
On Combinatorial Optimization Problems 
Arising in Computer Systems Design 

Carlos E. Ferreira 

November 3, 1997 



Contents 

Introduction 9 

1 The Mathematical Mode lo f the Application 15 
1.1 Description of the problem 16 
1.2 A formulation using 0/1 variables 21 
1.3 Simplifications of the exact model 23 

1.3.1 First simplification: the Multiple Knapsack Problem . . . . 23 
1.3.2 Second simplification: the Multicut Problem on Hypergraphs 25 

2 The 0 /1 Single Knapsack Problem 27 
2.1 Presentation of the Problem 28 
2.2 Dynamic Programming Algorithm 30 
2.3 Approximative algorithms 31 

2.3.1 Polynomial time approximation scheme 32 
2.3.2 Fully polynomial approximation schemes 34 

2.4 The Single Knapsack Polytope 36 
2.4.1 Facet defining inequalities for the Single Knapsack Polytope 37 
2.4.2 The lifting procedure 40 
2.4.3 An overview on the Single Knapsack Polytope 43 

3 Al i terature overview 51 
3.1 The Multiple Knapsack Problem 51 

3.1.1 Presentation of the problem 52 
3.1.2 Exact algorithms for the MKP 53 
3.1.3 Heuristic algorithms for the MKP 57 

3.2 The Generalized Assignment Problem 59 
3.2.1 A formulation of GAP using 0-1 variables 59 
3.2.2 A brief literature survey on the GAP 60 
3.2.3 Polyhedral investigations 61 

3.3 General Zero One Programming 63 

1 



2 CONTENTS 

4 APolyhedral Investigationofthe M K P 65 
4.1 The Multiple Knapsack Polytope 66 
4.2 Some initial results on facet defining inequalities 67 
4.3 Extended Cover Inequalities 69 
4.4 Extended (1,d)-Configuration Inequalities 74 
4.5 Combined Covers Inequalities 78 
4.6 Heterogeneous Two Cover Inequalities 84 
4.7 Multiple Cover Inequalities 87 
4.8 Further Joint Inequalities 93 
4.9 Extending facet defining inequalities 96 
4.10 Concluding remarks 103 

5 ABranch and Cut Algori thm for M K P 105 
5.1 The Branch and Cut Method 106 
5.2 Separation strategies 107 

5.2.1 Separating Minimal Cover Inequalities 109 
5.2.2 Separating (1,k)-Configuration Inequalities 113 
5.2.3 Separating Multiple Cover Inequalities 114 
5.2.4 Separating Heterogeneous Two Cover Inequalities 115 
5.2.5 Separating Extended Cover Inequalities 116 
5.2.6 Lifting and Complementing 118 

5.3 Heuristic procedures 121 
5.3.1 Rounding heuristics 121 
5.3.2 Randomized rounding 123 
5.3.3 Improvement heuristic 125 

5.4 Branching strategies 127 
5.5 Further implementation details 127 
5.6 Computational results 129 

5.6.1 Description of the problem instances 130 
5.6.2 Small and random instances 132 
5.6.3 Practical problems 132 

5.7 Final remarks 137 

6 Mult icut Problems 139 
6.1 Classifying multicut problems 139 
6.2 The Maxcut Problem 140 
6.3 The Equicut Problem 142 
6.4 Other Multicut Problems 145 
6.5 The Node Weighted Multicut Problem 147 



CONTENTS 3 

7 APolyhedral Investigation for the M P H 151 
7.1 The Multicut Polytope on Hypergraphs 151 
7.2 Some initial results 154 
7.3 Net Inequalities 158 
7.4 Tree Inequalities 161 
7.5 Cycle Inequalities 164 
7.6 Further facet defining inequalities 169 

8 ABranch and Cut Algori thm for M P H 173 
8.1 Separation procedures 173 

8.1.1 Separating Net Inequalities 174 
8.1.2 Separating Tree Inequalities 175 
8.1.3 Separating Cycle Inequalities 177 

8.2 Primal heuristics 180 
8.2.1 Bin-Packing heuristic 181 
8.2.2 Improvement heuristic 183 

8.3 Computational results 184 

Summary 189 

Bibliography 191 

Index 198 



4 CONTENTS 



List of Figures 

1.1 Routing nets with external pins 18 
1.2 The internal cost function I k of some module k 19 

3.1 Branching strategy of Ingargiola and Korsh 54 

4.1 Extended Cover Inequality. . 70 
4.2 Combined Covers Inequality 79 

5.1 Simplified flow chart of the Branch and cut method 108 

6.1 A bicycle 8-wheel 142 
6.2 A mesh with 31 nodes and 50 edges. . 143 
6.3 A (5,3,3)-path-block-cycle. . . 144 
6.4 A Casserole Inequality 147 

7.1 A tree 162 
7.2 Example of a Tree Inequality. . 163 
7.3 Example 8.5.3. . 168 
7.4 Example 8.5.4. . 169 
7.5 Example 8.5.5. . 169 

5 



6 LISTOFFIGURES 



List of Tables 

5.1 Minimal cover separation CJP-heuristic. . 110 
5.2 Minimal cover separation CT-heuristic. . . 112 
5.3 Comparison: CJP and CT heuristics. . 113 
5.4 (1,k)-configuration separation: comparison of heuristics 115 
5.5 Comparison of lower bound obtained using only individual and 

individual and joint inequalities 118 
5.6 Comparison of LB obtained by using complementing heuristic. . . 120 
5.7 Random examples. . 121 
5.8 Rounding Heuristic: comparison between different orders 123 
5.9 Randomized Rounding 124 
5.10 Time needed to find an optimal solution (min:sec). . . 124 
5.11 Improvement heuristic 126 
5.12 Time to find an opt. sol. with improvement heuristic (min:sec). . . 126 
5.13 Solution time using different branching strategies (min:sec). . . . . 128 
5.14 Number of variables fixed by reduced costs. . 129 
5.15 Description of the examples mk 130 
5.16 Description of the examples cb. . 130 
5.17 Description of the examples cl. . 131 
5.18 Description of the examples pd. . 131 
5.19 Solution of the examples mk 132 
5.20 Solution of random examples. . 133 
5.21 Solution of the examples cb. . 133 
5.22 Solution of the examples cl. . 134 
5.23 Solution of the reduced instances of cl2 135 
5.24 Time for solution under 5%. . 135 
5.25 Solution of the instances of pd. . 135 
5.26 Solution of the reduced instances of pd examples. . 136 
5.27 Time for solution under 5%. . 136 

8.1 Net Inequalities. . 175 
8.2 Tree Inequalities. . 178 
8.3 Cycle Inequalities. . 181 
8.4 Bin-Packing Heuristic. . 183 
8.5 Improvement Heuristic 184 

7 



8 LIST OF TABLES 

8.6 Description of problem instances. . 184 
8.7 Distribution of the nets. . 185 
8.8 Computational results. . 186 
8.9 Distribution of computer time 187 
8.10 Bounds on external wires. . 188 



Introduction 

There is no doubt that computer aided design is a major research area of our 
time. In this thesis we face a very interesting practical problem in computer sys­
tem design, proposed by a computer manufacturing company. We will illustrate 
on that particular application, that practice gives rise to interesting (and diffi­
cult!!) mathematical problems and, at the same time, that mathematical methods 
can provide important contributions to solving real problems. In practical appli­
cations, different questions can be proposed to a problem solver. Sometimes one 
is interested in finding in reasonable time an optimum solution for the problem. 
Sometimes, time constraints are too restrictive, and one is forced to satisfy one­
self with “good” solutions found very fast, or possibly very good solutions at the 
expense of some more time. The methods of Combinatorial Optimization provide 
us with tools to contribute to all these questions. 

Combinatorial Optimization problems have been a challenge for mathemati­
cians, computer scientists and engineers for many decades. In general, they can 
be defined as follows: Given a finite set S, and a cost (or profit) function defined 
on this set, find an element of S that minimizes (maximizes) the given function. 
Usually S is defined implicitly, through, for example, the properties that the el­
ements of S must satisfy. Another interesting characteristic of such problems is 
that often it is not difficult to generate the elements of S, or to decide whether a 
given element is in S or not. Though finite, S can be very large, and a solution 
method like “list all possible solutions and choose the best one” leads eventually 
to some years of computations, even on the most modern computer systems. 

For some Combinatorial Optimization problems there are efficient algorithms 
that solve them to optimality, that is, algorithms that in reasonable time find 
an element of S that maximizes (minimizes) the profit (cost) function. This is 
the case, for example, for the problem of finding a spanning tree with minimum 
weight in a given graph with a weight function on the edges, or the problem of 
finding a matching with maximum weight in a graph with a weight function on the 
edges. For other Combinatorial Optimization problems, like the Traveling Sales­
man Problem, Knapsack Problem, and so on, however, no efficient algorithm is 
known. Many people believe that these problems are, in some sense, harder than 
the ones mentioned above. In fact, these problems are proven to be “difficult” 
(NP-hard). The question: “Does there exists a polynomial time (or efficient) 
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10 INTRODUCTION 

algorithm for a NP-hard problem?”, abbreviated P = N P ? , has been the major 
theme in theoretical computer science for the last 20 years. It turns to be an in­
teresting phenomenon (or even a conspiracy) that most interesting problems (as 
the discussed in this thesis) are NP-hard. In this thesis, we study two Combi­
natorial Optimization problems arising from a practical application: the Multiple 
Knapsack Problem and the Multicut Problem on Hypergraphs. Let us introduce 
them. 

The Knapsack Problem is probably one of the most studied problem arising 
in the field of Operations Research. It can be defined as follows. Given a set N 
of items, vectors f,p e INN, where f contains the weights of the items and p the 
profits, and a natural F e N the knapsack capacity, one wants to find a subset 
S C N such that J2ieS fi<F and i^Sp i is maximum. The fascination of the 
problem arises in the fact that, though the problem is known to be difficult (NP-
hard), there are very good approximation algorithms for it, that run in polynomial 
time and yield solutions that are arbitrarily close to the optimum value. In this 
case, although one cannot give an efficient algorithm to solve the problem, it is 
possible to provide “good” solutions quickly. In some sense the problem seems to 
be “easier” than other difficult problems, such as the Traveling Salesman Problem. 
In this thesis we study the Multiple Knapsack Problem, a generalization of the 
Knapsack Problem in which more than one knapsack are available. This problem 
has also been proven difficult. 

In general, one can define a Multicut Problem in the following way. Given a 
graph (or a hypergraph) G = (V,E), the Multicut Problem consists in finding 
a partition of V into k subsets that maximizes (or minimizes) some function. 
Two examples of problems of this type are the so called Mincut and Maxcut 
Problems. In the first case, a graph G = (V, E) is given with a nonnegative 
function w defined on E and it is desired to find a partition of V into two parts, 
such that the sum over the weights of the edges with one endnode in each of 
these sets is minimum. In the Maxcut Problem, the function w has arbitrary 
values, and one looks for a partition of V into two parts, such that the sum over 
the weights of the edges with one endnode in each part is maximum. These two 
examples are especially interesting, because the Maxcut Problem is NP-hard, 
while there is a polynomial time algorithm for the Mincut Problem. The Multicut 
Problem we are interested in is the following. Given a hypergraph G = (V,E), 
a set M, functions f : V —> IN, g : E —> IN, cost functions c : V x M —• N 
and d : E —• IN, and vectors F, S e INM. The problem consists in finding 
a partition V = (V1,..., Vj) of V such that j < \M\, J2veVk f(v) < Fk for all 
k e M, J2eeδ(Vk) g(e) < Sk for all k e M, where δ(Vk) is the set of edges with 
exactly one endnode in Vk, and this partition has minimum cost, that is, minimizes 

^M J2eeδ(Vk) d(e) + J2keM J2veVk c(v, k). z2 
As mentioned above, our research was motivated by some practical application 

in computer systems design. This topic arises in the phase of the global design 
where certain components have been already defined, the networks connecting 
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components are also defined and we want to decide how to group the components 
and how to integrate them on a given number of multichip modules or printed 
circuit boards. We present now a rough description of this application. 

Suppose a computer system with several components and some modules (mul­
tichip modules or printed circuit boards) to which these components must be as­
signed. There are technological constraints that make certain assignments invalid. 
One example of such a technological constraint is that the components must be 
placed on a module without overlapping. Some components are linked by sev­
eral nets. If one separates the components of some net into two modules, a wire 
must link these modules. The number of wires leaving a module is limited by 
technological reasons. This problem can be modelled as a 0/1 integer program. 
The mathematical problem that arises from this model turns out to be “hope­
less”. One possible idea to overcome this difficulty is to consider simplifications 
of the model, trying to obtain an approximate solution as close as possible to 
the original problem. The Multiple Knapsack Problem arises as a first “difficult” 
subproblem of this model. Let N be the set of components, f = ( f i ) the area of 
these components, M the set of modules, F = (Fk) their area, and c = (c ik) a 
cost function associated to assigning component i to module k. The solution of 
the Multiple Knapsack Problem gives a first bound to the solution of the origi­
nal problem, where the net constraints are, in some way, hidden in the objective 
function. Another simplification of the model closer to the original application is 
described in the second part of this thesis, where we address a Multicut Problem 
on Hypergraphs. In the case of our application, besides the above sets and vectors 
we are given a set Z of nets, a vector g = (gt) with the multiplicity of the nets, 
and the vector S = (Sk) which expresses the maximum number of external wires 
allowed to leave each module. The solution of the multicut problem gives us a 
closer bound to the value of the optimum solution of the real problem. 

Our main objective in this thesis is to study both problems derived from the 
application in computer systems design, and present solution approaches to them. 
Solution in the meaning of the questions we mentioned in the very beginning of 
this introduction: our aim is to provide optimal solutions, or, at least, provable 
“good” solutions for large scale instances in reasonable computer times. The 
approach suggested in this thesis is a Branch and Cut Algorithm. Using this 
approach, very good results in solving large scale Combinatorial Optimization 
problems (e.g. the Traveling Salesman Problem) have been obtained in the last 
years. 

This thesis is structured as follows. In Chapter 1 we state our terminology 
and present some notation and basic results in graph theory, linear algebra and 
polyhedral theory. In Chapter 2 we present a description of the application and 
the model we propose using 0/1 variables. Moreover, in this chapter the problems 
we study in the rest of the thesis are presented: the Multiple Knapsack Problem 
and the Multicut Problem on Hypergraphs. 
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Chapters 3 to 6 address the Multiple Knapsack Problem. Chapters 3 and 4 are 
mainly dedicated to a literature review of the problem and related ones. Chapter 
3 addresses a very important special case of the Multiple Knapsack Problem, 
namely, the Single Knapsack Problem. In this chapter we survey some of the 
results of the literature on this problem, discussing, for example, polynomial and 
fully polynomial approximation schemes. Further, some important definitions 
and results on facet defining inequalities for the Single Knapsack Polytope are 
presented. In Chapter 4 we present a literature survey on the Multiple Knapsack 
Problem. Moreover, we present some other related problems of the literature: 
the Generalized Assignment Problem and the General Zero-One Programming 
Problem. We address especially polyhedral investigations to these problems. 

We finish our discussion about the Multiple Knapsack Problem studying a 
polytope associated with it, and by presenting a Branch and Cut Method for its 
solution. This is the subject of Chapters 5 and 6. More precisely, in Chapter 
5 we associate the elements of the solution set of the problem with the vertices 
of a polytope and investigate its properties. We derive, besides some basic re­
sults (we show, for example, that every facet defining inequality of the polytope 
associated with a single knapsack constraint constitutes a facet of the polytope 
associated with the Multiple Knapsack Problem), new classes of facet defining 
joint inequalities of this polytope. In Chapter 6 we present an implementation of 
a Branch and Cut Algorithm for the Multiple Knapsack Problem. In this chapter 
we use the knowledge of the polyhedral characteristics of the polytope described 
in Chapter 5. Further, implementation details and computational results of the 
algorithm applied to small instances and practical problems are also presented. 

Chapters 7 to 9 are dedicated to Multicut Problems on graphs and hyper-
graphs. In Chapter 7 we state the problem that we study and present some related 
problems and a brief literature survey on the subject. In Chapter 8 polyhedral 
investigations of the polytope associated with the Multicut Problem on Hyper-
graphs are presented. We show, for example, which results from the subproblems 
can be inherited, and present new classes of facet defining inequalities combining 
node and edge variables. These results are used as a basis for a Branch and Cut 
Algorithm, which is described in Chapter 9. 

This thesis has been made under the excellent supervision of Prof. Dr. Martin 
Gr¨otschel. His critics and suggestions were indispensable. Most of all, his encour­
agement and enthusiasm motivated me a lot during these years. I am very grateful 
to his support. Most of the work presented in this thesis has been made jointly 
with Dr. A. Martin and Dr. R. Weismantel. My work in Germany began in 
the University of Augsburg and has been concluded in the Konrad-Zuse-Zentrum 
fu r̈ Informationstechnik Berlin (ZIB). My best thanks to both institutions that 
provided the facilities during my research. In particular, thanks are due to Prof. 
Dr. Karl-Heinz Borgwardt (Augsburg), Prof. Dr. Robert E. Bixby (Rice Uni­
versity and – in 1992 – TU Berlin) and Prof. Dr. Rolf M¨ohring (TU Berlin). 
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Wahre) was very important during my study. Further, special thanks also to the 
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the University of S̃ ao Paulo, whose program of sending students abroad to com­
plete their PhD. studies made it possible to me being in Germany for four years 
with financial support. 

There are several people to them I would like to say my muito obrigado and 
my Dankesch¨on. My Dankesch¨on goes to Ralf Bornd¨orfer, Dr. Alexander Martin 
and Dr. Robert Weismantel with whom I had almost daily interesting discussions 
about the themes here discussed. Their careful revisions of the first versions 
of this thesis have avoided several errors. Of course the remaining errors in 
this final version are only my responsibility. Moreover, and, for me, even more 
important, their encouragement and friendship (including Alex’s and Robert’s 
families) were really decisive during these years. I am also very grateful to the 
other colleagues in the combinatorial optimization department of ZIB, that showed 
me how professional and cooperative a team can work. Dankesch¨on!! 
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Chapter 1 

The Mathematical Model of the 
Application 

This thesis was motivated by an application concerning some aspects that arise 
in the design of main frame computers. We do not present an exact mathematical 
model involving all possible aspects in the design of a main frame computer. This 
would be a very difficult job. The topic considered here comes up in the phase 
of the global design. We consider the problem of distributing the components 
of a computer system (memory, IO devices, CPU’s, etc.) onto the boards (or 
modules) that constitute this system. There are several technological constraints 
that make some possible distributions invalid. Moreover, also due to technological 
reasons, some distributions may be realizable in a cheaper manner. The task we 
would like to model is: Find a valid assignment of the computer components to 
the modules that causes minimum realization costs. As we are going to see is this 
section, the mathematical problem arising from this practical application turns 
out to be very complicated. Exact approaches to solve these problems would 
require hundreds of thousands of variables. A possible approach to solve these 
real problems approximately is to consider simplifications of the exact model. In 
such simplifications some constraints are relaxed or substituted in the objective 
function using penalties, or some variables are left out. We suggest two simpli­
fications of the original model in this chapter giving rise to treatable (but still 
difficult) mathematical problems: the Multiple Knapsack Problem and the Multi-
cut Problem on Hypergraphs. In the rest of this thesis we suggest an approach 
to solve these problems. The results in this chapter has been obtained in a joint 
work with Siemens Nixdorf and are published in [FGKKMW93]. 

In this chapter we go into details, presenting more precisely the application 
we are interested in. This is done in Section 2.1. Section 2.2 is devoted to the 
presentation of a model of the problem using 0/1 variables. The last section 
addresses simplifications of the model presented in 2.2. A first simplification 
motivates the study of the Multiple Knapsack Problem (object of investigation of 
the Chapters 3 to 6). Another simplification of the model proposed in 2.2 is also 
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16 CHAPTER 1. THE MATHEMATICAL MODEL OF THE APPLICATION 

presented, that gives rise to the Multicut Problem on Hypergraphs. A study of 
this problem is presented in Chapters 7 to 9. 

1.1 Description of the problem 

In the application we want to solve, we are given a list of electronic compo­
nents. For our problem, it is usual to view these components as two-dimensional 
rectangles, but there may also be a few differently shaped units or “dummy com­
ponents” to reserve space on certain modules. The most important property of 
the electronic circuits - for our purposes - is the area that these components 
cover. We abstract from the technical details by saying that a set N of items (the 
components) is given where each item i G N has a weight fi G N. 

The electronic components have to be integrated on printed circuit boards, 
multi chip modules or other devices. There may be various types of printed circuit 
boards. Each of these devices is defined by several technical properties that we 
do not intend to describe here. We call these devices modules from now on and 
denote the set of modules that are available by M. Three properties of modules 
are important for us. Every module k G M has a capacity Fk, representing its 
“area” or the weight it can hold, a cut capacity Sk, describing the number of wires 
that can be connected to this module, and a (generic) cost Kk, representing the 
corresponding fabrication cost of that particular module. 

The electronic components have certain contact points, called pins, from which 
wires can extend to pins of other components. In the logical design phase it is 
determined which pins of which components have to be connected by a wire to 
ensure certain functional properties. Usually, a collection of pins that have to be 
connected is called a net. We simplify the situation by essentially disregarding the 
pins (their number will only enter the objective function, see below). We define 
a net to be a subset of the set of items and we ignore which of the pins of the 
components are to be connected. The list of nets is denoted by Z := {T\ , . . . , Tz}. 
We set Z := { 1 , . . . , z} and, for simplicity, we will often speak of net t G Z instead 
of net Tt G Z. 

For some nets t, it is necessary to partition the set Tt into two subsets St and 
Rt (with StURt=Tt, Str\Rt = $). The items of St are called drivers. They 
transmit information over the wire to the items in Rt. Rt consists of so-called 
“receivers” and “termination resistors”. 

Our task is to assign the items (electronic components) N to the modules 
(printed circuit boards, . . . ) M in such a way that a certain objective function 
is minimized and a number of technical side constraints is satisfied. Our way of 
approaching the practical problem reduces the technical side constraints to three 
essential requirements. Let us describe these now. 

Suppose an assignment of items to modules a : N - • M is given. For each 
module k G M, let B(k) denote the set of items that are assigned to module k. 
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For an assignment to be feasible, the following conditions must hold: 

• Knapsack constraints: 
For each module k, the weight of the items that are assigned to that module 
must not exceed the capacity Fk of the module, i.e., £ i e B ( k ) fi < Fk. 

• Cut constraints: 
The number of nets t with TtC\B(k)=$ and Tt g B(k) must not exceed 
the cut capacity Sk of module k for all k e M. 

• Net constraints: 
There are two special classes of nets, the one-module nets and the s-r nets. 
These special nets must satisfy respectively the following rules. 

(R1) one-module nets: a net of this type must have all its components as­
signed to the same module. 

(R2) s-r nets: either all items of a s-r net t must be assigned to the same 
module, or all items of St must be assigned to the same module, say 
k, but none of the items of Rt may be assigned to k. 

Clearly, the knapsack constraints are meant to ensure that the items assigned 
to some module fit onto that module. Note, however, that the 2-dimensional 
problem of packing components onto devices is approximated in our model by 
a 1-dimensional problem. It may, in fact, be possible that the components of a 
feasible solution in the latter sense do not fit onto the board when the problem 
is considered in its (real) 2-dimensional version. The reason for considering the 
1-dimensional simplification is that, at the time when the present model is solved 
(repeatedly), the exact design of the components is usually not completed. There 
exist good estimates for the component areas and there is some flexibility with 
respect to giving the components their final shape. Reasonably sized “dummy” 
items produce empty spaces on the modules that help to finally place the compo­
nents. Thus, the 1-dimensional simplification is - at this stage of the process - a 
reasonably good model of what the designer has in mind. 

For each module k, there exists a so-called “connector” which contains a cer­
tain number of pins. These pins can be employed to connect items placed on k 
to items on other modules. The number of pins of the connector that can be used 
for inter module wiring from k is the cut capacity Sk. Since every net that has 
an item on k and at least one other not on k uses exactly one of these pins we 
obtain the cut constraint. 

The reason for introducing the (significantly complicating) net constraints is 
of very technical nature. We omit a detailed discussion of this aspect. 

Let us now explain the objective function we came up with. The objective 
function is of the form 
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min J2 Kk-Ik(a) + λ-C(a). 
keM 

We first describe the second term of the objective function, the so-called exter­
nal cost of the assignment a. The external cost C(a) depends only on the number 
of nets whose items are assigned to different modules. In order to explain the 
function C(a) exactly we must describe some technical issues of the problem in 
more detail. Of course, the design of a main frame computer is not finished af­
ter assigning the items to the modules. Thereafter, the items must be physically 
placed onto each module and the nets must be physically routed, i.e., connected 
via wires. Routing of a net t whose items are assigned to different modules is 
done as follows (see Figure 1.1). For each module k with B(k) n Tt = 0 and 
Tt % B(k) an additional pin at the border of the module, a so-called external 
pin, is introduced (see the black rectangles in Figure 1.1). A routing for net t 
is obtained by connecting the items of B(k) n Tt within each module with the 
corresponding external pin (see dotted lines in Figure 1.1) and by connecting the 
external pins via a so-called external wire (see dashed lines in Figure 1.1). 

Figure 1.1: Routing nets with external pins. 

The cost of an external wire is approximated in the objective function by the 
number of external pins. If p(t) denotes the number of external pins for some net 

(*) 



1.1. DESCRIPTION OF THE PROBLEM 19 

t (where p(t) := 0, if all items of net t are assigned to the same module), we define 
C(a) := J2teZp(t). The factor λ in the second term of the objective function is 
a penalty parameter that weighs the external cost in relation to the first term of 
the objective function, the so-called internal cost. 

k + ck
2 + ck 

ck + 

η \ 
-\  
η k + η2

k 
ηki 

k k k + η2 + η k 

n(k) 

Figure 1.2: The internal cost function Ik of some module k 

The internal costs consist of the sum of the internal costs for each module. 
Consider some module k e M. The routing of the nets inside module k is per­
formed on so-called layers. On each layer only a certain number of nets can be 
connected. The number of layers necessary to do the complete routing strongly 
depends on the technology used to produce the printed circuit board or the multi 
chip module. In our case it is estimated as follows. For each net teZ,we set 

\Tt\-1, i fT t CB(k ) , 
wk(t):= \TtDB(k)\, ifTtnB(k)=fb,Tt£B(k), 

0, else, 

and we define an auxiliary number n(k) by n(k) := TteZwk(t). The number 
of layers necessary to assign all items of Bk grows with the number n(k). The 
production cost of one module mainly depends on the number of layers that are 
necessary. Each installation of a layer costs a certain amount, but the total 
cost of a module grows superlinearly with the number of layers, since production 
faults in a later stage usually destroy successful work on the initial layers. This 
cost function can be expressed by a staircase function (denoted in the objective 
function by Ik(a)). Let us now explain this function in more detail (see also 
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Figure 1.2). For each layer l, we denote by ck
l the installation cost for layer l 

and by ηl
k the “capacity” of layer l. Let l* denote the smallest integer such that 

TLiηl
k > n(k), i.e., l* is the smallest number such that the system of nets that 

connects the components and external pins on module k can (probably) be routed 
when module k is designed as a device with l* layers. Then, Ik(a) is set to YLi ck

l. 
Summing up our previous discussions we can formulate the module design 

problem for a main frame computer as follows: 

(Module Design Problem) 
Given data: 

• A set N of items. Each item i e N has some weight fi. 
• A set M of modules. With each module k G M a capacity Fk, a 

cut capacity Sk and a cost factor Kk are associated. 
• A list of nets Z = {TU...,Tz} with Tt C N for t £ Z = 

{1,...,z}. 
• A list of one-module nets. 
• a list of s-r nets, and for each net t, sets Rt and St containing the 

sender and receiver items. 

Problem: 

Find an assignment of the items to the modules such that 
the knapsack constraints, the cut constraints and the net 
constraints are satisfied and such that the objective function 
(*) is minimized. 

Our problem analysis has revealed that some of the technical requirements can 
be treated easily. We do this in a preprocessing stage and describe here two such 
cases concerning the net constraints. 

Preprocessing 

Suppose t is a one module net (described in (R1)). In this case we simply define a 
new item i< with weight fi := £ i e T t fi. The new set of items is N' := (N\Tt)U{i'}. 
Thus, the net constraint (R1) is automatically satisfied if we assign the items of 
N' to the modules of M by taking all other constraints into account. 

In the same manner we can simplify net constraint (R2). Suppose t is a s-r net. 
Let St be the set of senders and Rt the set of receivers or termination resistors, 
respectively. Again, we introduce a new item i< with weight fi := J2ieSt fi and 
set N' := (N \ St) U {i'}. After doing this iteratively we can assume that each s-r 
net t has exactly one sender, i.e., 1St1 = 1. 

These changes, of course, imply an obvious redefinition of the nets and an 
adjustment of the objective function. 
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1.2 A formulation using 0 / 1 variables 
In this subsection we provide a 0/1 programming formulation of the module design 
problem. For that purpose we introduce the following four sets of 0/1 variables. 

For all items i ∈ N and all modules k ∈ M , we introduce a variable x i k with 
the interpretation 

I 1, if item i is assigned to module k, x ik := 
0, else. 

For every net t ∈ Z and every module k ∈ M , we introduce three variables 
y tk, yt

1
k and yt

2
k with the following interpretation. 

1, if some items of Tt are assigned to module k 
ytk := but not allofthem, 

0, else. 

yt
1
k := 

yt
2
k := 

1, if at least one item of Tt is not assigned to module k, 
0, else. 

1, if at least one item of Tt is assigned to module k, 
0, else. 

Note that there are dependencies between the variables y tk, yt
1
k and yt

2
k. How­

ever, for ease of exposition of the constraints, it is convenient to introduce all 
three sets of variables. For every module k, there is an upper bound l k , say, of 
layers available. This integer depends on the production technology used. In or­
der to model the staircase function I k , we introduce a variable vl

k for each layer 
l = 1 , . . . , l k and each module k ∈ M . 

These variables have the following meaning: 

= / 1, ifn(k) > E l = 1 
: 0, else. 

ηr
k 

With these four sets of variables we are able to model the side constraints of 
the module design problem, i.e., the knapsack constraints, the cut constraints and 
the net constraints. 

(2.1) X x i k = 1, forallieN, 
keM 

i.e., each item is assigned to exactly one module. 

(2.2) Y, fixik ^ Fk, for allk ^ M, 
ieN 
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i.e., the knapsack constraints must be satisfied. 

(2.3) J2ytk<Sk, for all k GM, 
teZ 

i.e., the cut constraints must be met. 

(2.4) xsk + xik<2- y1
tk, for all s-r nets t e Z and for all i G Rt 

(where {s} = St). 

These inequalities are derived from the following reasoning. If yt
1
k = 0, that is 

all items of net t are assigned to module k, inequality (2.4) is obviously valid. 
On the other hand, if yt

1
k = 1, which means that at least one item of net t is not 

assigned to module k , the sender s and a receiver (resp. termination resistor) 
i G Rt cannot both be assigned to module k. Thus, (2.4) ensures that the net 
constraints (R2) are satisfied. Note that net constraints (R1) are handled in the 
preprocessing phase. 

The following constraints (2.5) to (2.9) are necessary to logically connect the 
involved variables. 

(2.5) Y,xik + \Tt\yt
1
k>\Tt\, for all k G M, t e Z, 

ieTt 

\Tt\yt
1
k > \Tt\, for all keM,te 

e k, ytk 

i.e., if E i e T t xik < \Tt\, which means that not all items of net Tt are assigned to 
module k, yt

1
k must be one. 

(2.6) J2 xik + ytk <\Tt\, for all k G M, t G Z, 
ieTt 

i.e., if E i e T t xik = \Tt\, which means that all items of net Tt are assigned to module 
k, yt

1
k must be zero. 

(2.7) Y. xik - \Tt\y 2 < 0, for all k G M, t G Z, 
ieTt 

i.e., if J2ieTt xik>1, which says that at least one item of net Tt is assigned to 
module k, y2

tk must be one. 

(2.8) J2 xik - ytk > 0, for all k G M, t G Z, 
ieTt 

- y2
tk > 0, for all k G M, t G 

i.e., if E i e T t xik = 0, that is, no item of net Tt is assigned to module k, y2
tk must 

be zero. 

(2.9) yt
1

k + yt
2

k = 1 + ytk, for all k G M, t G Z, 

i.e., if ytk = 0 either yt
1
k or yt

2
k must be zero. On the other hand, if ytk = 1 both 

yt
1

k and yt
2

k must be one. From equation (2.9) we conclude that, for each pair tk, 

file:///Tt/y
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one of the variables yt
1

k,yt
2

k or ytk is redundant. However, we have introduced all 
three types of variables here to simplify the explanation of the model. 

In order to obtain a correct formulation of the objective function, the following 
constraints are introduced. 

(2.10) J2 ( E xik + yt
1k - 1) - E ηl

kvl
k < 0, 

teZ ieTt l=1 
v k k k >vk

2>...> . . . > v l
k , for all k GM. 

It is easy to see that for a given k e M, wk(t) = J2ieTt xik + yt
1
k - 1. This 

implies that n(k) = EteZ(EieTtx ik + ytk - 1). Hence, this set of inequalities 
models that vl

k = 1 for alll = 1 , . . . , l*, where l* is the smallest integer such that 
E l

l l1 ηl
k > n(k). All other variables vl

k, l e {l* + 1 , . . . , lk}, are equal to zero, since 
the (positive) internal costs are minimized in the objective function. 

Finally, we require that every variable is either zero or one. 

x i k £ { 0 , 1 } , for all i G N, k e M, 
(2.11) ytk,yt

1
k,yl e {0, 1}, for allteZ,ke M, 

v t k e { 0 , 1 } , for all l = 1,...,lk, keM. 

These eleven sets of inequalities model all technical side constraints considered 
in our version of the real task. The objective function expressed in terms of the 
0/1 variables is of the form 

(2.12) min ^ Kk f > k ^ k + λ ̂  ^ ytk. 
keM l =1 teZkeM 

This objective function corresponds to the one described in (*). This follows 
from the fact that constraints (2.10) ensure that, for every k e M, the expression 
El

l
k

=1 ck
lvl

k models the staircase function Ik. Moreover, for each net t G Z, the term 
J2keMytk corresponds to the number of external pins p(t). 

1.3 Simplifications of the exact model 
As pointed out in the introduction of this chapter, to solve the mathematical 
problem arising from the formulation given in the last section exactly seems to be 
(at the current standards of integer programming) hopeless. One idea to attack 
the problem is to consider simplifications of it. In this section we present two 
simplifications to this problem, giving rise to the problems studied in this thesis: 
the Multiple Knapsack Problem and the Multicut Problem on Hypergraphs. 

1.3.1 First simplification: the Multiple Knapsack Problem 
In this simplification we leave out completely the variables associated with the 
nets, considering only the packing aspects of the problem. Our objective is to 
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develop a model using only the variables (x i k) defined in the last section. To this 
end we approximate the staircase function I k by an average value D k , defined as 
follows: 

Kk 
l k k 

c 

We approximate the value n(k) by J2teZ £ i e T t xik. In the last section we see that 
the exact value of n(k) is given by E t e Z ( E i e T t xik + ytk - 1). It means that our 
approximation does not coincide with the exact value when some nets are totally 
assigned to a single module. 

The approximate value of the objective function is, then, given by 

keM teZ ieTt 

Observe that this is a rough approximation of the original objective function, since 
the external costs involved in an assignment are not taken in account. The first 
simplification can be written: 

min £k€M Dk£t=Z EieTt xik 
s.t. (2.1), (2.2), 

x i k ∈{0,1}, for all i ∈ N, k ∈ M. 
We call this special case of the Generalized Assignment Problem (see Section 4.2) 
Knapsack Assignment Problem KAP. The equations (2.1) result, in the approach 
we intend to utilize to solve instances of this problem, in some technical difficulties. 
In order to avoid such technicalities, we introduce the following modification in 
the problem described above. For each equation in (2.1) we introduce a slack 
variable zi, i ∈ N, and a suitably chosen penalty parameter Qi associated with 
zi. The idea is to choose Qi such that the variables zi must be equal to zero in all 
optimal solutions of the modified problem. Then, KAP is clearly equivalent to 

min EkeM Dk EteZ EieTt xik + £ieN Qizi 
s.t. EkeM xik + zi = 1 , for all i ∈ N, 

(2.2), 
xik∈{0,1}, for all i ∈ N, k ∈ M, 
zi∈{0,1}, fo ra l l i∈ N. 

Now, we can eliminate the slack variables of the problem, substituting zi = 
1 - EkeMx ik, for all i ∈ N in the objective function, obtaining, 

min £keM Dk EteZ EieTt xik + EieN Qi(1 - EkeM xik) 
= IiNQi + minEk€M(DkEteZEi€T t x i k - Q i E i € A r ^ ) 

The latter problem, namely, 
min i€N EkEM cikxik 
s.t. EkeMxik≤1 forall i ∈ N , 

E i e N fixik ≤ Fk for all k ∈ M, 
xik∈{0,1} for alH e N, k ∈ M. 
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is well known in the literature (usually in its maximization version) as the Multiple 
Knapsack Problem, and it is the object of study in the first part of this thesis (see 
Chapters 3 to 6). 

1.3.2 Second simplification: the Multicut Problem on Hy-
pergraphs 

In the simplification described in the last section the nets are not taken in account 
at all. We cannot expect to obtain very good solutions of the real problem we 
are interested in, by solving this simplification. Even, it is also not true that 
an optimal solution of the Multiple Knapsack Problem always leads to a feasible 
solution of the Module Design Problem, since the cut constraints are neglected. 

The second simplification is closer to the original problem. We consider both 
variable sets (xik) and (ytk) described in Section 2.2. We use the same approxi­
mation to the internal costs as in the first simplification. The external costs can 
be calculated exactly with variables (ytk). 

For the definition of the (ytk) variables we use a different set of constraints as 
given in Section 2.2. 

(3.1) xik + xjl - ytk ≤ 1 for allt∈ Z,i, j ∈Tt,i= j and k,l ∈ M,k =l, 

i.e., if some items of Tt are assigned to different modules k and l, the corresponding 
ytk and ytl variables must be one. 

(3.2) Zi€Tt xik + ytk ≤ |Tt| for a l l t ∈ Z , k ∈ M, 

i.e., if all items of Tt are assigned to the same module k, variable ytk must be zero. 

(3.3) ytk - E i e T t xik ≤ 0 for allt∈Z,k∈ M, 

i.e., if no item of Tt is assigned to module k, the variable ytk must be equal to 
zero. 

Then, the second simplification can be stated. 

min XkeMDkY^Zxik + λY^ZXkeMytk keM D k teZ x k + λ teZ keM 
s.t. (2.1), (2.2), 

(3.1), (3.2),(3.3) 
(2.3), 
xik∈{0,1}, for alli ∈ N, k ∈ M, 
ytk∈{0,1}, forallt∈Z,k∈M. 

The formulation for the ytk variables, although equivalent to the one given 
in Section 2.2, has the disadvantage that the number of constraints necessary to 
describe the problem is given by J2teZ \|Tt|(|Tt| - 1)|M|(|M| - 1), while in the 
model given in Section 2.2, 5|Z||M| constraints suffice. There are two reasons 
to prefer this formulation. First, this formulation has less variables (only (|Z| + 



26 CHAPTER 1. THE MATHEMATICAL MODEL OF THE APPLICATION 

\N\)\M\). On the other hand, our computational results (see Section 9.3) show 
that we do not need all these constraints in the solution process of the Branch 
and Cut Algorithm to solve the problem instances we are interested. 

Now, we perform the same transformation as in the last section to avoid equa­
tions (2.1), obtaining an equivalent problem with inequalties instead of the equa­
tions in (2.1), and a modified objective function. In our application it occurs that 
several nets link the same set of items. In order to reduce the number of variables 
involved, we introduce for each net t e Z a parameter g t e I N representating the 
weight of net t (“number of copies”). Th h 
written: 

min Yi€Nl2k€Mcikxik+ 
s.t. J2keMxik<1, 

The problem can be, then, equivalently 

for all i e N, 
(2.2), 
(3.1), (3.2),(3.3) 
Y,teZ gtytk < Sk, 
xik e {0,1}, 
ytk e{0,1}, 

We call the problem formulated above Multicut Problem 

for all k ∈ M, 
for all i ∈ N,k ∈ M, 
for all t ∈ Z, k ∈ M. 

on Hypergraphs MPH. 
This problem is investigated in Chapters 7 to 9. 



Chapter 2 

The 0 /1 Single Knapsack 
Problem 

The 0/1 Single Knapsack Problem (short SKP) is among the most intensively 
studied problems in the Operations Research literature. I t can be stated as follows. 

Given is a set N of items, each item i having a profit ci and a weight 
f i . I t is also given a capacity F of the knapsack. We look for a subset 
B ⊆ N, whose total weight does not exceed the knapsack capacity, 
and with maximum profit. 

This problem appears as a subproblem in many complex applications, and this 
fact has been motivating several different approaches for solving it. The aim of 
this chapter is to present some of these approaches, and state some important 
definitions used in the following chapters. I t is not our intention to provide a 
complete overview of the results of the literature. 

We begin the discussion about the SKP in Section 3.1 with a formal presen­
tation and a formulation using 0/1 variables. We present Dantzig’s algorithm for 
the solution of the linear programming relaxation of this formulation. In Section 
3.2 we present a dynamic programming algorithm for the problem. Section 3.3 
focusses on approximative algorithms. Polynomial and fully polynomial approxi­
mation schemes are described. Finally, Section 3.4 addresses the Single Knapsack 
Polytope. In this section we summarize some of the main results of the litera­
ture on facet defining inequalities for the Single Knapsack Polytope. Also some 
important definitions used in the rest of this thesis are presented. 

We would like to finish this introduction to the SKP with some historical notes. 
In Schrijver’s excellent survey on the history of integer linear programming [Sc87], 
one can see that the SKP has been an interesting question for many centuries. Of 
course, after the “invention” of linear programming, a substantial interest arose 
in the solution of this type of problems. The SKP is especially interesting from a 
historical point of view, because one can use it to show, during the last decades, 
the “trends” in Combinatorial Optimization. In the 50’s enumeration techniques 

27 
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were of much interest. In this context, Bellman suggests in [Be54] a dynamic 
programming algorithm for the SKP. Dantzig in [D57] proposed a fast algorithm 
for solving the linear relaxation of the SKP, which we present in the next section, 
and which is used until today to obtain fast bounds for the optimal solution of 
the problem. It was a decisive step for the presentation of branch and bound 
algorithms for the problem. They dominate the literature about the SKP during 
the last years of the 60’s and the early 70’s. With the development of the theory 
of NP-completeness, approximative algorithms has become more interesting. In 
1975, Sahni presented a polynomial approximation scheme for the SKP. In the 
same year, Ibarra and Kim [IK75] suggested a fully polynomial approximations 
scheme. In the late 70’s, the first polyhedral investigations to the problem are made 
by Balas [B75], Hammer, Johnson and Peled [HJP75] and Wolsey [W75]. In the 
80’s large scale instances have been attacked, and several different generalizations 
of the problem (e.g. Multiple Choice Knapsack Problem, Knapsack Problem with 
GUB Constraints, and so on) appear in the literature. 

2.1 Presentation of the Problem 

The 0/1 Single Knapsack Problem SKP can be stated as follows. 

Problem: SKP. 
te set N , f G I N N , F G N a n d c G 

Question: Find a subset B C N , such that £ i e B fi<F and £ i e B ci 

Instance: A finite set N, f G INN, F G N and c G N N . 
h that J2ieB fi<F and £ i e B 

is maximum. 

The problem has been proved to be NP-hard by Karp in [K72]. We present 
a proof for this fact in Lemma 3.1.1, where we prove that the decision problem 
associated with SKP is NP-complete. The decision problem associated with SKP 
(short SKPd) is defined as follows. 

Problem: SKPd. 
Instance: A finite set N, f G N N , F G IN, c G INN and k G N. 
Question: Is there a subset B C N , such that £ i e B fi < F 
and i e B ci > k? 

Lemma 2.1.1 The problem SKPd is NP-complete. 

Proof. First, given a s e t B C N one can verify in O(\N\) if it is a solution of 
SKPd. Then, SKPd is in NP. 

In order to complete the proof, we show that Partition can be reduced to SKPd 

in polynomial time. The problem Partition is NP-complete (cf. [K72]) and can 
be stated as follows. 
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Problem: Partition. 
Instance: A finite set A and s NA . 
Question: Is there a subset A' ∈ A, such that £ sa = J2 sa 

aeA' aeA\A' 

Now, given an instance IP of Partition, we construct an instance IK of SKPd in 
the following way: set N := A, fa = ca := sa for all a ∈ A and F = k := afA sa-. 
We prove that a set A' ⊆ A is a solution of I P if and only if A' is a solution of 

I K . 

Conversely, suppose that A1 is a solution of I K . Then, £ a e A , fa ≤ F and 

Let A ' ⊆ A a solution of IP. Then, EaeA' sa = Ea^A\A' sa. Thus, Y.aeA> fa = 
F and Y,aeA> ca = k, which guarantees that A' is a solution of I K . 

W S ' l V 
EaeA' ca ≥ k. Substituting according to the transformation above we obtain 

EaeA> sa = % A s a . Therefore, EaeA> sa = EaeA\A> sa. • 
In order to model this problem using integer programming, let us introduce 

the variables xi with the interpretation, xi = 1 if item i is in the solution and 0, 
otherwise. An integer programming formulation for the SKP is given via 

max ZitNcixi 
(3.1) s.t. Y,ieNfixi ≤F, 

x i ∈{0,1} forall i ∈ N . 

Dantzig’s bound 

Dantzig suggests in [D57] a fast polynomial algorithm for solving the linear re­
laxation of the problem given above, i.e., we substitute the constraints xi ∈ {0,1} 
by 0 ≤ xi ≤ 1 for all i ∈ N. This procedure makes possible the appearance of 
several branch and bound strategies for the problem. In the implementation of our 
branch and cut approach, we need to solve some knapsack problems in heuristic 
procedures. We use also the strategy described in this section to solve the linear 
relaxation of these problems. We refer to it as Dantzig’s procedure. 

Consider a SKP given by (3.1). Let n = |N| and suppose that the items are 
sorted such that 

Let us also define the critical element s as s := min{i | Ei=i fj > F}. Then, the 
solution of the linear relaxation of (3.1) can be stated as follows. 

Theorem 2.1.2 The optimal solution x* of the linear relaxation of (3.1) is 

< := 

1, if1≤i≤s-1; 
0, if s + 1 ≤ i ≤ n; 
F - E j l i fj , if i = s . 
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Proof. Let x' be an optimal solution of the linear relaxation of (3.1), and suppose 
E ^ N cixi > 12ieNcixi . Suppose, now, that there is an index i1 < s for which 
x*n = 1 and x'i1 < 1. In this case, there must be an index i2 > s such that 
x'i2 > x*2. Choose the biggest i2 e N with this property. 

Now, define e = min{xi2 - xi2,
f
f
i
i
 2
1 (x i1 - x i1), and consider the vector x" as 

bellow. 
xr: 

x" 
i + j£, if i = i1; 

:= x\- e, f i1 if i = i2; 

The vector x" is feasible, and £ i e N ci x
1! = T^N cixi + ci1

 f
f
i
i
 2
1e - ci2e. But, by the 

choice of i2,
 c

f
i1 > c i2, and then, x" has a better objective function value than x', 

fi1 fi2 

contradicting our assumption that x' was an optimal solution. 
Analogously, one can prove that x{2 = 0 for all i2 > s. • 

The procedure is clearly linear, if the items are already sorted as assumed. 
This initial sorting is considered the bottleneck for solving the problem by many 
approaches. Balas and Zemel prove in [BZ80], however, that the critical element 
can be found in linear time even if the items are not sorted. 

Let z* be the optimal solution value of the linear programming relaxation. 
We call the value [z*\ Dantzig’s bound. This bound was the best known for the 
SKP until 1977. Upper bounds dominating Dantzig’s bound are first suggested 
by Martello and Toth in [MT77]. The idea of the authors is to consider the two 
problems obtained by setting the critical variable (the variable associated with 
the critical element) to zero and to one. Then, Dantzig’s bound is calculated for 
both subproblems, and the maximum among these values is an upper bound for 
SKP that dominates Dantzig’s bound. The reader interested in branch and bound 
approaches, using Dantzig’s bound and improved ones, can find some papers on 
the subject in, for example, [HS74] and [MT77]. A good survey on the subject is 
given by [MT91]. 

2.2 Dynamic Programming Algorithm 

In this section we present an algorithm for the SKP based on dynamic program­
ming techniques. The algorithm has been first suggested by Bellman in [Be54] 
and is the classical example for introducing dynamic programming in almost all 
text books. 

Let us first define some symbols. Suppose that an instance (N, f, F, c) of the 
SKP is given. For I C N, F < F, set 

g(I, F) := m a x { ^ cjxj \ J2 fjxj < Fˆ, xj ^ {0, 1} for all j ^ I}. 
jeI jeI 
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ˆ The value g( I , F) is the optimal solution value of a subinstance of the problem we 
are interested in. The idea in dynamic programming is to solve small instances of 
the SKP and combine the solutions to obtain a solution of the original problem. 
It can be summarized in the following recursion formula: - 0 0 , if I = 
g(I,F)=\ g(I\{i},F), forieI,1<Fˆ<fi-1; 

{ max(g(I \ {i}, F),g(I \ {i}, F - f i ) + c ) , for i G I , f » < F < F . 

The optimal solution value of the original problem is given by g(N, F). In order to 
avoid calculating any subproblem more than once, one can implement the dynamic 
programming algorithm as filling out an array with F elements. The algorithm 
has time complexity O(\N\F) and space complexity O(F). Observe that this 
algorithm is not polynomially bounded in the encoding length (\N\). We say that 
this algorithm is pseudo polynomial An algorithm is called a pseudo polynomial 
time algorithm if its time complexity function is bounded above by a polynomial 
function depending on the encoding length of the instance and on the magnitude 
of the largest number of the instance. 

Although simple, the algorithm can be useful from both, a theoretical and a 
practical point of view. In Section 3.4.2 we observe that the lifted coefficients of 
the Minimal Cover Inequalities can be calculated using the dynamic programming 
approach, and, since in that case the knapsack capacity is polynomially bounded 
in the instance length, the procedure has polynomial time complexity. Another 
application of the dynamic programming approach arises in the next section, in 
the presentation of Ibarra and Kim’s fully polynomial approximation scheme to 
the SKP. In order to solve large scale instances of the SKP some authors use this 
approach combined with branch and bound techniques to solve small instances 
exactly (see [MT91] for details on such approaches). 

2.3 Approximative algorithms 

Once again the SKP is largely used in introductory books on Combinatorial Op­
timization for introducing important concepts such as polynomial and fully poly-
nomial approximation schemes. In this section we will present these ideas. In the 
remainder of this section we present some simple, but useful heuristic procedures 
to SKP. Suppose that an instance (N, f, F, c) of the SKP is given and let z* be 
the value of an optimal solution of SKP. 

A first simple heuristic algorithm for SKP is the profit greedy heuristic. Let 
n := \N\ and suppose that the items are sorted such that cx > ... > cn. Now, 
initialize F' := F and zP := 0. F' contains the rest capacity of the knapsack and 
zP the value of the heuristic solution. For each item i e N considered in the order 
above, if fi > F' insert i in the heuristic solution and update F' := F' - fi and 
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zP := zP + ci. No universal guarantee can be given on the quality of the solution 
produced by this heuristic, as we show in Example 2.3.1. 

Example 2.3.1 Let k ∈ N, and define N = {1,... ,k + 1}, f1 = k, fi = 1 for 
i = 2 , . . . , k + 1, F = k, c1 = 2 and ci = 1 for all i = 2 , . . . , k + 1. Then, z P = 2 
and z* = k. Thus no guarantee for the quality of the value can be given. • 

Another simple approximation algorithm for SKP works as follows. Let us 
introduce for each item i ∈ N the weight density f. Suppose now that the items 
are sorted in decreasing order according to the weight densities: 

Now, determine t := max{i ∈ N | £ i
j = 1 fj ≤ F}. The value of the weight density 

greedy heuristic zW is given by zW := Ei=1 Q. As for the profit greedy heuristic, 
no universal guarantee can be given on the quality of the solution, as we show in 
Example 2.3.2. 

Example 2.3.2 Let n = 2, f1 = c1 = 1, f2 = c2 = K, F = K. Then, zW = 1, 
and z* = K. Therefore, ^ z = ^ and no e guarantee can be given. • 

However, if we combine both heuristic procedures showed above in the following 
way, a guarantee can be given. Let zG = max(zP,zW). The following lemma 
shows that we can give a quality guarantee for the value zG. We call this combi­
nation as greedy heuristic. 

Lemma 2.3.3 zG ≥ z-. ≥ 

Proof. Let zLP be the optimum value of the linear relaxation of the knapsack 
problem. Observe that z* ≤ zLP. Moreover, if s is the critical element, then 

zLP < Tsi=1ci 
= E£ i c + c s 
≤ zW + zP 

≤ 2zG. 

Thus, zG > z-. M 

2.3.1 Polynomial time approximation scheme 
An approximative algorithm A is called a polynomial time approximation scheme 
if, given an instance of the problem and a “accuracy parameter” e > 0, A produces 
in polynomial time in the encoding length of the instance and e a solution zA, 
such that zA^ ≥ (1 - e)z*, where z* is the value of an optimal solution. The first 
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approximation scheme suggested in the literature for the SKP was given by Sahni 
in [Sa75]. 

The idea is to use the greedy heuristic given in the last section combined with 
partial enumeration to obtain the desired bound. 

Given e = k+
1
 1 , consider the following scheme S(k). All subsets M⊆N, with 

|M| ≤ k and EieM fi ≤ F, are considered as candidates. For each candidate, the 
reduced problem in which the items in M are in the solution is considered. For 
the remaining variables, apply then the greedy heuristic. This task is executed for 
each candidate. The best solution found in all iterations is chosen as result zS(k). 
It is not difficult to see that Sahni’s procedure is polynomial in the encoding length 
of the instance but not in the accuracy parameter. Supposing that the items are 
sorted according to the order assumed in the greedy heuristic, the procedure has 
time complexity O(|N|). Since it is executed, at most, for all subset of N with 
less than or equal to k elements, the total time complexity is O(|N|k + 1). The 
following theorem due to Sahni [Sa75] states that the solution given by the scheme 
has the desired guarantee. 

Theorem 2.3.4 Let zS(k) be the solution value given by the scheme S(k). Then, 

1 
k+1 zS(k)≥(1-T1T)z\ 

Proof. Let B be an optimal solution. If |B| ≤ k, then the optimal solution would 
be found by the procedure. Suppose, then, that |B| = k + r, r > 0. Let M' ⊆ B 
the subset with |M'| = k and containing the elements of B with maximum profit. 
Observe that M' is one of the candidates analyzed in the heuristic approach. 
Consider the iteration when set M' is analyzed. Let zr

G be the value of the greedy 
heuristic applied to the reduced problem. Now, let j1,...,jr be the items in 
B\M', and suppose they are sorted such that c

f
j ≥ ... ≥ c

f
jr. Let j m be the first 

item in the optimal solution not presented in the heuristic solution. 
We derive some observations. First, cji ≤ k

 z
+1 for all i = 1,...,r. Since 

j m was not selected by the greedy heuristic, we can conclude that the residual 
capacity is less than fjm. In this case, since the items are sorted, no more than cjm 
as profit can be achieved. Moreover, until item j m the heuristic solution selected 
only items present in the optimal solution. Thus, 

E i e M ' ci + zr + cj 
≤ zS(k)+cj 
≤ z S(k) + z* 

zG 

m 

k+1 

≥ ( 1 -

The bound given by the theorem above is also tight as the following Example 
2.3.5 shows. 

Therefore, zS(k) ≥ (1 - k+
1

1)z\ 
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Example 2.3.5 Given k, let n = k + 2, c l = 2, fi = 1 and ci = fi = K > 2, for 
i = 2 , . . . , n + 2 and F = (k + 1)K. The optimal solution value is z* = (k + 1)K, 
but the solution value given by the scheme is zSk =kK + 2. • 

2 . 3 . 2 F u l l y p o l y n o m i a l a p p r o x i m a t i o n s c h e m e s 

Sahni’s algorithm produces a solution as good as desired, but the time complexity 
of the scheme increases with the desired guarantee. An algorithm A is called a 
fully polynomial approximation scheme if A takes as input both an instance of 
the problem and an “accuracy requirement” e and produces in polynomial time 
in the input length and \ a solution z^ such that zA< > (1 - e)z*. 

Ibarra and Kim present in [IK75] a fully polynomial approximation scheme 
for the SKP. In the remainder of this section we present the basic ideas of the 
algorithm. 

Let (N, f, F, c) be an instance of SKP and suppose the items sorted such that 

f > . . . > f n . 

Calculate now the critical element s. The bound zest := E L i ci will be utilized to 
determine two parameters: s, a scaling parameter, and t, a threshold parameter. 
Ibarra and Kim use s = z and t = zf. 

With t, divide the index set into two parts, the set S containing the small items 
(items with ci < t) and the set L with the large ones (items with ci>t). The 
idea is to solve exactly the problem for the large items and enlarge this solution 
using the small ones, in a greedy like way. 

Now, consider the following problem 

z(d) = min EieL fixi 
s.t. E^LL-Jx i = d, 

x i G{0,1}fora l l i G L . 

Observe that z(d) can be calculated using the dynamic programming algorithm 
discussed in Section 3.2. Calculate it for d = 0 , . . . , L ^ J . Actually, the imple­
mentation suggested in Section 3.2 provides the solutio s n for all these problems 
with only one call to the routine. Now, with each of the optimal solutions of the 
scaled knapsacks on the large instances, try to enlarge it, in a greedy way, using 
the small items in S for it. The heuristic solution given by the procedure is the 
best one found during the process. 

It is not difficult to see that the algorithm suggested is polynomial in the 
encoding length of the instance and \. First, the items must be sorted, requiring 
O(\N\ log \N\) time. Then, the critical element is found and the estimate for the 
optimal value is determined. It consumes time O(\N\). To divide the items into 
S and L one needs time of order O(\N\). Actually, it is not necessary to sort 
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the items to find the critical element and divide the items set into two parts. 
Lawler applies median finding techniques to prove in [La79] that it can be done in 
O(|N| log J). Then, for solving exactly the knapsack problem to find the value z(d) 
one needs,'cf. Section 3.2, O(|N|d) or O(|N|ze

s
st). Finally, we execute Lze

s
stJ + 1 

times the greedy procedure (that has time complexity O(|N|)) to enlarge each 
optimal solution on the large items to a heuristic solution. So, the total time 
complexity can be given by O(|N|(log |N| + zes t)). Using the choice of the authors O(|N|(log|N| + s 
for the parameter s, we obtain the time complexity O(|N|(log |N| + £)) (or, in 
Lawler’s improved version, O(|N| log \ + £)) . In the next theorem, we show the 
quality guarantee that can be achieved by the heuristic solution found. 

Theorem 2.3.6 Let zIK be the value given by the heuristic procedure. Then, 

zIK>z*-(-t z*+t). 

Proof. Let x* be an optimal solution of SKP. Let d := £ i e L Lc
s
i xi*. Observe that 

d < Lze
s
stJ, therefore, it was considered during the execution of the procedure. 

Let x' be the best solution found by the algorithm in this step, and compare the 
optimal solution with this heuristic solution. 

Note that 

E ^ c i x I - E ^ c i x i < sXieLlcs
i x i + XxL(ci-stcs

i x i ) - s X i e L l c
s

i x i , 

observing that x' is optimal in L 

= EieL(c i-sLlx i) 
* 

* 
< s

t z*. (I) 

On the other hand, x' was enlarged using the greedy heuristic on the small el­
ements. Observe, also, that in x* is a optimal solution of this reduced problem 
(otherwise a better one would exist). Moreover, in Lemma 3.3.2 we observed that 
the difference between the value of the greedy solution and the optimal value is 
bounded by the maximum profit cimax. Then, 

E i e S cixl - E i e S c ix i < cimax < t. (II) 

Finally, observe that 

zIK-z* > ZitNci^i-YieN 
= EiLcixi-i^ = XxLcix'i-XieLcixil+XxScix'i 

using (I) and (II) 

> -s
tz*-t. 

E ^ c i x i - E i∈L c i x i + i∈S c i x i - i∈S 
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Therefore, zIK ≥ z* - (s
t z* +t). • 

The following corollary proves that Ibarra and Kim’s procedure has the desired 
quality guarantee. 

Corollary 2.3.7 zIK ≥ (1 - e)z*. 

-st£ and — Proof. Setting s = zest and t = zesf in the formula given in Theorem 3.3.5, one 
obtains 

z est£ zIK ≥ z * - ( ^ z * + ≥ z * - ! - „ * zest£ 

= z*-(¥ + 
since zest ≤ 2z* 

≥ z * - ( ^ + z ) 
= (1-e)z* 

2.4 The Single Knapsack Polytope 
In this section we present some of the main results in the literature about the 
Single Knapsack Polytope. The first investigations on this polytope go back to 
1975, with the papers by Balas [B75], Hammer, Johnson and Peled [HJP75] and 
Wolsey [W75]. 

For an instance (N, f, F) of the SKP, the Single Knapsack Polytope can be 
defined as follows 

SKP(N, f, F) := conv{x ∈ R N | ^ fixi ≤ F and xi ∈ {0,1} for all i ∈ N}. 
ieN 

Some trivial results are proven in the next lemmas. 

Lemma 2.4.1 Given an instance (N,f,F) of the SKP. The dimension of SKP 
(N,f,F) is equal to |N| - |{i ∈ N | fi> F}|. 

Proof. Let I := {i ∈ N | fi > F}. First, observe that SKP(N,f,F) ⊆ {x ∈ 
RN | x i = 0 for all i ∈ I}. Then, dim(SKP(N, f, F)) ≤ dim(N \ I) = |N| - |I|. 

Now, consider that ei ∈ SKP(N, f, F) for all i ∈ N such that fi ≤ F. 
Moreover, 0 ∈ SKP(N, f, F) and all these vectors are affinely independent. Then, 
dim(SKP(N, f, F)) = |N| - |I|. • 

In the remainder of this chapter we suppose that fi ≤ F for all i ∈ N, and 
therefore, the polytope is full dimensional. 
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Lemma 2.4.2 The inequality xi > 0 defines a facet of SKP(N, f,F) for all 
i (EN. 

Proof. The inequality is clearly valid. Suppose that there is a facet defining 
inequality bx < β such that EQ(xi > 0) C EQ(bx < β). Now, observe that 0 
and ej are elements of EQ(xi > 0), for all j e N\{i}. Then, bj = 0 for all 
j e N \ {i}. Then, bx < β is a scalar multiple of xi > 0, and, thus, it defines a 
facet of SKP(N, f ,F). • 

In the following section, we investigate facet defining inequalities for polytopes 
associated with subinstances of the SKP. Observe that our definition of the poly-
tope SKP allows us to consider only some subset V C N. It is clear that, if 
SKP(N, f,F) is full dimensional, then for V C N, dim(SKP(V,f,F)) = \V\. 
For ease of notation we use throughout this chapter the symbol f instead of f \ V . 

In the next section we present some of the main results on facet defining in­
equalities for the Single Knapsack Polytope. In Section 3.4.2 we consider the prob­
lem of lifting facet defining inequalities of polytopes associated with subinstances 
of SKP(N, f ,F). We finish this discussion about the Single Knapsack Polytope 
with an overview about other theoretical results on SKP(N, f ,F). Moreover, 
we prove that the separation problem for the Minimal Cover Inequalities is MV-
complete. 

2.4.1 Facet defining inequalities for the Single Knapsack 
Polytope 

In the paper of Balas [B75], Hammer, Johnson and Peled [HJP75] and Wolsey 
[W75] we can find a very important class of facet defining inequalities: the Mini­
mal Cover Inequalities. 

A set S C N is a cover if J2i∈S fi > F. The cover is minimal if J2i∈S\{s} fi<F 
for all s e S. Given a minimal cover S, we call the inequality 

$ x i < 1S1-1 
i∈S 

the Minimal Cover Inequality corresponding to S. 

Proposition 2.4.3 Let S C N be a minimal cover. Then the Minimal Cover 
Inequality defines a facet of the polytope SKP(S, f, F). 

Proof. The inequality is clearly valid. Suppose, now, that there is a facet defining 
inequality bx < β, such that E 
and define xs e R | S | as follows 

' 1, ieS\{s}; 

inequality bx < β, such that EQ(Y^∈S xi < \S\ - 1) C EQ(bx < β). Let s e S 

j 
:= 

0, otherwise. 
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Observe that xs e EQ(Y^Sxi < \S\ - 1) for all s e S. Then, given s1,s2 G S, 
bxs1 = bxs2, and thus, bs2 = bs1. So, bx < β is a scalar multiple of the Minimal 
Cover Inequality. • 

Actually, the three papers cited above consider different versions of this in­
equality. Balas considers the original polytope SKP(N, f, F) and looks for neces­
sary and sufficient conditions for the Minimal Cover Inequality (or a lifted version 
of it) to define a facet of this polytope. As we see in the next section, these in­
equalities can be efficiently generated from Minimal Cover Inequalities using the 
lifting procedure. Moreover, the author suggests an exponential time procedure 
for generating valid and facet defining inequalities based on minimal covers. Ham­
mer, Johnson and Peled obtain essentially the same results as does Balas in the 
case of the Single Knapsack Polytope. The authors study a more general problem 
in their paper. 

Wolsey uses in [W75] the same approach discussed above. Further, he ob­
serves that the lifting procedure due to Padberg [P75] provides a way to generate 
inequalities defining faces of higher dimensions. Another interesting observation 
of the author is that different inequalities can be obtained from minimal covers 
applying the operation of complementing (substituting the variable xi by 1 - xi) 
and afterwards applying the lifting procedure. In Section 3.4.3 we stress the the­
oretical importance of this operation, and in the Chapter 6, in the presentation of 
our implementation, we show some results on generating violated inequalities to 
the Single Knapsack Problem using the same operation. 

Another class of facet defining inequalities of SKP(N, f, F) has been intro­
duced by Padberg in [P80]: the (1,k)-Configuration Inequalities. 

Suppose that an instance (N, f, F) of the SKP is given. A set N' U {z}, with 
N' C N and z e N \ N' is called a (1,k)-configuration if 

(i) EjeN' fj < F; 

(ii) K U {z} is a minimal cover, for all K C N', with \K\ = k. 

the inequality 
Given a (1,k)-configuration N' U {z}, and T C N', k < \T\ = r < \N'\, we call 

(r-k + 1)xz + J2xi<r 

the (1,k)-Configuration Inequality corresponding to N' U {z} and T C N'. 

Proposition 2.4.4 Suppose that an instance (N, f, F) of the SKP is given, and 
let N' U {z} be a (1,k)-configuration. Then, for all T C N', \T\ = r, where 
k<r< \N'\, the corresponding (1,k)-Configuration Inequality defines a facet of 
SKP(N'U{z}, f ,F) . 

Proof. Let T C N', \T\ = r, and suppose ax < α is the corresponding 
(1,k)-Configuration Inequality. First we prove that the inequality is valid for 
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the polytope SKP(N' ∪ {z}, f ,F). Suppose this is not the case and let x' ∈ 
SKP(N' ∪ {z}, f, F) with ax' > α. Since |T| = r, we must have x'z = 1. Then, 
we know that EieT x i ≤ k - 1 (as for all K⊆N,|K|=k,K∪ {z} is a minimal 
cover). Then, 

$ x i + (r - k + 1)xz ≤ k - 1 + r - k + 1≤r , 

a contradiction. 
To prove that the inequality defines a facet of SK, suppose that there exists a 

facet defining inequality bx ≤ β such that EQ(ax ≤ α) ⊆ EQ(bx ≤ β ). Observe 
that x1 := χT, and x1 + ei are in EQ(ax ≤ α) for all i £ i V ' \ ( T ∪ {z}). Then, 
bx1 = b(x1 + ei), and, therefore, bi = 0 for all i ∈ N ' \ ( T ∪ {z}). 

Now, let Q ⊆ T with |Q| = k - 1, and define x2 := χ Q u z . Note that 

can 
x2 ∈ EQ(ax ≤ α). Observe that for all i ∈ T\(Q∪{z}), and j ∈ Q, x2-ej+ei 
EQ(ax ≤ α). Then, bx2 = b(x2 - ej + ei), and, therefore, bj = bi. Since we c 
repeat it to each element in T\(Q∪{z}) and Q, we can conclude that there exists 
a constant bt such that for alli,j∈T,bi = bj = bt. 

Observing, now, that x1 and x2 are in EQ(ax ≤ α), we have bx1 = bx2, then, 
rbt = bz + (k-1)bt, and therefore, bz = (r-k + 1)bt. So, the inequality bx ≤ β is a 
scalar multiple of ax ≤ α, and, therefore, it defines a facet of SKP(N'∪{z}, f, F). 

The Minimal Cover Inequality is a special case of the (1, k)-Configuration 
Inequality, since for all minimal cover S and s ∈ S, the set S \ {s} ∪ {s} is a 
(1,|S| - 1)-configuration. 

Example 2.4.5 Consider the instance of the SKP with n = 4, f1 = f2 = f3 = 3, 
f4 = 7 and F 
inequalities, 
f4 = 7 and F = 9. Then, N ' = {1, 2, 3} ∪ {4} is a (1,1)-configuration. Thus, the 

x1 + x4 ≤ 1 x2 + x4 ≤ 1 x3 + x4 ≤ 1 
x1 + x2 + 2x4 ≤ 2 x1 + x3 + 2x4 ≤ 2 x2 + x3 + 2x4 ≤ 2 
x1 + x2 + x3 + 3x4 ≤ 3 

define facets of the polytope SKP(N' ∪ {4} , f ,F ) . • 

Observe that for a given (1,k)-configuration N' ∪ {z}, we have 

\N'\ / 

, r 
r=k 

distinct facets of the polytope SKP(N'∪{z}, f, F) induced by (1,k)-Configuration 
Inequalities. 

In Section 3.4.3 we mention some more classes of facet defining inequalities 
for the SKP(N,f,F). 
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2 . 4 . 2 T h e l i f t ing p r o c e d u r e 

As we see in Section 3.4.1, it usually makes our life easier to study subinstances of 
the problem and determine facet defining inequalities for the polytopes associated 
with these subinstances. But, we are interested in solving the original problem. 
To this end we must be able to obtain from these inequalities, facet defining 
inequalities of the original polytope. This idea is called lifting. 

The origin of the lifting procedure goes back to Padberg, in [P75]. Let us 
define formally the concept of “lifting an inequality”. For the ease of presentation, 
we introduce the definitions and procedures for the case of the Single Knapsack 
Polytope. The concept of lifting and the lifting procedure, however, apply in 
general. 

Suppose we are given an instance (N, f, F) of SKP. Also a s e t V ⊆ N and an 
inequality ax ≤ α that is valid for SKP(V, f, F) are also given. An inequality 
a'x≤α,a'∈ IRN, is called a lifting of ax ≤ α if a'i = ai for all i ∈ V. We are 
interested in the following problem. 

Problem 2.4.6 Given asetV⊆N and a valid (resp. facet defining) inequality 
ax≤α for SKP(V, f ,F) . Find a lifting (or even all liftings) of this inequality 
that is valid (resp. facet defining) for SKP(N, f, F). 

Padberg [P75] suggests a general procedure to calculate the coefficients of a'. 

Sequential lifting procedure - Padberg [P75]. 
Input: An instan 
for SKP(V, f, F) 
Output: a' ∈ IN n 

for SKP(NJ,F). 

Initialize a i := ai for all i ∈ V. 
Choose a sequence of the coefficients inN\V. 
Initialize K:=N\V. 
While there is some item k∈K calculate. 

zk:= max Zi€N\K a ix i 

s.t. J2ieN\K f ix i ≤ F - fk, 
x i ∈{0,1}, for all i ∈ N \K; 

ak:= α-zk. 
K:= K\{k}. 

Lemma 2.4.7 Let (N, f, F) be an instance of SKP. Given V ⊆ N and ax ≤ α 
a valid inequality for SKP(V,f,F), then a'x ≤ α calculated as described above 
is valid for SKP(N, f, F). Moreover, if ax ≤ α defines a facet of SKP(V, f, F), 
then a'x ≤ α defines a facet of SKP(N, f, F). 

Input: An instance (N, f, F) of the SKP, V ⊆ N a n d a x ≤ α valid 

Output: a ∈ INn such that a'x ≤ α is a lifting of ax ≤ α and is valid 
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Proof. First we prove that the inequality a'x ≤ α is valid for SKP(N,f,F). 
Let K := N \ V as in the procedure above. Given a set K ⊆ N \ V we denote 
by aK ∈ R N the vector obtained by applying the procedure with the instance 
(V ∪ if, f, F) and the inequality ax ≤ α (aN\V = a'). We prove by induction in 
|K | that the inequality aKx ≤ α is valid for SKP(V ∪ K, f, F). 

If |K | = 0, then the statement is clearly true. Consider now that |K| ≥ 1, 
and let k ∈ K . Observe that, using the induction hypothesis, the inequality 
aK\{k}x ≤ α is valid for SKP(V ∪ K \ {k},f,F). Suppose that there exists a 
vector x' ∈ SKP(V ∪ K,f,F) such that aKx' > α. Then, xk = 1. But, by the 
algorithm described above, the coefficient aK

k = α-zk, where zk = max{aK\{k}x | 
x ∈ SKP(V ∪ K \ {k}, f, F - fk). A contradiction. 

Now we prove by induction in |K | that if the inequality ax ≤ α defines a facet 
of SKP(V, f, F), then dim(EQ(SKP(V ∪ K, f, F), aKx ≤ α)) = |V| + |K |. 

If |K | = 0, then the statement is clearly true. Consider now that |K | ≥ 1 
and let k ∈ K . Using induction hypothesis, dim(EQ(SKP(V ∪ K \ {k},f,F), 
aK\{k}x ≤α)) = |V | + |K|-1. Let B be a basis of this set. By the algorithm 
described above, there exists a x* ∈ SKP(V ∪ K \ {k}, f ,F - fk) such that 
aK\{k}x = zk. Then, x* + ek is an element of EQ(SKP(V ∪ K , f, F), aKx ≤ α). 

Now, for all vectors x∈B extend it to a vector x' in R V u K by setting x'k = 0 
and x\ = xi for all i ∈ VUif \ {k}. Let B ' the set containing all extended vectors. 
Note that x' ∈ EQ(SKP(V ∪ K,f,F),aKx ≤ α) for all x' ∈ B'. Moreover, B< 
and x* + ek are affinely independent. Thus, dim(EQ(SKP(V ∪ K, f, F), aKx 
α)) = |V| + |K|. ≤ 

Example 2.4.8 Let us consider the following instance of the SKP: 

4x1 + 5x2 + 5x3 + 6x4 + 6x5 + 7x6 ≤ 14. 

The set S = {3,4,5} is a minimal cover, and therefore the inequality x3+x4+x5 ≤ 
2 defines a facet of SKP({3,4,5},f,F). Applying Padberg’s procedure to the 
sequence (1, 2,6) we obtain the facet defining inequality x1 + x3 + x4 + x5 + x6 ≤ 2. 
If we apply the procedure to the sequence (2,1,6) we obtain a different lifted 
inequality x2 + x3 + x4 + x5 + x6 ≤ 2. • 

In order to obtain all lifted inequalities that this procedure can yield, all 
possible sequences must be tried. Another problem arises in Padberg’s procedure. 
In step 3. an integer program must be solved for allk∈ N\V exactly, and we 
know that no efficient algorithm is known to execute this job in general. However, 
Zemel could prove in [Ze89] that for the facet defining inequalities of the Single 
Knapsack Polytope, this task can be accomplished in polynomial time. Consider 
the following “dual” problem: 

dk(z) := min ZjeN\K fj x j 
s.t. ZjeN\Ka'jxj ≥z 

x j ∈{0,1} for all j ∈ N \ K. 
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Choose a sequence of the coefficients in N \ V. 

Calculate for z = 0 , . . . , α 

It is easy to see that zk = max{z | dk(z) ≤F- fk}. So, consider the following 
procedure to calculate the lifting coefficient: 

Lifting procedure - Zemel [Ze89]. 
Input: An instance (N, f, F) of the SKP, V ⊆ N and ax ≤ α (α ∈ IN) 
valid for SKP(V, f ,F). 
Output: a' R N such that a'x ≤ α is a lifting of ax ≤ α and is valid 
for SKP(N ∈ ,F). 

Initialize a i := ai for all i ∈ V. 
Choose a sequence of 
Intialize K:=N\V. 

0 

d1(z) := min EjeV fjxj 
s.t. E j eV ajxj ≥ z, 

xj ∈{0,1}, for all j ∈ V. 
Set i := 1. 
While there exists a k ∈ K calculate. 

zk := max{z | di(z) ≤F- fk}. 
ak:= α - zk. 

= f di(z), z = 0,...,ak-1 
i+1(z) : min{di(z), di(z - ak) + fk} z = ak,...,α. 

K:= K\{k}. 
i:= i + 1. 

Essentially, the idea is to apply the dynamic programming approach to solve 
the “dual” problem. The computational complexity of the dynamic programming 
procedure to calculate d1 is given by O(|N|α) (see Section 3.2). In both, Minimal 
Cover or (1,k)-Configuration Inequalities, α = O(|N|). So, this calculation can be 
accomplished in O(|N|2). We execute the while |N\V| times. In each iteration j , 
a maximum is performed over a set of z elements (and, therefore, requires O(|N|)), 
and dj+1 is calculated for the next iteration, consuming also O(|N|). Then this 
loop has time complexity O(|N|2), and this is also the total time complexity of 

ough the d 
is necessary, one only need the value of d in the current iteration. So, the space 
the whole procedure. Although the description above suggests that O(|N|2) space 

need the value of d in the current iteration. So, the 
complexity is O(|N|). 

Padberg’s approach described above is often called sequential lifting. 
Some improvements can also be made for the case of lifting Minimal Cover 

Inequalities. Balas and Zemel [BZ78] could prove some lower and upper bounds 
to the value of the lifting coefficient of a variable. They observe also that either the 
bounds are equal (and, therefore, no effort is necessary to calculate the coefficient) 
or differ by one. 

file://|N/V|
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The sequential lifting procedure, however, does not provide all lifted inequal­
ities from an inequality ax ≤ α of SKP(V,f,F). This is shown in Example 
2.4.9. 

Example 2.4.9 Consider the following instance of the SKP: 

2x1 + 2x2 + 2x3 + 2x4 + 3x5 + 3x6 + 3x7 + 5x8 ≤ 6. 

Observe that S = {1, 2, 3,4} defines a minimal cover, and therefore, x1 + x2 + x3 + 
x4 ≤ 3 is a facet defining inequality of SKP({1, 2, 3, 4}, f, F). The inequality 

x1 + x2 + x3 + x4 + -x5 + -x6 + - x 7 + 3x8 ≤ 3 ≤ 

is a lifted facet defining inequality of SKP(N, f, F) but cannot be obtained by 
sequential lifting. • 

To this end Balas and Zemel provide in [BZ78] the following simultaneous lifting 
procedure. Let M := {M ⊆ N \ V | J2i∈M fi ≤ F}. Now, for each M ∈ M, let 
a M : = α - z m , w h e r e 

zM := max Yi∈V aixi 

a* ∈ {0,1} for all i ∈ V. 

Then, the inequality £i∈V aixi + Ei∈N\V bixi ≤ α defines a facet of SKP(N, f, F) 
if and only if b is a vertex of the polyhedron 

T = {t∈ IRN\V |J2qi≤ aM, for all M∈M}. 

It is clear that it is not trivial to implement such a procedure efficiently in general. 

2.4.3 An overview on the Single Knapsack Polytope 
In this section we give an overview on interesting theoretical questions about 
the Single Knapsack Polytope that have already been answered, or still remain 
open. It is not our objective to go into details in all results presented here, 
but to provide an overview on the results and give to the interested reader the 
corresponding references. 

Some results on facet defining inequalities 

Most of the work on facet defining inequalities for the Single Knapsack Polytope 
was made during the 70’s. However, new classes appeared recently in a paper by 
Gottlieb and Rao [GR88], where the authors investigate overlapping and disjoint 
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minimal covers and (1,k)-configurations, giving necessary and sufficient conditions 
such that such a combination defines a facet of the Single Knapsack Polytope. 

Balas and Zemel prove in [BZ84] that using the operations of lifting and com­
plementing (see a next subsection) all facet defining inequalities of positive 0-1 
polytopes can be obtained from minimal covers. 

Complete descriptions for polytopes associated with SKP with small values 
of the right hand side are investigated by Hammer and Peled [HP82] and Abdel 
Hamid [AH94]. Complete descriptions are given for polytopes associated with 
SKP with right hand side less than or equal to 7. 

The computational complexity of several problems related to recognizing and 
lifting an inequality was studied by Hartvigsen and Zemel [HZ92]. Some examples 
of results they provide in this paper are: 

i. Recognize whether an inequality with integer coefficients is the lifting of a 
minimal cover S. 
Complexity class: P; 

ii. Given a knapsack constraint and an integer s, is there a minimal cover with 
cardinality s? 
Complexity class: NP-complete; 

iii. Recognize whether a given inequality is valid for SKP(N, f, F). 
Complexity class: co-NP-complete; 

iv. Recognize whether a given inequality is a facet of SKP(N, f, F). 
Complexity class: Dp. 

The separation problem 

Crowder, Johnson and Padberg conjecture in [CJP83] that the Separation Prob­
lem for the Minimal Cover Inequalities can be solved in polynomial time. Un­
fortunately, this is not the case unless P = NP, since we could prove that the 
separation problem for this inequality class is A/"P-hard. 

We will prove that the decision version of the separation problem for the Min­
imal Cover Inequalities SMCd is P-complete showing that the decision problem 

naps N 
complete (see Section 3.1). 

Let us introduce the problems: 

associated with th Single Knapsack Problem SKPd, which is known to be N P -

Problem: SMCd. 
set N, x(E [0,1]N, a e INN andbG 

Question: Is there asetSCN such that £ i ∈ S ai > b +1 , £i∈S\{j} ai 
Instance: A finite set N, x e [0, 1]N, a e N N and b e N. 

set S C N 
< b for all jeS and £ i ∈ S x i > \S\ - 1? 
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Problem: SKPd. 
Instance: A finite set M, f G N m , F G N, c G INM and k G N. 
Question: Is there a set S' C M such that £ i e S , fi < F and 

Theorem 2.4.10 SMCd is ATP-complete. 

Proof. We observe that SMCd belongs to MP, since it can be verified whether 
a given set S satisfies the constraints in polynomial time (O(|N|)). 

Let us show that SKPd can be reduced to SMCd in polynomial time. 
Given an instance lSKP of SKPd, construct the following instance XSMC of 

the SMCd: 
N : = M . 
xi : = 1 - f

F + e foral l i G N . 
a i :=ci foral l i G N . 
b :=k-1. 

where 0 < e < | N | F . 
Now we will prove that lSKP has a solution if and only if XSMC has one. 
Let S be a solution of XSMC. Then, 

$ a i > b + 1 a n d $ x i > | S | - 1 . 
ieS ieS 

By substitution, 

and thus, 

Y^Sci>k, a n d E i e S c i > k, and £ i e S ( 1 - f
F + e) > |S| - 1, 

|S|(1 + e ) - i i e S f i > | S | - 1 , 
E ieSf i < 1 + e|S|. 

Since e < N F , a n d f i G N , 
|N|F 

G 

Ei e S f i < F . 

The converse can be proved as follows. Let S' be a solution of XSKP. Without 
loss of generality we can choose a minimal solution. Then, 

J2 ci > k and ^ fi < F. 
ieS> ieS> 

Substituting c and k, we obtain, 

Xa i >b+1 . 
ieS' 
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Since the solution is minimal, £i∈S'\{j} ai < b for all j e S. Dividing the second 
inequality by -F, and adding |S"| in both sides, we obtain 

| S " | - i £ i ∈ S ' f i > | S " | - 1 , 
E ^ ( 1 - f ) > | S " | - 1 . -

But, since e > 0, 

£ 
i∈S, xi > |S' | - 1. 

So, S' is a solution of ZSMC. 
Boyd presents in [Bo92] a pseudo polynomial algorithm to solve this problem. 

The algorithm constructs a network flow problem with a pseudo polynomial num­
ber of vertices and edges. For the (1,k)-Configuration Inequality, it remains open 
whether the corresponding separation problem can be solved in polynomial time 
or whether it is A/"P-hard. 

Complementing 

Complementing an inequality can be viewed as the converse operation of lifting. 
To our knowledge the idea of complemented variables was first suggested by 
Wolsey in [W75]. In the following we present a general procedure to calculate the 
value of the coefficient of the complemented variables in the resulting inequality 
in order to guarantee that it is valid or facet-defining. At this point, we would like 
to mention that the word lifting is reserved in this thesis for the operation studied 
in Section 3.4.2. Of course the ideas are very similar: in lifting we consider a 
variable not part of the problem, and investigate what happens when this variable 
is introduced. Here, the subproblem in which the item is selected is studied, and, 
when returning to the original problem, we must investigate what happens when 
this variable is excluded. We present the idea of complementing an inequality for 
the Single Knapsack Polytope, but, as in the case of lifting, it is applicable for 
general polytopes. 

Suppose we are given an instance (N, f, F) of SKP. Given is a set V C N and 
an inequality ax < α that is valid for SKP(V, f,F- J2i∈N\V f i). An inequality 
ax < α, a e R N is called a complementing of ax < α if ai = ai for a l l i e V and 
α>α. 

Sequential complementing procedure 
Input: An instance (N, f, F) of the SKP, V C N and an inequality 
ax<α(α(EIN) valid for SKP(V, f,F- J2i∈N\V f i). 
Output: a e Rn , α e IN such that ax < α is a complementing of 
ax<α and is valid for SKP(N, f, F). 

Initialize a i = ai for all i G V and α := α. e 



2.4. THE SINGLE KNAPSACK POLYTOPE 47 

Choose a sequence of the coefficients in N \ V. 
Initialize K:=N\V. 
While there is some item k∈K calculate. 

µk := max ax 
s.t. x ∈ SKP(N \K,f,F- J2ieK\{k} fi), 

xi∈{0,1}, for all i ∈ N \ K; 
ak := µ k - α . 
α := µk. 
K := K\{k}. 

Lemma 2.4.11 Let (N, f, F) be an instance ofSKP. Given V ⊆N andax≤αa 
valid inequality for SKP(V, f, F-Y,ieN\V fi), then ax≤α calculated as described 
in the procedure above is valid for SKP(N,f,F). Moreover, if ax ≤ α defines a 
facet ofSKP(V, f,F-J2ieN\V fi), then ax ≤α defines a facet ofSKP(N, f, -Zi€N\Vfi), then ax ≤ F) 

Proof. First we prove that the inequality ax ≤ α is valid for SKP(N,f,F). 
Let K := N \ V as in the procedure above. Given a set K ⊆ N \ V we denote 
by aK ∈ R N and αK the output obtained by applying the procedure with the 
instance (V∪K,f,F- J2ieN\(VuK) fi) and the inequality ax ≤ α (aN\V = a and 
αN\V = α). We prove by induction in |K| that the inequality aKx ≤ αK is valid |K | that the inequality aKx ≤ 
for SKP(V ∪ K , f , F - Y^€N\(VUK) fi). 

If|K|= 0, then the statement is clearly true. Consider now that |K| ≥ 1, and 
let k∈K. Observe that, using the induction hypothesis, the inequality aK\{k}x ≤ 
αK\{k} is valid for SKP(V∪K\{k}, f, F-Y,ieN\(VuK\{k}) fi). Suppose that there 
exists a vector x' ∈ SKP(V∪K, f, F-J2ieN\(VuK) fi) such that aKx' > αK. Since 
αK ≥ αK\{k}, then x,k = 1. But, by the algorithm described above, the coefficient 
aK

k = µk - αK\{k}, where µk = max{aK\{k}x | x ∈ SKP(V ∪ K \ {k},f,F-
ieN\(VuK) fi)}. A contradiction. 

Now we prove by induction in |K| that if the inequality ax ≤ α defines a facet 
of SKP(V, f,F- J2ieN\V fi), then dim(EQ(SKP(V ∪K,f,F- E^ N \ ( V u K ) fi), 
aKx≤αK)) = |V| + | K | - 1 . 

If |K | = 0, then the statement is clearly true. Consider now that |K | ≥ 1 
and let k∈K. Using induction hypothesis, dim(EQ(SK P(V ∪K\{k}, f , F -
EieN\(VuK\{k}) fi), aK\{k}x ≤ αK\{k})) = |V| + |K | - 2. Let B be a basis of 
this set. By the algorithm described above, there exists a x* ∈ SKP(V ∪ K \ 
{k},f,F- J2ieN\(VuK\{k} fi) such that aK\{k}x* = µk = αK. Then, x* is an 
element of EQ(SKP(V ∪ K , f , F - ieN\(VuK) fi),aKx ≤ αK). 

Now, for all vectors x ∈ B extend it to a vector x' in R V u K by setting x'k = 1 
and x[ = xi for all i ∈ V∪K\{k}. Let B' the set containing all extended vectors. 
Note that x' ∈ EQ(SKP(V∪K, f, F-^N\(VUK) fi),aKx ≤ αK)) for all x' ∈ B'. 
Moreover, B< and x* are affinely independent. Thu 

ieN\(VuK) fi),aKx ≤ αK)) = |V| + |K| - 1. 
-
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As in the case of lifting, the generated inequality depends on the order in which 
the elements are considered, and a 0/1 program must be solved. 

By using similar techniques as described in [Ze89] we could prove that for 
the particular case of the single knapsack polytope, the computation of the com­
plemented coefficients for the Minimal Cover and (1,k)-Configuration Inequalities 
can be made in polynomial time. We describe now the procedure to calculate 
these coefficients. 

Let K := N \ V and k ∈ K. To solve the integer programming problem given 
in the procedure efficiently, we use a similar idea as suggested by Zemel in [Ze89] 
for the lifting procedure. Observe that “dualizing” the problem above as follows, 
we obtain an equivalent one. Consider d(µ) the solution of the following problem: 

d(µ) = min Ej∈N\Kfjxj 
s.t. ax ≥ µ, 

xj ∈{0,1}, for all j ∈ N \ K, 

and, observe that µk = max{µ | d(µ) ≤ F - Zi∈K\{k} f i}. Using dynamic 
programming techniques the problem above can be solved in time complexity 
O(|N|µk). So, if we prove that there exists a polynomial upper bound for µk, 
depending on the input length, then the procedure can be accomplished in poly­
nomial time. 

Lemma 2.4.12 µk ≤ k(£i∈V ai - α). 

Proof. A trivial upper bound for µk is given by 

µk≤^ai+ Y, aj. 
i∈V j∈K\{k} 

Consider a given order of the set K and observe that a j = µ j - µ j-1 for all 
j∈K\ {k} (with µ0 = α) and ai = ai for all i ∈ V. Then, we obtain 

µk ≤ E ai + µk-1 - α. 
i∈V 

Solving the recursion formula we obtain µk ≤ k(J2i∈Vai-α). • 

For the case of Minimal Cover and (1,k)-Configuration Inequalities, Ei∈V a i - α 
is bounded by |N|. Since k ≤ |N|, a polynomial upper bound for µk is given by 
|N|2. Then, the coefficient of the complemented variables can be calculated in 
polynomial time. 

Example 2.4.13 Consider the instance of the SKP with n = 4, f1 = f2 = f3 = 3, 
f4 = 7 and F = 9. Now, suppose that variable x4 is complemented. Then, 
we analyze the polytope SKP({1,2, 3}, f, 2). The inequality x1 + x2 + x3 ≤ 0 
is a facet defining inequality of this polytope. Solving the problem above, one 
obtains, z4 = 3. Then, x1 + x2 + x3 + 3x4 ≤ 3 is a facet defining inequality of 
SKP({1,2,3,4},f,F). M 
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An interesting observation in Example 2.4.13 is that the resulting inequality is 
a (1,k)-configuration of the original problem. In Chapter 6 we show that this 
procedure can be used to generate many violated inequalities in the branch and 
cut process. 
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Chapter 3 

A literature overview 

In this chapter we survey the results of the literature on the Multiple Knapsack 
Problem and two other related problems: the Generalized Assignment Problem 
(short GAP) and the General Zero-One Programming Problem (short GZOP). 
It is not our intention to provide a complete overview on all approaches used 
to solve these problems. Instead, we choose some approaches that we think are 
representative. In Section 4.1 we present the Multiple Knapsack Problem (short 
MKP) and several different methods proposed in the literature for its solution. 
Section 4.2 addresses the GAP. In this section, we restrict our attention mainly 
to polyhedral investigations of the problem. Finally, in Section 4.3 we present the 
GZOP. We decided to include this problem in this overview, because it is usually 
called “Multiple Knapsack” in the literature. In this section, we present briefly 
some attempts to attack this problem. 

3.1 The Mult ip le Knapsack Problem 
In the literature there are several problems called “Multiple Knapsack Problem”. 
We are interested in the following one: 

Given a set N of items with weights f i , i ∈ N, a set M of knapsacks 
with capacities Fk, k ∈ M , and a profit function c = (c ik) associated 
with assigning item i to knapsack k. We want to find an assignment of 
the items to the knapsacks such that the sum of the weights of the items 
assigned to each knapsack is less than or equal to the corresponding 
capacity and this assignment has maximum profit. 

This problem arises in an application in the design of computer systems. Imagine 
a computer system with some modules and several hundreds of components that 
must be distributed onto these modules. One can model this problem as stated 
above, where f i is associated with the area of the component i and Fk with the area 
of the module k. The function c must model the profit associated with assigning 

51 
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i to k, which can be related to several technological constraints, for example, the 
number of nets linking components assigned to different modules, the occupation 
density of the modules and so on. The complete model and its relation with the 
Multiple Knapsack Problem is presented in Chapter 2. 

This section addresses the Multiple Knapsack Problem. We begin, in Section 
4.1.1 with a formal definition of the problem and a model using 0-1 variables. 
Moreover, a complexity analysis is presented. A brief overview on the exact 
approaches of the literature to the Multiple Knapsack Problem is presented in 
Section 4.1.2. Approximative algorithms are surveyed in Section 4.1.3. 

3.1.1 Presentation of the problem 
The Multiple Knapsack Problem MKP is the following: 

Problem: MKP 
Instance: Finite sets N and M, f ∈ INN, F ∈ IN M and c ∈ INNxM. 
Question: Find a partition B = (B1,..., Bh Bo) of N, such that 
j≤|M|, J2ieBk fi≤Fk, for all k≤j and J2keM J2ieBk cik is maximum. 

When, for the profit vector cik = ci for all i ∈ N, k ∈ M holds, we call the 
problem MKP with uniform profit. Let n := |N| and TO := |M|. The problem 
is clearly NP-hard, since, when m = 1, we have the Single Knapsack Problem, 
which is known to be NP-hard (see a proof for it in Section 3.1). 

In order to model the problem stated above using an integer programming 
formulation, let us introduce variables xik ∈ {0, 1}mn with the interpretation xik = 
1, if item i is assigned to knapsack k and 0, otherwise. An integer programming 
formulation of the MKP is given via 

max J2ieN J2keM 
cikxik 

z2k ieN keM 

s.t. Zi€Nfixik ≤ F k , for all k ∈ M; (1) 
(4.1.1) 12k€Mxik ≤ 1, foralli∈N; (2) 

x ik ∈{0,1}, for alH G N, k ∈ M. (3) 

The constraints (1) in (4.1.1) are called knapsack constraints and the constraints 
(2) SOS (Special Ordered Sets) constraints. We have already observed that the 
problem is NP-hard for m = 1. An enumeration algorithm runs in O((m + 1)n) 
steps, thus, if n is constant in polynomial time. Some instances of the problem 
can be solved efficiently. If fi = f for all i ∈ N, we can divide all knapsack 
constraints by f and we obtain a transportation problem, that can be solved in 
polynomial time. 

We can also make some reductions in the size of the problem instance. For 
example, if fi > Fk for an i ∈ N , k ∈ M , then the corresponding variable xik can 
be fixed to zero. 
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We would like to end this section with some historical notes on the MKP. The 
problem has been studied since the 60’s, under several different names. The first 
reference we found in the literature goes back to Gilmore and Gomory’s paper 
[GG66] of 1966. In the 70’s some special cases of the problem were studied under 
the name Loading Problem (see, for example, Eilon and Christofides [EC72]). The 
name “Multiple Knapsack” for the problem here studied seems to appear for the 
first time in [IKo75] (though the authors still refer to the problem in the title as 
“loading problem”) and was finally stated by Martello and Toth in their book 
[MT91]. Observe that the problem presented in this section is a generalization 
of the problem in Martello and Toth’s book, who consider only the problem with 
uniform profit. We could not find any paper in the literature on this general 
formulation. 

3.1.2 Exact algorithms for the MKP 

In the case of the MKP, the dynamic programming approach does not yield a 
pseudo polynomial algorithm (as it is the case for the Single Knapsack Problem 
- see Section 3.2). The exact approaches of the literature are essentially based 
on enumeration techniques. In the remainder of this section we present some of 
them. 

Ingargiola and Korsh (1975) 

Ingargiola and Korsh present in [IKo75] an enumeration algorithm for the MKP 
with uniform profit, based on reduction techniques. Define the following relation 
RinNxN: 

R° : iR°j if and only if 
fi > fj and ci < cj (with both equalities not holding), or 
fi = fj,ci = cj and i < j ; 

Rh+i : iRh+ij if and only if 

iRhj or 
there exists a set S, with sRhj for all s e S and 

< fi and cj + s S cs>ci; 
R= limh^xR

h 
fj + E s e S fs < fi and cj + E s e S cs > ci; 

h 
z2s 

The idea of the relation is that if for the items i,j iRj and i is included in an 
optimal solution, then there exists also an optimal solution that includes j (observe 
that if fi = fj and ci = cj then the item with smaller index is taken). On the 
other hand, if j is not in any optimal solution, then no item i with iRj can be in 
an optimal solution. 

The remarks above provide some bounds that can be used in order to restrict 
the search for an optimal solution. First, for each item i an upper bound on the 
profit can be obtained for a solution excluding i, namely, £ j e N cj - ci - J2jjRi cj. 
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If we have a heuristic solution including item i with a better value, then the item 
must be in an optimal solution. On the other hand, we obtain a bound on the 
necessary area in the knapsacks for a solution including i (the authors call it 
extended weight), namely, fi + J2j:iRj fj. If the total knapsack capacity is less 
than the extended weight of an item, then it can be excluded from the optimal 
solution. 

The algorithm suggested has two phases. The first phase explores the prop­
erties given by the relation R, and determines which items can be excluded and 
which items can be in an optimal solution. The second phase enumerates all 
possibilities in a branch and bound way. For each item m + 1 subproblems are 
generated: in the first the item is excluded, in the second it is assigned to the first 
knapsack, and so on (see Figure 4.1). 

Figure 3.1: Branching strategy of Ingargiola and Korsh 

The authors report on computational results on randomly generated instances 
with n varying from 15 to 25 and m ≤ 6. The bottleneck of the approach is the 
determination of the relation R. The authors do not present the algorithm for it, 
and mention that the time needed for this calculation make it difficult to compare 
their results with previous papers of the literature. 

Hung and Fisk (1978) 

Hung and Fisk present in [HF78] a branch and bound approach for the MKP with 
uniform profit. They present two different implementations of the algorithm, 
differing in the calculation of the upper bound. The branching strategy is the 
following. They proceed in a depth first way, and each item generates m + 1 new 
branches like in the procedure from Ingargiola and Korsh (see Figure 4.1), one 
corresponding to excluding this item of the solution and m ones for assigning the 
item to each knapsack. 

Let us present the upper bounds used in the procedure. A first upper bound 
is the value of the surrogate relaxation. The idea is to combine the knapsacks 
using an array π = (π 1 , . . . , πm) of nonzero multipliers. Then, the value of the 
surrogate relaxation S(π) is given by 

S(π) = max £n
i=1 ciyi 

s.t. £k=1 πk£n =1fiyi ≤Ek m ^ F k ; 
yi ∈ {0,1} foralli∈N. 
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The authors use as vector π the dual multipliers of the knapsack constraints in the 
linear relaxation of the MKP. The resulting Single Knapsack Problem is solved 
exactly, yielding an upper bound for the value of the solution of the MKP. In 
Example 3.1.1 we show an instance in which the bound given is greater than the 
optimal solution of the original problem. 

Example 3.1.1 Consider the instance of the MKP given by n = 5, m = 2, 
f = (2, 2, 2, 2, 2) and F = (5, 5). Let π = (1,1) and consider the corresponding 
surrogate relaxation: 

max En
i=1 c iy i 

s.t. 2y1 + 2y2 + 2y3 + 2y4 + 2y5 ≤ 10. 

The optimal solution of the problem above is clearly yi = 1 for i = 1 , . . . , 5, but 
there is no solution of the original problem with this objective function value. 

• 
The second relaxation used in [HF78] is the Lagrangean relaxation. Given a 

vector λ = (λ1 , . . . , λn) of Lagrangean multipliers, the value of the Lagrangean 
relaxation L(λ) is given by 

L(λ) = max £n
i=1 c ix i k - En

i=1 λ i(Em
k=1 x i k - 1) 

s.t. i = 1 fixik ≤ Fk, for all k ∈ M; 
xik∈{0,1}, for alH e N, k ∈ M. 

Observe that the problem described above can be divided into m independent 
Single Knapsack Problems, with the same weight and profit functions. The only 
difference between the problems is the capacity of each knapsack. 

As Lagrangean multipliers the authors use the dual multipliers of the SOS 
constraints in the linear relaxation of the MKP. The branching variable used 
depends on the upper bound. In the case of the surrogate relaxation, the authors 
use the item with lowest index. For the Lagrangean relaxation they consider the 
item with maximum conflict, i.e., the item that appears most times in the solution 
of the knapsack problems. 

The authors report on the solution of randomly generated problems with uni­
form distribution with n = 50, 100, 150 and 200, and m = 2, 4 and 6. They 
observe that the Lagrangean relaxation is superior when one attempts to solve 
large problems (n ≥ 60). They restrict the maximum running time to 250 sec­
onds. The surrogate relaxation proceeds the exact solution of a knapsack problem, 
which is time consuming. This is the reason for the surrogate relaxation fails in 
some problems. 

Martello and Toth (1980) 

The approach suggested by Martello and Toth in [MT80] differs from the one 
discussed in the last section in the choice of the Lagrangean multipliers and in the 
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branching strategy. Moreover, the authors suggest a list of improving heuristics, 
used to get better bounds. 

For the Lagrangean relaxation, Martello and Toth use the multipliers λ = 
(λi) = 0 for all i e N. They observe also that the exact solution of the surrogate 
relaxation consumes too much time, and observe also empirically that the quality 
of the bound decreases when we are deep in the branch and bound tree. Therefore, 
the solution of the surrogate relaxation is calculated heuristically after some level 
in the tree. 

A significant difference from this approach and the previous described is the 
branching strategy. In each iteration of the algorithm a current solution is con­
sidered. For the branching step, an item i is selected with k e M xik > 1. If none 
exists, a feasible solution was found, and the node is fathomed. Let Ki be the set 
of knapsacks where this item is currently assigned. Then, \Ki\ + 1 new nodes are 
considered, in the first \Ki\, a variable xik is set to one, and in the last one all 
variables xik for k e Ki are set to zero. 

The authors present a careful comparison with the two previous papers on the 
MKP, yielding better computer times. The instances are all randomly generated 
with uniform distribution, n = 25, 50 and 100 and m = 2, 3 and 4. 

Martello and Toth (1981) 

Martello and Toth present in [MT81] a so called “bound and bound” algorithm 
for the MKP with uniform profit. The method is a slight modification of the 
branch and bound method discussed in the last sections. In this approach, it 
is supposed that a heuristic procedure for the MKP is given that always finds 
a feasible solution (if there exists one) such that no other item can be assigned 
without violating the knapsack constraints. 

The algorithm proceeds in the following depth-first way. At each iteration a 
set S of variables are set, either to zero or to one. In the first iteration no variable 
is in S. Then a heuristic solution is obtained, and an upper bound for the subtree 
rooted in this node is calculated. If there is no solution for the current problem 
the node is fathomed and a backtrack step is performed. If the heuristic solution 
is better than the current best solution, then the value of the best solution is 
updated. We verify if the value of the heuristic solution equals the upper bound 
in the node. If it is the case, the node is also fathomed. Now, a branch step is 
performed. As branching variable xik the authors choose an item i and knapsack 
k such that i is assigned to k in the heuristic solution and variable xik is not set. 
This variable is included in S and set to one, and a new iteration is performed. 
Finally, in the backtrack step, the last variable set must be considered. If it 
was set to one, then the procedure sets it to zero and performs a new iteration. 
Otherwise the variable is discarded from S. 

The main difference of the procedure from the other one developed by the au­
thors is that a heuristic solution is present. This heuristic solution is used to pro-
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vide a lower bound to the value of the solution, what can cut some branches of the 
branch and bound tree. Moreover, the choice of the branching variable is made in 
the “direction” given by the heuristic solution. Martello and Toth use as heuristic 
procedure the following idea. First, reduce the problem subtracting, for the vari­
ables in S set to one, their weight from the capacity of the corresponding knapsack. 
Let N' = N\ Si, where Si := {i ∈ N | xik is set to one in any knapsack k ∈ M}. 
Then, they solve for each knapsack k ∈ M exactly the Single Knapsack Problem 
in the remaining variables N' \ Sk, where Sk := {i ∈ N | xik is set to zero}. The 
items assigned to knapsack k are included into Si in order to avoid assigning an 
item two more than one knapsack, and N' is updated for a new iteration. As 
upper bound for the node, the surrogate and the Lagrangean relaxations are used, 
as discussed in the last section. 

The authors compare this new approach with the one of the last section, and 
report better computer times. The instances are randomly generated with a uni­
form distribution, for the instances considered, n = 25, 50, 100 and 200, and m = 
2, 3 and 4. 

3.1.3 Heuristic algorithms for the MKP 
In this section we present some approximative algorithms for the Multiple Knap­
sack Problem with uniform profit. The problem is proven to be NP-complete 
in strong sense (cf. [MT91]), since the 3-Partition Problem can be polynomially 
transformed to it. Then, no fully polynomial approximation scheme can exist for 
the problem, unless P = NP. No polynomial approximation scheme is known for 
the MKP in the general case (Frieze and Clarke present in [FC84] a polynomial 
approximation scheme for the GZOP when m is fixed - see Section 4.3). In the 
remainder of this section we present some heuristic algorithms for the Multiple 
Knapsack Problem with uniform profit. 

Fisk and Hung (1979) 

Fisk and Hung present in [FH79] a heuristic procedure based on the solution of 
the surrogate relaxation of the MKP with uniform profit. 

Consider the surrogate relaxation S(π) of the MKP. Let T be the set of items 
included in the optimal solution of the Single Knapsack Problem corresponding 
to the relaxation. The heuristic looks for a feasible assignment of the items in T 
to the knapsacks in the original problem. If an assignment is found in which all 
items of T are assigned, then it is clearly an optimal solution. 

In order to find a feasible assignment of T, the authors suggest an “exchange 
routine”. In the beginning the items are assigned to the knapsacks in a random 
way, until there is no sufficient space to assign an item. In this case, a “rearrange­
ment” of the items in the knapsacks is performed, where exchanges are made in 
order to increase the maximum available capacity in some knapsack. The authors 
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suggest first a one-to-one exchange, and, if no such exchange is possible, one-to-
two and two-to-one exchanges. The procedure looks for such exchanges for each 
pair of knapsacks. It goes on in this way until sufficient space for the item is 
achieved. If after trying all exchanges, no sufficient space is achieved, then the 
item considered is excluded from the current solution. 

The authors report on solving randomly generated problems with up to 1000 
items and 6 knapsacks. In only one case from 100 problem instances the exchange 
procedure did not find a solution with the same value of the surrogate relaxation. 
For all other 99 instances the heuristic solution had the value of the surrogate 
relaxation, and, therefore, was provably optimal. 

Martello and Toth (1981) 

Martello and Toth present in [MT81a] a series of heuristic procedures to the 
MKP with uniform profit. The heuristic procedure suggested in [FH79] has the 
disadvantage that in each iteration a knapsack problem must be exactly solved. 
The idea presented in the paper is to compare the behavior of simple heuristics 
with the one suggested in [FH79]. 

The authors suggest very simple heuristic ideas to find an initial solution and 
improve a solution given. For an initial solution they suggest three procedures: 

• MK1: for each k ∈ M , a greedy solution of the single knapsack problem is 
calculated. The items in the solution are excluded from the set of the items 
to avoid an item being assigned to more than one knapsack; 

• MK2: the idea is to assign items to knapsacks in a cyclic way. Items that 
cannot be assigned to any knapsack are excluded; 

• MK3: first a greedy solution is given for all knapsacks k ∈ M . In this case, 
items are allowed to be assigned to more than one knapsack. Then, the 
conflicts are treated. To this end, the item is excluded from all knapsacks 
and the greedy solution is recalculated for the items with index greater 
than the index of the conflict item. The item in conflict is assigned to the 
knapsack where the difference of the two greedy solutions is maximum (or 
the loss of profit excluding the item would be the greatest). The procedure 
is iterated until no conflict is present. 

They compare the heuristics empirically in a set of problem instances, and the 
heuristic MK3 has the best bounds but the worst running times. 

As improving heuristics two ideas are presented. In the first one, two exchange 
between items assigned to different knapsacks are checked. The exchange is per­
formed if i t allows an item excluded in the current solution to be assigned to a 
knapsack. The second procedure works in the following way. In each iteration an 
item assigned to a knapsack is substituted by one or more items excluded in the 
current solution. 
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The authors report on solving large instances of randomly generated problems 
with correlated and uncorrelated item weights and knapsack capacities. In the 
instances considered n ≤ 1000 and m = 10, 20, 50 and 100. The average error 
reported is always under 7%. Moreover, since the procedures do not consume 
too much time or memory, better results are provided in comparison with the 
approach from Fisk and Hung [FH79]. 

3.2 The Generalized Assignment Problem 
The GAP can be defined as follows. 

Given a set N of jobs, a set M of machines with resource availabil­
ity Fk, k ∈ M, an array of resource demands fik, i ∈ N, k ∈ M 
corresponding to assigning job i to machine k and a cost function c 
associated with assigning the job i to machine k. We want to find an 
assignment of all jobs to the machines such that resource availability 
constraints are satisfied and the assignment has minimum cost. 

In the literature there are some applications of this problem. Fisher and Jaikumar 
in [FJ81] present a formulation for the Vehicle Routing Problem using the GAP, 
where the machines correspond to trucks and the jobs to items to be delivered. A 
special case of the problem is studied by de Maio and Roveda [MR71], where the 
jobs have uniform demands for all machines fik = fi for all k ∈ M, i ∈ N. They 
report on a practical application concerning a transportation problem, where items 
have to be distributed at warehouses in a way that the demands of the shops are 
satisfied and minimizing the delivery costs. Fisher, Jaikumar and van Wassenhove 
refer in [FJW86] to some other applications like assigning software development 
tasks to programmers, assigning jobs to computers in computer networks and 
designing communication networks with node capacity constraints. 

In the next section we present a formulation for this problem using 0-1 vari­
ables. Some results of the literature for the GAP are listed in Section 4.2.2. 
Polyhedral approaches to GAP and special cases are presented in Section 4.2.3. 

3.2.1 A formulation of GAP using 0-1 variables 
The GAP is the following problem. 

Problem: GAP 
Instance: Finite sets N and M,f∈ IN NxM, F ∈ INM and c ∈ NNxM. 
Question: Find a partition B = (Bu . . . , Bj) of N, such that j ≤ |M|, 
EieBk fi≤Fk, for all k ∈ M and J2keM J2ieBk cik is minimum. 

We introduce 0-1 variables in order to model the problem. Let xik ∈ { 0 , 1 } N M 

with the interpretation xik = 1, when job i is assigned to machine k and 0, 
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otherwise. An integer programming formulation of GAP is given via 

min J2ieN J2keM 

(4.2.1) 
s.t. ≤Fk, 

= 1, 
52i€N fikxik 

xik∈{0,1}, 

The problem is proven to be NP-hard [MT91], even for m = 2. The feasibility 
problem is also NP-hard, since Partition can be reduced to GAP in polynomial 
time [MT91]. 

for all k ∈ M; 
for all i ∈ N; 
for alli∈N,k∈ M. 

(1) 
(2) 
(3) 

3.2.2 A brief literature survey on the GAP 
In this section we list some results of the literature on GAP in the general form 
and some special cases. It is not our objective to provide a complete survey, but 
give the reader a feeling on the methods used to solve the problem. 

In [MR71], de Maio and Roveda consider the special case of the GAP with 
uniform demands for all machines, fik = fi for all k ∈ M, i ∈ N. They suggest 
an enumeration algorithm in which all n-tuples of M are considered in increasing 
order of cost. The first feasible tuple generated is, thus, also optimal. 

Srinivasan and Thompson study in [ST73] the same problem. They suggest 
a branch and bound algorithm. First, they transform the problem given above, 
taking yik = fixik. Then, the problem can be rewritten as the following trans­
portation problem 

maxE z2k iCN keM c
f y ik 

s.t. ZieNyik ≤Fk, for all k ∈ M; 
EkeMyik =fi, forall i ∈ N; 
yik ∈ {0, fi} for alH G N, k ∈ M. 

The linear relaxation of the problem above can be efficiently calculated. Then, in 
each node of the branch and bound tree, the optimal solution of the LP relaxation 
is calculated. If all yik variables are in {0, f i} then a feasible solution is found 
and the node is fathomed. Otherwise, a “fractional” variable is chosen and two 
subproblems are generated, in one with this variable fixed to zero and in the other 
one to fi. 

Some branch and bound strategies have been developed for the GAP. Ross and 
Soland use in [RS75] as bound a Lagrangean relaxation on the constraints (2) of 
(4.2.1), where the Lagrangean multipliers λ = (λi) are chosen as the maximal cik 
for all k ∈ M such that the job i can be assigned to this machine (fik ≤ Fk). The 
branching variable is selected as the one with maximal “conflict” in the resulting 
independent knapsack problems. 
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Martello and Toth present in [MT81b] a better bound to the problem, taking 
the minimum from the bound analyzed by Ross and Soland and the value of the 
Lagrangean relaxation using 0 as Lagrangean multipliers. The strategy used to 
select the branching variable is similar to the one used by Ross and Soland. 

Fisher, Jaikumar and van Wassenhove develop in [FJW86] a technique to 
obtain better Lagrangean multipliers called multiplier adjustment method. The 
idea is, at each iteration, find jobs violating the relaxed constraints and increase 
in a suitable way, the corresponding penalty (or Lagrangean) multiplier. The 
multipliers found by the procedure are used to generate bounds for a branch and 
bound method. 

Crema study in [Cr90] a generalization of the GAP, where different resources 
are needed by the jobs. In this case, the jobs demands become a three dimensional 
vector and the machines capacities two dimensional. The author compares the 
value of different relaxations to the problem. 

3.2.3 Polyhedral investigations 

In this section we survey a polyhedral investigation to a polytope associated with 
GAP, studied by Gottlieb and Rao [GR90]. Further, a special case of the problem 
has been also studied from a polyhedral point of view by Abdel Hamid [AH94]. 

Gottlieb and Rao (1990) 

In [GR90] and [GR90a] Gottlieb and Rao present a polyhedral investigation of 
a polytope associated with the GAP. First, they transform the problem into an 
equivalent one, where penalty parameters are associated with the equalities (2) 
in (4.2.1). This transformation is made in order to obtain a full dimensional 
polytope. So, the polytope is then defined as follows 

GAP(N, M, f, F) := conv{x e Rm n | £ i e N fikxik < Fk, for all k e M; 
12k€Mxik< 1, for all i (EN; 

G{0,1}, for all i G N , 
k G M } . 

The authors usually consider polytopes associated with subproblems of the original 
problem. Let H C N, W C M and Y C H x W, and define GAPY(H, W, f, F) 
as the polytope in R Y where only the pairs in Y are considered as feasible. In 
order to simplify the presentation, the authors represent the problem as a bipartite 
graph G = (V, E) where V = H U W and e = ik e E if (i, k) e Y. 

Now, we describe some of the contributions from Gottlieb and Rao. In [GR90] 
they present some classes of valid inequalities for the polytope. In this summary 
we will show only the first one, the so called cycle inequality. The interested 
reader can find other classes in [GR90] and [GR90a]. 
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Theorem 3.2.1 (Cycle Inequalities) Suppose that an instance (N,M, f,F) 
of the GAP is given. Let H C N , W C M and Y C H x W such that the 
graph defined as above has exactly one cycle C, and this cycle contains all nodes 
of W. Suppose W = P U Q, P n Q = 0, |Q| > 1 and |P| = 2p + 1. Denote for 
keW,Nk:={ieN| (i, k)eY}. Further, let ik,jk e H be the nodes adjacents 
tok in the cycle C (fik <fjk). If 

(i) for all keQ,Nkisa cover for k, 

(ii) for all keP,Nk\ {jk} is a cover for k, 

then 
E xik< |H|-p-1 

(i,k)∈Y 

is valid for GAPY(H, W, f, F). 

z2i 

Proof. Observe that 
2 £(i,k)∈Y xik = Ek∈Q J2i∈Nk xik + Ek∈P Ei∈Nk\{ik} xik 

Ek∈P J2i∈Nk\{jk} x ik + Eik∈C x ik + Ek∈Q Ei∈Nk\{ik,jk} x ik , 
due to (i), (ii) and SOS constraints, 

< Ek∈Q(|Nk| - 1) + 2EkP(|Nk| - 2) + |W| + Ek∈Q(|Nk| - 2), 
= 2E k ∈ Q |Nk| + 2 E k ∈ P | ∈fc| - 3|Q| - 4|P| + |W|, 
= 2 | Y | - 3 | Q | - 4 | P | + |W|, 

since |Y| = |H| + |W| and |W| = |P | + |Q|, 

= 2|H|-|P|, 
= 2|H|-2p-1. 

Therefore, £ ( i , k )∈Y xik <|H|-p-1
2, or, since the variables are integers, 

E xik<|H|-p-1. 
(i,k)∈Y 

Gottlieb and Rao provide also in [GR90] some necessary conditions that an 
inequality must satisfy in order to define a nontrivial joint facet of GAP(N, M, f, 
F). We present in the following one of their results. 

Theorem 3.2.2 Let ax < α be a nontrivial joint facet defining inequality of 
GAPY(H, W, f, F). Then, for all keW, 

|NkC\N(k)| > 2 , 

where, N(k) :=Ul∈W\{k}Nl. 
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Proof. Let k ∈ W and suppose that |Nk ∩ N(k)| < 2. Let us analyze the two 
cases. First, let |Nk ∩ N ( k ) | = 0. Then, there exists α1 and α2, α = α1 + α2, such 
that for all x ∈ EQ(ax ≤ α), J2i∈Nk aikxik = α 1 and J2l∈W\{k} J2i∈Nl ailxil = α 2 . 
Then, i∈Nk a ikxik ≤ α 1 and Yl∈W\{k} Yi∈Nl ailxil ≤ α 2 are valid inequalities for 
GAPY(H, W, f, F), contradicting the assumption that ax ≤ α is a facet defining 
inequality. 

Suppose, now, that Nk ∩ N(k) = {i}. Let x1 ∈ EQ(ax ≤ b) with x1
i l = 0 for 

a l l l ∈ W (there is one, otherwise EQ(ax ≤b)⊆ EQ(J2l∈Wxü ≤ 1)). Define, 

α1 := E ajkx1
jkand α2 := E E ajlx1

j l. 
j∈Nk l∈W \ { k } j∈N l 

Consider another solution x2 ∈ EQ(ax ≤ α) with x2
i k = 1 (there is one, otherwise 

EQ(ax ≤ b) ⊆ {x ∈ IR Y | Y,l∈Wxil = 0}). In this case, Y,j∈Nkajkx 2 k must 
also be less than or equal α1, otherwise we could combine x1 and x2 giving a 
point violating the inequality. Then, £ j ∈ N k a jkx jk ≤ α 1 is a valid inequality for 
GAP Y (H,W,f,F). The same argument holds for J2l∈W\{k} Jj∈Nl ajlxjl ≤ α 2 . 
But, it contradicts the fact that ax ≤ α defines a facet. • 

Moreover, they could prove that nontrivial facet defining individual inequal­
ities are also facet defining inequalities of GAP(N, M, f, F) (in Section 5.2 we 
present a proof for this fact for the Multiple Knapsack Polytope). Another in­
teresting result due to Gottlieb and Rao is that the fractional solution of the LP 
Relaxation of problem (4.2.1) violates a nontrivial individual inequality. 

3.3 General Zero One Programming 
In this section we present the General Zero One Programming Problem. This 
problem is included in this survey about related problems to the MKP because 
it is usually called “Multiple Knapsack” in the literature. The problem can be 
defined as follows. 

Problem: GZOP 
Instance: n,m ∈ IN, a (m, n)-matrix A with aij ∈ IN for all i ∈ M, 
b ∈ INm and c ∈ Kn. 
Question: Find max cx such that Ax ≤bandx ≤ b and x ∈ {0,1}n. 

The problem is NP-hard, even if all elements of A, b and c are required to belong 
to {0,1} (cf. [GJ79]). If m is fixed, Frieze and Clarke [FC84] provide a polynomial 
approximation scheme for the problem. Korte and Schrader prove in [KS80] that 
no fully polynomial approximation scheme can exist for the problem, even in the 
case of fixed m, unless P = NP. Let N be the set of the columns and M the 
set of rows. The idea of Frieze’s approach is similar to Sahni’s procedure to the 
Knapsack Problem (see Section 3.3.1). Consider all subsets S⊆N,|S|≤k, and 
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EjeS aij ≤ bi for all i ∈ M. The variables in S are supposed to be in this solution 
and are set to one. Now, solve the linear relaxation of the “reduced problem”, i.e., 
the problem obtained by considering only the variables of N\S and the reduced 
capacities b. Like in Sahni’s algorithm, the idea is to solve exactly instances with 
less than or equal k elements, and complete, in a greedy like way, the solution 
with the others. They prove that the solution given by this procedure x' is a 
e-approximation of the optimal solution, when k = min(n, m ^ D . 

The GZOP has been attacked by Crowder, Johnson andPadberg [CJP83], 
and Hoffman and Padberg [HP91] where algorithms based on the LP relaxation 
of the problem, with cutting planes from individual knapsack inequalities are used 
to solve large instances. 

Crowder, Johnson and Padberg consider the GZOP in the case that the matrix 
A is sparse and has no apparent structure. The idea used to solve this problem 
is to consider the linear relaxation of it (that is, substitute the constraints x ∈ 
{0, 1}n by 0 ≤ xi ≤ 1 for all i ∈ N) and try to obtain better bounds using valid 
inequalities of the polytope 

GZOP(m, n, A, b) := conv{x ∈ R n | Ax ≤ b, xi ∈ {0,1} for all i ∈ N}. 

They observe that the facet defining inequalities of the polytopes associated 
with each individual knapsack constraint are valid for GZOP(m,n,A,b). In 
[CJP83] heuristic procedures for generation of violated Minimal Cover and (1,k)-
Configuration Inequalities are suggested (we present these procedures in the 
Chapter 6). With the inequalities generated by these routines, the authors ob­
tain an improvement of up to 187% on the value of the linear relaxation. No more 
inequality is added to the LP if the improvement obtained is too small. All prob­
lems considered are solved to optimality, using a final branch and bound phase. 
The instances considered have up to 2756 variables, and are solved in reasonable 
computer times (less than one hour). 

Hoffman and Padberg improve on the results of [HP91] using different strate­
gies for generating violated inequalities from individual knapsack constraints. 
They use, for example, the idea of complementing as described in Section 3.4. 
Moreover, several new tools, coming from the Branch and Cut method, like elim­
inating redundant inequalities, LP based heuristics, and so on, (see Chapter 6 for 
more details on the Branch and Cut approach) are presented in the new approach. 
Instances with up to 6000 variables are considered, and solved to optimality. 



Chapter 4 

A Polyhedral Investigation of the 
Mult iple Knapsack Problem 

In this chapter we investigate MKP from a polyhedral point of view. The idea is 
to associate with every feasible solution of the problem a vertex of the Multiple 
Knapsack Polytope, and study its properties. In particular, our main aim is to 
provide classes of valid and facet defining inequalities for this polytope. These 
inequalities are of fundamental importance in the method we use to solve the 
problem (presented in Chapter 6). One can classify the valid or facet defining 
inequalities for the Multiple Knapsack Polytope into two types: 

• inequalities whose all nonzero coefficients belong to the same knapsack. 
These are called individual inequalities; 

• inequalities that combine nonzero coefficients of at least two different knap­
sacks. These are called joint inequalities. 

In Chapter 3 we describe some valid and facet defining inequalities from the litera­
ture for the Single Knapsack Polytope. These inequalities coincide, as we show in 
this chapter, with the individual inequalities of the Multiple Knapsack Polytope. 
In this chapter we present also several new classes of valid and facet defining 
joint inequalities for the Multiple Knapsack Polytope. Polyhedral investigations 
to related polytopes are described in Chapter 4. 

This chapter is organized as follows. In Section 5.1 we define the Multiple 
Knapsack Polytope and show some results about its dimension. We present in 
Section 5.2 some initial results about facet defining inequalities. We show, for 
example, that all facet defining inequalities of polytopes associated with single 
knapsack constraints define also individual facets of the Multiple Knapsack Poly-
tope. Sections 5.3 to 5.8 are dedicated to joint inequalities. We present, in these 
sections, new classes of valid and facet defining joint inequalities of the Multiple 
Knapsack Polytope. Finally, in Section 5.9 a procedure is presented to extend 
facet defining inequalities of the polytope to higher dimensions. Some of the 
results in this chapter are presented in [FMW93]. 

65 
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4.1 The Multiple Knapsack Polytope 

In Chapter 4 we give a formulation of the MKP using 0-1 variables. Let us 
repeat this formulation. Given an instance (N, M, f, F) of the MKP, consider the 
variables xik G {0, 1}m n with the interpretation xik = 1, when item i is assigned 
to knapsack k and xik = 0, otherwise. An integer programming formulation of 
the MKP is given via 

Y,i£N E ieN keM 

ZitN fixik <Fk for all k G M (1) 
EkeM xik < 1 for al l i G N (2) 
x i k G{0,1} for al l i G N, k G M (3) 

The constraints (1) are called knapsack constraints and the constraints (2) SOS 
(Special Ordered Sets) constraints. 

It is usual, in this approach, to investigate subinstances of the original problem. 
The inequalities found for these subinstances are, then, extended to the original 
problem using the so called Lifting Procedure. 

Let Ai C N and Bi C M for i = 1 , . . . , t. Define T := Ui=1 A * Bi. T can 
t r be interpreted as the set of possible assignments, i.e. some item i G N can be 

assigned only to the knapsacks k such that (i, k) G T. The Multiple Knapsack 
Polytope is defined as follows. 

MKP(T, f, F) := conv{x G R T | i:(i k)eT fixik < Fk, k G Ut1 Bl, 

In this notation the polytope corresponding to the original problem coincides with 
M 

F 

12k:(i,k)€Txik<1, i£tj=1Aj, 
x i k G { 0 , 1 } , (i,k)eT. 

MKP(N x M, f, F). For ease of notation we use f and F instead of f |y t
 A. and 

t Bj in the definition of the polytope. We will also use MKP(N, M,f, F) as 

a synonym for MKP(NxM,f,F). x 

Lemma 4.1.1 MKP(T, f, F) is full dimensional if and only if fi < Fk for all 
(i,k) £T. 

Proof. If there is a pair (i,k) G T with fi > Fk, then MKP(T,f,F) C {x G 
R T | xik = 0}, and, therefore, the polytope is not full dimensional. Conversely, 
it suffices to observe that 0 and the unit vectors eik are in MKP(T, f, F) for all 
(i,k)eT, and are affinely independent. • 

In particular, MKP(N x M, f, F) is full dimensional if and only if fi < Fk 

for allieN,ke M. We assume throughout this chapter that it is the case. 
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4.2 Some initial results on facet defining inequal­
ities 

In this section we show some initial results on facet defining inequalities of the 
Multiple Knapsack Polytope. In the next lemmas we present two classes of facet 
defining inequalities of the MKP(T, f, F). We refer to them as trivial inequalities. 

Lemma 4.2.1 The inequality 
xik>0 

defines a facet of MKP(T, f, F) for all (i,k)eT. 

Proof. The inequality is clearly valid. Let (i',k') G T and suppose that there 
exists a facet defining inequality bx < β such that EQ(xik, > 0) C EQ(bx < β). 
Observe now that 0 and eik are in EQ(xik > 0) for all (i, k) G T\{(i', k')}. Then, 
bik = 0 for all (i,k) eT\ {(i',k')}. Thus, bx < β is a scalar multiple of the 
inequality, and, therefore, it defines a facet. • 

Observe that these are the only facet defining inequalities of the MKP(T, f, F) 
with negative coefficients (in the form ax<α). Suppose that there exists another 
facet defining inequality ax < α with aik < 0. Then, there must exists a vector 
x' G EQ(ax < α) with x'ik = 1 (otherwise EQ(ax < α ) C { x e R T xik = 0}, 
contradicting the assumption that ax < α is facet defining). But then, x' - eik is 
also a feasible point of the polytope and a(x'-eik) = ax'-aik > α, a contradiction. a(x'-eik) = ax'-aik 

Lemma 4.2.2 Given i e Ut=1Aj, define Ki := {k e M \ (i,k) G T}. The 
inequality 

k£Ki 

defines a facet ofMKP(T, f,F) if and only if\Ki\>2orKi = {k} andfi + fj < 
Fk for all j G {j G N \ { i } ( j , k) G T}. 

Proof. First let us prove that the conditions are sufficient. The inequality is 
clearly valid. Let i G Ut j=1 A and suppose that there exists a facet defining 
inequality bx < β such that EQ(E k e K i xik < 1) C EQ(bx < β). Note that eik is 
an element of EQ( ̂  keKi xik < 1) for all k G Ki. Then, bik = bik, for all k, k< G Ki. 
Now, due to the condition in the theorem, we have two cases to analyze. 

• \Ki\ > 2. 
Let i' G Utj=1Aj \ {i} and k' G Ki. Let also k G Ki \ {k1} (there exists some, 
since \Ki\ > 2). Then, eik + eik, is an element of EQ(Y,keKi xik < 1), and 
therefore, bik> = 0 for all i< G Ut=1A j \ {i} and k' eKi. 
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• Ki = {k} and fi + fj < Fk for all j G {j eN\{i}| ( j , k) G T}. 
Let i< G Ut=1Aj \ {i} and k' G Ki. If k' = k, eik + eik is an element 
of EQ(£k€K.xik < 1), and therefore, b i k = 0. In the other case, since 
fi + fi> < Fk,eik + eik is also in EQ(J2keK xik < 1), and therefore, bik = 0. 

Summing up all cases above, bx < β is a scalar multiple of the inequality, and 
therefore, it defines a facet of MKP(T, f, F). 

Now we prove that the conditions are also necessary. Suppose that the con­
ditions are not satisfied, i.e., Ki = {k} and there exists a j e {j' G N \ {i} | 
(j',k) G T} such that fi + fj > Fk. In this case, the inequality xik + xjk < 1 
is clearly valid. Then, the inequality J2keK. xik < 1 is the sum of the inequality 
above and xjk > 0, and therefore cannot be'facet defining. • 

In the next Lemma we prove that all facet defining inequalities of the polytopes 
associated with the knapsack constraints define also facets of the MKP(N x 
M,f,F). This result (in a more general version) is due to Gottlieb and Rao 
[GR90]. 

Lemma 4.2.3 Let k G M and consider SKP(N,f,Fk), the Single Knapsack 
Polytope associated with the k-th knapsack constraint. Suppose ay < α is a 
nontrivial facet defining inequality of SKP(N,f,Fk). Then, a'x < α defines a 
facet of MKP(N x M, f, F), where a' G INmn and 

, = a i, if j = k, 
ai j : 0, otherwise. 

Proof. Since the inequality ay < α defines a facet of SKP(N, f, Fk), the inequal­
ity a'x < α is clearly valid for MKP(N,f,F). Now suppose that there exists a 
facet defining inequality bx < β of MKP(N, M, f, F) such that EQ(MKP(N, M, 
f, F),a'x <α)C EQ(MKP(N, M, f, F),bx < β). Let i G N and l G M \ {k}. 
Since ay < α is a nontrivial facet of SKP(N, f ,Fk), there exists a vector y' G 
EQ(SKP(N,f,Fk),ay < α) such that y[ = 0 (otherwise, EQ(SKP(N, f,Fk), 
ay < α) C {y G R n | yi = 1}, and yi < 1 is a trivial valid inequality). Then, the 
vector x' G Rm n defined by: 

for all jeN,l = k, 
0, otherwise 

isanelement of EQ(MKP(NxM, f,F),a'x < α). Moreover, the vector x'+eil G 
Rm n is also an element of EQ(MKP(N x M, f, F),a'x < α) for alll G M \ {k}. 
Then, bx' = b(x' + eil), and, thus, bil = 0 for alll G M \ {k}. The same argument 
holds for all i G N. The inequality bx < b is then an individual inequality. Since 
ay<α defines a facet of SKP(N, f, Fk), bx < b is a scalar multiple of a'x < α, 
and, therefore, a'x < α defines a facet of MKP(N xM, f ,F). • 
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The result above provides several facet defining inequalities of the polytope we 
study. As described in the Chapter 3, much work has been spent on investigations 
of the Single Knapsack Polytope, and many valid and facet defining inequalities 
for i t are known. In the remainder of this chapter we investigate joint inequalities, 
i.e., inequalities that combine the coefficients of at least two knapsacks. 

The individual inequalities are not sufficient to provide a complete knowledge 
about M K P ( N × M , f ,F ) . In Example 4.2.4 we show an instance of the MKP 
and a fractional solution that cannot be cut off by any individual inequality. 

Example 4.2.4 Consider the following instance of the Multiple Knapsack Prob­
lem. Let m = 3, n = 3, 

3x1,1 + 4x2,1 + 5x3,1 ≤ 5, 
3x1,2 + 4x2,2 + 5x3,2 ≤ 7, 
3x1,3 + 4x2,3 + 5x3,3 ≤ 5. 

The complete description of the polytope M K P ( N , M, f , F) (obtained by an enu­
meration algorithm) is the following: 

EkeM x ik 
x1,1 + x2,1 + x3,1 
x1,3 + x2,3 + x3,3 

x2,2 + x3,2 
x1,2 + x3,2 

x1,2 + x2,2 + x3,2 + x1,3 + x2,3 
x1,1 + x2,1 + x1,2 + x2,2 + x3,2 

Observe now that x' e R 3 x 3 given by: G 

1 

x / := 

> 0 
< 1 
< 1 , 
< 1 , 
< 1 , 
< 1 , 
<2 , 
<2 . 

1
2 0 

for all i 
for all i 

∈ N,k ∈ M, 
∈ N, 

2 2 

0 0 1
2 

cannot be cut off by any individual inequality. Moreover, x' violates the inequality 
x1,1 + x2,1 + x1,2 + x2,2 + x3,2 < 2. • 

4.3 Extended Cover Inequalities 
In this section we present a class of facet defining inequalities for M K P ( N 
M, f , F) : the Extended Cover Inequalities. We discuss in the following, conditions 
on the inequality to be valid and facet defining. Afterwards, a generalization is 
given. This class of inequalities can be obtained as an application of the procedure 
presented in Section 5.9. Another interesting observation is that the conditions 



70 CHAPTER 4. A POLYHEDRAL INVESTIGATION OF THE MKP 

required for an inequality be facet defining are local in each knapsack. Then, it 
is not difficult to see that the same ideas apply to the polytope associated with 
the GAP. 

Suppose we are given an instance (N, M, f,F) of the MKP. Let k,l e M, 
S C N a cover for k and T C N \ S such that £ i e T fi < Fl and T U {s} is a cover 
for knapsack l for all s e S. Then, we call the inequality 

$ x i k + J2 xil<\S\ + \T\-1 

Extended Cover Inequality corresponding to S, T, k and l. 

S T 

k l 

Figure 4.1: Extended Cover Inequality. 

Lemma 4.3.1 The Extended Cover Inequality is valid for MKP(N x M, f, F). 

Proof. Suppose it is not the case, and let x' G MKP(N x M, f, F) that violates 
the inequality. Then, due to the SOS constraints, 

5xik+ E xil = \S\ + 
ieS ieSUT 

Since T U {s} is a cover for all s e S, J2ieS x'i l = 0. But, S is a cover for k, and 
therefore, E i e S x ik < \S\ - 1, a contradiction. • 

In the following theorem we present necessary and sufficient conditions for the 
Extended Cover Inequality to define a facet. 

Theorem 4.3.2 Suppose we are given an instance (N, M, f, F) of the MKP. Let 
k,leM, SCN a cover for k and T C N\S such thatJ2ieTfi < Fl andTU{s} 
is a cover for knapsack l for all s e S. Define A := (S x M) U (T x M \ {k}). 
The Extended Cover Inequality corresponding to S, T, k and l defines a facet of 
MKP(A, f, F) if and only if 

i) S is a minimal cover for k; 
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ii) There exists a s1 ∈ S such that T ∪ {s1} is a minimal cover for l; 

iii) For all s ∈ S, there exists a t ∈ T such that J2i∈T\{t} fi + fs≤ F; 

iv) There exist t0 ∈ T and S0 ⊆ S, |S0| = 2 such that £ i ∈ T \ { t o } fi + E i∈So fi ≤ 
F. 

Proof. The inequality is valid due to Theorem 5.3.1. Define a ∈ Rm n by a := 
Ei∈Seik + Ei∈S∪T eil, and set α := |S | + |T| - 1. Let us first prove that if the 
conditions i) to iv) are satisfied, then the inequality ax ≤ α defines a facet of 
MKP(A, f, F). Suppose that there exists a facet defining inequality bx ≤ β with 
EQ(ax ≤ α ) ⊆ EQ(bx ≤ β). 

S T 

(b) 

(e) (c) 

(a) (d) 

k 

l 

M\{k,l} 

• (a) bsj = 0 for all s ∈ S, j ∈ M \ {k, l}. 
Let s ∈ S, and observe that the following vector xs = (xs

i j) 

x s
i j := 

1, i∈S\{s},j = k; 
1, i∈T,j = l; 
0, otherwise 

is an element of EQ(ax ≤ α). Furthermore, for all j ∈M\ {k, l},xs + esj is also 
in EQ(ax ≤ α). Thus, bxs = b(xs + esj) implies bsj = 0 for all j ∈ M \ {k,l}, 
s∈S. 
• (b) bsk = c1 for all s ∈ S. 

Let now s' ∈ S \ {s} (there exist some, since fi ≤ Fk for all i ∈ N, k ∈ M), 
and observe that xs + esk - es/k is an element of EQ(ax ≤ α), since S is a minimal 
cover for k. Then, bxs = b(xs + esk - e s k) , and, therefore, bsk = b s k . Since the 
same argument holds for all s' ∈ S, there exists a constant c1 such that bsk = c1 
for all s ∈ S. 
• (c) btl = c2 for all t ∈ T. 

Let s1 ∈ S as required in condition ii) and define xs^ as above. Then, for all 
t∈T,x2 := x s l - etl + esil is in EQ(ax ≤ α). Then, bxsl = bx2, which implies 
btl = bsll for all t ∈ T. Thus, there exists a constant c2 such that btl = c2 for all 
t∈T. 
• (d) btj = 0 for all t ∈ T, j ∈ M \ {k, l}. 
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Consider x2 as defined above, and observe that x2 + etj is in EQ(ax ≤ α) 
for all j ∈ M\ {k,l}. So, bx2 = b(x2 + etj), which implies btj = 0 for all 
t∈T,j∈M\{k,l}. 
• (e) bsl = c2 for all s ∈ S. 

Observe now that due to condition iii), for all s ∈ S there exists a t ∈ T such 
that xs - etl + esl is an element of EQ(ax ≤ α). Then, bxs = b(xs - etl + esl), and 
thus, bsl = btl = c2, and the same argument holds for all s ∈ S. 
• c1 = c2. 

Finally, let t 0 ∈ T and S0 ∈ S satisfying |S0| = 2and EieT\t0 fi + YieS0 fi ≤ Fl 
as required in iv). Let s2 ∈ S0 and define x3 = (x3

i j) and x4 = (x4
i j) via 

x 

x 

1, i ∈ T \ t 0 ∪ S 0 , j = l ; 
:= 1, i∈S\S0,j = k; 

0, otherwise. 

1, i ∈ T \ t 0 ∪ ( S 0 \ { s 2 } ) , j = l ; 
:= 1, i ∈ (S\S0)∪{s2},j = k; 

0, otherwise. 
∪ 

Observe that x3 and x4 are elements of EQ(ax ≤ α). Then, bx3 = bx4, 
implying that, bs2l = bs2k, and therefore, c1 = c2. 

So, we conclude that bx ≤ β is a scalar multiple of ax ≤ α. Thus, the Extended 
Cover Inequality defines a facet of MKP(A, f, F). 

Now, we prove that the conditions are also necessary. First suppose that S 
is not a minimal cover. Then, there exists a set S' ⊂ S such that S' is also 
a cover for k. Then, the Extended Cover Inequality corresponding to S', T, k 
and l is valid. The inequality E ieS\S'(x ik + xil) ≤ |S | - | S | is also valid. Now, 
observe that the Extended Cover Inequality corresponding to S, T, k and l is 
the sum of the inequalities given above, and, therefore, it cannot define a facet of 
MKP(A,f,F). 

Suppose, now, that condition ii) is not satisfied. Let t0 be an element of T 
with minimum weight. Then, T \ {t0} ∪ {s} is a cover for all s ∈ S. Then, 
the Extended Cover Inequality corresponding to S, T \ {t0}, k and l is valid. 
Moreover, xt0l ≤ 1 is also valid. In this case ax ≤ α is the sum of the inequalities 
given above, and, therefore, cannot define a facet of MKP(A, f, F). 

If condition iii) is not satisfied, there exists an item s ∈ S such that T\{t}∪{s} 
is a cover for all t ∈ T. Then, if s is assigned to l, at most |T| - 2 elements of T 
can be assigned there, and then ax ≤ |S| - 1 + 1 + |T| - 2 ≤ |S| + |T| - 2. Then, 
EQ(ax ≤ α ) ⊆ { x ∈ R A xsl = 0}, and the inequality cannot define a facet. 

Finally, if condition iv) is not satisfied, EQ(ax ≤ α) ⊆ {x ∈ IR A | i ^SUT 
xil = |T|}. Observe that E i e SuT xil ≥ | T | is valid for all x ∈ EQ(ax ≤ α ) . Now, 
suppose that x' ∈ EQ(ax ≤ α ) and E i e SuT x i l > |T|. Then, define Sl := {i ∈ S | 
x i l = 1} and Tl := {i ∈ T | x'i l = 1}. Due to our assumption, |S l | > |T| - |Tl|. 
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Since T U {s} is a cover for all s e S and condition iv. is not satisfied, then 
1Sl1 > 3 and \Tl\ < \T\ - 2. Summing up, 

Exi k + E x'i l = \S\ - \Sl\ + \Sl\ + \Tl\ < \S\ + lTl - 2, 

contradicting our assumption that x' e EQ(ax <α). • 

Example 4.3.3 Consider the following instance of the MKP. Let m = 3, n = 3, 

3x1,1 + 4x2,1 + 5x3,1 < 5 , 
3 x 1 2 + 4x22 + 5x32 < 7 , 
3x1,3 + 4x2,3 + 5x3,3 < 5 . 

The inequality x1 1 + x2 1 + x1 2 + x2 2 + x3 2 < 2 is the Extended Cover Inequality 
corresponding to , S = {1, 2}, T = {3}, k = 1 and l = 2. This inequality defines a 
facet of MKP(N x M,f,F). • 

We present now a generalization of the Extended Cover Inequality to more 
than one knapsack. Let k, l1, l2,..., lt e M be distinct knapsacks. Let also SCN 
be a cover for k and T1,...,TtC N\S, TiDTj = 0, for i,j = 1,...,t. Moreover, 
suppose for all j = 1, . . . , t that i^T fi < Flj and T j U {s} is a cover for l j for 
all seS.We call the inequality: 

J2xik + J2 E x i l j< lSl + E I T j I - 1 l j 
ieS j=1ieSuTj 

< \S\ + J2\Tj\-
j=1 

the Extended Cover Inequality corresponding to S, T1, ..., Tt, k and l1, ..., lt. The 
inequality is valid for the polytope MKP((S x M) U Ut=1(Tj x M' U {lj}),f, F) , 
where M' := M \ {k, l1 , . . . , lt}. The proof for this fact is essentially identical to 
the one presented in Lemma 5.3.1. 

Theorem 4.3.4 Let M' := M \ {k,l1,..., lt} and A := (S x M) U Utj=1(Tj x 
M' U {lj}). The Extended Cover Inequality corresponding to S, T1,... ,Tt, k and 
l1,...,lt defines a facet of MKP(A, f, F) if and only if: 

i) Sis a minimal cover for k; 

ii) For all j = 1 , . . . , t, there exists a sj G S such that T j U {sj} is a minimal 
cover forlj; 

iii) For all j = 1,...,t, and for all s e S, there exists a tj e T j such that 
ieTMtj}fi + fs<Flj; 

iv) For allj = 1,...,t, there exists tj0 e T j and S0
j C S, \S0

j\ = 2 such that 
i}fi + J2ieSifi<Flj. SW}f i+£ 
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The proof for Theorem 5.3.4 is essentially the same as for Theorem 5.3.2, one 
must just consider each knapsack li and corresponding set Ti independently. 

Observe that this inequality class can be obtained from Minimal Cover In­
equalities applying the procedure suggested in Section 5.9. 

4.4 Extended (^-Configuration Inequalities 

In this section we present a similar facet defining inequality of MKP(N × 
M, f ,F). Before describing the inequality let us introduce a definition. A set 
S is a t-cover for a knapsack k if for all T⊆S, with |T| = t - 1, i ∈S\T fi > Fk 
and Ei∈S\(T∪{s}) fi ≤ Fk for all s ∈ S \ T. Observe that a minimal cover is a 
1-cover. 

Suppose we are given an instance (N, M, f,F) of the MKP. Let k,l ∈ M, 
Q ∪ {s} be a (1,d)-configuration for the knapsack k, and T ⊆ N \ (Q ∪ {s}) such 
that Ei∈ Tfi ≤ F l . Moreover, let Q' ⊆ Q, with d ≤ |Q'| ≤ |Q|. The inequality, 

J2xik + (|Q'|-d+1)xsk+ J2 xil≤|Q'| + |T| 
i∈Q' i∈T∪(Q'∪{s}) 

is called Extended (1,d)-Configuration Inequality corresponding to Q', Q∪{s}, 
T, k and l. 

Lemma 4.4.1 The Extended (1,d)-Configuration Inequality is valid for the poly-
tope MKP(N × M, f, F) if and only if 

i) T∪{s} is a cover for l; 

ii) for all Q'k ⊆ Q' with |Q'k| =d-t,t≥1, no more than |T| + t - 1 items 
from (Q' \ Q'k) ∪ T fits into knapsack l. 

Proof. Let us prove that the conditions are sufficient. Suppose that the inequality 
is not valid, and let x' ∈ MKP(N × M, f, F) violating the inequality. There are 
two cases to be analyzed. 

• Case 1: x'sk = 0. 
In this case, since x' violates the inequality, we must have J2i∈Q, x'ik = |Q'| 
and ET∪{s} x'jl = |T| + 1. This is not possible due to condition i) 

• Case 2: x'sk = 1. 
Since x' violates the inequality, 

E xik + E xjl > |T| + d - 1 . xik + xjl >|T| + d-
i∈Q: j∈T∪Q* 
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Q U {s} is a (1,d)-configuration for k, then £ i ∈ Q / x i k < d - 1. Define Q'k := i∈Q' 
{i £ Q'| x'ik = 1} and |Q'k| = d -t. By the condition ii) , Ei∈(Q'\Q'k)∪T x i l < 
|T| + t - 1, what contradicts our assumption that the inequality is" violated 
byx' . 

Now we prove that the conditions are also necessary. Suppose that the in­
equality is valid. If the condition i) does not hold, consider the following vector 
x1 = (x1

i j ) G MKP(N x M, f, F). 

( 1, ieQ',j = k; 
x1

i j := I 1, i G T U { s } , j = l ; 
( 0, otherwise 

The vector x1 violates the inequality which is a contradiction to the assumption 
that the inequality is valid. 

Now, suppose that condition ii) is not satisfied. Then, there exists a set 
Q'k C Q' such that |Q'k| = d - t, t > 1, and a set R C (Q' \ Q'k) U T, such 
that |R| > |T|+t and E * j ? / * < F l . Then, the assignment x2 = (x2

i j ) is in 
MKP(N x M, f, F), where ∈

 2 is defined as follows. 

x 
1, ieQ'kU{s},j = k; 

2
i j : = 1, i G R , j = 

0, otherwise. 

But, this contradicts the assumption that the inequality is valid, since 

J2x2
i k + (|Q'|-d+1)x2sk+ E x2

i l >d-t+|Q'|-d+1 + |T|+t 
i∈Q' i∈T∪Q'∪{s} 

= |Q'| + |T| + 1. 

m 
In the next theorem we present necessary and sufficient conditions for the 

Extended (1,d)-Configuration Inequality to define a facet of the Multiple Knapsack 
Polytope. 

T h e o r e m 4.4 .2 Suppose we are given an instance N,M,f,F) of the MKP. Let 
k,leM,QU {s} be a (1,d)-configuration for knapsack k. Moreover let Q' C Q 
with d < |Q'| < |Q|, andT C N \ (Q U {s}) satisfying J2i∈T fi < Fl. Further, 
suppose that T U {s} is a minimal cover for l and for all Q" C Q', with Q"| < 
| Q | - d + 1 , TUQ" is a |Q"|-cover for knapsack l. Let, also, A := (Q>U{s} | M)U 
(Tx(M\{k})). Then, the corresponding Extended (1,d)-Configuration Inequality 
defines a facet of MKP(A, f, F) if and only if the inequality is valid, and 

i) for some Q'k C Q', |Q'k|=d-t,t> 1, there exists asetRCTU(Q'\Q'k) 
such that |R| = | T | + t - 1 and J2i∈R fi < Fl, or; 
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ii) there exists some i∈Q andt∈T such that £ ∈ ∈ i∈T\{t}∪{s,i} fi ≤ Fl. ≤ 

Proof. Let ax ≤ α be the Extended (1,d)-Configuration Inequality corresponding 
to Q', Q ∪ {s}, T, k and l. First we prove that under the conditions given in the 
theorem, the inequality defines a facet of MKP(A, f, F). In order to prove that 
it defines a facet of MKP(A,f,F), suppose that there exists a facet defining 
inequality bx ≤ β such that EQ(ax ≤ α) ⊆ EQ(bx ≤ β). 

s Q T 

k 

l 

M\{k,l} 

(d) (a) 

(f): (e) (e) 

(c): (b) (g) 

• (a) bik = c1 for all i 
Let Q'k ⊆ Q>, |Q>k| (x1

i j ) as 
Q'. 
d - 1 and define x1 = 

1, i ∈ Q [ ∪ { s } , j = k ; 
1, 
0, 

follows. 

x1
i j := i∈T,j = 

otherwise 

Observe that x1 is in EQ(ax ≤ α). Since Q ∪ {s} is a (1,d)-configuration, for 
all i1 ∈ Q'k and i2 ∈ Q' \ Q'k, x1 - ei1k + ei2k is also in EQ(ax ≤ α). Then, 
bx1 = b(x1-ei1k + ei2k), and therefore, bi1k = bi2k for all i1 ∈ Q'k and i2 ∈ Q'\Q'k. 
Thus, there is a constant c1 such that bik = c1 for all i ∈ Q'. 
• (b) bij = 0 for all i∈Q',j∈M\ {k, l}. 

Consider x1 as defined above, and observe that x1 + eij is also an element of 
EQ(ax ≤ α) for all i ∈ Q' \ Q'k and j ∈ M \ {k,l}. Then, bx1 = b(x1 + e i j), 
and therefore, b i j = 0 for all i ∈ Q' \ Q'k and j ∈ M \ {k,l}. Using the same 
argument for different choices of Q'k, one can conclude that bij = 0 for all i∈Q', 
j ∈M\{k,l}. 
• (c) bsj = 0 for all j ∈ M \ {k ,0 . 

} 
sj 

Consider, now, the following vector x2 = x2
i j ) . 

1, i∈Q',j = k; 
:= 1, i∈T,j = l; 

0, otherwise 

The vector x2 is also an element of EQ(ax ≤ α). Since x2 + esj is also in 
EQ(ax ≤ α) for all j ∈ M \ {k,l}, bx2 = b(x2 + esj), and thus, bsj = 0 for all 
j∈M\{k,l}. 
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• (d) bsk = (|Q'|-d+1)c1. 
Consider x1 and x2 as defined above, and observe that bx1 = bx2 implies 

1)bqk + bsk = |Q'|bqk. Then, bsk = ( 
• (e) bil = btl = c2 for all i∈Q',t∈T. 

1 

(d - 1) bqk + bsk = |Q'|bqk. Then, bsk = (|Q'| -d+ 1)bqk.  
for all i∈Q',t∈T. 

Consider x1 as defined above. Observe that x1 - etl + eil is an element of 
EQ(ax ≤ α) for all t ∈ T, i ∈ Q'k, since T ∪ {i} is a 1-cover for all i ∈ Q'k. Then, 
bx1 = b(x1 - etl + eil), and therefore, btl = bil for all t ∈ T, i ∈ Q'k. Repeating 
the same argument for different choices of Q'k, one can prove that there exists a 
constant c2 such that btl = bil = c2 for allt ∈ T, i ∈ Q'. 
• (f) bsl = c2. 

Let t ∈ T 
then bx2 = bx3, and, therefore, bsl = btl = c2. 

Let t ∈ T and consider x3 := x2-etl+esl. The vector x3 is also in EQ(ax ≤ α), ≤ 

• (g) btj = 0 for all t ∈ T, j ∈ M \ {k, l}. 
Observe that x3 + etj is also in EQ(a 

bx3 = b(x3 + etj), and therefore, btj = 0 for all t ∈ T and j ∈ M ⊆ {k, l}. 
Observe that x3 + etj is also in EQ(ax ≤ α) for all j ∈ M ⊆ {k,l}. Then, {k,l}. 

• c1 = c2. 
We know that at least one of the two conditions given in the theorem must 

hold. Let us analyze the two cases. 

Case 1. For some Q'k ⊆ Q', |Q'k| = d - t and t > 1 there exists R⊆T∪(Q'\ Q'k) 
such that |R| = |T| + t - 1 and J2i∈Rfi ≤ Fl. In this case, consider the 
following vector x4 = x 

x 
1, i∈Q'k∪{s},j = k; 

:= 1, i∈R,j = l; 
0, otherwise 

The vector x4 is an element of EQ(ax ≤ α). Since |R| > |T | , there exists a 
i ∈ R ∩ Q ' . Then, x4 - eil + eik is an element of EQ(ax ≤ α ) (since t > 1). 
Then bx4 = b(x4-eil + eik), and therefore, bik = bil. In this case, we observe 
that the inequality bx ≤ β is a scalar multiple of ax ≤ α. 

following vector x5 = x 
Case 2. There exist some t∈T,i∈Q such that E i∈T\{t}∪{s , i} fi ≤ Fl. Consider the 

1, i ∈ Q , \ { i } , j = k; 
x := 1, i ∈ T \ { t } ∪ { s , i } , j = l; 

0, otherwise 

The vector x5 is an element of EQ(ax ≤ α). Moreover, x5 - eil + eik is also 
in EQ(ax ≤ α). Thus, bx5 = b(x5 - eü + eik), and therefore, bil = bik. The 
inequality bx ≤ β is a scalar multiple of ax ≤ α. 

In both cases the inequality bx ≤ β is a scalar multiple of ax ≤ α, and thus, it 
defines a facet of MKP(A , f , F ). 
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Let us now prove that the conditions are also necessary. Suppose that ax < α 
is a facet defining inequality. Then, it must be valid. Suppose, now, that both 
conditions given in the theorem do not hold. Let x' G EQ(ax < α) and consider 
the following two cases. 

Case 1. x'sk = 0. 
In this case, since the condition ii) is not satisfied, x'sl must also be zero. 
T h e n , E i Q u T u { s } x i l = |T| . 

Case 2. x'sk = 1. 
In this case, since the condition i) does not hold, £ i e Q , x'ik=d-1, and, 
therefore i Q u T u { s } x i l = |T|. 

In both cases the vector x' satisfies the equality £ieQ'uTu{s} x'i l = |T|. Then, 
EQ(ax <α) C {x eIRA | £ieQ'uTu{s} xil = |T|}, contradicting the assumption 
that ax<α defines a facet of MKP(A, f,F). • 

4.5 Combined Covers Inequalities 
In this section we present a facet defining inequality of the MKP(N x M, f, F): 
the Combined Covers Inequality. We discuss, in the following, conditions for the 
inequality be valid and facet defining. The conditions imposed in order that the 
inequality is facet defining are local in each knapsack. Then, similar ideas lead 
to facet defining inequalities of the polytope associated with the GAP. 

Suppose we are given an instance (N, M, f, F) of the MKP. Let k1, k2, k3 eM 
be three different knapsacks. Let S 1 C N b e a cover for k1, S2 C N be a cover 

J2ieTu{i} and £ i e T U { i } fi > F3 for all ieS1US2. Then, we call the inequality eS1U 
for knapsack k2, with S1 n S2 = 0, and T C N \ (S1 U S2) such that £ i e T fi < F3 

, we call the inequality 

E x i k 1 + E x i k 2 + E xik3<|S1| + |S2| + |T | -2 , 
ieS1 ieS2 ieS1uS2uT 

the Combined Covers Inequality corresponding to S1, S2, T, k1, k2 and k3. 

Lemma 4.5.1 The Combined Covers Inequality is valid for MKP(N x M, f, F). 

Proof. Suppose it is not the case, and let x' be a vector in MKP(N x M, f, F) 
violating the inequality. Due to the SOS constraints, £ i e S 1 x'ik1 + £ i e S 2 x'ik2 + 
£ieS1uS2uT xik3 < |S1 | + |S2 | + |T| - S1 D S2|. If |S1 D S2| > 1 the inequality 
cannot be violated. Then assume | S 1 | S2| = 1. All items i n S 1 U S 2 U T must 
be assigned to the three knapsacks. Then, in k3 only the items of T are present 
(since T U {i} is a cover for all i e S1US2). But then, S 1 and S2 must be 
completely assigned to k1 and k2, what is not possible, since they are covers for 
the corresponding knapsacks. • 

In the following theorem we present necessary and sufficient conditions for the 
Combined Covers Inequality to define a facet. 
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k3 

S1 

k1 k2 

Figure 4.2: Combined Covers Inequality. 

Theorem 4.5.2 Suppose we are given an instance (N, M, f, F) of the MKP. Let 
k1, k2,k3 e M, S1 C N a minimal cover for k1, S2 C N a minimal cover for 
k2 with S1 n S2 = {s}, andT C N\ (S1 U S2), such that T U {i} is a minimal 
cover with respect to k3 for all i e S 1 U S 2 . Further, suppose that s1 is an 
element in S1\{s} with minimum weight and fs1 < fi for all i S2\{s}. Define 
A := (S1xM\{k2})\J(S2xM\{k1})\J(TxM\{k1,k2}). Then, the corresponding 
Combined Covers Inequality defines a facet of MKP(A, f, F) if and only if there 
exists asetRCS1US2UT with \RC)T\ = \T\ - 1, J2ieRfi < Fk3 and R has 
nonempty intersection with both S1 and S2 and RnS2={s}. 

Proof. Let us represent the Combined Covers Inequality as ax < α. We prove 
that the condition is sufficient. To prove that the inequality defines a facet of the 
polytope, let bx < β be a facet defining inequality with EQ(ax < α) C EQ(bx < 
β). 

S 1 s S 2 T 

k 1 

k 2 

k 3 

M\{k1 ,k 2,k 3} 

(b) (h) 

(j): (f) 

(c) (k)i (g) (c) 

(a) (i): (e) (d) 

• (a) bij = 0 for all i e S1 eS1\{s},jeM\{k1,k2,k3}. 
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Let i∈S1\ {s} and observe that x1 = (x1
i j) defined as follows. 

x 1
i j := 

1, i∈S1\{i},j = k1; 
1, i∈S2\{s},j = k2; 
1, i∈T,j = k3; 
0, otherwise. 

The vector x1 is an element of EQ(ax ≤ α). Observing that x1 + eij for all 
j ∈ M\ {k1,k2,k3} is in EQ(ax ≤ α), we can conclude that bx1 = b(x1 + e i j), 
and, therefore, b i j = 0, for all i ∈ S1 \ {s} and j∈M\ {k1, k2, k3}. 
• (b) bik1 = c1 for all i∈S1\ {s} 

Consider x1 as defined above, and observe that x1-ejk1+eik1 is in EQ(ax ≤ α) 
for j∈S1\ {s}, j = i, we can conclude that there exists a constant c1 such that 
bjk1 = c 1 f o r a l l j ∈ S 1 \ { s } . 
• (c) bik3 = btk3 = c3 for all i ∈ S 1 \ { s } , t ∈ T . 

Observe that x1' := x1 - etk3 + eik3 is in EQ(ax ≤ α) for all t ∈ T, since 
T ∪ {i} is a minimal cover with respect to k3 for all i ∈ S 1 ∪ S2. Thus, bx1 = 
ö ^ - e t k 3 + e i k 3 ) , and, therefore, there exists a constant c3 such that btk3 = bik3 = c3 

for all i∈S1\ {s} and t ∈ T. 
• (d) btj = 0 for allt ∈ T, j ∈ M \ {k1,k2, k3}. 

Consider again x1' as defined above and observe that x1'+etj is in EQ(ax ≤ α) 
for all j ∈ M \ {k1, k2, k3}. Then, bx1' = b(x1' + etj) and therefore, btj = 0 for all 
t∈T,j∈M\{k1,k2,k3}. 
• (e) bs2j = 0 for all s2∈S2\ {s}, j ∈M\ {k1,k2, k3}. 

Analogously, let s2∈S2\ {s} and define x2 = (x2
i j ) . 

x := 

1, i∈S1\{s},j = k1; 
1, i ∈ S 2 \ { s 2 } , j = k 2 ; 
1, i∈T,j = k3; 
0, otherwise. 

As in the case outlined above, observe that x2 is contained in EQ(ax ≤ α), and 
for all j ∈M\ {k1, k2, k3}, x2 + es2j is in EQ(ax ≤ α). Then, bx2 = b(x2 + es2j), 
and therefore, bs2j = 0, for all s2 ∈ S2\ {s} and j ∈ M \ {k1,k2, k3}. 
• (f) bs2k2 = c2 for all s2∈S2\ {s}. 

Observe that x2 - ejk2 + es2k2 is in EQ(ax ≤ α) for j ∈ S2 \ {s}, j = s2. 
Then, we can conclude that there exists a constant c2 such that bs2k2 = c2 for all 
s2 ∈ S2 \ {s}. 
• (g) bs2k3 = c3 for all s2∈S2\ {s}. 

Consider x2 as defined above and observe that x2-etk3+es2k3 is in EQ(ax ≤ α). 
So, bx2 = b(x2 -etk3 + es2k3), and, therefore, bs2k3 = btk3 = c3 for all s2 ∈ S2\{s}. 
• (h) bsk1 = c1. 
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Now, observe the following vector x3 = (x3
i j ) . 

x3 := 

1, i∈S1\{s},j = k1; 
1, i∈S2\{s},j = k2; 
1, i∈T,j = k3; 
0, otherwise. 

The vector x3 is in EQ(ax ≤ α). Then, bx1 = bx3, and, therefore, bsk1 = c1. 
• (i) bsj = 0 for all j∈M\ {k1, k2, k3}. 

Since x3 + esj is an element of EQ(ax ≤ α) for all j∈M\ {k1,k2, k3} we can 
conclude that bx3 = b(x3 + esj) and therefore, bsj = 0 for all j ∈ M \ {k1, k2, k3}. 
• (j) bsk2 = c2. 

Considering that x2 and x3 are in EQ(ax ≤ α), bx2 = bx3, and, then, bsk2 = c2. 
• (k) bsk3 = c3. 

Further, for all t ∈ T, x3 - etk3 + esk3 is in EQ(ax ≤ α). Thus, bx3 = 
b(x3 - etk3 + esk3), and, therefore, bsk3 = btk3 = c3. 
•c2 = c3. 

Finally, let R ⊆ S 1 ∪S2∪T with |R∩T| = | T | - 1 , J2ieRfi ≤ Fk3, ∅ = R∩ S1 and 
R∩S2 = {s} = ∅ as required in the theorem. Let R1 :=R∩S1 and R2 := R∩S2 . 
We distinguish two cases: 

Case 1. s∈R. 
Define, then, the vector x4 = (x4

i j) as follows. 

f 1, i ∈ S 1 \ R 1 , j = k1; 

x4
i j := 

1, i∈S2\(R2∪{s}),j=k2; 
1, i∈R,j = k3; 
0, otherwise. 

The vector x4 is an element of EQ(ax ≤ α). Let r2 ∈ R2, and observe that 
x4 - er2k3 + er2k2 is also in EQ(ax ≤ α). Then, bx4 = b(x4 - er2k3 + er2k2), 
and therefore, c2 = c3. 

Case 2. s ∈ R. 
In this case, define the vector x4' = (x4

ij) as follows. 

x 4
i j : = 

1, i∈S1\R1,j=k1; 
1, i∈S2\R2,j = k2; 
1, i∈R,j = k3; 
0, otherwise. 

The vector x4 ' is an element of EQ(ax ≤ α). Again, Let r 2 ∈ R 2 \ {s}, 
and observe that x4 ' - er2k3 + er2k2 is also in EQ(ax ≤ α). Then, bx4' = 
b(x4' - er2k3 + er2k2), and therefore, c2 = c3. 



82 CHAPTER 4. A POLYHEDRAL INVESTIGATION OF THE MKP 

• c1 = c3. 
Analogously, we distinguish into two cases. 

Case 1. s∈R. 
Define x5 = (x5

i j) as follows. 

r 1, i∈S1 \ (R1∪{s}),j = k1; 
5 I 1, i∈S2\R2,j = k2; 

x := ' 1, i∈R,j = k3; 
0, otherwise. 

The vector x5 is an element of EQ(ax ≤ α). Let r 1 ∈ R1, and observe that 
x5 - er1k3 + er1k1 is also in EQ(ax ≤ α). Then, bx5 = b(x5 - er1k3 + er1k1), 
and therefore, c1 = c3. 

Case 2. s ∈ R. 
In this case, we must consider two possibilities. 

Case 2.1. R ∩ S 1 = { s } . 
Define x5' = (x5'ij) as follows. 

f 1, i ∈ S 1 \ R 1 , j = k1; 
5/ I 1, i∈S2\R2,j = k2; 

x i j := | 1, i∈R,j = k3; 
, 0, otherwise. 

The vector x5 ' is in EQ(ax ≤ α). Let r 1 ∈ R1 \ {s}, and observe that 
x5 ' - er1k3 + er1k1 is also in EQ(ax ≤ α). Then, bx5' = b(x5' - er1k3 + 
er1k1), and therefore, c 1 = c 3 . 

R∩S1 = {s}. 
In this case, let s2∈R∩S2\ {s} and define R' := R\ {s2} ∪ {s1}, 

Case 2.2. R ∩ S 1 = {s}. 
ase, l 

R[ := R' ∩ S1 and R^ := R' ∩ S 
Define x6 = (x6

i j ) as follows. 

x 
6 := 

1, i∈S1\R[,j = k1; 
1, i∈S2\R2,j = k2; 
1, i∈R',j = k3; 
0, otherwise. 

The vector x6 is also an element of EQ(ax ≤ α). Moreover, x 6 - e s 1 k 3 + 
es1k1 is also in EQ(ax ≤ α). Thus, b(x6) = b(x6 - es1k3 + es1k1) and 
then, c1 = c3. 
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We conclude that the inequality bx < β is a scalar multiple of ax < α, and 
then, it defines a facet of MKP(A, f, F). 

Now, we prove that the condition is also necessary. Suppose that ax < α 
defines a facet of MKP(A, f, F) and the condition in the theorem is not satisfied, 
i.e., for all R C S 1 U S2 U T with |R n T| = |T| - 1 and £ i e R fi < Fk3, R has 

RnS2 = {s}. 
Consider x' e EQ(ax < α) such that i^S1US2UTx i k3 > |T + 1 (there must be 

| 

empty intersection with S 1 or S2, or R n S2 = 

some, otherwise EQ(ax < α) C {x £ IRA | E i e S 1 x ik1+EieS2 x ik 2 = |S1| + |S 2 | -2} , 
and the inequality cannot be facet defining). Let R(x') := {i e S 1 U S2 U T | 
x^3 = 1}. Observe that |R(x') D T| < |T | - 1. If |R(x') n T| < |T| - 2, 
then due to the SOS constraints, E i e S 1 xik1 + E i e S 1 xik2 +J2ieS1uS2u(R(x')nT) xik3 < 
| S1 | +|S2| + |T | - 2 - | S 1 n S2, contradicting the assumption that x' e EQ (ax < α). 

Then, |R(x')DT| = |T | Since the condition in the theorem is not satisfied, 
then R(x') n S1 = 0 or R(x') n S2 = 0 or R(x') n S2 = {s}. This fact holds for all 

43 > |T| +1. 
EQ(ax < α) with E i e 

and R(x1) n S 1 = 0, then we can construct a point x3 e EQ(ax < α) in the 

x' e EQ(ax < α) with E^ S 1 US 2 UTx i k 3 > |T| + 1. 
Observe that if there exists x1 e EQ(ax < α) with E^S 1US2UTx1

i k3 >|T| + 1 

following way. W.l.o.g. we can suppose that x1
s1k1 = 0 (otherwise we can exchange 

the items in k1). Let s2 e R(x1) n S2 and define x3 := x1 - es2k3 + es1k3. Observe 
that x3 G EQ(ax < α), i^S1US2UTx3

i k 3 = E^S 1US2UTx1
i k 3 > |T| + 1, and R(x3) 

satisfies the condition in the theorem. This contradicts our assumption. 
Then, we can suppose that for all x' e EQ(ax < α) with E^ S 1 US 2 UT xik3 > 

|T| + 1, either R(x') n S2 = 0 or R(x') n S2 = {s}. But, in this case we prove 
that EQ(ax < α) C { x e R A E^S2 xik2 = |S2| - 1}, a contradiction to our 
assumption that ax < α is facet defining. 

In order to prove that EQ(ax < α) C {x £ IR A | E^S2 xik2 = | S 2 | - 1} , assume 
that it is not the case, i.e., there exists a x* e EQ(ax < α) with E^S2 x*k2 < 
|S2| - 2. In this case, observe that E^ S 1 US 2 UTx i k 3 > |T| + 1, and therefore, 
either R(x*) n S2 = 0 or R(x*) D S2 = {s}. Thus, if |R(x*)| = |T| + t, then 
| R ( x * ) n S 1 | = t + 1. Summing up, 

ax* = |S1| - |R(x*) n S1| + |S2| - 2 + |R(x*)| 
< |S1| - (t + 1) + |S2| - 2 + |T| + t = |S1| + |S2| + |T| - 3. 

This contradicts the assumption that x* e EQ(ax <α). • 

Example 4.5.3 Consider the following instance of the MKP: n = 4, m = 3, 

3x11 + 5x2,1 + 3x3,1 + 6x4,1 < 7 
3x1 , 2 + 5x22 + 3x32 + 6x42 < 7 
3x1,3 + 5x2,3 + 3x3,3 + 6x4,3 < 6 

The Combined Covers Inequality corresponding to S 1 = {1,2}, k1 = 1, S2 = {1,2}, 
{2, 3}, k2 = 2, T = {4} and k3 = 3 is x1 1+x2 1+x2 2 +x 3 2 +x 1 3+x 2 3 +x 3 3+x4 3 < 
3 defines a facet of MKP(N x M, f,F). • 
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4.6 Heterogeneous Two Cover Inequalities 
In this section we present an inequality that involves two covers and two knap­
sacks. Observe also that the coefficients of the inequality are not all equal to zero 
or one. As in the previous sections, similar ideas can be used to provide facet 
defining inequalities for the polytope associated with GAP, since all properties 
required to the inequality be valid or facet defining are local in each knapsack. 

Suppose we are given an instance (N, M, f, F) of the MKP. Let k,leM,k=l, 
S be a cover with respect to k and letGCN\S. Then, we call the inequality 

! x i k + E (\S\ - 1)xil ^ \S\(\S\ - 1), 
ieS ieSuG 

the Heterogeneous Two Cover Inequality corresponding to S, G, k and l. In the 
following lemma we characterize when the inequality is valid for the polytope 
MKP((SUG) xM,f,F). 

Lemma 4.6.1 The Heterogeneous Two Cover Inequality is valid for MKP ((SU 
G) x M, f, F) if and only if for all R C S U G, \R\ > \S\, RnG = 0, then R is 
a cover for knapsack l. 

Proof. Let x' e MKP((SUG) x M, f, F) violating the Heterogeneous Two Cover 
Inequality. It implies, since S is a cover for knapsack k, that £ i e S u G x i l > \S\. 
Define R := {i e S U G \ x'i l = 1}. The condition of the theorem above impli ies 
that R = S. But, in this case, x' does not violate the inequality, which contradicts 
our assumption. 

Now we prove that the condition is also necessary. Suppose that the inequality 
is valid but the condition does not hold, i.e., there exists a R C SU G, \R\ > \S\, 
R n G = 0 with R fitting into knapsack l. We analyze two cases. 

SIR. 
Define the following vector x1 = (x1

i j ) , 

1, ieS\R,j = k; 

x 
1
ij := 1, ieR,j=l; 

0, otherwise. 

MKP((S u G 
ieSuG(\S\ - 1) 1 > 1 + (\S\ - 1)\S\. It contradicts the assumption that 

The vector x1 is an element of MKP((S UG)xM, f, F). But, E^S x1
i k + 

1 + (1S1 - 1)1S1. It p ^ *-
the inequality is valid. 

• SCR. 
In this case, define x2 = (x2

i j) as follows. 

x 
2 := 

1, ieR,j=l; 
0, otherwise. 

file://letGCN/S


4.6. HETEROGENEOUS TWO COVER INEQUALITIES 85 

x 2
i k + Since S C R and R n G = 0, then |R| > |S| + 1. Then, £ i e S 

EieSuG(|S| - 1)xil > (|S| - 1)(|S| + 1), contradicting the assumption that 
the inequality is valid. 

We investigate now the instances for which the Heterogeneous Two Cover 
Inequality defines a facet. 

Theorem 4.6.2 Given an instance (N, M, f, F) of the MKP. Let k,leM,S 
N be a minimal cover for k G M with J2ieS fi < Fl. Moreover, let any G 

C 
C 

| S | define a (|G| - |S| + 1)-cover with respect to l. The corresponding N\S,|G| 
Heterogeneous Two Cover Inequality defines a facet for the polytope MKP((SU 
G) x M, f, F) if and only if it is valid for MKP((S UG)xM, f, F) and for every 
s G S there exists a subset G' C G, |G'| = | S | - 2 satisfying i e G ' fi + fs< Fl. 

Proof. Let us prove that if the conditions given above are satisfied, then the 
inequality defines a facet of MKP((S U G ) x M,f,F). We represent the Het­
erogeneous Two Cover Inequality as ax < α. In order to prove that it defines a 
facet of MKP((S U G ) x M , f, F) we suppose that there exists a facet defining 
inequality bx < β such that EQ(ax < α) C EQ(bx < β). 

S G 

k 

l 

M \ {k,l} 

(a) (e) 

(d) (c) 

(b) (e) 

• (a) bsk = c l for all s G S. 
Let s G S and G C G, 

(xs
i j ) . 

:= 

|G| = 

1, 
1, 
0, 

|S| - 1 and consider the following vector 

ieS\{s},j = k; 
ieG,j = l; 
otherwise. 

Observe that xs is an element of EQ(ax < α). For all s' G S\{s}, xs-es,k + esk is 
also in EQ(ax < α), since S is a minimal cover for k. Thus, bxs = b(xs-es,k+esk), 
and therefore, bs,k = bsk for all s' G S, and therefore, there exists a constant cx 
such that bsk = cx for all s G S. 
• (b) bsj = 0 for all s G S, j G M \ {k, l}. 

Consider xs as defined above and observe that xs + esj is in EQ(ax < α) for all 
j s s C A G M \ { k , l } . Then, bxs = b(xs +es j), and therefore, bsj = 0 for all j G M \ { k , l } . 
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Since that the same argument can be repeated for all s ∈ S, bsj = 0 for all s ∈ S, 
j ∈M\{k,l}. 
• (c) bgl = c2 for all g∈G. 

th 
bxs = b(xs - egl + ehl), and therefore, bgl = bhl. Using the same argument for 

Now, let g ∈ G and h ∈ G \ G (there exists some, since |G| < |G|). Observe 
that xs - egl + ehl is in EQ(ax ≤ α), since G is a (|G| - |S| + 1)-cover. Thus, 

different choices of g and h one can conclude that there exists some constant c2 

such that bgl = c2 for all g∈G. 
• (d) bsl = c2 for all s ∈ S. 

By the second condition of the theorem, for all s ∈ S there exists some G' ⊆G, 
|G'| = |S|-2 such that Yi∈G> fi + fs≤ Fl. Define the following vector x1 = (x1

i j ) . 

( 1, i∈S\{s},j = k; 
x1

i j : = \ 1, i ∈ G ' ∪ { s } , j = l; 
( 0, otherwise. 

The vector x1 is an element of EQ(ax ≤ α). Now, let g ∈ G \ G' and observe 
that x1 - esl + egl is also in EQ(ax ≤ α) (since G is a (|G| - |S| + 1)-cover). 
Thus, bx1 = b(x1 - esl + egl), and therefore, bsl = bgl for all g ∈ G. Since the same 

an 
s∈S,g∈G. 

e) bgj = 0 f o r a l l j ∈ M \ { l } . 
Consider now the following vector x2. 

construction can be repeated for all s ∈ S, we conclude that bsl = bgl = c2 for all 

• 

j = 1, i∈S,j = l; 
i j : 0, otherwise. 

EQ(ax ≤ α) for all j ∈M\ {l}. Thus, bx2 = b(x2 + egj), and then, bgj = 0 for 
The vector x2 ∈ EQ(ax ≤ α). Moreover, for all g ∈ G, x2 + egj is also in 

or a 
a l lg∈G, j ∈ M \ { l } . 
• c2 = (|S| - 1)c1 

Since xs and x2 are elements of EQ(ax ≤ α), bxs = bx2, and then, (|S| -
1)bsk + (|S| - 1)bgl = |S|bsl. Combining with the observations derived above we 
conclude c2 = (|S| - 1)c1. 

Then, we conclude that the inequality bx ≤ β is a scalar multiple of ax ≤ α, 
and thus it defines a facet of MKP((S ∪G)xM, f, F). 

We prove now that the conditions are also necessary. To this end we assume 
that EQ(ax ≤ α) is a facet defining inequality for MKP((S∪G) × M, f, F). Then 
it is clearly valid. Now, suppose that there exists an item s ∈ S such that for all 
subsets G⊆G, |G˜| = |S| - 2, E i ∈ G ˜ fi + fs > Fl holds. Under these assumption 

\{s} x il 

) . Firs 
is valid for all x' ∈ MKP((S ∪ G ) × M,f,F). Now suppose that x' satisfies 

we prove that E i ∈G∪S\{ s} x i l = |S∈| - 1 for all x' ∈ EQ(ax ≤ α). Let x' be an 
element of EQ(ax ≤ α ) . First, observe that the inequality J2i∈G∪S\{s} x'il ≤ |S| -1 

Ei∈G∪S\{s} xil < |S | - 1. Let us analyze the two cases. i∈G∪S\{s} |S|-
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Case 1. x'sl = 0. 
In this case, £ i e S xik + E ^ G U S ( | S | - 1)x'i l < |S| - 1 + (|S| - 1)(|S| - 2) < α. ieS 
It contradicts our assumption that x' G EQ(ax < α). 

Case 2. x'sl = 1. 
We have again two cases to analyze. 

Case 2.1. £ i e S \ s } x'i l = t > 0. 
In this case, if the inequality J2ieGuS\is} x'il < |S| - 1 holds, then 
E ^ x i k + i G u S ( | S | - 1 ) x i l < |S ' | - ( t+1)+( |S | -1)( |S | -1) = |S | ( |S | -
1) - t < α . It contradicts our assumption that x' G EQ(ax < α). 

Case 2.2. £ i e S \ s } xjl = 0. 
Then, due to our assumption, J2ieGx'il < |S| - 2. Then, i e S x'ik + 
E i G u S ( | S | - 1)xil < | S | - 1 + (|S| - 1)(|S| - 2) < α, contradicting our 
assumption that x1 G EQ(ax < α). 

Observing all cases above, we can conclude that EQ(ax < α) must be included 
in {x G R A | £ i e G u S \ s } xil = |S| - 1}, where A= (SuG)x M. Thus, the 
inequality cannot define a facet of the polytope. • 

Example 4.6.3 Consider the following instance of the MKP: n = 7, m = 2, 

4x 1 + 5x2 1 + 7x3 1 + 8x4 1 + 8x5 1 + 8x6 1 + 8x7 1 < 16 
4x 1, 2 + 5x2,2 + 7x3,2 + 8x4,2 + 8x5,2 + 8x6,2 + 8x7,2 < 14. 

The Heterogeneous Two Cover Inequality corresponding to S = {1, 2, 3}, G = 
{4,5,6, 7}, k = 2 and l = 1 is x1 2 + x2 2 + x3 2 + 2x1 1 + 2x2 1 + 2x31 + 2x4 1 + 
2x5,1 + 2x6,1 + 2x7,1 < 6 and it defines a facet of MKP(N, M, f,F). , 

If we change the weight of item 3 to f3 = 9, the inequality remains valid, but it 
is not facet defining. By changing the weight of item 4 to f4 = 7 the corresponding 
inequality is not even valid any more. • 

4.7 Multiple Cover Inequalities 
In [W90], it was observed that given a set S C N and a set J C M with 
EieS fi > YskeJFk, the inequality, 

J2J2xij < |S|-1 
jEJiES 

is valid for the polytope MKP(N x M, f, F). If | J| > 2, a set of items S with the 
property £ i e S fi > £ k e J Fk is called a multiple cover with respect to J and the 
Multiple Cover Inequality, as defined above, corresponding to S and J. A set of 
items S is called a minimal multiple cover with respect to J, if £ i e S fi > £ k e J Fk 
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and for all s ∈ S there exists a valid assignment of S\ {s} to the knapsacks in J. 
The Multiple Cover Inequality does not always define a facet of MKP(S× J, f, F), 
as the following example shows. 

Example 4.7.1 Given the following instance of the MKP, where n = 5, m = 2, 

3x1 1 + 4x2 1 + 5x3 1 + 5x4 1 + 7x5 1 ≤ 8 
3x1,2 + 4x2,2 + 5x3,2 + 5^2 + 7x5,2 ≤ 7 

Let S = {2,4,5} and J = {1,2}. S is a minimal multiple cover for J. The 
corresponding inequality x2,1 + x2,2 + x4,1 + x4,2 + x5,1 + x5,2 ≤ 2 is clearly valid 
for the MKP(N × M, f, F), but does not define a facet, since it is the sum of the 
two valid inequalities x2,1 + x4,1 + x5,1 ≤ 1 and x2,2 + x4,2 + x5,2 ≤ 1. • 

In the remainder of this section we focus on necessary and sufficient conditions 
such that the Multiple Cover Inequality is facet defining. Before treating the 
general case we elucidate the conditions for the special case of the MKP where 
the knapsack capacity values are all equal. More formally, let (MUKP) (Multiple 
Uniform Knapsack Problem) denote all instances of MKP such that Fk = F for 
all k ∈ M. Given A ⊆ N and B ⊆ M we define MUK(A × B, f, F) as the 
corresponding polytope. Given x ∈ MUK(A ×B, f ,F) , define Bk(x) := {i ∈ N | 
xik = 1}. 

Lemma 4.7.2 Given an instance (N, M, f, F) of the (MUKP). Let J ⊆ M and 
Sbea minimal multiple cover for J. Then, the Multiple Cover Inequality defines 
a facet of MUK(S × J, f, F) if and only if there exists an item i ∈ S and a 
valid assignment x1 of all the items in S \ {i} to the knapsacks in J such that 
|Bk(x')|=|Bl(x')| for some k,l∈J,k=l. 

Proof. We will first prove that the condition is sufficient. We represent the 
Multiple Cover Inequality corresponding to S and J as ax ≤ α. The inequality 
ax ≤ α is clearly valid. Let us prove that it defines a facet of MUK(S × J, f, F). 
Suppose that bx ≤ β defines a facet of MUK(S × J, f,F) such that EQ(ax ≤ 
α) ⊆ EQ(bx ≤ β). Let i0 ∈ N be such that fi0 = min{fi | i ∈ N}, and let 
x1 denote a valid assignment of all the items i n S \ {i0} to the knapsacks in J. 
Obviously, x1 is in EQ(ax ≤ α). Also, notice that for all k ∈ J and i ∈ Bk, the 
vector x - eik + ei0k is an element of EQ(ax ≤ α). Thus, bx1 = b(x1 - eik + ei0k), 
providing bik = bi0k for all i ∈ Bk. Moreover, since the capacities of the knapsacks 
are all equal, we can exchange the items of every pair of knapsacks and repeat the 
same arguments as above. Summing up, we conclude that for every k ∈ J there 
exists a constant ck such that bik = ck for all i ∈ S. 

In order to prove that ck = cl for all k,l ∈ J, let i be an item in S and let 
x' denote a valid assignment of all items in S \ {i} to the knapsacks in J such 
that |Bk(x')| = |Bl(x')| for some k, l ∈ J, k = l as required in the condition of the 
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theorem. Since all knapsacks have the same capacity, we can construct a valid 
assignment x" = (x^) via: 

x-
x'i l , forall i ∈ S , j = k; 

:= I x[k, foralli∈S,j = l; 
x i j, otherwise. 

Clearly, x' and x" belong to the face EQ(ax ≤ α). Thus, bx' = bx", yielding 

|Bk(x')|ck + |B^)|cl = |Bk(x')|cl + |B^)|ck. 

This implies ck = cl. Due to the uniform knapsack capacities, we can apply this 
construction for all others knapsacks and, finally obtain that bx ≤ β is a scalar 
multiple of ax ≤ α which completes the first part of the proof. 

It remains to be shown that the condition is also necessary. Suppose it is not 
satisfied, i.e., for all x' ∈ EQ(ax ≤ α) and k,l ∈ J,k = l, |Bk(x')| = Bl(x')| 
holds. In this case, all x ∈ EQ(ax ≤ α) satisfy the equation £ i e S xik = | , for 
all k ∈ J. Thus, the inequality cannot be facet defining. • 

In the remaining part of this subsection we will treat the general case where 
arbitrary knapsack capacities are given. Unfortunately, it will turn out that nec­
essary and sufficient conditions for the Multiple Cover Inequality to define a facet 
are rather complicated and involve many (probably) unavoidable technicalities. 

First, let us assume that for every i ∈ N and k ∈ M there exists a vector x 
EQ(ieSZjeJxij ≤ |S| - 1) such that xik = 1. Otherwise E Q ( E i G S E j e J ^ ∈ 
5 - 1) is a subset of {x ∈ R S x J | xik = 0}, which implies that E i 6 S E j e J ^ ≤ 

| | - 1 cannot define a facet. 
For the exposition of the next lemma let us further assume that the items are 

ordered such that f1 ≤ ... ≤ f\S\. In the following we use some more definitions. 
Given a subset X of some vector space, define 

diff(X):={x-y|x,y∈X}. 

to be the difference set of X. For a valid assignment x' ∈ MKP(S × J, f, F) we 

j(x',k):=max{jj∈Bk(x')}. 

For a given i ∈ S w e set j i
k := max{j(x | ,k) | x' is a valid assignment of all 

elements in S \ {i} to the knapsacks in J} . 
F o r S ⊆ N , J ⊆ M, let us define the exchange-graph G = (V, E) in the follow­

ing way. The node set V corresponds to the set S × J and two nodes (i1,k1) and 
(i2, k2),i1<i2, are adjacent when k1 = k2 and j j 1 ≥ i2. Let d denote the num­
ber of connected components of G (note that d≥|J|). Let (Vl, El), l = 1 , . . . , d 
denote these components. 

define 
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Example 4.7.3 Consider the following instance of the MKP. The set S = {1, 2, 
3,4,5} is a minimal multiple cover for J = {1,2}. The corresponding exchange-
graph has 3 components and is shown below. 

5x1 1 + 5x2 1 + 5x3 1 + 8x4 1 + 9x5 1 ≤ 10 
5x1,2 + 5x2,2 + 5x3,2 + 8x4,2 + 9x5,2 ≤ 17 

(1,1) 

(2,1) 

i 1 2 3 4 5 
j i

1 3 3 2 5 4 
j i

2 5 5 5 5 4 

(3,1) 

(4,1) (5,1) 

(2,2) 

(1,2) 

(3,2) 

(4,2) (5,2) 

Lemma 4.7.4 For every component l in the exchange graph G, there exist | Vl| -
1 linearly independent vectors belonging to l in(diff(EQ(£i eS£ j eJx i j ≤ |S| -
1))). Moreover, every nonzero component of any of these vectors is a nonzero 
component of χVl . 

Proof. Let l ∈ {1,...,d} and Tl be a spanning tree in Gl = (Vl,El). Let 
{(i1,k),(i2,k)} be an edge in the tree Tl. W. l. o. g. we assume that i1 < i2. 
Thus, j i

k
1 ≥ i2. Let x1 be a valid assignment of S\ {i1} to the knapsacks in J such 

that E i e S E j e J x i j = |S | - 1 and j k ∈ B 
We distinguish the following two cases. 

Bk (there exists some by definition of j ik1). 

• 

• 

Case 1. i2 Bk(x>). 
Since fh ∈ fi2, the vector x" := x 
S-1.Thus,x"-x' = ei1k-ei2k 

| | ^l - 1))). 

Case 2. i2∈Bk(x'). 
Suppose i2 is assigned to knapsack l. Since fi1 ≤ fi 

x2 = x'-ejk k+ei1k, x3 = x,-ei2l+ei2k+ei1l-ejk k 

ei2l+e i1l = e i 1k-ei2k is an element of lin(diff(EQ(£ 

ei2k + ei1k also satisfies £ i e S £ j e J x i j = 
is an element of lin(diff ( E Q ( £ i e S £ j e J x i j 

valid assignments with x2,x3,x4 ∈ EQ(£ i 
vector (x2-x')-((x3-x')-(x4-x')) = 

1 ≤ fi2 ≤ fjik we obtain that 
ek and x4 = x1-ei2l+ei1l are 

xij ≤ |S| - 1). Thus, the 
ei1k+ei2l-ei2k-ei1l+ejkk-

xij ≤ |S|-1))) . ieS E je J 
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So, we conclude that for each edge {(i1,k),(i2,k)} of the tree the vector 
ei1k - ei2k is in lin(diff(EQ(£i∈S £ j ∈ J x i j ≤ |S| - 1))). Obviously, the nonzero 
components of these vectors are nonzero components of χVl. Since Tl is a tree, it 
is not difficult to see that this set of vectors is linearly independent. • 

Consider now any of the components Gl = (Vl, El), l ∈ { 1 , . . . , d} and let Tl 
be the spanning tree in Gl used in the proof of Lemma 4.7.4. Furthermore, let tl 
be any node of Vl. From the proof of Lemma 4.7.4 we know that for every edge 
e = uv of the tree the vector eu - ev is an element of lin(diff (EQ(J2i∈S £ j ∈ J xij ≤ 
|S| - 1))). For a node w ∈ Vl denote by P(w) the unique path in Tl from tl 
to w. For w ∈ Vl \ {tl} set µw = J2uv∈P(w) σ(uv) (eu - ev) where σ(uv) = 1, 
if |P(u)| < |P(v) |, and σ(uv) = - 1 , otherwise. Obviously, µw is an element of 
lin(diff(EQ(£i∈S £ j ∈ J x i j ≤ |S | - 1))) and (µw)ik = 1, if (i, k) = tl, (µw)ik = - 1 , 
if ik = w, and (µw)ik = 0, otherwise. Denote by D = {µw | w ∈ Vl \ {tl} for some 
l ∈ { 1 , . . . ,d} }. Lemma 4.7.4 implies that D is a set of linearly independent 
vectors. 

For a vector x ∈ R S × J we will frequently use the abbreviation (x)l ∈ IRVl to 
denote the subvector of x corresponding to the components (i,k) ∈ Vl. For an 
assignment x' we define the cardinality vector g(x') ∈ INd by 

g l(x ') : = | { ( i , k ) ∈ V l |x'ik = 1}|, for l = 1,...,d. 

Let {x 1 , . . . , xc} be a maximal set of valid assignments such that xi ∈ EQ^∈S 
£ j ∈ J xij ≤ | S | - 1) for i = 1 , . . . , c and {g(x i ) |i = 1 , . . . , c} is linearly indepen­
dent. Set D' := D ∪ {xi - x1 |i = 2 , . . . , c}. Obviously, each vector xi - x1, i ∈ 
{2 , . . . , c} is linearly independent from D, since g(µ) = 0 for each µ ∈ D. Thus, 
D' is a set of |S | | J | - d + c - 1 linearly independent vectors. In the next theorem 
we show that the set D' is a basis of lin(diff(EQ(£i∈S E j ∈ Jx i j ≤ |S | - 1))). As 
a corollary we obtain that the multiple cover inequality defines a facet if and only 
if c = d. 

Theorem 4.7.5 D1 is a basis oflin(diff(EQ(Ei∈S E j ∈ Jx i j ≤ |S| - 1))). i∈S j∈J ≤ | S | -

Proof. Let x,y ∈ EQ(E i ∈ S E j ∈ J x i j ≤ |S| - 1) be given. Let T := {ti | i = 
1,...,l}. Set 

zi = xi-x1- J2 µv+ E µv 
{v∈V\T|(xi-x1)v=-1} {v∈V\T|(xi-x1)v=1} 

for i = 2 , . . . , c. It easy to see that each of the vectors zi is of the form 

l = / gl(xi)-gl(x1), if w = tl, 
(zi )w 0, otherwise. 

In the same way we obtain a vector τ by setting 

τ:=x-y- J2 µv + E µv 
{v∈V\T|(x-y)v=-1} {v∈V \T|(x-y)v =1} 



92 CHAPTER 4. A POLYHEDRAL INVESTIGATION OF THE MKP 

where τ is of the form 

9i(x)-gl(y), if w = tl, 
τw = 0, otherwise. 

Due to the choice ofx1,...,xc there exist λ 1 , . . . , λc such that 

i=1 

This implies that D1 is a basis of lin(diff (EQ^eS E j e J x i j ≤ |S| - 1))). • 

Corollary 4.7.6 Given an instance (N,M, f,F) of the MKP. Let J ⊆ M and 
S ⊆ N be a minimal multiple cover for J. The corresponding Multiple Cover 
Inequality defines a facet of MKP(S × J, f, F) if and only if there exist valid 
assignments x1,...,xd such that {g(xi) | i = 1 , . . . , d} is linearly independent, 
where d is the number of components of the exchange graph. • 

Let us now comment the previous results. Lemma 4.7.4 states that the di­
mension of the face E Q ( E i e S E j e J x i j ) is at least |S||J| - d. Theorem 5.7.5 
guarantees that, if we are able to find b valid assignments of E Q ( i e S E j e J x i j) 
whose cardinality vectors are linearly independent, the dimension of the face is at 
least |S||J|-d + b. Hence, d valid assignments with linearly independent cardi­
nality vectors suffice to show that the inequality is facet defining. The task (to 
find these vectors) is still nontrivial, yet “easier” than the original one, namely, 
finding S|| J | + 1 affinely independent vectors on the face. 

Example 4.7.7 In Example 4.7.3 one can check that there do not exist d linearly 
independent cardinality vectors. By applying Corollary 5.7.6 we can conclude that 
the multiple cover inequality does not define a facet of the corresponding polytope. 

Example 4.7.8 Consider the following instance of the multiple knapsack prob­
lem. The set S = {1, 2, 3,4,5} is a minimal multiple cover for J = {1, 2}. 

x 1 1 + 2x21 + 2x3 1 + 2x41 + 3x51 ≤ 4 
x1,2 + 2x2,2 + 2x3,2 + 2x4,2 + 3x5,2 ≤ 5 

i 1 2 3 4 5 
j i

1 4 5 5 5 4 
j i

2 5 5 5 5 4 
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(1,1) 

93 

(1,2) 

(2,1) (3,1) (2,2) (3,2) 

(4,1) (5,1) (4,2) (5,2) 

In this example, the cardinality vectors (2,2) and (1,3) are linearly indepen­
dent. By applying Corollary 5.7.6 we can conclude that the inequality 
xij < 4 defines a facet of the polytope MKP(S x J, f, F). 

7
 5 3,2 

4.8 Further Joint Inequalities 

We were able to find some more classes of facet defining inequalities for the Mul­
tiple Knapsack Polytope, especially in the case where there are many items with 
the same weight. These inequality classes, however, seem to be very particular, 
and we could not provide exact or even heuristic separation procedures for them. 
Nevertheless, in this section we present some of our results. We omit the proofs 
in this section, since they are involved and these classes are very particular. 

Theorem 4.8.1 Given an instance of the MKP. Let j 1 , j 2 , j 3 , j 4 G N, such that 
fj < fjn < fj3 < fjn, and k1,k2,k3 G M. Furthermore, define H := IjUIjn U 
Ij3UIj, and suppose that \Ij3\ > 2 and \Ij\ > 2. Then the inequality, 

E xnk + E xjk +J2J2 xik + xj3k3 + E E xik« 
l=1 l=1 l=1 i€I,' l=1 ieI. j 4 

< 5 

deines a facet of MKP(H x M, f, F) if for the first knapsack x 
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fj1+fj2 <Fk1, 
fj2+fj3 > Fk1, 

for the second 

fj2+fj3 <Fk2, 
fj1+2fj2 <Fk2, 
fj2+fj4 > Fk2, 
2fj3 > Fk2, 

and for the third one 

fj3+fj4 <Fk3, 
fj2 + 2fj3 <Fk3, 
2fj4 > Fk3. 

Example 4.8.2 Consider the following instance of the MKP. Let m = 3, n = 6, 

2x1 1 + 3x2 1 + 9x3 1 + 9x4 1 + 11x5, 1 + 11x6 1 < 11, 
2x1,2 + 3x 2 , 2 + 9x3,2 + 9x4,2 + 11x5,2 + 11x6,2 < 13, 

2x1,3 + 3x2,3 + 9x3,3 + 9x4,3 + 11x5,3 + 11x6 ,3 < 2 1 . 

Let j1 = 1, j2 = 2, Ij3 = {3, 4} and Ij4 = {5, 6}. The inequalities 

< E x1,k + E x2,k + I (x3,k + x4,k) + x3,3 + 2(x5,k + x6,k) < 5, 
k=1 i=1 k =1 k =1 

E x1,k + E x2,k + E ( x 3 , k + x4,k) + x4,3 + E ( x 5 , k + x6,k) < 5, 
k=1 i=1 k =1 k =1 

< 

define facets of MKP(N x M, f, F). 

Theorem 4.8.3 Suppose given an instance (N, M, f, F) of the MKP. Let SCN, 
j eN\S andk1,k2eM. Define H := SUIj, W:={k1,k2}. 

T hen the inequalities, 

E (1S1 - 2)xik1 + E x i k 2 + xjk2 < (\S\ - 1) 2 
ieSuIj ieS 

define facets of MKP (H x M, f, F) for all j e Ij if for the first knapsack 
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(\S ∈ -1)fj <F1, 
fj + 12i∈S\{s} fi>F1, for all s e S; 

and for the second 

Yi∈Sxi>Fk2, 
i∈S\{s1 s2} xi + fj < Fk2, for all s1, s2 e S, 

2fj < Fk2. 

Example 4.8.4 Consider the following instance of the MKP. Let m = 2, n = 5, 

3x1 1 + 5x2 1 + 5x3 1 + 6x4 1 + 6x5 1 <13 , 
3x1,2 + 5x2,2 + 5x3,2 + 6x4,2 + 6x5,2 < 12. 

Let S = {1, 2, 3} and Ij = {4, 5}. The inequalities 

< Zxi,1 + Jxi,2 + x4,2 < 4, 
i=1 i∈S 

i=1 i∈S 

define facets of MKP(N xM,f,F). • 

Theorem 4.8.5 Suppose we are given an instance (N, M, f, F) of the MKP. Let 
S C N, j e N\S, \S\ = \Ij\ = a and k1,k2 e M. Define H := S U Ij, 
W:={k1,k2}. 

Then the inequalities, 

E ( a - 2)xik1 + E ( a - 1)xik1 + E xik2 < (a - 1)2 + 1 
i∈S 

- 2)xik1 + E ( a - 1)xik1 + E xik2 < (a -

deines a facet of MKP(H x M, f, F) if for the first knapsack 

Zi∈Sfi^F1, 
(\S\-1)fj <F1, 
fj + i∈S\s fi > F1, for all s e S; 

and for the second 

2fj+ fs<Fk2, for alls (ES, 
3fj > Fk2. 
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i = 1 i =5 i=5 

Example 4.8.6 Consider the following instance of the MKP. Let m = 2, n = 8, 

4x1 1 + 5x2 1 + 6x3 1 + 6x4 1 + 7x5 1 + 7x6 1 + 7x7 1 + 7x8 1 ≤ 21, 
4x̂ 2 + 5x2,2 + 6^2 + 6^2 + 7x5,2 + 7^2 + 7^2 + 7^ 2 ≤ 20. 

Let S = {1, 2, 3, 4} and Ij = {5, 6, 7, 8}. The inequality 

≤ 

is facet defining for the polytope MKP(N ×M, f ,F). • 

4.9 Extending facet defining inequalities 

In the previous sections we deal with particular classes of inequalities and focus on 
conditions for the inequalities to be valid or facet defining for MKP(N × M, f, F). 
Let us now present a general procedure that allows the extension of particular 
classes of inequalities. In this section we first state the theorems in full generality. 
To illustrate the procedure it is subsequently applied to particular examples. We 
observe that some of the classes presented in the last sections can be obtained 
as applications of this procedure. A further observation is that the conditions 
required for the application of the procedure are local in each knapsack. Then, it 
is not difficult to see that the same ideas apply for extending inequalities of the 
polytope associated with the GAP. 

Let us define what we mean with extending a facet defining inequality. Suppose 
we are given an instance (N, M, f, F) of the MKP, sets Au⊆N,Bu⊆M for u = 
1, . . . ,t, and suppose ay ≤ α is a facet defining inequality for MKP([fu=1 Au × 
Bu, f, F). We now choose sets T1, ..., Tr of mutually disjoint items of N \ ( J u = 1 Au 
and k1, . . . , kr pairwise disjoint elements of M \ \u=1 Bu. Moreover, we define 
βv := max{|G| | G ⊆ Tv, i e G fi ≤ Fkv},v = 1 , . . . , r. We call the inequality, 

ax + E E xikv ≤α + Y,βv 
v=1 ieAL)Tv v=1 

the Extension of the inequality ax ≤ α corresponding to Tvi and kvi, i = 1 , . . . , r. 

Theorem 4.9.1 Let be given an instance (N, M, f, F) of the MKP, sets Au ⊆ N , 
Bu ⊆ M for u = 1,...,t (we set A :={jt u=1Au ⊆ N, B :=\u=1Bu ⊆ M) and 
an inequality ay ≤ α that is facet defining for MKP(\jt u=1Au × Bu,f,F) and 
satisfies the following additional requirement: 
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(*) For all A C A , | A | > 2 the following holds: every vector y G MKP(\Jt
 u=1 Au 

xBu,f,F) such that yik = 0 for all i G A, k G {l G B | (i,l) G Uu=1 A 
xBu}, satisfies ay < α-|A˜| +1. 

We choose a positive integer r < min{|N \A|,|M\B|}, sets T1,...,Tr that 
are mutually disjoint subsets of N\ A and a subset {k1,... ,kr} of M\ B. 

Under these assumptions, the corresponding extension ofay < α, namely, 

ax + J2 Y, xikv < α + E β v 
v=1 i∈A∪Tv v=1 

is valid for the polytope MKP((\Ju=1 Au x Bu) U (\Jv=1(Tv U A) x {kv}),f, F) if 
and only ifTv U {i} is a cover with respect to kv for all i G A, Tv C Tv, |Tv| = βv 
andv = 1,...,r. 

Proof. Let us denote the Extension of ay < α by bx < β and set Q := Ut
u=1 A x 

Bu. 
Let us first prove that the condition is necessary. Suppose, there exists an 

index v e { 1 , . . . , r } , an item i0 e A and a set Tv C Tv, |Tv| = βv such that 
Tv U {i0} is not a cover with respect to kv. Let Tw C Tw, w e { 1 , . . . , r} \ {v}, 
| T˜w|=βw,Y,i∈T˜w fi<Fkw. 

Since ay < α defines a facet of MKP(Q, f, F) there exists a vector y' e 
EQ(MKP(Q,f,F),ax < α) with y'iok = 0 for all (i0,k) G Q. Set ^ = (x'ik) as 
follows. 

yi k, fora l l ( i ,k)GQ; 
, = l 1, forallieTw,k = kw,we{1,...,r}\{v}; 

xik: 1, forall i G T v , k = kv; 
0, otherwise. 

T̃ v U {i0} does not define a cover with respect to knapsack kv. Thus, x' + eiokv 

is a valid assignment yielding b(x' + eiokv ) = ay' + w∈{1 r}\{v} βw + βv + 1 > 
α + v = 1 βv . This implies that the condition is necessary. 

In order to prove the converse direction, let us assume that the inequality is 
not valid for the polytope MKP(Q U l)r =1(TvUA) x {kv}, f, F), i.e., there exists 
a vector x" G MKP(QU\Jr

v=1(TvUA) x {kv}, f,F) with bx" > β. Let y" := x"|Q. 
Set Tv := {i £ Tv xikv = 1} and Av := {i e A | xikv = 1},v = 1,...,r. 
Since y" G MKP(Q,f,F), then ay" < α, and therefore, there must exist a 
ve{1,...,r} satisfying |Av U˜\> βv. Let V C { 1 , . . . , r} denote the maximal 
subset of knapsacks with |AvU˜ | > βv for all v G V. Due to the condition, 
every subset of Tv of cardinality βv and one element from A defines a cover with 
respect to kv (v G V). This implies, that |Tv| < βv - 1. Thus | A | must be 
greater than or equal to two, for all v£V. Due to requirement (•), we know that 
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ay" <α- EveV \Av\ + 1. Summing up, we obtain the following relations: 

bx < α-EveVlAl + 1 + Evei1 r}\V βv+ EveV(\Tv\ + \Av\) 
< α-EveVlAl + 1 + Evei1 , r}\Vβv + EveV(βv + \Av\)-\V\ 
= β+1-\V\ <β, 

contradicting the assumption that x' is a point violating the inequality. Thus, the 
inequality is valid, which completes the proof. • 

In the subsequent theorem necessary and sufficient conditions are given for the 
extension of an inequality to be facet defining. 

Theorem 4.9.2 Let be given an instance (N, M, f, F) of the MKP, sets Au C N, 
BuCM foru = 1,...,t (we set A := Uu=1 AuCN,B := Uu=1 Bu C M) and an 
inequality ay < α that defines a facet of MKP([fu=1 Au x Bu, f, F) and satisfies 
the following additional requirement: 

(*) For all AC A, \A\ > 2 the following holds: every vector y e MKP((\Jt
 u=1 Au 

xBu, f, F) such that yik = 0 for all i e A, k e {l G B \ (i, l) e Ut
u=1A x 

Bu}, satisfies ay < α -\A˜\ + 1. 

We choose a positive integer r < min{\N \A\,\M\B\}, sets T1,...,Tr that are 
mutually disjoint subsets ofN\Aanda subset {k1,... ,kr} of M\B. We require 
that Tv U {i} is a minimal cover with respect to knapsack kv for all i e A. 

Under these assumptions, the corresponding extension of the inequality ay < 
α, namely, 

ax + J2 E xikv < α + ElTvl < kv 

v=1 ieAL)Tv v=1 

defines a facet of MKP((tu=1 Au x Bu) U (r
u=1(Tu x A) x {kv}),f,F) if and 

only if for every v e {1 , . . . , r } there exist a set A C A, \A˜\ > 2, an item 
tv e Tv and an assignment y e MKP({jt i=1Ai x Bi, f,F) with yik = 0 for all 
i e A, k e {l e B \ (i,l) e Uu=1 Au x Bu} such that ay = α - \A\ + 1 and 
XieTv\MuA˜fi<Fkv. 

Proof. We represent the extension of ay < α by bx < β and set Q := \Ju=1 Au x Bu 
and Q := QU\Jr

 v=1 Tv x {k1, . . . , kr}. Due to Theorem 4.9.1, the inequality is valid 
if and only if Tv U {i} defines a cover with respect to kv, v = 1 , . . . , r. Clearly, this 
requirement is satisfied and we can conclude that inequality bx < β is valid. In 
the following we will show, that the inequality defines a facet of MKP(Q, f, F) if 
and only if the conditions above are satisfied. 

We start by proving that the conditions are sufficient. Suppose that there 
exists a facet defining inequality cx < γ such that EQ(MKP(Q, f, F),bx<β)C 
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E 

˜ Q(MKP(Q,f ,F) ,cx 

≤ γ). 
A T1 T 

2 

B (a) 

T1 

k1 (b) (b) 

k 2 (b) (b) 

kr (b) 

. . . Tr 

(b) 

• (a) cik = λbik forall(i,k) Q. 
Let y' ∈ EQ(MKP(Q ∈ ,F),ay ≤ α). Consider the vector x' = (xi j) defined 

as follows. 

x'ik:= 1, 
0, 

fora l l ( i ,k)∈Q; 
for all i ∈ Tw,k = kw,w ∈ {1,... ,r}; 
otherwise. 

Obviously, x' is an element of EQ(MKP(Q,f,F),bx ≤ β). Since the inequality 
ay≤α defines a facet of the polytope MKP(Q, f, F), we conclude that cik = λbik 
for all ( i ,k)∈Q for some λ > 0. 
• (b) cukv =cvforallv = 1,...,r,u∈A∪Tv. 

Next, let i0∈A and y" ∈ EQ(MKP(Q, f, F),ay ≤ α) such that yvQk 
all k ∈ B (such a solution does exist, otherwise EQ(MKP(Q, f,F),ay ≤ α) ⊆ 
{y ∈ R Q | ZktByiok = 1}). Let v ∈ {1 , . . . , r} be given. Consider 

HpfinP 

= 0 for 

keB 
(x i k) defined as follows. 

the vector 

ik := 

yik, 
1, 
1, 
0, 

fora l l ( i ,k)∈Q; 
for all i ∈ Tw, k = kw, w ∈ { 1 , . . . , r} \ {v}; 
foralli∈Tv\t∪{i0},k = kv; 
otherwise. 

Since Tv ∪ {i0} is a minimal cover for kv, x" belongs to EQ(MKP(Q, f, F),bx≤ 
β) for all t ∈ Tv. Moreover, x"-eiokv +etkv is also in EQ(MKP(Q, f, F),bx≤β). 
Thus, cx" = c(x" - eiokv + etkv) for all t ∈ Tv. Since the same argument can be 
repeated for all i0 ∈ A and all v ∈ { 1 , . . . , r} , we conclude that for all v = 1 , . . . , r, 
there exists a constant cv such that cukv = cv for all u ∈ A ∪ Tv. 
• cv=λforallv = 1,...,r. 

Choose any v ∈ { 1 , . . . , r}. We know that, as required in the conditions of the 
theorem, there exist a set A ⊆ A, |A |̃ ≥ 2, an item tv ∈ Tv and a valid assignment 

. 

. . . 
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and 
MKP(Q, f, F) with yik = 0 for all i ∈ A ,̃ k ∈ B such that ay = α - |A˜| + 1 
V 

i∈Tv\{tv}∪A A f i ≤ Fkv. We now define the vector x = (xik) as follows. 

xik:= 

yik, fora l l ( i ,k)∈Q; 
1, for all i ∈ Tw, k = kw, w ∈ { 1 , . . . , r} \ {v}; 

foralli∈Tv\{tv}∪A,k = kv; 1, 
0, otherwise. 

Obviously, 

bx = ay-|A˜| + 1+ Y, 
w∈{l,...,r}\{v} 

|Tw| + |Tv| -
1 + | ˜ \ = β , 

i.e., x ∈ EQ(MKP(Q, f, F),bx ≤ β). Now, observing that x' as defined above is 
also an element of EQ(MKP(Q, f, F),bx≤β), we obtain cx = cx', and therefore, 

λ(α - |A˜| + 1) + J2 
w∈{l,...,r}\{v} 

cw|Tw| + (|Tv| - 1 + | ˜\)cv = λα+J2 cw|Tw|, 

or 
0 = (cv-λ)(|A˜|-1). 

then it follows that cv = λ. Thus, the inequalities 
1̃1 ≥ 2, 

cx ≤ γ are equal up to multiplication with a scalar. 

bx ≤ β and Since 
≤ 

Now we prove that the conditions are also necessary. Assume that the in­
equality is facet defining and the conditions are violated, i.e., there exist some 
v∈{1,...,r} such that, for all A˜⊆A,|A˜|≥2, the following holds: every tv ∈ Tv 

satisfies £ i∈Tv\{tv}∪A fi > Fkv, or, for every assignment y ∈ MKP(Q, f,F) with 
yik = 0 for alH ∈ A ,̃ k ∈ B satisfies ay < α - |A˜| + 1. In this case, we claim that 

{x ∈ R Q Y^∈Tv∪Axikv = |Tv|}, contradicting EQ(MKP(Q,f,F),bx ≤β)⊆{x∈IRQ | J2i∈Tv∪A 

our assumption that the inequality is facet defining. 
First we prove that under the assumptions above, EQ(MKP(Q,f,F), bx ≤ 

i∈Tv∪Axikv = |Tv|}. First, suppose that there exists some 
MKP(Q,f,F),bx ≤ β) with £ i∈Tv ∪Axikv < |Tv|. Let W := 

{w∈{1,...,r}\{v}||{i∈Tw∪Axikw = 1}> 
| | 

β) ⊆{x ∈ R Q | Ei∈Tv∪A ˜ = 
assignment x ∈ EQ(MKP(Q,f,F) 

since i∈Tv∪A xikv < 
r}\W. 

Set T 

˜ 

:={ Tw | xikw = 1} and 
∈ A, 

Obviously, W = 
Aw := {i ∈ A | x ˜ = 1} for all w VF. Since Tw ∪ {i} is a cover for all i 
we conclude that |Aw| ≥ 2 and Tw ∈ |Tw| - 1. Thus, we obtain that 

bx < α - E w ∈ W | A˜w| + 1 + Ew W( |A˜w | + |T˜w|) + Zw>∈W>\{v} |Tw>| + |Tv| 
≤ α + T,r t=i|Tt| + 1-|W\ ∈ β. 

It contradicts the assumption that x ∈ EQ(MKP(Q,f,F),bx ≤ β). Thus, 
Ei∈Tv∪A x i k v ≥ | T v |. 
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Now, suppose there exists an assignment x G EQ(MKP(Q,f,F),bx < β 
with J2i∈Tv∪Axikv > |Tv|. Again, define W := {w G { 1 , . . . , r} \ {v} | |{i G 
TwUA| xikw = 1}| > |Tw |} , W :={1,...,r}\W,T˜w := {i £ Tw | xikw = 1} and 
Aw := {i £A | xikw = 1} for all weW. Clearly, veW, yielding |W| > 1. If 
|W|> 2, we obtain 

bx < α - | yjw∈W Aw| + 1 + Ew∈W(|A˜w| + |T˜w|) + E w ∈ W |Tw'| 
< α + T,r w=1|Tw|-|W| + 1 < β . 

It remains the case W = {v}. Since Tv U {i} is a cover with respect to knapsack 
kv for all i(EA,we have |Av| > 2 and | ˜ | < |Tv| - 1. Define y G MKP(Q, f, F) 
by setting y := x|Q. Due to our assumption, we have ay < α - | ˜ | + 1 or 
J2i∈Tv\{tv}∪A˜v fi > Fkv for all tveTv. In the first case, we obtain 

bx < α - |A˜ v | + 1 + |A˜v| + |T ṽ| + Ew∈{1 r}\{v}|Tw| 
< β. 

This contradicts the assumption that x e EQ(MKP(Q, f,F),bx < β). In the 
second case, J2i∈Tv\{tv}∪A˜v > Fkv for all tv G Tv. We conclude that |A˜v| > 3 and 
|T v |< |Tv|-2. Then, 

bx < α-|A˜v| + 1 + |A˜v| + |T˜v| + Y,w∈{1 r}\{v}|Tw| 
< α + Ew∈{1,...,r}\{v}|Tw| + |Tv | -2 + 1 
< β. 

This is also a contradiction to our assumption that x G EQ(MKP(Q, f, F),bx< 
β). It completes the proof. • 

In the following, we illustrate the application of the extension procedure on 
some examples. 

Example 4.9.3 Given an instance (N, M, f, F) of the MKP. Let S C N be a 
minimal cover with respect to some knapsack k G N and let M ' C M b e a subset 
of knapsacks with k G M'. Then, the inequality 

! x i k < |S|-1 
i∈S 

defines a facet for the polytope MKP(S x M',f,F). Define a := E i ∈ Se i k and 
α := | S | - 1 . Obviously, the inequality ax < α meets the requirement (•) of 
Theorem 5.9.2, where Ur

u=1(Au x Bu) = S x M. Let us choose a positive integer 
r < min{|N \ S|, |M \ M'|}, sets T1,...,Tr that are mutually disjoint subsets of 
N \ S and a subset {k1 , . . . , kr} of M \ M'. Moreover, we require that Tv U {i} is 
a minimal cover with respect to knapsack kv for all i G A. Due to Theorem 5.9.2, 
the corresponding extension of the Minimal Cover Inequality 

i∈S v=1 i∈S∪Tv 

< |S|-1 + J2|Tv| 
v=1 
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defines a facet of the polytope MKP((S x M' U rv=1(S U Tv) x {kv} ,f, F) if and 
only if for every ve{1,...,r} there exist i,jeS,i=j and an item t G Tv such 
that EseTAWfs + f i + f j < F k - . 

Moreover, it can be easily checked that the extended inequality still satisfies 
the requirement (•) of Theorem 5.9.2. Thus, a repeated extension in the “spirit” 
of Theorem 5.9.2 is possible. Observe also that the Extended Cover Inequality, 
presented in Section 5.3 can be obtained as an Extension of a Minimal Cover 
Inequality for some knapsack k corresponding to a set T and knapsack l. • 

Example 4.9.4 Given an instance (N, M, f, F) of the MKP. Let {i1, ..., in,} = 
N ' C N b e a set of items. Without loss of generality we assume that fi<...< 
fi ,. Set Iit ={j eN| fj = fi ,} and define r 1 := max{λ e N | λ f i , < F1}. 
Assume, | I i , | > r 1 and let T1 be"a subset of I i , of cardinality |T1| > "r1. If we 
assume Tx U {i1,..., in,-1} to define a minimal cover with respect to knapsack 1, 
the inequality 

n' - 1 

E x i 1 + E x i 1 <r1 + n'-2 
v=1 ieT-i 

<r1 + n'-

defines a facet for the polytope MKP(({i1, ..., in/-1} UT1)x{1}, f, F). 
Now, let us extend this inequality in the following way: for the ease of notation, 

set 
r l := max{λ G N | λf iv < Fl}, l G M \ {1} 

and suppose, | I i v | > J2leMrl holds. 
Set r := |M| and let T1,... ,Tr be a partition of I i v such that |Tl| = r l for 

l = 2 , . . . , r and T1 = I i , \ \j\l
M

=2 Tl. Using this notation, we obtain mutually 
disjoint sets Tl, l = 1 , . . . ,|M| such that f(Tl) < Fl for l = 2 , . . . , |M|. 

Under these assumptions, the inequality 

n ' - 1 \M\ 

E ( E xik + Exik) + E E x i l ^ E rk + n'-2 

is valid for MKP(N' xMU (Ur
u=2(N/ \ I i , x {l}), f, F) if and only if for every 

l G M\{1} , TU{i1} is a cover with respect to knapsack l, where T C I i ,, |T| = r l 
(note that i1 is the element with smallest weight). 

The inequality defines a facet of the polytope MKP(N' x M U ( r
u = 2 (N / \ 

I i , x {l}),f, F) if and only if it is valid (note: TU{i1} is automatically a minimal 
cover with respect to knapsack kl) and for every l G M \ {1}, the condition 
(rl - 1)fi +fi+fi, ,<Fl holds (note, this condition is stronger than the one 
given in Theorem 4.9.2). 



4.10. CONCLUDING REMARKS 103 

Example 4.9.5 Given an instance (N, M, f, F) of the MKP. Let S C N be a 
minimal m 
inequality 
minimal multiple cover with respect to a given set J C M and suppose, the 

jEJiES 

defines a facet for the polytope MKP(S x J,f,F) (cf. Section 5.7). Define 
a := £ j e J DieS eik and α := \S\ - 1. Then, it is easy to verify that the inequality 
ax < α meets the requirement (•) of Theorem 5.9.2. Again, let us choose a 
positive integer r < min{\N \ S\,\M \ J\}, sets T1,...,Tr that are mutually 
disjoint subsets of N\ S and a subset {k1 , . . . , kr} of M \ J. Moreover, we require 
for all v = 1 , . . . , r that Tv U {i} is a minimal cover with respect to knapsack kv 
for all i e A. 

By applying Theorem 5.9.2, we can conclude that the extension of the Minimal 
Multiple Cover Inequality, 

J2J2xij + J2 E xikv <\S\-1 + J2\Tv\ 
jeJieS v=1 ieSuTv v=1 

defines a facet of the polytope MKP((S x J U \Jv=1(S U Tv) x {kv}, f, F) if and 
only if for every ve{1,...,r} there exist i,jeS,i= j and an item t G Tv such 
that EseTvAWfs + f i + f j < F k v . 

In addition, the extended minimal multiple cover inequality still satisfies the 
requirements of Theorem 5.9.2. Thus an iterative extension of the original in­
equality is possible. • 

4.10 Concluding remarks 

In this chapter we investigated the polytope associated with MKP. The only other 
attempt to study a similar problem from this point of view are the papers by 
Gottlieb and Rao [GR90] and [GR90a], where the authors investigate the polytope 
associated with GAP. 

In this chapter, we presented several new classes of valid joint inequalities and 
discussed necessary and sufficient conditions under which these inequalities define 
facets of the Multiple Knapsack Polytope. Although some of these conditions 
involve many technicalities (e.g. in Section 5.7), we were able to derive separation 
heuristics for most classes of inequalities discussed here. Moreover, in Section 
5.9 a procedure is presented to extend iteratively facet defining inequalities for 
the Multiple Knapsack Polytope. This procedure gives rise to a huge class of 
joint inequalities, which generalize, for instance, the Extended Cover Inequalities 
presented in Section 5.3. 

The inequalities discussed in this chapter are used as a starting point for the 
development of a Branch and Cut Algorithm for the MKP, which is discussed in 
the next chapter. 
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Chapter 5 

A Branch and Cut Algori thm for 
the Mult iple Knapsack Problem 

In this chapter we present an implementation of a Branch and Cut Algorithm for 
the Multiple Knapsack Problem. The general method is described in Section 6.1. 
Section 6.2 addresses the core of the method: the Separation Problem. In this 
section we show the separation strategies used in our approach for finding valid 
inequalities for the M K P ( N , M , f , F) . Different separation procedures for several 
classes of valid and facet defining inequalities are suggested and a comparison 
of them is provided. Further, some details on the lifting procedure, and the so 
called complementing heuristic are given. In Section 6.3 we present some heuristic 
procedures based on LP techniques to the MKP. A comparison of the behavior 
of all these heuristics for a set of “difficult” problems is given. Section 6.4 shows 
the behavior of different branching strategies applied to some examples. Further 
implementation details are given in Section 6.5. Finally, in Section 6.6 we describe 
our computational results in solving small and large scale real world problems. 
The results in this chapter are also presented in [FMW93a]. 

We describe our approach to the minimization version of the MKP. Moreover, 
we ignore feasible solutions of the MKP that do not assign all the items. It is 
due to the fact that these solutions are not feasible to our original application. 
For more details on the original problem and its relationship with the MKP see 
Chapter 2. 

We finish this introduction with some notes about the Branch and Cut met­
hod. The method derives from a Cutting Plane algorithm in combination with 
branch and bound and heuristic procedures. The name “Branch and Cut” appears 
the first time in [PR87], applied to solving large scale instances of the Travelling 
Salesman Problem. The method, as presented in this chapter, was introduced by 
Gr¨otschel, Ju¨nger and Reinelt in [GJR85] for solving Linear Order problems. The 
Cutting Plane method was developed at the end of the 50’s by Gomory [Go58] 
to solve integer linear programs. Although theoretical interesting, the method 
proposed by Gomory turns out to be time and memory consuming, since the 
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calculations should be made very precisely in order to guarantee correctness. 
Actually, the idea of adding inequalities to obtain a better bound of the linear 
relaxation of an integer program is older. Dantzig, Fulkerson and Johnson [DFJ54] 
have already used it to solve instances of the Travelling Salesman Problem. A 
substantial improvement on the results of this method came with the utilization 
of violated facet defining inequalities of a polytope associated with the problem 
to obtain better cutting planes. This approach was developed by Padberg and 
Gr̈ otschel in [PG85] to solve large instances of the Traveling Salesman Problem. 
In the last years, the Cutting Plane and the Branch and Cut methods based on 
facet defining inequalities have been used successfully to solve large scale instances 
of real world combinatorial optimization problems. 

5.1 The Branch and Cut Method 
In this section we describe the main idea of the approach we apply to the Multiple 
Knapsack Problem. In the last chapter we associate each solution of the MKP to 
a vertex of the corresponding polytope MKP(N, M, f, F). So, the problem can 
be equivalently described as 

min cx 
s.t. xeMKP(N,M,f,F). 

In order to apply Linear Programming techniques to solve this problem, we need 
a description of this polytope by means of equalities and inequalities. Since the 
number of facet defining inequalities is exponential in the size of the input, we 
use a cutting plane approach to solve this problem. One cannot expect, however, 
to obtain a complete description of the polytope, since MKP is A/"P-hard. Nev­
ertheless, the results of the last chapter provide several facet defining and valid 
inequalities that can be useful to solve the problem. These inequalities might 
be not sufficient to solve the problem. We embed the cutting plane phase into a 
branch and bound procedure by fixing some variables. 

Let us describe more precisely the Branch and Cut method. In each iteration 
we consider a polytope P< which is described by some of the valid or facet defining 
inequalities of the last chapter and with some variables fixed to the lower or upper 
bounds. It is obvious that P< contains MKP(N,M, f,F). In the first LP, for 
example, we start with the trivial inequalities only, and no variable fixed. Then, 
we determine an optimal solution x' of this LP. There are two possibilities: 

• x1 e MKP(N, M, f, F). Then, x1 is also an optimal solution for MKP; 

• x' 0 MKP(N,M, f ,F). In this case there is a facet defining inequality 
ax < α of MKP(N, M, f, F) that cuts x' off, i.e., ax' > α. 
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The inequality ax ≤ α is called a cutting plane, and the problem of finding such 
an inequality is known as the Separation Problem. We discuss in Section 6.2 this 
problem in detail. If we are able to find some of those inequalities, we add them 
to the LP, obtaining a new polytope P" that includes MKP(N, M, f, F) and 
is included in P'. Therefore, P" is a “better” relaxation of MKP(N,M, f,F). 
With this new LP we begin a new iteration. However, it can be the case that 
we find no such inequality in the separation step, because our knowledge about 
the polytope is not sufficient or our separation routines are not good enough. In 
this case, in order to continue the process, we choose a fractional variable and 
create two subproblems: in the first one we fix the value of this variable to 1, and 
in the second one, we fix the value to 0. In both cases a new LP is generated, 
and we begin a new iteration. If, during the branching process, we do not find 
any fractional variable, a backtrack step is performed. Of course the choice of 
the branching variable is also important for the performance of the method. We 
discuss some branching strategies in Section 6.4. 

Observe that, since the polytope P' contains MKP(N,M,f,F), the optimal 
value of the LP (if no variable is fixed) is a lower bound on the optimal solution 
value. On the other hand, using primal heuristic procedures, we can find upper 
bounds on the optimal solution value. A bound on the quality of these heuristic 
solutions can be calculated using the lower bound given by the LP. In Section 
6.3 we show some heuristic procedures based on the information given by the LP 
solution. It is also possible that, if some variables are fixed, the value of the LP 
solution is greater than the current upper bound, or the current LP is infeasible. 
In both cases, a backtrack in the branch and bound tree is performed. 

In Figure 5.1 we give a simplified flow chart of the method. 

5.2 Separation strategies 
In this section we address the Separation Problem for some classes of inequalities 
described in the last chapter. Suppose that we are given an optimal solution x' 
of the current LP. We know that there exists an inequality ax ≤ α valid for the 
polytope MKP(N, M, f, F) such that ax' > α. Our job is to find such inequalities. 

In Section 3.4.3 we present a proof that the Separation Problem for the Mini­
mal Cover Inequalities of the Single Knapsack Polytope is NP-hard. In all classes 
of inequalities discussed in the last chapter, the concept of a cover is always in­
volved. Of course, this does not give a proof that there does not exist efficient 
algorithms for the separation of all these classes. We concentrated, however, in 
efficient heuristic strategies for separation of the classes discussed. In this section, 
we present the ideas we use to find violated inequalities in our Branch and Cut 
Algorithm. We describe, for the various classes of inequalities, the heuristic pro­
cedures we implemented. We use the set of problems cb described in Section 6.6.1 
to test the various heuristics. The parameter we used to test this “efficiency” is 
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Figure 5.1: Simplified flow chart of the Branch and cut method. 
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the increase in the value of the LP relaxation caused by the inequalities found by 
the procedure. To this end we execute our algorithm until the procedure finds 
no more violated inequality. The last lower bound we obtain is our performance 
parameter. We compare this value with the value of the lower bound after the 
first LP (we call it first lower bound in the rest of this chapter). In Section 6.5 we 
describe the inequalities of the first LP. 

5 .2 .1 S e p a r a t i n g M i n i m a l C o v e r I n e q u a l i t i e s 

Crowder, Johnson and Padberg suggest in [CJP83] the following heuristic proce­
dure for finding violated Minimal Cover Inequalities. The idea is, given a frac­
tional solution x', to solve the following integer program for each knapsack k ∈ M: 

min E i e N ( 1 - x i k)si 
s.t. Y,ieN fisi > Fk; 

si ∈{0,1}. 

If the optimum solution value is less than 1.0, then s is the characteristic vector of 
a cover S, which is violated by x'. Of course we are not able to solve this problem 
exactly. Thus, we use Dantzig’s procedure (see Section 3.1) to find the optimal 
solution of the relaxation, and round up the value of the critical item. Afterwards, 
some elements of the cover S are eliminated in order to obtain a minimal one, 
and the inequality is lifted to a facet of the polytope MKP(N, M, f, F). Let us 
describe the procedure algorithmically. 

Sep. Procedure: CJP Heuristic for Minimal Cover Ineq. 
Input: An instance (N, f, F) of the SKP and x' ∈ Rn , 0 ≤ x\ ≤ 1 for 
all i ∈ N. 
Output: A violated Minimal Cover Inequality or the procedure fails. 

Apply Dantzig’s procedure to solve: 

min E i e N ( 1 - x i ) s i 
s.t. 12i€Nfisi>F, 

0 ≤ si ≤ 1 for all i ∈ N. 

Let S := {i ∈ N | si > 0}. 
Transform S in a minimal cover. 
Lift the corresponding inequality to a facet of SKP(N, f, F). 
If the resulting inequality is violated add it to the list of 
violated inequalities. 

We have tested the procedure outlined above on problems cb. The results 
obtained are shown in Table 5.1. The first column shows the value of the first 
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Problem 1. LB zCJP 

cb1 26649 27621 
cb2 27985 28535 
cb3 29237 30087 
cb4 30607 31279 
cb5 39829 40115 
cb6 33169 33458 
cb7 32027 32991 
cb8 32806 33711 
cb9 29825 30976 

cb10 36612 36953 

Table 5.1: Minimal cover separation CJP-heuristic. 

lower bound, and the second column, the lower bound zCJP obtained after no 
more violated inequalities are found by this procedure. 

We implemented another idea for the minimal cover separation. In our appli­
cation, though the number of items is very large, it turns out that many of them 
have the same weight. Let us say that these items are of the same type. Then, 
when the number of types is small, one can enumerate all possible minimal covers, 
based on the types of the items. 

Example 5.2.1 Suppose an instance (N, f , F ) of the SKP in which we have 
F = 100 and only four different item types: 20, 35, 40 and 50. Then, the 
complete list of possible minimal covers is: 

type 20 type 35 type 40 type 
6 0 0 0 
4 1 0 0 
4 0 1 0 
3 2 0 0 
3 0 0 1 
2 2 0 0 
2 1 1 0 
2 0 2 0 
1 1 0 1 
0 3 0 0 
0 2 1 0 
0 2 0 1 
0 1 2 0 

50 
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type 20 type 35 type 40 type 50 
0 1 1 1 
0 0 3 0 
0 0 2 1 
0 0 0 3 

The number of items of each type is bounded by n. Let T be the number of dif­
ferent types. Then, it is easy to see that, nT is an upper bound for the number of 
different minimal cover types. This bound can, indeed, be improved. Let t G INT 

be an array containing the number of items with each item. An upper bound for 
the number of different minimal cover types is given by nt

i=1 min(ti, fF f
+

i
 1 ] ) . In 

Example 5.2.1, an upper bound is given by min(6, t20) * min(3, t35) * min(3, t40) * 
min(3, t50). If the number of different types is small, one can enumerate all possi­
bilities. We can suppose that the items are sorted such that items with the same 
weight have contiguous indices. Moreover, we can construct in the beginning of 
the process the array (t1,t2,..., tT) containing the number of items with the same 
weight for each type. Now, given a knapsack k and the current LP solution x', 
we can sort the items of each type, such that 

x 1 k > ... >xt1k 

x( t1+1)k> . . . >x{t1+t2)k 

x(t1+...+tT-1+1)k — . . . — x( (t1+...+tT)k 

Then, we can check for each cover type (enumerated as in Example 5.2.1) if there 
is a violated Minimal Cover Inequality of this type. To this end, we must only 
check the best possible inequality of each type, that we obtain with the first items 
of the type in the order above. Note that it provides a polynomial exact separation 
procedure if the number of item types is constant. 

Actually, in our implementation we do not enumerate all possible cover types. 
The number of possibilities is still too large. Then, we generate in the beginning of 
the process a set of cover types, and test, in each iteration, for violated inequalities 
of these types. Let us describe more precisely the idea of the heuristic procedure. 

Sep. Procedure: CT Heuristic for Minimal Cover Ineq. 
Input: An instance (N, f, F) of the SKP, T the number of item types, 
an array (t1, . . . , tT) with the number of items of each type, x ' e IR n , 
0 < x'i < 1 for all i e N. 
Output: Violated Minimal Cover Inequalities, or the procedure fails. 



112 CHAPTER 5. A BRANCH AND CUT ALGORITHM FOR MKP 

Generate the cover types. 
Sort x' according to the following order. 

x[> . . . >x'tl 

x't t 1+. . .+ tT - 1+1 > . . . > x't t1+...+tT 

For each generated cover type c = (c1, . . . , cT ). 
Select from each item type i the ci best items according 
to the above order. 
Lift the corresponding inequality. 
If the inequality is violated, append it to the list of 
violated inequalities. 

In Table 5.2 we report on the results obtained by applying this procedure. Let 
zCT be the value of the last LP, before the procedure fails in finding a violated 
inequality. The results presented in Table 5.2 show that for these test problems 

Problem 1. LB zCT 

cb1 26649 26649 
cb2 27985 27985 
cb3 29237 29237 
cb4 30607 30607 
cb5 39829 39829 
cb6 33169 33169 
cb7 32027 32027 
cb8 32806 32806 
cb9 29825 29825 

cb10 36612 36612 

Table 5.2: Minimal cover separation CT-heuristic. 

the heuristic procedure fails completely. I t is important to say that the fact that 
the number of different types must be not too large is decisive for the performance 
of the heuristic. In the next Table 5.3 we test both procedures for minimal cover 
separation for problems mk (described in Section 6.6.1). The results in bold face 
indicate a better bound obtained. No improvement on the CJP heuristic was 
observed. This heuristic procedure is, therefore, not used in the rest of the thesis. 
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Problem 1. LB zCJP zCT 

mk1 1168 1220 1206 
mk2 3813 3845 3845 
mk3 351 366 366 
mk4 864 880 880 
mk5 844 946 946 
mk6 693 700 700 
mk7 892 964 967 

Table 5.3: Comparison: CJP and CT heuristics. 

5.2.2 Separating (1 ̂ -Configuration Inequalities 

In [CJP83] Crowder, Johnson and Padberg suggest a heuristic procedure to find 
violated (1,k)-configurations. The idea is to enlarge minimal covers. Take a 
minimal cover S (found, for example, by applying the procedure outlined above) 
and let z be the element with maximal weight. Set N':=S\ {z}. Let i e N \ S, 
and verify if (N' U {i}) U {z} is a (1,k)-configuration (see Section 3.4.2). If it is 
the case, the element is inserted into N' and the corresponding inequality is lifted, 
and, if violated, added to the LP. 

In our implementation, we maintain a pool of covers found during the ex­
ecution of the algorithm. We try to enlarge the covers stored in this pool to 
(1,k)-configurations. In the following we present the heuristic in algorithmic form. 

Sep. Procedure: Heuristic C J P for (1,k)-Configuration Ineq. 
Input: An instance (N, f, F) of the SKP, x' e Rn , 0 < x\ < 1 for all 
i (EN. 
Output : Violated (1,k)-Configuration Inequalities or the procedure 
fails. 

Take a minimal cover S from the pool. 
Let z e S be an item with maximum weight. 
N':=S\{z}, k:=\N'\. 
For each item i e N \ S such that EjeN'u{i} fj < F. 

If for all KCN'U{i}, with \K\=k,KU {z} is a cover. 
N' := N' U {i}. 
Lift the corresponding (1,k)-Configuration Inequality. 
If the inequality is violated, append it to the list of 
violated inequalities. 

In Table 5.4 we show a comparison of the lower bound obtained by this heuristic 
procedure with the one obtained by our approach described in the following. 
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In addition, we implemented another heuristic procedure to find violated (1,k)-
configurations. The idea is to partition the items set into two subsets: L which 
contains the large items, and S which contains the small ones. A threshold pa­
rameter controls this partition. Then, both sets are sorted by decreasing order of 
the value of the current LP solution. Let z be the item in L with maximum value 
of the current LP solution, and N' ⊆ S such that N'∪{z} is a (1,k)-configuration. 
We choose N' in order to obtain also big values of the current LP solution. In 
the following we present a detailed description of this heuristic procedure. 

Sep. Procedure: Heuristic LS for (1,k)-Configuration Ineq. 
Input: An instance (N, f, F) of the SKP, x' ∈ Rn , 0 ≤ x\ ≤ 1 for all 
i ∈ N and a threshold parameter t. 
Output: Violated (1,k)-Configuration Inequality or the procedure 
fails. 

Let L:={i∈N|fi>t}andS:={i∈N|fi≤ t}. 
Let z∈L be an item such that x'z = max{xi | i ∈ L}. 
Solve the following problem by applying Dantzig’s procedure: 
max T,^Sxiti 
s.t. Yi€Sfiti≤F, 

0≤ti≤1, forall i ∈ S . 

If N' ∪ {z} is a (1,k)-Configuration. 
Set N':={i∈S|ti = 1}. 

Lift the corresponding inequality. 
If the inequality is violated, append it to the list of 
violated inequalities. 

This heuristic procedure has a very good performance compared to our imple­
mentation of the heuristic suggested by Crowder, Johnson and Padberg. In Table 
5.4 we present the lower bound provided by both heuristic procedures on the same 
set of examples. Let zCJPlk be the lower bound provided by the procedure sug­
gested by Crowder, Johnson and Padberg and zLS be the lower bound provided 
by our heuristic. We use in both cases, the CJP-heuristic to find violated minimal 
covers. In the remainder of this section, we will refer to the combination of the 
heuristics CJP for minimal covers and LS for (1,k)-configurations, as procedures 
to find violated individual inequalities. 

5.2.3 Separating Multiple Cover Inequalities 
In order to find violated Multiple Cover Inequalities, we choose a subset M< of 
knapsacks and determine E k e M ' Fk. Then, we apply the separation procedures 
for Minimal Covers and (1,k)-Configuration Inequalities for this “summarized” 
knapsack. Of course one cannot test all 2'MI - (|M| + 2) possible different choices 
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Problem 1. LB zCJPlk zLS 

cb1 26649 27627 27800 
cb2 27985 28587 28789 
cb3 29237 30087 30492 
cb4 30607 31279 31846 
cb5 39829 40125 40400 
cb6 33169 33458 33824 
cb7 32027 32991 33441 
cb8 32806 33713 33905 
cb9 29825 30976 31275 
cb10 36612 36953 37038 

Table 5.4: (1,k)-configuration separation: comparison of heuristics. 

for M'. We use the following heuristic idea to reduce the number of tests, and, 
at the same time, try to obtain many violated inequalities. For each item i we 
determine Ji := {k e M | xik > 0}. If 2 < |Ji| < |M| - 1, the set is tested in the 
heuristic procedure. Finally, if | Ji| = |M|, we apply the procedure for all subsets 
of M with |M| - 1 elements. 

The behavior of the separation procedures for joint inequalities is shown in 
Table 5.5. 

5.2.4 Separating Heterogeneous Two Cover Inequalities 

We use basically the same idea presented for finding violated Minimal Cover 
Inequalities to find promising sets G and S for a Heterogeneous Two Cover In­
equality corresponding to S, G and some knapsacks k and l. First we find a cover 
S with respect to some knapsack k maximizing the value of the current LP solution 
in both knapsacks k and l. Then, we construct G by selecting in N\S a maximal 
set such that for all subset T C S U G, |T| = |S| and T n G = 0, E 
the following we present the procedure algorithmically. 

f i > F l. In 

Sep. Procedure: Heuristic for Het. Two Cover Ineq. 
Input: An instance (N, M, f, F) of the MKP, x ' e R m n , 0 < x'ik < 1 
for all i G N. k e M. 
Output: Violated Heterogeneous Two Cover Inequalities or the pro­
cedure fails. 

For all pairs k, l e M, k=l. 
Solve the following linear program: 



116 CHAPTER 5. A BRANCH AND CUT ALGORITHM FOR MKP 

min £ i e N (1 .0 - x'ik - x'i l)s i 
s.t. Y,ieNfisi>F, 

0 ≤ si ≤ 1 for all i ∈ N. 
Set S:={i∈N|si> 0}. 
Initialize G := ∅. 
Let smax be such that fsmoi = max{fi | i ∈ S}. 
Initialize T := S \ {sm a x}; fT := E i e T fi. 
For each element i in N \ S. 

If fT + f i > Fl. 
G:=G∪{i}. 
Update T and fT conveniently. 

Lift the Heterogeneous Two Cover Inequality. 
If it is violated, append to the list of violated inequalities. 

We present in Table 5.5 some results on applying this heuristic procedure to 
obtain violated inequalities. 

5 .2 .5 S e p a r a t i n g E x t e n d e d C o v e r I n e q u a l i t i e s 

In the last chapter we define some valid and facet defining joint inequalities of 
the MKP(N, M, f, F), i.e., inequalities that combine the coefficients of more than 
one knapsack. One of them is the Extended Cover Inequality. In this section we 
present two heuristic separation procedures for this class of inequalities. 

A first heuristic idea is to use the covers stored in our pool to try to extend 
them to other knapsacks. The procedure works as follows. Let S be a cover for 
some knapsack k taken from the covers pool, and let T := N\S. Then, for all 
l ∈ M \ {k}, try to construct an Extended Cover Inequality corresponding to S, 
T, k and l (see Section 5.2). By considering the definition of the Extended Cover 
Inequality, one can see that we need a set T that fits into l and T ∪ {s} is a cover 
for l for all s ∈ S. The corresponding inequality will be valid. So, we eliminate 
the items of T until it fits into l, and then test the other condition. The inequality 
is finally lifted and, if it is violated, appended to the LP. In the following, we 
present a more precise description of the procedure. 

Sep. Procedure: Heuristic EC1 for Extended Cover Ineq. 
Input: An instance (N,M,f,F) of the MKP and x' ∈ Rm n , 0 ≤ 
x'ik ≤ 1 for alli∈N,k∈ M. 
Output: Violated Extended Cover Inequalities or the procedure fails. 

For all covers stored in the covers’ pool. 
Let S be a cover for knapsack k taken from the covers’ pool. 
Let smin be an item in S with minimum weight. 
S e t T : = N \ S . 
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F o r a l l l ∈ M \ { k } . 
Set Tl := T. 
Sort the elements in T such that x'i l ≥ ... ≥ x\T]l. 
Determine tl := max{t ∈ { 1 , . . . , |N \ S|} | Ei=1 fi ≤ Fl}. 
Set T{ as the first tl elements of Tl. 
I fT/∪{s m i n }isacover for l . 

Lift the corresponding Extended Cover Inequality. 
If the resulting inequality is violated, append it to 
the list of violated inequalities. 

The second heuristic procedure for separation of Extended Cover Inequalities 
is based on the observation that the coefficients of S appear in the left hand side 
of the inequality in both knapsacks k and l. We use, then, the same idea given 
for finding Minimal Cover Inequalities in order to search for promising sets S and 
T. The procedure looks for violated Extended Cover Inequalities corresponding 
to knapsacks k and M'. For the choice of the knapsacks to run this heuristic 
procedure we use the same idea described for the separation of Multiple Cover 
Inequalities. We describe the procedure in the following. 

Sep. Procedure: Heuristic EC2 for Extended Cover Ineq. 
Input: An instance (N, M, f, F) of the MKP, x ' R m n , 0 ≤ x'ik ≤ 1 
for all i ∈ N, k ∈ M, a knapsack k ∈ M and M< ∈ M \ {k}. 
Output: Violated Extended Cover Inequalities or the procedure fails. 

Apply Dantzig’s procedure to solve the problem: 
min EieN(1.0-EleM'u{k}x>il)si 
s.t Zi€Nfisi>Fk 

0 ≤ si ≤ 1 for all i ∈ N. 
Set S:={i∈N|si> 0}. 
Transform S in a minimal cover for k. 
Set smin be an item in S with minimum weight. 
Apply Dantzig’s procedure to solve the problem: 
min E i € N \ S ( 1 . 0 - E l e M x i l)ti 
s.t. ?:i€N\Sfiti>?:l€M>Fl-fsmin 

0 ≤ t i ≤ 1 for all i ∈ N \ S. 
SetT:={i∈N\S| t i > 0 } . 
Transform T in a minimal cover for J2leM, Fl - f s m i n . 
Lift the corresponding Extended Cover Inequality. 
If it is violated, append it to the LP. 

In Table 5.5 we show the importance of the joint inequalities in order to solve 
the MKP. In the second column we show the value of the lower bound obtained 
by the appending only individual inequalities, and, in the third one, the value of 
the lower bound obtained by introducing also the joint inequalities presented in 
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the last three sections. As we see in Table 5.5, the combination of individual and 

Problem 1. LB ind. ineq. ind. and joint ineq. 

cb1 26649 27800 27857 
cb2 27985 28789 28793 
cb3 29237 30492 30514 
cb4 30607 31846 31846 
cb5 39829 40400 40378 
cb6 33169 33824 33824 
cb7 32027 33441 33441 
cb8 32806 33905 33935 
cb9 29825 31275 31224 
cb10 36612 37038 37038 

Table 5.5: Comparison of lower bound obtained using only individual and indi­
vidual and joint inequalities. 

joint inequalities provide a better bound than the individual inequalities alone in 
most of the examples tested. 

5.2.6 Lifting and Complementing 

In Section 3.4.2 we present the lifting procedure suggested by Zemel in [Ze89] to 
calculate efficiently a lifting of facet defining inequalities of the Single Knapsack 
Polytope. In our Branch and Cut approach we observed that the Lifting Procedure 
plays a very important role in the generation of violated inequalities. Sometimes, 
we find a non violated Minimal Cover Inequality that, after lifting, gives rise to 
a violated one. We proceed, then, like described in 3.4.2 in order to calculate the 
lifting coefficients for the individual inequalities. 

For the joint inequalities, however, no efficient general procedure is known 
for the lifting. We have implemented particular heuristic liftings for each separa­
tion procedure described in this section. In the case of the Extended Cover and 
Heterogeneous Two Cover Inequalities, instead of calculating exactly the value 
of the lifting coefficient by Padberg’s Procedure, as described in Section 3.4.2, 
we calculate the value of the linear relaxation of the integer program presented 
there and round it down. Let zi be the value of the integer program and z[ the 
bound calculated as outlined above. It is clear that zi < z i, and therefore, the 
lifting coefficient calculated by this heuristic is less than or equal to the exact 
coefficient. It guarantees that the lifted inequality calculated is, at least, valid, 
but not necessarily facet defining. 



5.2. SEPARATION STRATEGIES 119 

For the Multiple Cover Inequality we proceed in a different way. We consider 
the joint inequality as an individual inequality for the “summarized” knapsack. 
We apply, then, Zemel’s procedure to calculate the value of the lifting coefficient 
of the “summarized variables”. This value is used for the lifting coefficients of the 
original inequality. This coefficient is surely a lower bound for the exact coefficient 
of these variables, and therefore, the generated inequality is valid. 

Now, we would like to give some more details about the operation of comple­
menting. The idea is to reduce the problem, by fixing some variables to one. In 
our implementation we complement all variables whose value of the current LP 
solution are close to one. We use 0.05 as a threshold parameter. Let us describe 
the procedure more precisely. 

We are given an instance (N, M, f, F) of the MKP, the solution x' of the 
current LP and a threshold parameter e. Let Nr := N and Fr

k := Fk for all 
k ∈ M. For each variable (i, k), such that x'ik > 1.0 - e, we set Nr := Nr \ {i} 
and Fk

r := Fr
k - fi. We apply, then, the separation strategies discussed in the 

last sections to this reduced problem. If we find a violated inequality in the 
reduced problem, we calculate the value of the coefficient of the complemented 
variables, in order to obtain a valid inequality of the original problem. Observe 
that we complement variables whose value is not exactly one, and, therefore, it 
can be that a violated inequality in the subproblem is not violated in the original 
problem any more. 

In Section 3.4.3 we present an efficient procedure to calculate the coefficient of 
the complemented variable in the case of the individual inequalities. No efficient 
algorithm, however, is known for the joint inequalities. We implemented, again, 
particular procedures for each inequality class. We proceed, in the case of the 
Multiple Cover Inequality, like we do for lifting. We consider the joint inequality 
as a individual one for the “summarized knapsack”, and calculate exactly the 
coefficients in the new “summarized” knapsack. These values are an upper bound 
for the exact values, and, thus, the generated inequality is valid. 

For the case of the Heterogeneous Two Cover Inequality we solve the LP 
relaxation of the integer program presented in Section 3.4.3. This value is, then, 
rounded up, guaranteeing that the generate inequality is valid. 

For the case of the Extended Cover inequality we can obtain good bounds 
to the corresponding coefficients by a more careful investigation. Let k,l ∈ M, 
S ⊆ N, T ⊆ N \ S and i ∈ N \ (S ∪ T) the complemented variable. We have two 
possibilities for this Extended Cover Inequality, depending on in which knapsack 
the item i was complemented. 

Case 1. The item i is complemented in knapsack k. Then, £ j e S fj > Fk-fi. 
It is clear that S ∪ {i} is a cover for knapsack k. If T ∪ {i} is a cover for 
knapsack l, we can insert i into S and the corresponding Extended Cover 
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Inequality is valid. Otherwise, the inequality 

E xjk + E xjl ≤ |S| + |T| - 1 
jeSu{i} jeSuT 

is also valid. 

• Case 2. The item i is complemented in knapsack l. Then, E j T fj ≤ Fl ≤ F l - f i 
and T ∪ {s} is a cover for all s ∈ S. In this case, insert i in T, and observe 
that the corresponding Extended Cover Inequality is valid. 

In Table 5.6 we present the lower bound obtained with the operation of comple­
menting. In the second column we show the first lower bound. The third column 
shows the lower bound obtained with all separation procedures presented in the 
last sections, and in the fourth column we see the effect obtained by applying 
additionally the complementing operation. We observe that we obtain a better 

Problem 1. LB all sep. proc. all sep. proc. and compl. 
cb1 26649 27857 27857 
cb2 27985 28793 28880 
cb3 29237 30514 30520 
cb4 30607 31846 31846 
cb5 39829 40378 40396 
cb6 33169 33824 33824 
cb7 32027 33441 33451 
cb8 32806 33935 33905 
cb9 29825 31224 31219 
cb10 36612 37038 37038 

Table 5.6: Comparison of LB obtained by using complementing heuristic. 

lower bound using the complementing heuristic for most of these tests. 

Final remarks 

We have used random problems to test the quality of the inequalities generated 
by our separation routines. In Section 6.6.1 we describe how we generate these 
problems. Table 5.7 shows typical results for random problems. We generated 
for each value of |N| and |M| four different instances and show in the table the 
average obtained over all tests made. The third, fourth and fifth columns show 
the average value of the gap between lower and upper bounds after the first LP, 
after no more violated individual inequalities are found and immediately before 
branching, respectively. 
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\N\ \M\ Average gap 
after first LP 

Average gap 
after ind. ineq. 

Average gap 
after joint ineq. 

50 4 561.0 231.4 (41.2%) 36.6 (6.5%) 
100 4 265.4 164.0 (61.8%) 78.6 (29.6%) 
150 4 355.2 149.2 (42.0%) 114.2 (32.3%) 
200 4 335.4 117.0 (34.9%) 75.2 (22.4%) 
300 4 332.0 112.4 (33.9%) 100.6 (30.3%) 
400 4 210.5 154.8 (73.5%) 90.0 (42.8%) 
500 4 171.0 41.5 (24.3%) 38.2 (22.4%) 

Table 5.7: Random examples. 

We can observe in Table 5.7 that although we cannot solve most of the prob­
lems without branching, the results confirm that the gap between lower and upper 
bounds is substantially decreased by using the inequalities generated by our pro­
cedures. These problems can be solved using Branch and Cut in reasonable time, 
as showed in Section 6.6.2. 

We have tested several possibilities on the order in which these separation pro­
cedures are called, and compared them taking in account both the CPU time used 
and the quality of the produced bound. In our experiments the following strategy 
showed the best performance. We use first only the separation routines for indi­
vidual inequalities with complementing and add afterwards also the routines for 
separation of joint inequalities. 

5.3 Heuristic procedures 

In this section we describe two different LP based heuristics which we imple­
mented for the MKP. Moreover, an improvement heuristic is presented and its 
behavior is tested on some bench mark examples. Observe that for our appli­
cation (see Chapter 2) we are interested only in feasible solutions assigning all 
the items. A heuristic solution that does not assign all items would provide, due 
to the transformation in the objective function presented in Chapter 2, a very 
poor upper bound. So, throughout this section we will restrict our attention to 
feasible solutions of the MKP assigning all items. If the heuristic procedure does 
not assign all items, we will say that it fails in producing a feasible solution. 

5.3.1 Rounding heuristics 

Given the optimal solution x' of the current LP, the idea of the rounding heuristic 
is to try to obtain a feasible solution for the MKP by assigning each item i to the 
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knapsack k such that x'ik is maximum and this assignment does not violate the 
corresponding knapsack constraint. 

Rounding Heuristic. 
Input: An instance (N, M, f, F) of the MKP and a vector x' ∈ Rm n , 
0 ≤ x'ik ≤ 1 for alli∈N,k∈ M. 
Output: A feasible solution y ∈ Mn of MKP assigning all items 
or the procedure fails (yi contains the knapsack where the item i is 
assigned). 

Choose a sequence of the items to consider. 
Initialize F'k := Fk for all k ∈ M. 
For each item i according to the order chosen. 

Let k* such that x'ik, := max{xi k | k ∈ M and fi ≤ Ffk}. 
If there is no such k*, the procedure fails and stop. 
else yi := k*. 

F'kt := F'kt - fi. 
Return y. 

Observe in Example 5.3.1 that depending on the order in which the items are 
considered the rounding heuristic provides different results. 

Example 5.3.1 Let n = 3, m = 2, f = (3, 4, 5), F = (5, 8) and the vector 

0.5 0.8 1.0 \ 
0.5 0.2 0.0 

Then, applying the algorithm above to the sequence {1, 2, 3} the procedure fails, 
because it assigns the first item to the first knapsack, and then there is no possi­
bility to assign the other two items. But, if we apply the procedure in the order 
{2, 3,1} a feasible solution is obtained. • 

In our implementation, three different orders have been tested: sequential 
order of the indices, a randomly generated order and the so called “best” order. 
In this third case we determine for every item i ∈ N, k*(i) such that x'i k i = 
max{xi k | k ∈ M}. The “best” order is, then, the one obtained by sorting the 
items in decreasing order of the value x1

i k i . We applied these variants of the 
heuristic for examples cb. The results are summarized in Table 5.8, where we 
used for all examples a fixed separation strategy. The value in the third, fourth 
and fifth columns correspond to the best heuristic solution found in the first node 
of the branch and cut tree using the rounding heuristic in sequential, random and 
“best” order, respectively. The values can be compared with the optimal solution 
value of the examples, in the second column. 

In Table 5.8 we observe that a fixed order does not work well, while the random 
and “best” order produce similar results. 
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Problem Opt. Sol. Seq. order Random order “Best” order 

cb1 28035 29143 28733 28733 
cb2 28880 28880 28880 28880 
cb3 30541 30541 30541 30541 
cb4 32217 fails 43885 fails 
cb5 40493 40957 40609 40609 
cb6 33824 33824 33824 33824 
cb7 33679 38045 34904 34904 
cb8 34009 36741 35036 34550 
cb9 31533 37085 40241 40241 
cb10 37143 44786 38190 38190 

Table 5.8: Rounding Heuristic: comparison between different orders. 

5.3.2 Randomized rounding 

The idea of this heuristic procedure is to consider the solution x' of the current 
LP as a probability distribution, where x'ik is the probability of the item i to be 
assigned to knapsack k. A number of experiments is realized, and the best feasible 
solution found is selected. Let us describe the procedure more precisely. 

Randomized Rounding. 
Input: An instance (N, M, f, F) of the MKP and a vector x' G Rm n , 
0 < x'ik < 1 for allieN,ke M. 
Output: A feasible solution y of MKP assigning all items or the 
procedure fails. 

For t := 1 to number-of-trials 
For each item i e N 

Assign yi
t:=k with probability x'ik. 

If yt is better than the best solution found so far. 
y:=yt. 

If some solution was found. 
Return y. 

Else procedure fails. 

This procedure has been used to provide good heuristic solutions to the Un­
constrained Global Routing Problem (see [Le90]). In the Table 5.9 we show the 
results obtained by this heuristic on the same examples as in Table 5.8. The 
number of trials is chosen depending on the number of fractional values in the 
x'. We observed that the efficiency of the procedure decreases if the number of 
fractional variables is too small. 
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Problem Opt. Sol. Randomized Rounding 

cb1 28035 fails 
cb2 28880 28880 
cb3 30541 30541 
cb4 32217 fails 
cb5 40493 40493 
cb6 33824 33824 
cb7 33679 34290 
cb8 34009 34009 
cb9 31533 fails 
cb10 37143 37375 

Table 5.9: Randomized Rounding. 

Although the procedure does not provide a feasible solution in the examples 
cb1, cb4 and cb9, in all other examples it gives a solution at least as good as 
the other strategies. We show in Table 5.10 how much time it takes to find an 
optimal solution of the problem by applying each heuristic. In this case we use 
fixed separation and branching strategies for all examples. 

Problem Seq. Order Random Order “Best” Order Rand. Rounding 

cb1 50.13 39.55 39.38 57.28 
cb2 20.58 20.55 20.53 17.53 
cb3 22.52 22.48 22.28 22.58 
cb4 1:50.33 1:49.27 1:50.33 1:54.98 
cb5 1:17.00 1.20.73 1:17.15 44.90 
cb6 4.82 4.83 4.07 4.87 
cb7 10:16.85 8:14.00 8:17.25 2:15.70 
cb8 9:20.07 10:01.73 4:13.18 13.02 
cb9 15:36.37 12:48.30 12:46.03 3:55.04 
cb10 9:46.60 11:41.92 11:52.08 5:28.72 

Table 5.10: Time needed to find an optimal solution (min:sec). 

In Table 5.10 we observe that, in general, the Randomized Rounding needs 
less time to find an optimal solution in most of the examples considered. 



5.3. HEURISTIC PROCEDURES 125 

5.3.3 Improvement heuristic 
The idea of the improvement heuristic is the following: Given a feasible solution y 
assigning all items, try to find a better solution by one exchanges, i.e., by moving 
one item from a knapsack to a different one. It is based on a heuristic procedure 
suggested by Fidducia and Mattheysis in [FM82] for improving graph partitions. 
Let us describe the procedure more precisely. 

Improvement heuristic. 
Input: An instance (N, M, f, F) of the MKP and a feasible solution 
y assigning all items. 
Output: A feasible solution y' of the MKP assigning all items. 

Initialize y< with y. 
For p := 1 to number-of-passes. 

Initialize yp with y<. 
Set F'k := Fk - J2i:y,=k fi for all k ∈ M. 
All items are supposed to be unlocked. 
While P := {(i, k)∈N×M|i unlocked, fi ≤ F'k and yi

p = k} = ∅. 
Determine i* and k* such that c ik* = min{cik | (i, k) ∈ P}. 
Assign i* to k*. 
Update current solution yp and F'. 
Lock item i* (to avoid cycling). 

Determine y* as the best solution found in this pass. 
If y* has a better value than y', let y' := y*. 
Else return y< and stop. 

Return y'. 

One of the ideas of the procedure above is to allow in the internal while, “up hill” 
moves. It is a standard trick used in local search procedures to avoid getting 
stuck in local optima. In the end of the pass, all solutions found during it are 
analyzed, and the best one is selected. If the initial solution of the pass is the 
best one, this solution is returned. Otherwise a new pass is performed. Observe 
that the procedure is time consuming, since O(nm) is required in each pass to 
test possible moves. 

We applied the improvement heuristic to the same examples showed in the last 
section. In Table 5.11 we show in bold face the values were some improvement 
was achieved. For problems cb2, cb3 and cb6 no improvement is possible since 
an optimal solution is found before branching. Therefore these examples do not 
appear in this table. 

In the next Table 5.12 we give the time needed to each heuristic procedure to 
find an optimal solution. It is shown in bold face when some substancial reduction 
in the time was obtained. 
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Prob. Opt. Sol. Seq. order Rand. order “Best” order Rand. Round. 

cb1 28035 28952 28701 28701 -

cb4 32217 – 41010 41010 -

cb5 40493 40942 40493 40541 40493 
cb7 33679 34400 33855 34904 34290 
cb8 34009 34580 34401 34045 34009 
cb9 31533 34603 33976 34138 -

cb10 37143 37747 37425 37824 37326 

Table 5.11: Improvement heuristic. 

Problem Seq. Order Rand. Order “Best” Order Rand. Rounding 

cb1 53.78 39.27 39.20 1:01.78 
cb2 20.55 19.35 19.80 17.52 
cb3 14.90 22.32 19.03 15.60 
cb4 1:50.43 1:50.10 1:50.63 1:52.63 
cb5 1:21.37 1:02.88 1:30.70 45.02 
cb6 4.82 4.73 5:12 4.93 
cb7 3:19.15 1:29.63 3:42.67 1:54.03 
cb8 3:20.63 3:02.08 1:01.37 13.20 
cb9 13:14.10 10:26.17 10:25.67 3:58.11 
cb10 15:32.42 3:01.80 3:17.83 5:31.32 

Table 5.12: Time to find an opt. sol. with improvement heuristic (min:sec). 
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In both Tables 5.11 and 5.12 we observe that the improvement heuristic has a 
better behavior when applied to the solutions coming from the Rounding heuristics 
than with the ones coming from Randomized Rounding. 

We use the combination of Randomized Rounding, and Rounding in random 
order with improvement as primal heuristic for most problems. 

5.4 Branching strategies 

In the beginning of this chapter we describe the Branch and Cut method, and 
mention the importance of the choice of the branching variable to solve instances 
of the MKP. Our aim is to maintain the number of levels in the branch and bound 
tree small, otherwise the method turns out to be impracticable. In this section we 
present four different branching strategies, and compare them empirically on a set 
of examples. Moreover, for each different strategy we implemented two variants, 
in the first one the branching variable is set to one and afterwards to zero, and in 
the other one it is made in the opposite order. 

The four branching strategies we tested are the following: 

• max: choose a fractional variable (i, k) such that x'ik is maximum over all 
fractional variables; 

• min: choose a fractional variable (i, k) such that x'ik is minimum over all 
fractional variables; 

• rand: choose randomly a fractional variable; 

• half: choose a fractional variable (i, k) such that |x'ik - 0.5| is minimum. 

The idea behind the first two heuristics is to try to use the information given by 
the LP solution to find a better solution. In the rand strategy, we avoid using 
a fixed strategy. The idea of the half strategy is that when a branching step is 
performed, the variables near from 0.5 do not give enough information yet and, 
in some sense, are the “conflict variables”. This is the strategy suggested in most 
papers on Branch and Cut Algorithms. In the next Table 5.13 we show the total 
CPU time used to solve some of the examples cb using each of the eight strategies 
described. In all examples we use fixed separation and heuristic strategies. In 
Table 5.13 we observe that the strategy half has a better performance, especially 
in the cases where no good upper bound is known before branching (example cb7, 
for instance). We use this strategy whenever we have to proceed a branching step. 

5.5 Further implementation details 

In Figure 6.1 we present a flow chart of the Branch and Cut Method for the 
MKP. In the last sections we discuss extensively three steps of the method: the 
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Problem min 
zero one 

max 
zero one 

rand 
zero one 

half 
zero one 

cb1 0:24 1:57 0.24 3:06 0:32 0:43 0:20 0:41 
cb2 0:54 0:54 0:54 0:54 0:49 0:41 0:43 0:44 
cb3 1:40 1:38 1:27 1:50 1:51 1:40 1:06 0:59 
cb7 24:40 26:36 17:14 15:17 11:28 6:38 3:41 2:07 

Table 5.13: Solution time using different branching strategies (min:sec). 

separation, calculation of upper bounds and branching strategy. In this section 
we describe briefly our implementation of the other steps given in the flowchart. 

In Section 6.1 we mention that first LP can be constituted by some set of valid 
inequalities for MKP(N,M, f ,F). In our implementation we use the knapsack 
constraints, the SOS constraints and the inequalities 0 ≤ xik ≤ 1, for all i ∈ N, 
k ∈ M as the first LP. 

A fundamental step of the method is the solution of the linear relaxation of 
the current LP. In this step we use the CPLEX Callable Library [CPLEX92] a 
very fast and robust LP solver written and supported by R. E. Bixby. As usual 
in cutting plane based algorithms we use the dual version of CPLEX. 

Solving large LP’s is a very hard job. Although CPLEX is one of the best 
LP solvers on the market, we try to maintain the number of constraints of the 
LP “acceptable”. To this end, we consider the value of the slack variables of 
each constraint. If this value is less than zero, the inequality is deleted from 
the LP. The inequalities leaving the LP are stored for some time in a “pool” of 
inequalities. In each iteration every inequality in this pool is considered and, if it 
is violated, added to the LP again. Periodically the inequalities in the pool are 
examined and the oldest ones are eliminated by a garbage disposer. The “age” 
of an inequality is the number of LP’s since it was eliminated. 

Another idea we have implemented to simplify the structure of the LP to 
be solved is the fixing of variables by reduced costs, as suggested by Crowder, 
Johnson and Padberg in [CJP83]. Let z' be the value of the current LP solution 
and d = (dik) the corresponding reduced costs. Moreover, let z* be an upper 
bound to the optimum value. Then, for each non basic variable (i,k), we can 
verify two cases. 

• if x'ik = 0 and z* - z' < dik then the variable can be fixed to zero; 

• if x'ik = 1 and z* - z' < -dik then the variable can be fixed to one. 

In Table 5.14 we show the number of variables we can fix by reduced costs (and 
consequent logical implications) in the solution process of some examples. 
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Problem # variable fixed 

cb1 148 (82.2%) 
cb2 320 (88.9%) 
cb3 341 (90.7%) 
cb4 360 (85.1%) 
cb5 491 (89.4%) 
cb6 0 (0.0%) 
cb7 279 (88.6%) 
cb8 284 (86.3%) 
cb9 316 (84.0%) 
cb10 455 (93.2%) 

Table 5.14: Number of variables fixed by reduced costs. 

In the last section we describe several separation heuristics. The total number 
of inequalities appended to the LP in each iteration is a parameter of our algo­
rithm. If we find more violated inequalities than is specified by this parameter, 
we select the best inequalities. As selection parameter the current “slack” (or 
violation) of the inequality is used. 

Another important aspect of the selection of cuts to the LP is the redundancy 
checking. It can be the case that the separation heuristics generate the same 
inequality several times. Before appending a new cut to the LP, one must verify 
if it is not already added. This checking is a time consuming operation, and we 
try to avoid comparing all coefficients. Then, before doing that, we compare the 
slacks of the cuts, the values of the right hand sides and the number of coefficients. 
We proceed the coefficient comparison only when all this parameters are equal. 
Moreover, all inequalities we generate in our separation procedures are appended 
to a candidates list where each inequality is sorted in decreasing order of the 
coefficients. I t provides also some gain if the comparison is necessary. 

5.6 Computational results 

We present in this section the computational results of the algorithm described 
in the last sections. The idea is to show the behavior of our implementation of 
a Branch and Cut algorithm for several different classes of examples. In Section 
6.6.1 we describe these examples, providing, in the case of the real world problems, 
a brief discussion of the application that they come from. In Section 6.6.2 we show 
the results obtained by solving some small and random examples. These examples 
have been used as tests for our program. Section 6.6.3 addresses the examples 
coming from the practical applications that motivated this investigation. 
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Problem n m J2ieN fi J2keM Fk 
mk1 11 4 44 45 
mk2 34 4 143 143 
mk3 5 3 30 33 
mk4 7 3 25 25 
mk5 7 3 36 38 
mk6 7 3 25 27 
mk7 7 3 33 37 

Table 5.15: Description of the examples mk. 

Problem n m EieN fi EkGM Fk 
cb1 30 6 2497 2700 
cb2 45 8 3325 3600 
cb3 47 8 3425 3600 
cb4 47 9 3890 4050 
cb5 61 9 3704 4050 
cb6 30 5 2497 2560 
cb7 45 7 3325 3584 
cb8 47 7 3425 3584 
cb9 47 8 3890 4096 
cb10 61 8 3704 4096 

Table 5.16: Description of the examples cb. 

5.6.1 Description of the problem instances 

We tested the performance of our implementation of a Branch and Cut Algorithm 
on four different types of examples. Let us call them mk, cb, cl and pd. In Tables 
5.15, 5.16, 5.17 and 5.18 we present the characteristics of the examples. 

The examples mk have been created by ourselves, in order to test our algo­
rithm with small instances and investigate the polytope. We include them in this 
summary, in some sense, only for “historical” reasons. 

The examples cb come from an application in compiler design in distributed 
systems, investigated by Johnson, Mehrotra and Nemhauser in [JMN91]. Each 
item represents a module of the program, and the knapsacks are computers, where 
its capacity is the available memory space measured in KBytes. The capacities 
are equal for all computers in this series of examples. In Johnson, Mehrotra 
and Nemhauser’s model, a graph is given, where the modules constitute the set 
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Problem n m J2ieN fi EkeM Fk 
cl1 2292 16 9522 10000 
cl2 681 16 2571 2704 
cl3 2669 16 6762 7104 
cl4 1021 16 4031 4240 
cl5 68 16 260 288 
cl6 6112 16 25392 26672 

Table 5.17: Description of the examples cl. 

Problem n m Y,i£N fi EkGM Fk 
pd1 257 4 83827 132704 
pd2 772 6 284608 423972 

Table 5.18: Description of the examples pd. 

of nodes and there is an edge linking two nodes if the corresponding modules 
communicate. In our application, we ignore the edges, and consider the problem 
of distributing the modules into the computers. 

Examples cl come from an application in circuit layout, investigated by Ju¨nger, 
Martin, Reinelt and Weismantel [JMRW92] and Weismantel [We92]. In this case, 
the items are computer cells and they must be distributed in a chip. One heuristic 
idea proposed by the authors is to divide the total area of the chip in a number of 
different subregions with the same area. In this case, the subregions correspond 
to the knapsacks. All knapsacks have the same capacity. The affinity between the 
cells, modelled in [JMRW92] as a 0/1 quadratic program, is approximated by a 
linear objective function. 

The examples pd come from the application described in Chapter 2. As we 
point out in the description of the problem, it is a simplification of the real prob­
lem, where the edges are also simulated, in some way, in the objective function. 

We implemented also three possibilities for the objective function considered: 
we calculate (as described in Chapter 2) an objective function (we run examples 
pd and mk with this objective function), read a given objective function or gener­
ate an objective function randomly (examples cb). Moreover, we implemented a 
generator of random instances. In these problems, the weight of the items are ran­
domly chosen in [5,300], the objective function coefficients are random numbers 
in the interval [1, 1000] and the knapsack capacities are randomly computed such 
that EkeM Fk < α £ i e N fi where α is a random number chosen in the interval 
[1.05,1.3]. 
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Problem 1st LB Opt. Sol. # Ind. cuts # Joint cuts CPU Time 
mk1 1167 1316 98 10 1.18 
mk2 3813 4036 73 21 2.43 
mk3 351 366 117 9 0.63 
mk4 864 880 147 12 0.67 
mk5 844 989 205 10 0.72 
mk6 693 727 114 8 0.73 
mk7 892 967 78 8 0.68 

Table 5.19: Solution of the examples mk. 

5.6.2 Small and random instances 

In this section we report on our results solving the examples mk and the random 
instances. As we observe in the description of the problems, the examples mk 
are constructed very tight, i.e., the total weight of the items is close to the total 
available knapsack capacity. We were able to solve all examples to optimality, 
without branching. In Table 5.19 we show the value of the first lower bound, the 
value of an optimal solution, the number of individual and joint inequalities found 
during the execution of the algorithm, and the total CPU time (seconds) used to 
solve the problem (running in a Sun Sparc IPX). 

In Table 5.20 we show some results on randomly generated problems. Observe 
that we need to branch to solve the random problems to optimality, but the com­
putation times (indicate in min:sec running in a Sun Sparc IPX) are acceptable. 
We use the notation mk.n.m for these problems, where n is the number of items 
and m the number of knapsacks involved. In the next table we show the number 
of individual and joint inequalities used to solve the problems. Since we need to 
branch to prove optimality for all problems, we show also the number of branch 
and cut nodes visited. 

5.6.3 Practical problems 

In this section we present the tests we performed using real data, coming from 
the different applications. 

Examples cb 

As described in the last section, these examples come from an application in com­
piler design. We tested the program with the original objective function, but the 
examples turned out to be trivial. In the original problem, the objective function 
coefficients corresponding to variables x i k is zero, since it makes no difference to 
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Problem 1st LB Opt. Sol. # I n d . # Joint # B C CPU Time 
mk.50.4 12198 12558 1156 22 3 47.10 
mk.100.4 20640 20702 2312 145 27 12:06.88 
mk.150.4 41804 41954 515 532 1853 16:55.22 
mk.200.4 44936 45082 1536 1331 3543 47:45.20 
mk.300.4 88715 88870 1179 307 577 39:54.73 
mk.400.4 94766 94796 4830 3833 5383 92:38.37 
mk.500.4 107076 107092 284 228 201 22:37.90 

Table 5.20: Solution of random examples. 

Prob. 1st LB Opt. Sol. # Ind. cuts # Joint cuts # B C CPU Time 

cb1 26649 28035 2942 90 5 20.67 
cb2 27985 28880 1445 147 1 41.95 
cb3 29237 30541 2387 210 3 59.40 
cb4 30607 32217 50891 592 43 8:23.02 
cb5 39829 40493 6068 153 7 2:07.40 
cb6 33169 33824 681 10 1 4.55 
cb7 32027 33679 13069 182 21 2:15.85 
cb8 32806 34009 6416 145 5 1:06.82 
cb9 29825 31533 43378 1012 77 14:47.60 
cb10 36612 37143 4413 134 23 3:40.08 

Table 5.21: Solution of the examples cb. 

which computer a module is assigned. We used, thus, in our tests, a randomly 
generated objective function. Moreover, in the case studied by Johnson, Mehro-
tra and Nemhauser no restriction is made on the maximum number of computers 
(knapsacks). We assumed that only the minimum necessary was available. We 
need to branch in all except two problem to solve them to optimality. In Table 
5.21 we show the value of the first lower bound, the value of an optimal solution, 
the total number of individual and joint inequalities found during the execution 
of the algorithm, the number of nodes in the branch and cut tree and the total 
CPU time (min:sec) used to solve the problems (on a Sun Sparc IPX). 

It is interesting to compare the results above with the ones in Tables 5.10 
and 5.12 where we show the time needed to find an optimal solution for these 
examples. For most problems, we use about 80% from the CPU Time given in 
Table 5.21 in order to prove optimality. 
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Problem 1st LB Opt. Solution # Ind. cuts # Joint cuts CPU Time 

cl1 2292 2292 0 0 3:56.30 
cl2 932.99 939.99 145 60 23:52.40 
cl3 2669 2669 0 0 3:25.18 
cl4 1021 1021 0 0 4:16.65 
cl5 472 472 0 0 1.80 
cl6 6112 6112 0 0 27:03.75 

Table 5.22: Solution of the examples cl. 

Examples cl 

In the examples cl, as we observe in Table 5.17, the ratio between the total weight 
of the items and the total available knapsack capacity is close to one. One could 
expect that these examples are difficult to solve. However, the first lower bound 
provides already the value of the optimal solution in almost all examples. A 
possible explanation for this fact is that in these examples the weights of the items 
are very similar and that there are many items with small weights and identical 
objective function value for all knapsacks. In the cases when the value of the 
first LP is already equal to the value of an optimal solution our primal heuristic 
procedures provide an optimal solution in the first iteration of the algorithm. I t 
occurs for all examples except cl2. In Table 5.22 we show the value of the first 
lower bound, optimal solution value, number of individual and joint inequalities 
found during the solution of the problems and total CPU Time (min:sec) used to 
solve the examples (in a Sun Sparc IPX). 

A desired issue for the circuit designers is to determine the minimum area for 
which the problem still has feasible solutions. Of course the problem turns to be 
infeasible if, after some area reduction, the total weight of the items exceeds the 
total available knapsack capacity. We reduce, then, the knapsack capacities for 
the problems above, and the result was the same. We solve all reduced examples, 
except the reduced instances of cl2, in the first iteration. We could also solve all 
reduced instances of cl2 to optimality without branching. We show the results in 
Table 5.23. Observe that a reduction quote of 5% leads to infeasibility, since the 
total available knapsack capacity is then less than the total weight of the items. 

For most examples in Table 5.23, provably good solutions are found in ac­
ceptable CPU times. In Table 5.24 we show how much time is spent to obtain 
solutions with maximal deviation under 5% from the optimum (using the lower 
bound provided by the LP when this solution was found). We give additionally 
the time to find an optimal solution. 
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Problem 1st LB Opt. Sol. # Ind. cuts # Joint cuts CPU Time 

cl2 1% red. 939.99 946.99 318 143 21:12.10 
cl2 2% red. 946.99 946.99 126 135 22:12.25 
cl2 3% red. 953.99 960.99 162 146 22:56.90 
cl2 4% red. 957.49 967.99 196 185 16:06.03 

Table 5.23: Solution of the reduced instances of cl2. 

Problem max. 5% dev. opt. sol. 

cl2 0% red. 1:45.60 23:52.22 
cl2 1% red. 3:44.67 3:44.67 
cl2 2% red. 13:48.18 22:09.37 
cl2 3% red. 1:18.28 20:09.12 
cl2 4% red. 2:44.08 2:44.08 

Table 5.24: Time for solution under 5%. 

Examples pd 

The examples pd come from the application that motivated this thesis and is 
described in Chapter 2. There we describe also the objective function used in the 
tests. In Table 5.18 we observe that the total available capacity of the knapsacks is 
much greater than the total weight of the items. I t is clear, because after assigning 
the items there must be enough space for the wires on the plates. The original 
instances are, therefore, trivial. We show the results on solving this instances in 
Table 5.25. 

As for the cl examples, i t is interesting to the practical application to in­
vestigate instances with reduced knapsack capacities. We could find “difficult” 
instances of the example pd1 with a reduction rate around 36.7%, and for pd2 
around 30%. Observe that a reduction of 36.85% in example pd1 and 33% in 
example pd2 leads to infeasibility, since the total available knapsack capacity is 

Problem Opt. Sol. CPU Time 

pd1 236250 1.97 
pd2 81120 6.50 

Table 5.25: Solution of the instances of pd. 
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Problem 1st LB Opt. Sol. # I n d . # Joint #BC CPU 

pd1 36.75% red. 236250 236250 18 15 1 9.72 
pd1 36.8% red. 236250 236250 18 15 1 9.42 
pd2 27% red. 81130 81134 9 16 1 40.75 
pd2 28% red. 81164 81176 42 41 1 5:22.25 
pd2 29% red. 81200 81204 25 29 1 1:08.30 
pd2 30% red. 81293 81302 33 15 1 36.41.92 
pd2 31% red. 81482 81484 2547 3308 105 985:22.03 
pd2 32% red. 81728 81736 44 62 5 56:35.20 

Table 5.26: Solution of the reduced instances of pd examples. 

less than the total weight of the items. 

In Table 5.26 we show the examples and the area reduction, the value of the 
first lower bound, the value of an optimal solution, the number of individual and 
joint inequalities found during the solution of the examples, the number of BC 
nodes and the total CPU time (min:sec) used to solve the problems to optimality 
(on a Sun Sparc IPX). 

Problem max. 5% dev. opt. sol. 

pd1 36.75% red. 9.72 9.72 
pd1 36.8% red. 9.38 9.38 
pd2 27% red. 20.82 20.82 
pd2 28% red. 7.05 5:22.23 
pd2 29% red. 21.33 21.33 
pd2 30% red. 21.00 36.41.90 
pd2 31% red. 19.27 980:21.20 
pd2 32% red. 22.05 56:22.95 

Table 5.27: Time for solution under 5%. 

In Table 5.27 we present the time needed to provide a solution with maximal 
deviation from the optimum value under 5% (using the lower bound given by the 
current LP when this solution was found), and the time for finding an optimal 
solution. 
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5.7 Final remarks 

In this chapter we presented a Branch and Cut Algorithm for MKP. We were able 
to solve to optimality both random generated and instances coming from practical 
applications. 

For all practical problems we could increase the lower bound to the optimal 
solution value. Most of the time spent to solve these problems was needed to 
find a feasible solution with this value. This fact shows that our primal heuristics 
must be improved. 

On the other hand, these procedures provided quite good solutions (with max­
imum deviation from the optimum under 5%) for the real problems in acceptable 
computer times (see Tables 6.24 and 6.27). 

Our experiments with randomly generated problems show that, although we 
are not able to solve most of these problems to optimality without branching, the 
lower bound provided by our separation routines and the upper bound given by 
the primal heuristic procedures are, in most cases, quite close. 

Summarizing, the Branch and Cut Method showed promising results on solving 
instances of MKP with up to 4000 variables. 
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Chapter 6 

Mult icut Problems 

Multicut problems have been receiving considerable attention in the last years. 
The reason for this fact is that many interesting real world problems can be 
formulated as multicut problems on graphs or hypergraphs. Several heuristic ap­
proaches are suggested in the literature to attack these problems. Some methods 
like local search, simulated annealing, tabu search and others are much studied 
applied to multicut problems. We will not go into these approaches in this sum­
mary. Rather, we focus on polyhedral investigations. More precisely, we provide 
in the following an overview on some papers of the literature that solve real world 
problems using methods based on polyhedral theory. 

In Section 7.1 we present a general formulation of multicut problems. We 
focus on problems in graphs, since we do not know any paper on hypergraphs in 
the literature. In the other sections we present in detail some applications for some 
well known special cases. In Section 7.2 we present the Maxcut Problem. Section 
7.3 is devoted to the Equicut Problem. Other multicuts problems studied in the 
literature are treated in Section 7.4. In Section 7.5 we discuss the Node-Weighted 
Multicut Problem. 

6.1 Classifying mult icut problems 

We present, in this section, a general formulation for the various problems. The 
treatment is based on the paper by Deza, Gr̈ otschel and Laurent [DGL91]. 

A multicut problem in a graph can be formulated informally in the following 
way. We are given a graph (with edge weights) and want to partition its node 
set in such a way that certain constraints are satisfied and an objective function 
is minimized. For instance, we could be interested in partitioning the nodes of 
a graph into two parts such that the sum of the weights of the edges with an 
endnode in each part of the partition is minimal. Additionally, we could require 
each part of this partition to have approximately the same cardinality, or, if the 
nodes of the graph have weights, restrict the sum of the weights of the nodes in a 
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partition set by some capacities. In the remainder of this section we present the 
problems more precisely. 

Suppose we are given a graph G = (V, E). Moreover, let f e INV be the node 
weights, m be an integer number (M = { 1 , . . . , m } ) representing the maximum 
cardinality of the partition and F e INM a vector of partition capacities. We say 
that a partition (S1,..., Sj) of V is valid if j < m and J2veSk fv < Fk for all 
k = 1,...,j. Given a partition (S1, . . . , Sj) of V, we call the set δ(S1, . . . , Sj) a 
multicut of G, m, f and F. A multicut is valid if the corresponding partition is 
valid. If we want to emphasize that the partition has cardinality exactly equal to 
m we call the set δ(S1, ...,Sm)a m-multicut. 

Suppose now we are given cost functions c : E —> R and d : V x M —> R. 
With the definitions given above we can provide a general formulation for multicut 
problems in graphs. 

Problem: Multicut Problem on Graphs MC^. 
Instance: A Graph G = (V,E), an integer m (M = { 1 , . . . ,m}) , 
vectors f e INV and F G INM, and cost functions c : E —> R and 

Question: Find a valid multicut Z = δ(S1,..., Sj) of G, m, f and F 
that minimizes Ee eZ c(e) + E k = 1 EveSk d(v, k). 

If we want to emphasize that the cardinality of the partition must be equal to m, 
we denote the problem as MC=. 

Using the notation given above, we can denote the Maxcut Problem as MC= 
where m = 2, f = 0, F = 0 and d = 0. The Equicut Problem is, in this notation, 
MC= where m = 2, f = 1, F1 = \}-V

2\, F2 = [V
2] and d = 0. The so called Clique 

Partitioning Problem (that can also be seen as a multicut problem, see [GW89]) 
is MC^ where m = \V\, f = 0, F = 0 and d = 0 (in this case all partitions of V 
are valid). In the next sections we go into more detail with respect to the most 
studied multicut problems in the literature. 

6.2 The Maxcut Problem 
In the notation presented in the last section, the Maxcut Problem is MC= where 
m = 2, f = 0, F = 0 and d = 0. The problem is, in general, A/"P-hard (cf. 
[K72]) but it is solvable in polynomial time if the graph is planar (see [OD72]). 
It remains, however, A/"P-hard even for almost planar graphs, i.e., graphs G that 
contain a node v such that G - v is planar (cf. [Ba83]). 

In [BGJR88] Barahona, Gr¨otschel, Ju¨nger and Reinelt present two real world 
applications of the Maxcut problem. The first application arises in the field of 
statistical physics. The problem studied is the determination of so called ground 
states of spin glasses with exterior magnetic field. A spin glass is an alloy of 
magnetic impurities diluted in a non magnetic metal. At 0 K, the spin glass 
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system attains a minimum energy configuration. This configuration is called a 
ground state. The behavior of the energy of such system has been receiving much 
attention in the literature. There exists many models to describe this behavior. 
The authors present a reduction of the problem of finding the energy configuration 
of such a ground state to a Maxcut Problem in graphs. Using an algorithm based 
on cutting planes the authors solve problems on toroidal grid graphs of up to 
40 x 40 nodes. A new implementation of a Cutting Plane Algorithm for this 
problem is given by Saigal [Sai91], where problems up to 70 x 70 could be solved. 

The second application mentioned in [BGJR88] arises in VLSI design. The 
design of a chip is divided in several phases. After determining where the cells of 
a chip must be placed, and after routing all the nets of a chip, one must provide an 
assignment of the wire segments to the layers. This assignment must guarantee 
that two wire segments do not cross on a layer. The connections between different 
layers are provided by the so called vias. These vias use considerable space and are 
an obstacle to the reduction of the size of the chip. Due to this fact, it is desirable 
to assign the wires to the layers in such a way that the number of vias is minimized. 
For the case of two layers the problem can be reduced to the Maxcut Problem 
in a planar graph, and, therefore, it can be solved efficiently. For the case where 
some pin preassignments and layer preferences must be satisfied, the Maxcut 
Problem resulting from the reduction is A/"P-hard (as pointed out in [BGJR88]). 
Gr¨otschel, Ju¨nger and Reinelt present in [GJR89] an exact cutting plane algorithm 
for the problem of via minimization. They solve real world examples obtaining 
improvements from 7.14% to 37.29% in the total number of the vias compared 
to the original solution used in the production process. Let us discuss some 
polyhedral results of the literature on the Maxcut problem. 

First we define a polytope corresponding to the problem. Suppose we are 
given an instance of the Maxcut Problem, i.e., a graph G = (V,E) and a cost 
function c on the edges of G. We introduce a variable x G {0,1}E corresponding 
to the characteristic vectors of 2-multicuts in G. We define the Maxcut Polytope 
by 

MC=(G, 2, 0, 0) := conv{x eIRE\ x = χ δ ( S l , S ) for some 2-multicut 
δ(S1,S2)ofGorx = 0}. 

The facial structure of the polytope MC=(G, 2, 0, 0) has been extensively stud­
ied. The paper [DL91] of over 80 pages length surveys its state-of-the-art. The 
next theorems state some known results on facet defining inequalities of this poly-
tope (for more details on the proofs for these results see [BM86] and [BGM85]). 

Theorem 6.2.1 Let C C E be a cycle in G and F C C with \F\ odd. Then, the 
inequality 

$ x e - E xe<\F\-1 
e∈F e∈C\F 
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Figure 6.1: A bicycle 8-wheel. 

is called Odd Cycle Inequality and defines a facet ofMC=(G, 2, 0, 0) if and only 
if C has no chord. • 

The Odd Cycle Inequalities provide (with the integrality constraints) an inte­
ger programming formulation for the Maxcut Problem. Barahona and Mahjoub 
show that these inequalities suffice to provide a complete description of the poly-
tope MC=(G, 2, 0, 0) if and only if G is not contractible to the graph K5. More­
over, they show that the separation problem corresponding to this class of inequal­
ities can be solved in polynomial time. 

Another class of facet defining inequalities of the polytope MC=(G, 2, 0, 0) is 
the Bicycle p-Wheel Inequalities. A graph is called a bicycle p-wheel if it consists 
of a cycle of length p and two nodes adjacents to each other and to all nodes in 
the cycle (see Figure 6.1). 

Theorem 6.2.2 Let G' = (W,F) be a bicycle (2k+1)-wheel, k>1, contained in 
G. Then, the inequality 

$ x e < 2 ( 2 k + 1 ) 
eeF 

defines a facet of MC=(G, 2, 0,0). • 

This class of inequalities can be also separated in polynomial time (cf. [Ge85]). 
Other results on facet defining inequalities and the computational complexity 

of the corresponding separation problems can be found in the papers cited above. 

6.3 The Equicut Problem 

The Equicut Problem is MC= where m = 2, f = 1, F = (LV
2J, ^ 1 ) and d = 0. 

The problem is A/"P-hard for general graphs (cf. [GJS76]). An application of this 
problem arises in the calculation of the frontwidth in finite element computations 
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Figure 6.2: A mesh with 31 nodes and 50 edges. 

and is studied by Souza, Keunings, Wolsey and Zone [SKWZ92]. One popular 
method for the solution of finite elements equations is the frontal technique. Given 
a finite element mesh, the complexity of the frontal method is proportional to the 
square of the so called frontwidth. Thus, it is important to find an ordering 
of the elements minimizing the frontwidth. Souza, Keunings, Wolsey and Zone 
suggest in [SKWZ92] an algorithmic approach to finding good orderings based on 
divide-and-conquer strategy that defines a series of Equicut Problems. 

In Figure 6.2 we show an example of a graph derived from a mesh of finite 
elements. The dotted lines show an optimal solution of the Equicut Problem with 
c = 1 . 

Let us define a polytope associated with the Equicut Problem. Given an 
instance (G) of the Equicut Problem, we introduce the variable x e {0,1}E corre­
sponding to characteristic vectors of 2-multicuts of (G, f ,F). The Equicut Poly-
tope is then defined as 

MC=(G,2 ,1 , (L^J , r M 2 := conv{x G IR
E 

x = χ(S1'S2) for some valid 
2-multicut δ(S1,S2) of 
G , 2 , 1 a n d ( L ^ J , r ^ ] ) } . 

Conforti, Rao and Sassano investigate in [CRS90] and [CRS90a] the dimension 
of the polytope MC=(G,2,1, ( | M | , |"^"|)) and show that some facet defining 
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Figure 6.3: A (5,3,3)-path-block-cycle. 

inequalities for the Maxcut polytope also define facets of MC=(G,2,1, ( l V
2 J , 

rV
2D). Moreover, they prove that facet defining inequalities for the complete 

graph remain facet inducing for polytopes obtained by removing some edges not 
present in the support of the inequality. An important class of facet defining 
inequality of the MC=(G, 2,1, ([V

2J, fV
2])) is the class of Cycle Inequalities. 

Theorem 6.3.1 Let C be a cycle of the complete graph K2p+1 with \V(C)\ = p+2 
andp>3. Then, the inequality 

] > x e > 2 
eeC 

> 

defines a facet of MC=(K2p+1,2,1,(p,p+1)). • 

Souza and Laurent present in [SL91] some other classes of facet defining in­
equalities of MC=(G, 2,1, (LV

2J, rV
2D) such as the Path-Block-Cycle Inequalities 

and the Suspended Trees Inequalities. Now, we introduce the Path-Block-Cycle 
Inequalities. 

A (r,q)-path-block is a graph with two special nodes s and d (for source and 
destination) joined by r node disjoint paths of length q. A (t, r, q)-path-block-cycle 
is a graph composed by t pairwise node disjoints (r, q)-path-blocks, where for all 
i = 1 , . . . ,t - 1, the i-th destination is adjacent to the (i + 1)-th source and the 
destination of block t is adjacent to the source of the first block. In Figure 6.3 we 
show an example of a path-block-cycle. 
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Theorem 6.3.2 LetE1∪E2 be a (t,r,q)-path-block-cycle, where E1 is the set of 
edges internal to the blocks and E2 the edges linking nodes of different path-blocks. 
Then, the inequality 

eeE1 e£E2 

defines a facet of MC=(K2p+1,2, 1, ( |_V | , [V MC=(K2p+1,2,1,(lV
2\,\^)). 

Computational results on solving problems arising from the application de­
scribed in [SKWZ92] using a Branch and Cut Algorithm are described in [So93]. 

6.4 Other Mul t icut Problems 
Gro¨tschel and Wakabayashi investigate in [GW89] several applications of the mul-
ticut problem MC with m = |V|, f ≡ 0, F ≡ 0 and d ≡ 0. The problem is 
NP-hard for complete graphs (cf. [Wa86]). The applications arise in several 
areas such as zoology, economics and sociology. In all applications it is desired to 
divide a set of objects into clusters (or cliques, in the case presented in the paper, 
since the ground graph is complete) such that “similar” objects are in the same 
cluster. No restriction on the number of clusters or on the number of elements in 
each set of the partition is made. Some examples solved by Gr¨otschel and Wak­
abayashi are classification of cetacea and wild cats, classification of companies 
and microcomputers and votes of all member states of the UNO. 

In [GW90] several classes of facet defining inequalities of a polytope associated 
with the problem can be found. Let us define the variable x ∈ {0,1}E associated 
with multicuts of G. Then, we define the polytope 

MC^(G,m, 0, 0):={x∈IRE| x = χδ(S1,...,Sk) for some multicut 
δ(S1,...,Sk)ofG}. 

(a) For every three different nodes 
Inequality 

Theorem 6.4.1 (a) For every three different nodes i,j,k ∈ V the Triangle 

xij + xjk - x i k ≤ 1 

defines a facet of MC^(Kn,n,0,0). 

(b) For every two disjoint nonempty subsets S and T of V the 2-Partition In­
equality induced by S and T, 

J2 xe- J2 xe- E xe≤min{ |S | , |T |} 
ee[S:T] eeE(S) eeE(T) 

is valid for MC^(Kn,n, 0, 0). It is facet defining if and only if |S| = |S|=|T|. 
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(c) For every cycle C of length at least 5, and its set C of 2-chords, the 2-
Chorded Cycle Inequality 

eon eeC ee— 

is valid for MC^(Kn,n, 0,0). It is facet defining if and only if |C| is odd. 

In [GW89] and [GW90] other classes of inequalities and some separation strate­
gies are provided. Instances of complete graphs up to 158 nodes of real world 
applications are solved to optimality. 

Another investigation of the polytope MC^(G, |V|,0,0) is given by Chopra 
and Rao in [CR91]. Actually, the authors investigate three variants of the multicut 
polytope, namely, given an integer k ≤ |V|, MC^(G,k,0,0) (as defined above), 
MC=(G, k, 0, 0) and MC*(G, k, 0, 0), where 

MC=(G, k, 0, 0) := conv{x ∈IRE| x = χδ(S,...,Sk) for some k-multicut 

MC*(G, k, 0, 0) := conv{x ∈ R E x = χδ(S,...,Sj) for some multicut 
δ(S1,...,Sk)ofG}. 

or so 
δ(S1,...,Sj) of G,j≥k}. 

Some generalizations of the inequalities presented by Gr¨otschel and Wakabayashi 
in [GW90] for complete graphs are provided for general graphs. Moreover, new 
classes of valid and facet defining inequalities for the three polytopes are pre­
sented. 

An interesting investigation of small dimension multicut polytopes is presented 
by Deza, Gr¨otschel and Laurent in [DGL91]. Complete and non redundant de­
scriptions for the polytopes associated with complete graphs of 4 and 5 nodes 
are given. Several new classes of facet defining inequalities arise, some of them 
the authors generalize for higher dimension polytopes. An example are the so 
called Casserole Inequalities. Using a computer program, the authors show that 
the inequality 

2x12 + x23 + x24 + x25 + x34 + x35 + x45 ≥ 5 

is facet defining for MC=(K5, 3, 0, 0) and for MC^(K5, 3, 0, 0). Figure 6.4 shows 
this casserole inequality. 

A generalization of this inequality is given in the following theorem. 

Theorem 6.4.2 The Casserole Inequality 

n-21 ) -
_ <j _ 

defines a facet of the polytope MC*(Kn, n-2,0,0). 
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1 2 3 

4 5 

Figure 6.4: A Casserole Inequality. 

6.5 The Node Weighted Multicut Problem 

In some applications discussed in the literature some restrictions on the size of 
the partition or on the number of elements in each partition set must be satisfied. 
Moreover, some partition sets can be more attractive for some items, motivating 
costs on the node variables also. We describe now two applications of a multicut 
problem involving weights on the nodes and constrained partition capacities. 

Johnson, Mehrotra and Nemhauser present in [JMN91] an investigation for 
the following Multicut Problem. We are given a graph G = (V,E), nonnegative 
weights f ∈ INV, edge costs ce, e ∈ E and integers m (define M := { 1 , . . . ,m}) 
and K. The problem they consider is MC^ where Fk = K for all k ∈ M and 
d ≡ 0. This problem arises in an application concerning compiler design. A 
compiler consists of several modules, where each module is a set of procedures or 
subroutines with its corresponding memory requirement. The modules must be 
combined to form clusters of restricted storage capacity. Modules assigned to dif­
ferent clusters cause high communication costs, because it can involve swapping 
of memory. The objective of the compiler construction is to assign the modules 
to clusters so that the storage bound is satisfied and the total communication cost 
between modules in different clusters is minimized. They model this problem 
representing the modules as nodes of a graph and the communication between 
modules as edges of the graph. The solution of the corresponding Multicut Prob­
lem provides an optimal assignment from the modules to the clusters. Johnson, 
Mehrotra and Nemhauser use column generation to solve problems with up to 61 
nodes and 187 edges. For most problems they are able to find an optimal solution. 

Another application for this problem appears in [We92]. In his thesis, Weis-
mantel investigates the Placement Problem in VLSI. We are given a set of com­
ponents of a chip and a master divided into base cells, where these components 
must be placed. Moreover a list of nets is given. We want to find a placement 
of the components on the master without overlapping and guaranteeing minimal 
realization costs (e.g. minimum routing length, minimum number of vias, and so 
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on). The author suggests decomposition approaches to treat the problem. The 
base cells are grouped in a small number of clusters and the problem is then re­
duced to decide to which cluster of base cells a component must be assigned. This 
problem can be modelled as a Multicut Problem on Graphs, where f represents 
the area of the components, F the area of the clusters and the graph G = (V, E) 
represents the affinity between the components. Weismantel presents a polyhedral 
investigation for a polytope associated with this multicut problem. 

Given an instance (G, m, f, F) of the Multicut Problem on Graphs we in­
troduce the variables xik e {0 ,1} V x M with the interpretation xik = 1 if and 
only if component i is assigned to cluster k. Moreover, we introduce variables 
ye e {0,1}E with the interpretation yij = 1 if components i and j are assigned to 
different components. Let us define Bk(x) := {i e V | xik = 1}. The Multicut 
Polytope can then be defined as follows. 

MC^(G,m,f,F) := {(x,y) e R V x M x IRE | y = χδ(B1(x),...,Bm(x)) for some 
valid multicut δ(B1(x), . . . , Bm(x))}. 

We show in the next theorem a result on facet defining inequalities for the 
polytope MCHG,n,f,F). 
Theorem 6.5.1 Suppose we are given an instance (G,m,f,F) of the Multicut 
Problem on Graphs (G = (V,E),m,f,F), such that V defines a minimal cover 
with respect to Fk0 for some k0 e M. Moreover, suppose that E induces a tree 
spanning D U { d } C V, |D| > 2, and E ^ D U { d } fi < Fk for all k e M \ {k0}. 
Then, the Cover Tree Inequality 

E xik0 + E E xik-^2ye<|V|-1 
ieV ieD keM\{k0} eeE 

defines a facet of MC^ (G, m, f,F). • 

Ferreira, Martin, Souza, Weismantel and Wolsey investigate in [FMSWW93] 
the same problems discussed in [JMN91] and [We92] using a cutting plane based 
algorithm. This research is taking place in parallel with the preparation of this 
thesis, and many results we achieved for the Multicut Problem on Hypergraphs 
presented in the next chapters are inspired by the discussions with the others 
authors. In [FMSWW93] the authors present several classes of valid and facet 
defining inequalities of MC^(G,m, f, F). In the next theorem we show one of 
these results. We formulate the inequality using only the y variables as defined 
above. 

Theorem 6.5.2 Let be given an instance (G = (V,E),m,f,F) of the Multicut 
Problem on Graphs. LetSCV define a minimal cover with respect to all Fk,k£ 
M, and denote as λ the cardinality of a minimum cut in the subgraph G(V) = 
(V',E'). The Minimum Cut Inequality is defined as 

E ye > λ. 
eeE' 

> 
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The inequality is valid for MC^(G,m,f,F). We distinguish the following 
cases: 

• λ = 1. 
The Minimum Cut Inequality defines a facet of MC^(G',m, f,F) if and 
only if E' is a spanning tree. 

• λ = 2. 
The Minimum Cut Inequality defines a facet of MC^(G',m, f,F) if and 
only if for every cycles C1,C2C E1, such that C1nC2 = 0 then |C1nC2 | > 3. 

• λ > 3 . 
The Minimum Cut Inequality does not define a facet of MC^(G',m,f,F). 

In [FMSWW93a] the authors apply a cutting plane based algorithm for solving 
problem instances coming from both applications described in this section. 

In the next chapter we generalize some inequalities presented in [FMSWW93] 
for the case of the Multicut Problem on Hypergraphs. 
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Chapter 7 

A Polyhedral Investigation of the 
Mult icut Problem on 
Hypergraphs 

In Chapter 2 we presented the Multicut Problem on Hypergraphs (short MPH) 
and how it arises in the application we investigate in this thesis. The aim of this 
chapter is to study a polytope associated with this problem. The inequalities 
described in this chapter are used by the Branch and Cut Algorithm we imple­
mented for the problem. We discuss in Chapter 9 the implementation details of 
this algorithm. 

This chapter is organized as follows. In Section 8.1 we introduce the Multicut 
Polytope on Hypergraphs and determine its dimension. We discuss in Section 
8.2 some initial results about facet defining inequalities. In particular, we show 
which facet defining inequalities of the Multiple Knapsack Polytope are inherited. 
Sections 8.3 to 8.6 are devoted to valid and facet defining inequalities involving 
edge variables. In each section we discuss necessary and sufficient conditions such 
that the inequalities are valid or facet defining for the polytope. 

7.1 The Multicut Polytope on Hypergraphs 
We recall here the 0/1 programming formulation of the MPH from Chapter 2. 

Suppose we are given a hypergraph G = (N, Z), where Z = {T1, ..., Tz}. We 
set Z = { 1 , . . . , z} and use, for simplicity, the notation t ∈ Z for an edge (edges 
are we also called nets) instead of Tt ∈ Z. Moreover, we are given an integer m 
(M = { 1 , . . . , m } ) and vectors f ∈ N ^ N Z and F, S ∈ INM. We say that a 
partition (B1,..., Bj) of N is valid if j ≤ ∈ , J2veBk fv ≤ Fk for all k = 1 , . . . , j 
and Y,eeδ(Bk) ge ≤ Sk for all k = 1 , . . . ,j. Given a partition (B1,..., B j ) of V, we 
call the set δ(B1,... ,B j ) a multicut Each element B i is called a shore. If the 
partition (B1,..., Bj) is valid, then the multicut δ(B1,..., Bj) is called a valid 
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multicut. 
The problem we are interested in is the following. Given is a hypergraph G 

with node weights f and edge weights g. It is also given a natural m corresponding 
to the maximum cardinality of a partition, a vector F with node-capacities and 
a vector S with edge-capacities corresponding to each part. The problem is to 
find a valid multicut δ(B1, . . . , B j) , i.e., the sum of the weights of the nodes in Bk 
is less than or equal to the corresponding node capacity for all k and the sum of 
the weights of the edges in δ(Bk) is less than or equal to the edge-capacity of the 
shore for all k. Furthermore, we want to find a valid multicut that minimizes a 
given cost function. 

Formally, the problem is the following. 

{ 1 , . . . , 
Problem: Multicut Problem on Hypergraphs MPH. 
Instance: A hypergraph G = (N,Z), an integer m (M = 
m}), vectors f G N N , F G N M , g G N Z , S G INM and cost functions 
c:ZxM —>R and d : N x M —• R. 
Question: Find a valid multicut δ(B 1 , . . . , Bj) that minimizes Ek =1 
J2teδ(Bk)c(t,k) + k =1 i eB k d( i ,k ) . 

In the following we present a formulation of MPH using 0/1 variables. To this 
end, let us introduce the 0/1 variables x = (xik) and y = (ytk) with the following 
interpretation. Given a multicut δ(B1, ..., B j) , 

x ik = 

ytk = 

if i e Bk, 
otherwise. 

ifTtnBk=®andTt£Bk, 
otherwise. 

Using these variables, the 0/1 integer programming is given as follows. 

min 

s.t. 

E z2k ieN keM dikxik + 

(8.1.1) 

keM x ik = 1 
EieN fixik < Fk 
J2teZ gtytk < Sk 
xik + xjl -ytl<1 

EieTt xik + ytk < \Tt 
ytk-Y^Ttxik<0 
xik e {0, 1} 

E
teZ/2 
teZ keM ctkytk 

for all i e N, 
for all k e M, 
for all k e M, 
for allteZ,i,jeTt(i=j) and 
fo ra l lk , lGM(k = l ) , 
for allteZ,ke M, 
for allteZ,ke M, 
for allieN,ke M, 
for allteZ,ke M. 

(1) 
(2) 
(3) 

(4) 
(5) 
(6) 
(7) 
(8) ytk e {0, 1} 

For more details about this formulation, see Chapter 2. We apply, as pointed out 
in Chapter 2, a transformation on the objective function in order to eliminate the 
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equations (1) (we denote by d! the modified objective function). Then, we obtain 
an equivalent formulation where (1) is substituted by the inequalities 

£xik 
keM 

< 1 for all i e N. e (1') 

In the application we describe in Chapter 2 the objective function values for 
the edge variables ytk are all non negative. In this case, it is easy to see that we 
can drop out constraints (5) and (6), since all optimal solutions from (8.1.1) are 
also optimal solutions of the problem where these constraints are eliminated. In 
(8.1.2) we give a formulation of the problem we investigate. 

d!i kxik + ctkytk 

(1'), (2), (3), (4), (7) and (8). 
(8.1.2) 

min 

s.t. 

With problem (8.1.2) we associate the Multicut Polytope 
This is denoted by M C H and defined as follows. 

on Hypergraphs. 

MCH(N x M,Z x M,f , F, g, S) := conv{ (x,y)eIRN*MxIRZ*M\ 
(x, y) satisfies 
(1'), (2), (3), (4), (7) and (8) }. 

Analogously to our definition of the polytope associated with the MKP, we allow 
the definition of subpolytopes associated with subinstances of MPH. Given T C 
NxMandRCZxM define 

(x,y)eIRT xIRR\ 

define 

MCH(T, R, f, F, g, S) := conv{ 
k:(i,k)€T xik < 

J2t:(tk)eR g t y tk 
xik + yjl - ytk 

1 
<Fk 
<Sk 
< 1 

xike 
ytkt 

{0,1} 
{0,1} 

for all i e N, 
for all k e M, 
for all k e M, 
for all teZ,i,jeTt 

(i=j),k,leM(k=l) 
and (i,k),(j, l) e T, 
(t,k) eR, 
forall(i,k) G T, 
forall(t,k) e R}. 

Lemma 7.1.1 The polytope MCH(N xM,ZxM,f, F, g, S) is full dimensional 
if and only if fi < Fk for alli eN, keM and gt < Sk for allteZ,ke M. 

Proof. Let us prove that if the conditions of the lemma are satisfied then the 
polytope is full dimensional. Suppose that an equation ax + by = α exists such 
that MCH(N xM,ZxM, f,F,g, S) C {(x,y) e R N x M x IRZxM \ax + by = α}. 
We show that a = 0 and b = 0. 

First note that (0,0) and (eik,0) for all i e N, k e M are elements of 
MCH(N x M,Z x M,f,F,g,S) since fi < Fk for all i e N, k e M. Hence, 
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aik = 0 for all i G N, k G M. Moreover, (0,etk) for all t G Z, k G M are also 
in MCH(N x M,Z x M,f, F,g, S) since gt < Sk for all t G Z, k G M. Thus, 
btk = 0 for allteZ,ke M. 

Conversely, suppose that there exists some ie N,ke M such that fi > Fk. 
Then, MCH(N x M,Z x M,f,F,g,S) C {(x,y) G R N x M x IRZxM | xik = 
0}. Analogously, if gt > Sk for some t G Z, k G M, then MCH(N x M,Z x 
M, f, F, g, S) C {(x, y) G R N x M x R Z x M | ytk = 0}. This completes the proof. 

We suppose throughout this chapter that fi < Fk for all i G N, k G M and 
gt < Sk for all t G Z, k G M. 

7.2 Some initial results 
In this section we present some basic results for the polytope MCH(N xM,Zx 
M, f,F,g,S). In the next lemma we show that the nonnegativity constraints for 
variables x and y define facets of the polytope. 

Lemma 7.2.1 (a) The inequality 

xik>0 

defines a facet of MCH(N xM,ZxM,f, F, g, S) for allieN,ke M. 

(b) The inequality 
ytk>0 

defines a facet of MCH(N xM,ZxM, f, F, g, S) for allteZ,ke M. 

Proof. (a) Let i G N, k G M. Suppose now that there exists an inequality 
ax + by<α that defines a facet of MCH(N xM,ZxM,f, F, g, S) and EQ(xik > 
0) C EQ(ax + by < α). Observe that, for all j G N, l G M ((j, l) = (i, k)) the 
vectors (0,0) and (e j l,0) are elements of EQ(xik > 0). Then, ajl = 0 for all 
jeN,leM ((j, l) = (i, k)). Moreover, (0, etl) is also contained in EQ(xik > 0) 
for a l l t G Z, l G M. Thus, btl = 0 for a l l t G Z, l G M. The inequality 
ax + by<α is, then, a scalar multiple of xik > 0, and, therefore, it defines a facet 
of MCH(N xM,ZxM,f,F,g,S). 
(b) The proof is analogous to the case (a). • 

The constraints (1’) from (8.1.2) also are facet defining in some cases. This 
issue is discussed next. 

Theorem 7.2.2 Given i G N , the inequality 

J2xik<1 
keM 

defines a facet of MCH(N x M,Z x M, f,F,g, S) if and only if for allj G N\{i} 
and all l (EM at least one of the conditions is satisfied: 
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• EteT'gt ≤ Sl and there exists some l = l such that £ t e T , gt ≤ Sl, where 
T':={t∈Z| {i,j}⊆Tt}, or 

• fi + fj ≤Fl. 

Proof. Let us prove that under the conditions given in the theorem the inequality 
is facet defining. The inequality is clearly valid. Now suppose that there exist an 
inequality ax + by ≤ α such that EQ(J2keM xik ≤ 1) ⊆ EQ(ax + by≤α). 

Firstly, notice that for all l ∈ M, (eil,0) ∈ EQ(J2keMxik ≤ 1). Therefore, 
there exists a constant c such that ail = c for all l ∈ M. 

Let l ∈ M and observe that (eil,0) ∈ EQ(J2keMxik ≤ 1). Moreover, for all 
t∈Z,l'∈M, (eil, etl) is also an element of EQ(J2keM xik ≤ 1). Thus, c = c+btl, 
and therefore, btl = 0 for all t∈Z, l '∈M. 

We prove now that ajl = 0 for all j∈N\{i},l∈M. Given a pair (j, l), we 
know that at least one of the conditions given in the theorem is satisfied. Let us 
analyze the two cases. 

• EteT' gt ≤ Sl and there exists some l = l such that EteT' gt ≤ Sl. 
Observe that (eil, 0) and (eil,+ejl,teT'(etl+etl)) are elements of EQ(EkeM 
xik ≤ 1). Then, c = c+ajl+EteT'(btk+btl). Combining with the observations 
above, we have ajl = 0. 

In this case l observe that (eil, 0) and (eil + ejl, 0) are elements of EQ(Y,keM 

• fi + fj ≤ Fl. 

xik ≤ 1). Thus, c = c + ajl, and therefore, ajl = 0. 

Then, the inequality ax+by ≤ α is a scalar multiple of the inequality EkeM xik ≤ 
1, and, therefore, it defines a facet of MCH(N ×M,Z×M,f, F, g, S). 

We prove now the converse direction. Suppose that there exists a pair (j, l) 
such that E teT' gt > Sl or J2teT, gt > Sl for all l ∈ M \ {l} and fi + fj > Fl. 
Then, it is easy to see that the inequality k e M xik + xjl ≤ 1 is valid (since 
xjl = 1 implies E k e M xik = 0). But then, the original inequality is the sum of the 
inequality above and the constraint -xjl ≤ 0, and thus cannot define a facet of 
MCH(N×M,Z×M,f,F,g,S). • 

Observe that the conditions given in Theorem 8.2.2 are easy to check and 
satisfied for practically relevant problem instances. 

If we look at the problem formulation (8.1.2) more carefully, we observe that 
the problem is a combination of a Multiple Knapsack Problem on variables xik 

(constraints (1’) and (2)), m independent Single Knapsack Problems (constraints 
(3)) and some linking constraints (constraints (4)). The first question one can 
ask is which results of the subproblems can be inherited, i.e., if we consider poly-
topes associated with these subproblems, which results on valid or facet defining 
inequalities carry over? Since the polytope we investigate is contained in such 
polytopes, we know that every valid inequality for some polytope associated with 
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a subproblem is valid for MCH as well. In this section we show which facet 
defining inequalities maintain this property. Before doing that, let us introduce 
some notation. We call constraints (1’) in (8.1.2) SOS (Special Ordered Sets) 
constraints, constraints (2) node-knapsack constraints and (3) net-knapsack con­
straints. Inequalities inherited from a Single Knapsack Polytope are called in­
dividual An inequality is called joint if it comes from the MKP, and combines 
coefficients from at least two different knapsacks. If an inequality combines also 
coefficients of net variables, it is called linking inequality. 

In the next theorem we characterize when the individual inequalities corre­
sponding to Single Knapsack Polytopes associated with the node-knapsack con­
straints define facets of the Multicut Polytope on Hypergraphs. 

Theorem 7.2.3 Let az < α be an individual facet defining inequality of the 
polytope SKP(N,f,Fk). Define a'ik = ai for all i e N and a'i l = 0 for all 
ieN,leM\{k}. Then, the inequality a'x < α defines a facet of MCH(N x 
M,Z x M,f,F,g,S) if and only if for all i e N, l e M \ {k} there exists a 
solution z' e EQ(SKP(N, f, Fk),az < α), such that z[ = 0, J2teT(i,zf) gt < Sk and 
Y,teT(i,z>) gt < Sl, where T(i, z1) := {t e Z \ {i,j} C Tt for some j e N with z\ = 

Proof. The inequality a'x < α is clearly valid. Let us prove that it is facet 
defining. Suppose that there exists an inequality bx+cy < β that defines a facet of 
MCH(NxM, ZxM,f,F,g,S) such that EQ(MCH, a'x < α) C EQ(MCH, bx+ 
cy < β). 

Let z* e EQ(SKP, az < α) and construct x* = (x*ü) in the following way. 

I = i if l = k, 
: 0 otherwise. 

Observe that (x*,0) and (x*,etl) are elements of EQ(MCH, a'x < α) for all < 
teZ,leM. Then, we conclude that ctl = 0 for allteZ,le M. 

Now, let i e N and l e M \ {k}. Let also z' e EQ(SKP(N, f, Fk),az < α), 
such that zi = 0, Y.teT (iz>)gt < Sk and ZteT(iz>)gt < Sl as required in the 
condition of the theorem. Define x' = (x'jr) as follows. 

iz'j  

0 
x> : z j if r = k, 

^r 0 otherwise. 

az < α is facet defining for SKP(N, f, F), and hence the inequality bx + cy < β 

Observe that (x', 0) and (x' + eil, EteT(i,z')(etk + etl)) are elements of EQ(MCH, 
a'x < α). In combination with the observations above, we can conclude that 
bil = 0. The same argument holds for allieN,le M\{k}. Finally, observe that 

e the in 
is a scalar multiple of a'x<α, which completes the first part of the proof. 

Conversely, suppose that the condition of the theorem is not satisfied, i.e., 
for some i e N, l G M \ {k}, J2teT(i,z/)gt > Sk or Y.teT (iz>)gt > Sl for all 

< < 
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z ∈ EQ(SKP(N,f,F),az ≤ α) with zi = 0. In this case, observe that the 
inequality a'x + xil ≤ α is valid, since xil = 1 implies that ax' < α. Thus, a'x ≤ α 
is obtained by summing the inequality above and -xil ≤ 0 and, therefore, cannot 
define a facet of MCH(N × M, Z × M, f,F,g, S). • 

It is not clear how to verify if the condition in the previous theorem is satisfied. 
However, for the special case in which for all i ∈ N, £ t : i e T t gt ≤ Sk for all k ∈ M, 
the condition is trivially satisfied. This case occurs for most practical problems 
we considered. 

The next theorem states that facet defining inequalities corresponding to Sin­
gle Knapsack Polytopes associated with net-knapsack constraints define facets of 
MCH(N ×M,Z×M,f, F, g, S). 

Theorem 7.2.4 Let az ≤ α be an individual facet defining inequality of the poly-
tope SKP(Z,g,Sk). Then, the inequality a'y ≤ α defines a facet of MCH(N × 
M,Z × M,f,F,g,S), where a'tk = at for all t ∈ Z and a'tl = 0 for all t ∈ Z, 
l∈M\{k}. 

Proof. The inequality a'y ≤ α is clearly valid. Let us prove that it is facet 
defining. Suppose that there exists an inequality bx+cy ≤ β that defines a facet of 
MCH(N×M, Z×M,f, F, g, S) such that EQ(MCH, a'y ≤ α) ⊆ EQ(MCH, bx+ 
cy≤β). Let z* ∈ EQ(SKP, az≤α), and construct y* = (y*tl) as follows. 

if l = k, 
y tl := 0 otherwise. 

Observe that the vectors (0,y*) and (eik,y*) are elements of EQ(MCH,a'y ≤ α) 
for alli∈N,k∈ M. Then, bik = 0 for all i ∈ N, k ∈ M. 

Moreover, (0,y* + etl) is also in EQ(MCH, a'y ≤ α) for all t ∈ Z, l ∈ M\{k}. 
Thus, ctl = 0 for allt∈Z,l∈ M. Considering all observations above, and since 
az ≤ α is facet defining of SKP(Z, g, S), we can conclude that bx + cy ≤ β is a 
scalar multiple of a'y ≤ α. This completes the proof. • 

Due to Theorems 8.2.3 and 8.2.4, there are exponentially many facet defin­
ing inequalities for the polytope MCH(N × M,Z × M, f ,F,g,S). In Section 
3.4 we presented some of these inequalities. Moreover, in Sections 6.2.1 and 
6.2.2 heuristic procedures to separate violated inequalities of the Single Knapsack 
Polytope are discussed. The next question is, “Do joint facets of the polytope 
MKP(N, M, f, F) define facets for MCH(N ×M,Z×M,f, F, g, S) in general?” 
Unfortunately, the answer is no, as we show in Example 8.2.5. 

Example 7.2.5 Consider the following instance of the MPH. N = {1,...,5}, 
Z = {{1,2,3,4,5}}, m = 2, f = (4,4,3,3,6), F = (10,10), g = (1) and S = 
(1,1). The Extended Cover Inequality corresponding to S = {1, 2, 3}, T = {4, 5}, 
k = 1 a n d l = 2 (see Section 5.4), 

x1,1 + x2,1 + x3,1 + x1,2 + x2,2 + x3,2 + x4,2 + x5,2 ≤ 4 
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defines a facet of the polytope MKP(N, M, f,F). It does not define a facet of 
MCH(N × M,Z × M, f,F,g,S) since all points (x,y) satisfying the inequality 
at equality also satisfy y1,1 = 1 and y1,2 = 1. However, the two inequalities 

x1,1 + x2,1 + x3,1 + x1,2 + x2,2 + x3,2 + x4,2 + x5,2 - y1,1 ≤ 3 , 

x1,1 + x2,1 + x3,1 + x1,2 + x2,2 + x3,2 + x4,2 + x5,2 - y1,2 ≤ 3 

define facets of MCH(N × M,Z × M, f,F,g,S). • 

A natural question that arises in Example 8.2.5 is how to “lift” the joint 
inequalities to facet defining inequalities of the polytope MCH(N × M,Z × 
M, f, F, g, S). This is an interesting open question for which we could not obtain 
a satisfactory answer. 

We concentrate, in the next sections, on valid and facet defining linking in­
equalities for MCH(N ×M,Z×M, f ,F,g,S). 

7.3 Net Inequalities 

The first linking inequalities we investigate come from the constraints (4) in 
(8.1.2). We call these inequalities by Net Inequalities. Given a net t ∈ Z, k ∈ M 
and a pair i,j∈Tt,i=j,we call the inequality 

xik + J2 xjl -ytk≤1 
l∈M\{k} 

the Net Inequality corresponding to t, k, i and j . We characterize in the next 
theorem when this inequality defines a facet of MCH(N × M, {t} × M, f, F, g, S). 

Theorem 7.3.1 Given an instance (G = (N,Z),M, f,F,g,S) of the MPH. Let 
t∈Z,k∈M anda pair i,j ∈Tt,i=j. The corresponding Net Inequality 

xik+ J2 xjl-ytk≤1 (8.3.1) 
l∈M\{k} 

defines a facet of MCH(N × M, {t} × M,f,F,g, S) if and only if the following 
conditions are satisfied 

(i) m ≥ 3 or fi + fj ≤ Fl for all i'∈Tt\ {i,j}, l∈M\ {k}, 

(ii) fi + fi≤Fk for all i' ∈Tt\ {i}, 

(iii) m≥3orfi + fj≤ Fl for all l ∈ M \ {k}. 
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Proof. The inequality (8.3.1) is clearly valid. Suppose that there exists a facet 
defining inequality ax + by ≤ α such that EQ((8.3.1)) ⊆ EQ(ax + by≤ α). We 
now prove that ax + by ≤ α is a scalar multiple of (8.3.1) and, therefore, it defines 
a facet of the polytope MCH(N × M, {t} × M, f, F, g, S). 

i j 

M 

(a)(g) 

(h) (a) 

N 

Tt 

(g) 

(f) 

N\Tt 

(e) 

(d) 

t 

(c) 

(b) 

• (a) aik = ajlforalll∈M\{k}. 
Firstly, observe that (eik,0) and (e j l,0) are elements of EQ((8.3.1)) for all 

l∈M\ {k}. Thus, aik = ajl for alll ∈ M \ {k}. 
• (b) btl = 0 for a l l l ∈ M \ { k } . 

Now, observe that (eik,etl) is in EQ((8.3.1)) for all l ∈ M\{k}. Then, btl = 0 
f o r a l l l ∈ M \ { k } . 
• (c) btk = -aik. 

Moreover, given an l ∈ M \ {k}, (eik + ejl,etk + etl) is also an element of 
EQ((8.3.1)). Combining the observations above we conclude that aik = 2aik + btk, 
and then, btk = -aik. 
• (d) ail = 0 for all i ∈ N\Tt,l∈M\ {k}. 

Now, let i' ∈ N\Tt, l ∈ M\{k}. Since i'∈Tt, (eik + eil,0) is in EQ((8.3.1)). 
Then, ail = 0 for all i' ∈ N \Tt, l ∈ M \ {k}. 
• (e) aik = 0 for all i '∈ N \ Tt. 

Let l ∈ M \ {k} and consider that (eik + ejl, 0) is also in EQ((8.3.1)). Thus, 
ai/k = 0 for all i ' ∈ N \ Tt. 
• (f) a i l = 0 for all i ' ∈ T t \ {i, j} and l ∈ M \ {k}. 

We analyze now the case where i' ∈Tt\ {i,j} and l ∈ M \ {k}. In this case, 
we use condition (i) of the theorem. Let us distinguish the two cases: 

• m ≥ 3 . 
In this case, let l ∈ M\ {k, l} and observe that (eik + ejl + eil, etk + etl + etl/) 
is an element of EQ((8.3.1)). Combining with the observations above, we 
conclude that ail = 0. 

• fi + fj ≤ Fl. 
In this case, consider that (ejl + eil, 0) is in EQ((8.3.1)), yielding ail = 0. 

k 
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Since at least one of the cases occurs for all i< ∈ Tt \ {i,j}, l ∈ M\ {k}, we 
conclude that ail = 0 for all i' ∈ Tt \ {i,j}, l∈M\ {k}. 
• (g) aik = 0 for all i ' ∈ T t \ {i}. 

Now, we consider i! ∈ Tt\{i} and prove that aiJk = 0. It is due to condition (ii) 
It guarantees that (eik + eik, 0) is an element of EQ((8.3.1)), and then, aik = 0. 
It holds for all i'∈Tt\ {i}. 
• (h) a i l = 0 f o r a l l l ∈ M \ { k } . 

Finally, let l ∈ M \ {k}. We use condition (iii) of the theorem to prove that 
ail = 0. Let us analyze the two cases: 

• m ≥ 3 . 
In this case, let l ∈ M \ {k,l} and observe that (eil + ejl,etl + etl) is 
in EQ((8.3.1)). Combining with the observations above we conclude that 
ail = 0. It holds for alll ∈M\{k}. 

• fi + fj ≤ Fl. 
In this case, observe that (eil + ejl, 0) is an element of EQ((8.3.1)). Thus, 
ail = 0 for alll ∈ M \ {k}. 

Considering all the cases described above we conclude that the inequality 
ax + by ≤ α is a scalar multiple of (8.3.1), and therefore, it defines a facet of 
MCH(N × M, {t} × M, f, F, g, S). 

Now, we prove that the conditions given in the theorem are also necessary. We 
analyze the three cases in the following. 

• m = 2 and there exists an i ' ∈ T t \ {i,j} with fi, + fj > Fl (l = k). 
In this case, we prove that EQ((8.3.1)) ⊆ {(x,y) ∈ R N × M × IR{t}×M | 
xil = 0}. Suppose it is not the case and let (x',y') ∈ EQ((8.3.1)) with 
x'il = 1. Since condition (i) is not satisfied, we conclude that x'j l = 0. 
But, then, if x'ik = 1, then y'tk = 1, contradicting the assumption that 
(x',y') ∈ EQ((8.3.1)). 

there exists some i ' ∈ T t \ {i} with fi + fi> Fk. 
In this case, we prove that EQ((8.3.1)) ⊆ {(x,y) ∈ R N × M × R{ t } × M | 
xik = 0}. Suppose it is not the case and let (x',y') ∈ EQ((8.3.1)) with 
x\,k = 1. Since (ii) is not satisfied, x'ik = 0. But, then, if i' = j , x'j l = 1 
for some l ∈ M \ {k} implies ytk = 1, contradicting the assumption that 
(x',y') ∈ EQ((8.3.1)). In the other case (i' = j), (x',y') cannot be in 
EQ((8.3.1)). 

• m = 2andf i + fj > Fl (l=k). 
In this case, we prove that EQ((8.3.1)) ⊆ {(x,y) ∈ R N × M × R{ t } × M | x i l = 
0}. Suppose it is not the case and let (x',y') ∈ EQ((8.3.1)) with x'i l = 1. 
Since the condition is not satisfied, x j l = 0, contradicting the assumption 
that x' ∈ EQ((8.3.1)) 

• 
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This completes the proof. • 
Observe that, for practically relevant problem instances, the conditions in the 

theorem will be always satisfied. Moreover, it is easy to verify whether it is the 
case or not. 

7.4 Tree Inequalities 
In this section we present another class of valid linking inequalities for the Multicut 
Polytope on Hypergraphs: the Tree Inequalities. We present the general idea of 
the inequality and, thereafter, characterize when these inequalities are valid and 
facet inducing of some polytopes. 

Suppose we are given an instance (G = (N, Z),M, f, F, g, S) of the MPH. Let 
M'CM, l e M ' and G' = (N', Z') be a subgraph of hypergraph G, such that N' 
is a minimal cover with respect to all knapsacks in M'. We call the inequality 

E E xik - E E ytk< |N'| -1 
i∈N' k∈M' t∈Z' k∈M'\{l} 

the Tree Inequality corresponding to G', M' and l. In the next theorem we char­
acterize when this inequality is valid for MCH(N x M,Z x M,f,F,g, S). 

Theorem 7.4.1 Let an instance (G = (N, Z),M, f, F, g, S) of the MPH be given. 
Let Z' C Z, M' C M, l e M' and N' C N such that N' is a minimal cover with 
respect to all knapsacks in M'. Then, the inequality 

J2 J2 x ik-J2 E ytk< |N'| - 1 (8.4.1) 
i∈N' k∈M' t∈Z' k∈M'\{l} 

is valid for the polytope MCH(N' x M',Z' x M',f,F,g,S) if and only if the 
hypergraph G' = (N',Z') is connected. 

Proof. Let us prove that if G' is connected, then (8.4.1) is valid. Suppose it 
is not the case and let (x',y') violate (8.4.1). Due to the SOS constraints, we 
can conclude that every item of N' is assigned to some knapsack in M'. Let 
M := {k e M' | x'ik = 1 for some i e N } . Since N' is a cover with respect to 
all knapsack of M', |M | > 2. But, since G' is connected, there exists some net 
t e Z< such that t contains two items i, j(i = j) assigned to two different knapsacks 
k1,k2e M'. Due to the net constraints, y'tk1 = 1 and y't k2 = 1, contradicting the 
assumption that (x',y') violates (8.4.1). 

Conversely, suppose that G' is not connected. Then, let G[,..., G'v (v > 2) 
be the components of G'. Set N1 := {i e N' | i is in component G[} and 
N2 := N'XN1. Since G' is not connected, (£i∈N1 eik+J2i∈N2 eil,0) is in MCH(N'x 
M', Z' x M', f, F, g, S) and violates (8.4.1). • 

Now, we characterize when the Tree Inequality is facet defining. To this end 
we need a definition. A subgraph G' = (N',Z') of the hypergraph G is called a 
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Figure 7.1: A tree. 

tree if it is connected and G' - t is disconnected for all t G Z'. In Figure 7.1 we 
show an example of a tree in a hypergraph. In the next theorem we prove that 
the Tree Inequalities are facet defining if and only if the underlying hypergraph 
is a tree, which justifies our choice for the name of the inequality. 

Theorem 7.4.2 Let be given an instance (G = (N, Z),M, f, F, g, S) of the MPH. 
Let Z< a , M< CM,l(E M< and N' C N such that N' is a minimal cover with 
respect to all knapsacks in M<. Then, the inequality 

J2 J2 xik-J2 E ytk< \N'\ -
t∈Z' k∈M'\{l} 

1 (8.4.2) 
i∈N' k∈M' 

defines a facet of the polytope MCH(N' x M',Z' x M', f,F,g,S) if and only if 
the hypergraph G' = (N',Z') is a tree. 

Proof. Suppose that there exists a facet defining inequality ax+by < α such that 
EQ((8.4.2)) C EQ(ax + by < α). We show that ax + by < α is a scalar multiple of 
(8.4.2), and, therefore, (8.4.2) defines a facet of MCH(N'xM', Z'xM', f, F,g, S). 

N’ Z’ 

M’ 

• (a) aik = c for all i£N>,k£ M>. e e 

l 



7.4. TREE INEQUALITIES 163 

Figure 7.2: Example of a Tree Inequality. 

Let k ∈ M' and note that for all i ∈ N', (Zj∈N>\{i}ejk,0) is an element of 
EQ((8.3.1)). Then, there exists some constant ck such that aik = ck for all i ∈ N'. 
Applying the same argument for some k' ∈ M \ {k} we obtain (|N'| - 1)ck = 
(|N'| - 1 ) ^ , and therefore, ck = ck. Thus, there exists some constant c such that 
aik = c for all i ∈ N', k ∈ M'. 
• (b) btl = 0 for all t ∈ Z'. 

Let i ∈ N' and observe that (£ j ∈ N \ { i } ejl, 0) and (?:j∈N>\{i}ejl,etl) are ele­
ments of EQ((8.4.2)) for all t ∈ Z'. Thus, ( |N | - 1)c = (|N'| - 1)c + btl, and 
therefore, btl = 0 for all t ∈ Z'. 
• (c) btk = - c for all t∈Z',k∈M'\ {l}. 

' ' ' Now, let t Z'. Since G' is a tree, G'-t has at least two connected components 
G[, ...,G'b(b ∈ 2). Let N1 := {i ∈ N' | i is in the component G[} and N2 := 
N \ N1. Since N 1 and N2 are nonempty, and N' is a minimal cover with respect 
to all knapsack in M', we can conclude that for all k ∈ M' \ {l}, (Y,i∈N1 eik + 
J2i∈N2eil,etk + etl) is an element of EQ((8.4.2)). Then, (|N'| - 1)c=|N'|c + btk, 
and thus, btk = -c for all k M' \ {l}. The same argument applies to all t ∈ Z'. 

The inequality ax + by ∈ is then a scalar multiple of (8.4.2), and, therefore, 
it defines a facet of MCH(N> × M', Z< × M', f, F, g, S). 

Conversely, we prove that if G' = (N',Z') is not a tree, then the inequality 
(8.4.2) is not facet defining. 

Suppose that G' is not a tree. If G' is not connected, then, due to Theorem 
8.4.1 the inequality is not valid. Then, there must exist an edge t ∈ Z' such that 
G'-t is connected. But then, according to Theorem 8.4.1, the Tree Inequality 
corresponding to G' - t, M< and l is valid. Inequality (8.4.2) is the sum of the 
inequality above and J2k∈M'\{l} ytk ≥ 0, and therefore, cannot be facet defining. 

Example 7.4.3 Consider the following instance of the MPH, where N = {1,2, 
3, 4, 5}, M = {1, 2}, f = (2, 2, 3, 3, 5), F = (13,14), Z = {{1,2}, {2, 3, 4}, {4, 5}}, 
g = (1,1,1) and S = (3, 3) as shown in Figure 7.2. 

Then, the Tree Inequalities 

E X x i k - y1,1 - y 2 , 1 - y3,1 ≤ 4, 

- y1,2 - y2,2 - y3,2 ≤ 

i=1 k=1 

£ X x i k - y1,2 - y2,2 - y3,2 ≤ 4, 
i=1 k =1 
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define facets of the polytope MCH(N xM,ZxM, f, F, g, S). xM,Zx 

7.5 Cycle Inequalities 
In this section we present another class of valid inequalities of the MPH: the 
Cycle Inequalities. In the case of graphs, cycles are 2-edge connected subgraphs, 
which is no longer true for hypergraphs. In this section we show a facet defining 
inequality that involves, in some extent, 2-connectivity. 

Suppose we are given an instance (G = (N, Z),M, f, F, g, S) of the MPH. Let 
M'CM,leM' and G' = (N', Z') be a subgraph of hypergraph G such that N' 
is a minimal cover with respect to all knapsacks in M'. Moreover, let Z1 and Z2 
such that Z' = Z1U Z2 and Z1 n Z2 = 0. We call the inequality 

2 E E x i k - E E ytk-2E E ytk<2(1N1 -1) 
i∈N' k∈M t∈Z1 k∈M'\{l} t∈Z2 k∈M'\{l} 

the Cycle Inequality corresponding to G', M', l, Z1 and Z2. In the next theorem 
we investigate when this inequality is valid. 

Theorem 7.5.1 Let an instance (G = (N, Z),M, f, F, g, S) of the MPH be given. 
Let Z' = Z1UZ2CZ (Z1 r\Z2 = 0), M' C M, l G M' and N' C N such that N' 
is a minimal cover with respect to all knapsacks in M'. The corresponding Cycle 
Inequality, 

2 E E xik - E E ytk - 2 J2 E ytk< 2(\N'\ - 1) (8.5.1) 
i∈N' k∈M t∈Z1 k∈M'\{l} t∈Z2 k∈M'\{l} 

is valid for the polytope MCH(N' x M', Z' x M', f, F, g, S) if and only if G' = 
(N', Z') is connected and G'-tis connected for all t e Z1. 

Proof. First we prove that if the condition is satisfied, then inequality (8.5.1) is 
valid. Suppose that there exists a (x',y') G MCH(N' x M',Z' x M',f,F,g,S) 
violating (8.5.1). Then, due to the SOS constraints, every element of N' is assigned 
to some knapsack in M'. Since N' is a cover for all knapsacks in M', and G' is 
connected, there exists an edge t G Z', such that {i,j} C Tt and x'ik1 = 1 and 
x'jk2 = 1 for k1,k2 G M', k1 = k2. Due to the net constraints, y'tk1 = 1 and 
y'tk2 = 1. We distinguish the two possibilities for the edge t. 

• teZ2. 
In this case, (x',y') does not violate (8.5.1), contradicting our assumption. 

• teZ1. 
In this case, G'-tis connected. Then, there must exist an edge t' G Z'\{t} 
such that {i',j} C TtJ and x[,k[ = 1 and x'jk2 = 1 for k[,k'2 G M', k[ = 
k'2. Due to the net constraints, 1 y'tk1 = 1 and y'tk2 = 1 contradicting our 
assumption that (x',y') violates (8.5.1). 
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Conversely, suppose that the condition is not satisfied. If G' is not connected, 
let N1 be the nodes of some component of G' and N2:=N'\N1. But, since N' 
is a minimal cover with respect to all knapsacks in M', and N1 and N2 are both 
nonempty, ( i ∈ N 1 eik + E i∈N2 eil,0) is in MCH(N> x M', Z< x M', f, F, g, S) for 
all k G M \ {l} and violates (8.5.1). 

Now, suppose that there exists some edge t G Z1 such that G' - t is not 
connected. Let N1 be the nodes of some component of G' and N2 := N ' \ N1. 
Then, since N' is a minimal cover with respect to all knapsacks in M', and N1 
and N2 are nonempty, (£ i ∈ N 1 eik + £ i∈N2 eil, etk + etl) is an element of MCH(N' x 
M',Z' x M',f,F,g,S) for all k G M \ {l} and violates (8.5.1). This completes 
the proof. • 

The next theorem characterizes when this inequality is facet defining. Before 
that, suppose we are given a hypergraph G' = (N',Z'), M' C M, l G M' and 
sets Z1,Z2 with Z' = Z1U Z2 and Z1nZ2 = <b, such that the corresponding Cycle 

erve that if there 
d G ' - { t , t"}are 

not connected. To prove this statement, consider the components G[ = (N[,Z[) 

Inequality is valid. Observe that if there exist different three edges t,t',t" G Z1 

such that G' - {t,t'} and G' - {t,t"} are not connected, then G' - {t',t"} is also 

and G'2 = ( ^ , Z'2) of G' - {t, t'} (w.l.o.g we can suppose that the hypergraph has 
only 2 components) and suppose that the edge t" G Z1. Then, let G'{ = (N'(, Z'() 
and G'2' = (N'2 ,ZZ) be the components of G' - {t,t"} (again, we can suppose 
w.l.o.g. that there is only two components). Now, we can conclude that N'{ C N1] 
and, therefore N'2' = N'2U N[\ N'{. Then, t' is the only edge between N2 and 
N1] \ N'l and t" is the only edge between N'{ and N1] \ N'(. So, G' - {t, t"} is not 
connected. 

Theorem 7.5.2 Let an instance (G = (N, Z),M, f, F, g, S) of the MPH be given. 
Let Z1 = Z1UZ2<ZZ (Z1 r\Z2 = 0), M' C M, l G M' and N' C N such that N' 
is a minimal cover with respect to all knapsacks in M'. The corresponding Cycle 
Inequality, 

2 E E x i k- E E y t k - 2 E E ytk< 2(N\ -1) (8.5.2) 
i∈N k∈ M ' t∈Z1 k∈M'\{l} t∈Z2 k∈M'\{l} 

defines a facet of the polytope MCH(N' x M',Z' x M', f,F,g,S) if and only if 
it is valid and the following two conditions are satisfied: 

(i) for each t G Z1 there exist two edges t',t" G Z1 \ {t}, (t = t") such that the \{t}, 
hypergraphs G'-{t,t'} and G'-{t,t"} are not connected (and consequently, 
G' - {t',t"} is also not connected). 

(ii) for each teZ2,G'-t is not connected. G Z2, G -

Proof. We prove that if the conditions in the theorem are satisfied, then the 
inequality defines a facet of MCH(N' x M',Z' x M', f,F,g,S). Suppose that 
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≤ α such that EQ((8.5.2)) ⊆ 
is a scalar multiple of (8.5.2), 

there exists a facet defining inequality ax + by 
EQ(ax + by ≤ α). We prove that this inequality 
and therefore, it is facet defining. 
• (a) aik = c for all i∈N',k∈ M'. 

Let i∈N',k∈M' and notice that (E j∈N\{i} ejk, 0) is an element of EQ((8.5.2)), 
since N' is a minimal cover with respect to k. Moreover, for all i< N' \ {i}, 
(Ej∈N'\{i} ejk, 0) is also in EQ((8.5.2)). Thus, E j ∈ N ' \{ i } a j k = E j ∈ N \ ∈ ajk, and 
hence aik = aik for all i ' ∈ N ' \ {i}. The same argument applies to all k ∈ M'. 
Then, for all k' ∈ M' \ {k}, (|N'| - 1)aik = (|N'| - 1)aik,, and therefore, there 
exists some constant c such that aik = c for all i ∈ N', k ∈ M'. 

Z’ 

N’ 
Z1 Z2 

M’ 

(b) (b) 

(d) (c) 

• (b) btl = 0 for all t ∈ Z'. 
Now observe that given i ∈ N', (Ej∈in« ejl, 0) and (Ej∈ N ' \«ejl ,e t l) are 

elements of EQ((8.5.2)) for all t ∈ Z<. Thus, (| } V | - 1)c = (|N'\ - { )c + btl, and 
btl = 0 for all t ∈ Z'. 
• (c) btk = -c for all t∈Z2,k∈M'\ {l}. 

Let t ∈ Z 2 . Due to condition (ii) G'-t is not connected. Let N1 be the node 
set of some component of G'-t and N2 := N'\N1. Since N ' is a minimal cover for 
all knapsacks in M< and N1 and N2 are nonempty, ( E ^ e i k+E i∈N2 eil,etk+etl) is 

∈ ' b an element of EQ((8.5.2)) for all k ∈ M' \{ l} . Thus, (|N'| - 1)c = |N'c+btk 
and together with the observations above, btk = -c for all k ∈ M' \ { | } . 

(d) btk = -2
c for all t ∈ Z1, k ∈ M \ {l}. 

Now, let t ∈ Z1 . Condition (i) guarantees that there exist two edges t',t" ∈ 
Z'\{t} (t1 = t"), such that the hypergraphs G'-{t,t'}, G'-{t,t"} and G'-{t',t"} 
are not connected. Consider, then, the three following partitions of N': 

• 

• (N1,N2), where N1 is the node set of some component of G' 
N2 := N'\N1. Observe that (J2i∈N1 eik + E i∈N2 eil, etk + e t k 

{t, t '}and  
etl + e t l) 

is an element of EQ((8.5.2)) for all k ∈ M' \ {l}, since N ' is a minimal 
cover for all knapsacks in M' and N 1 and N2 are nonempty. Combining 
with the observations above, (|N'| - 1)c = |N |c + btk + bt/k, and therefore, 
btk + b t k = - c for all k ∈ M \ {l}. 

l 
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• 

• (N[,N^), where N[ is the node set of some component of G' - {t',t"} and 
N'2 := N'\N[. Observe that ( i ∈ N 1 , eik + £ i ∈ N , eil, etk + etnk + etl + e t l ) 
is an element of EQ((8.5.2)) for all k ∈ M' \ 2 {l}, since N' is a minimal 
cover for all knapsacks in M< and N[ and N'2 are nonempty. Combining 
with the observations above, (|N'| - 1)c = N'|c + btk + b t k , and therefore, 
btjk + b t/k = - c = btk + bt^k. Then, btk = b | k for all k ∈ M \ {l}. 

(N?,N!f), where N'{ is the node set of some component of G' - {t,t"} and 
NZ := N' \ N'(. Observe that (J2i∈N„ eik + £i∈N2„ eil, etk + e t,k + etl + e t l ) 
is an element of EQ((8.5.2)) for all 1 k ∈ M'\ {l}, since N ' is a minimal 
cover for all knapsacks in M' and N'( and N2' are nonempty. Combining 
with the observations above, (N'| - 1)c = |N'|c + btk + b t,k, and therefore, 
btk + bt„k = - c . Then, btk = bt | k = btf,k = -2

c for all k ∈ M \ {l}. 

Taking all these observations into account we conclude that the inequality 
ax + by ≤ α is a scalar multiple of (8.5.2), and therefore, it defines a facet of 
MCH(N'×M',Z'×M',f,F,g,S). 

Now we prove the converse direction. If the inequality is not valid, it cannot 
be facet defining. Suppose now that (i) is not satisfied, and let t ∈ Z1 be the edge 
for which the condition does not hold. Then, there are two cases to be considered. 

• G - {t,t'} is connected for all t' ∈ Z'. But then, according to Theorem 
8.5.1, the Cycle Inequality corresponding to G'-t, M', l, Z[=Z1\{t} and 
Z'2 = Z2 is also valid. The inequality (8.5.2) is the sum of the inequality 
above and the valid inequality £k ∈ M ' \{ l } ytk ≥ 0, and therefore cannot be 
facet defining. 

• there exists some t' ∈ Z1 such that G' - {t,t'} is not connected, but for 
all t" Z1 \ {t,t'}, G' - {t,t"} is connected. Observe that it implies that 
G' - { ∈ , t"} is also connected by the argument pointed out before. Consider 
that the following inequality 

2 E E xik - E 12 yuk-2 J2 E yuk ≤ 2(|N'| -1) 
i∈N' k∈M u∈Z1\{t,t'} k∈M'\{l} u∈Z2∪{t'} k∈M'\{l} 

is the Cycle Inequality corresponding to G' -t, M', l, Z'1 = Z1\ {t,t'} and 
Z'2 = Z2∪ {t'}, and since the conditions of Theorem 8.5.1 are satisfied, the 
inequality is valid. Analogously, 

2 E E xik- E Y, yuk-2 J2 E yuk ≤ 2(|N'| -1) 
i∈N' k∈M u∈Z1\{t,t'} k∈M'\{l} u∈Z2∪{t} k∈M'\{l} 

is the Cycle Inequality corresponding to G' - t', M', l, Z[ = Z1\ {t,t'} 
and Z'2 = Z2 ∪ {t} and is also valid. But, (8.5.2) is the sum of the two 
inequalities above divided by 2. 
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9 8 

Figure 7.3: Example 8.5.3. 

Observe that if Z1 = ∅, then the Cycle Inequality is a scalar multiple of the 
Tree Inequality. We show some examples of facet defining Cycle Inequalities. 

Example 7.5.3 Consider the following instance of the MPH. N' = { 1 , . . . ,9}, 
M' = {1,2}, f = (2,2,3,3,4,3,4,2,3), F = (24,25), Z = {{1, 2, 3}, {3, 4, 5}, 
{4, 5, 6, 7}, {6, 7, 8, 9}, {1,2, 8, 9}}, g = (1,1,1,1,1) and S = (5,5) (see Figure 
7.3). In this case, Z2 = ∅, and the Cycle Inequalities 

9 2 5 

i = 1 k=1 t=1 

2EExik-Eyt,2 
i=1 k=1 

16 

define facets of the polytope MCH(N × M,Z × M, f , F, g, S). 

Example 7.5.4 Consider the following instance of the MPH. N' = { 1 , . . . ,9}, 
M' = {1,2}, f = (2,2,3,3,4,3,4,2,3), F = (24,25), Z = {{1, 2, 3}, {3, 4, 5}, 
{5,6}, {6, 7,8}, {8,9}, {1,9}}, g = (1,1,1,1,1,1) and S = (6,6) (see Figure 7.4). 
In this case, Z1 = {3,5,6} and Z2 = {1,2,4}. The Cycle Inequalities 

2 E I x i k - I y t , 1 - 2 l y t , 1 ≤ 1 6 , 
i=1 k=1 teZ1 teZ2 

2 E E x i k - E yt,2 - 2 E yt,2 ≤ 16 
i=1 k=1 teZ1 teZ2 

define facets of the polytope MCH(N × M,Z × M, f,F,g,S). • 

Example 7.5.5 Consider the following instance of the MPH. N' = {1,..., 10}, 
M' = {1,2}, f = (2,2,3,3,4,3,4,2,3,2), F = (26,27), Z = {{1, 2, 3}, {3, 4}, 
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9 8 

Figure 7.4: Example 8.5.4. 

2 

1 / * 

.3 

10 

4/=5 

9 

Figure 7.5: Example 8.5.5. 

{4,5},{5,6},{6,7,8},{1,8,9},{3, 8,10}}, g = (1,1,1,1,1,1,1) and S = (7,7) 
(see Figure 7.5). In this case, Z1 = {2, 3,4} and Z2 = {1,5,6, 7}. 

The Cycle Inequalities 

10 2 

i=1 k=1 teZ1 teZ2 

10 2 

2 £ Zx i k - Sy t ,2 - 2 £ yt,2 < 18 
i = 1 k = 1 teZ1 teZ2 

define facets of the polytope MCH(N x M,Z x M, f,F,g,S). • 

7.6 Further facet defining inequalities 

In this section we show some more valid and facet defining inequalities for the 
polytope MCH(N x M,Z x M,f,F,g,S). All inequalities presented in this 
section involve only one net of Z. 

Theorem 7.6.1 Let an instance (G = (N, Z),M, f, F, g, S) of the MPH be given. 
Let M' CM,k(EM' and suppose that S C N is a minimal cover with respect to 
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k. Lett∈ Z 
suppose that 

with S∩Tt=∅ andj ∈ S∩Tt and define St := S ∩ Tt. 
i∈St fi < Fl for all l∈M'\{k}. Then, the inequality, 

Ex ik + E E x i l-y t k≤|S|-1 
i∈St\{j} l∈M'\{k} 

Finally, 

(8.6.1) 
i∈S 

defines a facet of MCH(S ×M',{t}× M',f,F,g,S). 

Proof. First we prove that the inequality is valid for MCH(S × M',{t} 
M>, f, F, g, S). Suppose that there exists a vector (x', y1) ∈ MCH(S × M', {t} 
M', f ,F,g,S) violating (8.6.1). Then, every element of S must be assigned to 
some knapsack in M'. Since S is a cover for k, there exists some i ∈ (S∩Tt) \ {j} 
and l' ∈ M' \ {k} such that x'i l = 1. But then, i∈Tt x i k = 0, otherwise, the net 
constraint would imply y'tk = 1, contradicting our assumption that (x', y') violates 
(8.6.1). In this case, however, the item j is not assigned to any knapsack, and it 
contradicts our assumption that the vector violates (8.6.1). 

Now we prove that the inequality is facet defining. Suppose that there exists a 
facet defining inequality ax + by ≤ α such that EQ((8.6.1)) ⊆ EQ(ax + by≤α) 
we prove in the following that this inequality is a scalar multiple of (8.6.1). 

S 

S \ S t 

M’ 

(a) (a) (a) 

(e) (d) (c) 

(d) 

(b) 

• (a) aik = c for all i ∈ S. 
Let i'∈S and notice that (£i∈S\{i'} eik, 0) is in EQ((8.6.1)). Since this is true 

for all i< ∈ S, we can conclude that there exists a constant c such that aik = c for 
all i ∈ S. 
• (b) btl = 0 for all l 

(Y^∈S\{i>}eik,etl) is also in 
d therefore, btl = 0 for all 

∈ M> \ {k}. 
Now, let i' ∈ S, l ∈ M'\ {k} and observe that ( 

EQ((8.6.1)). Thus, (|S| - 1)c = (|S| - 1)c + btl, and 
l ∈ M ' \ { k } . 
• (c) ail = 0 for all i'∈ S\St,l ∈ M'\ {k}. 

Consider now some i'∈S\ St. Since (Ei∈S\{i'} +ei'l,0) is in EQ((8.6.1)) for 
all l M ' \{k} , we can conclude (|S| - 1)c = (|S| - 1 ) c + a i l and therefore ail = 0 
fora ∈ l∈M'\{k},i'∈S\St. 
• (d) - b t k = ail = d for all i ∈ St\ {j}, l ∈ M'\ {k}. 

t j S 

k 
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Let i' eSt\ {j}. Observe that (£i∈S\{i'} eik + eil, etk + etl) is in EQ((8.6.1)) 
for alll G M \ {k}. Then, combining with the observations above, (\S\ - 1)c = 
(1S1 - 1)c + ail + btk, and therefore, ail = -btk for all l e M< \ {k}. Since the 
same argument holds for all i' £ St\ {j}, we can conclude that there exists some 
constant d such that ail = d for all i e St \ {j}, l e M'\ {k}, and btk = -d. 
• c = d. 

Now, observe that (£ i ∈ S \ S t eik + E i s A W ^ , 0 ) is in EQ((8.6.1)) for all l e 
M' \ {k}. Then, (Sl - 1)c = (lSl - I ^ ∈ c + } Stl - 1)d, and therefore c = d. 

• (e) ejl = 0 for all l e M'. 

Since (Ei∈S\St eik + E i∈St eil, 0) is also an element of EQ((8.6.1)), we conclude 
that ejl = 0 for all l e M'. 

Considering all observations above we conclude that ax + by < α is a scalar 
multiple of (8.6.1), and therefore it defines a facet ofMCH(SxM', {t}xM', f, F, g, S). 
• 

The next inequality has nonzero coefficients whose values are different from 1 
and -1. 

Theorem 7.6.2 Let an instance (G = (N, Z),M, f, F, g, S) of the MPH be given. 
Let M'CM,keM' andSCN such that S is a minimal cover with respect to 
k. Lett e Z such that St := S DTt = 0 and suppose that J2i∈St fi < Fl for all 
l (EM'. Then, the inequality 

S t E x i k + ( S t - 1 ) E E xil - (\St\ - 1)ytk < \St\(\S\ - 1) (8.6.2) 
i∈S i∈St l∈M'\{k} 

defines a facet of MCH(S x M',{t} x M',f,F,g,S). 

Proof. We first prove that the inequality is valid. Suppose that there exists some 
vector (x',y') violating (8.6.2). Then, every element of S must be assigned to 
some knapsack in M'. Since S is a cover for k, some item of S n T is assigned 
to some knapsack l = k. Then, we can conclude that J2i∈St x'ik = 0, otherwise, 
due to the net constraints, y'tk = 1. In this case, however, (x',y') does not violate 
(8.6.2). 

Now we prove that the inequality is facet defining. Suppose that there exists a 
facet defining inequality ax + by<α such that EQ((8.6.2)) C EQ(ax + by< α). 
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We prove that the inequality is a scalar multiple of (8.6.2). 

S 

S \ S t 

M’ 

(a) (a) 

(d) (c) 

(d) 

(b) 

• (a) aik = c for all i ∈ S. 

Since the same argument holds for all i' ∈ S, we can conclude that there exists 
First, let i' ∈ S, and observe that ( £ 

∈ 
i∈S\{i'} eik,0) is an element of EQ((8.6.2)). 

some constant c such that aik = c for all i ∈ S. 
• (b) btl = 0 for all l ∈ M< \ {k}. 

Consider some i'∈ S and observe also that (£i∈S\{i'} eik, etl) is in EQ((8.6.2)) 
for all l ∈ M' \ {k}. Thus, (|S| - 1)c = (|S| - 1)c + btl, and therefore, btl = 0 for 
all l∈M'\ {k}. 
• (c) ail = 0 for all i'∈ S\St, l ∈ M'\ {k}. 

Suppose that i' ∈ S \ St. Then, (£ i ∈ 
EQ((8.6.2)) for all l ∈ M' \ {k}. We can, then, conclude that (|S| - 1)c = 

' 

i∈S\{i'} eik + e i l ,0) is an element of 

ail = 0 for all l ∈ M' ∈M'\{k}. (|S|-1)c + ail, and therefore, 
• (d) - b t k = ail = d for all i ∈ St, l ∈ M'\ {k}. 

Now, consider i' ∈ S t. Then, ( i ∈ S \ { ^ } eik + e i l , etk + etl) is in EQ((8.6.2)) for 
all l M' \ {k}. Combining with the observations above we conclude (|S| - 1)c = 

1)c + a i l + btk, and thus, a i l = -btk for all l ∈ M< \ {k}. Since the same 
argument holds for all i< ∈ St, we can conclude that there exists some constant d 
(S 
| | 

-btk 
concl 

∈ M ' \ { k } , -d. such that ail = d for all i ∈ St, l ∈ M'\ {k}, and btk = 

Finally, consider that (Ei∈S\St eik + £ i ∈ S t eil, 0) is an element of EQ((8.6.2)) 
for all l ∈ M' \ {k}. Thus, ( |S | - 1)c = (|S| - |St|)c + (|St|)d, and therefore 
c = | S t | - l " -

This yields that ax + by ≤ α is a scalar multiple of EQ((8.6.2)), and therefore, 
it defines a facet of MCH(S ×M>,{t}× M',f,F,g,S). 

t S 

k 



Chapter 8 

A Branch and Cut Algori thm for 
the Mult icut Problem on 
Hypergraphs 

In this chapter we report on our implementation of a Branch and Cut Algorithm 
for the MPH using the results on valid and facet defining inequalities we describe 
in Chapter 8. The algorithm is applied to instances coming from real world 
problems. 

As in Chapter 6, we present our approach to the minimization version of the 
MPH, and consider only the feasible solutions assigning all the items. This is 
due to the fact that solutions that not assign all the items are not feasible in 
the practical application. For more details on the modelling and motivation, see 
Chapter 2. 

In Chapter 6 we described in detail an implementation of a Branch and Cut 
Algorithm for the MKP. In this chapter we focus on the parts of the algorithm 
that are problem dependent, namely: separation strategies and primal heuristics. 
These are described in Sections 9.1 and 9.2, respectively. In Section 9.3 we show 
the computational results of the algorithm. 

8.1 Separation procedures 

In this section we present procedures for the separation of some classes of in­
equalities discussed in the last chapter. We show, for each inequality class, the 
number of inequalities of this type used in the solution process of the instances 
solved. 

173 
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8.1.1 Separating Net Inequalities 

The number of Net Inequalities is polynomial in the input length. Then, an al­
gorithm that enumerate all those inequalities solves the corresponding Separation 
Problem trivially in polynomial time. The procedure we present here finds, for 
the instances arising from the practical application, many violated inequalities in 
each iteration. We use a parameter MAX to avoid generating too many inequali­
ties of this type. Moreover, if more than MAX Net Inequalities are violated, we 
try to avoid selecting inequalities whose support have large intersection. This 
is done in the following way. In the case that more than MAX inequalities are 
found, given some net t ∈ Z and some knapsack k ∈ M , at most one violated Net 
Inequality corresponding to t and k is added to the list of violated inequalities. 
In the following we describe precisely the procedure. 

Separation Procedure for Net Inequalities 
Input: An instance (G = (N, Z), M, f,F,g, S) of the MPH, an 
integer MAX and a fractional point (x[k,y'tl) e R N x M x IRZxM, with 
0 < x'ik < 1 and 0 < y'tl < 1 for all i e N, k, l G M, t e Z. 
Output: Violated Net Inequalities if there exists any. 

For every net t G Z. 
For all pairs i, j eTt. 

For all k G M. 
If the Net Inequality corresponding to t, i,j and k is violated. 

Store this inequality in the list of violated inequalities. 
If the number of violated inequalities found is greater than MAX. 

Rearrange the set of violated inequalities such that the inequalities 
most violated inequalities come first (not necessarily sorted). 
Consider each inequality in this sequence, avoiding selecting more 
than one inequality corresponding to the same net t and knapsack k. 

Return the list of selected violated inequalities. 

Since we avoid sorting the whole set of violated inequalities (which would 
require O(zn2m log(znm)) time complexity), the procedure proposed above has 
time complexity limited by O(zn2m) which is also the number of different Net 
Inequalities of the instance. Although several thousands of violated inequalities 
are found by the procedure, it is not necessary to have all of them in the LP. In 
Table 8.1 we show the number of Net Inequalities used to solve the 18 instances 
described in detail in Section 9.3. For these instances we have calculated the 
total number of Net Inequalities, which is given in the second column. The third 
column show how many of them are used in the whole solution process. 
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Problem Total of Net Ineq. # Net Ineq. used 
pd1.50.1511 16192 15666 (96.75%) 
pd1.100.1511 19472 10808 (55.51%) 
pd1.150.1511 34912 4833 (13.84%) 
pd1.200.1511 46672 6768 (14.50%) 
pd1.253.200 13792 12817 (92.93%) 
pd1.253.500 30160 6940 (23.01%) 
pd1.253.750 37488 7975 (21.27%) 
pd1.253.1000 46568 4310 (9.26%) 
pd1.253.1200 48168 7450 (15.34%) 
pd1 59162 5380 (9.09%) 
pd2.150.3326 89196 9840 (11.03%) 
pd2.300.3326 145032 5831 (4.02%) 
pd2.450.3326 179232 18903 (10.52%) 
pd2.600.3326 229656 9759 (4.25%) 
pd2.772.750 64920 4249 (6.54%) 
pd2.772.1200 96420 11753 (12.19%) 
pd2.772.1600 117348 10820 (9.22%) 
pd2.772.2000 173796 17245 (9.92%) 
pd2.772.2500 248256 30450 (12.26%) 
pd2 308580 10801 (3.50%) 

Table 8.1: Net Inequalities. 

8.1.2 Separating Tree Inequalities 
The Separation Problem for the Tree Inequalities is NP-hard. I t is due to the 
fact that in the particular case that the hypergraph considered is a graph, the 
corresponding Separation Problem is NP-hard (cf. [FMSWW93]). We have 
implemented two different heuristic procedures to find violated Tree Inequalities. 
In the following we present the two procedures. 

Weighted Distance Heuristic 

In this procedure we try to find, for each item i ∈ N , a violated Tree Inequality 
rooted at i , corresponding to all knapsacks in M . At each iteration of the pro­
cedure we have a subtree. In the first iteration it is constituted by the isolated 
node i . We select, in each iteration, the most promising edge t incident to the 
current subtree. Then, we enlarge it, adding to the subtree all nodes incident 
to t. The criterion used to choose the promising edge t is described in the fol­
lowing. First, we want to obtain a tree that defines a cover with respect to all 

pd2.150.3326
pd2.300.3326
pd2.450.3326
pd2.600.3326
pd2.772.750
pd2.772.1200
pd2.772.1600
pd2.772.2000
pd2.772.2500
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knapsacks in M. Thus, we try to select edges that add items to the tree with 
large weights. Second, the value of the current fractional solution corresponding 
to the selected edges must be as small as possible. In order to tackle both targets 
we define the following “weighted distance function” w : Z —• R, for the nets in 
Z corresponding to a given subtree T = (VT, ET), where 

wt:= 

Efc,M y 
E

 fcM y
f if Tt n VT = 0 and T t g V T , 

B if TtnVT = 
2B if Tt C VT, 

0, 

where B is a large number. We select, in each iteration of the algorithm, the 
edge t with minimum weighted distance. We describe precisely the heuristic in 
the following. 

Sep. Procedure: Weighted Distance Heur. for Tree Ineq. 
Input: An instance (G = (N, Z), M, f,F,g, S) of the MPH, a 
fractional point (x'ik,y't l) e R N x M x IRZxM, with 0 < x'ik < 1 and 
0 < y't l < 1 for allieN,k,leM,te Z. 
Output: Violated Tree Inequalities, or the procedure fails. 

For each item i e N. 
( B ifi&T t , 

Initialize wt := SVM y otherwise. 

Initialize VT := {i}; ET := 0. 
While \VT\ < n - 1 and VT is not a cover for all knapsacks. 

Let t e Z \ ET be such that wt = min{wu \ueZ\ET}. 
Update VT := VT U Tt. 
Update ET := ET U{t}. 
Update w conveniently. 

If VT is a cover for all knapsacks and the Tree Inequality 
corresponding to T = (VT, ET) is violated. 

Append this inequality to the list of violated inequalities. 

Spanning Tree Heuristic 

The idea used in this heuristic procedure is mainly to proceed as in Kruskal’s 
Algorithm for computing a minimum spanning tree. We interpret, at the begin­
ning, each item i as an isolated node. We sort, then, the edges t of the graph in 
increasing order according to Ek eMy t k . We consider each edge in this sequence 
and add it to the tree unless it links items from only one component, or it forms 
a component with total sum of the net variables bigger than a given parameter 
r. After all nets have been considered, we obtain a set of connected components. 

file:///ueZ/ET}
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If the node set of some of these components defines a cover with respect to all 
knapsacks in M, we can verify if the corresponding Tree Inequality is violated. 
We describe the procedure precisely. 

Sep. Procedure: Spanning Tree Heur. for Tree Inequalities. 
Input: An instance (G = (N, Z), M,f,F,g, S) of the MPH, a 
fractional point (x'k,y>tl) e R N x M x R Z x M , with 0 < x'ik < 1 and 
0 < y't l < 1 for allieN,k,leM,teZ and a threshold parameter 
r £ R . 
Output: Violated Tree Inequalities, or the procedure fails. 

Initialize Ci = (VCi,ECi) with VCi := {i} and ECi := 0 for all i e N. 
Sort Z such that J2keM ytlk <...< J2keM ytzk. 
For e G Z. 

If te links at least two different components. 
Let C i n , . . . , Ciw the components linked by te. 
Define E' :=Uw=1ECij. 
If Y,teE'u{te} EkeM ytk < r 

Merge the components Ci,..., Ciw. 
Update VCi and ECi conveniently. 

For each component C i in the final subgraph. 
If VCi is a cover for all knapsacks. 

If the Tree Ineq. corresponding to the component Ci is violated. 
Add this inequality to the list of violated inequalities. 

This second heuristic produces less inequalities than the first one in general, but, in 
some sense, more global information is used in the construction of the components. 
In our algorithm we use both separation routines to find violated tree inequalities. 
In Table 8.2 we show the number of violated Tree Inequalities found by both 
heuristic procedures presented in this section in the whole solution process of the 
problem instances described in Section 9.3. 

8.1.3 Separating Cycle Inequalities 

Up to our knowledge, it is an open problem to decide if the Separation Problem 
for the Cycle Inequalities can be solved in polynomial time. We conjecture that 
this problem cannot be solved in polynomial time, and concentrate on developing 
heuristic procedures to solve it. We have implemented two heuristic procedures 
to separate Cycle Inequalities. They are presented in the following. 

Shortest Path Heuristic 

In this procedure we try to obtain cycles in the hypergraph using shortest paths. 
We look for violated inequalities for each net t in Z. In each iteration a subgraph 
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Problem # Tree Ineq. used 

pd1.50.1511 4340 
pd1.100.1511 5679 
pd1.150.1511 3926 
pd1.200.1511 3015 
pd1.253.200 6498 
pd1.253.500 2758 
pd1.253.750 4826 
pd1.253.1000 1016 
pd1.253.1200 3302 
pd1 762 
pd2.150.3326 5400 
pd2.300.3326 2871 
pd2.450.3326 1263 
pd2.600.3326 1086 
pd2.772.750 0 
pd2.772.1200 1576 
pd2.772.1600 1135 
pd2.772.2000 1169 
pd2.772.2500 2070 
pd2 1444 

Table 8.2: Tree Inequalities. 

C is considered. In the first iteration C is composed by the single net t, and this 
net is deleted from the graph. We choose some node s in the node set of C as 
the source, and set all other items in C as the destinations. We determine, then, 
among all paths between s and the destinations, the one with minimum total cost 
corresponding to the value E k e M ytk associated with each edge t. This shortest 
path is then added to C and, afterwards, the edges of this path are deleted from 
the graph. We proceed in this way until the node set of C defines a cover with 
respect to all knapsacks in M. Then, we determine the sets Z1 and Z2 as defined 
in Section 8.5 and verify if the corresponding Cycle Inequality is violated. In the 
following we present precisely the procedure. 

Sep. Procedure: Shortest Path Heur. for Cycle Inequalities. 
Input: An instance (G = (N, Z), M,f,F,g, S) of the MPH, a 
fractional point (x[k,y'tl) e R N x M x IRZxM, with 0 < x'ik < 1 and 
0 < y't l < 1 for allieN,k,leM,te Z. 
Output: Violated Cycle Inequalities, or the procedure fails. 

pd2.150.3326
pd2.300.3326
pd2.450.3326
pd2.600.3326
pd2.772.750
pd2.772.1200
pd2.772.1600
pd2.772.2000
pd2.772.2500
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For each t e Z. 
Initialize C = (VC, EC) where VC :=Tt and EC :={ t} . 
Set G' = G-t. 
While VC is not a cover for all knapsacks. 

Choose an item s e VC as the source. 
Let D := VC \ {s} be the destinations. 
Find the shortest path P = (VP, EP) in G between the 
source and some destination, using the value k e M ytk z2k 
as cost associated with edge t. 
If no such path exists. 

The procedure fails and stop. 
Otherwise set G := G - EP. 

Determine the sets Z1 and Z2 as defined in Section 8.5: 
Set Z1 := 0. 
For each e e EC. 

If C = (VC, EC \ {e}) is connected. 
Z1 := Z1 U {e}. 

Z2:=Z\Z1. 
If the corresponding Cycle Inequality is violated. 

Append it to the list of violated inequalities. 

Spanning Tree Heuristic 

The idea in this heuristic is very similar to the one used to find violated Tree 
Inequalities. We proceed like in Kruskal’s Algorithm for computing a minimum 
spanning tree. We sort the edges of the graph in increasing order according to the 
value E k e M ytk. Then, each edge is considered and is added to the subgraph unless 
it links only items from one component, or the total weight of the component 
becomes too large. After all edges are considered, we obtain a set of connected 
components. We consider those components that define a cover with respect to 
all knapsacks and insert edges that are contained in those component, in order 
to obtain a highly connected subgraph. The edge set is then divided into sets Z1 

and Z2 and we verify if the corresponding inequality is violated. We present the 
idea precisely in the next. 

Sep. Procedure: Spanning Tree Heur. for Cycle Ineq. 
Input: An instance (G = (N,Z),M,f,F,g,S) of the MPH, a 
fractional point (x'k,y>tl) e R N x M x R Z x M , with 0 < x'k < 1 and 
0 < y'tl < 1 for allieN,k,leM,teZ and a threshold parameter 
r £ R . 
Output: Violated Cycle Inequalities, or the procedure fails. 

Initialize Ci = (VCi, ECi) with VCi := {i} and ECi := 0 for all i e N. {i} and ECi := 0 for all i e 
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Sort Z such that EkeM y'tlk <...< EkeM y't k. 
For e G Z. 

If te links at least two different components 
Let Cn,..., Ciw the components linked by te. 
Define E' :=uw

j=1ECij . 
If Y,teE'u{te} EkeM ytk < r 

Merge the components Cn,..., Ciw. 
Update VCi and ECi conveniently. 

For each component Ci in the final subgraph. 
If VCi is a cover for all knapsacks. 

Let NC:={t(EZ\ ECi \ Tt C VCi}. 
hthat , 

For e G NC. 
Sort N C such that E k e M y t lk < . . . < E k e M yt[ z2k y t NC k . 

If EteECiU{te} EkeM ytk < r. 
ECi := ECi U {te}. 

Determine the sets Z1 and Z2 as defined in Section 8.5: 
Set Z1 := 0. 
For each e G EC. 

If C" = (VC, EC \ {e}) is connected. 
Z1 := Z1 U {e}. 

Z2:=Z\Z1. 
If the corresponding Cycle Inequality is violated. 

Append it to the list of violated inequalities. 

We use both procedures to find violated Cycle Inequalities. In Table 8.3 we 
show the number of violated Cycle Inequalities found in the whole solution process 
of the instances described in Section 9.3. 

8.2 Primal heuristics 
In Section 6.3 we present some LP based primal heuristics for the MKP. These 
heuristics can also be used to provide solutions for the MPH. Suppose we are 
given a partition (B1,..., Bj) of N, such that j < m and J2ieBk fi < Fk for all 
k = 1,...,j, found by some of the heuristics presented in Section 6.3. We must 
verify if this partition defines a valid multicut, i.e., if all net knapsack constraints 
are satisfied: J2eeδ(Bk) ge < Sk for all k G M. If it is the case, we must calculate 
the value of this solution. 

In this section we present a primal heuristic procedure that is based on the 
values of the current LP solution correspondent to the net variables. This is 
the topic of Section 9.2.1. An improvement heuristic based on one exchange is 
presented in Section 9.2.2. 
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Problem # Cycle Ineq. used 

pd1.50.1511 3144 
pd1.100.1511 2756 
pd1.150.1511 3678 
pd1.200.1511 2868 
pd1.253.200 12 
pd1.253.500 64 
pd1.253.750 3726 
pd1.253.1000 787 
pd1.253.1200 2757 
pd1 646 
pd2.150.3326 4122 
pd2.300.3326 2795 
pd2.450.3326 1035 
pd2.600.3326 748 
pd2.772.750 0 
pd2.772.1200 3 
pd2.772.1600 46 
pd2.772.2000 772 
pd2.772.2500 1114 
pd2 1143 

Table 8.3: Cycle Inequalities. 

8.2.1 Bin-Packing heuristic 

In this heuristic we use the value of the current LP solution corresponding to the 
net variables to construct partitions. We interpret a small value of the net variable 
as a hint that the items in this net should be assigned to the same knapsack. The 
idea is, then, to partition the items set into clusters that, by the criterion above, 
should be together, taking into account also that the knapsack constraints are not 
violated. If the number of clusters is already less than or equal to the number of 
knapsacks, a feasible solution is found. Otherwise, we assign the clusters to the 
knapsacks in a first fit decreasing way. Now we describe the heuristic procedure 
more precisely. 

Bin-Packing Heuristic 
Input: An instance (G = (N, Z), M,f,F,g, S) of the MPH, a 
fractional point (x'ik,y'tl) e R N x M x R Z x M , with 0 < x'ik < 1 and 
0 < y't l < 1 for allieN,k,leM,teZ and a threshold parameter 
p e [0,1]. 
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Output: A solution a G MN of the MPH, where ai is the knapsack 
where item i is assigned to. 

Initialize Ci = (VCi,ECi) with VCi = {i} and ECi := 0 for all i G N. {i} and ECi := 0 for all i G 
' Sort Z such that EkeM y't1k <...< EkeM y't k. 

For jeZ. 

Let Ci1,..., Ciw be the components linked by tj. 
If J2veuw=1VC\ fv < Fk for all k G M. 

Merge the components Ci1,..., Ciw. 
Update VCi and ECi conveniently. 

Let c be the final number of components. 

Define wdk := ^ C dd
x k for all d = 1 , . . . , c, k G M. 

Set I k : = 0 for all k GM. 
If c<m 

Ford = 1,...,c. 
Find k* such that 
wdk* = max{wdk | k G M and JieIkuVCd fi<Fk}. 
Set ai := k* for all i G VCd. 
Set Ik* := Ik* U VCd. 

Otherwise 
Sort the components such that J2ieVC1 fi > . . . > £ i e V Cc fi . 
Ford = 1,...,c. 

Select k* such that 
wdk* = max{wdk | k G M and E^ IkuV Cd fi < F k }. 
If such k* exists 

Set ai := k* for all i G VCd. 
Set Ik* := Ik* U VCd. 

Otherwise the procedure fails and stop. 
Return a. 

In Table 8.4 we show the behavior of this heuristic procedure for some prob­
lem instances. We let our program run with the separation routine for the Net 
Inequalities until no more violated inequality is found, and use the LP solution of 
each iteration as input for the Bin-Packing Heuristic. In the second column we 
show the best solution we know for these instances. As we can see in Table 8.4 
the heuristic fails in many cases. A possible reason for that is the fact that the 
quality of the solution produced depends strongly on the “amount of information” 
given by the net variables. 
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Problem Bin-Packing Heur. Best Solution 
pd1.50.1511 fails 109702 
pd1.100.1511 124063 122875 
pd1.253.200 51246 51019 
pd2.150.3326 fails 26824 
pd2.300.3326 fails 39191 
pd2.772.750 22680 22680 

Table 8.4: Bin-Packing Heuristic. 

8.2.2 Improvement heuristic 
The idea used in this heuristic is very similar to the improvement heuristic sug­
gested in Section 6.3.3. The difference here is in the evaluation of the gain in each 
pass. In the case of the heuristic described in this section, we calculate the differ­
ence of the number of nets in cut caused by moving some item from a knapsack to 
another one. This number is used as the gain of each move. In the following we 
present the heuristic. Before that we introduce following notation. Given a vector 
y' e MN, that represents a partition of the set N, we denote δ(y) := {t G Z \ 
there exits two knapsacks k1 and k2 such that i,jeTt and y[ = k1 and y'j = k2}. 

Improvement Heuristic 
Input: An instance (G = (N, Z),M, f, F,g, S) of the MPH, a feasi­
ble solution y(EMN. 
Output: A solution a' e MN. e 

Initialize a' with a. 
for p := 1 to number-of-passes. 

Initialize ap with a'. 
Set F'k := Fk - J2i:a,=k fi for all k e M. 
All items are supposed to be unlocked. 
While P := {(i, k)eNxM\i unlocked , fi < Fk and ap

i = k} = 0. 

Setan(i ,k) := k 
i = j , 
i = j . 

Define gain(i,k) := \δ(an(i,k))\ - \δ(ap)\ for all (i,k) G P. 
Determine i* and k* such that 
gain(i*,k*) = max{gain(i,k) \ (i,k) G P}. 
Assign i* to k*. 
Update current solution ap and F'. 
Lock item i* (to avoid cycling). 

Determine a* as the best solution found in this pass. 

pd2.150.3326
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If a* has a better value than a', let a' :=a*. 
Else return a' and stop. 

Return a'. 

In Table 8.5 we show the improvement achieved by applying this heuristic 
to the examples of Table 8.4. In Table 8.5 we observe that the combination of 

Problem Bin-Packing Heur. 
+ Improvement Heur. 

Best Solution 

pd1.50.1511 110387 109702 
pd1.100.1511 123717 122875 
pd1.253.200 51243 51019 
pd2.150.3326 26869 26824 
pd2.300.3326 39387 39191 
pd2.772.750 22680 22680 

Table 8.5: Improvement Heuristic. 

the two heuristic procedures find acceptable solutions. The values where some 
improvement was achieved are depicted in bold face. This combination is used 
for the solution of the instances presented in Section 9.3, though the improvement 
heuristic is time consuming. This effect can be observed in Table 8.9. 

8.3 Computational results 

In this section we report on the results of our Branch and Cut Algorithm applied 
to some practical instances of the problem described in Chapter 2. Table 8.6 
summarizes the data of the practical problem instances. We have obtained these 
instances in a joint project with Siemens Nixdorf and the data is classified. In 

Problem \N\ \M\ \Z\ # variables 

pd1 253 4 1511 7056 
pd2 772 6 3326 24588 

Table 8.6: Description of problem instances. 

Table 8.7 we show the number of nets in each example with the given cardinality, 
i. e., in the second column is the number of nets with cardinality 1 (these nets 
are eliminated in the preprocessing), in third column the number of nets with 
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cardinality 2, and so on. We can observe that most nets have small cardinalities. 

Cardinality pd1 pd2 

1 3 266 
2 543 549 
3 395 1030 
4 349 440 
5 92 464 
6 107 292 
7 1 106 
8 0 88 
9 1 31 

10 11 37 
11 9 3 
12 0 1 
13 0 1 
14 0 4 
15 0 1 
16 0 7 
17 0 1 
19 0 1 
21 0 2 
25 0 2 

Total 1511 3326 

Table 8.7: Distribution of the nets. 

In order to test the performance of our algorithm to more instances, we have 
generated from these examples 18 further examples where a subset of the items 
set or of the net set is taken. The subset is taken with the first items (resp. 
nets) of the original problems. We use the notation pdi.n.z to denote the reduced 
problems, where i denote if it is a reduced instance of the example pd1 or pd2, 
n denote the number of items and z the number of nets involved in the reduced 
instance. We use the same objective function described in Chapter 2 for the 
reduced examples. In the instances where a subset of the items set is chosen we 
have reduced also the total available capacity of the knapsacks accordingly. 

In problem pd1 all knapsacks are equal, i.e., all knapsacks have the same area 
and cut capacities and also the same costs. As described in Chapter 2, the cost 
associated with external wires is equal for all knapsacks. In this case, the problem 
reduces to minimizing the number of external wires caused by the partition. This 
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is not true for problem pd2. In this case, there are two types of knapsacks, k1 

and k2 say. Knapsack k1 has a smaller area capacity (Fk1 = 0.2Fk2) and bigger 
cut capacity (Sk1 = 3Sk2). Moreover, k1 is “more expensive” (Kk1 = 5Kk2). One 
can expect that problem pd2 is much harder than problem pd1. 

In Table 8.8 we summarize the results we have obtained for these examples. In 
all examples we run the Net Inequalities separator until no more inequalities of this 
type are violated, and, afterwards, use the procedures for separation of individual, 
joint, Tree and Cycle Inequalities as described in Chapter 6 and Section 9.1. In 
this second step we restrict the CPU Time used to two hours. 

Problem lower bound upper bound gap 

pd1.50.1511 108664 109702 1038 (0.96%) 
pd1.100.1511 122151 122875 724 (0.59%) 
pd1.150.1511 184251 184745 494 (0.27%) 
pd1.200.1511 209273 209810 537 (0.26%) 
pd1.253.200 50990 51019 29 (0.06%) 
pd1.253.500 100987 101224 237 (0.23%) 
pd1.253.750 134440 134903 463 (0.34%) 
pd1.253.1000 173267 173822 555 (0.32%) 
pd1.253.1200 191266 191818 522 (0.29%) 
pd1 236128 236879 751 (0.32%) 
pd2.150.3326 26465 26824 359 (1.36%) 
pd2.300.3326 38387 39191 804 (2.09%) 
pd2.450.3326 47057 47824 767 (1.63%) 
pd2.600.3326 60296 60774 478 (0.79%) 
pd2.772.750 22680 22680 0 (0.00%) 
pd2.772.1200 30693 31400 707 (2.30%) 
pd2.772.1600 37248 38313 1065 (2.86%) 
pd2.772.2000 48168 49047 879 (1.82%) 
pd2.772.2500 62161 63201 1040 (1.67%) 
pd2 79544 80754 1210 (1.52%) 

Table 8.8: Computational results. 

The results obtained provide acceptable solutions (with maximum deviation 
under 3% from the optimum solution) for all examples tested. As expected, the 
results for examples from pd1 are better than for pd2. For the examples coming 
from pd1 we are able to guarantee a maximal deviation from the solution given 
and the optimal one under 1%. In Table 8.9 we show the distribution of the 
total CPU Time in the time for LP solution, heuristic procedures and separation 
procedures. 
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Problem LP Time Heur. Time Sep. Time 

pd1.50.1511 56.2% 15.5% 26.1% 
pd1.100.1511 36.1% 34.2% 27.7% 
pd1.150.1511 21.7% 52.0% 24.2% 
pd1.200.1511 25.9% 43.3% 28.0% 
pd1.253.200 46.3% 22.0% 29.2% 
pd1.253.500 41.8% 33.7% 22.3% 
pd1.253.750 28.4% 47.8% 21.7% 
pd1.253.1000 36.0% 44.2% 16.8% 
pd1.253.1200 28.2% 47.0% 21.5% 
pd1 18.2% 56.4% 21.3% 
pd2.150.3326 49.6% 32.8% 15.2% 
pd2.300.3326 31.4% 55.0% 10.4% 
pd2.450.3326 60.3% 24.1% 11.5% 
pd2.600.3326 22.4% 60.1% 11.7% 
pd2.772.750 21.3% 72.1% 2.3% 
pd2.772.1200 6.3% 81.3% 8.0% 
pd2.772.1600 11.7% 75.2% 8.9% 
pd2.772.2000 14.0% 80.1% 4.4% 
pd2.772.2500 8.0% 87.9% 2.9% 
pd2 15.0% 69.2% 11.0% 

Table 8.9: Distribution of computer time. 

In Table 8.9 we can verify that most of the CPU Time is used in the LP solution 
and heuristic procedures. This performance is justified by the time consuming 
improvement heuristic we used for all examples (described in Section 9.2.2). 

We have also run our algorithm with another choice of the objective function, 
namely, 0 for all node variables and 1 for the net variables, trying to obtain lower 
and upper bounds to the number of external wires in a valid partition. The results 
for some examples are shown in Table 8.10. 

Table 8.10 shows that we were not able to repeat the good results for this 
different choice of the objective function. One explanation is the fact that the 
cost associated with a external wire is relatively small comparing to the costs 
associated with different knapsacks in the objective function of interest for the 
practical application. This shows that it remains still very much to be done for 
this type of problems, not only from a theoretical point of view but also from the 
aspect of casting the theory in an efficient code. 
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Problem lb ub gap 

pd1.50.1511 226 581 255 
pd1.100.1511 170 395 225 
pd1.253.200 13 17 4 
pd2.150.3326 48 217 169 
pd2.772.750 0 0 0 
pd2.772.1200 25 59 34 

Table 8.10: Bounds on external wires. 

pd2.150.3326
pd2.772.750
pd2.772.1200


Summary 

In this section we give an overview on our thesis and how our approaches help in 
the solution of the real world problem we have investigated. 

In this thesis we present two difficult combinatorial optimization problems 
arising in some practical application in computer system design: the Multiple 
Knapsack Problem MKP and the Multicut Problem on Hypergraphs MPH. The 
practical application that motivated this thesis is described in Chapter 2. 

In order to solve the problems arising in this practical application we suggest 
Branch and Cut Algorithms. We investigate the properties of polytopes associated 
with the problems and derive several results on valid and facet defining inequalities 
for these polytopes. In Chapters 5 and 8 we present many classes of valid and 
facet defining inequalities for these polytopes. 

The corresponding Separation Problems have also been investigated. In Chap­
ter 3, we show that the Separation Problem for the Minimal Cover Inequalities is 
NP-hard. For the inequality classes we introduce, the corresponding Separation 
Problems remain open. In Chapters 6 and 9 we describe several heuristic routines 
for the separation of such inequalities. 

In the case of the MKP, we were able to solve to optimality all instances 
coming from practical applications in acceptable computer times. Experimenting 
with the objective function coefficients and random generated problems, we could 
verify that our separation routines produce a good lower bound for most cases 
tested. 

We have obtained similar results for the instances of MPH arising from the 
practical applications. Nevertheless, experiments with different objective func­
tions show that there is still very much to be done in the theoretical investigation 
of the polytope and the practical implementation of the algorithm for this problem. 

Finally, we make some comments on the original problem that motivated this 
thesis. As described in Chapter 2, the idea was to investigate simplifications of 
the exact model, and how the corresponding solutions apply for it. In general, 
we cannot guarantee that an optimal solution of the MKP provides a feasible 
solution of the original problem, since the constraints involving external wires are 
completely neglected. The solution of the MPH, however, can be used by the com­
puter designers as a starting point. I t is not necessarily an optimal solution for the 
original problem, since, for example, we have approximated the original piecewise 
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linear objective function by a linear one. Further, the conditions corresponding 
to the treatment of r-s nets (see Chapter 2) are ignored. These conditions can be 
checked in a post optimization phase and one can try to obtain a feasible solu­
tion by exchanging some items. I t can occur that the computer designer is not 
satisfied with the solution given since the approximation we use for the objective 
function is too rough. In this case, we can change the objective function and use 
our algorithm iteratively. This is an usual approach in computer aided design. 
In order to obtain a best possible approximation to the real world problem we 
should optimize over the exact model given in Chapter 2. To attack this model, 
however, is still hopeless for the current stand of the theory of 0/1 programming. 
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