallel zur Beschreibung der implementierten Algorith-
men prisentieren wir umfangreiche Tests mit praktisch relevanten Daten, die zu Problemen mit
mehr als 2 Billionen Variablen fithren.

Schliisselworte: Ausfallsichere Telekommunikationsnetzwerke, Schnittebenenverfahren

Mathematics Subject Classification (1991): 90C11, 90C90, 90B12






Abstract

In this thesis, we develop a framework for cost-minimal survivable capacitated network design
problems. We present different models both for the discrete capacity structure and the pro-
tection of the network against the failure of single network components. The mathematical
models are used within a cooperation with the German mobile-phone provider E-Plus Mo-
bilfunk GmbH. The theoretical and practical results have been integrated into our network
dimensioning tool DISCNET (DImensioning Survivable Capacitated NETworks), which is in use
at E-Plus.

We consider the transport network design problem of a telecommunication provider. As
input is given a so-called demand graph which contains as edges the logical communication
requirements in terms of channels, and a supply graph which contains as edges the potential
physical transmission links. A capacity model provides information about capacities which can
potentially be installed on the edges of the supply graph together with the respective costs.
We consider two models. Either it is possible to choose the capacity of each edge from a finite
set of capacities, or, in the other case, as a non-negative integer combination of a finite set
of basic capacities. These basic capacities satisfy, as in the plesiochronous digital hierarchy
(PDH) and the synchronous digital hierarchy (SDH), that each one is an integer multiple of
all smaller basic capacities. The survivability model provides information on how to cope
with single node or single edge failures. We consider reasonable combinations of the following
models: DIVERSIFICATION, RESERVATION, and PATH RESTORATION. The first model ensures
survivability through a “node-disjoint” routing in the non-failure case, while the other models
ensure survivability through rerouting in case of a single network component failure. These
latter models differ in the way the failure routing is performed and to which extent the non-
failure routing must be respected. The objective is to choose capacities at minimal cost such that
it is possible to route the communication demands simultaneously under the given survivability
requirements.

We employ a cutting plane approach to solve the different network design problems. Thus,
we focus on computing a lower bound for the optimal solution value and feasible solutions
through heuristic algorithms. Together, the values of the lower bound and the best solution
provide a guarantee for the quality of the solutions computed. We investigate the structure
of associated polyhedra, develop separation algorithms for various classes of inequalities, and
integrate this together with different types of heuristics. Throughout the thesis, we present
computational studies of the different algorithmic parts with real-world problem instances that
lead to mixed-integer programs with more than 2 trillion variables.

Keywords: Survivable Network Design, Cutting Plane Algorithm
Mathematics Subject Classification (1991): 90C11, 90C90, 90B12
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Introduction

In this thesis, we present part of the research that has been motivated by an ongoing project
of the Konrad-Zuse-Zentrum fiir Informationstechnik Berlin (Z1B) with the E-Plus Mobilfunk
GmbH. The project was initiated in July 1994 and our team at Z1B, guided by Martin Grotschel,
started with Dimitris Alevras, Mechthild Stoer and myself. A few months later Mechthild was
hired by the Norwegian Telecom and after two years, Dimitris left to IBM. Besides the support
of some students, I have been working alone in this project since then'.

The structure of this thesis reveals our view of solving problems arising in practice. We start
with a description of the practical background, then set up mathematical models which focus
on important parts of the practical problems, continue with a mathematical investigation of
the structural properties and eventually, we convey the theory into an algorithmic environment
which can then be used to solve the practical problems.

Along this line of thought we attack the transport network design problem of a telecom-
munication provider. This is a very general problem and many telecommunication providers
(including mobile-communication providers) need to solve some variation of the basic version,
which can be defined as follows:

Given are the locations (nodes) of the network, communication requirements
between pairs of nodes, and a set of available capacities for each potential
line (link) between two nodes. A feasible solution comprises a topology
consisting of a subset of the links, an individual capacity for each chosen
link, and routings for all communication requirements such that the chosen
link capacities suffice to accommodate the routings simultaneously. Among
all feasible solutions, the target is to find an optimal solution with respect
to the cost incurred by the selected capacities.

The combinatorics of this integrated topology, capacity and routing problem is enormous,
since the number of potential topologies and transmission paths is typically exponential in
the number of available transmission links. In fact, many special cases of this basic version
of network design problem are hard optimization problems in the sense of complexity theory.
Another reason for this complexity is the limited number of available capacities. In practical
applications, the set of capacities has almost always a discrete structure since the standards

1T will use “we”, whenever I make reference to this project team or to the reader and myself.



2 INTRODUCTION

defined by the international telecommunication union (ITU) provide a well-defined set of ca-
pacities which are supported by the available network equipment. It is worth mentioning that
many of the survivable capacitated network design problems (including those considered in
this thesis) would be polynomially solvable if an arbitrary capacity could be installed on links
between network nodes.

As we mentioned before, routings satisfying the communication requirements are one target
within the transport network design. However, we did not mention yet, that the routings should
be chosen such that the network is considered survivable. According to the standards defined
in (ITUT-G.841, 1995), a network is survivable, if it “is capable of restoring traffic in the event
of a failure. The degree of survivability is determined by the network’s ability to survive single
” The equipment in
modern telecommunication networks is highly reliable, but survivability is an issue since there
might be a huge impact of network failures on our society. Just recall the predicted horror
scenarios related to the so-called year 2000 problem, and consider the following newspaper
references as a few examples of network failures:

line system failures, multiple line system failures, and equipment failures.

e In May 1988 (The Wall Street Journal, 1988), an electrical fire in a switching center in
Chicago was responsible for 20 percent flight reduction at O’Hare, which has been the
most busy airport of the US at that time. It turned out, see (IEEE Spectrum, 1989), that
“some areas had no service for a month, and dollar estimates of lost business ranged from
hundreds of millions to tens of billions”.

e Christmas 1994 (Der Tagesspiegel, 1994), a digger cut the main cable connecting several
districts of Berlin to the rest of the city. In consequence, approximately 160 000 households
were without cable TV and 3000 households without telephone. Recall, it was Christmas.

e In June 1995 (Der Spiegel, 1995), terrorists cut fiber-optic cables at strategic points close
to the international airport in Frankfurt. They were successful. The complete southern
part of Frankfurt, including the airport as well as the university hospital, were without
data connection and telephone.

e In March 1999 (Die Presse, 1999), a digger cut an important cable in Austria. As a
consequence, Vienna and the western parts of Austria were disconnected for almost a
complete day.

Modern telecommunication networks are based on fiber-optic cables, which have the potential
to transport huge amounts of data using the necessary equipment at the end-nodes. Hence,
networks with such high capacity links tend to be very sparse and each link carries a substantial
part of the overall traffic. The bad news within this context are that a substantial amount of
traffic is lost in case of such a link failure, if the network has not been prepared for the particular
failure situation. Since networks which are designed to be survivable tend to be considerably
more expensive, the network planner has to find the right balance between cost and quality
of the network. This is exactly the topic of this thesis: How to design a cheapest survivable
network?

A few years ago, it has been common practice to solve the transport network design problem
through iteration over the following subproblems.
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e Select the topology of the network.
e Choose a routing for the communication requirements using the selected topology.

e Choose capacities able to accommodate the chosen routings.

It has been proven by experience that this sequence of decisions leads to feasible but very
expensive solutions. The reason is the following. If the network planner chooses a cheapest
among all connected topologies, the result will be a minimal spanning tree. Obviously, such a
decision completely determines the other two steps. The routing is fixed since there is exactly
one path between every pair of nodes and the capacities are determined by the routing decision
anyway. Even if survivability issues have been included in the topology planning, the cheapest
sufficiently connected topology will be very sparse, and therefore the routings as well as the
capacities are almost predetermined.

During the last years, computing power has been rapidly increasing and solution method-
ologies have been considerably improved by several researchers. Hence, it appears natural that
modern telecommunication providers are now demanding for a more sophisticated integration
of planning problems as well as solution methods.

We examined many commercial network planning tools, which usually provide an elaborate
graphical user interface and whose solution approaches are also becoming more sophisticated.
Typically, some sort of a randomized heuristic such as simulated annealing, genetic algorithms
or tabu search has been implemented as solution approach. In all tools we got aware of, however,
at least two features are missing which are important for optimization network design tools in
a mathematical sense:

e First, an algorithm to compute a lower bound for the cost of an optimal solution. Without
this feature, it is impossible to prove that a solution is optimal or to provide a quality
guarantee for the solutions.

e Second, an exact algorithm to verify whether a given set of capacities can accommodate
routings of the communications demands which satisfy all imposed requirements. Without
this feature, even the enumeration of all feasible capacity selections becomes a non-trivial
task.

Unless P = NP (which is not believed by the majority of researchers in this field), we cannot
expect to find an efficient algorithm that computes provably optimal solutions. Therefore, we
decided to develop problem dependent theory for a cutting plane approach, a solution methodol-
ogy which has proven to be successful for many ANP-hard combinatorial optimization problems.
This approach potentially yields provably optimal solutions, since lower bounds (we assume a
minimization problem) are calculated for the value of an optimal solution throughout the opti-
mization process. This is done in addition to the computation of feasible solutions. With the
knowledge of such a lower bound, a quality guarantee for the value of the best solution found
can be provided. In more detail, if up denotes the value of the best solution found and low the
computed lower bound, the quality guarantee (gap) is defined as (up—low) / low. For example,
if some heuristic yields a solution of value 11 million and the lower bound calculation yields 10
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million, then it is proven that an optimal solution is at most 10 percent cheaper. Notice that
the best solution found might be optimal but this just cannot be proven. If the lower bound,
however, is equal to the best solution value, then this establishes a proof of optimality for the
best solution found.

In this thesis, we integrate different models for the discrete capacity structure and different
models to deal with single network component failures. Our mathematical models integrate
topology decisions, capacity decisions, routing decisions and survivability issues. This integra-
tion leads to huge mixed-integer programming models which are extremely difficult to solve.
Just as an example, several of the practical problem instances used within this thesis have more
than a trillion (1000 000 000 000(!)) variables. This indicates the necessity of sophisticated al-
gorithms. We present problem dependent theory including the investigation and classification of
polyhedra related to different network design problems together with separation algorithms for
all classes of inequalities employed in the cutting plane algorithm. We develop several starting
and improvement heuristics, and extend and adapt column generation based algorithms to solve
the decision problem whether given capacities suffice to accommodate a routing that satisfies
all capacity and survivability requirements. We developed and implemented an optimization
tool, called DISCNET (DImensioning Survivable Capacitated NETworks), that has been in use
within the network planning process at E-Plus for more than three years now. It serves as a
tool for short-term network expansion as well as for long-term network and budget planning.
Beside the potential cost reduction of 10 — 20%, in other words millions of Euro, DISCNET puts
the network designer into position to analyze different network scenarios. It becomes easier to
decide how much capital one is willing to invest in order to achieve a well-defined quality in the
network.

Outline of the thesis

The preliminaries, which follow this introduction, serve as a short reference to the notation and
concepts used. We cover parts from linear algebra, polyhedral theory, linear programming and
graph theory. The subsequent chapters reveal, as we already mentioned, our view of solving
practical problems.

In Chapter 1, we describe the practical background of the overall planning process for a
mobile-communication network. We give an overview of the structure of such a network and
outline different parts of the planning process. Beside the transport network design, these are
node location problems, traffic forecast, and switching network planning.

In Chapter 2, we focus on a mathematical view of the considered problem. We formulate
linear mixed-integer programming models for the transport network design problem, covering
two models for the discrete capacity structure, and three models to deal with single network
component failures. At the end of the second chapter, we give a survey on capacitated network
design problems in which the problem of routing the demands is defined as a multicommodity-
flow problem.

In Chapter 3, we present our theoretical knowledge about the polyhedra defined as the convex
hull of feasible solutions. For each combination of a model for the discrete capacity structure
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and a model for survivability, we investigate the facial structure of the respective polyhedra.
We provide a coherent presentation of the knowledge about these polyhedra including several
new classes of valid and facet-defining inequalities.

In Chapter 4, we describe how to practically solve transport network design problems on
the basis of the research presented in the preceding chapter. Starting from an overview of the
particular cutting plane algorithm, we discuss in the subsequent sections details concerning
preprocessing, linear programming relaxations, feasibility problems of capacity vectors, sepa-
ration algorithms, and heuristic algorithms. Eventually, we present the results of thorough
computational experiments with real-world data.

These four chapters build the core of the thesis. Afterwards, we conclude with some remarks
on possible future research directions and we briefly describe the graphical user interface, which
has been implemented (in JAVA) to support the basic work of the network planner.






Preliminaries

In the following, we give an overview of well-known notions and concepts from linear algebra,
polyhedral theory, linear programming and graph theory. Our description is rather compact
and does not serve as an introduction to the respective areas. Hence, we refer the reader
not familiar with the particular theory to one of the following excellent books and overviews.
An introduction to linear algebra can be found in any basic textbook on this topic. A good
overview of polyhedral theory can be found in (Pulleyblank, 1983), (Padberg and Grotschel,
1985), (Schrijver, 1986) and (Nemhauser and Wolsey, 1988). The books (Schrijver, 1986) and
(Padberg, 1995) give excellent introductions to the theory of linear programming. A more
elementary introduction to this topic can be found in (Chvétal, 1983). There exists a huge
number of introductory books for graph theory. (Bondy and Murty, 1976) might serve as a first
reference. Finally, we refer to the excellent book (Ahuja et al., 1993) which provides a coherent
introduction to the theory of network flows.

Linear Algebra

We denote by R, Q, and Z the sets of real, rational and integer numbers, respectively. For
the positive part of these sets (including zero) we use the symbols R, Q4 , and Z_. To make
definitions short we use K (or Ky ) if any of these three sets can be applied. We distinguish
between the positive integer numbers without zero by N. That is, N = Z\{0}. For n € N
the set of n-dimensional vectors over K is K. Special vectors are 0 and 1, the vectors of all
0’s and all 1’s, respectively. The transposition of a vector z is z”. The n-dimensional vectors
{1, ..., zx} C K" are linear independent, if \; = 0,4 = 1,...,k, is the unique solution of the
equation Zle Aix; =0with \; e Ki=1,...,n.

For z € K, we denote by [z] the smallest integer number larger than or equal to z and by
|z] the largest integer number smaller than or equal to z. We also say [z] and |z] are the
ceiling and the floor of z, respectively. If z € Z\{0} divides y € Z\{0}, that is, if y/z € Z,
we write z|y. The greatest common divisor ged(Y) of a set Y = {y1,...,yn} € (Z\{0})" is
max{z :z|y; fori=1,...,n}.

For any finite set F, we identify a function z: E — K with the corresponding | E|-dimensional
vector & = (z¢)ecr € K¥ := KIFl. The incidence vector x* € {0,1}F of F C E is defined by

xF(e) :=1ife € F and xF(e) := 0 if e ¢ F. Conversely, a vector z € {0,1}¥ defines the
incidence set Fy := {e € E : z, = 1}. More generally, the support of a vector z € K¥ is defined
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by supp(z) := {e € E : z. # 0}. Thus, F,; = supp(zx) for a {0,1}-vector z.

A set X C K" is bounded, if M € K, exists with ||z|| < M for all z € X and some norm
|1 : K* - K. (A norm satisfies (9)||z|| > 0,Vz € K% (#)|| x| = |M|z|,V) € K,z €
K"; (431) |z + y|| < ||z|| + ||lyll, Vz,y € K*.) For X C K", we define

lin(X) :={zekK*: In,...,€Kand Jz1,...,2;, € X, 1 € Ns.t.
aff(X) ={zeK: In,...,€Kand Jz1,...,2; € X, 1 € Ns.t.

521 )\i =land z = Eﬁ:l )\zmz} )
conv(X) := {z € K": JX,..., M €K, and Jzq,...,2¢ € X, 1 € Ns.t.
521 )\i =1 and r = Zﬁ:l )\ZLL‘Z} )
cone(X) := {z €K": dX,..., M €K, and Jz4,...,2¢ € X, L € Ns.t.
Tr = Zﬁ:l A,L.’E,L},
to be the linear, affine, convex and cone hull of X, respectively. The dimension dim(X) of
X is dim(aff(X)), that is, the maximum number of linearly independent vectors in aff(X).

Polyhedral Theory

Given a € K"\{0} and «a € K, the set {x € K" : aTz < o} is a half-space and {z € K" : Tz =
a} is a hyperplane. The finite intersection of half-spaces given by {z € K" : Az < b} with
A € K™ and b € R™ is a polyhedron, where K™" is the space of matrices with m rows and
n columns. A bounded polyhedron is a polytope.

The inequality e’z < « for @ € K", a € K is valid for a polyhedron P, if P C {z € K" :
aTz < o}, and it is tight for P, if it is valid and F, o := PN {z € K" : aTx = o} # 0, that
is, if there exists Z € P with a”Z = a. We say, Fao is the face of P induced by alrz < a.
A zero-dimensional face is a vertex, a one-dimensional face is an edge and a face F' # P of a
polyhedron P is a facet of P if it is maximal with respect to inclusion. If a’z < « is valid
for Pand F = {z € P : a"z = o} is a facet of P, we say that «”z < « is facet-defining or
facet-inducing. An equivalent characterization of a facet is that dim(F) = dim(P) — 1. If a
polyhedron P is full-dimensional, and "z < o and b” = < §8 are facet-defining with Fao = Fbp,
then there exists A € Ry with Aa = b and Aa = 8. Note, this property is the key to most
proofs that some inequality is facet-defining for a polyhedron. It is not difficult to see that
every bounded polyhedron has vertices. If a polyhedron has vertices then every face of the
polyhedron has vertices.

Linear Programming

A polyhedron P = {z € K" : Az < b} CK", for K € {R,Q}, and a linear function ¢ : R® - R

define a linear program, for short LP. Minimization and maximization versions are

max{c z : z € P} and min{c’z : z € P} . (1)
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A vector z* € P, which attains the maximum (minimum) in (1), is an optimal solution. The
set of optimal solutions {c'z : € P,z = ¢'z*} of a linear program max{c’z : x € P} is
a face of the polyhedron P. Thus, if a linear program is bounded, the optimal solution value
is attained at a vertex. For every linear program max{c’z : Az < b,z > 0}, the dual linear
program is min{b"y : ATy > ¢,y > 0}.

Theorem 0.1 (Duality of linear programming) Let A € K™" be K" and c € K*. If
{zeK": Az <bz>0}#0 and {yeK":ATy>cy>0}#0,

the optimal solution values of

max {cTa: Az < b,z > O} and min{bTy ATy >y > ()} (2)
are finite, and
Tc{recK : Az <bz>0} and Fe{ycK":ATy>cy >0} (3)

exist such that ¢’z = bT7.
Under the assumption of Theorem 0.1, the maximum and the minimum in (2) are attained.

Theorem 0.2 (Complementary slackness) Let A € K™, b € K™ and ¢ € K. If there
erist T € {z € KL : Az < b} and § € {y € KT : ATy > ¢}, then T and § are optimal
solutions of max {cTa: Ax < b,z > ()} and min {bTy ATy > ¢,y > 0}, respectively, if and only
if 7(b— A%) =0 and Z(ATH —¢) = 0.

Graph Theory

An (undirected) graph G = (V, E, ¢) consists of two sets V and E and an incidence function
¢: E — V) where V@ is the set of unordered pairs of V. The elements of V are the nodes
of G, and the elements of E are the edges of G. For each e € E with ¢(e) = {u,v}, the nodes
u and v are the end-nodes of e. We say, u is adjacent to v and vice versa v is adjacent to u,
and e is incident to u and v, respectively. For each v € V, the number d(v) of incident edges
is the degree of v in GG. The node v is an isolated node if the degree of v in G is zero, that is,
d(v) = 0. An edge e € E with ¢(e) = {u,u} for some node u € V is a loop, and two edges
with the same end-nodes, that is, two edges e1,e2 € E with ¢(e1) = ¢(e2), are parallel edges.
Notice that parallel edges are the reason for the formalism with the incidence function. If we
do not have to distinguish between parallel edges, or the edges are unique within the context,
we write e = uv € E or e = {u,v} € E for an edge e € E with ¢(e) = {u, v}, instead of using
the incidence function. A graph without loops and parallel edges is a simple graph.

A graph H = (W, F,%) is a subgraph of G = (V,E,¢), f W C V,F C E and 9%(f) = ¢(f)
for all f € F'. Special subgraphs are induced by subsets of the nodes and edges, respectively,
and as a special case, by removing a node or an edge.

For a subset F' C E of the edges the triple G[F] := (V, F, ¢F) is the subgraph of G induced by
F , where ¢ : F — V(2 ig the incidence function ¢ restricted to F, that is, ¢r(f) = #(f) for
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all f € F. For a subset W C V of the nodes, E(W) C E denotes the subset of edges with both
end-nodes in W, that is, e € E(W) if and only if ¢(e) € W®. With this notation, the triple
GIW] := (W, E(W), ¢gw)) is the subgraph of G induced by W, where ¢y is, analogously,
the incidence function ¢ restricted to the edge set E(W). In the following two special cases of
induced subgraphs we slightly change the common notation for reasons of brevity. If an edge
e € E is removed from G, the subgraph G, = (V, E,) of G is obtained, and if a node v € V
and all edges incident to v are removed from G, the subgraph G, = (V,,, E,) of G is obtained.
A node-set W C V is a node-cover of G, if either u € W or v € W for each e € F with

¢(e) = {u,v}.
In the following, we represent graphs by their nodes and edges whenever the incidence

function is implicitly given. Therefore, we will denote a graph by G = (V,E) instead of
G=(V.E, ¢)

Given two subsets Wi, Wy C V with Wy N Wy = 0, the set §(W1,Ws) :={e€ E:Ju €
Wi, we € Wa with ¢(e) = {wy,w2}} C E contains all edges with exactly one end-node in Wi. A
subset F' C F of the edges is called a k-graph-partition of G, k € N, if there exists a partition of
the node set V into k subsets Vi,...,Vy with ViU--- UV, =V and V,NV; =0 for 1 <i < j <k,
such that F = dg(V1,..., V) := U1§i<j§k 3¢ (Vi, V). A special case of a k-graph-partition of
G is a cut, where F' = 6g(W,V\W) =: 6g(W) for a subset W C V of the nodes. If W = {v},
we write dg(v) instead of dg({v}).

If it is necessary to distinguish between different graphs, we extend all notational conven-
tions introduced above by a supplementary index. For a graph G we write, for example,

ba,da(v), 6q(w), etc.

A path P in G from vy to vg is a sequence of the form P = (vg,eq,v1,es,...,ex,v;) where
v, € Viori=0,...,k e € Efori=1,... k, and v;_1,v; are the two end-nodes of edge
e;,t = 1,...,k. The length of a path is its number of edges, that is, the length of P in the
notation above is k. The nodes vy and v are the end-nodes of P and the nodes v1,...,v,_1 are
the inner nodes of P. We use the notatione € Porv € P,ife € Fisanedgeof Porv € Vis an
inner node of P. We denote by V(P) and E(P) the set of inner nodes and edges, respectively.
That is, for a path P = (vg,e1,v1,€2,...,€k,v;) in G we have V(P) = {vy,...,v5-1} and
E(P) = {e1,...,ex}. It is common to distinguish between paths and walks, where walks are
paths without node repetition. However, we will only use paths without node repetition and
only use the notion of a path. A cycle or closed path is a path where the end-nodes are identical.
A cycle is odd if its length is an odd number, and an odd-cycle node-cover is a set of odd-cycles
such that each node is inner-node of at least one odd-cycle. Two paths P; and P are node-
disjoint if V(P1) NV (P2) = (), that is, if the intersection of the two sets of inner-nodes is empty,
and analogously, P; and P, are edge-disjoint if E(P1) N E(P2) = 0, that is, if the intersection
of the two sets of edges is empty.

A graph G is connected if for each pair of different nodes » and v there exists a path in
G from v to v. More generally, a graph G is k-node (edge)-connected (k € N) if there exist &
node (edge)-disjoint paths from u to v for each pair of different nodes u and v. The maximal
connected subgraphs in G with respect to edge set inclusion are the components of G. A node
v € V of a graph G is an articulation node if the subgraph G, has more components than G,
and analogously, edge e of GG is a bridge if G, has more components than G.



Chapter 1

Practical Background

The research presented in this thesis was motivated by the complex network design problem
our project partner E-Plus Mobilfunk GmbH has to solve. As we will see, this network design
problem contains a series of subproblems which must be solved and integrated; each complex
in itself. The network planners have to make many decisions to design a network in which
communication requirements between users of the network can be fulfilled with high probability
at any time. These decisions are interdependent and influenced by a variety of parameters such
as the available hardware including its cost, the estimated communication requirements, a given
budget, or an existing network. The hardware of the network and the manpower needed to
maintain the network are expensive, and therefore, it is the target of the network planner to find
the right balance between investment cost and network quality. (There is no precise definition
of the quality of a network, but it should be expressed in terms of customer satisfaction and
the ability to fulfill communication requirements.)

This chapter provides a description of the main tasks in the design of a (mobile-) communi-
cation network, including a description of the transport network design problem, which is the
problem we will focus on in the subsequent chapters.

The following point is worth mentioning: Qur project partner is a mobile-communication
network operator, and consequently, we developed models and algorithms to solve parts of
the overall design process of a mobile-communication network. However, the described models
and solution approaches can often be used in the transport network design process of other
telecommunication providers. In fact, only minor details of the transport network are particular
to mobile-communication, and the used abstract mathematical models focus on the important
aspects of network planning, which appear for other types of networks as well.

The contents of this chapter is the following. We briefly explain the architecture of a global
system for mobile communication (GSM)! network including its interfaces and subsystems as
defined in the standards (GsM-1.02, 1993; GsM-1.04, 1994) and described less technically in
(Mouly and Pautet, 1992). Based on the architecture, we describe a typical decomposition of
the overall design process and present, in more detail, the node location problem, the traffic

'Originally, GsM was an acronym for Groupe Spécial Mobile, which was a working group of the Conférence
Europeénne des Administration des Postes et des Télécommunications between 1982 and 1987.

11
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forecast, and the switching and transport network planning problems.

Architecture of a GsM network

A GSM-900 (or GSM-1800)2 network comsists of well-defined hierarchically ordered subsystems
together with interfaces between the subsystems and to the external world. The three main
subsystems are the network and switching subsystem (NSS), the base station subsystem (BSS)
and the mobile stations (MSs). Throughout our description we neglect the fourth subsystem, the
operation subsystem (0SS), because it is responsible for maintenance issues and less important
for the network design problems under consideration. There are two external interfaces: One to
the customers and the other to external networks which might be the network of another mobile-
communication network operator or a public switched telephone network (PSTN). Altogether,
the subsystems and the interfaces define the hierarchical system shown in Figure 1.1.

/ NSS
MSC
A interface
BSC
Abis interface // / I \\ \ > BSS
BTS / )
Radio interface
MS

Figure 1.1: Architecture of a GSM network

2The values 900 and 1800 indicate the range of the frequency band in which the radio network operates. A
GSM-900 network utilizes parts of the frequency band 890-960 MHz. Analogously, a GSM-1800 network utilizes
parts of the frequency band 1710-1880 MHz.
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The connecting lines between the nodes in Figure 1.1 represent the logical relations in a
GSM network. Across the three interfaces (A, Abis and radio interface), these relations set up
a collection of stars, that is, the nodes from a “lower” subsystem are partitioned such that the
nodes of one partition are connected to a single node of the subsystem “above”. Only in the
top level subsystem, the NSs, there are logical relations between internal nodes.

MS

BSS

NSS

The mobile stations build the lowest level of the hierarchy. They consist of the mobile
equipment (ME), which everybody knows as mobile phone, and the subscriber identity
module (SIM), which stores part of the administrative information about a particular
user. The SIM is the smart card inserted into an ME. The MSs face on one side the users
of the network and on the other side the Bss. Notice that a user can be a human being
who uses the interfaces display, loudspeaker, or keyboard, but a user can also be terminal
equipment like a computer or a facsimile.

The base station subsystem has two interfaces to other subsystems: the so-called radio
interface to the MSs, which is the only interface that definitely transmits data through
the air, and the so-called A interface to the NsS. There are no external interfaces. The
main task of the BSS is to connect the Mss with the Nss through its two classes of network
components: the base transceiver stations (BTSs) which are linked to the Mss, and the
base station controllers (BSCs) which are linked to the Nss. Within a BSS, each BTS
communicates with exactly one predetermined BSC across the so-called Abis interface.

The BTSs accommodate the radio transceivers (TRXs) and handle the link protocols to
communicate with the Mss. The service area of a single BTS is divided into 3-4 sectors,
and for each sector there are up to 3 TRXs. The first TRX in a sector can manage 6
communications (channels®) and each additional TRX in the same sector manages 8 com-
munications. (There is a difference of two channels since these are reserved for broadcast
information at the first TRX in the sector.) Thus, a BTS with three sectors and one TRX
within each sector can manage 18 (= 3 - 6) communications, and with two TRXs in each
sector 42 (= 3-(6+ 8)) communications. A typical BsC today can control up to 128 TRXs.

The network and switching subsystem builds the highest level of the internal hierarchy
and has interfaces to the BSS and external networks. The NSS consists of different classes
of network components: the mobile services switching centers (Mscs) and two types of
data bases: home location registers (HLRs) and visitor location registers (VLRS).

An MSC is a switching node? with additional functionality to operate a mobile-commu-
nication network. For instance, hand-over management, location update, and user au-
thentication are such additional functionalities. The HLRs (there might be more than
one if the capacity of a single HLR does not suffice to handle all users of the network)
store administrative information about all registered users. This includes, for instance,
the current geographical position and basic data about the contract of the user. With
each MSC a VLR is associated. It stores the subset of information from the HLRs about

3A channel is the basic unit of data transmission. Its capacity is 64 kbit/s.

“Switching is the ability to interconnect the channels attached to each network node and to move traffic from
each incoming channel to the appropriate outgoing channel whenever the requirement neither originates nor
terminates at the node.
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those users currently in the service area of the particular Msc. This information at the
VLR is frequently updated since the users of a mobile-communication network typically
move between service areas. The capacity of the VLR and the Msc, respectively, is not
unbounded. In fact, in the design process the VLR must be dimensioned such that the ex-
pected number of users in the service area of the associated MSC can be handled, and the
MsC must be dimensioned such that the computing power suffices to handle the expected
maximum number of so-called busy hour call attempts (BHCA).

It is worth mentioning that the users of a network are not only the subscribers of the
provider operating this network. There exist so-called roaming contracts between providers
of different mobile-communication networks. These contracts permit a user of one network to
utilize the resources of another network, if the user is not in the service area of the “home”
network. Typically, providers in different countries sign such contracts to make it possible for
their costumers to communicate with their mobile phone in foreign countries.

The Mss communicate with the geographically close BTSs even if no communication is re-
quested by a user. Periodically, every MS negotiates with its close BTSs to choose the best one
to receive or submit a communication request. Here, the best option is a compromise between
the available radio channels and the quality of the received signal. The negotiation is repeated
as the Ms changes its geographical position and the result is stored in an HLR of the NSS and
the VLR of the visited Msc.

Switching and transport network

In Figure 1.1, we presented the logical structure of a GSM network. As we have seen, there are
logical links across the three interfaces (A, Abis, and radio interface) and between the Mscs in
the Nss. Knowing this, we can now describe the logical communication path for a particular
communication between users MSA and MSB (see Figure 1.2).

MSC C

// \\
/ \
/7 N
/7 N
MS A MS B

Figure 1.2: Logical communication path
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MSA knows its (currently) associated BTSA, which itself is (permanently) associated with
BSC A, which itself is (permanently) associated with MSCA. On the NSs level, the communication
path might pass additional Mscs, like the Msc ¢ in Figure 1.2. Eventually, the path follows
again the hierarchy: from MSCB over BSCB and BTSB down to user MSB. Altogether, this is the
logical communication path between MSA and MSB.

The logical links do not suffice to establish the communication. In addition, there must
be physical transmission links with sufficient transmission capacity, and physical transmission
paths which connect the end-nodes of each logical link using the transmission links. In this
context, it is common to distinguish between two networks: the switching network and the
transport network. The switching network consists of BSCs and MSCs as nodes and logical
communication requirements as links. The transport network consists of digital cross-connects
(DXCs) as nodes and physical transmission lines as links. DXCs are very flexible network com-
ponents which automatically map (“cross-connect”) digital signals from incoming to outgoing
ports. This is done according to a map stored in electronic form. With each node of the
switching network there is a DXC attached, which is responsible for adding signals from or to
drop signals to the switching node. A logical link of the switching network is realized in the
transport network over paths between the digital cross-connects attached to the end-nodes of
the link.

Figure 1.3 illustrates the interworking of switching and transport network for the commu-
nication between users MSA and MSB of Figure 1.2 on the NSs level. The dashed lines in
Figure 1.3 represent the logical path MscA — MScc — MSCB of Figure 1.2 on the Nss level.
For both logical links in this path, a transmission path must be provided in the transport net-
work. In our example these paths are represented by straight lines. One transmission path
MSCA — DXCA — DXCC —MSCC for the logical link MSCA —MSC ¢, and another transmission path
MSCC — DXCC — DXCD — DXCB — MSCB for the logical link Mscc — MscB. Both paths start
and end with the link between the MSC and its attached DXC. In between, a transmission path
never “visits” an MsC. In our example, the second transmission path passes DXCD, but it does
not use a link between MSCD and DXCD.

MSC D

Figure 1.3: Switching and transport network
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Sources of failures

In the introduction of this thesis, we described the importance of network survivability within
the planning process and presented a brief list of network failures that happened in the past.
Knowing technical details of the network structure and the different network components, we
can now describe sources of network failures in more detail. A good network design should take
care of the severe failure categories and provide strategies and resources to decrease service
disruption time. We distinguish between two categories of network failures: problems due to
insufficient network resources, and service disruption of network facilities.

Network outages due to overload of some network resources are the result of an under-
dimensioned network. It is difficult to estimate the financial loss caused by overload of network
facilities, since none of the communications in progress is affected. The network simply does not
accept any further communication request that requires free resources at one of the overloaded
network facilities. The main sources for this category of failures are the following:

e There is no available radio channel at the BTS to serve the communication request of a
particular Ms. In this case, the network planner should have assigned more radio channels
to the BTS, or should have installed more BTSs within the bottleneck area.

e The capacity of a transmission link may not suffice to establish additional communication
requests which use this link. In this case, the network planner should have increased the
transmission capacity of the link, or should have routed less communication requests over
paths which use this link.

e The MSC might fail to operate because of too many call attempts. Recall, an MSC can only
handle a certain number of busy hour call attempts. In this case, the network planner
should have chosen an MSC with a larger maximum number of busy hour call attempts,
or should have installed more Mscs within the bottleneck area.

e The capacity of the VLR may not suffice to handle all users which are currently within the
area covered by the associated MScC. In this case, the network designer should have chosen
a larger capacity for the VLR, or should have installed more Mscs within the bottleneck
area.

The second category of network failures comprises the failure of network facilities due to the
following reasons:

e Human errors like a cable cut or power supply disruption.
e Natural disaster like an earth quake, a fire, a hurricane, etc.
e A bug in the software controlling the switching nodes or digital cross-connects.

e A bug in the hardware of the switching nodes or digital cross-connects.

Since 1992 it is mandatory for network operators in the United States to report on network
failures affecting more than 30 000 customers to the US Federal Communications Commission.
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Based on those failure reports, (Kuhn, 1997) showed that network failures due to overload of
some network facilities account for 44% of all costumer-minute outages. Human errors account
for 28% and natural disaster for 18%. Interestingly, software and hardware failures are rather
rare. Just 2% of costumer-minute outages are due to software failures and 7% due to hardware
failures.

The planning process

As we have seen so far, the design of a telecommunication network involves many decisions.
These include the locations of BTSs, BSCs, MSCs, DXCs, VLRS and HLRS, the individual capac-
ity of this equipment, the transmission capacity between these locations, and the paths in the
switching and transport network which are used to establish requested communications. These
decisions are not independent from each other, but from a practical point of view the overall
problem is too complex to be handled within a single step. A natural approach is the decom-
position of the problem into a series of subsequent problems such that each individual problem
can be handled. The resulting sequence of subproblems should be iterated until a reasonable
compromise between cost, maintenance effort, and quality has been found. A typical sequence
of subproblems for network design is shown in Figure 1.4.

Node locations Traffic forecast Switching network Transport network

Figure 1.4: Sequence of subproblems for network design

First, a good choice of node locations together with an assignment of BTss to BsCs and
BSCs to MSCs must be determined such that a cost-effective and manageable network can be
determined in the subsequent planning steps. This decision depends on the expected number of
subscribers and the expected communication traffic. Node locations are usually fixed for a long
period and are not subject to frequent redesign. In contrast, the rest of the planning process is
periodically applied.

The traffic forecast has to be performed for each type of service within the network. Dif-
ferent types are, for instances, telephony, signaling, or private networks. The forecast depends
on the network structure, marketing data, and data from traffic accounting in the operating
network. The result of this planning step is a demand matrix (in Erlang®) for each different
type of service.

Given a demands matrix for each different service, together with quality of service (QoS)
requirements and routing strategies as input, the logical connections between the switching
nodes and the logical paths to route the estimated traffic are determined in the switching
network planning. As most important QoS requirement an upper bound for the probability
that a communication request has to be rejected must be respected. This bound is called

®Agner Krarup Erlang (1878-1929) was a Danish mathematician and the pioneer for dimensioning telephone
networks. He developed the fundamental Erlang-B formula (Erlang, 1917) to estimate the capacity of a trans-
mission link for given probability distributions of call attempts and call durations. For more information on A.K.
Erlang see the biography (Brockmeyer et al., 1948).
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blocking probability and must be specified by the network designer. By means of some variation
of the Erlang-B formula (see Section 1.3), a demand in terms of channels that satisfies this QoS
requirement can be calculated.

As a result of the switching network planning, an input demand matrix in terms of Erlang
has been transformed into a demand matrix in terms of channels. The transport network
planning is in charge to provide physical transmission capacity that is either rented, or installed
using microwaves or fiber-optic links. Sufficient capacity must be provided to ensure that each
communication requirement can be routed according to specified survivability requirements.

1.1 Node locations and their hierarchy

In the initial setup and in the major expansion steps of a telecommunication network it is
necessary to decide the locations of the permanent network equipment. In a GSM network these
are the antennas (BTSs), nodes of the switching network (BsCs and MScCs), additional nodes of
the transport network (DXcs), and data bases (VLRs and HLRs). Simultaneously, the logical
hierarchy of the network must be determined. That is, within the same planning step the
assignment of BTSs to BsCs and the assignment of Bscs to MsCs must be performed.

The decisions about the BTS locations depend on the costumers of the network. It is not
necessary to cover the complete potential service area of a network which is often a whole
country. Instead, it suffices to cover those areas in which the customers (or expected costumers)
typically move. These areas are, for instance, the cities, the main traffic roads like highways
and railways, and tourist attractions.

The decisions about the BSC locations depend on the BTS locations. It is necessary to place
BSCs such that it is possible to assign each BTS to a BSC. This assignment is constrained by the
capacity of a BsC. As we already mentioned, a typical BSC today can control up to 128 TRXs
and there are up to 12 TRX at each BTS. Hence, one can only assign about 10-12 BTSs to a
single BSC. An optimization problem could be to find the minimum number of BSC locations
such that an assignment of BTSs to BSCs is possible and no BSC must control more than 128
TRXS.

The decision of the MSC locations includes the decision about the VLR locations, since one
VLR is associated with each Msc. Consequently, it it is useful to decide the respective locations
simultaneously. Analogous to the previous problem, it is necessary to place MSCs such that it
is possible to assign each BSC to an MSC, and again, this decision is constrained by capacities.
In this case, the capacities are the maximum number of busy hour call attempts an MSC can
handle and a maximum number of users a VLR can handle. Thus, the sum of busy hour call
attempts generated at the BSCs assigned to an MSC must not exceed the maximum the MSC
can handle, and the sum of costumers of these BSCs must not exceed the capacity of the VLR.
Typically, there are several types of MSCs or VLRs available, each type with a particular capacity
at a certain cost. Thus, the choice of the capacity of the equipment belongs to the planning
decisions.
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The DXC locations are almost determined with the decision about the MsC locations. Each
MSC is connected with a DXC in order to provide the connection between the switching and
the transport network. Therefore, it is reasonable to place a DXC at any MSC location. The
locations of the HLRs are not particularly restricted.

All mentioned location problems depend on the potential locations for the equipment. Not
every place within the network area is a suitable location for a node. The place must either be
owned by the network operator or available to rent. In any case, there must be enough physical
space for the entire equipment.

1.2 Traffic forecast

Suppose that the locations of the network nodes and the assignment of BTSs to BSCs and BSCs to
MSCs, respectively, have been determined in the initial planning phase. Then the communication
traffic between pairs of locations has to be estimated in order to obtain a suitable basis for the
decisions of the link sizes and the communication paths. The traffic is measured in the unit
Erlang which is defined as follows:

1 Erlang := (utilization time) / (length of time interval)

As an example, if a costumer generates 12 minutes traffic during one hour, this amounts to 0.2
(= 12 / 60) Erlang. This unit depends on the length of the time interval, and the amount of
traffic depends on the considered time interval. But, for which time interval should a network
be designed? To our knowledge, there are no precise models to answer this question, but
experience has shown that those consecutive 60 minutes during a day are appropriate, in which
the network generates the maximum amount of traffic. These 60 minutes are called peak hour
or busy hour.

The traffic originating at a particular BTS (or in a certain area containing several BTSs)
depends on regional demographic characteristics such as the number of inhabitants or costumers,
how many are self-employed, employed, students, unemployed, etc. Given the traffic forecast
of the BTSs, it is rather easy to propagate it through the hierarchy of a GsM network. For each
BSC, the traffic of the controlled BTSs is accumulated and, similarly, for each MSC the traffic
generated at the served BsCs is accumulated. A certain percentage remains within the BSS
served by this MSC and the rest is split among the other MSCs and the external networks. This
way, demand matrices (in terms of Erlang) for the Nss and for each BSs can be estimated.

In the setup phase of the network these rough estimations are the basis of the traffic forecast.
If the network is operating for several years, the traffic forecast becomes easier in the sense that
input data can be obtained from accounting at the network nodes.

1.3 Switching network

For every type of service, the traffic forecast yields a demand matrix in terms of Erlang. In the
switching network planning, these matrices are transformed into demand matrices in terms of



20 1. PRACTICAL BACKGROUND

channels, where one channel corresponds to a transmission rate of 64 kbit/s. The decisions to
be made during the switching network planning are the following:

e For each communication demand a set of alternative paths must be chosen together with
the fraction of the demand routed over each of these paths.

e The maximum blocking probability must be specified, which is the probability that a call
attempt must be rejected.

e The demands in terms of channels must be calculated such that it is guaranteed that a
call cannot be rejected with a probability larger than the maximum blocking probability.

As we mentioned before, the logical communication paths in the Bss of a GsM network are
predetermined. In the NSs there is need for planning of a logical routing between the MScs. The
logical communication paths are usually chosen according to deterministic rules. For example,
a typical rule is to route each demand on exactly two node-disjoint paths, where the primary
path carries the bigger fraction of the demand (usually about 80%) and the secondary path
carries the remaining demand. For this rule, the number of node-disjoint paths and the way
the demand is distributed over the paths must be determined.

Given such rules, it is still difficult to determine the particular paths to use. The reason
for this is twofold. There are many alternative ways to route a communication demand on,
say, two node-disjoint paths and there does not exist a well-defined cost function to guide the
decision since the costs depend on the transmission facilities. In this planning step, however,
it is not yet specified which transmission facilities are needed to satisfy the communication
demands. In fact, this belongs to the design decision within the transport network planning.
To overcome the problem of the missing cost function, it is common practice to approximate the
cost function of the transport network. There, the cost of a certain capacity usually depends
on the length of the physical connection and the capacity itself. Economies of scale apply since
the costs per channel monotonically decrease with increasing capacity. To approximate this
type of cost function one often chooses the length of a physical connection as costs per channel
and attempts to bundle the (Erlang-) demands in order to take advantage of the mentioned
economies of scale. Bundling means to choose the logical routings of different communication
demands such that the same link is used by many paths, and such that the number of used links
is small. This has several advantages. First, if several (independent) communication demands
use the same link for transmission, then it is possible to gain from multiplexing since the capacity
of a link is chosen such that the blocking requirement is satisfied on average. For independent
communication demands it is unlikely that call attempts always arrive simultaneously, and
therefore, the same transmission capacity can often be used for both demands. As further
advantage of bundling the (Erlang-) demands, it becomes easier to manage the network as the
number of logical communication links decreases.

Given the specification of the logical routing, the communication demands in terms of chan-
nels have to be calculated such that the blocking probability does not exceed a specified max-
imum value. It is possible to view a communication link of capacity N (see Figure 1.5) as a
system in which calls arrive according to a Poisson process with average arrival rate A, and
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calls always find free resources available until all N channels are occupied. Calls are blocked if
all N channels are occupied.
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Figure 1.5: Communication link

Let such a communication link with capacity N be represented by a finite queue with states
0,...,N. (0 represents the state that no call is served by the link.) Furthermore, suppose that
the call holding time process is exponential, with parameter p. Figure 1.6 visualizes the state
diagram of such a queue.

12 2u Ny
Figure 1.6: State diagram of a queue

There is a rate A of moving to the next larger state, due to call arrivals, and there is a rate ku
of moving from state k to state k — 1, due to call completion. Apparently, if the queue is empty,
it is only possible to move to state 1, and if the queue is full, it is only possible to move to state
N —1. Let p,k =0,..., N, be the probability that exactly &k calls are in the queue. Then the
probability px is the blocking probability since the queue in state N is full, and any further
arriving call must be blocked. These probabilities must satisfy the normalization equation

>pp = 1. (1.1)

Carrying out a more detailed analysis, the validity of the following equations can be shown:

pp1 = Apo, (1.2)
(lj‘k—l_)‘)pk = Apg-1 +M(k+1)pk+17 k=1,...,N -1,
pNpy = Apn-1.

Notice, however, these equations can also be derived by inspection from the state diagram in
Figure 1.6. Just consider each state of the queue individually, and apply that for each state the
sum of the outgoing and ingoing rates (weighted by the respective state probabilities) must be
zero. Now, calculating pg, k = 1,..., N, in dependence of py from (1.2) — (1.4) yields

_ 1
pk_k)' Iy Po
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and substituting py for kK =1,..., N in (1.1), we obtain

- (E20))

and thus the blocking probability py is

wew(3) (S (G))

Let us consider an example. Suppose that the capacity of a (small) link with call arrival
rate of A = 720 calls/hour and an average holding time of 1/y = 3 minutes/call should be
determined. This gives a demand of A\/u = 720 - 3/60 = 36 Erlang. How many channels
guarantee a maximum blocking of 1%, for instance? Table 1.1 shows that 48 channels suffice to
achieve a blocking probability less than 1% and with decreasing number of channels the blocking
probability increases much faster than linearly. This indicates that the blocking probability for
fixed demand in Erlang is strongly dependent on the chosen number of channels.

Number of channels 24 30 36 42 48 54
Blocking probability (in %) || 37.40 | 23.66 | 12.19 | 4.45 | 0.96 | 0.11

Table 1.1: Pairs of blocking probabilities and channels for 36 Erlang

Furthermore, Table 1.2 shows the required number of channels for various blocking proba-
bilities and demands.

Erlang

Blocking || 20 | 40 | 60 | 80 | 100 | 150 | 200 | 300 | 400
1% 30 |53 |75 |96 | 117 | 170 | 221 | 324 | 426
5% 26 | 47 | 67 | 86 | 105 | 154 | 202 | 298 | 394
10% 23143 62|80 | 97 | 188 | 142 | 279 | 370

Table 1.2: Channel values for different blocking probabilities and Erlang-demands

The ratio between required channels and Erlang-demands is decreasing for increasing Erlang-
demands and fixed blocking probabilities. For instance, for blocking probability 1% and a
demand of 20 Erlang this ratio is 30/20 = 1.5, and for 400 Erlang the ratio decreases to
426/400 = 1.06. A blocking probability of 10% yields similar values; the ratio decreases from
23/20 = 1.17 for 20 Erlang to 370/400 = 0.93 for 400 Erlang. This indicates that it might
pay to design a sparse network concentrating the Erlang-demands on a small number of logical
links.
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1.4 Transport network

The transport network consists of the physical equipment and the physical links to transfer
the digital signals. Given logical demands in terms of channels (as a result of the switching
network planning), the topology, the transmission capacities, and the transmission paths to
route each of these demands have to be determined in the transport network planning. The
nodes of the transport network are digital cross-connects, and the links (connections between
transport network nodes) can be leased lines, microwave links, fiber-optic cables, etc. The task
is to design the transport network in the most cost-efficient way, while satisfying the following
constraints:

e Provide a set of transmission paths for each demand and assign a channel value to each
of these paths such that the sum of channels over all paths is at least the value of the
demand.

e Provide alternative transmission paths for those scenarios of network failures which are
considered important.

e Provide capacity for data transmission such that for each network component the capacity
is at least as big as the sum of channels over all passing transmission paths through the
component. This must also be satisfied in the considered failure scenarios.

The cost parameters in this planning phase are rather accurate. The network nodes have prices
given by the different vendors, leased lines have a given cost structure, and the cost of microwave
connections depends on the number of required repeaters. Hence, it is possible to optimize with
respect to the cost of the network infrastructure in the transport network planning.

Today, the available transmission capacities are defined in two different hierarchies: the
plesiochronous digital hierarchy (PDH) and the synchronous digital hierarchy (SDH). Before
we describe these hierarchies, we briefly review the origins of digital signal transmission. For
long time, the analog signal was the basis for voice transmission. In the early 1960s, the first
networks based on digital transmission were installed and since then there has been a clear drift
towards the more reliable digital transmission. IHowever, there has been a need to integrate
the digital transmission technologies and the analog terminal equipment (e.g., telephones of
the end-users). Therefore, the principle of pulse code modulation (PCM) has been introduced
(see (ITUT-G.711, 1988)). It transforms an analog signal into a digital signal, which is then
transmitted to the receiver and there retransformed into an analog signal. The technical terms
for these transformations are modulation and demodulation. Already at the early stages of
digital signal transmission development, the standardization organizations agreed to sample
data at a rate of 8 kHz, that is, 8000 times per second, and to allocate 8 bits to digitize each
sample. These values have been standardized in (1TTUT-G.711, 1988). Therefore, the length of
one sample is 125us (= 1/8000s), and sampling rate and length determine the size of a channel
to be 64 kbit/s = 8000 - 1/s - 8 bit. From the beginning of digital transmission it was clear
that there is a need for transmission rates higher than 64 kbit/s and therefore the principle of
multiplexing was introduced through the PDH.
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Plesiochronous Digital Hierarchy (PDH)

In general, a multiplexer (MUX) receives a certain number of equal rate data streams as input
and yields one data stream at a higher transmission rate as output. The associated demultiplezer
(DEMUX) recovers the original rate data streams from the high transmission rate data stream,
see Figure 1.7. Digital multiplexing is based on the principle of time division multiplexing
(TpM). The high transmission rate data stream is divided into successive intervals, each carrying
information of successive channels. The intervals associated with a particular channel appear
periodically and thus the demultiplexer is able to interpret the data stream correctly. Obviously,
the transmission rate depends on the length of a time interval and, in consequence, smaller time
intervals lead to higher transmission rates.

32 - 64 kbit/s 32 - 64 kbit/s

— T ==

2 Mbit/s

MUX I DEMUX

] I =———

Figure 1.7: (De-) Multiplexing of 64 kbit/s into a primary rate digital signal

The PDH was developed in the 1960s and standardized in (ITUT-G.702, 1988). However, it
was not possible to achieve a common agreement about the multiplexing hierarchy among the
three main parties North America, Europe and Japan, and therefore, there exist three different
hierarchies with different data transmission rates at the respective digital signal levels. Table 1.3
shows the values of the digital signal levels.

[ Level || Europe | North America | Japan |

0 64 64 64
1 2048 1544 1544
2 8448 6312 6312
3 34368 44736 | 32064
4 139264 139264 | 97728

Table 1.3: International plesiochronous digital hierarchies (in kbit/s)

The primary rate digital signal in Europe is 2048 kbit/s®. This translates to 32 - 64 kbit/s.
However, the capacity for data transmission is only 30 channels since two channels are reserved
for frame synchronization and signaling. For instance, the information which bits belong to
which stream must be conveyed to the receiving demultiplexer, and synchronization of the data

5We write 2048 instead of 2,048 or 2.048 to avoid misinterpretation, as recommended in (ITuT-G.701, 1993).
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streams must be performed. In general, the aggregated rate must be a little bit higher than
the sum of the input rates to accommodate the overhead multiplexing information. Rewriting
the number of channels in the higher level of the hierarchy as sum of user data and overhead
data yields

30 64kbit/s + 2-64kbit/s = 2048 kbit/s,
4. 2048 kbit/s + 4-64kbit/s = 8448 kbit/s,
4. 8448 kbit/s + 9-64 kbit/s = 34368 kbit/s
4. 34368 kbit/s + 2864 kbit/s = 139264 kbit/s .

With different values this also applies to the PDH in North America and Japan, respectively.
We wish to point out a property of the available user channels of the PDH (which also applies
to the sDH, as we will see soon). Cutting out the overhead channels, the following one-to-one
correspondence between transmission rates and capacities in channels can be seen:

2048 kbit/s <«— 30 channels ,
8448 kbit/s <+— 120 channels,
34368 kbit/s <— 480 chanmels
139264 kbit/s <+— 1920 channels .

The number of user channels of each digital signal level is an integer multiple of the number
of user channels of each smaller digital signal level. This is important to note since it is possible
to take mathematically advantage of this property. We will see this in more detail in the
subsequent chapters.

Synchronous Digital Hierarchy (sSDH)

The synchronous digital hierarchy (SDH) was developed in the 1980s and standardized in (ITUT-
(G.803, 1997). The driving forces were the need for higher transmission rates than those provided
by the PDH and some deficiencies of the PDH. The SDH is again a multiplexing hierarchy with
the levels shown in Table 1.4.

Level STM-1 STM-4 | STM-16 STM-64
kbit/s || 155520 | 622080 | 2488320 | 9953280

Table 1.4: Synchronous digital hierarchy

The basic unit is the so-called synchronous transport module (STM) which is able to transport
so-called wirtual containers (vCs). The capacity of an STM-4, STM-16, and STM-64 is exactly
four times the capacity of an STM-1, STM-4, and STM-16, respectively. There is no overhead
since the multiplexing information is contained in the vCs which build themselves a hierarchy
of transmission rates as shown in Table 1.5.

The values of the virtual containers reflect the need to integrate the digital signal levels of
the different PDH’s. For instance, the digital signal level 1 of the North American PDH fits into
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Level ve-11 | ve-12 | ve-2 | ve-3 vC-4
kbit/s || 1664 | 2240 | 6848 | 48960 | 150336

Table 1.5: Virtual Container Hierarchy of the SDH

an vc-11, and the FEuropean digital signal level 1 fits into an vc-12. Four vc-11s, three vo-12s,
or one digital signal level 2 of the North American PDH can be multiplexed into an vC-2 which
itself fits seven times into an vc-3. Finally, three vo-3s are multiplexed into an V-4 which then
is transported over an STM-1.

One of the big improvements of the SDH over the PDH is the elimination of the requirement
to demultiplex the complete hierarchy in order to get access to a particular channel. Instead, it
is possible to extract a low bit-rate virtual container from a higher bit-rate digital signal with
so-called add-drop multiplezers (ADMs).

The cost structure

The available capacities of the transport network come at different cost. The information about
the costs of these capacities is rather accurate; for every particular type of communication link,
the structure of the cost can be described by length and capacity dependent cost functions.
These functions are structurally different on microwave links, leased lines or fiber-optic cables.
In this section, we present some typical cost functions for two important types of links: leased
lines and microwave links.

Leased lines

A mobile-communication network operator may rent part of its network from a leased line
provider. As illustrative example, Figure 1.8 shows a typical cost structure of DEUTSCHE
TELEKOM, the only leased line provider in Germany when we started working on this prob-
lem. The cost structure of new leased line providers (who started business after the German
telecommunication market has been deregulated in 1998) is similar.

cost 4

h I I3 length

Figure 1.8: Typical cost structure for leased lines

Figure 1.8 illustrates that the typical cost structure for a particular capacity such as 30,
480, or 1920 channels (2, 34, or 140 Mbit/s), is piecewise linear and monotonically increasing
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with the length of the link. The slope, however, decreases with the length of the link. In more
detail, it decreases at specified lengths such as [1,ls,[3 in Figure 1.8. Changing the view from
a particular capacity to available capacities on a particular link, as illustrated in Figure 1.9 for
the digital signal levels 1, 3, and 4 of the PDH, it is easy to see that economies of scale are large.
It depends on the distance between two end-nodes of a link, but as a rule of thumb, a capacity
of six to eight times 30 channels is more expensive than a capacity of 480 channel, and three
times 480 channels are more expensive than 1920 channel.

cost A

30 180 480 960 1920 channel

Figure 1.9: Typical cost structure for leased lines on a link

Microwave

The cost structure for microwaves is different since the maximum transmission distance through
the air is limited. To guarantee a specified quality of the signal, it is necessary to periodically
amplify the digital signal. So-called repeaters are needed after every interval of constant dis-
tance. For instance, if the maximum distance without amplification of the signal is 50 kilometer,
two repeaters are necessary on a link of length 130 kilometer. The necessary amplification of
the digital signals dominates the structure of the cost function for microwaves. Figure 1.10
illustrates a typical cost structure of microwaves for a particular capacity. The cost in depen-
dence of the length is a staircase function with equal width intervals of constant cost. The
width [y is the distance at which a repeater becomes necessary, and [; =1 - [4.

cost 4

v
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Figure 1.10: Typical cost structure for microwave connections

Figure 1.11 illustrates the cost structure of a microwave connection for a particular link.
Similar to leased lines, it is a staircase function with considerable economies of scale.
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cost y

60 120 240 480 channel

Figure 1.11: Typical cost structure for microwaves on a link

The illustrated capacity and cost structures add significant complexity to the design of a
transport network. In the sense of complexity theory, the problem becomes difficult because of
the discrete structure of the available capacities. It is not possible, for instance, to install 30.5
channels. Even if this is a required value, the network designer must choose between 30 and
60 channels. The illustrated economies of scale cause further difficulties since it is not clear at
which point it is appropriate to choose a 480 channel link instead of several 30 channel links.
Of course, as shown in Figure 1.9, there exists a break-even point from which on it is cheaper
to use the higher capacity link, but it might pay to choose this higher capacity even below the
break-even point because of the additional capacity. Using the larger capacity of 480 channels
instead of six to eight times 30 channels, additional 240 — 300 channels are available at relatively
small extra cost. Because of this additional capacity on one link it might be possible to decrease
capacities on other links, and thus the overall network cost might decrease.

Routing and survivability

Besides the capacity decisions, transmission paths to satisfy logical communications demands
are settled within the transport network planning. For these demands in terms of channels,
which are given as output of the switching network planning, one or several transmission paths
must be provided such that the value of each communication demand is less than or equal to
the sum of channels assigned to the individual paths of a demand.

Several issues are related to the routing decisions. Obviously, the transmission paths must
only use links with available transmission capacity, and if one considers a link between two
particular nodes of the transport network, and sums up the values of those transmission paths
using the link, then the capacity of the link must be at least as large as this sum. (Notice
that additional capacity might be necessary to satisfy survivability requirements.) In fact, the
capacity and the routing decision should simultaneously be performed, since only discrete units
of capacities are available and economies of scale can be huge. It might be less expensive to
route some communication demands on transmission paths which are, at first glance, expensive
in the sense that these paths are longer in terms of used links and geographical distances.
However, the overall solution might be less expensive.

We already described in the introduction of this thesis that the impact of a network compo-
nent failure can be tremendous. Hence, as additional planning requirement, todays communi-
cation networks must be survivable in the sense that it is possible to deal with single component
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failures. If only a single transmission path is used to satisfy a particular communication de-
mand, then no communication is possible if any network component (node or link) of this path
does not operate. The strategies to deal with this problem fall in two main categories. First, it
is possible to choose transmission paths which use different network components. This provides
partial survivability since the failure of a single network component cannot result in complete
loss of communication. However, as drawback of such an approach, it is not possible to protect
all communication. As alternative approach, the network planner can provide routings for in-
dividual failure scenarios. In this case, the network management is more complex, but it can
be handled in modern communication networks since the equipment is controlled by software.

Preview

In the rest of this thesis, we focus on the problem of planning the transport network of a
telecommunication provider. We present mathematical models integrating the described topol-
ogy and capacity decisions together with routing planning under survivability requirements.
Afterwards, these models and the sets of solutions for the different problems are investigated,
and eventually, algorithms to solve the problems are developed. We focus on the transport
network design problem because of its relevance within the overall network design process. The
optimization target in this planning step is minimization of costs that can be specified with high
accuracy. Furthermore, the structure of solutions is too complicated to be handled without the
support of sophisticated mathematical models and algorithms.






Chapter 2

Mathematical Models

As we have seen in the previous chapter, the design of a (mobile-) communication network
contains a series of complex problems. In the remainder of the thesis we focus on one particular
subproblem: the transport network design problem. That is, given the result of the switching
network planning, the target is to choose simultaneously the topology of the transport network,
the capacities to install on the transmission links, and the routings of all logical communication
requirements for normal operation and all single network component failures, such that the cost
of the network is minimal.

In this chapter we first present the mathematical models developed in cooperation with
E-Plus Mobilfunk GmbH. We consider two ways to model the discrete capacity structure and
three ways to achieve survivability in the network. Any combination of a capacity and a surviv-
ability model leads to a different mixed-integer programming formulation. (All combinations
have been integrated in our network dimensioning tool DISCNET.) We integrate the routing
planning in the normal operation and all single network component failures. In contrast to
other models described in the related literature, we do not assume a given routing for the nor-
mal operation and deal with the capacity expansion and routing planning for failure situations
only. The integrated planning makes considerable investment cost reductions possible, and with
our models, it is possible to accomplish these cost reductions. At the end of this chapter, we
survey the related research that focuses on theoretical and practical results for mathematical
models which integrate the topology decision, the capacity planning and the routing problem
for the communication demands.

2.1 Supply graph, demand graph, and operating states

The considered problems have the following in common. The input consists of two graphs on
the same node set V, the

o supply graph G = (V, E) and the

e demand graph H = (V, D).

31
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The set V consists of the nodes of the transport network. In our case, V often corresponds to
the locations of the digital cross-connects (see page 15). The edge set E of the supply graph G is
the set of all physical links which may be used (in the planning period). Different transmission
links (representing different technologies, e.g., microwave connections, fiber optic cables, leased
lines of different providers) are represented by parallel edges. The demand graph H (for the
planning period) contains an edge whenever there is a positive demand in terms of channels
between its two end-nodes. For each edge uv € I of the demand graph, the value

e d,, € Z. is the communication demand between nodes v and v.

We denote by Vp :={v € V : Ju € V and uwv € D with d,, > 0} the subset of the nodes
V with at least one positive emanating demand. While the characteristics of the supply graph
are relatively stable (they change, e.g., with hardware and suppliers), demand predictions are
based on statistical analysis and forecasting. They are revised frequently, and scenario analysis
has to be made to take different possible evolvements of the market into account.

In practice, different service classes arise such as voice traffic, signaling traffic, data traffic,
etc. In a model appropriate to cover different classes of services, it is necessary to allow parallel
edges in the demand graph as well. From a modeling point of view this is no problem. However,
to reduce the size of the problem instances and the complexity of the model, we decided in the
initial phase of the project to aggregate the demands of different service classes between the
same pairs of end-nodes into a single demand.

As a major planning requirement, the network to design should be well-prepared against
failures of single nodes or edges. For each communication demand, a routing in all operating
states S must be provided. These are the normal operating state, where all nodes and supply
edges are operational, and a subset of the failure states, in which a single node w € V or a
single supply edge e € F is non-operational. We denote these operating states by s =0, s = w,
and s = e, respectively. By definition,

SC{0JUVUE.

Note, for each edge and each node of the supply graph the network designer can specify whether
its failure state should be considered, that is, whether routing tables must be provided for the
state in which this particular node or edge fails. For every s € S, we denote by G5 = (V;, E;)
the supply graph in operating state s, where V; is the set of nodes that are still operational
in operating state s, and, likewise, ¥, is the set of the operational edges in operating state s.
Similarly, the demand graph in operating state s € S is H; = (Vs, D;), where Dy is the set of
surviving communication demands. (A demand uv € D is surviving in operating state s € S,
if none of its end-nodes failed, that is, if s ¢ {u,v}.)

Example 2.1 See Figure 2.1 for an example of a supply and a demand graph. The demand
graph has three edges with associated communication demands d,. = 120, d.. = 80, and d 4 =
30. The eight edges of the supply graph represent the potential physical links. The available
capacities are not specified, yet. We assume that the set of operating states is § = {0} UV’; no
edge failure situations have to be considered. Notice that it is possible to reduce the set § to §
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= {0} U (V\{c}) in this example, since the demand graph H, = (V,, D;) has an empty demand
set D.. O

80\
\

OXE0

Figure 2.1: Example of a supply and a demand graph

2.2 Capacity models

In the target network, sufficient capacity must be installed on the edges of the supply graph such
that these can accommodate a feasible routing of the communication demands. In principle,
a leased line provider might offer arbitrary capacities and in this case we would introduce
continuous variables to model the capacity decision. However, not a single provider offers
arbitrary capacities and, in fact, it is common to offer capacities of the hierarchies PDH and
sDH. From DEUTSCHE TELEKOM, for instance, it is possible to rent as PDH capacities multiples
of 2 Mbit/s links (30 channels), multiples of 34 Mbit/s links (480 channels) and multiples
of 140 Mbit/s links (1920 channels). Consequently, we decided to model a discrete capacity
structure.

In the following, we distinguish between two different capacity models to cope with this
discrete structure. In the first case, the set of possible capacities for each edge of the supply
graph is given as a finite set. This model was introduced in (Dahl and Stoer, 1998). In the
second model, a small set of “basic capacities” is given. These basic capacities must satisfy the
property that each one is an integral multiple of all smaller basic capacities. As we have seen
in Chapter 1, this is a reasonable assumption for many network design problems. Special cases
of the second capacity model (without survivability requirements) have been investigated by
several researchers as we will see in Section 2.6.

Existing network

Designing a telecommunication network is a dynamic process. Changes in the demand forecast
or new offers of transmission capacity suppliers make redesigning the network necessary once
in every planning period. Although it is theoretically possible to design the network in every
planning period from scratch, it is reasonable to assume that parts of the network exist and
cannot be changed in the short run.
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There are two main reasons for this assumption. First, there might exist long term contracts
with a supplier which have to be fulfilled. Second, but equally important, it is necessary
to guarantee a certain stability in the network in order to reduce the maintenance effort for
switching to a new network topology. It is not desired to change the whole network just because
of small changes in the demand forecast.

To model this planning requirement, we assume that every edge e € F of the supply graph is
already equipped with an initial capacity C? € Z . (possibly CO = 0), the so-called free capacity.
This assumption applies to all capacity models formulated in this thesis. Of course, the free
capacity has a certain cost. However, since this cost can be predetermined, it is not part of the
optimization and can be ignored. We set the cost K, 2 to install capacity Cg on edge e to zero,
that is, K? := 0.

Similarly, it might be desired to fix part of the routings of the logical communication demands
in order to reduce the maintenance effort when the network has to be reconfigured. However,
we do not consider such a planning requirement here.

Maintenance Costs

It is an option to include maintenance costs in the mathematical model. Such an issue can
be modeled with cost coefficients either on individual routing paths or on the flow through
transmission links. However, we do not add such cost coeflicients to our models, since we
believe that it is problematic to model maintenance costs in this way. It is too difficult to
provide accurate data.

2.2.1 DISCRETE CAPACITIES

As we already noted, the available capacities in many practical applications have a discrete
structure, since the equipment (multiplexer or digital cross-connect) is technologically restricted
to certain capacities. The capacity model DISCRETE CAPACITIES provides the most general
form to deal with such an underlying capacity structure. For every supply edge, the set of
capacities that might be installed on this particular edge is given as a finite set. Installation
costs are associated with each capacity.

Data

For each e € F, there is a finite set of capacities specified by the following data:

o T, € Z is the number of possible capacities that can be installed in addition to the free
capacity,

o Clc7Z,,1<t<T,, are the potential capacilies (we assume CO < C! < ... < Cl¢), and

o K!cQy, 1<t <T,, are the respective cost of installing capacity C.
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Instead of the original values, it is useful to consider the incremental capacity and cost values
and values

o =Cl-C-l1<t<T,,

€

o kKl =K/ -KI'L1<t<T,.

For notational convenience, we set c? := C? and &0 := K?. The capacities C},...,CZ¢ are
the breakpoini capacilies and T, is the number of breakpoints.

Variables

For each edge e € E, we introduce an ordered set of integer capacity variables, the 0/1-variables

z(e,0) > z(e,1) > --- > z(e,T). Since we assume that a free capacity C? is always installed,
we set z(e,0) := 1. Choosing capacity C] for some breakpoint 0 < 7 < T, is equivalent to
setting z(e,0) = z(e,1) = -+ =z(e,7) =1 and z(e,7+ 1) =--- = z(e,T,) = 0.

Mathematical formulation

The objective is to minimize the total cost of installing the necessary capacities on the edges of
the supply graph. This is formulated as

T:
minz Zkzx(e,t) . (2.1)

ecE t—1

For every supply edge e € E, the associated 0/1-variables must satisfy the ordering constraints

1=u1x(e,0) > z(e,1) > --- > z(e,Te) > 0, (2.2)
and the integrality constraints

z(e, t) € {0,1}, (2.3)
for all t =1,...,7,. For notational convenience, we introduce continuous capacity variables

T
y(e) = 3 chale,), (2.4)
t—=0

for all e € F. These (auxiliary) variables represent the capacity installed on supply edges.

2.2.2 DivisiBLE BAsic CAPACITIES

The number of capacity variables for DISCRETE CAPACITIES becomes large if it is possible to
install any combination of the capacities of the PDH. Even if one only considers those capacities
which are not dominated by larger capacities (at smaller cost), one typically needs more than
20 integer variables to model the potential capacities of a single supply edge. To overcome
this problem of too many integer capacity variables, we introduce the second capacity model
D1visiBLE Basic CAPACITIES which can be employed if a set of “divisible” capacities is given.
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Data

We denote by T' = {7q,...,7,} # 0 the set of technologies, one for each different type that can
be installed on a supply edge. Associated with each technology 7 € T are a basic capacity C”
and edge dependent installation cost which include a fixed cost and a length-dependent cost
which varies with the total length of an edge. For this capacity model, the basic capacities
must satisfy the divisibility property. That is, the increasingly ordered basic capacities C™ <
C <-.. < C™, must satisfy

CTz’+l
Ci € Z-l— ;
for all ¢ = 1,...,n — 1. We refer to the smallest basic capacity C™ as the unit capacity.

The available capacities for a particular supply edge are the integer combinations of the basic
capacities of the technologies. For each supply edge e € E,

o K] € Q4,7 €T, is the cost of installing one unit of capacity C”.

For notational convenience, we assume that all technologies 7 € T are available for all
supply edges. This assumption is not necessarily satisfied in practical application, but it can
be assumed without loss of generality. If a technology 7 € T is not available for a supply edge
e € F/, one can easily overcome this problem by setting K] := oco.

Variables

We introduce a non-negative integer capacity variable z(e, ) for every supply edge e € E and
every technology 7 € T to denote the integer multiples of C7 combined into the capacity of
edge e.

Mathematical formulation

Again, the objective is to minimize the total cost of installing the necessary capacities on the
edges of the supply graph. This is formulated as

minz ZKg:v(e,T) . (2.5)

eckETeT

The constraints that must be satisfied for every supply edge e € E and every technology 7 € T’
are the integrality constraints

z(e,7) € Z4 . (2.6)

For every supply edge e € F, the continuous capacity y(e) is calculated from

yle) =C2+ ) CTale, ). (2.7)

TeTl



2.3. COMBINING CAPACITIES, DEMANDS AND ROUTINGS 37

2.2.3 A note on the capacity models

Both capacity models have advantages and disadvantages. With DISCRETE CAPACITIES a, finite
set of available capacities is given for every supply edge. This model is very general and provides
the flexibility to cover every practical situation with a discrete capacity structure. It is possible
to employ this model even if the network designer incorporates different transmission capacity
suppliers which provide different capacities that do not satisfy the divisibility property. As a
further advantage of DISCRETE CAPACITIES, it is possible to model the capacity structure of
future networks. Tt is worth mentioning, that the capacity structure of links with wavelength
division multiplezers at both end-nodes can only be covered with this capacity model, and not
with the model DIVISIBLE BASIC CAPACITIES.

If many capacities are available, however, the size of the resulting problem instance may
become too large to be handled within a cutting plane algorithm (our solution approach). In
order to obtain reasonable upper bounds on the optimal objective function value in acceptable
running times, it might be necessary to considerably reduce the number of available capacities
beforehand. As a drawback of such a step, the lower bounds for the optimal solution value of
the restricted problem instance are not necessarily lower bounds for the optimal solution value
of the original problem. For instance, if an optimal solution for the restricted problem is not
optimal for the original problem.

The second model, DIVISIBLE BaAsic CAPACITIES, is a special case of the first capacity
model. If the available capacities have a particular structure, it provides a way to handle
large numbers of capacities without reducing them artificially in a preprocessing step. As we
already mentioned, we encountered such a structure in many (but not all) problem instances.
Despite the advantages of DIVISIBLE BAsic CAPACITIES, there are practical situations where
the available capacities do not satisfy the divisibility property. This happens, for instance, if
one incorporates transmission capacities from the PDH and the SDH in the same network design
problem. In this case, the model DISCRETE CAPACITIES has to be used. We shall further note
that even if the capacities satisfy the divisibility property network designers sometimes prefer
to use DISCRETE CAPACITIES since any integer combination of the basic capacities might not
be appropriate.

2.3 Combining capacities, demands and routings

In addition to the selection of a capacity for each supply edge, a feasible routing for each commu-
nication demand must be computed for a solution. For each operating state all demands must
be routed simultaneously, and the capacities must suffice to accommodate the routings. This
suggests a multicommodity-flow formulation of the routing problem with variables expressing
the flow on a path or over a supply edge.

Even though the routings are inherently integral, we model them with continuous variables,
since a model with integer routing variables cannot be solved to a satisfactory degree with
the available mathematical methods. It is possible to formulate the problem with integer
variables, but not to solve it. Instead, we suggest to solve the network design problem with



38 2. MATHEMATICAL MODELS

continuous path variables and to employ a postprocessing algorithm to deal with the non-
integral routing variables. Our computational experiments revealed that the required changes
in the postprocessing are not too extensive since the routings are often “almost” integral for
“practical” parameter selections.

Combining any of the two capacity models with multicommodity-flow conditions for the
non-failure situation, we now state the basic mixed-integer programming formulations. These
do not include survivability requirements beside a restriction on the number of supply edges
in the paths that can be used to route a particular demand. Such restrictions should be
employed, if the transmission time depends on the number of edges in the transmission path,
or if one wants to avoid long paths in order to decrease the probability of a failure of a path
component. Typically, the length of valid paths is only restricted in the normal operating state.
In exceptional cases, like failure situations, it is satisfactory to provide any routing.

Data

For each demand uv € D, the path-length restriction parameter

e /,, € N is the maximum number of supply edges allowed in any uw-path on which parts
of the demand between the end-nodes u and v is routed in the normal operating state.

For each operating state s € S and each demand edge uv € Dy, let P¥Y denote the set of
valid uwv-paths in G,. If s is the normal operating state (s = 0), a uv-path in G = Gy is valid
if its length (number of edges) is at most £,,. We call such a path short. If s is a failure state
then any wv-path in G is valid.

Variables

For each operating state s € S, each demand edge uv € D;, and each path P € P¥’, we define a
variable f¥¥(P), called flow or path variable, representing the communication demand between
the nodes 4 and v routed on path P in operating state s.

Mathematical formulation

The constraints for the routings in the normal operating state are the capacity, demand and
non-negativity constraints. The capacity constraints

YD P <yle), (2.8)

uwveD PePgvecP

for each supply edge e € F, express that the sum of the flow values over all paths containing
edge e in the normal operating state must not exceed the capacity y(e). For each demand
uv € D, the values of the path variables must sum up to the value d,;, in the normal operating
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state. This yields the demand constraints
Z ng(P) = duyy » (29)
PPy
for every demand uv € D. Additionally, for every demand uv € D and every path P € P§",
the path variables must satisfy the non-negativity constraints

0 (P)>0. (2.10)

We now formally define the two network design models that do not cover survivability require-
ments. The model for DISCRETE CAPACITIES is

Te
min Z Z Elz(e,t)

ecE t=1
z(e,t) —z(e,t —1) <0, eckE, t=1,...,T.,
z(e,t) €

T
C0+3 dale,t) =yle), ecE,

t=1
oY UP) <yle), e€E,

uwveD PePyv:ecP
Z J(P) = dyy , uv € D,
PPy
(P >0, w € D, PePy,

and the model for DIVISIBLE BASICc CAPACITIES is

minz Z Klz(e,7)

ecE 1T
z(e,7) € Z4, ec€E, 7€T,
CS—I-ZCTm(e,T) =vyle), ecFE,
TET

Y Y P <yle). ecE,

weD PEPV:e€ P

> fUP) =dw, weD,
Pepyr

F(P) >0, ww €D, PePy.

The path formulation of the continuous multicommodity-flow problem has, in general, an
exponential number of path variables. However, it provides an easy way to model path-length
restrictions and other survivability constraints, as we will see in the following section. In Chap-
ter 4, we describe the column generation approach suggested by (Minoux, 1981) to solve non-
simultaneous continuous multicommodity-flow problems with path variables. In some cases,
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this approach can be time-consuming and therefore, we also make use of a polynomial formula-
tion of the multicommodity-flow problem for the normal operating state (without path-length
restrictions). This formulation contains edge-flow variables, and demands are aggregated with
respect to their end-nodes. The following paragraph describes this in more detail.

A set Q CV is an aggregation of the demands if there exists an assignment of the demands
uv € D to either u or v such that the union of the assigned end-nodes equals (). The nodes
in @ are called commodities. (For simplicity, we assume that uv € D is always assigned to u.)
Furthermore, for every commodity k& € (@ and every supply edge e = ij € F, the two edge-flow
variables f¥(ij) and f¥(ji) represent the directed flow over edge e to satisfy part of the demand
of commodity k. With this notation, constraints (2.8) — (2.10) of the multicommodity-flow
problem can be substituted by the constraints

S - X ) = { M PRI heq ey, (2.11)
JEV JEV
S (FFGG) + FHGD) < yle), e=ij€E, (2.12)
keQ
y(e), F*(ij), 4 (i) >0, keQ, e=ijen, (2.13)

where the capacity y(e), e € E, in (2.12) is calculated from (2.4) or (2.7) for integer z-variables.
This formulation is polynomial in the size of the input since it contains 2|Q||E| edge-flow
variables and |Q||V| + |E| constraints. In consequence, the linear relaxation of this mixed-
integer program can be solved in polynomial time (see (Khachyan, 1979)). Note, this mixed-
integer program is a formulation of the capacitated network design problem without survivability
requirements, if no path-length restrictions for the demands have to be satisfied.

2.4 Survivability models

In the capacitated network design models presented in the previous section we have ignored sur-
vivability requirements. Now, we focus on survivable network design. As we already described,
the available transmission capacities increase while the respective costs of capacity substan-
tially decrease. Hence, optimal networks with respect to network cost tend to be very sparse
with huge capacities on a few number of transmission links and, in consequence, the failure of
a network component causes severe losses in terms of money and costumer confidence. 1t is
necessary to cope with network component failures at the planning stage, and over the past ten
years different models to increase the quality of a network through protection and restoration
mechanisms have been proposed in the literature. Survivability can be introduced in two steps:
in the normal operating state with constraints imposed on the routing, and in case of a single
node or edge failure through (partial) rerouting of surviving demands.

The survivability model DIVERSIFICATION imposes restrictions on the routing in the normal
operating state. For every demand, the routing is diversified on several paths such that the
failure of any network component does not affect more than a specified percentage of the
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demand. The two survivability models RESERVATION and PATH RESTORATION use different
strategies 1o reroute part of the demand in a failure state. In both models, no restrictions on
the normal operating state routing are imposed. RESERVATION makes use of complete rerouting
since it is admissible to change parts of the routing of a demand even if not affected by the
particular failure. In contrast, PATH RESTORATION partially reroutes demands affected by a
particular failure, and maintains the unaffected routings of the normal operating state. To
the best of our knowledge, the survivability model DIVERSIFICATION has been introduced in
(Dahl and Stoer, 1998), the model RESERVATION in (Minoux, 1981), and the model PATH
RESTORATION in (Wu, 1992).

2.4.1 DIVERSIFICATION
The survivability model DIVERSIFICATION is based on the following idea. If the maximum per-
centage of a demand value that is allowed to flow through any network component is restricted,

then the maximum loss of this demand is restricted if any single network component is not
operating.

Data

For every demand edge uv € D, the diversification parameter

® Jyy, 0 < 0y < 1, is the maximum fraction of the demand d,,, allowed to flow through any
edge or node (other than nodes u and v) of the supply graph.

Figure 2.2: Example routing for DIVERSIFICATION

Figure 2.2 shows a feasible routing of the demand edge ac from Example 2.1 with diversi-
fication parameter d,c = 2/3. The demand d,. = 120 is routed on three paths, each carrying
40 channels. No two paths are node-disjoint, but there is also no component with more than
2/3 - 120 = 80 channels flowing through it. The flow through node b, for instance, is equal to
66.6% of the demand since only two paths, both with flow value 40, have b as inner node.

As in the example above, it is not required to route a demand on pairwise node-disjoint
paths. The diversification parameter only imposes a restriction on the sum of the flow values
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of all paths passing through a network component. However, if a demand uv € D is routed
on exactly [1/d,,] paths then these paths are node-disjoint. Therefore, we sometimes say that
DIVERSIFICATION implements survivability by means of a “node-disjoint” routing.

Mathematical formulation

For every demand uv € D and every node w € V\{u,v}, the node-flow constraints are

Z 0" (P) < 0ypduy , (2.14)
PePEvweP

and for every demand uv € D and every path P € P§? with |P| = 1, the edge-flow constraints
are

0 (P) < Oupduyy - (2.15)

For a demand uv € D and a node w € V\{u,v}, the summation in the node-flow constraints
is over all short paths between the demand end-nodes u and v that contain node w as inner
node. These constraints restrict the amount of flow dedicated to a particular demand that goes
through a particular node, that is, they ensure a flow of no more than a fraction &, of the total
demand d,, through a single node w in the normal operating state. The node-flow constraints
imply that every edge e € F carries no more than d,,d,, of the demand uv € D, unless it is
a supply edge between the demand end-nodes u and v. To cover the latter case, the edge-flow
constraints are used. These only exist, of course, if F contains edges between » and v. The
constraints (2.14) and (2.15) ensure that the flow between u and v is diversified, that is, routed
on at least [1/dy,] paths.

2.4.2 RESERVATION

No restrictions on the routing in the normal operating state are imposed for the survivability
model RESERVATION. Instead, spare capacity is used (that has to be provided) to reroute the
surviving demands if a single node or single edge of the supply graph is not operating. For every
demand edge, the network designer specifies the percentage of the demand value that should
still be routable in case of such a failure. A feasible solution must contain enough spare capacity
to accommodate the routings of all demands uv € Dy in all failure situations s € S\{0}.

Data

For every demand edge uv € D, the reservation parameter

® pyy, 0 < pyy < 1, is the fraction of the demand d,,,, that must be satisfied if a single node
or a single edge of the supply graph fails.
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Figure 2.3: Example routing for RESERVATION

Figure 2.3 shows a feasible routing of the demand edge ac from Example 2.1 for the normal
operating state and the failure state s = b with reservation parameter p,. = 2/3. The routing
of this demand in the failure state s = b is different from the routing in the normal operating
state, even though no path of the normal operating state routing is affected by this failure
situation.

Mathematical formulation

For every failure state s € S\{0} and every supply edge e € E,, the capacity constrainls are

o> P <yle) (2.16)

uvEDg PEPYV:e€ P

For every failure state s € S\{0} and every demand uv € D;, the demand constraints are

Z f;w(P) = puvduy (2.17)

PPy

and, additionally, for every valid path P € PY, the non-negativily constrainis are
[E(P) 2 0. (2.18)

No path-length restrictions are imposed in failure situations. Therefore, the summation in
inequalities (2.16) is over all variables that correspond to paths containing a particular supply
edge. Notice that only surviving demands of operating state s have to be routed and that
the paths only use supply edges operating in state s. Recall, if s = w for some w € V, the
demand and supply edges emanating from w in the demand graph H and the supply graph G,
respectively, are not surviving. Inequalities (2.16) guarantee in failure situations that the flow
through surviving supply edges does not exceed its capacity. Inequalities (2.17) guarantee for
all surviving demand edges that the specified percentages of the demands survive the failure
with state dependent routings, and inequalities (2.18) formulate the necessary non-negativity
of the flow variables in all failure situations.
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2.4.3 PATH RESTORATION

The survivability model PATH RESTORATION can be viewed as a compromise between the two
extreme models DIVERSIFICATION and RESERVATION. Similar to the model RESERVATION,
no restrictions on the routings in the normal operating state are imposed, and a specified
percentage of each demand value should still be routable in case of a single component failure.
However, in contrast to the previous model, the normal operating state routing is linked with
the failure state routing. For every failure state s € S\{0}, the routings that do not contain
s have to be maintained, and only those routings that are affected by the failure of s can be
rerouted.

The capacity of those paths affected by a failure are released and can be used for rerouting.
Therefore, the spare capacity of an edge e € F; in a failure situation s € S\{0} is the sum of
the spare capacity from the normal operating state plus the released capacity of those paths
which include e and s, that is,

TORS DD DI ({CONE D DI WIS A (R

wveD PePgv:ecP uvelD PePyVisePechP
is the spare capacity of e € Es in s € S\{0}. Recall, a failure state s € S\{0} is a component

of the supply graph, and thus we can write s € P to denote that the failing component s is
contained in path P.

Data
For every demand edge uv € D, the path restoration parameter
® 0y, 0 < oyy < 1, 18 the fraction of the demand d,, that must be satisfied end-to-end

in a single node or single edge failure, without rerouting the paths not affected by the
particular failure situation.

@

40 80 40

b d o

Figure 2.4: Example routing for PATH RESTORATION

Figure 2.4 provides a feasible routing of the demand edge ac from Example 2.1 with restora-
tion parameter 4. = 2/3. The left part shows a routing for the normal operating state. Since
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the “surviving flow” in the failure states s = d, s = e, s = ae, s = ed, and s = dc is greater
than or equal to o4.dge, the normal operating state routing already provides a feasible routing
for these failure states. However, in the failure states s = b, s = ab, and s = be, at least 40
channels of the demand must be rerouted to satisfy a minimum of 66,6%. This is satisfied
through the additional path P = {ac} with the flow value fg¢(P) = 40, as illustrated on the
right-hand side of Figure 2.4.

Mathematical formulation

Here, the capacity and demand constraints for failure situations have to respect the unaffected
normal operating state routings. Since a restriction on the length of the paths used to route a
demand in the normal operating state is possibly imposed, we denote by P§¥ NP the set of
surviving short paths in P¥¥ for each failure situation s € S\{0} and each demand uv € D;.
That is, P € P§¥ NP if and only if P € P¢ and P has at most £, supply edges. The
following constraints are needed for every failure state s € S\{0}. For every surviving supply
edge e € F, the capacily constrainls are

> 3 wPY+ Y P | <yle) . (2.19)

uwveDs \PEPF'NPEViecP PcPuvecP

These constraints express that the installed capacities must suffice to accommodate all short
paths of all surviving demands which are not affected by the failure and those paths used to
reroute part of the failing flow. For every surviving demand uv € Dg, the demand constraints
are

S RTPY+ Y E(P) 2 Guntlue (2.20)

PePEenPey Peppv
and, additionally, the non-negativity constraints for every P € PV are
f(P) 2 0. (2.21)

Constraints (2.20) express the guaranteed survivability for each demand. The sum of the
values of the unaffected short paths together with the paths used to reroute part of the failing
flow must be at least the specified percentage of the demand value. Notice that no rerouting
of a demand uwv € D in failure state s € S\{0} is necessary, if the surviving part of the
normal operating state routings suffices in this particular failure situation. In this case, it holds

ZPEP(T]“)[TP;‘W fé‘“}(P) Z quduv-

2.4.4 A note on the survivability models

The survivability models aim at different kind of protection against the failure of a single
network component. Setting the diversification parameter §,, for the demand edge uv € D,
we require that at most 100 - 8,,% of the demand value d,, is routed through any node (other
than u and v) or any edge of the network. This implies routings which provide “node-disjoint”
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paths, each of them carrying at most d,,d,,, and therefore, only this part of the demand can
be lost if a single node or single edge of the supply graph fails. Hence, (1 — d,,)dy, channels
“survive” without any rerouting effort. There are two drawbacks, however. First, setting the
diversification parameter to é,, implies that the demand will be routed on at least [1/d,,] paths.
Second, we cannot achieve 100% survivability with this parameter. In practice, diversification
values below 1/3 are undesirable, because this would force at least four paths each of them
carrying only a small fraction of the demand.

Using RESERVATION the network designer takes advantage of possible redundancy in the
network by allowing rerouting in failure situations. The advantage of this method is the design
of low cost networks, but as obvious disadvantage, there is need for rerouting in case of a
failure situation. In fact, this rerouting may be extensive and the network management is
rather difficult for this survivability model. Furthermore, the available equipment and software
cannot change the normal operating state routings appropriately fast to considerably different
failure state routings. Hence, the cost of the solutions obtained using RESERVATION currently
serve as a lower bound to the necessary capital investment to achieve a specified survivability
in the network. As soon as such equipment will be available, however, it will be possible to
practically take advantage of the low cost solutions using RESERVATION.

The best compromise between cost and maintenance effort can be obtained with the surviv-
ability model PATH RESTORATION. As we will see in Chapter 4, the solutions are comparable
to the respective RESERVATION solutions, and the rerouting effort is relatively small. However,
there is a drawback of this method in the network planning stage. Much more computation
time is needed to achieve good solutions, since it is much more difficult to test whether a given
set of capacities permits a feasible routing in all operating states. We describe this in more
detail in Section 4.4.

Finally, the survivability model LINK RESTORATION (see (Wu, 1992)) is worth mentioning.
This model is similar to PATH RESTORATION and can be employed to deal with single edge
failures. In contrast to PATH RESTORATION, the failing flow is not rerouted end-to-end (between
the end-nodes of the affected demands), but between the end-nodes of the failing edge. In other
words, a failing edge generates a demand between its end-nodes. Obviously, capacities that
suffice to accommodate routings with respect to these requirements also suffices to accommodate
routings with respect to the requirements imposed by PATH RESTORATION. Thus, solutions
for LINK RESTORATION tend to be more expensive. The practical advantage is, however, that
faster restoration is possible since only communication between the end-nodes of the failing
edge is necessary to establish a failure routing.

In practice, it is reasonable to combine DIVERSIFICATION as survivability model for the
normal operating state with either RESERVATION or PATH RESTORATION. In these cases, a
minimum survivability is achieved by the diversification parameter setting, with the advantage
of easy network management. Additional survivability is introduced by the respective “fail-
ure” parameter setting. In case of a failure situation, the operator has to decide whether to
reconfigure the network or not. This decision depends on various aspects, e.g., on the affected
demands, the expected recovery time, and the required effort to reconfigure the network.
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2.5 Valid model combinations

A particular instance of a survivable capacitated network design problem contains a combination
of the capacity and survivability models presented in the previous sections. Figure 2.5 illustrates
the valid combinations. Any instance contains either DISCRETE CAPACITIES or DIVISIBLE
Basic CAPACITIES as capacity model, and the routing constraints for the normal operating
state (NOS ROUTING in the figure). This is shown in the upper part of Figure 2.5. Optionally,
the survivability model DIVERSIFICATION can be used to constraint the normal operating state
routing and, in addition, one of the failure state survivability models RESERVATION or PATH
RESTORATION can be used to reroute flow in single component failures.

DISCRETE CAPACITIES | D1VISIBLE BASIC CAPACITIES |

\ /

+ +

\ /

Nos ROUTING |

DIVERSIFICATION |

(+) (-+)
- e

RESERVATION | PATH RESTORATION |

Figure 2.5: Valid combinations of capacity and survivability models

2.6 Survivable capacitated network design: A survey

In the following chapters we will investigate the network design models described in the previ-
ous sections. The research community considered, of course, alternative models that are closely
related to ours. In this section, we give a brief overview on the research in the area of sur-
vivable capacitated network design, where the inherent routing problem can be modeled as
multicommodity-flow problem. We omit other interesting and closely related research areas,
since there already exist excellent surveys.

A very special case of network design problem is the Steiner-tree problem. Many researchers
have been attracted by this problem and therefore the huge amount of existing practical and
theoretical results in this area is not surprising. For a general overview of this topic, we refer
the reader to the book (Wang et al., 1992), and for polyhedral methods to solve this problem
exactly to the overview in (Koch and Martin, 1998). More general problems arise in the design
of uncapacitated survivable networks which are interesting for fiber-optic cable networks if no
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routing and capacity issues are considered. Uncapacitated network design problems are often
modeled by means of k-node (k-edge) connected networks and surveys on related optimiza-
tion problems from a theoretical and practical perspective can be found in (Stoer, 1992) and
(Grotschel et al., 1995).

The design problem for self-healing-ring networks fits into the category of capacitated sur-
vivable network design. In this context, however, the important subproblems are ring-covering
and ring-loading problems (see (ITUT-G.841, 1995)), but not multicommodity-flow problems.
The interring-routing problem (ITUT-G.842, 1997) could be considered as multicommodity-flow
problem, but we are not aware of optimization models which integrate interring-routing, ring-
covering and ring-loading.

2.6.1 Computational complexity

Very basic versions of capacitated network design problems are already N'P-complete. The
following complexity results do not even take survivability constraints or path-length restrictions
into account, and the capacity model is always DIVISIBLE BASIC CAPACITIES with |T'| < 2.

We start with a polynomially solvable special case. (Magnanti and Mirchandani, 1993)
showed for the single-demand case with one technology, that is, for |D| =1 and |T'| = 1, that
the network design problem reduces to a shortest-path problem, if there are no routing costs.
However, if routing costs are incorporated, even this single-demand case with one technology
is theoretically difficult.

Theorem 2.2 (Chopra et al., 1998) The capacitated network design problem for DIVISIBLE
Basic CAPACITIES with |[D| =1, |T| =1 and routing costs is N'P-hard.

Theorem 2.3 (Chopra et al., 1998) The capacitated network design problem for DIVISIBLE
Basic CAPACITIES with |D| =1 and |T| < 2 is N'P-hard even if the routing costs are always
zero.

Both preceding results have been proven through reduction from the minimal cover problem,
see (Garey and Johnson, 1979).

In practice, economies of scale often apply for the basic capacities, that is, usually the
inequality K7i - C% /C™ > K, is satisfied for all edges e € E and 7, 7; € T with C77 > C7. If
this inequality holds at equality for all supply edges then a result of (Magnanti and Mirchandani,
1993) shows that the capacitated network design problem in the single-demand case reduces
again to a shortest-path problem.

Turning to capacitated network design problems with more than just a single demand, we
already know from the previously mentioned results that these optimization problems are N'P-
hard. However, this already holds for series-parallel graphs. (A graph is series-parallel, if it can
be constructed from a single edge by adding parallel edges and substituting edges by simple
paths.) The following theorem has been proven through reduction from the knapsack problem.
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Theorem 2.4 (Bienstock et al., 1998) The capacilated network design problem for the
model DIVISIBLE BASIC CAPACITIES with |T'| = 1 is (weakly) N'P-hard on series-parallel supply
graphs.

2.6.2 Continuous capacities

In this section, we abstract from a particular discrete capacity model and assume the possibil-
ity to install arbitrary (continuous) capacities on the supply edges. Under this assumption the
network design problem for the normal operating state without path-length restrictions is poly-
nomially solvable. Tt can be considered as a continuous multicommodity-flow problem, which
can be solved in polynomial time with either the ellipsoid method of (Khachyan, 1979) or the
interior-point algorithm of (Karmakar, 1984), since it can be formulated as linear program with
a polynomial number of variables and constraints. (For instance, the constraints (2.11) — (2.13)
provide such a formulation.) Furthermore, there exists an exact characterization under which
conditions a capacity vector suffices to accommodate a feasible (continuous) routing.

Theorem 2.5 (Iri, 1971), (Kakusho and Onaga, 1971) A capacity vector 3 is feasible for
the continuous capacitated network design problem if and only if

Zﬂey(e) Z Zﬂ-uvdWJ (2.22)

eck uveD

for all edge weights pu, > 0,e € E, where, for every uv € D, m,, s the value of a shortest
uv-path in G with respect to these edge weights.

The proof of this theorem is a simple application of the duality theorem of linear program-
ming (see Theorem 0.1). Inequalities (2.22) are called metric inequalities and can be interpreted
as follows. If the weight i, for a supply edge e € E defines the cost for one unit of capacity
on this edge then the total network costs for capacities 7(e), e € F, are ) 5 u.7(e). The
right-hand side of a metric inequality sums up the cost if we could route each demand uv € D
on a cheapest path between v and v. Thus, this sum provides a lower bound to the cost of a
feasible solution.

Some special cases of metric inequalities are important. Suppose that a k-graph-partition
Vi,..., Vg of the supply graph G = (V, E) is given (see page 10) and define supply edge weights
by setting

L 1, 666(}(‘/]_,...,‘/]‘:),
He = 0, else.

Furthermore, let the subset of the demand edges with end-nodes in two different shores of the
k-graph-partition be

Vi, . Vo) = |J (v, V).
1<i<j<k
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The values of all shortest uv-paths are one, if §g(V;, V;) # 0 for every uv € §5(Vi, ..., Vi) with
u € Vi,v € V;. In this case, the corresponding metric inequality reads as

Yo yle) > > du- (2.23)

eEﬁg(Vl,...,Vk) U’UE(SH(Vl,...,Vk)

For general k, (2.23) is a k-graph-partition inequality, and for k = 2 a cul inequality. Several
researchers investigated the interesting question under which conditions a capacity vector is
feasible if and only if all cut inequalities (or k-graph-partition inequalities, k¥ < I, for some fixed
I € N) are satisfied. Well-known results are the famous Max-Flow-Min-Cut Theorem and its
extension to two demands.

Theorem 2.6 (Ford and Fulkerson, 1962) For |D| =1, a capacity vector § is feasible for
the (continuous) capacitated network design problem if and only if Y satisfies all cut inequalilies.

Theorem 2.7 (Hu, 1963) For |D| = 2, a capacity vector 7 is feasible for the (continuous)
capacitated network design problem if and only if § satisfies all cul inequalilies are salisfied.

In addition, there exists a huge number of characterizations for which structure of demand
and supply graph a capacity vector provides a feasible routing if and only if all cut inequalities
are satisfied. We do not further extend this list of results and refer to the excellent overviews
(Frank, 1990; Frank, 1995) and (Schrijver, 1990) for a thorough presentation of related results.

In Section 2.3, we formulated the continuous capacitated network design problem with path
variables and, as we already noted, there might be an exponential number of them. In general,
it is therefore impossible to solve this linear program if it includes all path variables. (Mi-
noux, 1981) suggested a column generation approach which is applicable to non-simultaneous
multicommodity-flow problems such as given for the survivability models DIVERSIFICATION and
RESERVATION. Minoux presented computational results with instances up to 40 nodes.

Large network design problem instances (e.g., more than 100 nodes) are difficult to solve by
means of linear programming. However, for these cases, there is the interesting e-approximation
algorithm proposed by (Leighton et al., 1991). The running time of this algorithm scales up to
a logarithmic factor linear with the number of demands. ((Leighton et al., 1991): “... giving the
surprising result that approximately computing a |D|-commodity maximum flow is not much
harder than computing about |D| single commodity maximum flow problems.”)

Theorem 2.8 (Leighton et al., 1991) For any fized € > 0, a (1 —¢)-approzimation algorithm
to the continuous capacitated network design problem for supply graph G = (V, E) and demand
graph H = (V, D) can be found by a randomized algorithm in O(|D||E||V|log|D|log®|V|) time
and a deterministic algorithm in O(|D|?|E||V |log|D|log®|V|) time, where the constant depends
on €.

This is a theoretical result. Several researchers, however, put emphasis on fast and practical
implementations of this e-approximation algorithm. First successful computational experiments
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on randomly generated data have been presented in (Leong et al., 1993). More recently, (Bien-
stock, 1999) solved this problem for a large-scale problem instance with more than 200 nodes. In
fact, he employed the e-approximation to compute solutions for a DIVISIBLE BASIC CAPACITIES
with 7' = {7} and C7 = 1. This problem size is not tractable otherwise.

2.6.3 Discrete capacities

In this section, we consider network design problems with a discrete capacity structure. As
the complexity results reveal, these problems are much more difficult than their continuous
counterparts. Even single-demand cases are NP-hard, and hence it appears natural to devise
heuristic algorithms. However, we do not know of any elaborate combinatorial heuristic with
proven quality guarantee. The only “heuristics” we know are based on linear programming
relaxations and are (partial) branch&bound or branch&cut algorithms. These are also the
most successful approaches we are aware of.

Many researchers identified valid or even facet-defining inequalities for polyhedra associ-
ated with some version of a capacitated survivable network design problem. It is worth men-
tioning that in some sense, all known inequalities can be viewed as either an application of
(mixed-)integer-rounding (see (Gomory, 1969; Chvatal, 1973; Nemhauser and Wolsey, 1990))
to an adaption of the k-graph-partition inequalities (2.23), or as an adaption of the minimal-
cover inequalities for the knapsack polyhedron (see (Balas, 1975; Hammer et al., 1975; Padberg,
1975; Wolsey, 1975)). There are not many special cases of network design problems for which a
complete description of the associated polyhedron is known. We cite two results about complete
descriptions. In both cases, the supply graph contains not more than three nodes.

In the next chapter, we provide a coherent presentation of the polyhedra associated with
capacitated network design problems. We will present several classes of inequalities, some
of them are new, others are from the literature. Notice that most polyhedral investigations
are concerned with the capacity model DIVISIBLE BAsic CAPACITIES with one or two basic
capacities only, even though the capacity model DISCRETE CAPACITIES is more flexible (see
Section 2.2). Only Dahl and Stoer investigated the latter model.

Models without survivability

As we already mentioned, not much is known about the structure of optimal solutions or the
quality of heuristics even if one does not include survivability considerations. However, for a
problem defined on three nodes there exists a complete description of the associated polyhedron.

Theorem 2.9 (Magnanti et al., 1993) For a network design problem on a supply graph
G = (V, E) and demand graph H = (V, D) with |V| = 3 for DIVISIBLE BAsIC CAPACITIES with
|T| = 1, the convez hull of all feasible integer capacity vectors is completely described by cul
inequalities, 3-graph-partition inequalilies and the non-negativily constrainis.

(Bienstock et al., 1998) proved a similar result for directed supply graphs on three nodes. In
this case, so-called totol capacity inequalities are needed to provide a complete description.
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How about practically solving this type of problem? We briefly summarize the literature
of computational experiments with linear programming based approaches; all of them for the
model DIVISIBLE BAsic CAPACITIES with one or two basic capacities. (Bienstock and Giinliik,
1995) solved sparse ATM network design problems with real-life data for instances of up to 16
nodes to optimality. Their model included flow costs and the capacities are given as combina-
tions of the two basic capacities OC3 and OC12. They presented many classes of facet-defining
inequalities, including different versions of cut inequalities, flow-cut-set inequalities, and 3-
graph-partition inequalities.

(Magnanti et al., 1995) investigated the network design problem with two basic capacities.
They compared a Lagrangian-relaxation approach with a cutting plane approach. For the
cutting plane approach, (Magnanti et al., 1995) included cut inequalities, arc residual inequali-
ties, and 3-graph-partition inequalities. The computational experiments on randomly generated
problem instances with up to 15 nodes revealed that the cutting plane approach provides better
lower bounds. The integrality gaps were about 5-20% for the 15 node problems and the inte-
grality gap of the Lagrangian-relaxation approach was about 4% worse on average. However,
their experiments indicated that the running time of the cutting plane approach is more sensi-
tive to the problem size. With increasing problem size the time to solve the problem instances
with Lagrangian-relaxation increased more slowly than those of the cutting plane approach.
(Barahona, 1996) considered a linear relaxation for a network design problem with one basic
capacity that includes only cut- and k-graph-partition inequalities. The flow variables were
projected out, and instead of separating all metric inequalities only the mentioned subclasses
were employed. No algorithm was mentioned to test the feasibility of a capacity vector (e.g.,
by means of separation of metric inequalities). Instead, Barahona described sophisticated sep-
aration algorithms for the two inequality classes and used these in a cut&branch algorithm.
(In contrast to a branch&cut algorithm, a cut&branch algorithm uses cutting planes only at
the root node and uses a pure branch&bound algorithm afterwards.) Problem instances up to
64 nodes with complete supply and demand graphs were solved with an accuracy of 5-10%.
(Giinliik, 1999) presented a branch&cut algorithm to solve the network design problem with
two basic capacities. Beside the previously known classes of metric and k-graph-partition in-
equalities he proved that inequalities based on the principle of mixing mixed-integer inequalities
(see (Gunlik and Pochet, 1997)) are facet-defining for the associated polyhedron. Besides, a
new branching rule was presented, the so-called knapsack branching. The computational tests
on three real-world data sets ((i) 15 nodes, 22 supply edges, (ii) 16 nodes, 49 supply edges, (iii)
27 nodes, 51 supply edges) revealed the strength of branch&cut compared to cut&branch or
branch&bound for this type of problem. (Bienstock et al., 1998) studied network design prob-
lems with one basic capacity. An interesting point in this paper is the computational comparison
of two different formulations of the problem: one with edge-flow variables (see page 40), and
one in terms of metric inequalities. The tests on two data sets, the “New York area” problem
with 15 nodes, 44 supply edges, 210 demand edges, and “Norwegian” problems with 27 nodes,
102 supply edges, 19 demand edges (supplied by Mechthild Stoer) showed that the problems
can be solved to optimality with both formulations. The formulation without flow-variables,
however, outperformed the other in terms of branch&bound nodes and computation time.
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Models with survivability

First, we consider the case of a single basic technology of unit capacity, that is, 7" = {7}
and C™ = 1. Let G = (V, E) be the supply graph, H = (V, D) the demand graph, and let
da(W), 0 (W) be cuts for W C V in G and H, respectively. Furthermore, the value d represents
the demand across the cut in the normal operating state, and for the supply edges g € ég(W),
the value d, represents the demand across the cut in failure state g. The definition of these
values depends on the survivability model for failure situations. For the model RESERVATION
these are defined as

d = > duw,

UvESy (W)

dy == > putu, gEu(W).
u’UEdH(W)

For the model PATH RESTORATION, suppose that a fized normal operating state routing is
given, Hence, a value f§¥(e) is given for each supply edge e € (W) and each demand edge
wv € dg (W), which represents the flow through e that is dedicated to the demand wv. In this
setting, the definition of the above mentioned demand values is the following:

d = 0,
dg = Z ma.X{O, (UU’U - 1)du'u + f(q)w(g)} ] g € 5H(W) *
u’UEdH(W)

Under these assumptions, the following constraints provide a general formulation of a survivable
network design problem on a cut W C V for the models RESERVATION and PATH RESTORATION.

> azler) 2dy, geda(W), (2.24)
eig(W)\{g}
> zle,r) 2d, (2.25)
ecda (W)
z(e,7) € Zy, e€dg(W). (2.26)

For the first case, RESERVATION, Bienstock and Muratore characterized inequalities through
lifting (with simple lifting coefficients) such that the derived inequalities provide a complete
description of the convex hull of all feasible solutions of (2.24) —(2.26), if all values dg, g € (W),
are equal. In the other case, for PATH RESTORATION with fixed normal operating state routing,
Magnanti and Wang provided a complete description.

Theorem 2.10 (Bienstock and Muratore, 1999) For constant dy, g € dg(W), the convex
hull of all solutions of the system (2.24) — (2.26) is complelely described by inequalities (2.24)
and inequalities of the form

Z z(e,T) + & Z z(e,7) > R, (2.27)

eck ecks
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for FiUFy, = 0g(W), Fi N Fy =0 and appropriate a > 1 and R.

Inequalities (2.27) can be obtained from sequential lifting applied to one particular (non-
trivial) type of inequality. We do not want to go into further detail, but Bienstock and Muratore
described the inequality to start the sequential lifting procedure with, exactly calculated the
lifting coefficient, and proved that all facets can be obtained this way.

Theorem 2.11 (Magnanti and Wang, 1997) For d = 0, the convez hull of all solutions
of the system (2.24) — (2.26) is completely described by non-negalivity inequalilies, inequalities
(2.24) and so-called Q-subset inequalities.

Q-subset inequalities can be interpreted as the result of mixed-integer rounding applied to
the sum of inequalities (2.24) for the edges in @ C dg(W). Magnanti and Wang also proved
a generalization of this theorem. With slight modifications the same result is true for series-
parallel graphs.

Next, we review some computational experiments for survivable capacitated network design
with different combinations of models. Interestingly, integrated approaches which attempt to
find a cheapest network such that a routing for the normal operating state and the failure
states is possible are not often considered. Such integrated approaches are more complex and
practically more difficult to solve. However, it has also been noted in (Murakami and Kim,
1995) and (Poppe and Demeester, 1997) that solutions of an integrated approach tend to be
considerably cheaper.

(Stoer and Dahl, 1994; Dahl and Stoer, 1998) investigated the capacity model DISCRETE
CAPACITIES and the survivability models DIVERSIFICATION and RESERVATION without path-
length restrictions for the Norwegian Telecom Research. These models have been the basis
for our work. Dahl and Stoer identified several classes of inequalities like band inequalities
(see (3.8)) and k-graph-partition-band inequalities (see (3.10)), and solved a large number of
instances (from 37 up to 118 nodes with a very sparse supply graph) to optimality. However,
they also report on difficulties for problem instances with denser supply graph. Beside Dahl
and Stoer and ourselves, there are only a few other references to integrated approaches, all for
D1visiBLE BAsic CAPACITIES and one basic capacity. (Poppe and Demeester, 1997) investi-
gated the joint problem of installing capacities (one technology) such that a normal operating
state routing and a routing for all single link failure is possible with respect to the survivability
model LINK RESTORATION. Their mixed-integer programming model contains continuous path
variables for the flow in the normal operating state and integer variables for the capacity deci-
sions. They proposed a branch&cut approach with inequalities arising from the uncapacitated
network design problems of (Grotschel et al., 1992) and sum-and-divide procedures. Nothing is
proven about the strength of the inequalities. The problem sizes in the computational studies
ranged from 8 nodes, 13 supply edges, 13 demand edges to 20 nodes, 54 supply edges, 79 de-
mands. Optimality was proven for the small problem instances and the maximal integrality gap
was 37%. For PATH RESTORATION, (Xiong, 1998) formulated the integrated optimization of
the normal operating state and the failure states with path variables. The routing is supposed
to be non-bifurcated, that is, for each demand and each operating state there is a unique path.
Since no column generation for the path variables and no cutting planes to strengthen the
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linear relaxation were employed, the author preselected for each demand 10 alternative paths.
The tests on two sparse problem instances (11 nodes, 23 supply edges and 28 nodes, 45 supply
edges) yield gaps below 5%. (Filho and Tavares, 1998) considered the integrated problem for
LINK RESTORATION. On two sparse test problems with large demands (compared to the basic
capacity STM-4) the gap between the initial linear programming relaxation and the solution of
a simple rounding heuristic was below 2%.

All of the following references are based on the capacity model DIVISIBLE BASIC CAPACITIES
for one or two basic capacities, and the survivability model LINK RESTORATION or PATH RE-
STORATION with fized normal operating state routing.

(Sakauchi et al., 1990) considered LINK RESTORATION. Their optimization target was to
minimize the total number of spare capacity units (one basic capacity) needed to accommodate
the failure routings. No costs were involved. As solution method they used a linear programming
relaxation based on cut inequalities which were separated with a maximum flow algorithm.
No extension to metric inequalities was shown for PATH RESTORATION. To compute feasible
integral solutions the authors employed a rounding procedure to make the variables of the
final linear programming solution integral, followed by an improvement algorithm to find a
solution with less spare capacity. Nothing was reported about the criteria used and the quality
guarantee obtained. (Lee et al., 1995) considered the capacity expansion for LINK RESTO-
RATION. Combinations of two basic capacities (STM-1 and STM-4) are allowed and, in addition
to other models, capacity constraints for the nodes of the supply graph have been added to
the model. Cut inequalities are proven to be facet-defining for the associated polyhedra and
these inequalities are then used in a branch&cut algorithm which was tested on two networks
stemming from the literature. The problem sizes were 11 nodes, 23 supply edges, and 26 nodes,
42 supply edges. The number of demands was not reported. The variants with one basic
capacity could be solved within a few seconds and those with two basic capacities within an
hour. (Balakrishnan et al., 1998) used the polyhedral investigations of (Magnanti and Wang,
1997) for LINK RESTORATION, presented separation algorithms and reported on computational
experiments with a cut&branch algorithm. The size of the real-world problem instance was 41
nodes, 61 supply edges (unknown demands) and the size of the random instance ranged from
20 up to 50 nodes with an average connectivity of 4, with random demands between any pair
of nodes. The value of the initial linear programming relaxation was almost always below 10%
and the cut&branch algorithm solved all problem instance within a few minutes to optimality.






Chapter 3

Polyhedral Investigations

The convex hull of all solutions that satisfy the constraints for a particular combination of a
capacity and a survivability model is a polyhedron. In fact, these solutions provide an “inner”
description of this polyhedron. By a well-known theorem in polyhedral combinatorics (Weyl,
1935), an “outer” description in terms of linear inequalities exists as well. Thus, if such an
outer description is known, it is in principle possible to solve the problem by means of linear
programming. However, in general it is not possible to provide such a description, and even if
it is known, its number of inequalities is too large large for state-of-the-art linear programming
solvers. Despite these problems, an optimal solution in terms of integer capacity variables
can uniquely be described by a small number of linearly independent inequalities, and thus, it
suffices to identify inequalities that determine such an optimal solution.

A cutting plane approach seeks a partial description which approximates the (complete)
description as well as possible. The success of this approach depends on the extent to which the
structure of the polyhedra is known, and therefore we focus in this chapter on the investigation of
the polyhedra associated with the survivable capacitated network design described in Chapter 2.
We present classes of valid or even facet-defining inequalities for the original polyhedra, for
projections to subspaces and for particular relaxations.

The polyhedra depend on the structure of the supply and demand graphs, the capacity model,
and the survivability model. Given a supply graph G and a demand graph H, a capacity model
CAP and a survivability model SURV, we denote the polyhedron by

P(G, H,CAP,SURV) .

To keep the exposition simple, we ignore edge dependent parameters such as individual capac-
ities of the supply edges, demand values or survivability parameters in the format. These are
implicitly given.

The variables are the integer capacity variables z, the continuous path variables f, and the
auxiliary continuous capacity variables y. We denote by FIN and BAS the capacity models
D1sCRETE CAPACITIES and DI1VISIBLE BASiC CAPACITIES, respectively, and by D1v, RES, and
PATH the survivability models DIVERSIFICATION, RESERVATION, and PATH RESTORATION,
respectively. Additionally, we denote the normal operating state by Nos. We consider the

97
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following polyhedra in the subsequent sections.

P(G, H,F1N,Nos)
P(G, H,FIN, D1v)

P(G, H,FIN, RES)

P(G, H,FIN, PATH) := conv {(z,y, f) :

P(G, H,Bas,Nos)
P(G, H,Bas,D1v)

P(G, H,Bas, RES)

P(G, H,BAs,PATH) := conv {(z,y, f) :

= conv {(z,y, f) :
= conv {(z,y, f) :

= conv {(z,y, f) :

:= conv {(z,y, f) :

:= conv {(z,y, f) :

(z,y) satisfies (2.2), (2.3), (2.4),

(y, f) satisfies (2.8),(2.9), (2.10)},

(z,y, f) € P(G, H,FIN,Nos),

[ satisfies (2.14), (2.15)},

z,y, f) € P(G,H,FIN,Nos),

y, [) satisfies (2.16), (2.17), (2.18)},

z,y, f) € P(G, H,FIN,Nos)

y, [) satisfies (2.19), (2.20), (2.21)},
y) satisfies (2.6), (2.7),

y, [) satisfies (2.8),(2.9), (2.10)},

z,y, ) € P(G,H,Bas,Nos),

[ satisfies (2.14), (2.15)},

bl

(
(
(
(z,
(
(

= conv {(z,y, f) : (z,y, f) € P(G,H,Bas,Nos),
(y, [) satisfies (2.16), (2.17), (2.18)},
(z,y, f) € P(G, H,Bas,Nos),
(y, f) satisfies (2.19), (2.20), (2.21)}.

For notational convenience, we do not distinguish between the flow vector f and its projection
to the normal operating state, and we omit the dimension of the vector space of the solutions
(z,y, f), since it depends too much on the structure of a particular problem instance. Without
enumeration of all valid paths for all operating states, it is difficult to determine the number of
path variables. Obvious relations between these polyhedra are

P(G, H,FIN,D1v) C P(G, H,FIN,Nos),

P(G, H,Bas,D1v) C P(G, H,Bas, Nos).

The above polyhedra are very high-dimensional, because of the huge number of path vari-
ables. As we already pointed out, the objective function coeflicients of all path variables are
zero (see (2.1) and (2.5)), and only cost coeflicients of integer capacity variables are positive.
In the space of the continuous capacity variables, we define the following polyhedra.

Y(G,H,Nos) = {yeR¥
Y(G,H,D1v) = {yeR¥
Y(G,H,RES) = {y € R¥
Y (G, H,PaTH) := {y € R}

: 3f such that (y, f) satisfies (2.8),(2.9),(2.10)},

: 3f such that (y, f) satisfies (2.8) — (2.10), (2.14), (2.15) },

: 3f such that (y, f) satisfies (2.8) — (2.10), (2.16) — (2.18)},
: 3f such that (y, f) satisfies (2.8) — (2.10), (2.19) — (2.21)}.

For each survivability model, the above polyhedron is the sum of the positive orthant R’E
and the respective projection to y-variables. Notice that these polyhedra are independent from

the capacity model and defined by the set of feasible continuous capacity vectors.

Obvious

relations between these polyhedra are
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Y(G,H,D1v) CY(G, H,Nos) and Y (G, H,PaTH) C Y(G, H, REs).

Furthermore, we define polyhedra in the space of z-variables. Let T(E) := {(e,1) : e €
E1 <t < T.} be the index set of the integer capacity variables for the model DISCRETE
CAPACITIES, and define

X(G,H,FIN,Nos) :=conv {z € {0,1}7® : z(e,1) > --- > z(e,T.),e € E,

Te
(C2+)  clale,t))ecr € Y(G, H,Nos)},
t=1
X(G,H,FIN,D1v) :=conv {z € {0,1}*") : z(e,1) > --- > z(e,T.),e € E,

Te
(Ce+ Zcéx(e’t))eeE € Y(G, H,Dv)},
=1
X(G,H,FIN,REs) = conv {z € {0,1}"") : (e, 1) > -+ > z(e, T.),e € B,

Te
(Ce+ Zcéx(e’t))eeE € Y(G, H,REs)},
t—1
X(G, H,FIN, PATH) := conv {z € {0,1}7") : z(e,1) > - > z(e, T2), e € E,

Te
(C2+ 20233(6,75))&15 € Y(G, H,Patn)}.
=1

Similarly, let T(E) := {(e,7) : e € E,7 € T} for the DIVISIBLE BASIC CAPACITIES and
define

X(G,H,Bas,Nos) = conv {z € Z/" - (C0+ 3" Ca(e,7))ecr € Y(G, H,Nos)},
TET

X(G,H,Bas,Drv) = conv {z € ZL7 1 (C0+ 3" CTa(e,7))eer € Y(G, H,DIV)},
TET

X (G, H,Bas,REs) = conv {z € Z1\7: (C°+ 3" CTale,))eer € Y(G, H,RES)},
TeT

X (G, H,BAs,PATH) := conv {z € ZTE) (C2 + Z C"z(e,7))ecr € Y(G, H,PATH)}.
7€l

For each combination of a capacity and a survivability model these are the projections to
z-variables. Again, the obvious inclusions are

X (G, H,FiN,D1v) C X(G, H,FIN,Nos), X (G, H,FIN, PATH) C X (G, H, FIN, RES),

X(G,H,Bas,D1v) C X(G, H,Bas,Nos), X(G, H,Bas,PaTH) C X (G, H, BAs, REs).

If the particular survivability model is not important, we use the notation

P(G,H,FIN, ), P(G,H,Bas,), X(G, HFIN,.),X(G,H,Bas,:), Y(G H,-),
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respectively. If the particular capacity model is also not important, we use

P(G7H7'7')7 X(G7H7'7')7

respectively. These three types of polyhedra are related with each other. The polyhedra
X(G, H,-,-) are the projection of the respective polyhedra P(G, H,-,-) to the space of integer
capacity variables. Furthermore, there is a canonic way to embed the polyhedra X (G, H,-,")
and P(G, H,-,-) into the (continuous) polyhedra Y (G, H,-). This implies the following lemma,
the proof of which is obvious.

Lemma 3.1
(a) min{k®z : (z,y, f) € P(G,H,-,)} = min{kTz:z € X(G, H,-,")},
(b) a¥'z > o valid for P(G, H,-,-) <= a''z > « valid for X(G, H,-,-),

(c) a¥y > a valid for Y(G, H,-) =
Y eck e Yo dale,t) > a— > ecr aeCL wvalid for X (G, H,FIN,-) and P(G, H,FIN, ),

(d) o'y > « valid for Y(G, H,.) =
> ecr e Yorer CTx(e,7) > a =3, cpacCQ valid for X(G, H,BASs,-) and P(G, H,Bas,").

Notice that in statements (c) and (d) of Lemma 3.1 a valid inequality for a polyhedron

Y (G, H,-) is transformed into a valid inequality for the respective capacity model dependent
polyhedra X (G, H,FIN,-), X(G, H,Bas,-), P(G, H,FIN,-), and P(G, H,Bas,").

3.1 Continuous capacities: Y (G, H, )

In this section, we investigate the polyhedra Y (G, H,-) for the different survivability models.
We present in each case a complete description of Y (G, H,-) by means of some variation of
so-called metric inequalities. The original results of (Iri, 1971) and (Kakusho and Onaga, 1971)
state that metric inequalities suffice to describe the polyhedron Y (G, H,Nos). The proofs
are based on linear programming duality applied to the appropriate formulation of the decision
problem whether some capacity vector 7 satisfies g € Y(G, H,Nos). This result can be adapted
for the survivability models DIVERSIFICATION, RESERVATION, and PATH RESTORATION.

At the end of this section, we illustrate the difference between the survivability model depen-
dent classes of metric inequalities based on the following small examples. Let a complete supply
graph on four nodes a, b, ¢, and d be given, and suppose that there are two demands ac and bd
with values d,. = 2 and dpg = 1. Furthermore, let the survivability dependent parameters be
dae = Opg = 0.5, poe = ppg = 0.5, and oy = opy = 0.5 for DIVERSIFICATION, RESERVATION, and
PATH RESTORATION, respectively. In this example, no path-length restrictions are considered.
The four capacity vectors (the labels at the edges represent the capacity) shown in Figure 3.1
satisfy
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@2 @D\Q 1/@>\1 1/@”)\1.5
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(a) (b) (c) (d)

Figure 3.1: Example capacities

3.1(a) is infeasible for Y(G, H,Nos),

3.1(b) is feasible for Y(G, H,No0s), but infeasible for Y (G, H, RES),
3.1(c) is feasible for Y/(G, H, RESs), but infeasible for Y (G, H, PATH),
3.1(d) is feasible for Y(G, H, PATH), but infeasible for Y(G, H, D1v).

To verify the claimed feasibility for Figure 3.1(b)-(d), see Figure

3.2(a) for a feasible routing for the normal operating state and the capacities of
Figure 3.1(b).

3.2(b) for a feasible routing for RESERVATION in edge failure state s = bd for the
capacities of Figure 3.1(c). The routings in all other operating states are
obvious.

3.2(c) for a feasible routing in the normal operating state for the capacities of
Figure 3.1(d). For PATH RESTORATION, this routing is feasible for the failure
states s € {a, ¢, d, ad, ac,cd} without any changes. For the edge failure states
s = ab and s = bc, and the node failure state s = b, a feasible routing is
obtained by rerouting 0.5 units of demand ac over the path a —d—¢. Finally,
in the edge failure state s = bd, a feasible routing is obtained by rerouting
0.5 units of demand bd over the path b — ¢ — d.

2 0.5 0.5 0.5 1.5
— 2 s N s ~ s ~
- ~
@ v OSENRO @
N o1 0.5 0.5 N ,
2 \ o / 0.5 1.5
D 0.5 0.5 R .

Figure 3.2: Example routings

At the end of this section, we will prove the claimed infeasibilities of the capacity vectors of
Figures 3.1(a)-(d). For each of the four cases, we present a metric inequality which is valid for
the particular polyhedron Y (G, H, -), but which is violated by the particular capacity vector.
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3.1.1 No survivability restrictions

The polyhedron Y (G, H, NOs) consists of all continuous capacity vectors g € R’E which suffice to
accommodate a continuous multicommodity-flow. Theorem 2.5 states that ¥ € Y(G, H,Nos)
if and only if all metric inequalities (2.22) are satisfied. This result is formulated without
path-length restrictions, but can easily be extended to cover this case.

3.1.2 DIVERSIFICATION

Next, we consider the polyhedron Y (G, H, D1v) for the survivability model DIVERSIFICATION.
In this case, a capacity vector 7 is feasible, if there exists a routing vector f such that (Y, 7)
satisfies the constraints (2.14) and (2.15), in addition to the normal operating state constraints.
The following theorem is an extension of Theorem 2.5 that has been proven in (Dahl and Stoer,
1998), rephrased here to include path-length restrictions.

Theorem 3.2 A capacity vector j is feasible for DIVERSIFICATION with path-length restric-
tions, that is, g € Y(G, H,D1v), if and only if

Zy(e)ue > Z Ay Ty — Z Ouvuy Z Y + Z Yav | (3.1)

ecE uveED wveD e€dg(u)Ndg(v) weV\{u,v}

for all u, > 0,e € E, vio > 0,uv € D,w € V\{u,v}, and 75, > 0, wv € D,e € dg(u) Ndg(v)
with m,, is defined as follows: Given uwv € D, we assign to each edge e € E\{dg(u) Ndg(v)}
the weight p,, to edges e € dg(u) N dg(v) the weight p, + 75, and to each node w € V\{u,v}
the weight ~v,,,. Then m,, is the value of a shortest among all wv-paths in G with al most £y,
edges.

We refer to inequalities (3.1) as metric inequalities, too, since these are the obvious extension
for the survivability model DIVERSIFICATION.

3.1.3 RESERVATION

Next, we consider the polyhedron Y (G, H, RES) for the survivability model RESERVATION. In
this case, a capacity vector 7 is feasible, if there exists a routing vector f such that (7, f)
satisfies the constraints (2.16), (2.17), and (2.18), in addition to the constraints for the normal
operating state. These constraints nicely decompose into a separate set of constraints for each
operating state. Hence, the extension of the previous results to Y (G, H, RES) is the following.

Proposition 3.3 A capacity vector y is feasible for the survivability model RESERVATION, that
is, y € Y(G, H,RES), if and only if gy € Y (G, H,Nos) and for all failure states s € S\{0}

Z ?(E)Mi > Z puvduvﬂ'qsw ; (32)
eck, uvED;

for all i > 0,e € Ey, where 7, is the value of a shortest uv-path in Gy with respect to the
edge weighls p for every uv € Ds.
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We refer to inequalities (3.2) as metric inequalities, too, since these are the obvious extension
for the survivability model RESERVATION.

3.1.4 PATH RESTORATION

Finally, we consider the polyhedron Y (G, H, PATH) for the survivability model PATH RESTO-
RATION. In this case, a capacity vector 7 is feasible, if there exists a routing vector f such that

(7, f) satisfies the constraints (2.19) and (2.20), in addition to the constraints for the normal
operating state.

The previously introduced metric inequalities (2.22), (3.1), and (3.2), are of the following
form. Given are supply edge weights (for individual operating states), which define the coefli-
cients for the continuous capacity variables. The value of the right-hand side is then defined as
the sum of weighted demand values, where the weights are the values of shortest paths between
the demand end-nodes. This construction is not possible for PATH RESTORATION, but the set
of feasible solutions can also be described by a single class of inequalities. In this case, the
coefficients reflect that the routing for the normal operating state is linked with the routings of
the failure states.

Proposition 3.4 A capacity vector § is feasible for the survivability model PATH RESTO-
RATION, that is, § € Y (G, H,PATH), if and only if

SN g > Y durlt >SS cwduenl, (3.3)

s€ES ecEs wveD s€S\{0} uveD,

is salisfied, for all u2 >0, s € S, e € FEy, and w,,, 75, > 0,5 € S\{0}, uv € D thal satisfy

me— Y pi < 0, s€S\{0}, uwwe Dy, PePY, (3.4)

ecP
wgv—Zug—l- Z (772@_2#2) < 0,weD, PePy’. (3.5)
ecP s€S\{0}:s¢P ecP

Proof. We just sketch the proof, which is a simple application of linear programming duality.
Suppose that the decision problem whether a capacity vector is feasible for PATH RESTORATION
is formulated as linear program with path variables such that the additional capacity needed
on a single supply edge is minimized. See (4.14) — (4.20) on page 110 for such a formulation
including DIVERSIFICATION. Then, the constraints (3.4) and (3.5) are the non-trivial constraints
of the associated dual linear program, and (3.3) corresponds to the dual objective function. The
result follows, since (3.3) is violated if and only if the optimal dual objective is strictly positive,
that is, if and only if additional capacity is needed on at least one supply edge. O

In the small examples at the beginning of this section, we claimed infeasibility for the capac-
ity vectors in Figure 3.1(a),(b),(c), and (d), for the normal operating state and the survivability
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models RESERVATION, PATH RESTORATION, and DIVERSIFICATION, respectively. For each ex-
ample, we prove the infeasibility by presenting a metric inequality that is valid for the particular
polyhedron Y (G, H, -), but which is violated by the capacity vector.

o Let pg. = pigg = Hye = Mpg = 1 and p, = 0, otherwise. The values of shortest paths
between the demand end-nodes are 7,, = 1 and m,; = 1, and hence, the capacity vector
in Figure 3.1(a) is not feasible for normal operating state, since the metric inequality

ylac) + ylad) + y(bc) +y(bd) > 1-241-1 = 3

is valid for Y(G, H,Nos). However, this inequality is violated for the capacity vector in
Figure 3.1(a). The left-hand side evaluates to 2.

e For the node failure state s = b, let u®, = pb, = 1. Otherwise, let u5 = 0. For these
supply edge weights, the value of a shortest ac-path in Gy is 772c = 1. The capacity vector
in Figure 3.1(b) is not feasible for RESERVATION since the cut inequality

ylac) +ylad) > 05-2-1 =1

is valid Y (G, H, REs), but violated for this capacity vector. The left-hand side evaluates
to 0.

e For the next case, let

4, s=0, e=ac, 4, 5=0, wv=ac,
2, s=0, e=bd, 9 —0 — bd
pi=¢ 1, s=0, e#ac bd, and 75, = 2’ Z:bd’ Zzibd’
1, s=bd, e=ab, ad, bc, cd T o R
0, else.
0, else.

It is straightforward to verify that these values satisfy the constraints (3.4) and (3.5) of
Proposition 3.4 and thus the inequality

2y(bd) + 4y(ac) + (1 + 1)(y(adb) + y(ad) + y(bc) +y(ed)) > 4-242-1+2-05-1
= 11

is valid for Y (G, H, PATH). However, this inequality is violated for the capacity vector in
Figure 3.1(c). The left-hand side evaluates to 10.

e Finally, let p,; = pt.q = 1,144, = 2, and p, = 0, otherwise. Furthermore, let qufll =1,
72, =2, and v¥ = 44, = & = £, = 0. For these edge and node weights, the values
of shortest paths between the demand end-nodes are m,, = 1 and m,, = 2. Hence, the
capacity vector in Figure 3.1(d) is infeasible for the survivability model DIVERSIFICATION
since the inequality

ylad) + y(ed) +2y(ac) > 2-24+1-1-2-05-2—-1-05-1 = 2.5

is valid for Y(G, H,D1v), but is violated for the capacity vector in Figure 3.1(d). The
left-hand side evaluates to 2.
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3.2 DiscreTE CaprACITIES: X (G, H, FIN, )

For each survivability model, we investigate in this section the projection X (G, H,FIN,:) of
the respective polyhedron P(G, H, FIN, ) to the space of integer capacity variables. We present
classes of valid and facet-defining inequalities for X (G, H,FIN,-). As we already pointed out
in Lemma 3.1, there is a canonical way to derive a valid inequality for X (G, H, FIN, ) from a
valid inequality for Y (G, H,-), and obviously, each of these inequalities induces the following
relaxation of X (G, H, FIN, +).

Definition 3.5 Let u € RY, 3, ,p.y(e) > d be a valid inequality for Y (G, H,-) and set
F := supp(p). Then we can define the induced knapsack-relazation for DISCRETE CAPACITIES
as

Qe d) := conv{z € {0,1}70) : Y eci He e chale,t) > d
1>z(e,1) >+ > z(e,Te)

Notice that we assume an implicitly given valid inequality ) . p.y(e) > d for Y(G, H, ),
whenever we write Qpy(pt,d). Often, we focus on such a relaxation, derive classes of valid
inequalities for it and attempt to prove that these are facet-defining for this relaxation. Setting
all coefficients in T'(E\F') to zero, valid inequalities for this relaxation can be extended to valid
inequalities for X (G, H,FIN,-). Under additional conditions, the resulting inequality is even
facet-defining for X (G, H,FIN, -). Table 3.1 shows the classes of valid inequalities presented in
the sequel together with the reference of its first publication.

| Model || Inequality class | Reference |

Nos Strengthened metric inequalities (Alevras et al., 1996)
Band inequalities (Dahl and Stoer, 1998)
2-Band inequalities Section 3.2.1
k-graph-partition band-inequalities | (Stoer and Dahl, 1994)

DIVERSIFICATION Diversification-band inequalities Section 3.2.2

RESERVATION Strengthened band inequalities (Dahl and Stoer, 1998)
Strengthened 2-band inequalities Section 3.2.3

PATH RESTORATION || see RESERVATION

Table 3.1: Classes of non-trivial valid inequalities for X (G, H, FIN, -)

When looking at the classes of valid inequalities presented Table 3.1 it is important to recall
from Lemma 3.1 that valid inequalities for X (G, H, FIN,Nos) are valid for the survivability
model dependent polyhedra X (G, H, FIN, D1v), X(G, H, FIN, RES), and X (G, H, FIN, PATH),
respectively, and valid inequalities for X (G, H, FIN, RES) are valid for X (G, H, FIN, PATH). For
the survivability model PATH RESTORATION, no other classes of inequalities than those for
RESERVATION are presented, since it turned out to be difficult to identify new classes reflecting
that the normal operating state routings must be preserved in failure situations. In the fol-
lowing, we assume that CZE is for each e € F appropriately large. Furthermore, the incidence
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vector x9% € {0,1}7E) for (g,k) € T(E) is defined by x9*(e,t) = 1, (e,t) € T(E), if and only
ife=gand k=1.

Strengthened metric inequalities
The first class of inequalities is the result of a divide-and-round procedure applied to metric
inequalities (2.22), (3.1) and (3.2). These inequalities are called strengthened metric inequalities

and they are valid for the respective polyhedron X (G, H,-,-). However, no general conditions
are known under which they are facet-defining.

Proposition 3.6 Let € RY, F :=supp(p) and Y. o p pey(e) > d be valid for Y(G, H,-) with
pect €N foralle € F, 1 <t <T,. Furthermore, set

E = d_ZHng7

eck
te = max{t:0<t< T, 1 (CE—C2) <d}, forallec E,
g = ged{pecl:e€ F,1<t<t.}.

Then the strengthened metric inequality

y <P_“e(cge —CS)W x(e,te+1)+§;“67cz’ x(e,t)) > [

ecF g

d

— 3.6
g -‘ (3.6)
is valid for X(G, H,FIN, ).

Notice that for every supply edge e € E the breakpoint ¢, is largest, such that its weighted
capacity p,C? does not suffice to satisfy the underlying inequality for Y (G, H,-).

Proof. Let T € {0, 1}T(E) N X (G, H,FIN,-). We distinguish between two cases.

e If there exists a supply edge e € F with T(e,t + 1) = 1, then inequality (3.6) is satisfied

because
L el d— p,(Cle = C°
Zuecef(@t)‘F [ H‘e( e e)-‘f(e,te+1)
-1 9 g
te

_ He t ’Vd_/J’e(Cge _Cg)-‘

e p——— Ce +
913 g
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e Otherwise, if Z(e,t, +1) = 0 for all e € F, we define g(e) := C? + Zi‘;l clz(e,t) for every
e € F, and 7j(e) := Cle for every e € E\F. Clearly, 5 € Y(G, H,-), and

= te 0 te t
([d 11,(C" Ce)w Flesto+1) + Y L% F(e,1)
et t—1 g

- g
te +
HeCh 1 _
= > “eT(e,t) = =) p(Hle) — C7)
ccr =1 I 9 eer
1 d
> Ha-Suer) - 2
g ( ecF 9
Now, the validity of inequality (3.6) follows from with the integrality of Z. O

If the underlying inequality is a k-graph-partition or a cut inequality, we refer to the associ-
ated inequality (3.6) as a strengthened k-graph-partition or a strengthened cut inequality.

It is difficult to provide sufficient conditions such that an inequality (3.6) is facet-defining
for X(G, H,FIN, ), even if the underlying inequality is a cut inequality. However, by definition
there exist feasible solutions in the face induced by a strengthened cut inequality if the two
shores of the cut are connected, and therefore, strengthened cut inequalities induce non-trivial
faces of X (G, H,FIN, ) under these conditions.

From a computational point of view, it is interesting to note that strengthened metric in-
equalities have dense support. Often almost every integer capacity variable z(e,t) of the sup-
ply edges e in the support F of the underlying valid inequality for Y (G, H,-) appears in the
strengthened metric inequality. As a consequence, we observed stronger relaxations and nu-
merical instabilities whenever we employed these inequalities in the cutting plane algorithm.

3.2.1 No survivability restrictions

We start the investigation of X (G, H, FIN, Nos) with its dimension and the property that the
ordering constraints are indeed facet-defining. Then we derive several classes of inequalities
valid for X (G, H, FIN, Nos) which are based on valid inequalities for Y (G, H,Nos). The class
of band inequalilies is similar to minimal cover inequalities for the knapsack problem (see, e.g.,
(Padberg, 1975)) and was first presented in (Stoer and Dahl, 1994) for network design problems
based on the capacity model DISCRETE CAPACITIES. It was also proven in this paper that band
inequalities are under rather natural conditions facet-defining for Qpx(4,d). In addition, we
present sufficient conditions for band inequalities to be facet-defining for X (G, H, FIN,Nos),
and introduce 2-band inequalities and k-graph-partition band-inequalities as generalizations of
band inequalities.

The following basic properties of X (G, H, FIN, Nos) have been proven in (Stoer and Dahl,
1994) for the case C9 =0 for alle € E.
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Proposition 3.7 The polytope X (G, H,FIN,NOS) is full-dimensional if and only if for all
e € E the polytope

{z € X(G,H,FIN,NoOS) : z(e,1) = 0}

18 non-empty.

Proposition 3.8 o For every e € E, the inequalities 1 > z(e,1) > --- > xz(e,T,) are
facel-defining for X (G, H,FIN,NoOS).

o For every e € E, the inequalily z(e,Te) > 0 is facet-defining for X(G,H,FIN,NoS) if

and only if the polytope X ((V, E\{g}), H,FIN,Nos) N {z € {0,1}7) : z(e,T.) = 0} is
non-empty for all g € E\{e}.

Assumption 3.9 We assume that X (G, H,FIN,Nos) is full-dimensional throughout the re-
mainder of Section 3.2.1.

The following proposition provides sufficient conditions under which a facet-defining inequal-
ity for Qpn(p,d) is facet-defining for X (G, H, FIN, No0s) as well.

Proposition 3.10 Let W C V, ZeEJG(W)y(e) > ZUUEJH(W) dyy =: d be the associated cut
inequalilty, and o’z > o be facel-defining for QFIN(XJG(W),d). Then oz > « is facet-defining
for X(G, H,FIN,Nos), if for all supply edges g € E(W) U E(V\W)

{z € X(G,H,FIN,Nos) :a’z =, z(g,1) =0} # 0. (3.7
Proof. Let b'xz > 8 be facet-defining for X (G, H, FIN,N0s) and suppose

Fop = {z € X(G,H,FIN,Nos):b'z =5}
D {z€X(G,H,FIN,Nos):a'z=a} =: Foa.

3

We show that b7z > § is a positive multiple of ¢’z > . Let g € E.

o g ¢ dg(W): We show bl =0 for all t =1,...,T,. W.lo.g. g € E(W). Since there exists

a solution T € F, o with Z(g,1) = 0 the claim follows from 7T + Zle X9 € Fq for all
k=1,...,T,

e g € 6¢(W): Follows from the fact that a’z > « is facet-defining for Qp, (X5G(W),d) and
bb=0foralle¢ d¢(W)and t=1,...,T.. O

Condition (3.7) is very general. For sufficiently large capacities this condition is satisfied,
for instance, if both subgraphs G[W] and G[V\W] are two-edge connected. Furthermore, the
requirements are weaker, if there exists a bridge e € E\dg (W) such that there exists a solution
needing the free capacity of this edge only.
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Band inequalities

(Stoer and Dahl, 1994) first introduced the class of band inequalities. These inequalities are
valid for Qpn (i1, d) and under rather weak conditions also facet-defining for Qe (4, d).

Proposition 3.11 (Stoer and Dahl, 1994) Let 4 € RY, F := supp(p), d € Ry, and
a’z > « be facet-defining for Qen(u,d). If a’z > « is not a non-negative multiple of one of
the ordering constraints, then

e al >0, forallec F,it=1,...,T,,

. ZtTelaé =ua, foralle € F.

That is, all non-redundant inequalities for Qrn (s, d) have non-negative coefficients, if these are

not equivalent to one of the ordering constraints, and the sum of the coefficients of all edges in
the support of such an inequality is equal to its right-hand side.

Definition 3.12 Let g € R¥Y, F := supp(p) and Y. ,.p pey(e) > d be a valid inequality for
Y (G, H,Nos). Then an assignment B : F — Z with B(e) € {0,...,Te — 1} is a band. We
often write ¢, or tf to denote the breakpoint B(e) of a band B. Furthermore, a band B is valid
fOT (Nvd) if ZeEF lj‘ecge <d.

Figure 3.3 visualizes the idea of a band. A
band valid for (u,d) is simply a selection of
breakpoints for all supply edges in the support
of 4 such that the sum of the weighted break-
point capacities is less than d, that is, does not
suffice to satisfy the underlying valid inequality
for Y (G, H,Nos). The fact that we have to in-
crease the capacity of at least one supply edge
is the interpretation of a band inequality (3.8).

o
Cx .
Cex

I

Figure 3.3: A band

Lemma 3.13 (Stoer and Dahl, 1994) Let y € RY, F := supp(p) and Y cp poy(e) > d be
o valid inequality for Y (G, H,Nos). If a band B is valid for (u,d), then the band inequality

> alete+1) = 1 (3.8)

ecl

is valid for X (G, H,FIN,NoOS).

Band inequalities are similar to cover inequalities for the knapsack problem with generalized
upper bounds (see (Wolsey, 1990)). As proven in (Stoer and Dahl, 1994), band inequalities
are facet-defining for Qrx(,d), under conditions similar to those of cover inequalities for the
knapsack polytope.
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Definition 3.14 Let p € RY, F := supp(p), and d € Ry. A band valid B for (u,d) is
B
mazimal if there does not exist a valid band B for (i, d) with Cl < C’éf ' foralle € F, and

te 21
ZeeF :ueCG < ZeeF H‘eCee .

By definition, maximal bands are maximal with respect to the componentwise order of the
capacities associated with the breakpoints of the band.

Proposition 3.15 Let p € RY, F := supp(p) and Y cp peyle) > d be a valid inequality for
Y(G,H,Nos). If a band B is valid for (u,d) and B is mazimal, then the band inequality (3.8)
is facel-defining for Qe (p, d).

2-band inequalities

The idea of band inequalities can be generalized to k-band inequalities. Instead of exactly one
breakpoint, exactly & breakpoints are assigned to each supply edge. The formalism to prove
that a k-band inequality is facet-defining for Qg (u,d) is very technical for a general k. We
decided to consider the case & < 2 only.

Definition 3.16 Let p € RY, F := supp(p) and Y, p p.y(e) > d be a valid inequality for
Y(G, H,Nos). An assignment B : F — Z% with B(e) = (t},2) € {0,...,T. — 1}* is a 2-band,

2
if t] <12 for all e € F. A 2-band B is valid for (s, d) if pgC4' + Yoep gy HeCe < d , for all
gekF.

Figure 3.4 visualizes the idea of a 2-
band. A 2-band is simply a selection of ex-
actly two breakpoints for all supply edges
in the support of p. It is valid for (p,d),
if for each supply edge ¢ in the support of
f, the band By := {(g,12) U{(e,1}) : e €
F\{g} is valid for (u,d).

Figure 3.4: A 2-band

Lemma 3.17 Let € RY, F := supp(p) and > .ppoyle) > d be a valid inequality for
Y (G, H,Nos). For every valid 2-band B = {(1},12) : e € F} for (u,d), the 2-band inequality

> (zleth +1) +ale,t2 +1)) > 2 (3.9)
eck

is valid for Qen(p, d).

Proof. Let T € Qpu (s, d) N{0,1}7U), If there exists a g € F with Z(g, tz +1) =1, then (3.9)
is satisfied since the ordering constraints imply Z(g, t; + 1) = 1. Otherwise, if Z(g, tg +1)=0,
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suppose that Z(g,¢2) = 1 for at most one g € F, and (e, #; + 1) = 0 for all other ¢ € F\{g}.
Then 5 ¢ Y (G, H,Nos), for F(e) := C? + 3312, ¢!Z(e,1), e € F and §(e) := CTe, e € E\F. 0O

As for bands, we now define conditions for 2-bands such that the associated inequality (3.9)
is facet-defining for Qg (1, d).

Definition 3.18 Let p € RY, F :=supp(u), d € Ry. A (u,d)-valid 2-band B is mazimal if

t241

1
() 1905+ Xoerfg) HeCe > d, for all g € F, and

5+

2
(b) for all g € F there exists an h € F\{g} with uhC’:Lh + g Cyf Ly D ecF\{g,h} NECE > d.

Definition 3.19 Let y € ]Rf, F :=supp(p), d € Ry, and suppose that B is a maximal 2-band
valid for (p,d). An odd-cycle cover of B is defined as an odd-cycle node-cover (see page 10)
in the associated directed graph G(B) = (V(B), A(B)). The nodes V(B) are “identical” to
the edges F', and there is a directed arc (h,g) € A(B) between the nodes h and g of V(B),
whenever g and h satisfy condition (b) of Definition 3.18.

Proposition 3.20 Let p € RY, F := supp(p), and Y ecr Mey(e) > d be a valid inequality for
Y (G, H,Nos). Furthermore, let B = {(1},12) : e € F} be a valid and mazimal 2-band for (u,d).
If there exists an odd-cycle cover of B as defined in 3.19, then the 2-band inequality (3.9) is

Jacet-defining for Qex(i,d).

Proof. Let a’z > a be valid for Qg (1, d) and suppose

Foo = {2€Qmpd) :a’z=a}
D {z € Qunlp,d) : z satisfies (3.9) at equality} =: F.

Let g € F. We distinguish between four cases.

e < tgll: We show af] = 0. Let us define T € F by setting T(h,T}) := 1 for some h € F\{g},
and Z(e,1) := 0 for all e € F\{h}. Clearly, T € F and thus the claim follows from
T+ Y% x9% e Flork= 1,...,t;.

et > 12 +1: We show al = 0. Let us define T(e,t}) := 1,T(e, iz +1) := 0 for all e €
F\{g}, and T(g, {7 + 1) := 1,Z(g, 7 + 2) := 0. We conclude T € F from condition (a) of
Definition 3.19. Now, the claim follows from T + Zf:t2+2 x9* € F for k = tz +2,...,T,.

g

. t}] +1<t< ts%: We show az = 0. Due to condition (b) of Definition 3.18 there exists an
h € F such that T € F for T(h, £7) == 1,%(g,17 +1) := 0, T(g,t}ﬂ—l) = 1,T(g,t!1]+2) =0,
and Z(e,tl) == 1,T(e,tl + 1) := 0 for all e € F\{g,h}. Again, the claim follows from

T+30 X eFlork=th+2,... 1
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1 2
o= tz +lort= t}] + 1: We show 2a§9+1 = QGEQH = «a. For every g € F, the vector *

defined by %(g,T,) := 1 and T(e,1) := 0, for all e € F\{g}, satisfies T € F. Therefore,
i+l 241 . . tg+1 ta+1

ag +ag = o, and it remains to show that af ~ =ag .

Let g1,...,926+1,k € N, be an odd cycle in the graph G(B) of Definition 3.19. If the

coeflicients of the edges ¢;,1 < ¢ < 2k 4+ 1, are all equal, the claim follows from the

existence of an odd-cycle cover.

To show that all these coefficients are equal, notice that for any g,h € F satisfying
condition (b) of Definition 3.18, the vector T defined by E(hﬂf,%) = 1,E(g7t,2l +1):=0,
T(g,t}] +1) := 1,T(g,t; +2) := 0, and T(e,t}) = 1,T(e, 1l + 1) := 0 satisfies T € F.

1
hit?+1 _Xg,tg+1

Furthermore, T := T+ € F, according to condition (a) of Definition 3.18,

1
i+l 1241

and thus, af/ = =a,* ~, since ol'(x—7)=0.
by 1 tg L to o tl ) . .
In consequence, a;’ = ag'" = ag'** , for all i = 1,...,k, and in particular,
41 2 +1 7 i .
ag'  =ag' (=ag " ), since the cycle is odd. O

k-graph-partition band inequalities

(Stoer and Dahl, 1994) presented inequalities based on k-graph-partitions (see Definition on
page 10). Let (Vi,...,Vg),s = 1,...,k, be a partition of the node set V and denote by F :=
6c¢(Vi,..., Vi) the edges between the shores of the partition. Let G = (V,E) be the graph
obtained by identifying the nodes of each V;,i = 1,...,k. That is, each node T € V represents
one of the k node sets in the partition, and an edge € € E represents the edges between pairs
of nodes in the node sets of the two end-nodes. Similarly, the demand graph I = (V, D) is
defined. Notice that edges between nodes of the same node set are not represented in G and
I, respectively. A band B := {(e,t.) : e € F} is called a P — band, and B is valid if

Yo oGk < > duw

eEdE(W) 'U,’UG(SF(W)
for every W C V.

Lemma 3.21 Let P be a k-partition and B a valid P — band. Then the k-graph-partition
band inequality

Y zlete+1) > k-1 (3.10)
ecF

is valid for X (G, H,FIN,NoOS).

Proposition 3.22 Let P be o k-graph-partition and B a valid P — band. Then the k-graph-
partition band inequality (3.10) is facet-defining for X (G, H, FIN,NoSs) if
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o G[Vj] is edge-connecled for alli=1,... k,

G[Vp] is 2-edge-connected,

o G is 2-node-connected,

There is no valid P — band B with tf < t? foralle € F, and ZeEF C’éf < zeEF ng.

3.2.2 DIVERSIFICATION

The investigation of the polyhedron X (G, H, FIN, D1v) is based on relaxations defined by cut
inequalities. Let W C V be a cut with d5 (W) # 0 and suppose the two shores of the cut are
shrunken into two nodes, all supply edges with end-nodes in distinct shores are kept as parallel
edges, and the demand edges with end-nodes in distinct shores are aggregated into a single
demand with parameters

d:= Z dyv, 6= Z Oy duy /d .

uv€dg (W) wvEd g (W)

Then, the problem can be viewed as shown in Figure 3.5.

C——0 ® ®

Figure 3.5: Supply and demand graph to represent a cut

The supply graph is ({u,v},dg(W)). The nodes u and v represent the shores of the cuf
and the edges are exactly those from the cut (just with redefined end-nodes). Analogously,
the demand graph is ({u,v},uv). This supply and demand graph is given in the remainder
of this section and, as usual, these two graphs are denoted by G = (V, E) and H = (V, D).
Furthermore, since the edge set of the demand graph contains only one edge, we omit unnec-
essary indices in the following: d is the demand value, § is the diversification parameter and
f(e), e € E, are the flow variables associated with the supply edges. We are interested in the
situation, where the diversification parameter of the demand edge induces a diversified flow,
that is, § < 1. In this case, the flow through any of the parallel supply edges between u and v
is bounded from above by dd and, therefore, it is interesting to investigate the polytope

3feRY : Y cpfle)=dand forallec E :
Xpn(6,d) :=conv{ =z € {0,1}7(F) . f(e) < min{c? + ZtTil ctz(e,t),dd},
1>z(e,1) >--->z(e,T,) > 0

We start our discussion of the polytope Xwin (4, d) with its dimension and present afterwards
valid inequalities.
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Lemma 3.23 |E| < [1/6] = Xp (6, d) = 0.

Proof. For every supply edge e € E, it holds f(e) < éd. Thus, the maximal flow is
|E| - f(e) < |E|-dd < d, which contradicts the existence of a solution. O

Lemma 3.24 Y, . min{Cle,8d} >d = Xpin(6,d) # 0.
Proof. The vector T with T(e,t) = 1, foralle € E, t = 1,...,T,, is in Xpin(d,d) if the

condition of this lemma is satisfied. O

Lemma 3.25 Let g € E and 0 <ty < Ty. If
min{Cy’,dd} + Y min{Cl* §d} < d
eck\{g}

then

Xpin(6,d) C conv{z € {0, 1}T(E) cz(g,ty +1) =1} .

Proof. A capacity less than or equal to ng on edge g implies Xrin(d,d) = 0. O

Lemma 3.25 can be used in the preprocessing. If there exists a supply edge ¢ € £ and a
breakpoint 0 < ¢4 < Ty with ZeEE\g min{Cle, dd} + min{C’;“’7 dd} < d, then breakpoint ¢, can

be removed. However, the cost and capacity coeflicients of this supply edge must be redefined
by setting kf,g g kzg T kf,g ,cgg = cff' o czg, removing breakpoint ¢4, and shifting all

breakpoints greater than ¢4 to the next smaller breakpoint.
Lemma 3.26 The polytope Xpin(0,d) is full-dimensional if and only if

min{Cg,éd}—I— Z min{CZ<,5d} > d,
e€F\{g}

forallge E.

Proof. The necessity follows from Lemma 3.25. To see sufficiency, we observe that for all
g€ Eandty=1,...,Tg, the vector T defined by

T(671—16) =1l,ec E\{Q}? T(g7tg) =1, j(gﬂtg + 1) =0,
is in Xe (6, d). D

Assumption 3.27 Throughout the remainder of Section 3.2.2, we assume that Xpin(d,d) is
full-dimensional.

Lemma 3.28 For every (g,ty) € T(E), the ordering constraint x(g,ty) > x(g,ty — 1) is facet-
defining for Xwin(9,d).
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Proof. Tor every (g,1,) € T(E) we define the vector Ty, by setting

_ L 1, ife#tgore=g,t<t,,
Toty(e:1) 1= { 0, else.

Together with the vector of all 1’s this yields to |T(E)| + 1 affinely independent vectors, where

each ordering constraint is satisfied by |T(E)| vectors at equality. O

Lemma 3.29 Let a’z > « be facet-defining for Xpin(6,d) and (g,t,) € T(E) with C’;g_l > 4d.
Then af,g =0.

Proof.  Suppose af,g > 0 and C;g_l > 6d. Let T € {z € Xpin(6,d) : a’z = a} with
Z(g,ty) = 1 (such an T exists since otherwise the equality Z(g,¢,) = 0 is implied). We define
a second solution 7 by T := 7 — x%%. Then, T € Xpin(6,d), because T € Xpn(d,d) and
C;g_l > &d (this implies that every flow vector feasible for Z is also feasible for Z). However,
this yields the contradiction 0 = o’ (Z — ) = azg < 0. O

Next we introduce diversification-band inequalities, which are a generalization of band in-
equalities (3.8) from Section 3.2.1. The idea is the following. Let us assume for each supply
edge e € E an installed capacity Cle, where 0 < t, < T,. Then there are two remarks in order.
First, even if Cl > §d, only §d units can flow over e to satisfy part of the demand d. Second,
if the sum of min{C’, §d} over all supply edges is smaller than d, the capacity of some supply
edges must be increased.

Definition 3.30 B = {(e,t.) : e € F,0 < t, < T} is a diversification-band, if Cle < &d for all
e € E and if the residual band-demand r(B) :=d -} .y C'e is greater than zero.

The residual band-demand is exactly the
part of the demand that still has to be sat-

isfied if the capacity C’? is installed on each  |—-—-—--—-—-——-—- od ~——————————-
supply edge e € E. In principle, it is not nec-
essary to insist on a positive residual band-
demand in the definition above, but without
this candition, we yield trivially satisfied in- O
equalities with right-hand side zero. Further- “ Cler
more, the condition C’éf < 4d in 3.30 is not e o o o
necessary to prove the validity of the asso-
ciated diversification-band inequality. How-
ever, due to Lemma 3.29 this condition is
necessary to get a facet-defining inequality.

Figure 3.6: Structure of a diversification-band

As we already mentioned, the maximum flow through any of the supply edges is dd. Thus,
it follows immediately that the capacity of at least [r(B)/dd| edges must be strictly greater

B
than Cie in a feasible solution.
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Lemma 3.31 Let B be a diversification-band. Then the inequality

3 a(ete+1) > Vgl;)w (3.11)

eck

is valid for Xpin(9,d).

For some diversification-bands, the right-hand side of inequality (3.11) can be further in-
creased. No matter which breakpoints are chosen in a diversification-band, an upper bound on
the flow through a supply edge remains dd. If the chosen breakpoint capacity Cle is strictly
greater than zero for some supply edge e € E, then the possible additional flow dd— C® through
this supply edge is less than dd. In such a case, additional capacity on [r(B)/dd]| edges (as
required by the right-hand side of inequality (3.11)) might not suffice to satisfy the demand d.
An example of this situation is the following.

Example 3.32 Suppose that |E| = 10,d = 30,6 = 0.1,C% = 0,C! = 2, and C2? = 4, for all
e € E. Then inequality (3.11) for diversification-band B := {(e,1) : e € E} with r(B) =
30 —10- 2 =10 reads as

doale2) > 4,

eElR

but obviously, the capacity on all supply edges ¢ € E must be increased to C2Z. Tence, the
stronger inequality

Z z(e,2) > 10

eck

is satisfied by all solutions. d

This observation results in the definition of a minimal residual band-demand cover, which
is the minimum number of supply edges needed to satisfy the residual band-demand.

Definition 3.33 Let B be a diversification-band with residual band-demand r(B) as in
Definition3.30. Then the optimal solution value cov(B) of

min Z h(e)

eclk

> (6d—C¥) he) > r(B)

eck
h(e) € {0,1}, forallee E,

is the minimal residual band-demand cover. Every solution h = (h(e))ecr is called residual
band-demand cover for B.
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With this definition, the strength of the inequalities (3.11) can be improved.

Lemma 3.34 Let B be a diversificalion-band. Then the diversification-band inequality

> alete+1) > cov(B) (3.12)
eck

is valid for Xpin(4,d).

Proof. Let Z € Xpn(6,d) N {0,1}7) and suppose that YoecrTl(ele +1) = k* < cov(B).
Through each edge e € E with Z(e,t. + 1) = 0 at most C’ can be routed, and through each
edge e € E with ZT(e,le + 1) = 1 at most §d can be routed. Summing up these values over all
supply edges yields

oo ck+ D> i o= Y Ckr > (6d-C)

e€E:T(ete+1)=0 ecE:T(ete+1)=1 eel ecE:T(ete+1)=1
< d—r(B)+r(B) = d,
where the strict inequality follows from k* < cov(B). This contradicts T € Xpin(4, d). O

Next, we show that diversification-band inequalities are under rather weak conditions facet-
defining for Xpin(6,d). The key notion is a generalization of the maximality condition for
bands, introduced in Section 3.2.1. A diversification-band B' dominates a diversification-band

B, if B # B and CZ;E > C’éf for every e € F.

Lemma 3.35 Lei B', B be diversification-bands such that B' dominates B. Then cov(B') <
cov(B).

!

Proof. By definition, r(B) —r(B) =3 E(C’? - Céf ) holds, and therefore, every diversi-
fication cover € {0,1}7®) for B is a diversification cover for B, since

Sed-cf e = Y (- (e - o)) e

ecl eck
= S .(5d - C¥YR(e) - S (CH — CH)R(e)
eck eck
> r(B) - (r(B) - r(B) = 7(B).

Suppose that two diversification-bands B, B’ are given, where B' dominates B and cov(B,) =
cov(B). In this case, the diversification-band inequality (3.12) for B is the sum of inequality
(3.12) for B' and the appropriate ordering constraints. Thus, inequality (3.12) cannot be
facet-defining if there exists a dominating diversification-band with the same minimal residual
band-demand cover. This gives rise to the following definition of maximality.
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Definition 3.36 A diversification-band B is mazimal if cov(B') < cov(B) holds for every
diversification-band B’ that dominates B.

This definition of maximality is a generalization of the maximality for bands, since the
minimal residual band-demand cover is always equal to one for a band valid for d. The following
lemma states a property of maximal diversification-bands needed to characterize facet-defining
diversification-band inequalities. For every e € E with capacity Cl, there exists a solution in
the face induced by the associated inequality (3.12).

Lemma 3.37 Let B be a mazimal diversification-band, and g € E with C’;ﬁl <dd andty+1<
T,. Then

{x € Xrn(d,d) : Zz(e,te +1) =cov(B), z(g,tg +1) =1, z(g,ty +2) = 0} £ 0.
eclR
Proof. Let us define a diversification-band B’ that dominates B by setting
B :=BU{(g,tg + D} \ {(g,49)} ,

and choose an optimal residual band-demand cover /' for B'. Since B is maximal, we know that

’ . . . B . ’
cov(B') < cov(B) which implies ), (dd — Cl )W (e) < r(B). First, we prove that k' (g) = 0.
To the contrary, suppose that R (g9) = 1. Then

r(B) = (€ -0y +r(B)
< CET-a)+@d-cp Y+ YD (6d— CE ()
e (g}
= d-Cf)+ Y (6d—CE)H (e)
cem\{g)
= > _(6d—CE)H ()
eck
< r(B).

Hence, b’ (g) = 0. In this case, a minimal residual band-demand cover k for B is defined by

_ )1, e=g,
he) = {h/(e), else .

Obviously, >, 5 (0d — C'gf Yh(e) > r(B). We define a solution T in the considered set by setting
T(e,Te) = 1, if hl(e) =1,%T(g,tg+1) =1,%(g, 44 +2) = 0, and T(e, tc) = 1,T(e,tc + 1) = 0 else.
Obviously, T € Xyin(d,d) and ) . T(e, te + 1) = cov(B), which proves the lemma. O

Using this lemma, we now state a sufficient condition such that a maximal diversification-
band induces a facet-defining inequality.
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Proposition 3.38 Let B be a mazimal diversification-band. The associated diversification-
band inequalily (3.12) is facet-defining for Xwin(6,d), if

{IE € Xrn(d,d) : Z'T(eate +1) = cov(B), z(g,1) = } # 0
eck
for every g € E.

Proof.  We proved the validity of (3.12) in Lemma 3.34. Suppose that a valid inequality
alz > a for Xpn(d,d) exists with

Foo = {z€Xpw(0,d):a’z =a}
D {zr e Xpn(4,d) : Zac(e,t6 +1) =cov(B)} = F.
eck

Let (e,t) € T(E). To show that a’x > « is a positive multiple of (3.12), we distinguish between
three cases:

e 1 <1, + 1: We show al = 0. By hypothesis there exist solutions Z,T € F with

Z(e,t — 1) =1, T(e,t) =0, Z(e,t) =1, T(e,t+1)=0,

and T = 7 otherwise. Thus, it follows ¢! =a! (T - Z) =a — a = 0.

et > 1.+ 1: We show af = 0. If Ci~! > 4d, this follows from Lemma 3.29. Thus,
we assume C!~! < éd. Because of the maximality of B and Lemma 3.37, there exist
solutions Z,Z € F with

Z(e,t —1) =1, Z(e,t) =0, Z(e,t) =1, T(e,t+1)=0,

and T = 7 otherwise. Again, we conclude a} =a’(Z—Z) =a—a = 0.

o t =t,+ 1: We show cov(B)al = a. By hypothesis, for every two edges e1,es € E there

b=
exist two solutions Z,T € F with

T(elv 1) =0, 5(627’1182) =1, %(627 1) =0, %(61,Tel) =1,

and T = T otherwise. To see this, recall that we can exchange e; and ey in a solution
since the largest breakpoint capacity is greater than d. Therefore, we get agl = aé2 from
7 —T. Now, the definition of the diversification-band inequality implies cov(B)al = a. O

If there exists a solution T with Z(g,1) = 0 and }°__, Z(e, . + 1) = cov(B) for every g € E,
then the equality T(g,1) = 1 is not implied, Obviously, a necessary condition to get a facet-
defining diversification-band inequality. Proposition 3.38, states that this condition is sufficient
if the diversification-band is maximal.
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3.2.3 RESERVATION

For the survivability model RESERVATION, the entire routing of a demand can be affected by
a failure, but a minimum percentage must be reroutable. For this case, we present valid in-
equalities for X (G, H, FIN, RES) based on the ideas of (Gomory, 1969; Chvétal, 1973). Suppose
that for each failure state s € S\{0} an inequality alx > «; is given, which is valid for the
particular failure state. (In some failure states, this inequality might be 072 > 0.) Then,
the sum of these inequalities is > o\ 10y ate > 3. $\{0} @s> which is by definition valid for
X(G, H,FIN, RES). If these inequalities are well-chosen, the non-zero coefficients are all equal
or an integer multiple of the smallest non-zero coefficient. In this case, it is possible to take
advantage of the integrality. For example, if there exists a k¥ € N with ZSES\{O} (as)e € {0,k},
for all e € E, then the inequality

Z %'GZZE > % Z O

ses\{o} seS\{0}

is valid for X (G, H, FIN, RES). The classes of strengthened band inequalities and strengthened
2-band inequalities are the result of such an argument.

Strengthened band inequalities

The class of strengthened band inequalities has been introduced in (Stoer and Dahl, 1994).
In the way described above, inequalities of this class can be obtained as the sum of band
inequalities.

Proposition 3.39 Let y € RY such that F := supp(p) C S, that is, all supply edges in the
support of u are in the set of operating states. Suppose that for oll g € F, the inequality

Z :u’ey(e) > Z ﬂ-gvpuvduv =: df

e€F\{g} weD

is valid for Y (G, H, RES), where ©§, is the value of a shortest wv-path w.r.t. p in G4 for every
wv € D. Furthermore, let B = {(e,l¢) : € € F} be a band such that for every g € F, the band
B9 :={(e,te) : € € F\{g}} is valid for (u,d?). Then the strengthened band inequality

> wlete+1) > 2 (3.13)
ecF

is valid for X (G, H,FIN, RES).
Strengthened 2-band inequalities

The application of the same idea to the class of 2-band inequalities yields the strengthened
2-band inequalities. Let u € ]Rf and rd € R, be given such that F' := supp(p) C S, and
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suppose that for all g € F', the inequality

Y ueyle) > rd

e€F\{g}

is valid for Y(G, H,RES). Furthermore, let B = {(e,#},#2) :e € F, 0 < tl < #2 < T.} be a
2-band such that for every g € F the 2-band B9 := {(e,t},12) :e € F\{g}, 0 <t} < 2 < T}
is valid for (u,rd) (according to Definition 3.16). Then, the sum of the respective 2-band

inequalities (3.9) is

Yol X Glet+Dtale+n) | 2 D2

geEF \ecF\{g} geF
= (|F| -1 (z(eti + 1) +z(e, 82+ 1)) > |F|-2,
eclr

and therefore

D (zle,tp +1) +ale,ts +1) > [|F||F_|1 -2} > 3 (3.14)
ecF

is valid for X (G, H, FIN,RES). Inequalities (3.14) can be improved with a different definition
of the validity of a 2-band.

Definition 3.40 Let y € ]Rf such that F' := supp(p) C S. Suppose that for all g € F, the
inequality

Yo ueyle) > rd

e€F\{g}
is a valid inequality for Y (G, H,RES). Then a 2-band B = {(e,t},#?):e € F,0 < 1. <12 < T.}
is walid for (p,rd), if
t5, tos 1
(/1‘91091 —I—/Lg2C92 )+ Z /LeCee < ‘l"d,
e€F\{g,91.92}

for all g € F and all g1, g2 € F\{g} with g1 # go.

Proposition 3.41 Let u, F,rd and the 2-band B be valid for (u,rd) as in Definition 3.40.
Then the strengthened 2-band inequality

D (zle,ti+1) +alets +1) > 4 (3.15)
eclF

is valid for X (G, H,FIN, RES).
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Proof. First, notice that for any g, ¢1,92 € F the capacity vector ¢ € ZE, defined by

1
0%7 eeF\{g7gl7g2}7
(6) = Cée , €€ {91792} ’
Cle ee E\FU{g},

Ol

is not feasible, that is, € ¢ Y (G, H, RES), since it violates the inequality ZeEF\{g} pey(e) > rd,

which is by assumption valid for Y (G, H, RES). Let T € X (G, H, FIN, RES)N{0,1}7(®) be given
and let 7 be the associated capacity vector, that is, 7(e) = ZtTio c!T(e,t) for all e € E. For the
rest of the proof, we assume that T violates (3.15) and distinguish between the following two

Cases.

First, suppose that there exists g € F with f(g,tg + 1) = 1. Since T violates (3.15), there
exists at most one supply edge, say g1, in F' with f(gl,tél +1) =1 and E(ghtgl +1)=0. In
this case, T ¢ Y (G, H, RES), since § < € for the € defined by the chosen g, g1 and an arbitrary
g2 € F.

Now, suppose that T(g,tz +1) =0 for all g € F. In this case, there exist g,g1,g92 € F with

2 1
Gle) < C¢* for e € {g,g1, 92} and F(e) < C& for e € F\{g, 91,95} Again, T ¢ Y(G, H, REs),
since 7 < ¢ for the ¢ defined by these edges ¢, g1, go. O

3.3 DivisiBLE BaAsic CAPACITIES: X (G, H,BAs, )

For the capacity model DI1vISIBLE BAsSiC CAPACITIES, we proceed in the same way as in
Section 3.2. That is, we investigate for each survivability model the projection X (G, H, BAs,-)
of the respective polyhedron P(G, H,BAs,-) to the space of integer capacity variables and
present classes of valid and facet-defining inequalities for X (G, H, BAS, -). Similar to Section 3.2,
we start with the definition of a relaxation induced by a valid inequality for Y (G, H,-).

Definition 3.42 Let y € RY, F := supp(p), and Y . p.y(e) > d be a valid inequality for
Y (G, H,-). Then the polyhedron

Qpas(p,d) := conv{z € ZK(F) : Zue Z C'zle,7) > d— Zung} )

eck T€ET ecl

is called the induced knapsack-relazation for DIVISIBLE BASIC CAPACITIES.

Again, we assume an implicitly given valid inequality > 5 pey(e) > d for Y(G, H, ), when-
ever we write Qp,(i4,d). In what follows, we first prove that some inequality is valid for
(Qgas(2, d). This implies that the same inequality is valid for X (G, H,BAs, -), if we set the coef-
ficients in T(E\F) to zero. Then we attempt to prove that the inequality is facet-defining for
(Qgas (2, d) and try to find conditions such that the inequality is facet-defining for X (G, H, BAs, -).
Table 3.2 shows known classes of valid inequalities for each survivability model.
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| Model || Inequality class | Reference |
Nos Strengthened metric inequalities (Alevras et al., 1998b)
Knapsack-partition inequalities (Pochet and Wolsey, 1995)
DIVERSIFICATION Diversification-cut inequalities Section 3.3.2

Diversification-partition inequalities | Section 3.3.2
Lifted diversification-cut inequalities | Section 3.3.2
RESERVATION Strengthened partition inequalities Section 3.3.3
PATH RESTORATION || see RESERVATION

Table 3.2: Classes of non-trivial valid inequalities for X (G, H, BAs,-)

Again, any valid inequality for X (G, H, BAs, Nos) is valid for the survivability model depen-
dent polyhedra X (G, H,BAs,D1v), X(G, H,BAs, REs), and X (G, H, BAs, PATH), respectively,
and any valid inequality for X (G, H, BAs, RES) is valid for X (G, H, BAs, PATH). For the surviv-
ability model PATH RESTORATION, no other classes of inequalities than those for RESERVATION
are presented. It turned out to be difficult for this capacity model as well, to identify new classes
reflecting that the normal operating state routings must be preserved in failure situations. In
this section, the incidence vector x9* € {0,1}7®) for (g,t) € T(E) is defined by x9*(e,7) = 1,
(e,7) € T(F), if and only ife =g and t = 7.

Strengthened metric inequalities

Before we consider the polyhedra for a particular survivability model, let us mention a canonical
way to derive a valid inequality for X (G, H, BAs, ) through a divide-and-round procedure.

Proposition 3.43 Let p € RY, F := supp(u), and Y, ppey(e) > d be valid for Y (G, H,-)
with p,C™ €N for all e € F and 7 € T. Furthermore, sel

d = d_zlu’ecga

ecF
g = ged{u,C":e€ F,7€T,with u,C"™ <d}.
Then the strengthened metric inequality

szin{“eTCT, M} 2e,r) > m (3.16)

ecF reT g g
is valid for X (G, H,BAs,-).

Proof. Analogous to inequality (3.6) for the capacity model DISCRETE CAPACITIES. O

Notice that C™* is by definition the greatest common divisor, if the underlying valid inequality
> eck Me¥(e) > d in Proposition 3.43 is a k-graph-partition inequality (2.23).
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3.3.1 No survivability restrictions

Next, we present basic properties of the polyhedron X (G, H, BAS, N0S) such as its dimension
and a characterization of the existence of a solution, followed by the class of knapsack-partition
inequalities. These latter inequalities are based on valid inequalities for Y (G, H,Nos).

Proposition 3.44 Let H[V;] = (V;, D;),i = 1,...,k, be the connected components of the de-
mand graph Hp = (Vp, D) (see page 32 for the definition of Vp). Then

X(G,H,BAs,Nos) #0 <= GI[V;] is subgraph of an edge-connected subgraph of G
foralli=1,... k.

Proof. Let i€ {1,...,k} such that G[V;] is not subgraph of an edge-connected subgraph of
G. Then a demand uv € D exists such that no path between its end-nodes u,v € V; C Vp
exists. Thus, it is not possible to satisfy uv, which implies X (G, H,BAs,Nos) = . For the
reverse direction, suppose all G[V;],4 € {1,...,k}, are subgraph of an edge-connected subgraph
of G. Then, it is obvious that T € X(G, H,Bas,Nos) for Z(e,7) = [(D,pep dus)/C™], for
ecFEand TeT. O

Note, if X (G, H,BAs,Nos) # {), the subgraphs

G[Vi], i = 1,...,k, are not necessarily edge-
Supply Graph @-@-@ connected. As an example consider the sup-
ply and demand graph in Figure 3.7. The de-
Demand Graph @—@ mand graph H = (Vp,uv) contains a single

component only, which is identical to . The
associated subgraph in G is G[Vp] = (Vp,0),
that is, it has an empty set of supply edges and
is not edge-connected. However, obviously it
holds X (G, H,Bas,Nos) # 0.

Figure 3.7: G[Vp] not edge-connected, but
X (G, H,Bas,Nos) # 0

Proposition 3.45 X (G, H,Bas,Nos) # 0 <= dim(X (G, H, Bas,Nos)) = |T| - |E].
Proof. Obviously, X (G, IH,BAs,Nos) # {, if it is full-dimensional. For the reverse direction,
let T € X(G, H,BAs,Nos). Then, T and T+ x¥" € X(G,H,BAsS,Nos), fore€ Eand 7 € T,

are |T'(F)| + 1 aflinely independent vectors in X (G, H, BAS,Nos). Thus, X (G, H,BAs,Nos) is
full-dimensional, that is, dim(X (G, H,BAs,Nos)) = |T(E)| = |T|- |E|. O

Proposition 3.46 Let y € Rf, F :=supp(u), and Y- 5 pey(e) > d be a valid inequalily for
Y(G,H,Nos). If a’z > « is facet-defining for Qp.(p,d) and if
{z € X(G,H,Bas,Nos) :a’z = a, z(g,7) =0} # 0 (3.17)

for all g € E\F and 7 € T, then a’x > « is facet-defining for X (G, H,BAs,Nos).
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Proof. Let b''xz > 3 be facet-defining for X (G, H,BAs, Nos) and suppose that
Foo:={z € X(G,H,Bas,Nos) :a’ z = a} C {z € X(G, H,Bas,Nos) : b’z = §} .

The claim follows, if b7z > 3 is a positive multiple of ¢’z > a. To see this, we first consider
g ¢ F and 7 € T. In this case, b = 0 follows, since T € Fy , exists and T + x97 € Fy 4. Thus,
bg = b (T + x97 —T) = 0. Knowing this, the claim easily follows since a’'z > « is facet-defining
for Qp.(x¥,d), and b7 =0 foralle ¢ F and 7 € T. O

Condition (3.17) is easily satisfied. For instance, suppose that the underlying valid inequality
for Y(G, H,NoS) is a cut inequality with W C V, F = §g(W). Then, this condition is satisfied,
if either the two subgraphs G[W] and G[V\W] are two-edge connected, or if these two subgraphs
are edge-connected and |7 > 1.

Knapsack-partition inequalities

The class of knapsack-partition inequalities is based on the work of (Pochet and Wolsey, 1995).
Let

M = {c,...,cn} CN

be satisfying the divisibility property (see page 36), that is, ¢; < --- < ¢, and ¢;1/¢; € N
for every i = 1,...,n — 1. Furthermore, for d € N, let r(d) := max{i: ¢; < d,1 <i < n} be the
maximum index such that the associated coeflicient is less than or equal to d. A partition of
the index set of M w.r.t. d consists of { consecutive ordered blocks

{l17"'7jl}7"'7{lt7"'7jt}7

such that Iy = 1,1; < r(d),j1 =n, and Iy — 1 = jp_1 for k = 2,...,¢. For this partition of
the index set M, set d; := d and define

d
Ky 1= [—k-‘ s ey i=dp— (kp — oy, (3.18)

Clk

for k =t,...,1. With this notation, we now formulate two important results presented in
(Pochet and Wolsey, 1995).

Proposition 3.47 The inequality

\
—
g

p=1 \s=1 i=ly

is valid for conv{z € Z% : Y7 | ¢z > d} =: Q(M, d).
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Theorem 3.48 The polyhedron Q(M,d) is completely described by the set of all inequalities
(3.19) and the non-negativity constraints x; > 0 fori=1,...,n.

With Proposition 3.47, we are in position to present knapsack-partition inequalities.

Proposition 3.49 Let Vi,...,V} be a k-graph-partition of G, set F := dg(V1,..., Vi) and d :=

ZUUE(SH(Vl,...,Vk) dyy. For apartition {l1,...,51},...,{ls,--.,Ji} of the indez sel of {C™,... ,C™}
w.r.d. d, let Kk1,...,K: be defined as in (3.18), and fori=1,...,n, lel p(i) be the partition index
of technology T;, that is, i € {lp(i), - ,jp(i)}. Then the knapsack-partition inequality

n O p(i)—1 i
szin{lﬁp(i)7 m} ' H Rg .’I}(€7Ti) > Hﬁ)i (320)
i=1

eceF i=1 s=1

is valid for X (G, H,BAs,Nos).

3.3.2 DIVERSIFICATION

Similar to Section 3.2.2, the investigation of the polyhedron X (G, H,BAs, D1v) is based on a
relaxation defined by a cut inequality. We consider a polyhedron associated with the particular
supply and demand graph structure shown in Figure 3.5 (page 73). For the capacity model
D1viSIBLE BAsic CAPACITIES this polyhedron is defined as follows:

Xpas(d,d) := conv{z € ZJTF(E) :3f € RY s.t.
f(e) <min{dd,C2 + Y .y C7x(e,7)}, for all e € E}.

As shown in the following two lemmata, this polyhedron is non-empty if there are at least
[1/8] supply edges, and it is full-dimensional if it is non-empty.

Lemma 3.50 |E| < [1/§] <= Xgas(d,d) = 0.

Proof. The maximum flow over the supply edges in E to satisfy the demand d is |E| - dd.
Consequently, Xgas(8,d) = 0 if |E| < [1/§] since |E|-dd < ([1/§] — 1)dd < d. Conversely, if
|E| > [1/8], a solution T € Xpag(d,d) can easily be defined by setting Z(e, 7) := [dd/C7] for
allec¢ Fand 7 € T. 0

Lemma 3.51 |E| > [1/§] <= Xpas(0,d) is full-dimensional.

Proof. Clearly, |E| > [1/d] is necessary due to Lemma 3.50. To see sufficiency, we observe
that Xpas(d,d) = Xas(é,d) + ]Ri(E). O

For every e € E and 7 € T, the trivial inequalities z(e,7) > 0 are almost always facet-
defining for Xpag(d,d). The only exception to this rule occurs if |E| = [1/4] and |T'| = 1. In
this case, the right-hand side must be appropriately increased such that the face induced by
the trivial inequality is non-empty.
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Proposition 3.52 Let |E| > [1/§] and T = {r}. Then

z(e,7) > max{O, [d_“El_l)édH (3.21)

C’T
is, for every e € E, facet-defining for Xpag(6,d). If |E| > [1/4] and |T| > 2, then
z(e,7) > 0 (3.22)

is, for every e € E and every 7 € T, facetl-defining for Xpas(d,d).

Proof. Set k:= max{0,[(d — (|E| —1)dd)/C" 1} and let g € E.

(3.21): Let T = {7} and set F := {x € Xpag(d.d) : z(g,7) = k}. The validity of (3.21)
is obvious. We define T € Xgas(d,d) by setting Z(g,7) := k and Z(e,7) := [dd/CT]
for every e € E\{g}. By definition, Z € F. The same is obviously true for every
T+ x®" € Xgas(d,d),e € E\{g}. Thus, there are |T'(E)| affinely independent solutions
contained in F.

(3.22): Assume that |T'| > 2, choose 71 € T, and set F := {z € Xgas(d,d) : z(g,71) = 0}. The
validity of (3.22) is again obvious. Similar to the the previous case, we identify sufficiently
many affinely independent solutions in F. First, we define T € Xpas(d,d) by setting
Z(e, 1) := [6d/C™], e € E\{g}, T(g,71) := 0, and T(e, ) := 0, e € E, 79 € T\{m1}.
By definition, Z € F. In addition, T + x®™ € Xpag(d,d) N F for every e € E\{g}, and
T+ x9™ € Xpas(d,d) N F for every e € E and 79 € T\{71}. Again, there are |T(E)|
affinely independent solutions contained in F. O

To exclude technical details, we make a few (practically reasonable) assumptions.

Assumption 3.53 In the remainder of Section 3.3.2, we assume that

e Xpas(d,d) is full-dimensional,

e C0=0, foralle € E, and

o |E|>[1/6] or |T| > 2.

The following lemma accumulates some results about the structure of coefficients of facet-
defining inequalities for Xpag(9,d).
Lemma 3.54 Let 'z > « be facet-defining for Xpas(d,d) and e € E:

1. a] >0, for every T €T.

2. If a # 0 then either a] > 0 for allT €T, oral =0 forall T €T.

3. If a £ 0 then alt = al?, for all 71,70 € T with C™ > C™ > 4d.
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Proof. Let F:={z € Xpas(6,d):a’z=0a},T€ F,ande € E.

1. Suppose that 7 € T with a] < 0 exists. Then we get the following contradiction: o =
a’ @+ x%") =a+al < a

2. Suppose that 71,7 € T such that a]! = 0 and a??> > 0 exists. W.l.o.g. we can assume
Z(e, 7o) > 1. (Otherwise, T(e,72) = 0 is implied.) Then we get with

=T — X7+ [C7 /O™ ]x™ € Xpas(4,d),

sl

a contradiction since 0 < o (T — ) = —a2 < 0.

3. The inequality alt > al? follows immediately from C™ > C™. To prove the other
inequality (a7t < al?) let us assume w.lo.g. Z(e,71) > 1. (We can assume this, since
otherwise Z(e, 71) = 0 is implied.) Since C™ > éd, it holds

T:=7+ x4 — x®™ € Xpag(6,d),
and thus the claim follows from a7 — a7t = o® (T + x*™ — x*™ —7) > 0. O
The central notion needed to define different classes of valid and facet-defining inequalities
for Xpag(d,d) is a minimal diversification cover, which is based on the following question: how
many units of a capacity C are needed to satisfy a demand d, if there are k supply edges and if

the diversification parameter is §7 The value of the minimal diversification cover is important,
since it often defines coeflicients or right-hand side of valid and facet-defining inequalities.

Definition 3.55 Let 0 <0 < 1,C € Nk € Nwith k > [1/6] > 1. A solution to

k [dd/C]

[6d/c1—1

k
Z (5dzi[5d/c1 + Z 1C2}

i=1 t=0

v
=%

(3.23)

[6d/CT
oo =1, i=1,..,k, (3.24)
t=0

zt e {0,1}, i=1,....,k, t=0,...,[6d/CT, (3.25)

is a diversification cover. An optimal solution and its value are called minimal diversification
cover, and abbreviated by (d, éd, C, k).

Obviously, every solution Z for the {0, 1}-program in Definition 3.55 is completely determined
through the unique ¢;,7 = 1,...,k with Efl = 1. This justifies the notation Z = (¢1,...,1) for
such a solution. Let 7 € T such that C™ = C and let Z = (#1,...,#;) be a diversification cover.
Then, the associated C™-solution T € Xpas(6,d) is defined by

_ i, T=T,
T(ei 7) = { 0Z else
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for every ¢; € E = {eq,..., ek}_and 7 € T. Thus, the capacity for each supply edge e € E is
C™Z(e,T), and the flow vector f € RY defined by

f(e) = min{C"Z(e,7), [6d]},

for every e € E, satisfies the capacity and flow bound constraints. Hence, T € Xpag(9,d)
follows, if ), 5 f(e) > d (justifying the notion “associated C"-solution”), which is true since

[6d/C]—1
S Fle) = Y min{CH(e;, ), [6d]} = Y [6alT S wcit| = 4.
e;EE e;€F e, €R t=1

The following lemma is important for the forthcoming proofs.

Lemma 3.56 Let C = C7. If there is a unique minimal diversification cover (d,éd,C",|E|),
then this isZ = ([0d/C7],...,[0d/CT]). Otherwise, two different minimal diversification cover
exist for (d,dd,C",|E|) and every ei,es € E, whose associated CT-solutions T and T satisfy
% =7 — X61,T + X62,T.

Proof. First, suppose that the minimal diversification cover Z is unique and z; < [6d/C"] for
some i € {1,...,k}. Then, choose j € {1,...,k} with i # j and Z; > 0. (Such a j exists, since
8d < d.) Tt is easy to see that 7 — xU} + 1} satisfies constraints (3.23) — (3.25) and is thus
a minimal diversification cover; contradicting the uniqueness. Knowing this, the other claim
follows easily. Just notice that the same exchange argument can be applied since the supply
edges are interchangeable. O

A lower bound on the value of a minimal diversification cover is obviously [d/C], since this
number of units of C' is even without diversification restriction needed.

Lemma 3.57 (d,déd,C, k) > [d/C].
Proof. If we relax in (3.23) the coefficient éd to [éd/C|C, we get

k [6d/C ¢
k [dd/C] =1 t:o[éd/é?z; 2 d7 .
(d,6d,C,k) >ming S 3 1z =0 % = 1 i=1....k,
i—1 =0 zi € {0,1}, i=1,... .k,
t=0,...,[6d/C]
Thus, the lemma follows from
k [0d/C] 1 X [0d/C] d
SD IS I EE.
i=1 t=0 Ci:l t=0 ¢
and the integrality of z. O

In some cases, the value (d,dd,C,k) can immediately be determined. For instance, if the
flow bound éd is an integral multiple of the capacity C and if C > dd.
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Lemma 3.58 6d/C € N = (d,6d,C, k) = [d/C].

Proof. To define a minimal diversification cover Z = ({1,..., 1) of value [d/C], we set
[6d/CT , i€{l,...,[1/4]},
L= [(d- [1/816)/C] , i=[1/3] +1,
0, else ,

for i = 1,...,k. By definition constraints (3.24) and (3.25) are satisfied. The same holds for
(3.23) since

11/]
L [d— 11/6] éd
i—1 ¢

Thus, the claim follows from

25w = S [ [ = - 8] )

]c > |1/6)6d+d—|1/6]6d = d.

The following lemmata provide obvious bounds for the minimal diversification cover and a
formula to recursively calculate its value. These will be used in the validity proofs for some
classes of inequalities.

Lemma 3.59 C > 6d = (d,8d, C, k) = [1/6].
Lemma 3.60 (d,dd,C,k) < (d — 6d,5d,C,k — 1) + [6d/C1.

Lemma 3.61 If C < éd, we have

[ 1, it kC|6d/C) > d,
(d, 84, C, k) = { k|6d/C) + (d — kC|6d/C),6d — C5d/C],C,k) , else.

Proof. The first case is obvious. If we use on each of the k edges the capacity |éd/C|C
then there remains a demand of d — kC|éd/C| > 0 and the remaining bound on the flow is
dd — C|4d/C|. 0

Note, the calculation rule in Lemma 3.61 is satisfied for C > §d as well, but in this case the
equality is not very informative since it reduces to (d,dd, C, k) = (d,dd, C, k). Summarizing the
previous results, the value of a minimal diversification cover satisfies

[gw < (d,8d,C,k) < H [%ﬂ : (3.26)

where the left inequality is tight for d/C € N, and the right inequality is tight for C > 4d.
For C' < éd (the usual case in our practical application), we construct a small example showing
that the upper bound can be attained.
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Example 3.62 Let d = 560 and 6 = 0.5 be the demand parameters, and let C' = 30 and k = 2.
In this case,

(d,dd,C, k) = (560,280,30,2) =20 =[1/d]]6d/C] .
It is not possible to achieve (d,dd, C, k) = 19, since the best combination of 19 units of 30 is
2-9-30+1- (280 —270) = 550 < 560 ,

since the flow through any of the supply edges is bounded from above by 280 = 0.5 - 560. [

After the characterization of the minimal diversification cover, we now turn to valid inequal-
ities for the polyhedron Xgas(d,d).

Lemma 3.63 The diversification-cut inequality

szln{C; mﬂ}x(e,f) > (d,5d,C™,|B)) (3.27)

eck 7T

is valid for Xpas(6,d).

Proof. LetT € Xpag(, d)ﬂZJTr(E). We define a vector Z = (11, ..., ), k = | E|, which satisfies
for C = C™ the constraints (3.23) — (3.25), and which further satisfies

S min { 0 , u—ﬂ }T(ei,T) > 1 (3.28)

TET

for all e; € E. In this case, the claim follows since the sum of inequalities (3.28) for all e; € E
satisfies

Zme{Cn [C‘S—du TlewT) > O 4 > (d,0d,C™,|E]).
e, €ETeT e;€E

Let Z be defined by

for e; € E. By definition, constraints (3.24) and (3.25) are satisfied. To see that constraint
(3.23) is satisfied, let I := {i : &; = [dd/C™],1 < i <k} and I := {1,...,k}\I1. Then (3.23)
reduces to

L|-6d+ > tC>d,

1€l

since otherwise T ¢ Xpas(9,d). (Recall, the maximum flow through a supply edge is dd.) O
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Example 3.64 Inequalities (3.27) are not facet-defining, in general. A counter example is the
following: Let d = 564, § = 0.75, |E| =2, T = {7, 72} and C™ = 30,C™ = 480. It is easy to
verify that (d,dd,C™, |E|) = 19, and thus inequality (3.27) reads as

Z(x(e,n) + min{16,15}z(e, 72)) > 19.
eck

However, this inequality is not facet-defining, since it is dominated by the valid inequality

Z(x(e,ﬁ) + ldz(e,2)) > 19.
eclk

To see the validity of the latter inequality, consider the possible choices of a feasible solution. Let
T be such a solution with (g, 72) > 1 for exactly one g € E (the other cases are obvious). Then,
a flow of dd = 423 can be routed over g, and the remaining demand of value 564 — 423 = 141
can be satisfied by installing five units of capacity 30 or one unit of capacity 480 on the other
supply edge. In both cases the inequality is satisfied. O

Suppose that a capacity larger than or equal to dd is chosen on k < [1/d§] — 1 supply edges.
The maximum flow over these edges is k - §d and the remaining demand is d; := d — kdd < éd.
This must be satisfied with the edges in Ej, which are all supply edges but those with a
capacity larger than éd. Then, any inequality valid for the polyhedron conv{z € ZZ(E’“) :
ZeeEk C"z(e,7) > di} is valid for Xpas(9, d). Furthermore, every partition of the index set of
{C™,...,C™} w.r.t. di gives rise to a knapsack-partition inequality (3.20) which is valid for

conv{z € ZJTF(E’“) : D eem, CTx(e,7) > di}. This proves the following proposition.

Proposition 3.65 Let k < [1/§] —1,Ey C E with |Ey| = |E| —k and set dy, :== d —kdd. For a
partition {l1,..., 51}, -, {lty- -, 41} of the indezx set of {C™,...,C™} w.r.t. dg, let K1,..., kK
be defined as in (3.18), and fori=1,...,n, let p(i) be the partition index of technology 7;, that
8,1 € {lp(i)7 e ,jp(i)}. Then, the diversification-partition inequality

n Vo p(i)—1 t
Z Z min {mp(i), m} . H ks | z(e, 1) > H Kq (3.29)
eEEk 1—1 s—1 =1

is valid for Xpas(d,d).

For a particular knapsack-partition inequality, it is possible to prove that the diversification-
partition inequality is facet-defining for Xgag(d,d).

Proposition 3.66 Let k:=[1/6|—1,E, C E with |Eg| = |E| -k and set dy := d—kéd. Then

ZZmin{%, [%Hx(e,f) > u’ﬂ (= (d, 64, C™, | B)) (3.30)

ecly TeT

is facel-defining for Xpas(d,d).
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Proof. The validity of (3.30) follows from Lemma 3.57 and Lemma 3.63 applied to the supply
graph Gy = (V, E}) with demand dy. To prove that it is facet-defining for Xgag(é,d), let us
assume the existence of a valid inequality a”z > « for Xpas (6,d) with

Fou = {z € Xpas(J, d) caly = a}
D> {z € Xpas(6,d): Yy Y min{CT/C™, [de/CT}al = [dg/C™} =i F
ecE, 7T

Notice that F # 0 since the demand dj can be satisfied by setting T(g, 1) = [dx/C™], for a
single g € Ey, and T(e,7) = 0 for e € Ex\{g} or 1y # 7 € T. We distinguish between two cases:

e € € E\E; and 7 € T: In this case we get aZ = 0, because T + x®” € F for every T € F.
(aZ=a"@T+x°7)—a'T=a-a=0)
e €€ E; and 7T € T: We define a solution T € Xgag(d,d) by setting
[0d/CT], e€ E\Ey ,
T(e,7):=< [dg/C™], e=%€,17=T,

0, else .

(Such a solution exists since it is possible to route d — dy over the edges E\Ej) and dy,
over edge € € Ey.) Obviously, T € F since

5 E el ] [ 4] [ 8]

eckE T€T

Since F C Fgq, it follows [dy/C™az* = a. To complete the proof, it remains to show
that o = min{C7/C™, [d),/C™]}aZ}. Let T € Xgas(d,d) by defined by

+ x%7 — min{CT/C™, [dy/C™}x"™ .

8|

sl

7 defines a solution since the induced capacity on each supply edge is at least the capacity
induced by Z. Furthermore, T € F since

= p e { ] -

e€lk, TeT
dy [ CT [ dy (T [d 1\ [
CTI + min ﬁ’ a — min E, ﬁ = CTI .

This implies

af — min{CT/C™, [d/C™ ]}l =a"F-T) =a—a=0.
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Thus, a’'z > « is an integral multiple of (3.30), which proves the proposition. O

The support of inequalities (3.30) is defined on |E| — [1/d] + 1 supply edges and therefore
the coefficients of at least one supply edge are zero. The next task is to extend the support
of these inequalities to some of the “missing” edges. There are two remarks in order. Since
each inequality (3.30) is facet-defining, the lifting coefficient of any of the variables not in the
support is zero, as shown in the proof of Proposition 3.66. Second, if we extend the inequality
to an edge (not in the support) we have to find positive coefficients for all available technologies
of the edge, as we know from Lemma 3.54. Before we formalize the construction of a new valid
inequality, let us consider an example.

Example 3.67 Let |E| =3 and T = {1y,72, 73}, d = 190, § = 0.5, C™ = 30,C™ = 60, and
C™ = 120. Due to Proposition 3.66,

Z (x(e,11) + 2x(e, 7o) + 4z(e, 13)) > 4

ec{e1,ea}

is facet-defining for Xpag(é,d). Furthermore, due to Lemma 3.63,
Z (z(e,11) + 2z(e, 72) + 4z(e,73)) > 7

ec{ei,es,es}
is valid for Xpag(é,d). However, this inequality can be improved. Let us consider the valid
inequality

wles, 1) + 2x(es, 7o)+ Y, (wle, 1) +23(e; ™) + du(e, 7)) > 4

ec{er,ea}
and lift the variable x(e3, 73). The lifting coefficient is defined by
min{ x(es, 1) + 25(e3, T2) + X oeqey ) (F(e; 1) + 22(e, T2) + 4 (e, 73)) :

.’EEXBAs(57d),ZE(637T3):0}—4
= 7-4 = 3.

Thus, we have proven that
z(es, 1) + 2z(es, 72) + 3z(es, 73) + Z (z(e,11) + 2z(e, 72) + 4x(e,13)) > 7
ec{ere2}

is valid for Xgag(d,d) in this example. In this particular case, the last inequality is also facet-
defining. This will follow from Proposition 3.70. O

Following the reasoning of the previous example, we now construct a new inequality which
is often facet-defining for Xgag(d,d). Let k = [1/0] — 1, E;, C E with |Ey| = |E| — k, and
dy, := d — kdd. Proposition 3.66 implies that

(o [d i
Z Zmln{ﬁ, ’VCfl-‘ }l‘(e,T) Z (dk75d70 17’Ek‘)

ek, TET
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is facet-defining for Xpag(d,d). If we relax the coefficients [dy/C™] to [§d/C™ ] and extend
the resulting inequality to some variables z(€,7) of an edge € ¢ Ej and all technologies 7 € T
with C7 < dd, it remains true that

Z ngx(E,T) + Z Z min{%7 [%-‘ }56(677') > (d—kéd,éd,C™,|Ex|)

r€T:07<4d eCEy, €T

is valid for Xgag(d,d). This inequality is, of course, not facet-defining and thus we try to lift
the missing coefficients for 7 € T with C7 > Jd into this inequality. First we note that the
coefficients for all these variables z(€,7) are equal, as we know from Lemma 3.54. Thus, it
suffices to consider the case, where all these variables are set to zero and we have to cover a
demand of d — (k — 1)dd. Let us define

Ly = (d—(k—1)éd,6d,C™,|Ex| + 1) — (d — kéd, dd,C™, | Eg|)- (3.31)
By definition, 0 < Ly < [§d/C™], for every k € N with k < [1/§] — 1.

Lemma 3.68 (d — (k —1)dd,dd,C™,|Egx| +1) =

min{ 3 Zmin{%,[%-‘}x(e,T):xEXBAS(d,d), S aEr) =0

ecEgUeTeT TET:C72>6d

Proof. Every optimal solution to (d — (k — 1)éd, dd, C™,|Ex| + 1) defines a solution satisfying
the conditions of the right-hand side. Thus, '>’ is proven. For the reverse direction we remark

that every solution of right-hand side can easily be transformed into a minimal diversification
cover for d — (k — 1)dd, éd, C™, and |Ey| + 1. 0

Proposition 3.69 For every k € N with k < [1/§] — 1, Ey C E with |Ex| = |E| — k and
€ € E\E}, the lifted diversification-cut inequality

Zmin{%,Lk}x(Eﬂ') + ZZmin{%,[(zﬂ}ﬂe,T)

TET ecly TeT
> (d— (k- 1)dd,6d,C™, |Ey| +1) (3.32)

is valid for Xpas(6,d).
Proof. Let T € Xgpas(d,d). We distinguish between two cases:

o For ) r.crs5qZ(€,7) = 0, the validity follows immediately from Lemma 3.68.
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e In the other case, there exists 7 € T with C™ > §d and Z(€,7) > 1. Then, it is possible to
route dd over € and, in consequence, at most a flow of value kdd over the edges in E\Ej.
The remaining demand (d — kéd) must be routed over the edges in Ej. Thus,

Zmin{%,Lk}T(E,T) + ) Zmin{c—;, [%Hﬂeﬁ)

TeT e€El, TET
= Lk =+ (d_ k6d7 6d7 CTI? |Ek|)
= (d—(k—-1)dd,éd,C™, |Eg| + 1)
by definition of Ly and Proposition 3.66. O

We observe that T € Xpas(9,d) satisfying (3.32) at equality exists, since the C™-solution
associated with a minimal diversification cover for (d — (k — 1)dd, éd, C™,|Ey| + 1) satisfies
(3.32) at equality. Under further assumptions, inequalities (3.32) are even facet-defining for
Xpas(d,d).

Proposition 3.70 For k = [1/0] — 1, E; C E with |Ey| = |E| — k and € € E\E}, inequalily
(3.32) is facel-defining for Xpas(0,d), if there exist two different optimal solutions for (d—(k —
1)éd, dd, C™,|Ex| + 1), and an optimal solution Z for (d — kéd, éd,C™ | Ey|) with Z04/CT

) 3
for some e; € Ey.

Proof. Suppose that a’z > « is a valid inequality for Xgas(6,d) with
F = {x € Xpas(4,d) : z satisfies (3.32) at equality}
C {z € Xpas(d,d):a’z=0a}.

Let g € E. We distinguish between five cases to show that a’ z = o is a positive integer multiple
of (3.32).

e g¢ Ey U{e}, 7 € T: Obviously, ag =0, since T + x97 € F for every T € F.

o 7 = 711 Choose ey # ea € E. We show a7l = ajl. Lemma 3.56 implies that two

minimal diversification cover Z # Z for (d — (k — 1)dd,dd, C™, |Ex| + 1) exist such that

the associated C™-solutions T,Z € F satisfy T =T — x®™ + x®>™. Therefore, it follows

al —al =o' (T -7T)=a—-a=0.

o g==¢,7 € T\{n}: Weshow af = min{C"/C™, Ly }az'. Let Z be a minimal diversification

cover for (d — (k —1)éd, 6d,C™, |Ey| 4+ 1) with Z_ = 1 (i is the index of edge ) and let
T € F be the associated C™-solution. By definition, Z(€,71) > 0. Furthermore, define
7 := T — min{C"/C™, Li}x®™ + x°7 € Zi(E). Obviously, T satisfies (3.32) at equality
and T € Xpas(d,d) since C7 > min{C7/C™, Ly} - C™. Thus, the claim follows from
al — min{C7/C™, Ly}al =aT (T -T) =a—a=0.

® g € E,7 € T,C7 < dd: We show ay = C"/C™ag!. Since C7 < 4d there exists a
minimal diversification cover z for (d — (k — 1)dd,dd,C™, |Ei| + 1) with Egg =1 (44 is
the index of edge g) for t = C7/C™. For the associated C™-solution T € F we define
Z:=7—CT/C"x9™ 4+ x97. As in the previous case, T € F , and thus the claim follows

from a] — C7/C™a] =a" (T -T) =a—a =0,
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® g € E7 €T,C7 > dd: We show a = [dd/C™ Jag!. Choose a minimal diversification

cover % for (d—kdd, 6d, C™ , |Ey|) with Ei[jd/cq] = 1. Such a solution exists by assumption,
since it exists for at least one edge in Ep. With the associated C"t-solution * € F and
T:=T— [6d/C™|x®™ + x*7 € F, the result follows as in the previous cases. O

The assumption of two optimal solutions for the minimal diversification cover (d, dd, C™,|E|)
in Proposition 3.70 is necessary as we see in the following example.

Example 3.71 Let |E| = 2, T = {r1,72}, d = 220,6 = 0.5, C™ = 30, and C™ = 90. In
this case (d,dd,C™,|E|) = 8 and Z = {4,4} is the minimal diversification cover. Due to
Proposition 3.66 the inequalities xz(e1,71) + 3z(e1,72) > 4 and z(eq, 1) + 3z(ez, 2) > 4 are
both facet-defining for Xpag(d,d), and therefore, inequality (3.32), which reads as z(ey, ) +
3z(e1, ) + x(ea, 71) + 3x(e2, 72) > 8, cannot be facet-defining for Xgag(d, d). O

3.3.3 RESERVATION
Similar to Section 3.2.3, we derive valid inequalities for the polyhedron X (G, H,BAs, RES)

based on the ideas of (Gomory, 1969; Chvatal, 1973). In this case, these are the classes of
strengthened melric inequalities (3.35) and strengthened knapsack-partition inequalities (3.36).

Lemma 3.72 Suppose that F C SNE, o" € Z, for every 7 € T, and o € Z is given such
that for every h € F, the inequality

Z a’'z(e,7) > « (3.33)

ecF\{h}

is valid for X (G, H,BAS,RES). Then the inequalily

> aTz(e, ) > “F”F_‘l-aw (3.34)

ecF

is valid for X (G, H,BAs, RES).

Proof. Sum up (3.33) for all h € F and divide the resulting inequality by |F| — 1. The
validity of (3.34) for X (G, H,BAs, REs) follows from the integrality of x. O

Strengthened metric inequalities

Applying Lemma 3.72 to metric inequalities yields the class of strengthened metric inequalities.
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Proposition 3.73 Let p € RY with F := supp(p) C S, and for every h € F and uv € D, let
7l be the value of a shortest uv-path in Gy, = (V, Ep) zth respect to the edge weights pi. Then,
the strengthened metric inequality

St e+ [ 4]

eck el

is valid for X (G, H,BAs, RES), where g is the greatest common divisor of {u,C" :e € F,7 € T}
and d :== min{y,,cp ™, puoduw — ZeEF\{h} pCY: h e FY.

Proof. Set a:=d, and a” := min{u,C"/g,[d/g]},7 € T, in Lemma 3.72. O

Strengthened knapsack-partition inequalities

Similarly, the class of strengthened knapsack-partition inequalities is the result of applying
Lemma 3.72 to the class of knapsack-partition inequalities (3.20).

Proposition 3.74 Suppose that a k-graph-partition Vi,...,Vy is given, for some k € N, such
that F := 6¢(V1,..., Vi) C S. Let

d := min{ Z Puvluy — Z CO heF}.

wv€dy (Vi,e, Vi) ecF\{h}

For a partition {l1,...,j1},...,{lt,...,jt} of the index set of {C™,...,C™} w.ri. d, let
Kl,...,&t be defined as in (3.18), and fori=1,...,n, let p(i) be the partition indez of technol-

ogy Ti, that is, 1 € {ll,,(Z oy Jp(i) }. Then the strengthened knapsack-partition inequality

CT" p(i)—l |F| t
Zme{ﬁp(l i } H ks | z(e, 1) > LF’ 7 H 53-‘ . (3.36)
s=1

ecF i=1 s=1
is valid for X (G, H,BAs, RES).

Proof. The partition of the index set of {C™,...,C™} w.r.t. d is independent from the
supply edges. Hence, for every h € F, the knapsack-partition inequality

o p(i)-1 N
) me{ : M} [T «. | ater Hﬁs
ecF\{h} i=1 s—1

is valid for X (G, H,BAs, REs). The result now follows from Lemma 3.72 for « := Hizl kg, and
a” := min{Kp;_1, O O ) Hg@l_l Ksg- O



Chapter 4

Algorithms and Computational
Results

The last two chapters focused on theoretical aspects of network design problems: setting up
appropriate mathematical models and describing the convex hull of the set of feasible solutions.
This chapter concentrates on algorithmic aspects. There are several theoretical results contained
in this chapter, but practically computing cost-minimal solutions is the driving force now. The
general approach integrates a cutting plane algorithm with heuristic algorithms, and therefore,
a quality guarantee for the solutions computed with the heuristic algorithms can be provided
since the cutting plane algorithm yields a lower bound for the cost of an optimal solution.

The structure of this chapter is as follows. In this introductory part, we describe the prac-
tical problem instances used to evaluate the algorithms. Afterwards, we present an overview
of the general approach to solve the survivable capacitated network design problems described
in Chapter 2, followed by a description of algorithmic aspects of five important subproblems:
preprocessing, initialization of the linear programming relaxation, feasibility of a continuous ca-
pacity vector, separation algorithms for the different classes of valid inequalities, and eventually
heuristic algorithms to compute feasible solutions.

The performance of the algorithms to solve the above mentioned subproblems depends on
various parameter selections. As a common testing platform for the evaluation of these pa-
rameter dependencies, nine network design problem instances are used, all based on real-world
instances supplied by E-Plus. The structure of the original instances is maintained, but the
problem instances are slightly perturbed such that disclosure agreements are not violated. Fur-
thermore, values such as lower bounds and solution cost are scaled such that it is impossible to
estimate current network costs from the results presented.

The nine problem instances fall into three different classes. Three problem instances, ml,
m2 and m3, are medium-sized, three problem instances, pl, p2 and p3, contain many parallel
supply edges, and three problem instances, 11, 12 and 13, are considered large-sized. The problem
sizes in terms of nodes, supply edges, demand edges, integer capacity variables, and continuous
path variables are shown in Table 4.1. The supply graphs range from 15 to 36 nodes and 46 to
135 edges. The number of demand edges ranges from 48 to 135. The total number of integer

99
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capacity variables and continuous path variables depends on the capacity and survivability
models. Different types of communication links are used between pairs of nodes. These represent
multiple leased line providers and microwave connections. The capacity choices reflect the
available capacities of the PDH (see page 24). For the capacity model DISCRETE CAPACITIES,
the capacities 30, 60, 480, 960 and 1920 are used for supply edges corresponding to leased
lines, and the capacities 60, 120, 240, 480 are used for supply edges corresponding to microwave
links. Similarly, for the capacity model DIVISIBLE BAsSic CAPACITIES, the basic capacities
30, 480, 1920 are used for supply edges corresponding to leased lines, and the capacities 60,
120, and 480 are used for supply edges corresponding to microwave links. With this selection,
the number of capacity variables is, of course, larger for DISCRETE CAPACITIES, but, these
are {0, 1}-variables instead of general integer variables for D1viSIBLE BAsiC CAPACITIES. The
number of path variables is computed for unrestricted length of valid paths. For the normal
operating state, the number of path variables ranges between 3.9 million and more than 200
billion(!). Summing up over all operating states, that is, over the normal operating state,
all supply node failures, and all supply edge failures, the number of path variables ranges
between 153 million and more than 20000 billion(!). (We computed these values with an upper
bound of 10 billion paths for the normal operating state, and roughly estimated the correct
number based on the number of demands. Hence, not for all instances the exact numbers
of path variables is known.) The survivability model dependent parameters are 0.5 and 0.75
for DIVERSIFICATION, and 0.5 and 1.0 RESERVATION and PATH RESTORATION, leading to the
problem instances m1d50, m1d75, p1d50, pld75, 11d50, 11d75 for DIVERSIFICATION, and m1r50,
m1r100, p1r50, p1r100, 11r50, 11r100 for RESERVATION and PATH RESTORATION. (In the latter set
of problem instances, the interpretation of the failure parameter depends on the survivability
model.) As already mentioned, the set of operating states S comprises the normal operating
state, all supply node failures, and all supply edge failures.

problem || V] | 121 | |D) |z| variables | f| variables

FIN | Bas Drv |  REs/PaTH
ml 15| 46| 78| 220 | 132 3 898 238 153 028 236
m2 16 | Bl | 77| 243 153 19771917 846 193 483
m3 17| 48 | 135 || 234 | 144 7575728 321459 696
pl 21 | 135 | 48 || 643 | 405 > 50 - 1009 > 8 - 10el2
p2 28 | 122 | 67 || 577 | 366 > 50 - 10e09 > 8 - 10el2
p3 24| 97| 67| 461 | 291 > 60 - 10e09 > b - 10el2
11 36 | 107 | 79 || 512 | 421 4319021173 | 464 782082 567
12 34 | 100 | 131 || 480 | 300 > 200 - 10e09 > 20 - 10el2
13 36 | 123 | 123 || 582 369 > 20 - 1009 > 2 - 10el2

Table 4.1: The test problem instances

The used linear programming solver is CPLEX 6.5.3, and all computational experiments are
performed on SUN-Ultra60’s (359 MHz SUNW,UltraSPARC-II) with 512MB or 1024MB main

memory.
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4.1 Overview

Suppose that a fixed capacity model and a survivability model are given. From an abstract
point of view, solving the associated survivable capacitated network design problems reduces
to solving a mixed-integer programming problem of the form

min{kz : Cx+ Df > d,z integer, f > 0}, (4.1)

where z represents the integer capacity variables, f the continuous path variables, C' and D
are appropriate matrices, and &z is the linear cost function. In Table 4.1, we have seen that even
for moderately sized supply and demand graphs the number of variables in the associated mixed-
integer program is huge!. The reason is the number of paths which is potentially exponential in
the input size of the supply graph. As a consequence, it is impossible to follow the typical linear
programming approach of relaxing the integrality constraints, and solving and strengthening
the linear relaxation. Instead, we follow an approach which integrates decomposition techniques
with cutting plane techniques and linear programming based heuristic algorithms.

The objective function coefficients of all path variables are zero. Therefore, (4.1) is equivalent
to the optimization problems

min{kz : « integer,{f : Df > d — Cz, f > 0} # 0}, (4.2)
min{kz : x integer, Az > a,{f : Df > d— Cxz, f >0} # 0}, (4.3)

where {z : Az > a} is a relaxation of the polyhedron X (G, H,-,-), that is, X (G, H,-,-) C
{z : Az > a}. (Benders, 1960; Benders, 1962) suggested to decompose problem (4.3) and to
solve alternately the relaxed integer program min{kz : x integer, Az > a} and the decision
problem {f : Df > d — Cz,f > 0} # 0. The important point of Benders approach is the
following. Whenever an optimal solution of the relaxed integer program is given then either
optimality can be proven or a so-called Benders cut can be derived which is violated by this
optimal solution. Thus, one yields a new and stronger relaxed integer program when adding the
Benders cut. Qur approach is similar. In contrast to Benders decomposition, however, we do
not solve integer programs. Instead, we seek for a good linear approximation of the polyhedron
{z integer, Az > a}. That is, we compute a lower bound to the optimal solution value of the
relaxed integer program. Notice that a lower bound to the relaxed integer program is a lower
bound to the optimal solution value of the considered network design problem.

In the context of network design, the above mentioned decision problem is the following:
given a solution T of a linear programming relaxation of X (G, H,-,-), it is necessary to decide
whether a feasible routing exists. That is, given a (continuous) capacity vector 7 obtained from
T with (2.4) or (2.7), the following feasibility problem must be solved.

Definition 4.1 (Feasibility problem)

Given the survivability model RESERVATION or PATH RESTORATION and a (continuous) capac-
ity vector g(e), e € E: Decide whether gy € Y(G, H,D1v)NY (G, H,RES) or g € Y(G, H,D1v)N
Y (G, H,PATH), respectively, that is, decide whether there exist routings for all demands in all
operating states satisfying the particular routing and survivability constraints.



102 4. ALGORITHMS AND COMPUTATIONAL RESULTS
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Figure 4.1: Flow chart of the algorithm.

Our algorithmic approach, sketched in the flow chart of Figure 4.1, utilizes this way of
decomposing the network dimensioning problem as follows. Starting point is an initial relaxation
{z : Agz > a¢} of X(G, H,-,-), for which an optimal solution T can be identified by means of
linear programming. In the next step, the following separation problem for the optimal solution
T of the current relaxation, and some of the classes of valid inequalities for the particular
polytope X (G, H,-,-) is solved.

Definition 4.2 (Separation problem)

Let C be a class of valid inequalities for the polytope X C R", that is, X C {z € R* : ¢l'zx >
7, for all (c,y) € C}, and T € R*. Decide whether ¢!'ZT > « for all (¢,y) € C, or identify
(c,y) € C with ¢I'T < 4.

If one or several separation algorithms identify violated inequalities, then these are added
to the current relaxation. This way, a larger and stronger relaxation is obtained. As most
important property, the new relaxation does not contain = and thus the optimal solution value
of the new relaxation provides an improved lower bound for the optimal solution value of the
considered problem instance. These two steps of solving the linear relaxation and the separation
problem are iterated, until no further violated inequality can be identified. Then, a capacity
vector ¥ is calculated according to either (2.4) or (2.7), and in the next step, the feasibility
problem for 7 is solved.

Often, if the capacity vector 7 is not feasible, a valid metric inequality for the respective
polyhedron Y (G, H,-) can be derived. In fact, for DIVERSIFICATION and RESERVATION a
violated metric inequality can always be derived, and for PATH RESTORATION this is under
further restrictions possible. Given a metric inequality that is violated by 7, it is always
possible to identify a valid inequality for the respective polyhedron X(G, H, -,-) that is violated
by Z; see Sections 3.2 and 3.3. Summarizing, the algorithm to solve the feasibility problem for

!The memory of todays workstations does not even suffice to store the associated mixed-integer programs.
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a capacity vector i serves as a separation algorithm for T as well. Again, identified violated
inequalities are added to the current relaxation and the new stronger relaxation is resolved.
There are two possibilities if the capacity vector ¥ turns out to be feasible. If T is integral, the
solution is optimal. In this case, feasible routings can be computed with the algorithm to solve
the feasibility problem for the capacity vector 7. If T is not integral, heuristic algorithms are
applied to find “reasonable” integral solutions.

The cutting plane phase provides a lower bound z1p = k%, where I is an optimal solution
of the final linear programming relaxation; and the best heuristic solution provides an upper
bound zp to the unknown optimal solution value. Thus, a quality guarantee for the best
solution found by the algorithm can be provided, which is an upper bound on the gap between
the values of an optimal solution and the best solution found. This quality guarantee is given
by the quantity

MIOO%
2P

4.2 Preprocessing

The purpose of preprocessing is twofold. Given a particular problem instance, the first target
is to decide whether there exists a feasible solution, or not. If infeasibility of the problem can
be proven, the overall algorithm terminates. The second target is to reduce the problem size.

4.2.1 Detecting infeasibility

The initial step of the preprocessing consists of solving the feasibility problem from Definition 4.1
for a particular capacity vector. For the capacity model DISCRETE CAPACITIES, this capacity
vector consists of the largest capacities CZ¢ for all supply edges e € E. For the capacity model
D1visIBLE BAsic CAPACITIES, this capacity vector consists of sufficiently large capacities (e.g.,
the smallest valid capacity larger than the sum over all demand values). This task is difficult,
however, since a subproblem of the feasibility problem is already N'P-complete. As we will see in
Section 4.4, the algorithm to solve the feasibility problem also solves the following uncapacitated
network design problems.

Definition 4.3 (Uncapacitated network design problems)

Let the topology of a supply graph G = (V, E), and a demand graph H = (V, D) together with
the demand edge dependent survivability parameters be given. Then, the following decision
problems are uncapacitated network design problems:

e Do there exist [1/dy, | node-disjoint paths of length at most £,,7

e Does there exist a uv—path in G, for all s € S\{0} with uv € D; and py, > 07

Definition 4.3 asks for the existence of sufficiently many node-disjoint paths in all operating
states for all demands. Obviously, the existence of a solution for this uncapacitated network
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design problem is a necessary condition for the existence of a feasible solution for the survivable
capacitated network design problems presented in Chapter 2. As shown in (Ttai et al., 1982),
the first problem in Definition 4.3 is AN"P-complete. Instead of an exact method, we employ
algorithms from the software library developed by (Bley, 1997), which contains a set of heuristic
algorithms to solve various “node-disjoint length-restricted path problems”.

An obvious algorithm to solve the second problem of Definition 4.3 is the following: For each
failure state s € S\{0} and each demand uv € D, with py, > 0, test whether u and v belong to
the same component of the supply graph G;. This can obviously be done in polynomial time,
but it is rather time consuming. The following sufficient criteria for the existence of a uv—path
in G for all s € S\{0} with uwv € Dy and py, > 0 help improving the computation time:

e (7 is two-node connected.
e For all uv € D there exist two node-disjoint paths in G between u and v.
e VNS =0 and G is two-edge connected.

e VNS =0 and for all uv € D there exist two edge-disjoint paths in G between u and v.

Given the existence of a solution for the uncapacitated network design problems from Defi-
nition 4.3, the algorithms described in Section 4.4 are used to solve the feasibility problem for
the above mentioned vector of large capacities. As we will see in Section 4.4, the feasibility
algorithms for the survivability models DIVERSIFICATION and RESERVATION are exact, that is,
this capacity vector is feasible if these algorithms do not prove the infeasibility. For PATH RE-
STORATION, however, the algorithm is not exact, that is, in some cases the algorithm terminates
without proof of feasibility or infeasibility.

Assumption 4.4 Throughout the rest of this chapter, we assume the existence of a feasible
solution for the considered survivable capacitated network design problem instances.

4.2.2 Problem reduction

There are various ways to reduce the problem size. By means of decomposition, it might be
possible to obtain a series of smaller subproblems which are easier to solve, and the parameters
of the supply and demand edges might allow to reduce the set of operating states, to remove
some of the valid capacities, or to decide the routing of a demand beforehand.

It turned out, however, that none of the following reduction techniques applies in our test
problem instances. Obviously, the E-Plus engineers had already done a good preprocessing
themselves.

Decomposition

e Suppose that the supply graph of the problem instance has the structure illustrated in
Figure 4.2, that is, there exists an articulation node w € V. Hence, there exist V1,Vo CV
with V1 UV, =V and V; NV, = {w} and d¢(Vi\{w}) U dg(Vo\{w}) = d¢(w).



4.2. PREPROCESSING 105

i Va

Figure 4.2: Decomposition w.r.t. an articulation node

If all demand edges in 0 (V1) are not path-length restricted, the problem decomposes
into two subproblems:

G1 = (V1,E(1)), Hy= (W, D(V1)Udp(W1)),
Gy = (V2, E(12)) , Hy = (Vo, D(V2) Udp(V2)) .

Each supply edge appears in exactly one subproblem, the parameters of each supply edge
are exactly those from the original problem, and the parameters of a demand are those
of the associated demand in the original problem.

e Suppose that the supply graph of the problem instance has the structure illustrated in
Figure 4.3, that is, the node set V of the supply graph G = (V, E') can be partitioned into
subsets V1,Va C V with V1 N Vo = 0 and V; U V5 = V such that two articulation nodes
v1 € V1,v2 € Vo exist, which satisfy dg(V1) = dg(V2) = dg(v1) N dg(vz). The only supply
edges in the cut 6 (V1) are those between the nodes v; and vs.

Vi Va

U1 U2

Figure 4.3: Decomposition w.r.t. a multi-bridge

Again, if all demand edges in (V1) are not path-length restricted, the problem decom-
poses into three subproblems with the following supply and demand graphs:

G, = (Vi,E(W)), Hy = (Vi,D(V1) U (6 (Vi)\dm (v1))) ,
Go = (V2, E(Va)) , Hy = (V2,D(V2) U (65 (V2)\dm (v2))) ,
Gs = ({v1,v2},0g(v1) Ndg(ve)), Hs = ({vi,v2},0m(V1)) .
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Each supply edge appears in exactly one of the three subproblems, and the parameters of
each supply edge are exactly those of the original problem. The three demand graphs are
a little bit more complicated since every demand that crosses the cut appears in two or
three of the subproblems. For each demand edge of one of the three subproblems there
is a unique associated demand edge in the original problem and each demand inherits its
parameters from this associated demand.

If some demand edges in 67 (V1) are path-length restricted, the problem still decomposes,
if (w.l.o.g.) Vi = {v1}. In this case, the decomposition is defined as above with the small
change that the length parameter for the demand edges uwvs € dg(v2)\dm(V2) has to be
set to £,,, — 1, where £,,, is the length parameter of the original demand edge between
v1 and u which has been propagated to node vs.

Parameter dependent reductions

e If the demand graph H = (V. D) is a star, that is, if there is a node v € V which is
end-node of all demand edges, then D, = ), and therefore we can set

S = S\{v}.

Practically, this situation comes up in the planning of Bss-networks. Recall from Chapter 1
that all Bscs within a BSs-region are logically connected to a single MSC.

e [f the respective diversification and failure parameters satisfy 1 —d,, > puyo for all demand
edges uv € D, then it suffices to consider the normal operating state. In this case,

S = {0},
since any feasible routing for the normal operating state is feasible for all failure states.

e If the capacity model is DISCRETE CAPACITIES, it is possible to remove breakpoints
te{l,..., T, — 1}, if either

Ct<CHland K! > K or €8l > max{ Z LY A Z Puvdun }
uveD uwv€D

that is, either if there is a larger capacity at smaller cost (modulo equality) or if there
is a smaller capacity that is already larger than the maximum possible flow through any
supply edge. If the capacity model is DIVISIBLE BASIC CAPACITIES, a similar argument
applies. It is possible to remove technology 7 € T, if m - K7 < K7, for some 7 € T and
some 1 < m - C”™ < C7, where m - C7 must be larger than the maximum possible flow
through any supply edge.

e If there are exactly 1/d,, € N supply edges between u and v, the routing of all demands
uv € D with length restriction £,, = 1 and p,, = 0 can be decided immediately. More
generally, if there is only a unique routing for a demand, then these routings can by fixed
and the demand edge can be removed from the demand graph. Notice that it is necessary
to appropriately update the free capacity of all supply edges used in the routing.
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4.3 Linear programming relaxation

The running time of the cutting plane algorithm depends on the selection and the initialization
of the linear programming relaxation. In this section, we present our choice of the linear pro-
gramming relaxation. The mathematical models presented in Chapter 2 contain an exponential
number of variables. Hence, it is not practical to consider the canonic linear programming re-
laxation, which comprises all constraints and all variables, with relaxed integrality constraints.
This would simply be too large.

The relaxed variables z(e,t), e € E, t € {1,...,T.}, together with the ordering constraints
are part of the used linear programming relaxation for the capacity model DISCRETE CAPACI-
TIES, and similarly, the relaxed variables for the capacity model DIVISIBLE BASIC CAPACITIES
are z(e,7), e € E, 7 € T. Using only these variables, the initial relaxation yields a very weak
lower bound, since the O-vector is feasible for both capacity models. Therefore, additional vari-
ables and constraints are needed to obtain a relaxation with a stronger initial lower bound. The
following relaxation is a compromise between the size in terms of variables and constraints, and
the quality of the initial lower bound. It is based on the formulation for capacitated network
design without survivability requirements presented in Section 2.3 (page 40).

Let @ C V be an aggregation of the demands (each demand uv € D is assigned to one of its
end-nodes in ), and let f*(ij) and f¥(ji) be edge-flow variables for all aggregated demands
k € @ and all supply edges e = ij € E. The relaxation is enlarged by these variables and the
constraints are

_D = ) —
> s - S st = { My PRI e e, (4.4)
JEV jev ’ ’
> i) + £HGD) <yl e=ij€kE, (4.5)
keQ
y(e), f*(ig), f* (i) >0, keQ, e=ijeB,  (46)
where
yle) = C%+ Zf;l cxlet), for DISCRETE CAPACITIES ,
yle) = CO+ Y, .7 Cz(e,7),  for DIVISIBLE BASIC CAPACITIES .

The node-set () can be obtained in various ways. As one and only requirement, at least
one of the two end-nodes of each demand uwv € D must be contained in (2, that is, (¢ must
define a node-cover of the demand graph. Obviously, a smaller node-cover leads to a smaller
number of constraints and coefficients in the linear programming relaxation. However, since the
problem of finding a minimal cardinality node-cover is an NP-complete optimization problem,
see (Garey and Johnson, 1979), a simple greedy heuristic is employed, which utilizes the degree
of the nodes in the demand graph.

Notice that the variables y(e), e € E, are only auxiliary variables needed for notational
convenience. These are not included in the relaxation. As we mentioned before, a feasible
solution of this relaxation provides capacities which are feasible for the normal operating state
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without path-length restrictions and diversification constraints. Hence, Theorem 2.5 implies
that these capacities satisfy all metric inequalities and all cut inequalities defined on the supply
and demand graph of the normal operating state.

4.4 Feasibility of a capacity vector

In this section, we discuss the most time-consuming subproblem: solving the feasibility problem
(see page 101) for a capacity vector F(e), e € F, that is, deciding whether there exist routings
for all demands in all operating states that satisfy the routing and survivability constraints.
Depending on the survivability model, we could distinguish between the feasibility problems
for

y€Y(G,H,Dv), 5€Y(G,H REs), ye€Y(G, HPATH),

but we consider two combinations only. One for the normal operating state and the other
for the failure states. We distinguish between the two versions

yeY(G,H,Dwv)NY(G,H,REs) and y€Y(G, H,Div)NY(G, H,PATH)

of the feasibility problem. The particular capacity model is not important for the feasibility
problems. Only the absolute values of the capacities of the supply edges are important. How-
ever, these capacities are implicitly defined in dependence of the capacity model. For DISCRETE
CAPACITIES with variables T(e, t),e € E,t € {1,...,T,}, or DIVISIBLE BASIC CAPACITIES with
variables T(e,7),e € E, 7 € T, the capacity vector is given by

Te
7(e) := C% + Zcﬁf(e,t) or 7le):=C%+ Z C"z(e, 1),

t=1 TET

respectively. We formulate the feasibility problems as linear optimization problems in terms
of path variables (see Section 2.3), and therefore, it is in principle possible to solve these prob-
lems with any commercial software package for linear programming. This approach, however,
has a major drawback: the linear programs are extremely large since the number of path vari-
ables might be exponential in the size of the input. To solve these linear programs despite the
number of variables, we adapt the column generation approach for continuous multicommodity-
flow problems described in (Minoux, 1981). In the following sections, we present the formula-
tions of the feasibility problems, the column generation procedure, implementation details, and
results of computational experiments.

4.4.1 Formulation of the feasibility problems

We formulate both versions of the feasibility problem as linear optimization problems with
an auxiliary variable c. This variable measures the minimum amount of additional capacity
needed, on at least one of the supply edges, to make the capacity vector 7 feasible. The minimal
value @ of this auxiliary variable will satisfy

7 feasible <— @ < 0.
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DIVERSIFICATION and RESERVATION

In this case, the decision problem 5 € Y(G, H,D1v) N Y (G, H, RES) can be formulated as the
following linear program:

min «

Y P < a+yle), sE€S, ecE,, (4.7)

uveDg PEP¥V:ecP

S fP) = du, w €D, (4.8)
PePyY

S (P) = puwduw, s€S\{0}, we D, (4.9)
Pepyv

Z U(P) < dwduww, wveD, weV\{u,v}, (4.10)
PePyvweP

W(P) < bypdyy, wweD, PePY¥, |Pl=1, (4.11)

wpy > 0, seS, uweD, PecP™@, (4.12)

Constraints (4.7) differ from those in the mathematical model in Chapter 2. Here, the
capacity on a supply edge e € F is the sum of the constant value y(e) and the variable o. All
other constraints are identical to those in the mathematical model. The linear program above
has the block diagonal form illustrated in Figure 4.4.

—

] 0

Figure 4.4: Structure of the feasibility LP (DIVERSIFICATION and RESERVATION)

FEach block corresponds to one operating state, that is, each block in Figure 4.4 represents
the subset of constraints for a particular operating state. Obviously, this feasibility problem
decomposes with respect to the operating states and it suffices to solve the smaller feasibility
problems for all operating states. The capacity ¥ is feasible if and only if it is feasible for all
operating states.
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DIVERSIFICATION and PATH RESTORATION

In this case, the decision problem 7 € Y (G, H,D1v) NY (G, H,PATH) can be formulated as the
following linear program:

min @ (4.13)
> Y (P <a+Te), e€E, (4.14)
wveD PEPFV:ecP
> P+ Y f(P) <a+T(e), seS\{0}, e€ B, (4.15)
uwveD; PEPFYNPEv:ecP PePyviecP
Z f(qlw(P) = dyy, uv € D, (4.16)
PePg
S (P + fP) > owdue, sE€S\0}, weD, (417
Pepye

> W(P) < bupduw, wv€ D, weV\{u,v},  (4.18)
PePyv:weP
W(P) < 0uwduw, w €D, PePY, |P|=1,
(4.19)

&P >0, s€S, uwv € Dy, PePyr. (4.20)

Figure 4.5 illustrates that the linear program above has again sort of a block diagonal form.
However, this linear program is more complicated to solve since the failure states are linked
with the normal operating state and, consequently, it is not sufficient to solve linear programs
individually for all operating states.

Figure 4.5: Structure of the feasibility LP (DIVERSIFICATION and PATH RESTORATION)
The first “row” in Figure 4.5 consists of the constraints (4.14) and (4.16). Each of the fol-
lowing “rows” consists of the constraints (4.15) and (4.17), which connect the normal operating

state with the particular failure state. Notice that this linear program again decomposes into
a sequence of smaller linear programs, if the normal operating state routing is fixed.

4.4.2 Solving the feasibility problems

The number of path variables is, even for moderately sized network design problems, quite large.
Thus, it is not practical to solve the linear programs from scratch, that is, to enumerate the
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variables for all valid paths in all operating states for all demands, and to execute a commercial
software package like CPLEX. As we already noted, we adapt the column generation approach
described in (Minoux, 1981).

Suppose that the primal feasibility problem for a subset of the variables (valid paths) has
been solved and @ is the optimal objective function value for this restricted problem. Obviously,
the true optimal value of « (involving all path variables) is at most as large as the one obtained
with the restricted number of variables, and thus 7 is feasible if @ < 0. Otherwise, if @ > 0, it
might be necessary to identify missing path variables in order to find the optimal value of «.

For this purpose, all constraints of the complete dual program (including all path variables)
must implicitly be evaluated for the dual variables of the optimal solution of the restricted primal
problem. Optimality of @ > 0 and hence infeasibility of 7 is proven, if all dual constraints are
satisfied. In the other case, if the dual variables do not define a dual feasible solution, @ is
not necessarily optimal for the primal problem including all path variables. If violated dual
constraints can be identified, the associated primal path variables are added to the restricted
primal problem and this enlarged linear program is resolved. The whole procedure is iterated
until either @ < 0, or no violated dual constraint can be identified. For the latter case there
are two alternatives. Either the method to identify such dual constraints is exact and the
infeasibility of 7 is proven, or the method is heuristic and it cannot be decided whether 7 is
feasible.

DIVERSIFICATION and RESERVATION

As we observed, the feasibility problem for this combination of survivability models can be
decomposed and it suffices to solve the feasibility problem for each operating state individually.
Hence, let s € S be a fixed operating state, and let 47, for all supply edges e € E;, and 7, for
all demand edges uv € Dy, be the dual variables associated with constraints (4.7) and (4.8) or

(4.9), respectively. The dual program for a particular failure state s € S\{0} reads as follows:

max — Y Gt + Y puduwTy, (4.21)
ec ks wv€Dg
Z/Lz > T, wv € Dy, P € Py, (4.22)
eeP
Sou o= 1, (4.23)
eEEs
pe >0, ecE,. (4.24)

Constraints (4.22) are important. For those paths which are in the restricted primal prob-
lem, the corresponding dual constraints are satisfied. But how about the missing paths? All
constraints (4.22) for a particular demand uv € Dy can be rewritten as

oy < min{ZuZ:PE'va}.

eeP
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Thus, it suffices to calculate the shortest uv-path P* in Gg. If

T > > B

ee P*

then the associated dual constraint (4.22) is violated and, in this case, the column for the

path variable f¥¥(P*) must be added to the restricted primal formulation.

For the normal operating state, all paths must satisfy the path-length restriction, and the
primal problem contains additionally the diversification constraints (4.10) and (4.11). Let %,
for all demands wv € D and all nodes w € V\{u,v}, and 75, for all demands uv € D and all
supply edges e € dg(u) N dg(v), be the dual variables associated with constraints (4.10) and
(4.11), respectively. Then the dual objective reads as

max — Zy(E)Me + Z du'uﬂ'uv - z Our Quy Z '751} + Z 75}1)

eckE uv€D w€D e€da(u)Nda(v) weV\{u,v}

Furthermore, for every demand uv € D and P = {e} € P§¥ with e € dg(u) N dg(v), the
constraints (4.22) change to

751) + /Le Z Truq; ? (425)

and for all other P € P to

Z ’Y’ZLU'U + Z/J'e 2 7ruv * (4'26)

weP ecP

Similar arguments as above show how to identify violated dual constraints and therefore
missing path variables. In the normal operating state, for every demand wv € D a length-
restricted shortest path with respect to the following supply edge weights must be calculated:

e — — — —
Yuv > U=v,v =702, O 4 = V2,V =171,

4.27
TR+ ), else, (4.27)

We 1= fhe T+ {
for all e = vy € E.

Remark 4.5 If the capacity vector § is infeasible for a failure state s € S\{0}, in which case
the optimal value o of the primal feasibility problem is strictly positive, the inequality

Z puvduvﬂ'ifu > Z?(B)MZ

UvED, e€l,

is satisfied. Thus, the dual objective function induces a melric inequality (3.2) that is violaled
by the capacity vector . In other words, the algorithm to solve the feasibility problem for 7 is
also a separation algorithm for melric inequalities. The same is true for the normal operating
slate.
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DIVERSIFICATION and PATH RESTORATION

As before, suppose that dual variables u,,e € E, us. s € S\{0},e € E;, m,,,uv € D, 75,,s €
S\{0}; uv € Dg, v& ,uv € D,w € V\{u,v}, and 7¢,,uv € D,e € dg(u) N dg(v), are associated
with constraints (4.14), (4.15), (4.16), (4.17), (4.18), and (4.19), respectively. Furthermore,
suppose that v,,(P) denotes the sum of those dual variables associated with inner nodes and
edges in the path P € P§¥ between the end-nodes of demand uv € D. That is, v, (P) =
Y wep Yo, I[Pl > 1, and vuu(P) = 7§, if P = {e} for e € dg(u) N dg(v). Then, the dual
linear program is the following:

max Z Auy Ty — Zg(e)ﬂe - Z Ouvduy ( Z Vv + Z 77%) +

uwveD ecE weD e€dg (w)Nda(v) weV\{u,v}
Z Z quduvﬂ-fw - Z Z ?(e)ﬂg
s€S\{0} weD, s€S\{0} e€E;

mh, — 3 4 <0,s€S\{0}, weD, PePM,

ecP
(4.28)
Yo {P) + Ty — Zpe + Z (qu - Zu2> <0,weD, PePy, (4.29)
eeP s€S\{0}:s¢P e€P
DDA m =1, (4.30)
s€S\{0} ecE; e€E
He 20,e€F, (4.31)
p >0,se S\{0}, ec E;. (4.32)

The dual constraints (4.28), (4.29) and (4.30) are associated with the primal variables f¥¥(P),
f(P) and «, respectively. Again, the primal solution is optimal if the dual variables define
a dual feasible solution. That is, to prove optimality of the primal solution it is necessary to
implicitly evaluate the dual constraints for all path variables. By linear programming duality,
the non-negativity constraints (4.31) and (4.32), as well as the ’a’ constraint (4.30), are satisfied.
Therefore, it remains to solve the “separation problem” for constraints (4.28) and (4.29).

The separation problem for constraints (4.28) is exactly solvable. For each failure state
s € S\{0} and each demand uv € Dy, it reduces to computing a shortest uv-path in G4 w.r.t.
non-negative edge weights ps. If the dual constraint (4.28) for the shortest uv-path P* € P¥
is violated, the variable f¥¥(P*) must be added to the primal linear program. Since this is an

exact method, we can assume in the following that all constraints (4.28) are satisfied.

The separation problem for the constraints (4.29) is decomposable into a sequence of sep-
aration problems: one problem for each demand uv € D. However, we are not aware of an
efficient method that solves these problems exactly.
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Proposition 4.6 Let uv € D, and assign a weight w, to each supply edge e € E according to
(4.27). Suppose that P* € Py is a shortest path-length restricted uwv-path in G w.r.t. these
edge weights. If Ty, <Y cp« We, then the dual constraints (4.29) are satisfied for this demand
uv.

Proof. Let P be a path-length restricted uv-path in G. The associated dual constraint (4.29)
is satisfied, because of

Tyy = Z We < Zwe < Yuw(P)+ Zﬂe - Z (T — Z fhe)
ecpP* ecP ecP s€S\{0}:s¢P ecP
<0 =

Proposition 4.6 provides a sufficient criterion to state that for a demand edge uv € D there is
no violated constraint (4.29). Next, we provide a sufficient criterion to state violation, which is
based on a shortest path with respect to the following supply edge weights. For every demand
uv € D and every supply edge e = v1vy € F, let the edge weight w, be defined by

1 _
?(7?5%+7§%), v1=u, v2 £ U,

v v —
w — + 7t 4+ S 4 5(71'“,10—#’)/“,})), v2 =0, ’Ul#’u,,

e = He uv Ue e U= U Vo=V
SES\{O}GEE ,])-I’U,’U 7 1 — bl 2 = bl
: s .
F(moy +md + s +a3) . else,

Proposition 4.7 Let uv € D and P € P§? be a shortest uv-path in G w.r.l. the edge weights
We, € € F, defined above. If

T(’LL'U + Z 7T’fL’U > Z w€7

seS\{0}:uveD, ecP
then the dual constraint (4.29) for demand edge uv € D and path P € PY? is violated.

Proof. Follows immediately from

w(P) = Z We

ecP

SRR IR DLTED DD DD DR
eceP eEP weP ecP seS\{0}:e€E;

= D lmet Do ml| e+,
ecP s€S\{0}:e€cE, sep

= Z Pe T Z /J'g + Yuw (P) + Z ﬂ-'i'u + Z (ﬂ-'ziv - 71—’21))
ecP s€S\{0}:e€E, seP seS\{0}:uveD,

> Y uet Y, DomtweP) = Y m b Y m
ecP s€S\{0}:s¢PecP seS\{0}:s¢ P seS\{0}uve D,
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4.4.3 Implementation issues

There are several subproblems to discuss for an efficient implementation of an algorithm to test
the feasibility of a capacity vector. The important issues for the column generation are the
initialization of the restricted problem, the algorithm to solve the shortest-path problem with
path-length restrictions, and the column generation strategy. Furthermore, we discuss in this
section the order of the operating states in which the feasibility problems for the individual
operating states are solved. The computational experiments revealed that solving these linear
programs with column generation belongs to the most time-consuming parts of the overall
algorithm. Thus, there is need for alternative criteria to decide the feasibility of a capacity
vector in a single operating state which are faster to evaluate than the linear programs. We
present some of these criteria at the end of this section.

Initialization of the linear program

The respective linear programs used to solve the feasibility problems are initialized with a small
subset of the path variables. For the running time of the column generation algorithm, it is
crucial to find the the right balance between the number of added path variables and the number
of iteration steps needed to generate the missing columns. We aim at two targets.

e The initial path variables must guarantee the existence of a solution for the initial re-
stricted problem.

e The number of “unnecessary” reoptimizations due to missing path variables in the re-
stricted problem formulation should be small.

It is difficult to accomplish the first target for the normal operating state, since an NP-
complete subproblem must be solved. Recall, the problem of finding the maximum number of
path-length restricted node-disjoint paths between two nodes is N"P-complete (see (Ttai et al.,
1982)). For each demand uv € D, the initial set of paths is computed with Algorithm 1, and
different strategies to accomplish the second target are evaluated in Section 4.4.4.

Algorithm 1 INITIALPATHVARIABLES
Require: uv € D
k := max{ (ﬁ-‘a [puv] + 1}
if £y > [V] = 1 then
k-node-disjoint path algorithm (see (Suurballe, 1974))
else if /7, < 4 then
exact algorithm (see (Itai et al., 1982))
else
heuristic framework (see (Bley, 1997))
end if
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Shortest path problem with path-length restrictions

One auxiliary problem of the column generation procedure is the shortest path problem with
path-length restrictions. The problem is defined as follows. Given a graph G = (V, E), a node
u € V, weights u, € Ry and lengths A, € Ry for each edge e € F, find the minimum-weight
path of length at most £,, from u to every other node v € V. The problem of deciding whether
a path of weight at most M and length at most L exists between two specified nodes is N'P-
complete. However, it is polynomially solvable if all weights or all lengths are equal; see (Garey
and Johnson, 1979). In our case, A = 1 for all e € E, and thus the problem is polynomially
solvable.

Algorithm 2 PATHLENGTHRESTRICTEDSHORTESTPATH
U=V —{u},R:={veV:(uv)ecE}
for allv € V do
0 fv=u
dy(v):=4¢ p, ife=(uv)€eF
oo otherwise

end for
while R # § do
findve Rand 1 <1 < £such that Vw e R, 1 <j </
(i) di(v) < dj(w) and
(ii) d;(v) = dj(w) =7 >1
U:=U—-{v},R:=R—{v}
for all neighbors w € U do
for all j withi+1<j</do
dj(w) = min{d;(w), dj—1(v) + tv,w)}
end for
if dy(w) < oo then
R:=RU{w}
end if
end for
end while

Algorithm 2 shows the modification of the well-known algorithm presented in (Dijkstra,
1959), used to solve the shortest path problem with path-length restrictions. The target is a
shortest path subtree such that each node in the tree can be reached from u on a path with at
most £ := min{l,, : uv € D} supply edges. In every iteration of the algorithm, a shortest path
that satisfies the path-length restriction is determined for exactly one node. This node will be
called labeled. The algorithm terminates, if all nodes are labeled that can be reached from u on
a path with at most £ edges.

In more detail, for every v € V, let d;(v) be the shortest distance from u to v using at most ¢
edges in the current iteration of the algorithm. Denote by U the set of all unlabeled nodes and
define R := {v € U : 3k < £ with di(v) < oo} C U. That is, R is the set of unlabeled nodes that
can be reached from u using only labeled intermediate nodes. Initially, set U := V — {u}. In
each iteration of the algorithm, the node with the smallest distance from u is labeled, breaking
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ties by selecting the one corresponding to the path with the fewest edges. At the end of each
iteration, the distance labels d;(v) of its unlabeled neighbors are updated. At the end of the
algorithm, a length-restricted shortest paths from u to v € V\{u} can be easily determined by
keeping track of the predecessors for each v € V and each 1 < ¢ < £.

Column generation strategies

Suppose that the feasibility problem for a particular operating state must be solved. As we noted
in Section 4.4.2, the primal feasibility problem has not yet been solved to proven optimality,
whenever a violated dual constraint has been identified, In this case, it is necessary to add
columns corresponding to path variables, and to reoptimize the primal problem. The number
of necessary reoptimizations depends obviously on the way the new columns are generated. The
question arises, how many missing path variables should be added for how many demands in
a single iteration. No computational experiments for this runtime parameter are presented in
Section 4.4.4, we only note that it turned out to be advantageous to solve the shortest path
problem (with path-length restrictions in the normal operating state) for all surviving demands
in the particular operating state and to add all identified path variables corresponding to dual
constraints which are violated by the computed shortest paths.

Order of operating states

As described in Section 4.4.2, the algorithm to solve the feasibility problem for a capacity vector
is based on solving feasibility (sub-)problems for individual operating states. The number of
solved subproblems depends on the sequence in which the operating states are considered.
In more detail, the subproblems of all operating states must be solved, if a capacity vector
is feasible. However, if the capacity vector is not feasible, that is, if it is not feasible for
some operating states, the algorithm terminates as soon as the first infeasible operating state
has been determined. Hence, efficient implementations of this algorithm should manipulate the
sequence of considered operating states such that infeasibility is determined as soon as possible.
For this purpose, the (adaptive) sequences described in the next paragraph are compared in
Section 4.4.4.

Suppose that a capacity vector ¥ and a list of operating states S are given. The operating
states are increasingly ordered with respect to weights w(s) € Q4, s € S, which represent a
measure of the feasibility of the particular operating state. To achieve the described effect that
infeasible operating states are more likely to be considered early, these weights are frequently
updated. The weights are initialized by setting w(s) := 0, for all s € S. As initial sequence,
the normal operating state is first, followed by all nodes v € S and all supply edges e € S. The
initial order of the nodes and edges is arbitrary.

ARO  Set w(s) := w(s) + 1, if s is infeasible.
ASO  Set w(s) := w(s) + 1, if s is feasible and w(s) := w(s) + 2, if s is infeasible.
DEF  Set w(s) := w(s).
ARO is called adaptive reuse order since the weight of an infeasible operating state is not
changed, implying that this operating state will be reused in the next application of the algo-
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rithm to solve the feasibility problem. In contrast, AsO is called adaptive sequential order since
the weights of infeasible operating states are increased as well, implying that operating states
with equal weight (such as all operating states after the initialization of the weights) are con-
sidered in sequence. Only if there are no other operating states with equal weight, an infeasible
operating state will be reused in the next application of the algorithm to solve the feasibility
problem. Finally, the default order DEF maintains the initial weights. Since the weights are
never changed, the order does not change as well.

Alternative criteria to decide feasibility of the capacity vector

Solving the linear programs with column generation is the most time-consuming part of the
overall algorithm since it is frequently necessary to test the feasibility of a capacity vector and
since the respective linear programs are considerably large. Thus, whenever possible other
criteria should be applied to determine feasibility or infeasibility of a capacity vector in all or
some operating states. In the following, we present some simple criteria that can be applied for
this decision.

e Suppose that a feasible capacity vector c(e), e € F, is given. A capacity vector 7 is
Jeasible, if y(e) > c(e) for all e € E. Furthermore, 7 is infeasible, if ¢ is a minimal feasible
capacity vector with respect to the componentwise order and if a supply edge g € £ with
7(9) < c¢(g) and g(e) = c(e) for all e € E\{g} exists. It is worth mentioning that these
trivial tests speed up the improvement heuristics.

e Suppose that 7 is feasible for the normal operating state, and let f; be a corresponding
feasible routing for this operating state. Furthermore, for e € F, w € V, and uv € D, set

0v(e) = ZPePgU;eePféw(P)a fole) = >uwen f5"(€)
() = Ypepgewer [67(P) folw) = Yupen f6"(w) -

That is, fy(e) and fy(w) are the flow through e € E and w € V, respectively, while f§*(e)
and f§”(w) are the respective flow values for a particular demand uv € D. For e € E and
w € V the respective values fy(e) and fy(w) are easily calculated from (4.7) or (4.14) by

Jole) := a+7(e) —slack(e) and 2 fo(w) := Z Jole) — Z dyw ,
e€dg(w) uweD

where slack(e) is the slack of constraint (4.7) or (4.14) for supply edge e. Furthermore,

o (w) = dypdyy — slack(uv, w) ,

can be obtained from (4.18) for all demands uv € D with d,, < 1 and all w € V\{u,v},
where slack(uv,w) is the slack of constraint (4.18). For fi”(e), e € E, there is no fast
computation. Now, ¥ is feasible for an operating state s =e€ FNS if

fole) < (1= pw)dyw, uwv €D, (4.33)
and feasible for an operating state s =w € VN § if
w) < (1= puw)dyw, weD. (4.34)
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4.4.4 Computational tests

We report in this section on computational experiments with different parameter selections for
the algorithms solving the feasibility problem. As main performance measures,

e the accumulated time to solve the feasibility problems,
e the number of linear programs solved, and

e the size of the linear programs in terms of columns and coefficients

are used. The tests are performed for the problem instances m1, 11, and pl with survivability
parameters § = 0.5 and § = 0.75 for DIVERSIFICATION, and p = 0.5 and p = 1.0 for RESERVATION
and PATH RESTORATION. The respective problem names associated with these parameters are
m1d50, m1d75, 11d50, 11d75, p1d50, and pl1d75, for DIVERSIFICATION, and m1r50, m1r100, 11r50,
11100, p1r50, and plrl00 for RESERVATION and PATH RESTORATION. It is not necessary to
consider different problem instances for the two capacity models, since the feasibility problem
is independent from the particular model. Only absolute capacity values are important and not
how a particular capacity has been obtained.

It is difficult to choose a good testing environment, since the performance of the algorithms
to solve the feasibility problem depends on the applications using this problem as a subprob-
lem. In particular, the sequence of capacity vectors tested for feasibility matters, and this
sequence depends on other algorithms applied, such as separation algorithms, or starting and
improvement heuristics. Further difficulties arise since the employed linear programs are also
used within separation algorithms for metric inequalities. (We already indicated this relation
in Remark 4.5 and we will further discuss this in Section 4.5.) To provide an environment
that only evaluates the influence of different run-time parameter selections for the algorithms
solving the feasibility problem, the following tests are performed on a fixed complete sequence
of algorithms. (This sequence comprises the lower bound calculation, and a fixed subset of all
starting and improvement heuristics.) Furthermore, a special implementation has been used
which ensures that the linear programs used for solving the feasibility problem are independent
from other algorithms such as separation algorithms for metric inequalities.

The computational results are presented in Table 4.2 which has the following format. Col-
umn 1 (NAME) gives the name of the problem instance which also encodes the survivability
parameters. Columns 2 and 3 provide the selection of run-time parameters. In more detail,
column 2 (ORD) gives the applied strategy in which the operating states are ordered. The
considered alternatives are the adaptive reuse ordering ARO, the adaptive sequential ordering
ASO, and the default ordering DEF. Column 3 (INT) encodes the initial set of path variables
for the related linear programs. This initial set always contains a set of node-disjoint length-
restricted paths, ensuring a feasible routing using only these paths if sufficiently large capacities
are installed on the supply edges. NDB encodes that such a minimal set of paths is used, while
NDBTWO and NDBTHREE encode that all variables corresponding to paths up to length 2 and
3, respectively, are added to the initial linear programs. Five to seven columns with statistics
are following for each of the three survivability models. From left to right, these are a subset of
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the accumulated time to solve the feasibility problems (TIME), the number of linear programs
solved (LP), the accumulated number of operating states decided by one of the alternative cri-
teria described in the previous section (ALT), the number of rows in the final linear programs
(ROWS), the number of columns in the final linear programs (COLS), and the number of non-zero
coefficients in the final linear programs (COEFFS). For RESERVATION, there are two times the
columns COLS and COEFFS. The reason is that two independent linear programs are needed for
RESERVATION. One for the normal operating state (including path-length restrictions) and the
other for the failure states.

The main observation is the following: The running-times strongly depend on the initial-
ization of the linear programs used to solve the feasibility problems. In most cases, the times
for NDB are smaller than those for NDBTWO, which are themselves much smaller than those
of NDBTHREE. In fact, the times for NDBTHREE are orders of magnitudes worse than those of
the other two alternatives. Considering the pl instances, we observe that the times for NDB
are between 20 and 50 times smaller than those for NDBTHREE, and even worse, for PATH RE-
STORATION it is impossible to compute a single solution within 48 hours since the intermediate
linear programs are extremely difficult to solve. Summarizing, the column generation algorithm
is powerful enough to compute the missing columns. It pays to start with a small set of columns
and to let the algorithm decide which ones to add. This makes the difference between finding
a solution or not.

Closely related to the previous observations, the final linear programs are surprisingly small.
For NDB, the best initialization strategy, the number of path variables is approximately 1000
for DIVERSIFICATION, approximately 10000 for RESERVATION, and between 20000 and 250000
for PATH RESTORATION. according to Table 4.1, there are between 4 million and 5 billion path
variables for DIVERSIFICATION, and between 100 billion and 20000 billion path variables for
the survivability models RESERVATION and PATH RESTORATION. In other words, in some cases
fewer than 1076 percent of the path variables are needed.

In general, for fixed initialization of the linear programs, the running times are almost inde-
pendent from the order in which the operating states are considered. The number of successful
decisions due to alternative criteria only matters for the survivability RESERVATION. For this
case, we can observe from Table 4.2 that these are independent from both the initialization of
the linear programs and the order of operating states. Alternative criteria apply for the 11 and
ml instances for approximately 1/4 of the decisions, and for approximately 1/2 — 2/3 of the
decisions for the pl instances. Finally, we observe that the number of solved linear programs is
almost independent from the considered parammeters.

In the following, the operating states are solved in the order defined by ARO and the linear
programs are initialized with NDB.
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4.5 Separation algorithms

In Chapter 3, we presented polyhedra associated with different models for survivable capacitated
network design problems. For each polyhedron, we listed known and developed new classes
of valid or even facet-defining inequalities. In principle, all these inequalities are useful to
strengthen the linear programming relaxation, but it is necessary to devise for each individual
class of inequalities an algorithm which solves the separation problem (see Definition 4.2). In
this section, we describe our separation algorithms.

The classes of valid inequalities for the polyhedra X (G, H,FIN,-) and X (G, H,BAs,-) are
based on valid inequalities for the corresponding polyhedra Y (G, H,-). In Sections 3.2 and 3.3,
we derived valid inequalities for the knapsack-relaxations induced by a valid inequality py > d
for Y(G, H,-) (see Definitions 3.5 and 3.42). Let C(u,d) be such a class of valid inequalities
and define the class C to be the union of all classes C(u,d) of all inequalities py > d that
are valid for Y(G, H,-). In principle, we seek for a separation algorithm for such a class C
which simultaneously finds an inequality py > d and a violated inequality in C(y,d). However,
even for classes C(y,d) the separation problems are difficult and, in fact, some of them are
NP-complete. Therefore, we decided to use the approach sketched in Algorithm 3.

Algorithm 3 BASICSEPARATION
Require: pool of valid inequalities for Y (G, H, )
Require: separation algorithms for some classes C(y, d)
while separation algorithms are sufficiently successful do
for all inequalities yy > d in the pool and all separation algorithms do
apply separation algorithm for C(u, d)
update and solve the relaxation
end for
update the pool (add and delete)
end while

The basic version of the separation algorithm maintaing a pool of inequalities valid for
Y (G, H,-). These are inequalities which have proven to be useful at run-time. In addition to
the pool, a set of separation algorithms for some of the classes C(u,d) is given. The main loop
of the algorithm iterates in some order (to be made precise) over the inequalities in the pool
and these separation algorithms. The current separation algorithm is applied to the current
class C(u,d). Identified inequalities are added to the linear programming relaxation, if these
are violated by the current optimal solution. After each iteration of the main loop, the pool of
valid inequalities for Y(G, H,-) is updated. This means, inequalities for which the separation
algorithms were too often unsuccessful are removed, and new inequalities for the pool are
generated with a separation algorithm for metric inequalities. The algorithm terminates, if
the objective function value of the linear programming relaxation increased less than a certain
threshold during the last iteration of the main loop.

Apparently, the efficiency of Algorithm 3 is influenced by the selection of run-time param-
eters such as the applied separation algorithms, the number of violated inequalities added in
each iteration, the way the pool is updated, etc. We discuss the influence of these parameters in
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Section 4.5.4, where we describe our computational experiments. Beforehand, we present in Sec-
tions 4.5.1, 4.5.2, and 4.5.3 the separation algorithms for individual classes of valid inequalities
for Y(G,H,-), X(G,H,FIN,-), and X(G, H,BAS,-), respectively.

4.5.1 Inequalities for Y (G, H, )

We present separation algorithms for metric inequalities (2.22) (including its variations (3.1),
(3.2) and (3.3)), and for the subclass of k-graph-partition inequalities (2.23). Suppose that a
capacity vector g(e), e € E, is given.

Metric inequalities

In Section 4.4.2, we described an algorithm to solve the feasibility problem for a capacity vector
Y, and we already mentioned in Remark 4.5 that this algorithm serves as a separation algorithm
for metric inequalities as well. The metric inequalities (2.22) for the normal operating state,
and (3.2) for a failure state s € S\{0}, are special cases of the metric inequalities (3.1). Thus,
we first describe the separation algorithm for the latter class, and then the one for metric
inequalities (3.3).

Suppose that the algorithm to test feasibility of ¥ for the normal operating state including
the diversification constraints terminates with objective function value @ < 0. In this case,
7 is feasible, and no metric inequality (3.1) is violated due to Theorem 3.2. In the other
case, if @ > 0, the dual variables y,,e € E, 7, uv € D, v ww € D,w € V\{u,v}, and
Ve, uv € Dye € 6 (u) N dg(v) which are associated with the constraints (4.7) for s = 0, (4.8),
(4.10), and (4.11), respectively, satisfy

Z du'uﬂ'ufu - Z 5uvduv72v - Z 5uvduv7}fy - Zy(e)ﬂ'e > 0.

uveD e€dg(u)Ndg(v) weV\{u,v} eck

This follows immediately from linear programming duality (see Theorem 0.1). According to
Theorem 3.2, the dual variables define a violated metric inequality (3.1), if all dual variables
Tuws W0 € D, are the values of shortest uv-paths in G with at most £,, edges and with respect
to the supply edge weights

€ — — — —
Yo s U =V1,V =7Vg, OF U = V2,V =11,

We = +
¢ T {%(’YEH%Z%), else ,

for all e = v1v9 € E. This follows, since all dual constraints (4.25) and (4.26) are satisfied
by the dual variables.

The separation algorithm for metric inequalities (3.3) is based on similar arguments. The
capacity vector g is feasible for PATH RESTORATION, if the respective algorithm to test feasibil-
ity of 7 terminates with objective function value @ < 0. In this case, no metric inequality (3.3)
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is violated. The other case, @ > 0, is more complicated. Let p,,e € E, us,s € S\{0},e € E;,
Ty, W0 € D, w5 s € S\{0},uv € D; be the optimal dual variables associated with (4.14),
(4.15), (4.16), and (4.17), respectively. (We ignore possible diversification constraints here.) If
all dual constraints (4.28) and (4.29) are satisfied, then @ is optimal and the dual objective
function satisfies

Z Aoy Ty — Zy(e)ﬂe + Z Z Cuvtuv Ty — Z Z yle)ue > 0.

uveD eckl s€S\{0} wveD; scS eckE,

Thus, the dual objective function induces a violated metric inequality (3.3), since the dual
constraints (4.28) and (4.29) are exactly the conditions of Proposition 3.4. (Again, we ignore
possible diversification constraints.) The main difficulty is the verification that all dual con-
straints (4.29) are satisfied. Proposition 4.6 provides a sufficient condition for the dual variables
to satisfy constraints (4.29). Hence, if these conditions are satisfied the separation algorithm
terminates with a violated metric inequality (3.3). Otherwise, the algorithm fails to solve this
separation problem.

k-graph-partition inequalities

The class of k-graph-partition inequalities (2.23) is the most important subclass of metric
inequalities. In particular, if these are cut inequalities, that is, if K = 2. In principle, there
is no need for another separation algorithm for these subclasses since an exact one for metric
inequalities is known. There are, however, at least two arguments why one should be willing to
apply a different separation algorithm. First, a metric inequality is nasty in the sense that its
support is often almost the entire set of supply edges, and even worse, metric inequalities often
have “wild” coefficients which can cause numerical instabilities. Second, the above separation
algorithms are time-consuming in practice, since the feasibility problem for a capacity vector
must be solved as a subproblem.

We employ a heuristic separation algorithm (see Algorithm 4) for k-graph-partition inequal-
ities suggested by Dan Bienstock. The algorithm is based on two arguments. First, if the
number of nodes in the graph is small, e.g. less than 10, then the time to enumerate all k-
graph-partitions for some fixed small k is small as well, and therefore, it is practically possible
to apply complete enumeration as separation algorithm. Second, it is likely that supply edges
e € FE with large capacities F(e) are not in the support of violated k-graph-partition inequali-
ties. Thus, it is reasonable to shrink supply edges with large capacities and to enumerate all
k-graph-partitions afterwards.

Typically, we use the values k = 2,3 and p = 8,9,10. As supply edge weights w(e),e € E,
we consider the following alternatives:

w(e) := gyle), or w(e) := yle) — Z dyy

wveED:e€ Py,

where P,, is a shortest uv-path with respect to geographical distances for demand edge
uv € D. In the first step of Algorithm 4, the supply edges are sorted in decreasing order with
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Algorithm 4 k-GRAPHPARTITIONSEPARATION
Require: p,k e Nk >2,p>k
sort edges in decreasing order with respect to weights w(e),e € E.
set G = (V,E):=G=(V,E).
while [V| > p do
shrink end-nodes of the next edge with largest weight
end while
for all k-graph-partitions Vq,...,V; in G do
evaluate the corresponding k-graph-partition inequality (2.23) in G
end for

respect to these weights. If the weights of two different supply edges are equal, the geographical
distance between the end-nodes is the tie-breaker. Then, the end-nodes of supply edges with
the largest weights are identified, until the number of nodes in the resulting multi-graph (each
node represents a set of nodes and each edge the set of edges between the two sets of nodes)
is equal to p. Eventually, all k-graph-partitions in the final multi-graph are enumerated and
for each k-graph-partition the corresponding k-graph-partition inequality (2.23) is evaluated in
the original supply and demand graph.

4.5.2 Inequalities for X (G, H,FIN, -)

In this section, we present separation algorithms for classes of valid inequalities for the poly-
hedra X (G, H,FIN, ). In particular, for the classes of sirengthened-metric inequalities (3.6),
band inequalities (3.8), 2-band inequalities (3.9), 3-graph-partition band inequalities (3.10),
diversification-band inequalities (3.12), sirengthened band inequalities (3.13), and strengthened
2-band inequalities (3.15). Throughout this section, a (fractional) vector Z(e,t),e € E,1 =
1,...,Tg, is given.

Strengthened metric inequalities

The separation algorithm for strengthened metric inequalities (3.6) is completely determined
by the separation algorithms for metric and k-graph-partition inequalities presented in the
previous section. The first step attempts to separate g from Y (G, H,Nos), where F(e) :=

,fio ctx(e,t),e € E with a separation algorithm presented in the previous section. However,
with a small change of the output: the separation algorithm always returns a metric inequality.
If there is no violated metric inequality, the algorithm yields one with minimal slack. Eventually,

the associated strengthened metric inequality is evaluated for Z.

Band inequalities

In the separation algorithm for band inequalities (3.8), we assume a given valid inequality
Y eci Mey(e) = d for Y(G, H,Nos) with p, > 0 for all supply edges e € F' C E. This means,
the separation algorithm identifies only those band inequalities which are valid for a particular
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induced knapsack-relaxation (see page 65). The separation problem for band inequalities can
be formulated as a multiple-choice knapsack problem. A formulation as an integer program
with strict inequalities is the following:

Te
min ZZ Z(e, 1),

eckF t=1

Te
> uCoBL < d, (4.35)
eck t=1

Te

> go= 1, ecF, (4.36)

i=1
g € {0,1}, e€eF,1<t<T,.

This optimization problem is A"P-complete (see (Garey and Johnson, 1979)). Given a solu-
tion Bi, ee€ F,t=1,...,T, there is a unique breakpoint ¢, for each supply edge ¢ € F' with
Eie =1 and therefore we can define the corresponding band

BB) = {lete—1):e€ F,B* =1}.

The band inequality (3.8) for band B(f) is violated if and only if

Te
1> 3 Y we)Be = Y Fle(te=1)+1).

ecF t=1 ecl

Due to Proposition 3.15, maximal band inequalities are facet-defining for the induced knap-
sack-relaxation. Thus, the question arises whether the band B (B) corresponding to an optimal
solution Ei, e€ F,t=1,...,T, is maximal. In general, this is not true. For instance, if a
supply edge g € F with T(g,1,) = Z(g, ts+1) exists such that the weighted incremental capacity
,ugczg is smaller than the slack in inequality (4.35), that is, if ugczg + D eer pCleml < d, then

the band B(f) corresponding to the optimal solution /3 is not maximal.

We apply dynamic programming (see (Bellman and Dreyfus, 1962)) to solve the multiple-
choice knapsack problem. Assuming integer data, in a straightforward implementation (see
(Martello and Toth, 1990)), one would define an order F' = {e1,..., ¢/}, and then iteratively
calculate for ¢ = 1,...,|F| and ¢ = 0,...,d, the value f;(c) which is defined as the optimal
solution value of the multiple-choice knapsack problem defined above for the restricted edge
set {e1,...,e;} (instead of F') and right-hand side ¢ (instead of d) in (4.35). This value can
recursively be calculated through

file) == min{fi_1(c— pe,CLY) +T(esnt) it =1,...,Te,c > pe,CL'}

where fo(c) :=0, for c=0,...,d. Eventually, the optimal solution value of the multiple-choice
knapsack problem is fp| (d). In our case, this algorithm is very time consuming since it depends
on the value d, which is potentially a large value.
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Our implementation, which is sketched filc) A
in Algorithm 5, relies an the following ob-
servation. For fixed i € {1,...,|F|}, the
values fi(c), ¢ € Ry, define a staircase func- —
tion as illustrated in Figure 4.6. That is,
a finite set of break-even capacities exists

such that the Objective function value is S —— .
monotonically decreasing and constant be- Figure 4.6: Multiple-choice knapsack : Objective
tween two succeeding break-even capacities. fynction for fixed i € (1,....|F|}

Therefore, it suffices to calculate the break-
even capacities. The outer for-loop of Algorithm 5 iterates over the supply edges in some order,

say F' = {ey,... €| F|}, and in the two inner for-loops, the list of break-even capacities is main-
tained and updated. In the i—th iteration, for i = 1,...,|F|, the list of break-even capacities
T,

of the (i — 1)—th iteration is given. Together with the breakpoint capacities C’eoz., ..., Cg; " new
break-even capacities are calculated. A new break-even capacity is added to the current list, if
it is not dominated by an existing break-even capacity. It is not described in Algorithm 5, but
further data associated with break-even capacities must be maintained such that an optimal
solution can easily be constructed after the |F|—th iteration. As we noted above, the computed
band is not necessarily maximal. Hence, the band-breakpoints ., e € E, are increased until the
constructed band is maximal. Notice that the objective function value of the maximal band is

equal to fig|(d).

Algorithm 5 BANDSEPARATION
Require: ) . pey(e) > d and Z(e,t),e € Fit=1,...,T,
Define order F = {ey,...,e/r|}
fO(C) =0,ce Ry
for alli:=1,...,|F| do
for allt:=1,...,7T, do
for all break-even capacities ¢ do
if ¢+ pe, Ot < d and fi_1(a) > fi—1(c) + Z(es, t), for all @ with @ < ¢ + pe;CL!
then
add break-even capacity c + p., C’Ei_l, and remove all break-even capacities a with
a>c+pe,Crtand fi_i(a) > fimi(c) + (e, 1).
end if
end for
end for
end for
if f‘F‘(d) < 1 then

initialize band B(8) (corresponding to fr|(d))

construct maximal band above B(f)
end if
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2-band inequalities

Our heuristic separation algorithm for 2-band inequalities (3.9) is based on Algorithm 5. Given
a valid inequality D . p.y(e) > d for Y(G, H,Nos) as input, the application of Algorithm 5,
yields a band B = {(e,t.) : € € F}. For each e € F with t. > 0, the construction described
in the next paragraph is performed. If no such supply edge exists, that is, if £, = 0 for all
e € F, the separation algorithm fails to identify a violated 2-band inequality (3.9). Output of
the separation algorithm is the maximal violated among all constructed 2-band inequalities.

For g € F with t5 > 0, interpret B as {(g,17)} U{(e, ;) : e € F\{g}}, that is, ¢ := ¢, and
tl .= t, for all e € F\{g}. Now, for each breakpoint t; < tg and each supply edge h € F\{g},
let t% > t}ll be the maximal breakpoint of A with

2
Gy + > pCle < d.
ecF\{h}

If there is no such £ for a supply edge h € F\{g}, then no 2-band is constructed for this
choice of t;. Notice that ti is defined such that the validity requirements of Definition 3.16 are
satisfied and hence this choice of breakpoints defines a valid 2-band for (u, d).

3-graph-partition band inequalities

Suppose that a 3-graph-partition with shores Vi, V5, V3 is given as input of the separation algo-
rithm for 3-graph-partition band inequalities (3.10). The target of this algorithm is to construct
a valid P — band (see Definition 3.2.1 on page 72) such that the corresponding inequality (3.10)
is violated by Z. In the first step, Algorithm 5 is applied for each pair (V;,V;), 1 <1i < j <3,
of shores with inequality

> ue = Y dw
e€dg (Vi Vi) wwedy (Vi,V;)

and T restricted to the supply edges dq(V;, V;) between the two shores as input. Each of these
applications yields a (partial) band

Bi; = {(e,te) :e€déa(Vi,Vj)}.
Notice that each supply edge e € §g(V1, V2, V3) appears in exactly one of these partial
bands. Thus, the union B := By U By3 U Byz defines a P — band, which is by construction

valid. The remaining steps of the separation algorithm for 3-graph-partition band inequalities
(3.10) maximize this initial P — band.

Diversification-band inequalities

Suppose that a cut inequality y(e) > d with F := dg(W) for § ¢ W C V and d :=
eckH
Y e S5 (W) dyy is given as input of the separation algorithm for diversification-band inequalities
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(3.12). Furthermore, let § := (Zuuedg(w) 6m,duv> / (Zuv65g(W) duv> and assume 0 < § < 1.
For this setting, the target of this separation algorithm is to construct a diversification-band

B={(e,te):e € F, 0 <t, < T, s.t. Cle < éd},

such that the associated diversification-band inequality

Zx(e,te +1) > cov(B)

eck
is violated. Recall, cov(B) is the minimal number of edges e € F on which a capacity larger than
C’e is needed to satisfy the underlying cut inequality. For band inequalities, cov(B) = 1 always
holds, but, in general, cov(B) attains a value in {1,...,[1/d]}, since the maximum flow through
any supply edge is bounded from above by dd. In the main loop, this separation algorithm
iterates over the possible values of cov(B) and attempts to identify a violated diversification-
band inequality (3.12). As a subproblem, an adaption of the multiple-choice knapsack problem
is solved which can be formulated for fixed k = 1,...,[1/§] as the following integer program.

min Z Z Z(e, t) 3,

eEF =1 T.:Ct 1<sd

> > cilgl < d-(k-1)dd,

ecF =1 .. T.:.C! 1<sd

Z g =1, e€F,

t=1,.... T.:Ct~ < éd

IBt

m

{0,1}, c€F,1<I<T,.

This integer program is similar to the one formulated for the separation problem for band
inequalities. Just the right-hand side d in (4.35) is substituted by d—(k—1)dd and the admissible
breakpoints for a supply edge e € F' are restricted to those breakpoints ¢ € {1,...,T.} with
capacities C!=! < dd. Let B be an optimal solution of this integer program and denote by
B(B) := {(e,te —1) : e € F, Bie = 1} the associated diversification-band. (Note, B(f) is by
definition a diversification-band, since C’ < dd for all e € F'.) The right-hand side d — (k—1)dd
is chosen such that the residual band-demand satisfies r(B(3)) > (k — 1)dd, and thus

> zle(te—1)+1) > k

ecl

is a valid diversification-band inequality due to Lemma 3.31. This might be violated by Z, but
there are several opportunities to improve it. As we illustrated in Example 3.32 (see page 76),

cov(B(B)) > k might hold and thus cov(B(8)) needs to be computed to obtain the inequality

D zle, (te—1)+1) > cov(B(B)).

ecl

Due to Proposition 3.38, maximal diversification-bands (see Definition 3.36) are candidates
to induce facet-defining inequalities. Thus, band-breakpoints t.,e € F, are increased in the
next step, until a maximal diversification-band with respect to cov(B(8)) is constructed.
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Strengthened band inequalities

Let a cut inequality > .py(e) > d with F := dg(W) C S for some § ¢ W C V, and d =
ZU'UE5H(W) dyy be given as part of the input of the separation algorithm for strengthened band
inequalities (3.13). For every g € F, the inequality > cp 143 U(€) 2 D ypes, (w) Puvduv =: 7d s
valid for Y (G, H,RES), and by definition of (3.13), the target of this separation algorithm is a
band B = {(e,t.) : e € F'} such that, for every g € F, the (partial) band By := B\{(g,t4)} is
valid for (x"\19}, d), that is,

Z Cl < rd,

eef\{g}

for all ¢ € F. The separation algorithm proceeds as follows. First, a supply edge g € F is
selected such that Cg < CY for all e € F. Then, Algorithm 5 is applied to the edge set e €
F\{g}, the failure demand rd, and the vector Z. The result is a band By, = {(e,%c) : e € F\{g}}
which induces the valid strengthened band inequality

2, 1)+ Y, alete+1) > 2,
e€ F\{g}

since Cg < CY < Cl for all e € F. Again, the target is a maximal band and therefore a
maximal t4 € {0,...,Ty — 1} is chosen, such that the band B := By U {(g,t4)} remains valid.
This procedure is iteratively applied to all supply edges g € F' with Cg < CY for all e € F\{g}.

Strengthened 2-band inequalities

Let a cut inequality > .py(e) > rd with F := (W) C S for some § C W C V, and rd =
Zwe Sa (W) Puvlyy be given as part of the input of the separation algorithm for strengthened
2-band inequalities (3.15). The target of this algorithm is to construct a 2-band B = {(e, t,12) :
e€ F, 0 <tl <t <T,} satisfying

t2 12
Ca +C)+ Y. CF < nd,
e€F\{g,91,92}

for all g € F and all g1, g2 € F\{g} with g1 # g2, such that the corresponding inequality (3.15)
is violated by Z. In the first step, Algorithm 5 is applied to the cut inequality > . »y(e) > rd
and ZT. The resulting band B = {(e,t.) : e € F} is interpreted as partial 2-band. Two
supply edges g and h with strictly positive band breakpoints are chosen such that the difference
Z(e,t — 1) — ZT(e,t + 1) is minimal. With this choice, the band B is interpreted as partial 2-
band {(g,t3), (h, 1)} U{(e,ts) : e € F\{g,h}}, that is, 2 := t,, 1}, := t4, and #; := t. for all
e € F\{g,h}. Now, let r(B) be the residual band-demand, that is,

r(B) = rd—ZC’ée > 0.

eckl
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Given this interpretation of the band B and a choice of the lower breakpoints for g and A, the
next step of the algorithm attempts to identify breakpoints #2 for all supply edges e € F\{g,h}
such that

2 1
ey ey

((761 - (761

2 1
L= e

) +(Cei? = Cei?) < r(B) + min{Cl : e € F\{g,h}}

is satisfied for all e1,e9 € F', and
> T td)
e€F\{g,h}

is minimal. A greedy heuristic is applied for this purpose.

4.5.3 Inequalities for X (G, H,BAs, )

In this section, we present separation algorithms for classes of valid inequalities for the poly-
hedra X (G, H,BAs,-). In particular, for the classes of sirengthened melric inequalities (3.16),
knapsack-partilion inequalities (3.20), diversification-cutl inequalities (3.27), diversification-par-
tition inequalities (3.29), lifted diversification-cut inequalities (3.32), and strengthened knapsack-
partition inequalities (3.36). Throughout this section, a vector Z(e,7), e € E, 7 € T, is given.

Strengthened metric inequalities

The separation algorithm for strengthened metric inequalities (3.16) is almost identical to the
one presented for strengthened metric inequalities (3.6) in Section 4.5.2. Instead of (3.6),
inequality (3.16) is evaluated for Z.

Knapsack-partition inequalities

Suppose that a k-graph-partition Vi,...,V, is given as part of the input for the separation
algorithm for the class of knapsack-partition inequalities (3.20). The separation problem for
this class of inequalities reduces to finding a violated inequality (3.19) for

n
QR(M,d) := conv{z € Z" : Zcizi >d},
i=1

and Z, where

M = {e,...,cq} = {C™,...,C™},

d = > duw

uvEd g (Vl,...,Vk)

Zi = Z z(e,7),i=1,...,n.

e€dag(Vi,..., V)
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(Pochet and Wolsey, 1995) proposed an exact separation algorithm to solve the separation prob-
lem for the vector Z and the class of inequalities (3.19). We briefly summarize this algorithm,
but refer the reader to the original paper for details. The algorithm is based on decomposition
arguments and the following proposition. Let 7(d) := max{i : ¢; < d,1 <4 < n} be the maximal
index such that the capacity ¢; is less than or equal to d.

Proposition 4.8 If d/c, 4 €N, then Q(M,d) = {z € R} : Z:idl) cizi + dzyzr(d)_H zi > d}.

Thus, if d/ cr(d) € N, the separation problem reduces to the evaluation of the inequality

r(d) n
Z cz+d Z %
i=1 i=r(d)+1

for 7. In the other case, if d/c,(q) € N, and if
Z Z 2 1 ’
j:?"(d)-‘rl

then Z € Q(M, d). If both these arguments do not apply, then d/c,4) ¢ N and Z?:r(d)-i—l Zi < 1.
For this case, (Pochet and Wolsey, 1995) proved that z ¢ Q(M,d), if

r(d) n d
Z ciz; < 1- Z Z; [ J Cr(d) -
=1

j=r(d)+1 Cr(d)

Now, suppose that the separation problem cannot be solved with one of the preceding argu-

ments. Then, 377 17 < 1,d/c(g) ¢ N and EJ 1eizi > (1= 320 a1 Zi) 4/ er(ay en(a)-
In this case, the vector Z can be decomposed such that the separation problem can be reduced
to a smaller subproblem. Therefore, let Z be decomposed into

0,...,0,@y,Zys1,--.,2,) and (4.37)
= (517 ey Zy—1, 2y — Oy, 0, .. 7O7§r(d)+17 cee 7271) ’ (438)

o]
I

]

where

r(d) n d
v:=min{ k : Zcﬁi < |1- Z Zi { Jcr(d),lgkgn

C
j=kt1 j=r(d)+1 r(d)

and @, is chosen such that 377, ¢;@; = |d/cy(q)]cpq)- According to the following proposition it
then suffices to solve the separation problem for the “smaller” vector % and reduced right-hand
side.
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Algorithm 6 KNAPSACKPARTITIONSEPARATION
Require: {ci,...,c,},{Z1,-.-,Zn},and d € N
repeat
r(d) :== max{i: ¢; < d}
if d/c,(q) € N then

if Zizl C;Z; + dZi:r(d)—i—l Z; > d then
stop : 7 satisfies all inequalities (3.19)
else
stop : construct violated inequality
end if
else if > %, p41% > 1 then
stop : Z satisfies all inequalities (3.19)
else if Zg(:d% Cizi < (1 - Z;’L:r(d)-',-l EZ) Ld/cr(d)Jcr(d) then
stop : construct violated inequality
else
set v = min{k : 20 6% < (1= X041 Z)[d/ena) er(ayr 1 < b < )
set @, according to (4.37) such that Z;-LZI city; = |dfcrg)]era)
set Z:= (1, Zp—1,%0 — @, 0, ., 0, Zp(q)41,- - -, Zn)  (Z =7 of (4.38))
set d:=d — [d/cyq)]cra)
end if
until stop

Proposition 4.9 7 € Q(M,d — [d/cy )] cr(a)) if and only if 7 € Q(M, d).

Algorithm 6 summarizes the separation algorithm for inequalities (3.19).

Suppose that Algorithm 6 yields a partition {l1,...,751}, ..., {lts..., 7} of the index set of
{C™,...,C™} w.r.t. dsuch that the corresponding inequality (3.19) is violated. Let x1,..., K
be defined as in (3.18), and for i = 1,...,n, let p(i) be the partition index of technology 7;,
that is, i € {lp4),---,Jp()}- Then, the knapsack-partition inequality (3.20)

o p(i)—1
Zme{ )1 Tlp(z)}' H ks | z(e,m) > HE’
ecF i=1 s=1

is violated by 7.

Diversification-related inequalities

Suppose that a cut inequality > . y(e) > d, for W C V and F := dg(W), is given such that
the diversification parameter is less than one for some demand edges with end-nodes in two
different shores, that is,

8d == > Sl <Y duy=1d.

UUE5H(W) ’LL'UE(SH(W)
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For ¢ := d/dd, the target of the following separation algorithm is to identify a violated inequality
among all inequalities (3.27), (3.29), and (3.32). The separation algorithm for these classes of
inequalities requires the calculation of minimal diversification covers. For d € N, dd € Q,
C € N, k € N, the minimal diversification cover is calculated as follows. According to (3.26)
and Lemma 3.58, if [d/C = [1/§][6d/C] or dd/C € N, then

(d,5d,C, k) = [gw ,

and for C' > dd, it follows from Lemma 3.59 that

(d,5d,C, k) = H :

If none of the previous arguments can be applied, then d — k|dd/C| > 0, and Lemma 3.61
implies

e =o[8] [l 2] (o)

In the separation algorithm to identify violated inequality among all inequalities (3.27),
(3.29), and (3.32) the following steps are applied. In the first step, inequality (3.27) is evaluated.
Afterwards, for every k € {1,...,[1/6]} and every Fy C F with |Fy| = |F| — k, one inequality
(3.29) and one inequality (3.32) is evaluated. The inequality (3.29) is the result of Algorithm 6,
the separation algorithm for knapsack-partition inequalities (3.20), applied to

¢ = C"% i=1,...,n,
Zi = Deep, Z(6T), i=1,...,n, and
d = d-kid.

Eventually, setting Ly := (d — (k — 1)éd,dd,C™,|Fgx| + 1) — (d — kdd, dd,C™,|Fy]|), the
inequality (3.32) can be evaluated.

Strengthened knapsack-partition inequalities

Suppose that a k-graph-partition Vi,...,V; is given such that the reservation parameter is
greater than zero for some demand edges with end-nodes in different shores, that is,

Z Puvluy > 0.
u’UE(sH(Vl,...,Vk)

The separation algorithm for strengthened knapsack-partition inequalities (3.36) is based on
Algorithm 6, which is applied with

fp— T N
¢ = C" i=1,...,n,

Z; = Zee5g(V1,...,Vk)$(e7Ti)’ i=1,...,n, and

d = min{Zqu&H(th’Vk) puvduv - Zeedg(%,...,Vk)\{h} Cg th € 6(}'(‘/1, ey Vk)} .
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as input. As result of Algorithm 6, let {l1,...,71},...,{l,..., i} be a partition of the index
set of {C™,...,C™} w.r.t. d, let k1,..., K be defined as in (3.18), and for s = 1,...,n, let p(i)
the partition index of technology 7;, that is, i € {lp(i), e ,jp(i)}. If

o p(i)—1 F
szln{lﬁp Tty } H Ks 5(677—2’) |V|F,|| _| 1 H 55“ )

e€F 1=1 s=1

then a violated inequality (3.36) has been identified.

4.5.4 Computational tests

In the preceding sections, we presented separation algorithms for particular classes of inequali-
ties. Now, we focus on the problem how to combine these algorithms in order to compute a lower
bound with the cutting plane algorithm efficiently with respect to the following performance
measures:

e the walue of the final lower bound,
e the #ime needed to compute this lower bound, and

e the size of the final linear programming relaxation in terms of rows and coefficients.

As we sketched in Algorithm 3 (see page 122), the general strategy is to maintain a pool of
valid inequalities for Y(G, H,-) and to use them to identify valid inequalities for X(G, H,-,-),
which are violated by the current optimal solution of the linear programming relaxation. In each
iteration of this algorithm, the pool of valid inequalities for Y (G, H, -) is updated, and a sequence
of separation algorithms is applied for valid inequalities of the knapsack-relaxations induced
by the inequalities in the pool (see Definitions 3.5 and 3.42). At the end of each iteration,
inequalities are removed from the pool if a specified maximum number of separation algorithms
failed for the respective induced knapsack-relaxation, and identified violated inequalities are
added to the linear programming relaxation which is then reoptimized.

The influence of different run-time parameter selections on the mentioned performance mea-
sures is evaluated for the two main components of the cutting plane algorithm: the separation
algorithms for valid inequalities for Y (G, H, ), and the separation algorithms for valid inequal-
ities for X (@, H,-,-). We present results of computational experiments for combinations of the
capacity models DISCRETE CAPACITIES and DI1vISIBLE BASIC CAPACITIES, and the surviv-
ability models DIVERSIFICATION and RESERVATION. Additional experiments for PATH RESTO-
RATION are not necessary, since no inequalities other than those presented for RESERVATION
are known for the polyhedra X (G, H, F1§, PATH) and X (G, H, BAs, PATH). The tests are per-
formed for the problem instances m2, 12, and p2 with the survivability parameters 6 = 0.5 and
d = 0.75 for DIVERSIFICATION, and p = 0.5 and p = 1.0 for RESERVATION. The respective prob-
lem names associated with these parameters are m2d50, m2d75, 12d50, 12d75, p2d50, and p2d75
for DIVERSIFICATION, and m2r50, m2r100, 12r50, 12r100, p2r50, and p2r100 for RESERVATION.
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Run-time parameter for separation of metric inequalities

First, run-time parameters for separation algorithms related to classes of valid inequalities for
Y (G, H,) are examined. For metric inequalities (3.1) and (3.2) (the respective versions for
the survivability models DIVERSIFICATION and RESERVATION), we presented in Section 4.5.1
an exact separation algorithm based on the algorithm to test feasibility of a capacity vector,
and for k-graph-partition inequalities (2.23) we presented Algorithm 4, a heuristic separation
algorithm based on shrinking. Both algorithms are applied, the one for metric inequalities every
M iterations, and the one for k-graph-partition inequalities every P iterations. For both these
parameters, the values 0,5, and 10 are compared. The target number of nodes in the shrunken
supply and demand graphs within Algorithm 4 is set to 10 and k is set to 2. A generated k-
graph-partition inequality is added to the pool if its right-hand side is not more than 3 percent
larger than the left-hand side evaluated with the current capacity vector ¥ (which is obtained
from the current linear programming relaxation). The initial pool of valid inequalities for
Y (G, H,-) comprises all minimal cut inequalities with no more than two nodes in the smaller
shore, and all minimal 3-graph-partition inequalities with no more than two nodes in all but
the largest shore.

For classes of valid inequalities for X (G, H, -, ), the applied separation algorithms are listed
in Tables 4.3 and 4.4. The left and right column of Table 4.3 show the applied separation algo-
rithms for the survivability model DIVERSIFICATION in combination with the capacity models
D1sCRETE CAPACITIES and DIVISIBLE BAsic CAPACITIES, respectively.

| DISCRETE CAPACITIES | DivISIBLE BasIC CAPACITIES |
strengthened metric inequalities (3.6) strengthened metric inequalities (3.16)
diversification-band inequalities (3.12) diversification-cut inequalities (3.27) (3.32)
3-graph-partition band inequalities (3.10) knapsack-partition inequalities (3.20), (3.29)
2-band inequalities (3.9)

Table 4.3: DIVERSIFICATION: Applied separation algorithms for X (G, H, -, D1v)

Analogously, the left and right column of Table 4.4 show the applied separation algorithms
for the survivability model RESERVATION in combination with the capacity models DISCRETE
CAPACITIES and DIVISIBLE BASIC CAPACITIES, respectively.

| DISCRETE CAPACITIES | DivisIBLE BAsIC CAPACITIES |
strengthened metric inequalities (3.6) strengthened metric inequalities (3.16)
strengthened band inequalities (3.13) strengthened knapsack-partition inequali-
strengthened 2-band inequalities (3.15) ties (3.36)

Table 4.4: RESERVATION: Applied separation algorithms for X (G, H, -, RES)

These separation algorithms are applied in the order implicitly defined in the Tables 4.3 and
4.4 (from top to bottom). In this first test series, the number of possibly identified inequalities
in a single iteration is unbounded, and every identified violated inequality is added to the linear
programming relaxation. Furthermore, inequalities are never removed from the pool. The
cutting plane algorithm terminates, if no improvement in the lower bound calculation can be
obtained.
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Name M P DISCRETE CAPACITIES DiviSIBLE BASIC CAPACITIES
INIT | LOWER | TIME | ITER | ROWS | COEFFS INIT | LOWER, | TIME | ITER | ROWS | COEFFS
m2d50 5 5 36.84 | 102.27 39 92 780 16464 || 36.84 | 107.00 18 45 406 | 10733
5 0 36.84 | 101.71 48 | 121 715 17301 || 36.84 | 108.26 58 | 178 436 | 16829
5 | 10 || 36.84 | 102.04 33 82 761 15842 || 36.84 | 112.29 30 87 436 | 13442
0 5 36.84 93.43 3 18 644 9686 || 36.84 97.50 1 9 352 7901
0 0 36.84 86.95 1 13 604 8398 || 36.84 89.44 1 3 328 7010
0 | 10 || 36.84 93.63 4 29 672 9875 || 36.84 97.50 1 10 352 7901
10| 5 36.84 | 101.42 32 | 112 777 19024 || 36.84 | 111.09 33 | 100 429 | 13391
10| 0 36.84 | 101.71 52 | 131 719 17334 || 36.84 | 108.26 58 | 188 436 | 16829
10 | 10 || 36.84 | 102.33 48 | 144 788 21106 || 36.84 | 110.64 28 90 432 | 12935
m2d75 5 5 36.84 94.38 33 | 112 796 20273 || 36.84 | 100.23 13 55 371 9770
5 0 36.84 93.61 38 | 158 717 20643 || 36.84 99.24 18 94 372 | 11033
5 | 10 || 36.84 94.52 33 | 111 801 19756 || 36.84 | 100.72 16 61 384 | 10625
0 5 36.84 85.24 1 8 612 8746 || 36.84 94.32 1 10 338 7457
0 0 36.84 83.06 1 10 600 8301 || 36.84 88.74 1 3 320 6818
0 [ 10 ]| 36.84 89.27 5 30 689 10380 || 36.84 94.32 1 11 338 7457
10| 5 36.84 94.45 34 | 137 816 22621 || 36.84 | 101.31 14 55 380 9770
10| 0 36.84 93.61 39 | 174 725 20731 || 36.84 99.24 18 99 372 | 11033
10 | 10 || 36.84 94.46 32 | 119 752 18526 || 36.84 | 100.23 13 58 371 9770
12d50 5 38.55 | 123.46 | 12:57 | 496 | 1663 | 114149 || 38.73 | 133.52 | 11:01 | 313 | 1095 | 52288
5 0 38.55 | 122.11 | 18:41 | 470 | 1553 98739 || 38.73 | 128.79 | 10:18 | 207 968 | 35167
5 | 10 || 38.55 | 124.12 | 11:40 | 295 | 1573 67882 || 38.73 | 131.34 5:12 | 141 997 | 31951
0 5 38.55 | 101.78 11 20 | 1277 16678 || 38.73 | 105.15 7 11 867 | 18304
0 0 38.55 97.09 5 11 | 1243 15371 || 38.73 99.65 3 3 842 | 17128
0 | 10 || 38.55 | 100.80 11 22 | 1280 17039 || 38.73 | 105.15 7 13 867 | 18304
10| 5 38.55 | 123.60 | 13:35 | 542 | 1625 | 109432 || 38.73 | 131.95 9:56 | 225 | 1030 | 38014
10| 0 38.55 | 121.21 | 13:45 | 386 | 1487 75571 || 38.73 | 128.79 | 10:10 | 219 968 | 35167
10 | 10 || 38.55 | 122.46 9:47 | 337 | 1509 71532 || 38.73 | 133.52 | 11:40 | 331 | 1095 | 52288
12d75 5 38.55 | 107.44 8:50 | 303 [ 1484 63544 || 38.73 | 121.46 4:53 | 249 | 1021 | 43486
5 0 38.55 | 104.81 | 10:55 | 407 | 1473 84883 || 38.73 | 118.14 5:49 | 254 975 | 40300
5 | 10 || 38.55 | 105.93 9:54 | 341 | 1463 69474 || 38.73 | 120.73 5:33 | 247 | 1011 | 40891
0 5 38.55 89.06 8 16 | 1226 15571 || 38.73 | 107.13 7 9 852 | 17899
0 0 38.55 86.34 4 9 | 1195 14661 || 38.73 99.22 3 3 824 | 16654
0 | 10 || 38.55 89.07 7 14 | 1224 15608 || 38.73 | 107.13 7 10 852 | 17899
10| 5 38.55 | 106.43 7:07 | 368 | 1511 77978 || 38.73 | 122.02 5:35 | 297 | 1044 | 47401
10| 0 38.55 | 104.40 7:35 | 284 | 1399 56123 || 38.73 | 118.14 5:41 | 268 975 | 40300
10 | 10 || 38.55 | 105.63 6:40 | 237 | 1411 46207 || 38.73 | 121.46 4:55 | 263 | 1021 | 43486
p2d50 5 5 38.70 | 105.65 49 50 | 1329 27532 (| 38.70 | 112.95 7 7 522 | 17312
5 0 38.70 | 100.24 14 19 | 1200 20889 [| 38.70 | 103.85 2 3 499 | 15854
5 | 10 || 38.70 | 104.08 1:15 78 | 1283 29715 || 38.70 | 112.95 7 7 522 | 17312
0 5 38.70 95.83 8 17 | 1178 20477 || 38.70 | 112.48 3 5 519 | 17081
0 0 38.70 94.71 5 13 | 1155 19638 || 38.70 | 103.85 1 2 498 | 15818
0 | 10 || 38.70 95.67 9 22 ] 1180 20751 || 38.70 | 112.48 3 5 519 | 17081
10| 5 38.70 | 101.77 22 31 | 1252 22776 || 38.70 | 112.95 7 7 522 | 17312
10] 0 38.70 | 101.45 15 25 | 1196 20666 || 38.70 | 103.85 2 3 499 | 15854
10 | 10 || 38.70 | 104.30 39 48 | 1269 25049 || 38.70 | 112.95 7 7 522 | 17312
p2d75 5 5 38.70 96.81 19 26 | 1217 22881 || 38.70 | 108.47 7 10 503 | 16229
5 0 38.70 94.40 10 14 | 1156 19895 || 38.70 | 103.11 2 4 482 | 14879
5 | 10 || 38.70 96.12 17 26 | 1212 22600 || 38.70 | 108.47 7 10 503 | 16229
0 5 38.70 90.87 6 12 | 1156 20164 || 38.70 | 107.04 3 6 499 | 15959
0 0 38.70 90.00 4 9 | 1140 19466 || 38.70 | 103.11 1 3 481 | 14843
0 | 10 || 38.70 91.12 7 16 | 1170 21131 || 38.70 | 107.04 3 7 499 | 15959
10 5 38.70 97.92 25 30 | 1236 24212 || 38.70 | 108.47 7 11 503 | 16229
10] 0 38.70 95.72 29 48 | 1209 25134 (| 38.70 [ 103.11 2 4 482 [ 14879
10 | 10 || 38.70 96.05 20 26 | 1188 21873 || 38.70 | 108.47 7 11 503 | 16229

Table 4.5: DIVERSIFICATION: Separation algorithms for Y(G, H, -)
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Name M P DISCRETE CAPACITIES DiviSIBLE BASIC CAPACITIES
INIT | LOWER | TIME | ITER | ROWS | COEFFS INIT | LOWER, | TIME | ITER | ROWS | COEFFS
m2r50 5 5 36.84 92.56 7 15 630 9119 || 36.84 86.39 4 71 304 6383
5 0 36.84 86.88 3 9 592 8240 || 36.84 80.63 2 3| 295 6074
5 | 10 || 36.84 91.61 9 20 629 9269 || 36.84 86.39 4 7 [ 304 6383
0 5 36.84 92.56 5 15 630 9119 || 36.84 86.39 1 71 303 6374
0 0 36.84 86.88 2 8 592 8240 || 36.84 80.63 1 2| 294 6065
0 | 10 || 36.84 91.61 6 20 629 9269 || 36.84 86.39 1 71 303 6374
10 [ 5 36.84 92.56 7 15 630 9119 || 36.84 86.39 4 71 304 6383
10 0 36.84 86.88 3 9 592 8240 || 36.84 80.63 2 3| 295 6074
10 | 10 || 36.84 91.61 8 20 629 9269 || 36.84 86.39 4 7 [ 304 6383
m2r100 5 5 36.84 | 127.42 44 40 924 | 15545 || 36.84 | 133.22 27 30 | 432 | 10160
5 0 36.84 | 127.19 34 34 860 | 14609 || 36.84 | 132.69 24 32 | 437 | 10250
5 10 36.84 | 127.16 43 38 904 | 15940 || 36.84 | 133.22 27 30 | 432 | 10160
0 5 36.84 | 106.40 31 32 836 | 11911 || 36.84 87.49 1 71 304 6374
0 0 36.84 | 103.16 10 13 755 | 10113 || 36.84 81.59 1 2| 297 6134
0 | 10 || 36.84 | 106.40 28 31 847 | 11862 || 36.84 87.49 1 7 [ 304 6374
10 [ 5 36.84 | 127.90 1:04 51 995 | 16606 || 36.84 | 133.22 27 32 | 432 | 10160
10 0 36.84 | 126.92 44 48 908 | 15505 || 36.84 | 132.69 25 34 | 437 | 10250
10 | 10 36.84 | 127.36 53 48 941 | 16081 36.84 | 133.22 27 32 | 432 | 10160
12r50 5 5 38.55 99.38 27 10 | 1222 | 15187 || 38.73 89.56 36 7 712 | 12616
5 0 38.55 98.04 25 9 | 1216 | 15076 || 38.73 92.03 46 8§ | 713 | 12535
5 | 10 [[ 38.55 | 100.57 1:06 19 | 1237 | 15837 || 38.73 89.56 36 7 712 | 12616
0 5 38.55 99.55 17 15 | 1240 | 15801 || 38.73 82.83 2 5 699 | 12481
0 0 38.55 96.55 12 11 | 1234 | 15319 || 38.73 81.84 1 2| 697 | 12388
0 | 10 [] 38.55 | 100.05 21 19 | 1259 | 16631 || 38.73 82.83 2 5| 699 | 12481
10 [ 5 38.55 99.99 48 15 | 1241 | 15754 || 38.73 89.56 37 7 712 | 12616
10 0 38.55 98.04 28 12 | 1234 | 15327 || 38.73 92.03 47 9| 713 | 12535
10 | 10 || 38.55 | 102.33 51 18 | 1268 | 16898 || 38.73 89.56 36 7| 712 | 12616
12r100 5 5 38.55 | 145.33 6:13 60 | 1685 | 32696 || 38.73 | 148.77 | 7:47 52 | 935 | 22984
5 0 38.55 | 144.92 5:23 54 | 1625 | 33200 || 38.73 | 147.18 | 6:05 46 | 915 | 21967
5 | 10 || 38.55 | 145.32 5:29 52 | 1636 | 31683 || 38.73 | 150.44 | 6:23 48 | 930 | 22453
0 5 38.55 | 119.65 30 13 | 1377 | 18187 || 38.73 82.83 2 5| 699 | 12481
0 0 38.55 | 119.18 40 16 | 1378 | 17685 || 38.73 81.84 1 2| 697 | 12388
0 10 38.55 | 120.22 1:05 21 | 1419 | 18417 || 38.73 82.83 2 5 | 699 | 12481
10 [ 5 38.55 | 145.78 7:08 71 | 1713 | 32194 || 38.73 | 149.54 | 7:43 54 | 926 | 22936
10 0 38.55 | 144.97 6:50 62 | 1662 | 34257 || 38.73 | 147.18 | 6:06 49 | 915 | 21967
10 | 10 || 38.55 | 145.58 6:54 66 | 1673 | 31968 || 38.73 | 148.77 | 7:52 55 | 935 | 22984
p2r50 5 5 38.70 95.22 39 17 [ 1116 [ 19345 || 38.70 96.67 19 10 [ 472 | 13898
5 0 38.70 94.10 20 10 | 1091 | 18499 || 38.70 94.02 16 10 | 462 | 13472
5 | 10 || 38.70 94.11 26 11 | 1095 [ 18771 || 38.70 96.67 19 10 | 472 | 13898
0 5 38.70 95.21 29 17 | 1113 | 19294 || 38.70 93.98 2 5 | 451 | 13544
0 0 38.70 94.10 13 9 | 1090 | 18487 || 38.70 91.01 1 2 | 445 | 13148
0 | 10 || 38.70 94.99 22 14 | 1108 [ 18918 || 38.70 93.98 1 5 | 451 | 13544
10 [ 5 38.70 95.21 41 18 | 1113 | 19294 || 38.70 96.67 20 11 | 472 | 13898
10 0 38.70 94.10 20 10 | 1090 [ 18487 || 38.70 94.02 16 11 | 462 | 13472
10 | 10 || 38.70 94.99 33 14 | 1108 [ 18918 || 38.70 96.67 19 11 | 472 | 13898
p2r100 5 5 38.70 | 129.19 8:23 77 | 1701 | 52981 || 38.70 | 133.83 | 2:34 49 | 690 | 30071
5 0 38.70 | 129.09 7:42 85 | 1707 | 61078 || 38.70 | 131.82 | 2:27 43 | 654 | 25457
5 | 10 || 38.70 | 128.55 7:31 78 | 1693 | 58276 || 38.70 | 133.83 | 2:35 49 | 690 | 30071
0 5 38.70 | 107.92 2:16 20 | 1369 | 24463 || 38.70 96.56 3 10 | 474 | 14933
0 0 38.70 | 107.63 3:19 22 | 1402 | 24402 || 38.70 91.43 1 2 | 450 | 13340
0 | 10 [] 38.70 | 107.93 2:11 20 | 1386 | 24389 || 38.70 96.56 3 11 | 474 | 14933
10 5 38.70 | 128.64 | 10:33 95 | 1804 [ 59871 || 38.70 | 133.83 | 2:34 52 | 690 | 30071
10 0 38.70 | 128.85 7:58 79 [ 1753 [ 57495 || 38.70 | 131.82 | 2:29 45 | 654 | 25457
10 | 10 || 38.70 [ 129.05 8:21 88 | 1766 | 60334 || 38.70 | 133.83 | 2:35 52 | 690 | 30071

Table 4.6: RESERVATION: Separation algorithms for Y(G, H, )
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The computational results are presented in Tables 4.5 and 4.6. Both tables have the following
format. Column 1 (NAME) gives the name of the problem which also encodes the survivability
parameters. The next two columns provide run-time parameters. The number in the second and
third column specify after how many iterations the separation algorithm for metric inequalities
(M) and k-graph-partition inequalities (P) is applied. Six columns with statistics are following
for each of the two capacity models. From left to right, these columns give the scaled? value
of the initial (INIT) and the final lower bound (LOWER), the time to compute this lower bound
(TIME), the number of iterations (ITER), the number of rows in the final linear programming
relaxation (ROWS), and the number of non-zero coefficients in this relaxation (COEFFS).

The main observation is the following: Without application of the separation algorithm for
metric inequalities (M = 0), the lower bound is 10 — 20 percent smaller than in the other cases
(M =5,10). The influence of the separation algorithm for k-graph-partition inequalities is of
minor importance. For all problem instances, the value of the lower bound is larger for P > 0,
but the improvement is only about 1 percent. Interestingly, the lower bound obtained with the
initial pool of k-graph-partition inequalities (M = 0, P = 0) is often close to the lower bound
obtained using the separation algorithm for k-graph-partition inequalities only (M = 0, P > 0).
This indicates that the initial pool is well-chosen.

Large improvements of the initial lower bound can be observed. In all cases shown in Tables
4.5 and 4.6, the final lower bound is more than 250 percent larger than the initial lower bound.
Since the initial linear programming relaxation contains only normal operating state constraints,
it is not surprising that the improvements for the § = 0.5 and p = 1.0 instances are larger than
those of the corresponding § = 0.75 and p = 0.5 instances. The running times are small; 1 — 10
minutes are needed to compute the best lower bounds. For each problem instance and for
M > 0, the times are almost identical. As expected, this indicates that most time is spent in
the separation algorithm for metric inequalities. The other values, the number of iterations and
the number of rows and coefficients of the final linear programming relaxation, are smaller if
M =0, but for M > 0 all these values are in the same range.

The following parameter setting is the consequence of these tests: in all subsequent compu-
tations, the separation algorithm for metric inequalities is applied every 5 iteration for DIVERSI-
FICATION, and every 10 iterations for RESERVATION (and PATH RESTORATION). Furthermore,
the separation algorithm for k-graph-partition inequalities is applied every 10 iterations (inde-
pendent from the survivability model).

General run-time parameters for separation

The second test series aims at the influence of more general run-time parameters. The separation
algorithms for valid inequalities for Y (G, H,-) are again applied in the order that is implicitly
defined in Tables 4.3 and 4.4 (from top to bottom). In this test series, the number of possibly
identified violated inequalities in a single iteration attains the values 10 and 50. An identified
violated inequality is only added to the linear programming relaxation, if the violation is larger
than a specified minimum percentage of its right-hand side. The values 1 percent and 0.1
percent are compared. The cutting plane algorithm terminates, if the improvement of the lower

2All lower bounds and solution values are scaled to comply with disclosure agreements.
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bound in a single iteration is smaller than a specified percentage, which attains the values 0.1
percent and 0.5 percent.

The results of this test series are presented in Tables 4.7 and 4.8, which have a format similar
to that of Tables 4.5 and 4.6. In contrast to the latter tables, columns 2 and 3 are replaced by
three new columns. These show the maximum number of violated inequalities added in a single
iteration (vI10), the required minimum percentage violation of added inequalities (SLACK), and
the required minimum percentage of the lower bound improvement in a single iteration (IMP).

The main observations are the following: The running times to compute a lower bound for
the optimal solution value can be further decreased by appropriate parameter settings. For
DIVERSIFICATION, all lower bounds are calculated in less than 1 minute, and for RESERVATION
in less than 3 minutes in all instances but 12r100, where almost 8 minutes are needed. ITmportant
to note is that the quality of the computed lower bounds is the same as presented for in Tables 4.5
and 4.6. The lower bounds are in some cases larger and in some cases smaller than the previous
ones. Comparing the lower bounds in dependence of the capacity model, we observe that the
lower bounds for DIVISIBLE BAsic CAPACITIES tend to be better than those for DISCRETE
CaracITIES. This is interesting since there are more possible capacity choices for DIVISIBLE
Basic CAPACITIES. This indicates that the (mixed-integer rounding) inequalities for DIVISIBLE
Basic CAPACITIES are practically more successful than the (knapsack-cover) inequalities for
DISCRETE CAPACITIES.

The influence of the number of inequalities added in one iteration is small. The same holds
for the minimal slack such that an inequality is considered violated. The minimum required
improvement of the lower bound in a single iteration has the largest influence on the quality of
the computed lower bound. The cutting plane algorithm terminates too fast, if the respective
parameter is set to 0.5 percent. The other values, the number of iterations and the number
of rows and coefficients of the final linear programming relaxation, are independent from these
run-time parameters.

The following parameter setting is the consequence of these tests: in all subsequent com-
putations, the cutting plane algorithm terminates if the improvement in a single iteration is
less than 0.1 percent, an identified violated inequality is only added to the linear programming
relaxation, if the violation is larger than 0.1 percent, and a maximum of 10 inequalities is added
in each iteration.
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DISCRETE CAPACITIES DiviSIBLE Basic CAPACITIES
YAME VIO | StAcK [ e INIT LOWER, | TIME | ITER | ROWS | COEFFS INIT LOWER, | TIME | ITER | ROWS | COEFFS
m2d50 || 50 | 0.10 | 0.5 || 36.84 | 100.03 10| 16| 746 [ 120568 [ 36.84 | 103.57 5| 14| 370 | 8687
50 [ 0.10 | 0.1 || 36.84 | 100.86 18| 32| 760 [ 13165 || 36.84 | 109.60 | 13| 30| 404 | 10283
50 | 1.00 | 0.5 || 36.84 | 100.11 11| 18| 722 | 11537 || 36.84 | 103.57 5| 14| 370 | 8687
50 [ 1.00 | 0.1 || 36.84 | 102.21 21 33| 77113823 || 36.84 | 109.60 [ 14 | 30| 404 [ 10283
10 | 0.10 [ 0.5 || 36.84 | 98.42 9] 34| 760 (11018 [ 36.84 | 110.18 71 25| 376 | 8915
10 | 0.10 [ 0.1 || 36.84 | 99.88 17 | 44| 806 [ 12456 [ 36.84 | 111.06 9] 28| 382 | 9284
10 | 1.00 [ 0.5 || 36.84 | 98.73 9| 27| 696 | 10113 || 36.84 | 102.82 5| 19| 360 | 8246
10 | 1.00 | 0.1 || 36.84 | 101.62 22 44| 809 | 12983 || 36.84 | 106.64 | 11| 32| 382 9263
m2d75 || 50 | 0.10 | 0.5 |] 36.84 [ 92.46 8| 14| 738 [ 12087 [ 36.84 | 96.42 3 9] 341 [ 7643
50 [ 0.10 | 0.1 || 36.84 | 93.56 10 ] 23| 770 [ 12979 [ 36.84 | 99.16 71 24| 359 | 8675
50 [ 1.00 | 0.5 || 36.84 | 92.69 6| 13| 71512024 || 36.84 | 96.42 3 9] 340 7622
50 [ 1.00 | 0.1 || 36.84 | 93.61 10| 21| 759 (13226 [[ 36.84 | 99.16 7| 24| 358 [ 8654
10 | 0.10 [ 0.5 |[ 36.84 | 91.36 71 24| 662] 10258 || 36.84 | 97.97 41 16| 328 | 7121
10 | 0.10 | 0.1 || 36.84 | 94.44 16 | 42| 756 | 12846 (| 36.84 | 97.97 41 16| 328 7121
10 | 1.00 [ 0.5 || 36.84 | 93.64 14 34| 766 [ 12685 [[ 36.84 | 98.38 5] 19| 337 | 7598
10 | 1.00 [ 0.1 |[ 36.84 | 94.19 17| 48| 766 [ 13370 || 36.84 | 100.43 9| 34| 355 | 8447
12d50 50 [ 0.10 | 0.5 || 38.55 | 116.49 44 | 19| 1333 | 19408 || 38.73 | 122.60 [ 23 | 16 | 868 [ 18595
50 [ 0.10 | 0.1 [] 38.55 [ 115.83 | 1:16 | 29 | 1348 | 21313 [ 38.73 | 122.67 | 25| 18| 869 | 18661
50 | 1.00 | 0.5 || 38.55 | 113.29 36| 17| 1317 | 18852 || 38.73 [ 122.60 | 21 | 16| 872 | 18676
50 [ 1.00 | 0.1 || 38.55 [ 118.38 | 1:38 | 31 | 1356 | 21336 || 38.73 | 122.67 | 25| 18| 873 | 18742
10 | 0.10 | 0.5 || 38.55 | 111.53 33 | 38| 1368 | 17406 || 38.73 | 125.07 | 28 | 30 | 873 [ 19345
10 | 0.10 | 0.1 || 38.55 [ 117.11 | 1:27 | 56 | 1398 | 19231 || 38.73 | 125.22 31| 32| 884 | 19864
10 | 1.00 | 0.5 || 38.55 | 120.22 59 | 49| 1428 | 20054 || 38.73 | 122.41 30| 30| 881 [ 19804
10 | 1.00 | 0.1 || 38.55 [ 119.32 | 1:21 | 56 | 1434 | 21251 || 38.73 | 123.63 25| 30| 872 [ 19012
12d75 50 [ 0.10 | 0.5 || 38.55 | 97.10 18| 13| 1294 [ 17005 [ 38.73 | 1156.83 | 19| 15| 840 | 17497
50 [ 0.10 | 0.1 || 38.55 | 105.42 | 1:15 | 45| 1368 | 22573 [ 38.73 | 117.37 | 38| 29| 856 | 18688
50 [ 1.00 | 0.5 || 38.55 | 97.08 17| 13| 1274 | 16622 || 38.73 | 115.83 20 15| 841 [ 17491
50 [ 1.00 | 0.1 || 38.55 | 103.14 47 | 31 ] 1305 | 18240 || 38.73 [ 117.37 [ 39| 29| 857 [ 18685
10 | 0.10 | 0.5 || 38.55 | 100.26 36| 33| 1315 | 17456 || 38.73 | 115.86 [ 20 | 29| 844 [ 17599
10 | 0.10 | 0.1 || 38.55 | 100.00 38| 39|1320| 17334 || 38.73 | 116.39 | 26 | 33 | 847 [ 17695
10 | 1.00 [ 0.5 || 38.55 | 97.98 32| 291286 | 16830 || 38.73 | 115.64 | 22| 29| 851 [ 18052
10 | 1.00 [ 0.1 || 38.55 | 104.75 | 1:18 | 56 | 1370 | 21210 || 38.73 [ 116.69 [ 29| 32| 853 [ 18172
p2d50 50 [ 0.10 | 0.5 || 38.70 | 100.88 22| 16| 1240 | 22720 || 38.70 | 109.76 7 7| 512 ] 16601
50 [ 0.10 | 0.1 || 38.70 | 101.07 28 | 25| 1256 | 23424 || 38.70 [ 111.88 | 15| 17| 527 [ 17522
50 [ 1.00 | 0.5 || 38.70 | 101.23 20 | 14 ] 1209 | 21551 || 38.70 | 109.76 7 7| 512 ] 16601
50 | 1.00 | 0.1 || 38.70 | 101.01 22| 18] 1233 | 22849 || 38.70 | 111.88 14 [ 17| 527 | 17522
10 | 0.10 | 0.5 || 38.70 | 103.20 39| 54| 1373 | 24116 || 38.70 | 111.22 15 22| 525 | 17240
10 | 0.10 | 0.1 || 38.70 | 105.70 53| 71| 1420 | 28707 || 38.70 | 111.22 | 16| 22| 525 | 17240
10 | 1.00 [ 0.5 || 38.70 | 93.19 16 | 30 [ 1121 | 18527 || 38.70 | 106.59 | 11| 17 [ 502 | 15965
10 | 1.00 [ 0.1 |[ 38.70 | 104.94 43| 59| 1331 | 25278 || 38.70 | 106.59 | 11| 17| 502 | 15965
p2d75 50 [ 0.10 | 0.5 || 38.70 | 94.84 13| 12| 1229 [ 22867 || 38.70 | 109.47 7 8] 506 [ 16106
50 [ 0.10 | 0.1 || 38.70 | 94.95 14| 15| 1223 | 21562 [ 38.70 | 110.71 9] 12| 508 | 16343
50 [ 1.00 | 0.5 || 38.70 | 94.91 14| 14| 1210 | 21232 || 38.70 | 109.47 7 8| 506 [ 16106
50 [ 1.00 | 0.1 || 38.70 | 94.91 13| 14| 1210 | 21232 || 38.70 | 110.71 9] 12| 508 | 16343
10 | 0.10 [ 0.5 || 38.70 | 90.26 16 | 30| 1119 | 18082 [ 38.70 | 107.97 | 10| 19| 496 | 15434
10 | 0.10 [ 0.1 || 38.70 | 97.30 31| 53] 1283 | 24309 || 38.70 | 109.25 [ 12| 24 | 499 [ 15617
10 | 1.00 [ 0.5 || 38.70 | 84.76 9] 16| 978 | 15869 || 38.70 | 110.37 | 14| 23| 507 | 16214
10 | 1.00 [ 0.1 || 38.70 | 96.00 31| 50| 1293 | 22590 || 38.70 | 110.37 | 15| 24| 507 [ 16214

Table 4.7: DIVERSIFICATION: Influence of separation run-time parameters
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DISCRETE CAPACITIES DiviSIBLE Basi¢ CAPACITIES
AME VIO | StAcK [ e INIT LOWER, | TIME | ITER | ROWS | COEFFS INIT LOWER | TIME | ITER | ROWS | COEFFS
m2r50 50 [ 0.10 | 0.5 || 36.84 | 92.36 71 13| 637 9089 [ 36.84 | 86.39 4 8| 300 [ 6257
50 [ 0.10 | 0.1 || 36.84 | 93.55 91 17| 652 | 9560 || 36.84 | 86.39 41 10| 300 | 6257
50 [ 1.00 | 0.5 || 36.84 | 92.49 71 13| 632 9122 || 36.84 | 86.39 4 8] 300 | 6257
50 [ 1.00 | 0.1 || 36.84 | 93.50 91 17| 640 | 9360 || 36.84 | 86.39 5| 10| 300 | 6257
10 | 0.10 [ 0.5 || 36.84 | 91.64 10| 22| 638 | 8594 || 36.84 [ 88.47 3| 12| 287 [ 5708
10 | 0.10 | 0.1 [{ 36.84 | 91.91 9] 24| 648 | 8523 |] 36.84 | 88.47 41 14| 287 | 5708
10 | 1.00 | 0.5 || 36.84 | 92.90 10| 24| 642 | 8691 || 36.84 [ 86.85 41 11| 286 | 5714
10 | 1.00 | 0.1 [ 36.84 | 91.62 8| 24| 646 | 8654 || 36.84 | 86.85 41 11| 286 | 5714

m2r100 [[ 50 | 0.10 [ 0.5 [ 36.84 | 121.65 16 | 17| 870 | 13787 || 36.84 | 130.13 14| 20| 406 [ 9599
50 | 0.10 | 0.1 [ 36.84 | 126.93 26 | 27| 916 [ 15555 [ 36.84 | 133.19 25 | 28 | 427 | 10367
50 | 1.00 | 0.5 || 36.84 | 126.51 25| 26| 906 | 15474 || 36.84 | 130.13 15 ] 20| 406 [ 9599
50 | 1.00 | 0.1 || 36.84 | 126.85 29| 30| 912 [ 15786 || 36.84 | 133.19 24 | 28 | 427 | 10367
10 | 0.10 | 0.5 || 36.84 | 126.74 32| 50| 924 | 16141 [{ 36.84 | 132.10 22 29| 377 | 8585
10 [ 0.10 | 0.1 || 36.84 | 127.52 38| 60| 963 [ 16601 [ 36.84 | 131.14 23| 28| 381 | 8723
10 | 1.00 | 0.5 || 36.84 | 127.19 33| 50| 897 (14699 ([ 36.84 | 132.58 26 | 34 [ 409 | 9722
10 | 1.00 | 0.1 || 36.84 | 127.23 35| 52| 911 [ 14785 || 36.84 | 133.03 25| 34| 406 | 9968

12r50 50 | 0.10 | 0.5 [ 38.55 | 97.84 43 [ 11 [ 1248 | 15865 || 38.73 | 94.40 55 | 12| 773 | 14719
50 | 0.10 [ 0.1 [ 38.55 | 102.11 | 1:06 | 18 | 1277 | 17052 || 38.73 [ 96.28 | 1:20 | 15| 774 | 14740
50 [ 1.00 | 0.5 [ 38.55 [ 100.33 43 [ 11 [ 1248 | 16119 || 38.73 | 93.64 44 8| 770 ) 14578
50 | 1.00 | 0.1 [{ 38.55 | 100.40 46 [ 14 [ 1253 | 16157 || 38.73 | 93.64 51| 10| 770 | 14578
10 | 0.10 | 0.5 || 38.55 | 99.78 [ 1:30 [ 30 [ 1289 | 16684 || 38.73 | 97.55 | 1:01 | 15| 745 [ 13858
10 | 0.10 | 0.1 || 38.55 | 101.26 | 1:30 [ 34 | 1311 [ 17049 || 38.73 | 97.55 58 | 15| 745 | 13858
10 | 1.00 | 0.5 || 38.55 | 91.62 [ 1:03 [ 16| 1156 [ 14973 || 38.73 | 98.87 55| 15[ 757 | 14131
10 [ 1.00 ) 0.1 || 38.55 | 100.36 | 1:34 [ 31 [ 1287 | 16236 || 38.73 | 98.87 | 1:17 | 18 | 757 [ 14131

12r100 50 | 0.10 | 0.5 || 38.55 | 137.99 | 1:19 | 18 | 1544 | 22817 || 38.73 | 131.76 | 1:36 | 21 | 872 | 19582
50 | 0.10 | 0.1 || 38.55 | 141.88 | 2:14 | 27 | 1628 | 26879 || 38.73 [ 150.20 | 7:58 | 57 | 1054 | 27790
50 [ 1.00 ] 0.5 [[ 38.55 | 137.53 | 1:19 | 18 | 1517 | 22589 || 38.73 | 131.93 | 1:40 | 23| 876 [ 20281
50 | 1.00 [ 0.1 [[ 38.55 | 145.08 | 4:22 | 43 | 1652 | 31669 || 38.73 [ 134.66 | 2:27 | 28 [ 906 | 21745
10 | 0.10 | 0.5 || 38.55 | 144.58 [ 5:50 [ 85 [ 1815 | 34917 || 38.73 | 148.99 | 6:03 | 58 [ 1012 | 25957
10 | 0.10 | 0.1 || 38.55 | 144.88 [ 6:42 [ 91 | 1835 [ 36686 [[ 38.73 | 149.53 | 7:09 | 60 [ 1002 | 256315
10 | 1.00 | 0.5 || 38.55 | 125.87 [ 2:33 [ 52 [ 1533 | 26601 || 38.73 | 149.64 | 6:30 | 52 | 975 [ 23740
10 [ 1.00 | 0.1 || 38.55 | 145.34 | 6:59 [ 92 [ 1868 | 38104 || 38.73 | 149.70 | 6:36 | 54 | 985 [ 23761

p2r50 50 | 0.10 | 0.5 [[ 38.70 | 95.63 29 | 111121 [ 19540 [{ 38.70 | 97.39 22| 10| 465 | 13880
50 | 0.10 | 0.1 [{ 38.70 | 95.76 31| 131130 [ 19864 [ 38.70 | 100.17 31| 19| 481 ] 15143
50 | 1.00 | 0.5 [[ 38.70 | 95.34 27| 11| 1111 [ 19117 [ 38.70 | 97.39 22| 10| 465 | 13880
50 | 1.00 | 0.1 [[ 38.70 | 94.76 28 | 1211109 [ 19125 ([ 38.70 | 100.17 33| 19 [ 48115143
10 [ 0.10 | 0.5 || 38.70 | 92.62 38 | 32| 1141 [ 18481 [{ 38.70 | 94.09 16 | 11| 439 [ 12212
10 [ 0.10 | 0.1 || 38.70 | 97.39 49 [ 42 [ 1185 | 20745 || 38.70 | 94.09 16 | 11| 439 [ 12212
10 | 1.00 | 0.5 || 38.70 | 88.43 27| 211028 [ 16593 [ 38.70 | 94.09 16 | 11| 439 [ 12179
10 | 1.00 | 0.1 || 38.70 | 95.70 39| 36| 1146 [ 19255 [ 38.70 | 94.09 16 | 11| 439 [ 12179

p2r100 50 | 0.10 [ 0.5 [[ 38.70 | 121.11 | 1:01 | 15| 1425 | 29356 || 38.70 | 123.71 30 | 16 | 548 | 19487
50 | 0.10 [ 0.1 [{ 38.70 | 124.71 | 1:38 | 28 | 1562 | 40385 || 38.70 [ 134.66 | 2:26 | 40 [ 666 | 26951
50 | 1.00 [ 0.5 | 38.70 | 121.02 | 1:12 | 15| 1413 | 28841 || 38.70 | 123.71 30 | 16| 547 | 19352
50 | 1.00 | 0.1 | 38.70 | 124.45 | 2:01 | 30 | 1545 | 38467 || 38.70 | 134.62 | 3:34 | 49 | 659 | 26651
10 [ 0.10 | 0.5 || 38.70 | 113.22 [ 1:36 [ 53 [ 1346 | 32437 [| 38.70 | 132.59 | 2:28 | 44 | 627 [ 24800
10 [ 0.10 | 0.1 || 38.70 | 128.31 [ 4:15 [ 103 [ 1788 | 56310 || 38.70 | 133.33 | 2:39 | 47 | 637 [ 25334
10 | 1.00 | 0.5 || 38.70 | 113.10 [ 1:43 [ 53 [ 1351 | 32644 || 38.70 | 131.73 | 2:33 | 47 | 643 [ 25931
10 | 1.00 | 0.1 || 38.70 | 128.49 [ 3:49 [ 94 [ 1625 | 50127 || 38.70 | 134.42 | 3:17 | 58 | 660 [ 26996

Table 4.8: RESERVATION: Influence of separation run-time parameters
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4.6 Heuristics

With todays computing power and mathematical methodology, it is impossible to solve real-
world problem instances for the survivable capacitated network design problems described in
Chapter 2 to proven optimality. Hence, it is necessary to develop heuristic algorithms to
compute feasible solutions. Almost all heuristics described in this section depend on the cutting
plane algorithm, since the value of the (fractional) capacity variables is exploited to guide run-
time decisions. It is out of scope to guarantee optimality of the best solutions computed, but
as good news, the employed cutting plane algorithm terminates with a lower bound for the
optimal solution value, implying that a quality guarantee can be provided.

We do not devise any randomized heuristic algorithms, like simulated annealing, genetic
algorithms, tabu search, etc., since the application of such algorithms is most successful if not
much about structural properties of the underlying problem is known. The theory developed
in Chapter 3, however, particularly focuses on the structure of survivable capacitated network
design problem. By itself, this is not a sufficient reason to neglect this type of randomized
heuristics, but, as a further difficulty for the network design problems under consideration,
it is time consuming to test feasibility of capacity vectors, see Section 4.4. This is a serious
drawback, since these randomized heuristics can only provide good solutions if it is possible to
search large neighborhoods of solutions in short time.

We proceed now as follows. First, the starting heuristics used to calculate initial feasible
solutions are presented in Section 4.6.1. The subsequent Section 4.6.2, contains the description
of improvement heuristics, which obtain as input a feasible solution and modify this solution,
until it is locally optimal with respect to a given neighborhood. Finally, results of computational
experiments are reported in Section 4.6.3.

4.6.1 Starting heuristics

We implemented one class of starting heuristics, the so-called branch&cut path heuristics. These
heuristics depend the linear programming relaxation and the separation algorithms. In fact,
these heuristics are based on the ideas of a branch&cut algorithm. A heuristic of this class
follows a. specific path in the branch&bound tree and applies at each node of the tree a cutting
plane algorithm. In contrast to a branch&cut algorithm, the heuristic does not examine alter-
native subtrees. A general description of the branch&cut path heuristic is given in Algorithm 7.

In every iteration, (fractional) capacity variables T are given as the solution of the current
linear programming relaxation. According to some criterion, a supply edge e € E with at least
one fractional capacity variable Z(e,t) is selected. Here, the interpretation of ¢ depends on
the capacity model. Either t € {1,...,T,} for DISCRETE CAPACITIES, or t € T for DIVISIBLE
BAsic CAPACITIES. Then, an integer lower bound [(e, ) € N for at least one capacity variable of
edge e is determined such that the current solution 7 is no longer valid, that is, Z(e,t) < I(e, t).
These lower bounds for the integer capacity variables are then set in the current relaxation
Ip. At the end of each iteration, separation algorithms are used to identify valid inequalities
for X(G, H,-,-) which are violated by the current Z. However, in order to reduce the overall
running time of these starting heuristics, not all separation algorithms are used in this step.
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Algorithm 7 BRANCHANDCUTPATHHEURISTIC

Require: capacity variables T as solution of the current relaxation Ip

while T not integer do
choose supply edge e € E with fractional capacity variable
choose lower bounds for the capacity variables of e
set the bounds of these variables in the relaxation Ip accordingly
run the cutting plane algorithm and update =

end while

compute capacities § from T (according to (2.4) or (2.7))

if 7 not feasible then
postprocessing

end if

Eventually, all capacity variables T are integer. If the associated capacity vector 7, which is
calculated from equation (2.4) or (2.7), is feasible, the heuristic terminates. However, the final
integer solution may not be feasible, since the identified violated inequalities do not necessarily
suffice to describe the respective polyhedron Y (G, H,-). This may happen, for instance, if
no separation algorithm for metric inequalities is used during the cutting plane algorithm, or
if PATH RESTORATION is the survivability model. To overcome the problem of an infeasible
solution at the end of these starting heuristics, a postprocessing algorithm is utilized to compute
a feasible solution from the final integer, but infeasible, solution.

In what follows, we describe the selection criteria for the supply edges with fractional capacity
variables, and the different strategies to set integer lower bounds for the capacity variables of
the chosen edge. We present these criteria separately for the two capacity models, and describe
afterwards the postprocessing and the results of computational experiments.

DISCRETE CAPACITIES

Suppose that capacity variables Z(e,t), e € E, t = 1,...,Te, as the solution of the current
relaxation are given, and let y(e), e € E, be the corresponding capacity vector. Furthermore,
let F' be the subset of supply edges with at least one fractional capacity variable, that is,

F = {eeFE:Fte{l,...,T.} with 0 <Z(e,t) < 1}.
The selection criteria for a supply edge from F' are the following:

MAXFRAC Choose a supply edge with the largest fractional variable, that is, (¢,7) € T(F)
such that

z = z :0<Z 1} .
HeT) = (S FE 0 <) <1

MaxSUMFRAC Choose a supply edge with the largest sum of fractional variables, that is,
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¢ € I such that

> Z(e,t) = max > Z(e, 1)

t=1,...,T.F(e,t) <1 i=1,..., T F(e,t) <1

MINCAP Choose a supply edge with fractional variable such that the additional capacity
needed to make y(e) a breakpoint capacity is minimal, that is, (¢,7) € T(F) such that

CT —7(e) = (etI)IéIJI} {Ct—7(e): CL >7(e)} .

MiNCosT Choose a supply edge with fractional variable such that the additional cost incurred
from increasing to the respective capacity is minimal, that is, (¢,7) € T(F) such that

Te T,
imr N . ; e
_ ; kz(e,i) = (e,tI)IéITn(F) {Ke - ;kex(e,z) (> y(e)} )

MINRELCOST Choose a supply edge with fractional variable such that the additional cost
relative to the additional capacity is minimal, that is, (¢,7) € T(F') such that

Zkz /(CI=7(0) =  min {Kt Zkl ] )):Cé>y<e)}-

MinINcCosT Choose a supply edge with fractional variable such that the additional incre-
mental cost is minimal, that is, (¢,7) € T(F') such that

(1 _5(677))k;r = (e,tI)IéiTn(F) {(1 _E(evt))k}; 0< E(evt) < 1} '

MINRELCAP Choose a supply edge with fractional variable such that the incremental capac-
ity for the smallest breakpoint capacity greater than or equal to y(e) relative to this
breakpoint capacity is minimal, that is, (¢,7) € T(F) such that

(7 -TE)/CL = min {(CL=(0)/CL: CL>T(e) > O}

Suppose that the supply edge e € E is decided. Then, the integer lower bounds for the
capacity variables of e must be chosen such that the current solution  does not satisfy these
bounds. This is done according to one of the following two strategies.

GREEDY Set z(e,1) = 1 for the largest breakpoint ¢ € {1,...,T.} with CL < 7(e). If the
current solution already satisfies Z(e,t) = 1, then set z(e,t + 1) = 1.

CONSERVATIVE Set z(e,t) = 1 for the smallest breakpoint ¢ € {1,...,T.} with z(e,t) < 1.
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Di1vISIBLE BASIC CAPACITIES

Suppose that capacity variables Z(e, 7), e € E, 7 € T, as the solution of the current relaxation
are given, and let F(e), e € E, be the corresponding capacity vector. Again, a supply edge with
fractional capacity variable is selected in the first step, and afterwards integer lower bounds are
decided according to two strategies. In the following, [7(e)] denotes the smallest valid capacity
larger than g(e) for every supply edge e € E, that is,

[7(e)] = min {Z C™mf(e,7): m(e,7) € Z4 for 7 € T} .

T€T

Furthermore, (e, 7) denotes for every e € E and every 7 € T this number of multiples of
capacity C7 combined into the ceiling capacity [g(e)], that is, [F(e)] = >, cq C"m(e, ) for
every e € FE. Finally, let ¥ be again the subset of supply edges with at least one fractional
capacity variable, that is,

F = {e€eFE:37eTwithz(e,7) ¢ Z4} .

MAXFRAC Choose a supply edge with the largest fractional variable, that is, (¢,7) € T(F)
such that

Z(e,T) = I:lea}({f(e,T) T €T, T(e,7) ¢ Zy} .

MINCAP Choose the fractional variable such that the additional capacity needed to make 7(e)
a valid capacity is minimal, that is, ¢ € E such that

[5(e)] —7(e) = min{[y(e)] —Fle):e € F}.

MiNCosT Choose a supply edge with fractional variable such that the additional cost incurred
from increasing to the ceiling capacity is minimal, that is, ¢ € F such that

> K7 (m(e,7) —~T(e,7)) = min { > K7 (mle, ) —T(e, T))} .

ecl
T7€T T7€T

MINRELCOST Choose a supply edge with fractional variable such that additional cost incurred
from increasing to the ceiling capacity relative to the additional capacity is minimal, that
is, € € E such that

> Ki(mle,r) ~%(e,7)) / ([5(e)] —H(€) =

T€ET

ecl

min{ZKeT(m(e,T) — (e, 7)) / ([9(e)] —?(6))} :
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Suppose the supply edge e € F' is decided. Then, integer lower bounds for the capacity
variables of e must be determined such that the current solution Z does not satisfy these
bounds. This is done according to one of the following two strategies.

GREEDY Set the integer lower bounds for z(e,7), 7 € T, according to the multipliers of the
ceiling capacity [g(e)], that is, z(e,7) > m(e, 1), for all 7 € T.

CONSERVATIVE Set the integer lower bound for the maximal 7 € T (w.r.t. its capacity C7)
with strictly positive multiplier m(e, 7) Z(e, T) > m(e, 7).

Postprocessing

If the capacity vector 3§ that corresponds to the final integer capacity vector T is not feasi-
ble, a postprocessing step is necessary in order to find a feasible integer capacity vector. We
distinguish between two different versions. One for the survivability models DIVERSIFICATION
and RESERVATION, and the other for PATH RESTORATION.

It is known from Theorem 3.2 and Proposition 3.3 that the metric inequalities (3.1) and (3.2)
suffice to describe the polyhedra Y(G, H,D1v) and Y (G, H,RES) for the survivability models
DIVERSIFICATION and RESERVATION, respectively. Furthermore, the separation algorithm for
these classes is exact, that is, whenever there exists a violated metric inequality, the algorithm
identifies one. Thus, the heuristic eventually yields an integer feasible solution, if this separation
algorithm is added to those applied in the cutting plane algorithm.

If PATH RESTORATION is the chosen survivability model, the postprocessing proceeds as
before in the sense that the separation algorithms for metric inequalities (2.22) and (3.2) are
added to those applied in the cutting plane algorithm. Again, the heuristic might end up
with an integer, but infeasible solution Z. In this case, the postprocessing makes also use of
separation algorithms for inequalities that are “almost” metric inequalities. As described before,
the feasibility test serves as separation algorithm for the different versions of metric inequalities.
For the survivability models DIVERSIFICATION and RESERVATION this separation algorithm is
exact since the column generation procedure always identifies missing path variables. For PATH
RESTORATION, the column generation might fail to identify such variables.

Suppose that the path variables in the linear program of the feasibility test are fixed and
no column generation is applied to identify missing path variables. For the capacity vector
that corresponds to the current integer capacity variables Z, it does not exist a feasible routing
using only paths that correspond to variables in the linear program. (Otherwise, we would have
stated that 7 and thus Z is feasible.) Therefore, the optimal objective function value of this
linear program is strictly greater than zero, and the dual variables define an inequality (3.3)
that is violated by 3. If no path variable is missing (and this fact could just not be proven),
this inequality is also a valid inequality. The postprocessing of a branch&cut path heuristic
for PATH RESTORATION ignores that some of these variables might be missing and that the
inequality is not necessarily a valid metric inequality. The inequality (3.3) defined by the dual
variables is constructed, and then the corresponding strengthened metric inequality (3.6) or
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(3.16) is added to the current relaxation. This way, the integral solution Z is cut off. Tterating
these steps, the postprocessing eventually yields an integer feasible solution.

Computational tests

We report in this section on computational experiments with different parameter selections for
the branch&cut path heuristics. As performance measures,

s the value of the computed solution, and

e the time to execute the heuristic

are used. For both capacity models, the tests are performed on the problem instances m3,
13, and p3 with the survivability parameters § = 0.5 and ¢ = 0.75 for DIVERSIFICATION, and
p = 0.5 and p = 1.0 for RESERVATION and PATH RESTORATION. The respective problem
names associated with these parameters are m3d50, m3d75, 13d50, 13d75, p3d50, and p3d75 for
DIVERSIFICATION, and m3r50, m3r100, 13r50, 13r100, p3r50, and p3r100, for RESERVATION and
PATH RESTORATION.

Every k iterations, the cutting plane algorithm is partially executed. The parameter M,
which determines after how many iterations the time-consuming separation algorithm for metric
inequalities is executed, is increased to 10. (Recall, this parameter has been set to 5 for the
lower bound calculation.) Furthermore, only a restricted number of iterations of the cutting
plane algorithm is performed. Other separation algorithms for valid inequalities of X (G, H, -, )
are used with the default parameter settings defined at the end of Section 4.5.4.

The computational results are presented in Tables 4.9 and 4.10 in the following format.
Column 1 (NAME) gives the name of the problem which also encodes the survivability parame-
ters. Columns 2 and 3 provide the selection of run-time parameters. In more detail, column 2
(EDGE) gives the applied strategy to select the next edge for which some of the fractional ca-
pacity variables will be fixed. Column 3 (FIX) provides whether the fixing strategy is GREEDY
or CONSERVATIVE. For each of the three survivability models are three columns with statistics
following. From left to right, these columns give the running time of the starting heuristic
(TIME), the scaled? value of the computed solution (VAL), and the number of iterations (ITER).

From Tables 4.9 and 4.10 can be seen that the cost of the starting solutions depends on
the applied criterion to select the supply edge, but not on the strategy to fix integer capacity
variables of the chosen supply edge. The winning strategies to select the next supply edge
are MAXFRAC, MAXSUMFRAC, and MINCAP for DISCRETE CAPACITIES, and MINCAP and
MINCosT for DIVISIBLE BASIic CAPACITIES. The values of the starting solutions obtained with
these criteria are in 2/3 of all test instances at most 5 percent worse than the best starting
solution.

Finally, we observe that the running times and the number of iterations needed to compute
the starting solution are independent from both the criterion to select the supply edge and the
strategy to fix variables.

3All lower bounds and solution values are scaled to comply with disclosure agreements.
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B | DIVERSIFICATION 11 RESERVATION 11 PATH RESTORATION |
| NAME || EDGE FIX [ vaL | TiME_ | 1TER || VAL [ TIME | ITER || VAL | TIME__| ITER
m3 d50/r50 MAXFRAC GREEDY 226 53 58 193 45 39 219 12:50 40
MAXSUMFRAC GREEDY 234 1:05 54 82 37 40 203 20:22 40
MINCAP GREEDY 226 48 40 92 22 31 209 13:13 28
MINCOST GREEDY 239 58 40 95 17 32 223 9:19 36
MINRELCOST GREEDY 296 56 38 212 23 2 218 8:47 0
MININCCOST GREEDY 256 1:09 55 204 34 4 222 10:03 44
MINRELCAP GREEDY 235 59 34 96 2 2 204 15:12 27
MaxFrac CONSERVATIVE 222 1:09 51 94 34 43 215 30:1 44
MAXSUMFRAC CONSERVATIVE 14 56 50 88 27 43 216 26:0 43
MINCAP CONSERVATIVE 232 :15 53 36 30 43 00 8:35 43
MINCOST CONSERVATIVE 238 :15 54 96 21 47 215 15:39 46
MINRELCOST CONSERVATIVE 272 :18 59 204 23 45 241 6:29 46
MININCCOST CONSERVATIVE 232 120 58 190 29 46 223 31:25 45
MINRELCAP CONSERVATIVE 238 :03 54 200 26 41 215 10:57 44
m3 d75/r100 MAXFRAC GREEDY 216 30 49 253 1:44 42 267 10:26 42
MAXSUMFRAC GREEDY 203 3 47 253 1:1 44 262 16:55 44
MINCAP GREEDY 213 22 4 269 4 29 280 42 31
MINCOST GREEDY 222 3 43 272 3 35 281 24:00 36
MINRELCOST GREEDY 285 35 41 267 4 29 318 44:17 5
MININCCOST GREEDY 229 41 3 266 1:00 49 275 21:35 49
MINRELCAP GREEDY 207 34 36 264 38 [ 265 20:24 24
MAXFRAC CONSERVATIVE 223 38 54 258 47 39 204 1:14:00 49
MAXSUMFRAC CONSERVATIVE 201 39 44 252 49 43 285 1:47:12 46
MINCAP CONSERVATIVE 205 36 51 268 1:00 45 275 32:12 45
MINCOST CONSERVATIVE 223 48 55 276 52 52 300 1:00:17 4
MINRELCOST CONSERVATIVE 259 53 59 265 48 48 275 12:12 46
MININCCOST CONSERVATIVE 231 51 60 260 50 51 282 1:08:12 55
MINRELCAP CONSERVATIVE 215 38 49 247 34 39 267 17:40 39
13 d50/r50 MAXFRAC GREEDY 219 :04 60 203 59 52 215 3:4 52
MAXSUMFRAC GREEDY 222 :0: 60 205 1:01 57 218 :34 57
MINCAP GREEDY 230 :05 50 211 4 47 3:5 44
MINCOST GREEDY 14 56 53 222 54 47 239 4:12 50
MINRELCOST GREEDY 254 103 222 :07 37 231 5:53 3
MININCCOST GREEDY 224 122 63 214 :25 7 242 0:05 62
MINRELCAP GREEDY 232 :15 54 214 :24 45 217 6:32 42
MaxFrac CONSERVATIVE 23 :27 61 20 :17 52 220 4:16 52
MAXSUMFRAC CONSERVATIVE 232 12 64 204 :27 55 221 0:32 58
MINCAP CONSERVATIVE 222 :26 64 0 :39 5 219 4:36 52
MINCOST CONSERVATIVE 234 :28 63 22 :39 64 235 7:31 60
MINRELCOST CONSERVATIVE 257 :42 62 22 14 4 226 25:56 44
MININCCOST CONSERVATIVE 236 :44 67 218 41 59 236 17:5 59
MINRELCAP CONSERVATIVE 239 :42 64 211 42 49 223 11:58 49
13 d75/r100 MaxFraC GREEDY 202 44 60 237 4:35 65 251 12:31 65
MAXSUMFRAC GREEDY 202 3 61 29 3:01 64 246 7:05 64
MINCAP GREEDY 203 37 57 243 2:56 59 260 107 56
MINCOST GREEDY 204 47 60 245 2:27 62 259 7:18 57
MINRELCOST GREEDY 218 40 4 256 : 46 284 21:29 5
MININCCOST GREEDY 207 1:02 67 234 3: 72 247 27:54 7
MINRELCAP GREEDY 215 47 5 251 2: 53 27 33:44 53
MAXFRAC CONSERVATIVE 20 47 62 234 2: 65 244 4:10 65
MAXSUMFRAC CONSERVATIVE 18 42 58 233 2: 64 24 5:55 65
MINCAP CONSERVATIVE 20 53 65 239 2: 68 25 6:21 73
MINCOST CONSERVATIVE 198 5 62 250 2: 74 254 4:14 73
MINRELCOST CONSERVATIVE 205 47 54 271 2: 70 283 :17 69
MININCCOST CONSERVATIVE 204 1:0 66 233 2: 72 248 35:50 72
MINRELCAP CONSERVATIVE 200 53 60 243 2: 65 262 32:29 67
p3 d50/r50 MAXFRAC GREEDY 194 1:28 67 165 2: 54 181 2:57 54
MAXSUMFRAC GREEDY 232 :56 80 61 : 53 Vi :33 53
MINCAP GREEDY 207 145 69 66 :18 46 87 20 50
MINCOST GREEDY 209 152 67 T2 :20 52 86 :26 52
MINRELCOST GREEDY 223 :26 0 92 41 40 06 5 37
MININCCOST GREEDY 213 2:19 0 (4] 1:32 6 86 1:2 61
MINRELCAP GREEDY 200 1:12 1 5 51 3 o1 5 39
MAXFRAC CONSERVATIVE 206 1:55 7l 5 46 5 83 13 52
MAXSUMFRAC CONSERVATIVE 212 2:21 74 63 125 53 7 21 53
MINCAP CONSERVATIVE 220 2:25 79 69 22 59 84 :05 59
MINCOST CONSERVATIVE 194 2:23 70 66 :05 59 8 :12 59
MINRELCOST CONSERVATIVE 214 1:50 7 92 45 54 92 :35 5
MININCCOST CONSERVATIVE 209 2:32 80 70 1:09 6 86 127 6
MINRELCAP CONSERVATIVE 211 1:55 71 85 1:05 5 201 :27 5
p3 d75/r100 MAXFRAC GREEDY 188 57 63 198 4:57 65 209 142 65
MAXSUMFRAC GREEDY 88 52 64 198 3:34 66 208 4:40 66
MINCAP GREEDY 4 50 58 205 2:50 58 222 :12 60
MINCOST GREEDY 8 5 59 211 :16 58 222 :15 61
MINRELCOST GREEDY 213 4 4 233 23 57 289 47:54 59
MININCCOST GREEDY 200 1:1 76 212 4:3 79 288 1:31:43 89
MINRELCAP GREEDY 203 54 56 204 3:1 51 234 28:18 54
MaxFrac CONSERVATIVE 207 :03 67 203 3:43 67 4 14:38 64
MAXSUMFRAC CONSERVATIVE 184 :06 63 212 4:06 70 20 25:22 64
MINCAP CONSERVATIVE 200 :10 72 20 3:14 74 220 11:30 7
MINCOST CONSERVATIVE 184 :11 67 210 3:42 76 281 2:06:24
MINRELCOST CONSERVATIVE 203 :04 62 245 3:24 78 259 58:15 7
MININCCOST CONSERVATIVE 197 :19 74 221 4:13 82 242 59:31 0
MINRELCAP CONSERVATIVE 192 58 64 216 4:06 70 248 50:41 76

Table 4.9: DISCRETE CAPACITIES: Computational results for branch&cut path heuristics
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| | DIVERSIFICATION || RESERVATION || PAaTH RESTORATION |
NAME EDGE FIX [ e | var | rmer || e | var | mmer [ Tive ] VAL | ITER
m3 d50/r50 MAXFRAC CONSERVATIVE 283 21 26 201 31 15 210 10:14 15
MINCAP CONSERVATIVE 230 23 21 196 23 15 235 54:21 27
MINCOST CONSERVATIVE 243 28 35 195 52 27 238 1:24:25 33
MINRELCOST CONSERVATIVE 307 39 30 209 28 28 213 19:52 25
MAXFRAC GREEDY 265 31 24 203 29 14 228 36:10 20
MINCAP GREEDY 243 25 23 189 31 19 230 1:35:29 20
MINCOST GREEDY 239 35 31 196 28 26 209 29:07 26
MINRELCOST GREEDY 252 54 24 207 34 27 285 1:34:45 38
m3 d75/r100 MaXFRAC CONSERVATIVE 212 17 27 267 58 18 285 6:34 21
MINCAP CONSERVATIVE 211 11 21 266 27 10 285 10:56 13
MINCOST CONSERVATIVE 226 15 27 262 25 12 284 43:29 19
MINRELCOST CONSERVATIVE 243 23 26 263 29 10 262 21:28 13
MAXFRAC GREEDY 212 28 26 273 42 20 276 12:13 19
MINCAP GREEDY 214 19 24 264 35 9 275 17:44 20
MINCOST GREEDY 218 21 26 265 39 20 270 49:50 11
MINRELCOST GREEDY 239 28 35 270 42 19 269 44:54 11
13 d50/r50 MAXFRAC CONSERVATIVE 309 46 42 222 3:39 31 226 6:00 31
MINCAP CONSERVATIVE 231 45 31 223 2:51 36 230 10:50 35
MINCOST CONSERVATIVE 257 1:00 43 226 5:00 38 243 8:53 39
MINRELCOST CONSERVATIVE 272 1:40 46 252 4:35 45 266 14:08 43
MAXFRAC GREEDY 286 1:13 39 220 3:13 33 231 14:31 34
MINCAP GREEDY 259 1:18 36 232 4:35 37 227 16:05 33
MINCOST GREEDY 246 1:12 36 225 3:04 38 225 18:06 36
MINRELCOST GREEDY 276 2:01 45 247 3:08 43 234 14:11 38
13 d75/r100 MAXFRAC CONSERVATIVE 279 28 36 256 3:11 34 264 25:01 34
MINCAP CONSERVATIVE 242 21 34 248 3:47 29 264 1:33:25 27
MINCOST CONSERVATIVE 223 25 31 251 4:15 32 264 1:29:35 31
MINRELCOST CONSERVATIVE 256 34 40 260 2:52 33 276 2:15:12 35
MAXFRAC GREEDY 255 36 34 263 3:02 33 262 1:07:45 30
MINCAP GREEDY 230 27 31 245 2:33 28 255 2:35:37 29
MINCOST GREEDY 238 31 34 248 2:23 31 254 1:57:12 29
MINRELCOST GREEDY 264 49 41 257 3:02 32 266 58:52 35
p3 d50/r50 MAXFRAC CONSERVATIVE 224 45 32 166 1:28 29 182 2:07 29
MINCAP CONSERVATIVE 234 48 40 157 56 25 178 1:33 25
MINCOST CONSERVATIVE 205 40 38 178 1:38 35 184 1:47 32
MINRELCOST CONSERVATIVE 205 46 37 173 1:26 32 200 1:32 36
MAXFRAC GREEDY 250 49 36 164 1:22 27 183 1:49 30
MINCAP GREEDY 200 44 34 162 1:00 27 182 1:29 30
MINCOST GREEDY 194 57 36 183 1:33 34 188 1:37 34
MINRELCOST GREEDY 201 51 35 192 1:50 40 199 1:49 37
p3 d75/r100 MAXFRAC CONSERVATIVE 190 25 37 204 2:43 34 226 3:40 35
MINCAP CONSERVATIVE 178 27 37 189 2:04 30 204 8:44 26
MINCOST CONSERVATIVE 202 31 48 190 1:32 33 213 7:37 32
MINRELCOST CONSERVATIVE 203 38 46 206 1:58 43 227 24:48 39
MAXFRAC GREEDY 201 35 37 212 1:59 33 245 18:24 33
MINCAP GREEDY 180 27 38 190 1:34 30 212 30:57 29
MINCOST (GREEDY 191 31 43 200 2:04 37 233 23:24 32
MINRELCOST GREEDY 203 39 46 205 1:19 37 237 18:10 40

Table 4.10: D1visiBLE BAsic CAPACITIES: Computational results for branch&cut path heuris-
tics
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4.6.2 Improvement heuristics
We implemented one class of improvement heuristics, the so-called decrease heuristics. Given
a feasible integer solution, these heuristics produce locally optimal solution which are minimal

with respect to the canonical partial order <g on |E|-dimensional vectors. This partial order
is defined by

y' <py? = yl(e)ng(e), ee E,

and every y', y? € R{E. In Algorithm 8, a general description of a decrease heuristic is given.

Algorithm 8 DECREASEHEURISTIC

Require: feasible solution C(e),e € E
identify the set R of reducible edges
while R # § do
select e € R
select temporary valid capacity C for e with C?(e) < C < C(e)
test feasibility of temporary capacity vector
if feasible then
update C
end if
update R
end while
postprocessing

The input of a decrease heuristic consists of integer capacity variables T such that the
corresponding capacity vector ¥ (calculated according to (2.4) or (2.7)) is feasible. Let C € RY
be the capacity vector defined by C'(e) := 7(e) for all e € E. A preprocessing step identifies
the set R C E of reducible edges, where a supply edge is defined to be reducible if and only if
it has not been proven, yet, that it is impossible to reduce its capacity. (Initially, R = {e €
E : C(e) > C%e)}.) In the main loop, the heuristic attempts to decrease the capacity of
reducible edges until R is empty. According to some criterion, a supply edge e € R is selected
in each iteration. For this supply edge, the capacity is temporarily set to some capacity C with
C%(e) < C < C(e), and to this new capacity vector the algorithm to test feasibility is applied.
If it is feasible, this capacity is set, that is, C(e) := C. Furthermore, e is removed from R either
if C = CV(e) or if the capacity vector has not been feasible. Eventually, R is empty, since the
heuristic never adds an edge to R, and in every iteration either the capacity for one supply edge
in R decreases or one supply edge is removed from R.

The algorithm to test feasibility of a capacity vector for the survivability model PATH RE-
STORATION deserves additional remarks. As described in Section 4.4, this algorithm can be
time-consuming since very large-scale linear programs must be solved. In consequence, the
column generation procedure is not used during a decrease heuristic in order to reduce the
computation time. That is, during such a heuristic the set of path variables in the linear
program remains unchanged, implying that the routing in a feasible solution can only use the
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paths associated with those path variables which have either been initially added to the linear
program or which have already been generated with the column generation algorithm.

In the remainder of this section on decrease heuristics, we describe the selection criteria for
the reducible supply edges and the different strategies to choose the temporary capacity. We
describe these criteria separately for the two capacity models, and present afterwards results of
computational experiments.

DI1SCRETE CAPACITIES

Suppose that a feasible capacity vector 6(6),6 € FE, is the given, and let 0 < t, < T be
the breakpoint with C%e = C(e) for every supply edge e € E. Furthermore, let T(e,1), e € E,
t=1,...,T,, be the (fractional) solution of the linear programming relaxation. The criteria to
choose the supply edge are the following:

MiINFRAC Choose a reducible supply edge with smallest fractional capacity variable, that is,
(e,7) € T(F) with € € R such that

Z(e,7) = min{Z(e,t):e € R, 1 <t <te}.

MINSUMFRAC Choose a reducible supply edge with smallest sum of fractional capacity vari-
ables, that is, € € If such that

> Z(e,t) = min{ > Z(e,t) : e € R} .

t=1,..., T F(e,t) <1 t=1,...,Te:Te,t) <1

MaxCosT Choose a reducible supply edge whose capacity reduction potentially incurs the
largest cost reduction, that is, ¢ € R such that

Kl = max{K! :ec R}.

MaXRELCo0ST Choose a reducible supply edge whose capacity reduction potentially incurs the
largest cost reduction relative to its capacity reduction, that is, € € R such that

Kl /Clk = max{Kl /Clk:ec R}.

MaxIncCosT Choose a reducible supply edge whose capacity reduction to the next smaller
breakpoint capacity potentially incurs the largest (incremental) cost reduction, that is,
€ € R such that

k' = max{kk :ec R}.

MaAXRELINCCOST Choose a reducible supply edge whose capacity reduction to the next smaller
breakpoint capacity potentially incurs the largest (incremental) cost reduction relative to
its capacity reduction, that is, € € R such that

ke [ ce = max{kl /ce:ec R}.
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MaxCaAP Choose a reducible supply edge with maximal potential capacity reduction, that is,
€ € R such that

Cle —C? = max{Cl -C’:ecR}.

Suppose, the supply edge e € R is chosen. Then, one of the following two strategies is
applied to choose the breakpoint which defines the temporary capacity on e.

GREEDY Set in increasing order C(e) := C!, ¢t = 0,...,t. — 1, until the capacity vector with
temporary capacity C(e) on edge e is feasible. If none of the capacity vectors is feasible,
then remove e from K.

CONSERVATIVE Set C(e) := Cl~l. If the capacity vector with this temporary capacity on
edge e is not feasible, remove e from R.

Di1viSIBLE BAsic CAPACITIES

Similar to the definitions on page 146, let m(e,7) be the number of multiples of technol-
ogy 7 € T needed to combine the capacity C(e) for supply edge e € E, that is, C(e) =
> rer C"m(e, 7). Associated with this capacity, K (e) denotes the cost of capacity C(e), that
is, K(e) = >, oy Km(e, 7). Furthermore, |C(e)| denotes for every e € E with C(e) > C?
the largest capacity smaller than C'(e), and | K(e)| denotes the costs associated with capacity
|C(e)]. Let Z(e,7), e € E, 7 € T, be the (fractional) solution of the linear programming

relaxation. The criteria to select a supply edge are:

MiINFRAC Choose a reducible supply edge with smallest fractional capacity variable, that is,
(6,7) € T(R) such that

Z(e,7) = min{Z(e,7):e € R, Te,7) #Z} .

MINSUMFRAC Choose a reducible supply edge with smallest sum of fractional capacity vari-
ables, that is, € € R such that

Z T(e,7) = min Z T(e,7):e € R

TET T(e,T)£Z 7T T(e,7)£Z
+ +

MaxCosT Choose a reducible supply edge whose capacity reduction potentially incurs the
largest cost reduction, that is, ¢ € R such that

K(e) = max{K(e):e€ R} .
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MaxRELCosT Choose a reducible supply edge whose capacity reduction potentially incurs the
largest cost reduction relative to its capacity reduction, that is, ¢ € R such that

K(e) / Cle) = max{K(e) / Cle):e€ R} .

MaxIncCosT Choose a reducible supply edge whose capacity reduction to the next smaller
breakpoint capacity potentially incurs the largest (incremental) cost reduction, that is,
€ € R such that

K(e) — |[K(¢)] = max{K(e)— |K(e)|] :e€ R} .

MAXRELINCCOST Choose a reducible supply edge whose capacity reduction to the next smaller
breakpoint capacity potentially incurs the largest (incremental) cost reduction relative to
its capacity reduction, that is, ¢ € R such that

(K(e) — [K(€)]) / (Cle) - [C(e)]) =
max{(K(e) — [K(e)]) / (C(e) = [C(e)]) : e € R} .

MaxCAP Choose a reducible supply edge with maximal potential capacity reduction, that is,
€ € R such that

Cle) - C° = max{C(e)—C :ecR}.

Suppose, the supply edge e € R is chosen. Then, one of the following two strategies is
applied to choose the temporary capacity on e.

GREEDY Increase C(e) temporarily until the capacity vector is feasible. Afterwards, remove
e from R.

CONSERVATIVE  Set temporarily C(e) = |C(e)]. If the capacity is feasible then set C(e) :=
|C(e)], else remove e from R.
4.6.3 Computational tests

In this section, we report on computational experiments with different parameter selections for
the improvement heuristics. As performance measures,

e the value of the computed solution, and

e the time to execute the improvement heuristic
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are used. The tests are performed for the problem instances m3, 13, and p3 with the sur-
vivability parameters § = 0.5 and § = 0.75 for DIVERSIFICATION, and p = 0.5 and p = 1.0
for RESERVATION and PATH RESTORATION. The respective problem names associated with
these parameters are m3d50, m3d75, 13d50, 13d75, p3d50, and p3d75 for DIVERSIFICATION, and
m3r50, m3r100, 13r50, 13r100, p3r50, and p3r100 for RESERVATION and PATH RESTORATION. The
performance of the improvement heuristics is evaluated for the best starting solution computed
by one of the branch&cut path heuristics.

The computational results are presented in Tables 4.11 and 4.12 in the following format.
Column 1 (NAME) gives the name of the problem which also encodes the survivability parame-
ters. Columns 2 and 3 provide the selection of run-time parameters. In more detail, column 2
(EDGE) gives the applied strategy to select the next edge for which some of the fractional capac-
ity variables are fixed. Column 3 (FIX) provides whether the applied fixing strategy is GREEDY
or CONSERVATIVE. For each of the three survivability models are four columns with statistics
following. From left to right, these columns give the scaled? values of starting solution (START),
computed solution (FINAL), the running time of the starting heuristic (TIME), and the number
of iterations (ITER).

The main observation is the following: Given the best starting solution obtained with a
branch&cut path heuristic, only minor improvements are possible with the decrease heuris-
tics. The largest improvement is 10 percent and can be observed for 13r50 for the combination
D1sCRETE CAPACITIES and RESERVATION. Often, the improvement is less than 1 percent. In
other words, the starting solutions obtained with a branch&cut path heuristic are almost locally
optimal with respect to neighbors obtained by changing the capacity on a single supply edge
only.

All performance measures, the final solution value, the number of iterations, and the run-
ning times, are independent from both the criterion to select the next supply edge and the
strategy how a smaller capacity is selected for the chosen supply edge. The running times for
DIVERSIFICATION and RESERVATION instances are small, ranging between a few seconds and
10 minutes. In most case, the time is about 1 minute. For all PATH RESTORATION instances,
however, no improvement is possible within the time limit of 60 minutes.

“All lower bounds and solution values are scaled to comply with disclosure agreements.
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DIVERSIFICATION 11 RESERVATION 11 PATH RESTORATION |
| NAME || EDGE CAP | FINAL | START | TIME | ITER || FINAL | START | _TIME | ITER || FINAL | START | TIME | ITER |
m3 d50/r50 MINFRAC GREEDY 214 214 1:02 181 182 38 30 200 200 [ 1:01:14 23
MINSUMFRAC GREEDY 214 214 [ 2 32 2 200 :01:33 1
MAXCoST GREEDY 214 214 57 2 29 y. 200 :02:28 1
MAXRELCOST GREEDY 214 214 56 2 28 y. 200 :01:56 22
MAXINCCOST GREEDY 214 214 55 2 29 y. 200 :10:42 25
MAXRELINCCOST | GREEDY 214 214 1:00 2 29 y. 200 :02:28 28
MAXCaAP GREEDY 214 214 7 2 31 2 200 :00:06 25
MINFRAC CONSERVATIVE 214 214 39 34 2 28 32 2 200 :04:07 30
MINSUMEFRAC CONSERVATIVE 214 214 7 34 2 29 32 y. 200 :02:16 42
MAXCoOST CONSERVATIVE 214 214 5 34 2 29 32 y. 200 :01:17 22
MAXRELCOST CONSERVATIVE 214 214 5 34 2 30 32 y. 200 :02:23 32
MAXINCCOST CONSERVATIVE 214 214 50 34 2 2 32 2 200 :01:02 27
MAXRELINCCOST | CONSERVATIVE 214 214 53 34 2 29 32 p 200 | 1:00:08 33
MAXCAP CONSERVATIVE 214 214 7 34 2 28 32 2 200 :02:09 46
m3 d75/r100 || MINFRAC GREEDY. 201 201 37 ] 30 24 247 20 29 258 | 258 | 1:26:48 5
MINSUMFRAC GREEDY p 20 0 Q 24 247 0 0 2 25 :13:01 3
MaXCOST GREEDY 2 20 0 Q 24 247 0 0 2 25 :12:12 4
MAXRELCOST GREEDY 2 20 0 [4] 24 247 0 0 2 25 :10:19 6
MAXINCCOST GREEDY 2 20 0 Q 24 247 0 0 2 25 :01:03 5
MAXRELINCCOST | GREEDY 2 20 0 [4] 24 247 0 0 2 25 :26:35 5
MAXCAP GREEDY 2 20 0 Q 24 247 0 0 2 25 :08:3 4
MINFRAC CONSERVATIVE p 20 0 Q 24 247 0 0 2 25 :00:02 7
MINSUMFRAC CONSERVATIVE 2 20 0 [1] 24 247 0 0 2 25 :07:0 4
MAXCOST CONSERVATIVE 2 20 0 [4] 24 247 0 0 2 25 :26:06 5
MAXRELCOST CONSERVATIVE 2 20 0 [4] 24 247 0 0 2 25 :16:03 5
MAXINCCOST CONSERVATIVE 2 20 0 [4] 24 247 0 0 2 25 :06:33 5
MAXRELINCCOST | CONSERVATIVE p. 20 0 [4] 24 247 0 0 2 25 :04:55 4
MAXCAP CONSERVATIVE p: 20 0 Q 24 247 0 0 p. 25 :08:51 3
13 d50/xr50 MINFRAC GREEDY 210 214 | 3:42 90 200 | 10:46 4 p. 213 :01:19 55
MINSUMFRAC GREEDY 210 214 3:13 90 200 7:32 4 2 213 :02:10 54
MAXCOST GREEDY 2 214 3:5 920 200 9:42 4 2 213 :04:20
MAXRELCOST GREEDY 2 214 2:5 90 200 | 5:46 4 2 213 :00:49 4
MAXINCCOST GREEDY p. 214 12 920 200 6:06 4 2 213 :05:06
MAXRELINCCOST | GREEDY 2 214 2:5 90 200 | 6:04 4 2 213 :03:57 3
MAXCAP GREEDY 2 214 2:5 91 200 :36 4 2 213 :01:23 4
MINFRAC CONSERVATIVE 210 214 2:2 9 [(] 200 7:32 75 2 213 :05:47 25
MINSUMEFRAC CONSERVATIVE 210 214 2:42 9 0 200 7:39 75 2 213 :02:16 8
MAXCOST CONSERVATIVE 2 214 [ 3:00 9 90 200 [ 9:32 76 p 213 [ 1:00:46
MAXRELCOST CONSERVATIVE 2 214 [ 3:08 9 90 200 | 5:47 75 2 213 :05:19 4
MAXINCCOST CONSERVATIVE p. 214 2:44 9 920 200 7:07 6 2 213 :03:13 3
MAXRELINCCOST | CONSERVATIVE 2 214 [ 3:10 9 90 200 [ 6:0 75 2 213 02:26 3
MAXCAP CONSERVATIVE 21 214 2:43 9 91 200 7:5 6 2 213 03:55 4
13 d75/r100 MINFRAC GREEDY 18 189 | 1:26 2 22 229 1:24 72 24 243 [ 1:00:10 18
MINSUMFRAC GREEDY 9 :04 p. 22 229 0 0 24 243 01:17 10
MAXCoOST GREEDY 9 :1 2 22 229 0 o] 24 243 23:39
MAXRELCOST GREEDY 9 :23 2 22 229 0 o] 24 243 02:08 14
MAXINCCOST GREEDY 9 120 2 22 229 0 0 27 243 25:03
MAXRELINCCOST | GREEDY. 9 :20 2 22 229 0 0 24 243 12:15 0
MAXCAP GREEDY 9 21 2 22 229 0 0 24 243 03:06 5
MINFRAC CONSERVATIVE 0 B 3 22 229 0 0 24, 243 04:19
MINSUMFRAC CONSERVATIVE 9 59 3 22 229 0 0 24, 243 02:59
MAXCOST CONSERVATIVE 9 ;10 3 22 229 0 0 24 243 | 1:02:44
MAXRELCOST CONSERVATIVE ] i 3 22 229 0 0 24, 243 | 1:01:12
MAXINCCOST CONSERVATIVE 9 ;18 3 22 229 0 0 24 243 | 1:05:13 | 1
MAXRELINCCOST | CONSERVATIVE 9 :10 3 22 229 0 0 24, 243 | 1:30:10 7
MAXCAP CONSERVATIVE 4 9 124 22 229 0 0 24 243 | 1:22:24 | 10
p3 d50/r50 MINFRAC GREEDY 192 104 | 1:36 1 156 161 | 2:51 50 1 177 4:02 53
MINSUMFRAC GREEDY 2 94 :3 56 6 2:55 77 [0] 0
MAXCOST GREEDY 2 94 14 55 6 3:04 77 0 0
MAXRELCOST GREEDY 2 94 :37 55 6 2:42 77 0 0
MAXINCCOST GREEDY 2 94 :36 56 6 2:04 77 [0] 0
MAXRELINCCOST | GREEDY 2 94 :34 55 6 2:23 77 0 0
MAXCAP GREEDY 2 94 :39 56 6 2:06 i [0] 0
MINFRAC CONSERVATIVE 2 94 17 ¥ 56 6 2:1 77 0 0
MINSUMFRAC CONSERVATIVE 2 94 :32 54 56 6 2:5 77 [0] 0
MAXCOST CONSERVATIVE 2 94 43 54 55 6 3:0 51 77 0 0
MAXRELCOST CONSERVATIVE 2 94 :36 54 55 6 2:42 51 i 0 0
MAXINCCOST CONSERVATIVE 2 94 141 54 56 6 2:05 50 77 [0] 0
MAXRELINCCOST | CONSERVATIVE 2 94 :35 54 55 6 2:20 51 77 0 0
MAXCAP CONSERVATIVE 2 94 :30 54 56 6 :01 50 77 0 0
p3 d75/r100 MINFRAC GREEDY 179 184 51 1 1 19 5:21 4 204 204 | 1:07:41 24
MINSUMFRAC GREEDY 4 52 9 4:18 4 204 204 :00:46 17
MAXCOST GREEDY 4 5 9 4:09 4 204 204 02:27 16
MaxRELCoOST GREEDY 79 4 4 E] 4:52 4 204 204 01:12 20
MAXINCCOST GREEDY 7 4 5 9 57 4 204 204 09:13 15
MAXRELINCCOST | GREEDY 79 4 5 E] 4:36 4 204 204 01:02 25
MAXCAP GREEDY. 7 4 47 0 5:53 4 204 204 02:29 0
MINFRAC CONSERVATIVE 79 4 2 E] 5:2 49 204 204 :01:41 1
MINSUMEFRAC CONSERVATIVE 4 49 2 E] 5:0 49 204 204 06:02 0
MAXCoST CONSERVATIVE 4 1 62 E] 4:4 49 204 204 05:39 0
MAXRELCOST CONSERVATIVE 79 4 49 61 0 5:0 49 204 204 04:31
MaxIn¢CosT CONSERVATIVE 7 4 53 62 ) 5:29 49 204 204 02:23
MAXRELINCCOST | CONSERVATIVE 79 4 51 61 0 5:01 49 204 204 02:28 4
MAXCAP CONSERVATIVE 7 4 47 62 E] 4:23 49 204 204 :04:23

Table 4.11: DISCRETE CAPACITIES: Computational results for improvement heuristics
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. DIVERSIFICATION 11 RESERVATION 11 PATH _RESTORATION |
| NAME | | EDGE CAP | FINAL | START | TIME | ITER || FINAL | START | TIME | ITER || FINAL | START | TIME_| ITER |
m3 d50/r50 MINFRAC GREEDY 228 230 56 T 182 ] 189 27 ] 28 20 209 | 1:00:01 8
IINSUMFRAC GREEDY 228 230 3 2 9 25 | 28 2 200 | 1:09:21 4
AAXCOST. GREEDY 228 230 44 2 9 26 28 2 209 | 1:05:49
TAXRELCOST GREEDY 228 | 230 | 47 2 O 26| 28 2 209 | 1:03:56 3
IAXINCCOST GREEDY 228 230 49 2 9 27 | 28 2 200 | 1:09:29 1
IAXRELINCCOST | GREEDY 228 230 46 2 9 26 | 28 2 200 | 1:08:41 8
AAXCAP GREEDY 228 230 2 9 25 28 2 209 | 1:08:53 3]
ANFRAC CONSERVATIVE 228 230 34 3 2 9 25 30 2 209 | 1:01:56 7
AN SUMFRAC CONSERVATIVE 228 230 3 3 2 9 24 30 2 209 | 1:07:28 9
IAXCOST CONSERVATIVE 228 230 | 48[ 3 2 O 26| 30 2 209 | 1:03:00 3
IAXRELCOST CONSERVATIVE 228 230 4 3 2 9 26 30 2 209 | 1:02:47 3
AAXINCCOST CONSERVATIVE 228 [ 230 48] 3 2 9 28 | 30 2 209 | 1:00:43 6
TAXRELINCCOST | CONSERVATIVE 228 | 230 46 | 36 2 9 27 | 30 2 200 | 1:00:05 | 11
TAXCAP CONSERVATIVE 228 [ 230 61 36 2 9 241 30 2 200 | 1:30:36 | 14
m3 d75/r100 || MINFRAC GREEDY 202 211 32 2 262 262 17 31 262 262 | 1:31:56 7
AINSUMFRAC GREEDY 202 2 33 2 262 262 0 262 262 :03:15 11
IAXCOST GREEDY 202 2 27 2 262 262 0 2062 262 :01:24 8
JAXRELCOST GREEDY 2 2 30 2 262 262 0 2062 262 :03:59 14
IAXINCCOST GREEDY 2 2 29 2 262 262 0 2062 262 :03:27 8
IAXRELINCCOST | GREEDY 2 2 29 2 262 262 0 2062 262 :22:57 14
IAXCAP GREEDY 202 2 26 2 262 262 0 2062 262 :07:39 1
IINFRAC CONSERVATIVE 202 2 24 36 262 262 0 2062 262 :00:16 22
AINSUMFRAC CONSERVATIVE 202 2 25 36 262 262 0 262 262 :03:58 17
AAXCOST CONSERVATIVE 202 2 27 36 262 262 0 262 262 :04:37 3
AAXRELCOST CONSERVATIVE 2 2 30 36 262 262 0 262 262 :00:14 9
AAXINCCOST CONSERVATIVE 2 2 2 36 262 262 0 2062 262 :00:22 8
IAXRELINCCOST | CONSERVATIVE 2 2 2 36 262 262 0 2062 262 :19:05 13
IAXCAP CONSERVATIVE 202 2 24 36 262 262 0 2062 262 :01:49 17
13 d50/r50 AINFRAC GREEDY 2 23 3:18 59 22 220 54 56 22 225 | 1:00:06 17
AN SUMFRAC GREEDY 2 23 0 0 22 220 0 0 22 225 :08:37 6
AAXCOST. GREEDY 2 23 0 0 22 220 0 0 22 235 | 1:02:00 7
IAXRELCOST GREEDY 2 23 0 0 22 220 0 0 22 335 | 1:06:27 9
TAXINCCOST GREEDY 2 23 0 022 220 0 022 225 | 1:05:07 8
IAXRELINCCOST | GREEDY 2 23 0 022 220 0 022 225 | 1:05:24 0
AAXCAP GREEDY 2 23 0 0 22 220 0 0 22 335 10:07 0
TINFRAC CONSERVATIVE || 3 23 0 022 220 0 022 225 | 1:04:38 2
AN SUMFRAC CONSERVATIVE 2 23 0 0 22 220 0 0 22 225 :06:39 2
AAXCOST CONSERVATIVE 2 23 0 0 22 220 0 0 22 225 :07:0 i
IAXRELCOST CONSERVATIVE 2 23 0 0 22 220 0 0 22 225 :03:3 8
AAXINCCOST CONSERVATIVE 2 23 0 0 22 220 0 0 22 235 | 1:02:2 5
AAXRELINCCOST | CONSERVATIVE 2 23 0 0 22 220 0 0 22 235 | 1:03:45 E
IAXCAP CONSERVATIVE 2 23 0 0 22 220 0 0 22 225 :06:57 8
I3 d75/r100 || MINFRAC GREEDY 207 | 223 [ 1:48 24 245 | BI1] 63 ]| 254 [ 254 | 1:11:41 2
AN SUMFRAC GREEDY 207 223 :10 24 245 0 0 254 254 :07:51 3
TaXCOST GREEDY 0 223 | 1:43 24 245 0 0 254 254 12:21 3
IAXRELCOST GREEDY 207 223 :29 24 245 0 0 254 254 :08:33 3
AAXINCCOST GREEDY 207 223 133 24 245 0 0 254 254 :28:36 4
AAXRELINCCOST | GREEDY 207 223 28 24 245 0 0 254 254 45:55 5
IAXCAP GREEDY 207 223 11 24 245 0 0 254 254 :00:01 T
IINFRAC CONSERVATIVE 207 223 :07 24 245 0 0 254 254 :32:18 3
AN SUMFRAC CONSERVATIVE 207 223 :04 66 24 245 0 0 254 254 :19:05 4
IAXCOST CONSERVATIVE 20 223 [ 1:30 | 66 24 245 0 0 254 | 254 [ 1:20:48 3
IAXRELCOST CONSERVATIVE 207 223 :25 64 24 245 0 0 254 254 :49:30 3
AAXINCCOST CONSERVATIVE 207 223 :26 64 24 245 0 0 254 254 :40:37 4
IAXRELINCCOST | CONSERVATIVE 207 223 :28 64 24 245 0 0 254 254 :09:21 3
IAXCAP CONSERVATIVE 207 223 8 6 24 245 0 0 254 254 :00:08 2
p3 d50/r50 MINFRAC GREEDY 194 104 [ 1:25 47 15 157 17 37 1 178 8:03 41
AIN SUMFRAC GREEDY 4 94 0 0 5 0 0 78 [4] [4]
AAXCOST GREEDY 4 94 0 0 5 0 0 78 0 0
AAXRELCOST GREEDY 4 94 0 0 5 0 0 78 0 0
AAXINCCOST GREEDY 4 94 0 0 5 0 0 7 [ [
JAXRELINCCOST | GREEDY 4 94 0 0 5 0 0 78 0 0
IAXCAP GREEDY 4 94 0 0 5 0 0 78 0 0
AINFRAC CONSERVATIVE 4 94 0 0 5 0 0 78 0 0
AINSUMFRAC CONSERVATIVE 4 94 0 0 5 0 0 78 [4] 0
IAXCOST CONSERVATIVE 4 94 0 0 5 0 0 78 0 0
IAXRELCOST CONSERVATIVE 4 94 0 0 5 0 0 78 [4] [4]
IAXINCCOST CONSERVATIVE 4 94 0 0 5 0 0 78 [4] [4]
IAXRELINCCOST | CONSERVATIVE 4 94 0 0 5 0 0 78 [4] [4]
IAXCAP CONSERVATIVE 4 94 0 0 5 0 0 78 [4] [4]
p3 d75/r100 MINFRAC GREEDY 178 178 33 40 18 189 51 43 204 204 24
AN SUMFRAC GREEDY 78 0 0 9 0 0 204 204 25
AAXCOST GREEDY 78 0 0 9 0 0 204 204 27
IAXRELCOST GREEDY 78 0 0 ] 0 0 204 204 17
IAXINCCOST GREEDY 78 0 0 ] 0 0 204 204 9
IAXRELINCCOST | GREEDY 78 0 0 9 0 0 204 204 9
IAXCaP GREEDY 78 0 0 9 0 0 204 204 11
IINFRAC CONSERVATIVE 78 0 0 ] 0 0 204 204 9
AN SUMFRAC CONSERVATIVE 78 0 0 ] 0 0 204 204 9
IAXCOST CONSERVATIVE 78 0 0 ] 0 0 204 204 9
IAXRELCOST CONSERVATIVE 78 0 0 ] 0 0 204 204 8
AAXINCCOST CONSERVATIVE 78 0 0 ] 0 0 204 204 7
IAXRELINCCOST | CONSERVATIVE 78 0 0 9 0 0 204 204 12
IAXCAP CONSERVATIVE 7 0 0 9 0 0 204 204 16

Table 4.12: D1VISIBLE BAstc CAPACITIES: Computational results for improvement heuristics
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4.7 Computational results

In the previous sections of this chapter, we described various algorithmic parts and evaluated
the influence of several parameters. After each computational test, we fixed a default parameter
setting which seems to be a good compromise between computation time, and quality of the
computed solutions and lower bounds. With this default parameter setting, we now evaluate
lower bounds, solution values, and computation times of the different algorithmic parts for all
test problem instances described in the introduction to this chapter (see page 100).

For both capacity models, this final test series is performed on all nine problem instances
with survivability parameters § = 0.5 and § = 0.75 for DIVERSIFICATION, and p = 0.5 and p
= 1.0 for RESERVATION and PATH RESTORATION. Altogether these are 54 problem instances
for each capacity model. Table 4.13 shows results for the two capacity models DISCRETE
CAPACITIES and DI1VISIBLE BASIiC CAPACITIES in combination with the three survivability
models DIVERSIFICATION, RESERVATION and PATH RESTORATION. The table has the following
format. The first column (NAME) gives the name of the problem instance which also encodes the
survivability parameters. For both capacity models are seven columns with statistics following.
From left to right, these columns give the lower bound (LOWER), the value of the best solution
(VAL), the gap in percent computed as (VAL — LOWER)/LOWER - 100 (GAP), and the running
times to compute the lower bound (L-TIME), to solve all feasibility problems (F-TIME), and the
average times to execute a starting heuristic (S-TIME) and an improvement heuristic (I-TIME).

There are two main observations. First of all, it is possible to compute good solutions for such
large-scale mixed-integer programming problems within a few minutes for the “easier” surviv-
ability models DIVERSIFICATION and RESERVATION, and within a few hours for the “difficult”
survivability model PATH RESTORATION. Second, a lot of additional research is necessary to
accomplish the final target of proven optimal solutions.

From a practical point of view, the computation time to provide a good solution is important.
With our approach this implies that the average times to compute a lower bound, a starting
solution, and an improved solution must be added. The sum of these times is very small for the
problem instances with DIVERSIFICATION. The smallest and largest times can be observed for
m1d75 and 12d50, respectively. These are 33 seconds and 18 minutes for DISCRETE CAPACITIES,
and 11 seconds and 13 minutes for DIVISIBLE BASIC CAPACITIES. The times for RESERVATION
are only a little bit larger. This is surprising, if one recalls that the number of variables
for the problem instances with RESERVATION is two orders of magnitude larger than those
for DIVERSIFICATION. (The largest numbers were approximately 20 trillion and 200 billion,
respectively; see Table 4.1). The times for PATH RESTORATION are considerably larger. The
smallest and largest times can be observed for p3r100 and 12r100, respectively. These are 16
minutes and 12 hours for DISCRETE CAPACITIES, and 5 minutes and 10 hours for DIVISIBLE
Basic CAPACITIES. The important point to make is the following. These times are larger than
those for the other survivability models, but they are small enough such that problem instances
with PATH RESTORATION can be used within the network design process in practice.

The gaps are large. On the average, the smallest gaps can be observed for RESERVATION
(between 10 and 47 percent) and the largest gaps for DIVERSIFICATION (between 11 and 79
percent). This is surprising, since we expected that the new inequalities for the polyhedra
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associated with the survivability model DIVERSIFICATION have a better impact on the quality
of the lower bound. Very promising is that gaps below 20 percent are possible for PATH
RESTORATION. Recall, for the polyhedra associated with this survivability model, there are
no inequalities other than those inherited from the respective polyhedra for RESERVATION.
Furthermore, the linear programs to test feasibility for PATH RESTORATION are extremely
large, and therefore, it is out of scope to run our improvement heuristics. Thus, despite all
compromises, these relatively small gaps for a very large-scale problem can be computed. It
remains the question whether the lower bound or the best heuristic solution is the reason
for the gap. There is no serious answer to this question. However, tests on smaller problem
instances (with weeks of computation time and a lot of interactive manipulation) indicate that
the lower bound is responsible. Hence, further research on the polyhedral structure of survivable
capacitated network design problems is necessary.

It is interesting to compare the best solutions for varying capacity model. For the chosen
problem instances, feasible solutions for DISCRETE CAPACITIES are feasible for DIVISIBLE BA-
siIC¢ CAPACITIES. Therefore, one would expect that the best solutions for DIVISIBLE BASIC
CAPACITIES are the better ones, and that the lower bounds for DISCRETE CAPACITIES are the
better ones. To some extent, the results are the other way around. In 2/3 of the considered
problem instances, the best solution for DISCRETE CAPACITIES is better, and in most cases,
the lower bound for DIVISIBLE BASIc CAPACITIES is better. Our conclusion is that it pays
to consider a model with a restricted number of available capacities if this is easier to handle.
For D1visiBLE BASIC CAPACITIES there are much more capacity choices, and it seems to be
more difficult to guide the heuristics in the right direction. On the other hand, the better lower
bounds with the capacity model D1vISIBLE BAsic CAPACITIES indicate that the (mixed-integer
rounding) inequalities for DIVISIBLE BASIC CAPACITIES are practically more successful than
the (knapsack-cover) inequalities for DISCRETE CAPACITIES.

Even more interesting is a comparison of the best solutions for varying survivability model.
Figure 4.7 shows the average over the best solutions presented.

For a minimum survivability of 50 percent (p =
0.5,6 = 0.5), the average value of a best solution

DIVERSIFICATION 76 for RESERVATION is 147. The average for PATH
50% RESERVATION 147 RESTORATION is about 11 percent larger and for
DIVERSIFICATION about 20 percent larger. The
PATH RESTORATION 163 . e
result for the maximum survivability of 100 per-
cent (p = 1.0), which can only be accomplished
ESERVATION . with RESE'R\'/ATION and PATH RESTORATION,. are
100% very promising. On average, the best solutions
PATH RESTORATION 19 for PATH RESTORATION are less than 5 percent

larger than the respective best solution for RESER-
Figure 4.7: Comparison of the survivability VATION. That is, we accomplished to compute
models. solutions for the practical relevant survivability
model PATH RESTORATION, which are only 5 per-
cent more expensive than solutions computed for
RESERVATION.



160 4., ALGORITHMS AND COMPUTATIONAL RESULTS

DISCRETE CAPACITIES D1vISIBLE Basi¢ CAPACITIES
NAME LOWERl VALl GAPlL—TIMEl F—’IIMEl S—TIMEl I-TIME LOWERl VALl GAPlL—TIMEl F—TIMEl S—’IIMEl 1-TIME
m1d50 81.30/116.69]43.53 14 1:55 18 71| 87.69]109.12(24.43 8 23 9 1
m1d75 74.22(109.62(47.69 14 2:15 10 9| 81.65(104.60]|28.11 5 10 5 1
11d50 140.62]184.28|31.05 30 30:23 1:33 2:08([151.51]203.66|34.42 20 48:13 1:17 3:24
11d75 120.831170.81]41.36 27 14:09 57 1:00(]148.88 (204.81|37.57 8 24:30 38 1:44
pld50 78.381123.90(58.08 34 6:37 41 27) 89.82]131.05[45.90 12 3:05 12 12
pld75 74.32]113.05(52.14 38 3:56 37 16(| 81.96]|124.73]52.19 9 3:10 10 13
7 [m2d50 99.881146.05|46.23 16 6:18 25 26(]111.06(141.50]27.41 8 25 14 1
E m2d75 94.441131.16|38.88 16 1:47 14 7| 97.97]|135.41|38.22 3 1:06 6 4
E 12d50 117.111204.43|74.56| 1:28| 2:15:30 7:03 9:281[125.22]197.88|58.03 27| 2:00:19 3:48 8:31
E 12d75 100.00[179.98]79.98 38| 1:05:50 3:38 4:3811116.39(174.44]|49.88 23 43:40 1:38 3:05
E p2d50 ||105.70]166.33[57.36 50 45:19 2:54 3:11(|111.22(168.07|51.11 14 25:34 1:24 1:48
p2d75 97.301152.47]56.70 31 16:35 1:28 1:09]]109.25]154.04(41.00 11 14:09 38 59
m3d50 ||146.03]214.48(46.87 24 9:59 1:05 40(]157.73(228.10| 44.61 15 9:26 32 39
m3d75 ||127.39]201.81[58.41 21 49 38 2(]139.56 (202.26 | 44.92 9 6:47 20 28
13d50 161.89(209.39]29.34 29 42:22 1:20 2:59(|187.64(231.02]23.12 9 3:43 1:15 14
13d75 134.57(183.06]36.03 15 18:03 48 1:16]|184.79]205.18(11.03 10 17:47 31 1:15
p3d50 ||122.60]192.21(56.78| 1:09 22:39 1:57 1:35]|130.66 | 194.50 [ 48.86 16 1:40 47 6
p3d75 ||106.45]|178.24(67.44 25 11:43 1:01 49(]120.83(178.26|47.53 10 46 32 2
mlrb0 72.75| 93.42(28.41 10 3:28 21 7| 72.79] 96.71|32.86 6 2:29 17 8
mlrl00]|102.66]126.25(22.98 22 1:48 21 11]1112.85]125.22(10.97 17 50 19 1
11r50 131.001175.11]33.67 37 8:49 2:09 4({129.43]1180.40]39.38 23 5:28 3:08 1
11r100 ||165.92]193.05[16.35| 2:02 9:45 3:53 4(]1166.81(202.31]21.28| 2:10| 2:01:48 2:58 8:20
plr50 73.31]101.31(38.19 46| 1:08:55 1:46 4:09(] 78.19( 99.48]27.23 14 2:45 1:11 1
plrl00 96.57(119.52]23.77| 2:20 41:57 1:18 2:40([107.05]1120.51|12.57| 1:39 3:50 1:11 1
m2r50 91.91]115.77|25.96 9 1:57 23 1] 88.47]|125.55(41.91 4 3:10 15 11
Z lm2r100(|127.52|158.71[24.46 39 7:24 20 27(]131.14(163.53|24.70 24 38 22 1
g 12r50 101.261139.91|38.17| 1:34| 4:28:59 7:41 17:18]| 97.55|144.16(47.78 54| 1:38:19 5:10 6:12
E 12r100 ||144.88]180.10(24.31| 5:49| 7:25:26| 11:38| 29:34||149.53(185.96|24.36 | 6:32 14:05 8:53 15
= | p2r50 97.391143.45|47.29 47 20:25 5:29 9| 94.09(139.18]|47.92 16 8:48 3:22 4
p2r100 ||128.31]164.93(28.54( 4:02| 1:38:31 7:33 5:50(|133.33|174.80]31.10| 2:37 6:06 5:02 4
m3r50 ||137.60]181.77(32.10 18 9:05 32 3011139.74]182.11(30.32 25 7:50 39 25
m3r100|(199.12]247.48(24.29| 1:06 4:59 1:03 11]1197.95]262.46 [ 32.59 52 2:12 44 1
13r50 147.611190.78]29.25 28| 1:53:00 1:33 7:35]|1564.70]220.37 [42.45 37 5:49 4:15 4
13r100 ||198.62]229.57[15.58| 1:56 8:14 3:01 6([201.72]245.05]21.48| 1:48 6:59 3:36 3
p3r50 109.05]155.86]42.92 29 41:28 1:24 2:32(|100.32 [ 157.24|56.73 6 4:09 1:38 1
p3r100 |[149.65]196.28(31.16| 2:20( 1:20:56 4:00 5:01][146.53)189.37(29.23| 1:35 3:28 2:01 2

mlr50 72.75|105.97]45.66 10 25:17 2:11( 14:04(| 72.79|106.43]46.21 5 32:04 2:52( 22:37
mlrl100]|102.66]130.77[{27.38 21 48:01 3:59( 26:51([112.85]|137.78]22.08 15[ 1:04:26 5:59| 46:55
11r50 131.00(188.3443.77 25| 2:05:46| 11:12]1:00:54(|129.43[191.48]|47.94 22| 2:01:20( 15:35[1:03:08
11r100 ||165.92]194.70(17.35] 1:58| 2:47:32( 16:59]1:01:24]|166.81|205.47(23.17| 1:56| 4:31:04[1:32:37|1:04:08
plr50 73.31|121.69]65.99 43 35:30 3:34| 20:33|] 78.19[128.09]|63.82 13 4:24 1:13 2:56
plrl00 || 96.57|137.23(42.10| 2:16|22:10:39]5:33:35]1:03:24(|107.05[127.18|18.80( 1:26 30:55 3:37| 22:10
m2r50 91.91[138.5850.78 8 29:06 3:24( 12:43(| 88.47]|139.24|57.38 3 41:37 3:27| 28:36
m2r100]|127.52]185.42(45.40 36| 2:10:10( 18:09( 55:18)[131.14]166.22(26.75 21| 2:03:46( 25:421:00:20
12r50 101.26[147.97]46.13| 1:43|13:51:34|2:01:33[1:01:03 [[ 97.55]|159.22]63.22 55 6:00:51(1:25:171:28:03
12r100 ||146.58|197.80(34.94| 5:23]|98:47:22(9:30:12|1:54:43]|149.53|195.96(31.05| 6:40|47:63:18(9:02:12|1:00:15
p2r50 97.39[151.75|55.82 48| 4:33:35]1:01:44]1:07:28[[ 94.09]|160.76]70.86 15 15:59 3:45| 12:26
p2r100 ||128.31]181.06(41.11] 4:11| 7:22:43(1:02:15|1:10:08]|133.33|182.31[36.73| 2:26| 4:53:45(1:00:03|1:32:34
m3r50 ||137.60]200.76[45.90 18 2:32:53| 15:56(1:01:28([139.74]209.33]49.80 25| 3:57:27]1:03:39]1:04:00
m3r100]]199.12]258.98(30.06| 1:06| 4:15:25| 41:32]1:06:15]]197.95[262.46|32.59 51| 4:12:01] 51:25]1:18:52
13r50 147.61(213.89]44.90 51| 1:37:08 7:59(1:01:22([154.70|225.29]45.63 24| 1:54:12( 15:55(1:00:24
13r100 |)198.62]242.62(22.15] 1:56| 2:45:33[ 12:44]1:00:05]|201.72]254.19(26.01| 2:20| 3:15:41[ 30:28|1:12:32
p3r50 ||109.05]177.93[63.15 32 17:54 2:09] 12:47]]100.32{178.69|78.12 6 6:59 1:50 5:11
p3r100 ||149.65]204.72(36.78| 2:42| 4:06:46| 31:17]1:12:13]]146.53{204.74|39.72| 1:36| 2:17:27] 21:18[1:01:39

T'ATH RESTORATION

Table 4.13: Computational results



Conclusions

In this thesis, we investigated the problem of dimensioning survivable capacitated networks.
We started with the practical problem, introduced linear mixed-integer programming models,
investigated the structure of polyhedra associated with the solution sets of such network design
problems, and developed an integrated algorithmic environment, which can now be used to
solve such problems.

For all combinations of two capacity and three survivability models, we presented theory
and algorithms. We developed new classes of inequalities for several polyhedra related to the
considered network design problems, and for these, as well as for previously known classes
of inequalities, we developed separation algorithms to identify violated inequalities at run-
time. In addition, we extended and adapted previously know algorithms to solve the decision
problem whether given capacities suffice to accommodate a routing that satisfies all capacity
and survivability requirements. These algorithms are based on column generation. To complete
the set of algorithms, we developed several starting and improvement heuristics.

We implemented the software tool DISCNET (DImensioning Survivable Capacitated NET-
works) in C++ and JAVA. It provides an integrated environment that includes a graphical user
interface and all developed algorithms. With DISCNET it is possible to analyze necessary invest-
ments in the network infrastructure by variation of models and parameters. The cost reduction
obtained by using DISCNET is difficult to estimate since its first prototype implementations have
been applied more than four years ago. At that time, the first applications on real-world problem
instances with about 10 transport network nodes revealed a potential cost reduction of about
10 — 20%. These values have been obtained for DISCRETE CAPACITIES in combination with
DIVERSIFICATION or RESERVATION; the model combinations which have been implemented in
the initial prototype. Today, an improved version of DISCNET is permanently used at E-Plus,
and since no other tools are used for the same purpose, an estimation of the cost reduction
for the current networks is not possible. In this context, it is worth mentioning that current
networks are considerably larger. As we have seen, practical problem instances often lead to
the linear mixed-integer programs with more than a trillion variables. Hence it seems obvious
that even a very smart human being is not able to dimension survivable capacitated networks
in a cost-effective way without tools such as DISCNET.

Regarding the survivability model PATH RESTORATION, there are two remarks in order.
First, our approach of utilizing RESERVATION as relaxed variant of PATH RESTORATION re-
vealed the opportunity to design low-cost survivable networks for this model. This is particu-
larly the case, if a high level of survivability is desired. Second, we are not aware of another
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implementation that integrates the optimization of the network for the non-failure case and all
single network component failures. To our knowledge, our results provide the first integration
for PATH RESTORATION which also includes a lower bound calculation.

The overall problem cannot be solved to proven optimality with the current theoretical
knowledge (e.g., through branch&cut). Additional research is necessary to get closer to this
target. We see two main directions. First, the integer programming problem defined by the
linear programming relaxation obtained as result of the cutting plane algorithm seems to be
considerably easier to solve and, in consequence, this problem might be approachable by an
exact algorithm. Closing the gap by improving the lower bound is the main focus of such
an approach, but it might even help to improve the upper bound, since the resulting optimal
solution of the relaxed problem can be used to obtain a solution which is feasible with respect
to all constraints. Second, additional classes of facet-defining inequalities together with fast
separation algorithms are needed. In particular, for the survivability model PATH RESTO-
RATION. In this context, it might be worth considering the concept of mixing mixed-integer
inequalities presented in (Ginlik and Pochet, 1997).

There are at least three major directions for model extensions and variations; one for ca-
pacities, one for demands and one for survivability. As we already mentioned in Chapter 2,
D1scRETE CAPACITIES is a very flexible capacity model which even suffices to model SDH net-
works in which wavelength division multiplexers are used on point-to-point links (no routing of
wavelengths). However, if additional hardware at the nodes such as digital cross-connects or
add-drop-multiplexers should be considered in the optimization, then models for node capacities
become necessary. Furthermore, the input for the transport network planning usually contains
demand requirements for different types of traffic such as user traffic, signaling traffic, or data
traffic. With our model it is necessary to aggregate for each pair of nodes the requirements of
the different types. This reduces the problem sizes considerably, but might be insufficient if
different traffic types need different protection against network component failures. If this is
desired, a model extension using parallel demands between pairs of nodes should be used. Fi-
nally, the survivability model LINK RESTORATION (see page 46) might be a possible extension.
As described, it is a variant of the model PATH RESTORATION for single edge failures.

Other interesting research directions arise in the design of self-healing rings (ITUT-G.841,
1995). This topic attracted many researchers, but as far as we know, there are no imple-
mentations of exact solutions methods of the overall network design problem including the
interworking of the self-healing rings (see (ITUT-G.842, 1997)). Typically, only a subproblem
on a single ring is reflected in mathematical models for the optimization of self-healing ring
networks. Closely related problems arise in the design of optical networks. As soon as optical
cross-connects and optical add-drop multiplexers become commercially available, these can be
used to route wavelengths generated by wavelength division multiplexers. From a mathematical
point of view, very complex, but interesting, coloring problems (see (Mukherjee, 1997)) must
be solved in this context.
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In the main parts of this thesis, we described mathematical models, polyhedral theory and op-
timization algorithms to solve the transport network design problem of a mobile-communication
provider. The fact that the developed theory and the implemented algorithms to support the
planning process are used in a real-world environment has another consequence. There is no
doubt regarding the advantage of having the opportunity to run such state-of-the-art algo-
rithms, but in addition, network planners call for graphical user interfaces which support the
basic work related to the planning process. To fulfill such non-mathematical requirements,
we supplemented DISCNET with a graphical user interface implemented in JAVA. Some of its
features are the following:

e Tmport and export of switching and transport network.

e Graphical representation of switching and transport network.

Dialogs to modify all parameters related to costs, capacities and demands.

Execution of all optimization algorithms presented in this thesis.

Visualization of solutions in terms of capacities and routings.

Postscript representation of switching and transport network, solutions and routings.
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We implemented a graphical representation of the switching and the transport network (in
our terminology demand and supply graph). Both networks consist of graphical objects which
can be moved, deleted, or selected to either edit the properties or to display related routings.

A typical application of DISCNET starts with the import of switching and transport network
as data files. The switching network is part of the output of the planning step preceding
the transport network planning (see Chapter 1), and the input transport network consists of
potential communication links including possibly preinstalled capacities and a specification of
available capacities (according to one of the capacity models presented in Chapter 2). All this
input data can easily be manipulated; the network planner can add or delete links and nodes
in both networks, and can change parameters of all or individual network components. As an
important feature of DISCNET, the input can be analyzed regarding feasibility. As described in
Chapter 4, beside some exceptional cases when the survivability model PATH RESTORATION is
used, it is possible to decide whether there exists a solution for the particular problem instance.
(Recall, we pointed out in Section 4.2 that the decision problem whether a specific number of
node-disjoint length-restricted paths exists between a pair of nodes is A/P-complete.)

Parameters

The network planner can manipulate all data related to the optimization process. This includes
the cost and capacity structure of different providers, capacity and survivability model, and
individual parameters for nodes, communication demands and potential transport edges.

Cost parameter

Part of the input of a problem instance are cost values for all available capacities on all potential
transport network edges. It would be exhausting and a source of mistakes if the network planner
needed to provide all these values. To overcome this problem, cost functions are employed in
D1seNET, from which individual cost values can be computed. As single requirement, such a
cost functions for a particular capacity is piecewise linear and monotonically increasing with
respect to the length.

In D1sCNET, the usage of many different providers is permitted. Fach one offering different
technologies or transmission capacities with different cost functions. To maintain these, the
dialog shown in Figure 4.8 is provided. For a particular technology (basic capacity) of a partic-
ular provider, the network planner needs to specify the shown values; names of technology and
provider, basic capacity, basic costs (which are fixed costs independent of the length), a maxi-
mum number of available units between a single pair of nodes and additional length dependent
costs. These latter costs are specified for subsequent length intervals. Fach one consists of the
boundaries of the length interval together with fixed cost and length dependent cost which are
incurred every kilometer. Notice that it is possible to maintain cost functions of leased lines as
well as microwaves with this dialog.
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Edit technologies

DeutscheTelekorm
OT-34Mbis
Capacity
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Basic cost

1
Maximum multiples

4

Multiples of unit: 16
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PROVIDER DeutscheTelekom — TECHNOLOGY DT-34Mbits —
New provider \ New technology
Provider from to fixed cost  length cost

Save | Add new interval

Apply | Cancel

Figure 4.8:

Node parameters

Example of the dialog to maintain cost functions

The parameters of a transport network node are maintained with the dialog shown in Figure 4.9.
Every node has a unique name and it is possible to specify its geographical coordinates. These
are used to calculate the distance (in kilometer) between pairs of network nodes and thus needed
to compute cost values of available capacities for potential transport edges. Additionally, the
network planner can specify for each individual node whether its failure should be considered in
the optimization. If yes, then every feasible solution contains routings for the respective failure

state.

Figure 4.9: Example of the dialog to maintain nodes

= Attributes of a node

Name

Can fail ?

Coordinate x:

Coordinate v :

l Rostock

Zilise
54,125

Yes —

ok |
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Supply edge parameters
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Figure 4.10: Example of the dialog to

maintain supply edges
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Figure 4.11: Example of the dialog to

maintain demand edges

The parameters of a potential edge of the transport
network are maintained with the dialog shown in Fig-
ure 4.10. Every edge has a unique name and two end-
nodes (specified by name). As for nodes, one param-
eter specifies whether the network planner decided to
consider the failure of this particular edge. Again, if
yes, then every feasible solution contains routings for
the respective failure state. The dialog shows, further-
more, a section to specify the available capacities of
such an edge. There might be a positive preinstalled
capacity and alternatives to expand the capacity of
the edge. The interpretation of the shown capacities
depends on the capacity model. For DISCRETE CA-
PACITIES, these capacities are exactly those considered
in the optimization (see Section 2.2.1) and for D1vis-
IBLE BASIC CAPACITIES, the capacities represent the
basic capacities (see Section 2.2.2).

The parameters of a communication demand are main-
tained with the dialog shown in Figure 4.11. Every
edge representing a demand has a unique name, two
end-nodes (specified by name) and a value. We shall
note, that this value does not have a unit. The network
planner is responsible for synchronization of capacity
and demand unit. Additionally, the network planner
can specify for each individual demand the survivabil-
ity parameters. These are for the normal operating
state a value for DIVERSIFICATION and path-length re-
striction, and for the failure states a parameter which
is interpreted as either RESERVATION or PATH RESTO-
RATION parameter (dependent on the planners choice
of the survivability model).
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Algorithms & Solutions

The network planner can choose among several algorithms to optimize the cost of the transport
network. A typical sequence of algorithms comprises

e the calculation of a lower bound (see Section 4.5),
e the execution of several starting heuristics (see Section 4.6.1), and

e the execution of several improvement heuristics (see Section 4.6.2), with one or several of
the previously calculated starting solutions as input.

As described in Section 4.6, the particular choice of
starting and improvement heuristics depends on the se-
lected combination of capacity and survivability model.
These can be selected with the shown dialog. After the
execution of this sequence of algorithms there exists a set
(] minimum cost increase of feasible solutions. Each consists of a choice of capac-
ities for all potential edges of the transport network and
it is proven that these capacities suffice to accommodate
a feasible routing in all operating states. Furthermore, a
lower and an upper bound for the value of an optimal so-
e lution have been calculated and thus a gquality guarantee
for the computed solutions can be provided.

— Select, please

Start heuristics

[ZI minimum fractional capacity variable

[l minimum capacity increase

[ minimum relative cost increase

[ZI minimum incremental cost increase

In addition, feasibility can be tested for every admissible selection of capacities on all supply
edges, and if feasible, routings can be computed for such capacities. The latter option is
particularly important if the planner imported solutions from other projects or changed the
value of some capacities. Recall, beside some exceptional cases when the survivability model
PATH RESTORATION is used, the implemented algorithm to test feasibility yields an ezact
decision. That is, if there exist feasible routings for a given choice of admissible capacities then
D1soNET will compute such routings. In the other case, if no routings can be computed, then it
is proven that no feasible routings exist. (We are not aware of any other tool that implemented
this feature.) For given routings, DISCNET provides different views such as the table shown in
Figure 4.12.

= Routing =1
Show Options
State | Name | Source |  Target | value | Flow [ Edges
NOS 1 Duesseldorf Aachen 7.0 7.0 55
NOS 36 Nuernberg Frankfurt 5.0 5.0 19823
NOS ~[35 [Frankfurt  |Aachen 40 |40 55 31
NOS 34 Duesseldorf Hannover 5.0 5.0 29713
NOS 33 Magdeburg Kassel 2.0 2.0 7
NOS 32 Berlin Magdeburg 4.0 4.0 47
NOS 131 Magdeburg Erfurt 3.0 [3.0 247
NOS 30 Erfurt Frankfurt 7.0 7.0 27
NOS 29 Dresden Erfurt 8.0 5.0 38
15 374243
1.0 43334549
0.5 24 7 47 49
NOS 28 Kassel Frankfurt 11.0 11.0 18 ~|
Status
1 all operating states

Figure 4.12: Example of a visualization of routings
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digital cross-connect, 15

dimension, 8

diversification cover, 88
diversification-band, 75
diversification-band inequality, 77
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divisibility property, 36

dual linear program, 9

edge, 8, 9
edge-disjoint, 10
edge-flow variable, 40

end-nodes
of a path, 10
of an edge, 9

Erlang, 17, 19

facet, 8

facet-defining, 8
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diversification-partition, 92
knapsack-partition, 86
metric, 49
strengthened 2-band, 81
strengthened band, 80
strengthened knapsack-partition, 98
strengthened metric
DiscRETE CAPACITIES, 66
DivisiBLE Basic CAPACITIES, 83, 97

integer capacity variable

D1sCRETE CAPACITIES, 35
DivisiBLE BAsic CAPACITIES, 36

knapsack-partition inequality, 86
linear independent, 7
linear program, §

logical communication path, 14

maximal

2-band, 71
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mobile services switching center, 13
mobile stations, 12
multiplexer, 24

network and switching subsystem, 12
network subsystem
base station subsystem, 12
mobile stations, 12
network and switching subsystem, 12
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node, 9
node-cover, 10
node-disjoint, 10
normal operating state, 32

odd cycle, 10

odd-cycle node-cover, 10
operating state, 32
operation subsystem, 12
optimal solution, 9

parameter
DIVERSIFICATION, 41
PATH RESTORATION, 44
RESERVATION, 42
path-length restriction, 38
path, 10
inner nodes, 10
length, 10
node-disjoint, 10
short, 38
valid, 38
path variable, 38
peak hour, 19
plesiochronous digital hierarchy, 23
polyhedron, 8
polytope, 8
pulse code modulation, 23

quality guarantee, 102
quality of service, 17

radio interface, 13
radio transceivers, 13
residual band-demand, 75

separation problem, 102
short path, 38
simple graph, 9
starting heuristic
branch&cut path, 142
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strengthened band inequality, 80
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98
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subgraph, 9
subscriber identity module, 13
supply graph, 31
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DIVERSIFICATION, 41
PATH RESTORATION, 44
RESERVATION, 42
surviving demand, 32
switching network, 15
switching node, 13
synchronous digital hierarchy, 23
synchronous transport module, 25

technology, 36

tight inequality, 8

time division multiplexing, 24
transport network, 15
transposition, 7

tree, 10

uncapacitated network design problems, 103
undirected graph, 9
unit capacity, 36

valid
2-band, 70
band, 69
valid inequality, 8
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virtual containers, 25
visitor location register, 13
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