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bstract 

Mobile cellular communcication is a key technology in today's informa
tion age. Despite the continuing improvements in equipment design, 
interference is and will remain a limiting factor for the use of radio com
munication. This Ph. D. thesis investigates how to prevent interference 
to the largest possible extent when assigning the available frequencies to 
the base stations of a GSM cellular network. The topic is addressed from 
two directions: first, new algorithms are presented to compute "good" 
frequency assignments fast; second, a novel approach, based on semidef 
inite programming, is employed to provide lower bounds for the amount 
of unavoidable interference. 

The new methods proposed for automatic frequency planning are 
compared in terms of running times and effectiveness in computational 
experiments, where the planning instances are taken from practice. For 
most of the heuristics the running time behavior is adequate for inter 
active planning; at the same time, they provide reasonable assignments 
from a practical point of view (compared to the currently best known, but 
substantially slower planning methods). In fact, several of these methods 
are successfully applied by the German GSM network operator E-Plus. 

The currently best lower bounds on the amount of unavoidable (co-
channel) interference are obtained from solving semidefinite programs 
These programs arise as nonpolyhedral relaxation of a minimum /c-parti 
tion problem on complete graphs. The success of this approach is made 
plausible by revealing structural relations between the feasible set of the 
semidefinite program and a polytope associated with an integer linear 
programming formulation of the minimum ^-partition problem. Compa
rable relations are not known to hold for any polynomial time solvable 
polyhedral relaxation of the minimum ^-partition problem. The appli 
cation described is one of the first of semidefinite programming for large 
industrial problems in combinatorial optimization. 

K e y w o r d s : GSM, frequency planning, mimimum graph ^-partition, 
heuristics, semidefinite programming, integer programming, polytopes. 
Mathemat ics Subject Classification ( M S C 2000): 90C27 90C35 
90B18 90C22 90C57 





reface 

A rucial and difficult task in operating a GSM network is to estab
lish a good frequency plan. When the project described in this thesis 
started in 1995, the commercially available software tools to assist a ra
dio engineer in this task were insufficient. Hence, many engineers kept on 
planning the frequency (re)use essentially by hand. Facing a stunning 
growth of the GSM network installations, this habit soon hit its limits. In 
search for new planning algorithms the German operator E-Plus Mobil 
funk GmbH & Co. KG approached Professor Dr. Martin Grötschel, head 
of the optimization department at the Konrad-ZuseZentrum für Infor 
mationstechnik Berlin (ZIB). A cooperation between E-Plus and ZlB on 
the frequency planning problem was set up. 

At that time, I applied at ZlB for a Ph. D. position, and it became my 
task and my challenge to develop automatic frequency planning software 
for the use at E-Plus. The software that was developed and several sub
sequent extensions are nowadays in successful use at E-Plus, integrated 
into the regular network planning system. 

This thesis describes in detail the planning methods developed, the 
underlying mathematical model, its connection to the problem of finding 
a minimum ft-partition in a graph, and how a quality guarantee for a fre 
quency assignment can be computed by solving a largescale semidefinite 
program. All of this is documented in a form accessible and informative 
to a mathematician as well as to a radio engineer, I hope. 

I am greatly indebted to my family, my friends, and my colleagues for 
their continuing support in many ways. This thesis would not have been 
possible without them. To all of them go my sincere thanks. 

In particular, I would like to mention three persons. My advisor Pro
fessor Dr. Martin Grötschel has provided a most fertile and stimulating 
environment at the Konrad-ZuseZentrum für Informationstechnik Ber 
lin. Dr. Thomas Kürner from the E-Plus Mobilfunk GmbH & Co. KG has 
been my link to the radio engineering world, and he introduced me to the 
European Cooperative Research in Science and Technology action 259 or 
COST 259, for short. My understanding of the GSM radio interface, in 
general, and the technical aspect of frequency planning, in particular 
has benefitted substantially from the numerous discussions with him and 



other participants of COST259. My colleague Dr. Christoph Helmberg 
has seen me by-pass his advertisements for semidefinite programming for 
a long time, and yet he supported me right on from the minute I decided 
to give it a finally successful try. 

February 1 , 2001 ndras Eisnblät 
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HAPTER 1 

ntrodcton 

Frequency planning for GSM cellular radio networks is the topic of this 
thesis. We present results which were obtained in the context of a coop
eration between the Konrad-ZuseZentrum für Informationstechnik Ber 
lin ( Z I B ) and the German GSM 1800 network operator E-Plus Mobil 
funk GmbH & Co. KG. This cooperation started in September 1995, and 
has since then been extended several times. 

Our focus was primarily on fast frequency planning heuristics for the 
use in the regular radio planning process at E-Plus. New planning meth
ods were developed at Z I B and integrated into E-Plus' software environ
ment. In 1997, our software was first used successfully in practice, and, in 
the meantime, it has been extended to better meet practical needs. We 
also studied approaches to provide quality guarantees for heuristically 
generated frequency plans. 

GSM is a second generation digital cellular radio system. Among 
others, GSM provides telephony service: a mobile phone may establish 
a communication link with any other party reachable through a public 
telephone network. This is achieved by means of a radio link to some 
stationary antenna which is part of a large infrastructure, see Figure 1.1. 
Since the introduction of GSM, radio telephony has grown from a costly 
service used by few professionals to a mass market with penetration rates 
as high as 70 % in Finland and Iceland, for example. In more and more 
countries, the mobile cellular phone subscribers outnumber the fixed-line 
telephone subscriptions 

Frequency planning is a key issues in fully exploiting the radio spec 
trum available to GSM. It has a significant impact on the quantity as well 
as on the quality of the radio communication services. Roughly speak
ing, radio communication requires a radio signal of sufficient strength 
which is not suffering too severely from interference by other signals. In 
a cellular system like GSM, these two properties, strong signals and little 
interference, are in conflict. The problem of finding a "good" frequency 
plan is sketched in the following and described in full detail later 
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Figure 1.1: GSM in principle 

Every base station operates a number of elementary transceivers, each 
of which uses some frequency to transmit on. A network operator has 
usually between 30 and 120 evenly spaced out frequencies available to 
satisfy the demand of several thousand transceivers. The reuse of fre
quencies is therefore unavoidable, but this reuse is limited by interfer 
ence and by so-called separation requirements. Significant interference 
may occur between transceivers using the same frequency (co-channel) or 
directly neighboring frequencies (adjacent channels). Separation require 
ments are given for pairs of transceivers and impose that the assigned 
frequencies have a specified minimum separation in the electromagnetic 
spectrum. Furthermore, not every frequency is necessarily available for 
all transceivers. In summary, the problem to be solved is the following. 

Given are the transceivers, the set of generally available fre 
quencies, the local unavailabilities, as well as three square 
matrices specifying the necessary minimum separation, the 
potential co-channel, and the potential adjacent channel in
terference values. One frequency has to be assigned to every 
transceiver such that the following holds. All separation re 
quirements are met, and all assigned frequencies are locally 
available. The optimization goal is to find a frequency assign
ment resulting in the least possible interference. 

We are primarily interested in minimizing the sum over the incurred 
co- and adjacent channel interferences here, but other goals of practical 
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interest exist as well. Striving for "minimum interference" asignments is 
in a sense a luxury to be paid for with frequencies. If only few frequencies 
are available to a GSM operator, then the emphasis is likely on providing 
some acceptable frequency plan at all. But the optimization aspect gains 
importance when feasible assignments can be obtained "easily." E-Plus is 
currently in the latter position. The network contains roughly 8000 base 
stations, and 115 frequencies are available. 

New assignments have to be computed on several occasions. Some 
examples are: the network is modified or expanded, the characteristics 
of a transceiver are changed, or significant unpredicted interference is 
reported and has to be resolved. 

Several commercial software packages exist which allow to document 
the network configuration, to plan radio coverage, and to predict interfer
ence in addition to frequency planning. GSM infrastructure manufactur 
ers develop such tools, but also independent companies such as AIRCOM 
International (Asset), COSIRO GmbH (Fun), Lociga Pic. (Odyssey) 
L&S Hochfrequenztechnik GmbH (CHIRplus), or Metapath Software In
ternational Limited (PlaNet). At the time when the cooperation with 
E-Plus started, however, the optimization of frequency assignments with 
respect to interference was often only poorly supported. This has cer 
tainly improved since then. 

In the following, we deal with a broad spectrum of topics ranging 
from the technical background of the GSM frequency planning problem 
over alternative mathematical models and heuristic planning methods to 
quality assessments for the generated frequency plans. In addition to 
this introduction, the thesis comprises seven chapters and an appendix 
containing a compilation of mathematical notation used in the following. 
The content of each chapter is now briefly stated. 

In Chapter 2, we give a survey of GSM and explain the technical 
conditions to be taken into account during frequency planning. We also 
describe how the input data is generated and stress the importance of 
reliable interference predictions for the success of automatic frequency 
planning. 

In Chapter 3, the frequency planning problem (as sketched above) is 
formalized as a combinatorial minimization problem. We investigate the 
computational complexity of the model beyond stating its A/'P-hardness 
and we discuss extensions of the model as well as alternative models. 

In Chapter 4, seven heuristic frequency planning methods are de 
scribed. Depending on the point of view, five or six of them can be used 
(in combination) for generating frequency assignments in practice. In 



accordance with the objective of the cooperation with E-Plus, our focus 
is on fast methods rather than on more elaborate, but slower methods. 

In Chapter 5, the previously described planning methods are com
pared on the basis of realistic frequency planning problems. In this com
parison, we include the currently best performing method we know of as 
a reference. An analysis of the realistic planning scenarios is provided, 
and we explain how to use the described heuristics in order to obtain 
time savings and quality improvements in practice. 

In Chapter 6, a lower bound on the amount of unavoidable co-channel 
interference is computed for each planning scenario. These bounds are 
obtained by solving large semidefinite programs (which are challenges to 
the currently existing solvers). Based on these bounds, quality guarantees 
are provided for the frequency assignments from the preceding chapter 
Moreover, we introduce a relaxed version of our frequency planning prob
lem. The solutions for the relaxed problem can sometimes be turned into 
feasible assignments for the original problem. Exploiting this connection, 
we point out room for further development of heuristics 

The relaxed version of frequency planning leads us to the study of 
the mathematical M I N I M U M K - P A R T I T I O N problem and its semidefinite 
relaxation (which we considered so far mostly as a "black box" providing 
lower bounds) 

In Chapter 7, we mostly review results on a polytope, which is ob
tained as the convex hull of the feasible solutions to an integer linear 
programming formulation of the MINIMUM K-PART problem. Par 
ticular emphasis is on the hypermetric inequalities. 

In Chapter 8, we first give an introduction to semidefinite program
ming and then study the semidefinite relaxation for the M I N I M U M K-

P A R T I T I O N problem. In particular, we describe a large class of valid 
inequalities for the solution set of the semidefinite relaxation (a shifted 
version of hypermetric inequalities), and we prove that neither the linear 
programming relaxation of the integer linear programming formulation 
nor the semidefinite programming relaxation is always stronger than the 
other 



HAPTER 

F r e q c y la SM 

The General System for Mobile Communicaons or GSM,1 for short, is a GSM 
multi-service cellular communication system providing speech and data 
services. The most important service is radio telephony, but data services 
like short message service (SMS) and mobile Internet access building 
on the Wireless Application Protocol (WAP) are also rapidly gaining 
popularity. 

In this chapter, the ground is laid for understanding the constraints 
and the objectives of frequency planning for a GSM network. Moreover 
the frequency planning problem is informally stated. A brief sketch of 
GSM's history is given in Section 2.1. The four major subsystems are 
explained in Section 2.2, and those parts of the radio interface which are 
relevant to frequency planning are discussed in detail. In Section 2.3, 
we show how to phrase frequency planning as an optimization problem, 
explain the constraints to be met, discuss how the input data is generated, 
and report on practical aspects of frequency planning. The reader who 
is familiar with GSM and is primarily interested in frequency planning 
may skip straight to Section 2.3. 

2.1 Brief History of GSM 

GSM has been designed as a pan-European cellular communications sys
tem to be operated in the 900 MHz radio frequency band. It has subse 
quently been extended to the 1800 MHz band in Europe. Today, there 
are also variants operated in the 1900 MHz band in other parts of the 
world. The respective systems are nowadays called GSM 900, GSM 1800, 
and GSM 1900. A fourth variant, called GSM 400, is under specification 
and will operate between 400 and 500 MHz. Table 2.1 lists the precise 
frequency bands for mobile station to base station (up-link) and base 

1GSM and "General System for Mobile Communications" are trademarks of the 
GSM Association, Geneva Switzerland. 
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station to mobile station (down-link) radio communication for all GSM 
variants. Apart from the frequency bands (and the thereby caused dif 
ferences in the radio transmission equipment) there is little difference 
between the systems 

system up-link band down-link band 
GSM 900 890-915 MHz 935-90 MHz 
GSM 1800 1710-1985 MHz 1805-1880 MHz 
GSM 1900 850-1910 MHz 1930-1990 MHz 

GSM 00 50 .457 .6 MHz 
7 8 . 8 - 0 MHz 

460.4467.6 MHz 
4 8 8 . 8 - 4 0 MHz 

Table 2.1: GSM radio f q u e n c y bands 

In 1978, two bands of 25 MHz radio spectrum around 900 MHz we 
reserved for mobile communication in Europe. In 1982, the Conferenc 

CEPT Europeenne des Postes et Telecommunications (CEPT) established the 
Groupe Speciale Mobile, abbreviated as GSM. The task of this group was 
to develop the specification of a pan-European mobile communications 
network. Four years later, a Permanent Nucleus of GSM was set up 
to coordinate the further developments, including the installation of test 
beds to compare alternative system and radio interface designs. By 1987, 
it was apparent that the new (second generation) system would be digital 
(as opposed to the then existing first generation analog systems) and use 
time division multiple access on the radio interface. 

On the 7th of September 1987, thirteen European countries signed the 
GSM Memorandum of Understanding (MoU) which covered, for exam
ple, t imescales for the procurement and the deployment of the system, 
compatibility of numbering and routing plans, concerted service intro
ductions, and harmonization of tariff principles (cf. Mouly and Pautet 
[1992]). From then on, many Posts, Telegraphs, and Telephones pub-

PTT lie operating companies (PTTs), manufactures, and research institutes 
collaborated in the design of an entirely digital system. 

About two years later, the United Kingdom published a document 
calling for a mass market mobile communications system operating in 
the 1800 MHz frequency band. This lead to the definition of DCS-1800. 
DCS-1800 is now being called GSM 1800. 

Around 1990, it became evident that a deployment of GSM systems 
within the foreseen timescales would be impossible without issuing the 
specification in mutually compatible phases. GSM became an evolv
ing standard. The majority of the Phase 1 specification was published 
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in 1990. At that time, the Technical Specification of GSM 900 contained 
130 recommendations on more than 5000 pages. These recommenda
tions comprised the full specification of the radio interface as well as 
a detailed specification of infrastructure, architecture, and many intra-
and intersystem interfaces. The first GSM pilot network was successfully 
demonstrated at the Telecom '91 fair, organized by the International 
Telecommunication Union (ITU). Later in the same year, several net TU 
works were fully operational, but type approved GSM terminals were not 
available, and GSM was made fun of as the acronym for the prayer "God 
Send Mobiles." The reason was simply that the procedures for type ap
proval were not settled. In April 1992, an Iterim Te Approval (ITA) ITA 
was agreed on. 

In the course of 1992, hand-held terminals with ITA became widely 
available, and by the end of 1992 GSM networks were operative in Den
mark (2), Finland (2), France (1), Germany (2), Italy (1), Portugal (2) 
and Sweden (3). Some roaming agreements had also been signed. In the 
year 1993, the first million of GSM subscribers was registered, 70 parties 
from 48 countries had signed the MoU, and the British operator One 
2One launched the first GSM 1800 network. The world-wide success of 
GSM is well reflected by its growth in terms of operating networks, total 
number of subscribers, and the number of countries with GSM installa
tions over the last decade, see Table 2.2, basing on figures published by 
GSM Association [2000]; www.emcdatabase.com [2000] 

year networks subscribers countries 

1992 250,000 

1993 32 1,000,000 18 
199 000,000 

1995 117 2,000,000 

199 30,000,000 

1997 178 73,000,000 07 
1998 320 135,000,000 118 
1999 355 255,000,000 30 
2000a 37 397,000,000 

a O r 2000 

Table 2.2: Growth of GSM 

GSM soon spread beyond Europe. In 1992, the first non-European 
operator, Telstra from Australia, had signed the MoU. In 1994, the Fed
eral Communications Commission (FCC) of the United States of America 

http://www.emcdatabase.com
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auctioned several licenses to operate mobile networks around 1900 MHz. 
No particular network type was imposed, and the first GSM 1900 net 
work (then still called PCS 1900) was launched by American Personal 
Communications in November 1995. 

By the end of the third quarter of the year 2000, there were 376 
operating GSM networks world-wide with a total of 396.6 million sub
scribers. In Europe alone (including Russia), there were 141 GSM900 
and GSM 1800 networks with a total of 255.1 million subscribers. 

In the meantime, the specification of GSM had been continued. GSM 
Phase 2 was issued in 1993. Numerous extensions were made such as an 
option for half-rate speech telephony, improved short message services 
calling/connected line identity presentation, call waiting and call hold 
features, mul t ipar ty calls, and advice of charge. But data transmission 
kept essentially restricted to at most 9.6 kbps. Opening up this bottleneck 
has become a central theme in the still ongoing specifications of Phase 2+ 
Three major new technologies are introduced. (The transmission rates 
are taken from GSM Association [2000, Glossary]) 

CSD High Speed Circuit Switched Data (HSCSD) allows the transmis 
sion of circuitswitched data with a speed of up to 57. kbps. The 
data rate per time slot is increased to 14.4 kbps and up to four 
consecutive time slots may be concatenated. 

PR General Packet Radio Service (GPRS) introduces the option for 
packetswitched services into GSM. GPRS will provide data trans 
mission speeds of up to 115 kbps to mobile users 

Enhanced Data for GSM Evolution (EDGE) uses a new modulation 
scheme to allow data transmission with rates of up to 38 kbps on 
the basis of the GSM infrastructure. 

These technologies, however, require a higher signal to noise ratio at 
the receiver (i.e., they can cope with less interference) than regular data 
transmissions in order to guarantee proper reception. This has an impact 
on the planning of the radio interface in general and frequency planning 
in particular. 

Finally, over the past years the standards for third generation cellular 
mobile systems (IMT-2000) have been under development. The Uni  
versal Mobile Telecommunications System (UMTS) is one of them, for 
which a first standard was issued in the beginning of the year 2000. The 
radio interface of UMTS is different from that of GSM. The Code Di 
vision Multiple Access (CDMA) scheme is used, and no frequency plan
ning problem comparable to that of GSM has to be solved. UMTS is 
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expected to be commercially available in Europe around the year 2002. 
It allows for true global roaming, and it is supposed to support a wide 
range of voice and data services. Depending on the user mobility and the 
propagation environment, different maximal data transmission rates are 
foreseen: 144 kbps for vehicular, 384 kbps for pedestrian, and 2 Mbps for 
indoor users. UMTS will be deployed parallel to GSM, and more than 
ten years of coexistence of GSM and UMTS are expected. In Germany, 
for example, the first GSM license expires at the end of the year 2009. 

2.2 The G e n r a l System for obile Communication 

GSM is a multiservice cellular radio system, capable of transmitting 
speech as well as data and with numerous supplementary features. The 
area covered by a GSM network consists of (overlapping) cells, which are 
served by stationary antennas. The kind of service provided depends on 
the conten of he subscription, the apabilities of h e t k , and the 

apabilities of userel equien 

2.2. Mobile Stat ions 

radio link connects a mobile station to the GSM network infrastructure. 
A switched-on mobile station is either in idle mode or in dedicated mode. 
In idle mode, the mobile station listens to control channels, but does not idle mode 
have a channel of its own. In dedicated mode, a bidirectional channel dedicated mode 
is allocated to the mobile terminal allowing it to exchange information 
with and through the GSM network. A mobile terminal switches from 
idle into dedicated mode, for example, if the user wants to place a call 
The mobile sends a corresponding request to the cell of which it monitors 
the control channel. Another example is the arrival of a call. In that case, 
however, the network is generally not aware of the cell a mobile terminal 
is listening to (if any) so that the mobile is "paged. 

To limit the amount of paging messages, location areas are defined. 
A location area is a group of cells, and every cell belongs to exactly one location area 
location area. The identity of the location area is broadcast by each cell 
so that a mobile station can always find out what location area it is in. In 
case the mobile is moved and the location area changes, a message is sent 
out, and the network registers the change. This process is called location 
updating. When a call for a mobile station arrives, a paging message for location updating 
that mobile station is broadcast in all cells of the location area the mobile 
station has last registered in. (Sometimes, this is preceded by paging the 
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mobile station only in the cell of last active contact with the network.) If 
this paging fails, a paging message is broadcast in all cells of the network. 

A mobile terminal may, of course, also be moved while in dedicated 
mode. Depending on the distance to the serving base station and the 
propagation conditions, the radio link can degrade below the required 
quality. The bidirectional channel has then to be dropped or to be main
tained by another cell. Changing the serving cell in dedicated mode is 

and-over called hand-over. During a hand-over, the network has to reroute the 
communication channel without the user noticing. The decisions, when 
to perform a hand-over and to which cell, are taken in the network in
frastructure, but with the support of the mobiles. Each mobile terminal 
routinely monitors a list of neighboring cells, records the reception qual 
ity, and sends measurement reports the network. 

Despite the option of international roaming, a GSM telephone call 
usually comes to an end at national borders due to a call drop. The rea
sons are primarily billing issues. But (presuming frequency band com
patibility) the mobile station may then log on into a foreign network in 
order to place and to receive calls, if the user's subscription allows inter 
national roaming and appropriate roaming agreements are made between 
the operators 

2.2.2 S u b s y s t e m s 

Next to the mobile sttions, the three further major parts of GSM are 
the base station subsystem, the network and switching subsystem, and the 
operation and maintenance subsystem. A detailed description of these 
subsystems and their interfaces is given in the relevant standards issued 

ET by the European Telecommunications Standards Institute (ETSI), Sophia 
Antipolis, France. A more accessible source of information, however, is 
the book of Mouly and Pautet [1992]. 

MS A Mobile Station (MS) usually consists of some mobile equipment, 
SIM like a hand-held mobile, and a Subscriber Identification Module (SIM) 

which is inserted into the mobile equipment. Depending on the frequency 
band of the network, see Table 2.1, different mobile equipment is typically 
required, but the same SIM can be used. Modern dual- or t r ip leband mo
bile terminals allow to communicate in two or three of those bands. The 

IMS SIM carries an International Mobile Subscriber Identify (IMSI), personal 
izing the mobile equipment, and can be protected by a Personal Identity 

PIN Number (PIN), similar to the PINs of credit cards. The SIM is the peer 
of the network during authentication, and it is involved in ciphering and 
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d e i p h e i n g t a n s m i t e d mesages (when encryption is applied). 
The Base Station Subsystem (BSS) comprises base transceiver sta- BSS 

tions and base station controllers. A Base Transceiver Station (BTS) 
is the peer of a mobile terminal in radio communications, both having 
radio transmission and reception devices, including antennas and all nec 
essary signal processing capabilities. The site at which a BTS is installed 
is organized in sectors; one or three sectors are typical. An antenna is sector 
operated for each sector. If three sectors exist, then antennas with an 
opening angle of 120 degree are usually employed. If only one sector ex
ists at a site, then an omnidirectional antenna can be used. (The details 
of how many sectors to choose, which antenna types, etc., depend on 
the practical needs, and are more complex than indicated here.) Each 
sector defines a cell. The capacity of a cell is determined by the number cell 
of elementary transmitter/receiver units, called TRXs, installed for the TRX 
sector. As a rule of thumb, the first TRX of a sector provides capacity 
for 6 parallel calls, and each additional TRX for seven to eight more calls 
The reduced capacity of the first and some of the additional TRXs is due 
to the need to transmit cell organization and protocol information. A 
maximum of 12 TRXs can be installed for one sector of a BTS. Every 
BTS is connected to one Base Station Controller (BSC), whereas one BS 
BSC typically handles several BTSs in parallel. A BSC is in charge of 
the allocation and release of radio channels as well as the management 
of hand-overs. All cells in a location area have to be controlled by the 
same BSC, but one BSC may serve more than one location area. 

The Network and Switching Subsystem (NSS) manages the commu- NSS 
nication to and from GSM users. Every BSC is connected to one Mobil 
service Switching Center (MSC), and the core network interconnects the MS 
MSCs. Specially equipped Gateway MSCs (GMSCs) interface with other core network 
telephony and data networks. The Home Location Registers (HLRs) and GMS 
Visitors Location Registers (VLRs) are data base systems, which contain HL 
subscriber data and facilitate mobility management. Each Gateway MSC VL 
consults its home location register if an incoming call has to be routed 
to a mobile terminal. The HLR is also used in the authentication of the 
subscribers together with the Authentication Center (AuC). The VLRs 
are associated to one or more MSCs and temporarily store information 
on all subscribers that were last traced in one of the BSCs attached to 
any of its associated MSC(s). The interworking of all components of the 
NSS is organized via a SS7 signaling network. 

The Operation and maintenance SubSystem (OSS) is specified to a OSS 
smaller extent than the rest of GSM. The network is run and maintained 
through the OSS: calls have to be billed and charged; SIMs have to 
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OM 

be initialized; stolen or misbehaving mobile equipment is registered and 
possibly excluded from network service on the basis of the Equipmen 
Identity Register (EIR). The network and switching subsystem, the base 
station subsystem, and, to some extent, also the mobile stations (via the 
BSS) are administered from Operation and Management Centers (OMC) 

Three of the four subsystems are shown in Figure 2.1: Mobile Station 
(MS), Base Station Subsystem (BSS), and Network and Switching Sub
system (NSS). The interface between the MSCs and the BSCs is called 
A interface; the interface between the BSCs and the BTSs is called Abi 
interfac] and the dio terfac is between the BTSs and the MSs 

NSS 

MSC 
A interface 

BSC 
Abis interface 

BTS 
Radio interface 

BSS 

Figure 2.1: rchiteture of GSM 

2.2. etwork Dimensioning 

Having seen the major subsystems of GSM, a natural question is how to 
lay out an actual GSM network such that it provides the desired services 
costeffectively. Numerous decisions have to be taken. We give a few 
examples with a strong appeal to combinatorial optimization: 
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Where to insa l l the BTSs? How to adjust the antennas and what 
frequencies to use? How to connect the BTSs to the BSCs, and where to 
put the MSCs? How to connect the MSCs among each other and to the 
BSCs? 

These important questions have to be answered prior to network de 
ployment or expansion. All of them have an impact on generating rev
enues, because these decisions affect the cost of deploying and operating 
the network as well as the quality of service that can be offered. 

Before focusing on frequency assignment in the chapters to come, we 
pick out some of these questions and explain the underlying optimization 
problem briefly. We give references, whenever we are aware of them. 

At the core of planning a network deployment or extension is cus 
tomers' demand. This demand may be observed or forecasted. In one way 
or another, the customers' demand for mobile telecommunications has to 
be made precise in a geographical distribution in terms of Erlang, a unit 
for measuring telecommunication demand. This distribution essentially 
states how large the need for mobile telecommunications is depending on 
the location. 

Base Transceiver Stat ion Location is the step in which radio engi 
neers decide how many and where to erect BTSs in order to provide 
service for the (prospective) demand. This is a mixture of deter 
mining sites, which are preferable from an "electromagnetic" point 
of view (providing good coverage), and searching for sites, which 
are actually available. Research in this direction has been carried 
out, for example, in ACTS/STORMS project (supported the Eu
ropean Union), see Menolascino and Pizarroso [1999], as well as by 
Eidenbenz, Stamm, and idmayer [1999] and Tutschku, Mathar 
and Niessen [1999] 

Base Transceiver Stat ion Clustering denotes here the problem of 
where to place the BSCs and which BTSs to connect to them. 
Examples for the issues to be taken into account are the costs for 
renting or building spaces for operating BSCs and the running cost 
of attaching BTSs to BSCs by cables or pointto-point radio links 
The mobility profile of customers also plays a role here, because 
hand-overs between cells handled by the same BSC are treated lo
cally for the most part, whereas an inter-BSC hand-over requires a 
rerouting of connections in the core network also. Similar comments 
apply with respect to location-updating. Ferracioli and Verdone 
[2000] report on results in this area. 
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Core Network Des ign denotes here the planning necessary to decide 
where to operate MSCs, which BSCs to connect to them, and how 
to interconnect the MSCs among each other. The locations of MSCs 
are usually more dependent on "political" rather than "technical" 
considerations. The core network may comprise leased lines, the 
operator's own cable infrastructure, and pointto-point radio links 
Usually, not every pair of MSCs is connected directly in the core 
network. Instead, routing tables are used to describe how to route 
traffic from one MSC to another along one or more links. The 
network has to be laid out (selection of connections, capacities, and 
routings) in such a way that a failure of a single link or a failure of a 
single MSCs has only a "manageable" impact on the traffic volume, 
which can be handled by the remaining part of the network. Such 
a network is called "survivable" in the literature, see, for example, 
Wessäly [2000] and the references therein. 

Frequency Ass ignment or Channel Assignment or Frequency Plan
ning are synonyms for the following problem. Once the sites for 
the BTSs are selected and the sector layout is decided, the number 
of TRXs to be operated per sector has to be fixed. This is done 
by means of the Erlang-B formula, taking the demand to support 
and the maximally tolerable blocking probability (of 2% or the like) 
as input. The result is a listing of the demand in TRXs per cell 
Now, every TRX has to receive a channel. This demand has to be 
satisfied by a frequency plan. 

The last problem is going to be the central topic from now on, and 
further details of the radio interface are discussed next 

FDM 
TDM 

annel 

2.2. long the Radio nterface 

In order to understand the various restrictions and the possible alterna
tive objectives in frequency planning, we take a closer look at the tech
nicalities of the GSM radio interface. Even more details can be found in 
the books by Mouly and Pautet [1992] and Redl Weber, and Oliphant 
1995] as well as in the relevant ETSI standards. 

GSM uses a Frequency Division Multiple Access (FDMA) and Time 
Division Multiple Access (TDMA) scheme to maintain several communi 
cation links within one cell "in parallel." The available frequency band 
is slotted into channels of 200 kHz width. The time axis is organized 
in 8 cyclicly recurring time slots, numbered TN0, TNI , . , TN7. 
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schematic frequency/time diagram is shown in Figure 2.2. The square 
blocks of 200 kHz by 7.5/13 ms in the frequency/time diagram are called 
slots. BTSs and MSs both transmit bursts of data within slots Of the 
at most 1 7 b i t per burst, no more than 11 bit are traffic data. 

A frequency 

i  
k 

T K . . . . . . . 

• • • • • • • 
UN TN TN TN TN4 TN TN TN TN time 

75/13 ms 39 /13 ms 
/13 ms  

Figure 2.2: Frquency/time slot diagram 

ot 
rst 

The direction from BTS to MS is the downlink and the reverse di 
rection is the up-link, see Table 2.1. Up- and down-link channels are 
paired and referred to by their absolute radio frequency channel numbers 
(ARFCNs), which are defined separately within each variant of GSM. 
In GSM 900, for example, there are 124 (paired) channels numbered 
through 124 and the associated frequencies are 890.0 MHz + (200 kHz) • n 
for the up-link and 9350 MHz + (200 kHz) • n for the down-link part of 
the nth channel. The 374 channels in GSM 1800 are numbered from 512 
up to 885, and the frequencies are 1710.0 MHz + (200 kHz) • (n - 511 
and 1805.0 MHz + (200 kHz) • (n - 511) for the nth up- and down-link 
channel, respectively. 

Recall from Section 2.2.1 that the first TRX of a sector usually offers 
capacity for up to six parallel (full-rate) speech connections and that ad
ditional TRXs typically offer seven to eight such connections. The first 
TRX has to use TNO to broadcast cell organization information, among 
others. The channel used by the first TRX is therefore called broad 
cast control channel (BCCH). Additional cell management information 
is transmitted in one of the time slots TN2, TN4, or TN6. The remaining 
six slots are used for traffic. Although, the need for signaling increases 
with additional TRXs, this can often be handled by already installed 
signaling channels Hence, some additional TRXs may transmit traffic 

down 
upli 

CC 
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data in all eight time s lo t . The channels u s d by any of he additional 
TC TRXs in a cell are called traffic channels (TCHs). 

For full-rate speech telephony, the BTS and MS transmit a burst of 
encoded speech data of 114 bit in every eighth time slot. This results in a 
net speech rate of 13 kbps. (An option for halfrate service is specified in 
GSM Phase 2. Only about half the number of bits are transmitted, but 
due to a different encoding scheme the perceived quality is much better 
than half as good.) 

Speech data is assembled in code words of 456 bit. If a code word 
is distorted at scattered rather than clustered positions, then the code 
allows for error detection and correction to a significant extent. Only 
every eighth bit of a code word is therefore transmitted in one burst 
and each code word is spread over eight bursts. The applied scheme is 
referred to as restructuring, reordering, and diagonal interleaving. 

Several hurdles have to be taken in order to receive a burst properly 
at a remote receiver. At reception, the signal has suffered from distortion 
in the modulator and demodulator, by the transmission medium, from 
noise sources, and from fading phenomena. In an urban environment 
for example, the transmission medium suffers from shadowing, multipath 
propagation, and resulting delay spread. The noise sources comprise nat 
ural frequency radiation, human-made sources, and, most prominently, 
other transmitters within the GSM network itself 

A cellular system like GSM uses by definition Space Division Multipl 
SDM Access (SDMA) to the precious resource of radio spectrum. (In the sense 

that the same frequency can be reused in several cells, but not yet in the 
sense of reuse within the same cell, which is possible with beamforming 
antennas.) A cellular layout of the systems allows to support a high traffic 
density over large regions. The area covered by cells varies considerably. 
The "cell diameter" ranges from around 20 km or 35 km for Macro-cells 
in GSM 1800 and GSM 900, respectively, over a few hundred meters for 
Micro-cells to less than one hundred meters for (indoor) Pico-cells. 

Between the number of channels available to a GSM operator and 
the number of TRXs operating in the network are often two orders of 
magnitude. Hence, the same frequency slot has to be used in parallel on 
several BTSs, and the only shielding against mutual interference comes 
from attenuation. Only co-channel and adjacent channel interference 
i.e., signals from transmitters using the same channel or one of the two 
neighboring channels, have to be considered as serious intrasystem noise 
sources. According to the GSM specification, a burst has to be decoded 
properly if it is received at a signal level of at least 9 dB above noise, 
including intrasystem interference. 
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A number of measures is foreseen in GSM to counteract the generation 
of and the sensitivity to interference. We mention only those with 
significant impact on the frequency planning problem. 

Power Control is a feature of GSM that allows to dynamically ad
just the transmission power to an appropriate level. A maximum 
emission power is specified for GSM transmitters. For hand-held 
mobiles this is 1 W or 2 W, depending on the GSM variant. In case 
less transmission power is sufficient to guarantee proper reception, 
the power can be reduced. Any power excess would only cause un
necessary interference and power consumption. A trade off between 
power control and hand-over has to be made: without the emission 
power being at the maximum level, a hand-over may be favorable 
to enter another cell, where a yet smaller power level suffices 

Discontinuous Transmission (DTX) is a feature of GSM that sup
presses transmission if no data has to be transmitted. There is, for 
example, no need to transmit the (short) phases of silence within 
a conversation. The transmission is suspended and the receiving 
mobile generates a so-called comfort noise to make the suppression 
(almost) imperceptible. Triggered by a mechanism called voice ac
tivity detection, the transmission resumes as soon as the need arises 
Figure 2.3(a) gives an illustration, where the pattern indicates the 
bursts. In case a channel is used as BCCH, a burst has to be trans 
mitted in every time slot and DTX cannot be applied. (Hence, none 
of channels in Figure 2.3(a) is used as BCCH in the corresponding 
cell) 

Slow Frequency Hopping (SFH) allows the transmission of consec 
utive bursts on different frequencies. Two variants exist. With 
synthesized frequency hopping, each TRX of a sector transmits suc 
cessive bursts on different channels. The sequence, in which the 
available channels are switched, is determined by two parameters 
One is the Hopping Sequence Number (HSN), selecting one out 
of hopping sequences, and the other is the Mobile Allocation 
Index Offset (MAIO), which determines the starting point within 
the sequence. If more than one TRX is used for a sector, baseband 
frequency hopping can be applied alternatively. Each TRX uses a 
fixed channel, and the code words constituting a flow of communi 
cation are dispatched to changing TRXs, see Figure 2.3(b) 

Frequency hopping addresses two problems. The quality of a ra
dio path is frequency dependent requency diersity is obtained 

frequency 
divert 
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ierferer diversi 

by varying the frequency, and the odds of always having a bad 
frequency for a particular radio link are thus reduced. This is of in
terest mostly to users who are moving slowly or not at all. For fast 
moving users, the diversity is caused by the movement. Another 
effect of changing the transmission frequencies is that successive 
bursts suffer from varying sources of interference. This phenomenon 
is called interferer diversity. The distortions of the received signals 
are less correlated, and this increases the probability of correcting 
the transmission errors. Notice, however, that in any case no hop
ping is applied at the broadcast control channel (BCCH) in time 
slot TNO. 

1 frequency k frequency 

TN0 TN1 TN2 TN3 TN4 TN5 TN6 TN7 TN0 time TN0 TN1 TN2 TN3 TN4 TN5 TN6 TN7 TN0 time 

a) b) 

Figure 2.3: DTX and SFH 

Although, it is not stated here explicitly, there are numerous param
eters, which the individual GSM operator is able to change. The setting 
of those parameters also affects the efficiency of the radio interface. 

2.3 tomatic Frequency Planning 

As stated before, frequency planning is a key point for providing capacity 
and quality of service by fully utilizing the available radio spectrum in 
GSM. The automatic generation of a good frequency plan for a GSM 
network is a delicate task for which the three major building blocks are: 

(i) a concise model 

(ii) the relevant data 

(iii) efficient optimization techniques 

The imporance of each p r q u i s i t e is explained in the following. 
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First, the automatic generation of a frequency assignment by a com
puter relies on the representation of all relevant aspects. Hence, a concise 
(mathematical) model of the frequency planning problem is necessary. 
On one hand, this model should be simple for the sake of easy handling. 
On the other hand, all information has to be captured which is necessary 
to accurately estimate a frequency plan's quality (without testing it in the 
real network). This is, for example, a point where the traditional model 
with hexagonal cell shapes fails, compare with Section 2.3.2. (The model 
still receives attention in the literature, however, because all relevant 
data is easily generated and planning based on this model is more easily 
accessible.) The spectrum of models currently in use is wide. It ranges 
from simplistic graph coloring models over graph-based models dealing 
with the maximization of satisfied demand or the minimization of inter 
ference to models building directly on signal predictions and looking at 
the probability of failed code word reception (frame erasure rate), see, 
for example, Koster [1999], Murphey, Pardalos, and Resende [1999], and 
Correia [2001, Section 4.2]. After preparing the ground in Section 2.3.1, 
we come back to models in Chapter 3. 

Second, the concise model is futile unless the corresponding data is 
provided. The main difficulties here are related to data on radio signal 
levels. This data is needed in ample ways, for example, in order to 
estimate how much interference can occur between transmitters or to 
determine between which cells a hand-over can be supported. Details are 
discussed in Section 2.3.2. 

Third, with a concise model and reliable data in hands, the task of 
producing a good frequency plan can be reduced to the problem of finding 
a solution to a mathematical optimization problem. Special software 
for this purpose is in demand. Operations Research has picked up this 
problem in the late 1 9 0 s and dealt with it steadily, compare Metzger 
[1970], Hale [1980], and Roberts [1991a]. The most progress has been 
made within recent years, accompanying the deployment and extension 
of GSM networks and often stimulated by close cooperations between 
research facilities and network operators or equipment manufacturers 
We come back to planning algorithms in Chapter 4. 

An overview on the frequency planning process in practice is given 
in Figure 2.4. Starting from the site data, including information on 
antenna locations, sectorizations, tilts, etc., as well as information on 
terrain, building structures, and sometimes even vegetation data, the 
signal propagation is predicted for all antennas. The results are used in 
calculation the cell areas. Linked to cell areas is the interference analysis 
the hand-over planning, and the traffic estimation, each of which produces 
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mandatory input data for the actual frequency assignment. Details on 
most of these items are given in the remainder of this chapter 

e dat 

path loss p r d i o n 

l c a l u l a t o n 

i n t n c e analysis hand-over planning 

n t n c e mat 
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pa ra ton mat channel r q u i m e n t 

frequency assignment 

Figure 2 . : Frquency planning proc 
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sector 
cell 

2. b j e c t v e and C o n s r a i n t s 

Next, we explain the most important parameters to be taken into account 
for frequency planning. Those parameters must be present in the math
ematical model. We use a small artificial but realistic example network 
called T N Y for this purpose, see Figure 2.5. 

NY comprises three sites, named A, B, and C. Site A has three 
sectors with sector numbers 1, 2, and 3. Sites B and C have two sectors 
numbered 1 and 2. Each sector of a site defines a cell. The numbers of 
elementary transceivers (TRXs) installed per cell are given in Table 2.3. 

Cell A3 Bl 

Xs 

Table 2.3: Number of TRXs installed per c l l 
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Figure 2.5: Network T N Y 

We assume that TINY is a GSM 1800 network and that the paired fre 
quency bands 1750.0-1752.4 MHz and 1845.0-187.4 MHz are available. 
The absolute radio frequency channel numbers (ARFCNs) of the corre 
sponding thirteen channels are 711-723, and we call this set the spectrum 
of available channels 

Due to technical and regulatory restrictions, some channels in the 
spectrum may not be available in every cell. Such channels are called 
locally blocked. Local blocking can be specified for every cell. We assume 
that channels 711 and 712 are blocked in cell 2, and that channel 719 
is blocked in cell CI. 

Each cell operates one broadcast control channel (BCCH) and possibly 
some dedicated traffic channels (TCHs). Two to three TCHs in a cell are 
common for urban areas today. 

The difference of the ARFCNs of two channels is a measure for their 
proximity. Sometimes a restriction applies for a pair of TRXs on how 
close their channels may be. This is called a separation requirement 
and its purpose is to ensure that the TRXs can transmit and receive 
properly or to support the preparation of call hand-overs between cells or 
to avoid strong interference. Separation requirements and locally blocked 
channels give rise to so-called had constraints None of them is allowed 
to be violated by an assignment 

There are several sources of separation requirements. For example, 
if two or more TRXs are installed at the same site, cosite separation 
constraints have to be met. A co-site separation of 2 is assumed for all 
sites of T N Y . Furthermore, if two TRXs serve the same cell, a cocell 
epation constraint has to be met. The minimum co-cell separation is 

specru 

locall blocked 

ard conrai 

co searaton 

cocell searation 
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in each cell for TINY. In practice, this value may vary from cell to cell 
due to different technologies in use, but the values given here are typical 

AI 

A2 

Bl 

Table 2. Hand-over rlation for NY 

During a hand-over, an ongoing call is passed from one cell to another 
Technically speaking, the cellular phone switches from using a channel 
operated in the passing-on cell to a channel used by some TRX in the 
receiving cell. The hand-over relation is defined between all ordered pairs 
of cells and tells from which cell to which other cell a hand-over is possible. 
The hand-over relation for TINY is given in Table 2.4. A "•" at the 
intersection of a row and a column indicates that a call may be handed 
over from the cell listed in the row to the cell listed in the column. 

Since the hand-over operation is a sensitive process, some separation 
between the channels in the two involved cells is required. Table 2.5 lists 
the minimum separation to support hand-over for TINY. The BCCH and 
all TCHs in the source cell have to be separated by at least 2 from the 
BCCH in the target cell. The BCCH and all TCHs in the source cell 
have to be separated by only 1 from the TCHs in the target cell. These 
values are again typical 

BCCH TCH 
BCCH 
TCH 

Table 2.5: Hand-over sparation for NY 

In GSM, significant interference between transmitters may only occur 
if the same or adjacent channels are used. Correspondingly, we speak of 
cochannel and adjacent channel interference. 

Interference in the up-link band may occur between mobile stations 
being served in different cells. Interference in the down-link band may 

co and adjacen 
channel 
iterference 
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occur between TRXs operated at different sites. Although the up-link 
is usually more critical in GSM than the down-link, the interference is 
specified for the down-link. The reason for this is the lack of appropriate 
ways to predict up-link interference. Already the prediction of down-link 
interference is intricate, see Section 2.3.2. 

Interference relations do not have to be symmetric, i.e., if cell Bl 
interferes with cell Al, cell Al does not necessarily also interfere with 
cell Bl. And in case two cells interfere mutually, the ratings of the 
interference can be different. The ratings are normalized such that all 
interference values lie between 0.0 and 1.0. The co- and adjacent channel 
interference ratings for cell pairs in TINY are specified in terms of affected 
cell area in Table 2.6. The upper number in each cell of the table refers to 
co-channel interference, and the lower number refers to adjacent channel 
interference. Blank spaces indicate that either no interference is predicted 
or interference is ruled out by separation requirements 
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Table 2 . : I n t n c e b e w e n cl ls in NY 

The specification of interfence for pairs of cells rather than for pair 
of TRXs presupposes that all TRXs in a cell use the same technology, the 
same transmission power, and emit their signals via the same antenna. If 
this assumption does not hold, then a sector of a base transceiver station 
can be treated as the host for several "cells" within which the assumption 
holds. This is for example relevant if discontinuous transmission is ap-
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plied, because the average interference caused by a TCH applying DTX 
is less than that of the BCCH, which is not allowed to apply DTX. 

In case interference is very strong, it may not be possible to pro
cess calls. Interference should then be ruled out by means of separation 
requirements with minimum separation of one or two. A minimum sepa
ration of one excludes co-channel interference, because the involved pairs 
of TRXs may not use the same channel. A minimum separation of two 
excludes co- and adjacent channel interference. For TRXs installed at the 
same site, interference is generally ruled out by appropriate co-cell and 
co-site separation requirements. Table 2.7 displays a channel assignment 
for T I N Y , which incurs no co-channel interference and a total of 0.02 ad
jacent channel interference. The interference relations are also called sof 

so constrai constraints in the literature. 

Cell Al A2 CI C2 
TRX | | | | | 

Channel 15 | 13 | 22 | | 15 14 23 | 18 

Table 2.7: Feasible as ignment for NY incur ing i n t n c 

Because a frequency assignment is typically already installed in (parts 
of) the network when generating new plan, some of the existing assign
ments might have to be kept fixed. A TRX, for which the channel shall 

-)cangeable not be changed, is called unchangeable. Otherwise, we call it changeable 
All this data has to be represented adequately and in a computation

ally tractable fashion as a basis for automated frequency planning. 
Our objective then is to find frequency plans incurring the least pos 

sible amount of overall interference, which we define as the sum over all 
interferences between pairs of TRXs. Although this figure reveals only 
a small part of the picture from a practical viewpoint, it has neverthe 
less proven effective in practice. We give one example for its inadequacy. 
Let us consider two frequency assignments incurring the same amount 
of overall interference. In one case, the entire interference occurs in one 
area, whereas in the other case the interference is scattered in small quan
tities. The second plan is certainly favored in practice, but the objective 
function does not show the difference. A few alternative optimization 
objectives (with other drawbacks) are discussed in Section 3.1.2. 

The effects of discontinuous transmission (DTX) and slow frequency 
hopping (SFH) are not explicitly addressed here. How this can be done 
accurately during the planning process is, in fact, unclear, compare with 
Section 2.3.2. Common practice is to evaluate their impact by computer 
simulations once ordinary frequency planning has been performed. In 
case the outcome is not satisfactory, the planning process is repeated. 
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Our v e i o n of the req asgnmt prob is, thus, as follows 

Gen e a list of TRXs, rang of channels, a list of 
locally blocked channel for ach TR as well as mini 
mum sepation, the cohannel interferene, and djacen 
hannel interference trices 

Assign to every TRX one channel rom te spectrum whic  
t locally block such tha all separtion requirements ar 

et and suc tha e sum over all interferenes occurring 
beten pai of TRX minimizd 

We give a mathematical statement of this problem in Chapter 3. Next 
we explain how the input data is generated with sufficient accuracy and 
in which way solving the above problem is embedded in practice. 

2 . 2 Precise Data 

The main difficulties concerning reliable data arise with respect to radio 
signal levels. Signal levels are provided through measurements in few 
cases only. In the other cases, the signal strength is predicted using wave 
propagation models. We sketch the most prominent tasks and the related 
problems to be tackled in preparation for algorithmic frequency planning. 

Cells and eighbors 

The area, where a mobile station may get service from a particular sector 
of a BTS, is called cell area. Cell areas may overlap. The cell areas have cell area 
to be estimated for at least two purposes. 

One purpose concerns the provision of sufficient cell capacity. We are 
looking mostly at call blocking probability here, that is, the probability 
of not being able to get full service from the network due to lacking 
capacity at the radio interface. The cell capacity is provided by installing 
TRXs. How many TRXs are sufficient for a cell depends on the expected 
traffic load. More precisely, there have to be predictions (supplemented 
by measurements) of the peak communications traffic depending on the 
location. (A relevant measure for the peak traffic is the number of busy 
hour all attempts (BHCA).) The traffic data is then related to the cell 
areas, resulting in a traffic estimate in Erlang per cell. Let Ac denotes 
the traffic of cell c in Erlang, then the number of required communication 
channels mc is determined from the wellknown Erlang formul ang- for 

c 
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by setting mc to the least possible value such that a blocking probability 
B(XC, mc) of 2%, say is not exceeded. Then the smallest number of TRXs 
is chosen for cell c, which allows to support mc simultaneous calls. 

The other purpose of calculating the cell areas is to decide on the 
hand-over relations, that is, from which cell to which other cell a hand
over should be possible. This has to be settled in advance, because every 
cell broadcasts on the BCCH to which neighboring cells a hand-over is 
supported, and, correspondingly, hand-over separation requirements have 
to be observed during frequency planning. In order to hand an established 
communication link from one cell over to another the mobile station has 
to be located in the overlap of the two cell areas. 

Notice that the cell area does not only depend on the installation 
and configuration of the BTS and its sectors (including antenna height 
tilt, transmission power, etc.) but also on the noise and interference from 
other BTSs. In addition to having a sufficiently strong radio signal at the 
receiver, this signal must also be sufficiently undistorted to be decoded 
correctly. This issue, however is neglected in the folloing discussion of 
cell area prediction models. 

The simplest model assigns each point to the cell with the strongest 
signal. The BTSs are assumed to be spaced out regularly on a grid and 
to have identical antenna configurations as well as identical transmission 
powers. The propagation conditions are taken to be isotropic. The result 

hexagonal cell is a hexagonal cell pattern. In case the antennas radiate omnidirection
ally, the BTS would be in the middle of a cell. In case a sectorization 
with 120 degree is used, the BTSs are located on the intersection of three 
cells each of the sectors serving one of the cells, see Figure 2.6(a). 

More precise cell models rely on realistic signal propagation predic
tions. For each sector, an attenuation diagram for the emitted radio 
signal is computed. For the following discussion, we assume that for 
each grid point of a regular mesh the signal strength of the surrounding 
base stations is known. Each of the grid points is a representative of its 
surrounding. Typical mesh sizes are 5 x 5m (metropolitan), 50 x 50m 
(urban), and 200 x 200m (suburban & rural). Up to which distance base 
stations have to be considered is a matter of experience. In a GS 1800 
network, this distance can be in the order of up to 50 km. 

best server The best server model is commonly used today. Each grid point is 
assigned to the cell with the antenna providing the strongest signal. This 
results in a partition of the service region into cell areas ithout overlap 
see Figure 2.6(b). 

assignment In the assignment probability model, the probability is estimated that 
probabilit a mobile station located at a given grid point is served by a given cell 
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(a) (b) (c 

Images (b) and (c) are kindly provided by E-Plus Mobilfunk GmbH & Co. KG. 

Figure 2.6: Cell models: hexagonal, best server, assignment probability 

Every cell providing a signal of sufficient quality (see the discussion be 
low) is considered as a potential server, and the probability of serving is 
computed by simulating the hand-over behavior of moving mobile sta
tions. This model gives a better indication of the cell area than the best 
server model. So far, however, it is hardly used in the context of frequency 
planning. Typical applications are related to location-dependent tariffs 
like "local calls" within city borders or fixed network tariffs at home and 
its close surroundings. In Figure 2.6(c), the probability of being served 
by the cell with the strongest signal is color coded. The lighter the color 
gets the higher is the probability of being served by one particular cell 

Interference Predictions 

Several ratings of interference are conceivable. Area-based and traffic-
based ratings are most often used in practice. The occurrence of interfer 
ence is either measured or predicted. A purely distance-driven estimation 
of interference, as it is sometimes used in Operations Research literature 
is unacceptable. There are, for example, drastic differences with respect 
to signal propagation between a flat rural environment and a metropoli 
tan environment ith narrow street canyons and irregular building struc 
tures, see, e.g., Kürner Cichon and Wiesbeck [1993] or Damosso and 
Correia [1999]. 

The standard procedure nowadays is to aggregate the grid-based sig
nal predictions into interference predictions at a cellto-cell level. For 
an area-based rating, this is typically done using the best server model 
see above. Signals from cells are neglected if they are more than tdB 
below the strongest signal. All other signals are considered as potential 
interference. The way, in which area-based interference is accounted for 
is depicted schematically in Figure . Two cells, A and are sho 
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together with their cell areas. The cell areas are assumed to be deter 
mined according to the best server model. We focus on interference in 
cell A caused by cell B. The shaded portion of the cell A indicates the 
area, where cell B has a signal level of at most t dB less than cell A itself 
The "interference" of cell B in cell A is taken as the number of shaded 
(distorted) pixels in cell A relative to the number of all pixels in the area 
of cell A. The same procedure, but with a different threshold value t, is 
used to determine adacent channel interference. The converse direction 
is treated identical 

Figur 7: Area-based interference prediction 

The GSM specifications state that a signal has to be decoded prop
erly by a receiver if it is 9 dB above noise and interfering signals (and 
of sufficient strength). As a consequence, the value t = 9 is often used 
as threshold in practice. An investigation carried out by Eisenblätter 
Kürner and Fauß [1999] reveals, however, that a threshold value of 15 dB 
or even 20 dB often results in frequency plans, where interference is more 
evenly distributed and at a lower overall level o satisfactory explana
tion for this observation is known so far. 

Clearly, the accuracy of the interference predictions is a cornerstone 
for automated frequency planning. An analysis of how accurate interfer 
ence predictions affect the quality of a resulting frequency plan is given 
by Eisenblätter, Kürner, and Fauß [1998], see also Correia [2001, Sec 
tion 4.2.7]. Three interference predictions are computed for the same 
planning region on the basis of the best server model and using three 
different signal propagation prediction models. 

free sace model In the free space model, the propagation conditions of free space 
are assumed but a decay factor of 1.5 rather than 1 is used. The 
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increase of the factor from 1 to 1.5 (or the like) is taken as an 
empirical value between the decay factor when only the direct ray is 
taken into account (resulting in a decay factor of 1) and the decay 
factor observed in a two ray model, see, e.g., Kürner and Fauß 
[1994]. In the two-ray model, the interaction between the direct 
ray and a reflected ray results in a decay factor of 2 for distances 
larger than a specific threshold. 

The Modified Okumura-Hata race predictor bases on an 1800 MH race model 
extension of the basic path loss equation as described in Damosso 
and Correia [1999]. Land use information is used by means of em
pirical correction factors for each land use class. Terrain variations 
are taken into account by using an effective antenna height. To
pographical obstacles are treated as knifeedges, that is, infinitely 
long, straight "razor blades" for hich a closed simple formula for 
the diffraction is k n o n . 

The eplus propagation prediction model, see Kürner, Fauß, and plus model 
Wasch [1996], is the most sophisticated approach used in the com
parison. The model consists of a combination of several propaga
tion models like COST 231-Walfisch-Ikegami MacielXia-Bertoni 
and Okumura-Hata. It is developed for GSM 1800 and calibrated 

ith numerous measurements in the network of E-Plus. 

Ranking these wave propagation prediction models has its difficulties. 
The crucial question is how to compare assignments computed on the 
basis of different predictions without implementing the assignments into 
the live network and performing measurements. In the approach taken 
by Eisenblätter et al. [1998], each assignment's interference is determined 
according to all three interference predictions. The findings are as follos. 

The assignments computed on the basis of the predictions from the 
eplus model have relatively little interference according to all three 
predictions. 

The assignments computed on the basis of the predictions from the 
free space model have decent interference ratings according to the 
race predictions but are mediocre according to the eplus predic 
tions. 

For the assignments computed on the basis of the race predictions 
the worst picture is obtained. They are mediocre to bad according 
to the two other predictions. 
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n v i w of t h i , the eplus model is ranked above the free space model 
which, in turn, is ranked above the race model (in this particular context) 
In total, varying the signal propagation predictor shows a larger impact 
on the frequency assignment quality than choosing among the different 
frequency planning heuristics considered by Eisenblätter et al. [1998] 

hich are similar to those described in Chapter 4 and Section 5.1. 

Effects of DTX and SFH 

The GSM features of discontinuous transmission (DTX) and slow fre
quency hopping (SFH) both address the problem of interference either 
by reducing interference itself (DTX) or by reducing the impact of inter 
ference (SFH). 

Neither of these features is explicitly addressed within our frequency 
assignment model, but it is possible to incorporate their effects into the 
interference ratings. Nielsen and Wigard [2000] and Majewski, Hallmann 
and Volke [2000] propose different ways to do so, both being validated 
using GSM simulators. Nielsen and Wigard [2000] introduce two param-

hopping gain eters called hopping gain and load gain by whose product the interference 
load gai rating is scaled. The setting of the parameters depends on the load of 

each cell, a voice activity factor, and the number of channels to hop 
pre factors on, among others. Majewski et al. [2000] introduce pre factors and post 

ost factors factors in order to scale interference, but do not provide the full details. 
Björklund, Värbrand, and Yuan [2000] optimize the hopping sequence 

for each cell. This sequence is determined by the hopping sequence num
ber ( ) and sequence starting point ( A I O ) . 

2.3.3 Pract ical Aspects 

Since the introduction of GSM, operators have steadily increased their 
networks coverage and capacity. This typically involves installing addi 
tional TRXs and providing them with channels. Hence, the frequency 
plan has to be adjusted. The same holds if the transmission characteris 
tics of a BTS change. 

Installing a new frequency plan is not as simple as it may sound at 
first. In Germany, for example, the operator has to submit the frequency 
plan to a governmental regulation office and ask for approval. This ap
proval is given if the frequency plan adheres to the bilateral agreements 
on channel use along national borders and if no interference with other 
radio systems operating in the same frequency band is expected. The 
restrictions from both sources are recorded as locally blocked channels. 
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The former are known in advance, but the latter are often only revealed 
through rejection. The turn around time for such an approval is in the 
order of a few weeks. 

Changes in the frequency plan take effect at the BTSs. In "old times 
the channels had to be adjusted manually at the combiners. Nowadays 
remotely tunable combiners may be used. These allow to change the 
channels through the OSS, but this convenience comes at the expense 
of less effective combiners. In principle, a TCH can be changed while 
the cell is in operation as long as the corresponding TRX is not in use. 
Changing a BCCH, however, requires to shut down the cell completely 
for a couple of minutes. Therefore changes in the frequency usage are 
mostly performed at night times. 

Another problem is that the effects of the changes are not easily 
assessed. Extensive, timeconsuming quality measurements campaigns 
could be performed, but much rather a "sit and wait" strategy is adopted 
measurements by the Operation and Maintenance Center (OMC) of the 
rate of quality-driven hand-overs and an increase in customer complaints 
substitute the explicit quality assessment. Common to both alternatives 
is that they require users which are getting service or unsuccessfully try 
to get service. This happens to a sufficient extent only at the next day. 

The way in which frequency planning is done differs from operator to 
operator. Some operators divide their service area among regional offices 
which act more or less independently. For example, E-Plus operates five 
regional offices. Between the regional offices, the channel use along the 
regional border is settled through agreements similar to bilateral agree 
ments for national borders. Obviously, regional borders (these are the 
ones an operator may choose) should be in areas with little telecommuni 
cations traffic, where planning is simple even with additional restrictions. 

Even if operators are confident in the overall reliability of the fre 
quency planning process, they try to change the BCCH assignment rather 
seldom. Recall in this context that solving the combinatorial optimiza
tion problem of finding a good frequency plan is merely one important 
step in this process. Other, equally important ones, are maintaining up 
to date and sufficiently detailed data about terrain and buildings as well 
as generating accurate interference predictions. 

Some GSM operators split their available spectrum into two separate 
parts, one for BCCHs, the other for TCHs. This is called band split. The band split 
reasoning behind performing a band split is to be able to plan the TCHs 
(almost) independently from the BCCHs. Table 2.8 shows an assignment 
for TINY, which is compatible with splitting the spectrum of 11-723 into 
a B C C b a n d of 11- and a T C b a n d of 723. 
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Cell A2 A3 B2 C2 A2 A3 C2 
TRX | 

Channel 11 16 13 11 13 11 15 19 | 23 21 21 18 

Table Asignment respecting a band split 

Planning BCCHs from a separate, often relatvely large band is one 
way to protect these channels against interference. Moreover, only TCH 
perform DTX, which leads to load-dependent interference among the 
corresponding TRXs. Again, by using separate bands, the B C C s are 
shielded against this load-dependency. The only conflicts may arise where 
the two bands meet and adjacent channel interference from TCHs ex
tends into the BCCHband. Since network expansion is mostly capacity 
enhancement provided by additional TRXs, the capacity increase is typi 
cally achieved at the expense of additional interference in the TCHband. 

While extensions and minor changes of a frequency plan are performed 
regularl major changes or even replanning the entire service area are 
treated with great precaution. Some operators are illing to replan about 
once a year, others use even larger time intervals. 

The planning proceeds in steps regardless of whether a small or a large 
change is envisaged. TRXs eligible to changes are selected, and one or a 
few frequency plans are computed. These plans are analyzed thoroughly 
according to various criteria. Our objective function of minimizing the 
overall interference is just a coarse approximation of that. If none of the 
plans is considered good enough, the radio engineer may change technical 
characteristics of BTSs, such as the direction of the sectors, in order to 
decrease interference potential. New frequency plans are computed. This 
process is iterated until a decent frequency plan is identified. During the 
iterations, fast heuristics for frequency planning are favored because of 
their short running times. If a final plan is to be determined the use of 
more time consuming, elaborate methods is acceptable. 

Fast planning methods are presented in Chapter 4, and one selected 
example of a more time consuming method is described in Section 5.1.2 
Notice that the heuristic planning methods discussed here and elsewhere 
typically address the problem of assigning channels to several hundreds of 
TRXs at once. In case of a minor network expansion, the situation is dif 
ferent: only a few TRXs have to be assigned, up to a hundred, say, while 
taking restrictions from the presently installed assignment into account. 
In this case, branch-and-cut methods can often find the optimal assign
ment in reasonable time. Using standard tricks of Integer Programming 
the integer linear program (3.6) can be solved effectively, see the work of 

oster [1999] and that of Jaumard arcotte and eyer [1999] 
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athematical Models 

In the following, we translate the informal statement of the GSM fre 
quency planning problem from Section 3.1 into a mathematical model 
For convenience, we restate the problem 

Given are a list of TRXs, a range of channels, a list of 
locally blocked channels for each TRX, as well as the mini 
mum separation, the co-channel interference, an the adjacent 
channel interference matrices. 

Assign to every TRX one channel from the spectrum which 
is not locally blocked such that all separation requirements are 
met and such that the sum over all interferences occurring 
between pairs of TRXs is minimize 

Our mathematical model is presented in Section 3.1. In the context 
of GSM frequency planning, similar models are used by Duque-Antön 
and Kunz [1990]; DuqueAnton, Kunz, and Rüber [1993]; Carlsson and 
Grindal [1993]; Plehn [1994]. During the late nineties, this model became 
popular among researchers as well as practitioners, see Koster [1999, Sec 
tion 2.6] and Correia [2001, Section 4. .5], for example. A few competing 
models are addressed in Section 3.1.2. The computational complexity 
of solving our model of the frequency assignment problem is studied in 
Section 3.2. It turns out that finding a feasible solution is A/"'P-complete 
and even if that were simple finding (close to) optimal solutions would 
remain AfV-havd. Finally, two reformulations of the frequency assign
ment problem as integer linear programs are given in Section 3.3. The 
mathematical notions used in the folloing are explained in Appendi A. 

3.1 The Model FAP 

The objective of minimizing the overall interference is blind to the "direc
tion" of interference that is, whether the use of a channel in a cell causes 

33 



34 3.1 T H ODEL FAP 

rner 
pectrum 

blocked channel 
available 

separation 
co-channel 
djacent channel 

carrier netwo 
assignment 
feasible 

interference somewhere or whether the channel itself suffers from interfer 
ence. The mathematical formulation of our frequency planning problem 
is therefore undirected, and we simply add the interference ratings given 
for the two directions into a single value. 

Let (V, E) be an undirected graph. The vertices of the graph are 
also called carriers and represent the TRXs. The spectrum C is a finite 
interval in Z+ , the set of nonnegative integers representing the range of 
channels. For every carrier v G V a set Bv C C of blocked channels is 
specified. The channels in C \ Bv are called available at carrier v. Bv 

may be empty. 
Three functions, d: E -> Z+, c: E -> [0, 2] and cad: E -> [0, 2]Q 

are specified on the edge set. For an edge vw G E, d(vw) gives the 
separation necessary between channels assigned to v and w. c(vw 
and cad(vw) denote the co-channel and adjacent channel interference 
respectively, which may occur between v and w. (Both functions map into 
the interval [0, 2]Q rather than into [0, 1]Q because of the symmetrization 
mentioned above. This may be remedied by scaling if desired.) 

We refer to the tuple iV (V, E, C\ {Bv}veV, d, c , cad) as carrier 
network or network, for short. A frequency assignment or simply an 
assignment for Â  is a function y: V —> C. An assignment is feasible if 
every carrier v G V is assigned an available channel and all separation 
requirements are met that is if 

eC\Bv VveV, 

) — \ > vw Mvw G 

(3.1) 

(3. 

list coloring 

Tcoloring 

list Tcoloring 

Feasible assignments are a generalization of list colorings and are re
lated to T-colorings of graphs in the following way. For a list coloring 
problem, a graph and lists of colors for every vertex are given. The task 
is to find a vertex coloring for the graph such that every vertex receives 
a color from its list and such that no two adacent vertices receive the 
same color, compare Erdös, Rubin, and Taylor [1979]. Since an available 
channel has to be picked for every carrier feasible assignments are list 
colorings. 

T-colorings are introduced by Hale [1980]. Given an undirected graph 
G (V, E) and nonempty finite sets T(vw) of positive integers for all 
edges vw G E, a T-coloring of is a labeling / of the vertices of ith 
nonnegative integers such that \f(v) — f(w)\ G- T(vw) for all vw G E. 

A frequency assignment has to meet list coloring as well as T-coloring 
constraints in order to be feasible. Such list T-coloring are first studied 
by Tesman [1993] 
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The definition of a carrier network is i l u s a t e d usng the scenar 
INY from Section 3.1. The vertex set is V {Al0, A20, A2U A22 

A3, A3U Bio, Bli, B20, Cl0 , C20, C2i}. The edge set can be identified 
from Table 3.1 as all pairs of vertices here at least one of the functions 
d, c , or cad is nonzero. 

Table 3.1 shows the minimum required separation, the co- and adja
cent channel interference in full detail. The lower lefthand part displays 
the nonzero separation requirements, whereas the upper righthand part 
lists the co-channel interference on top of the adjacent channel interfer 
ences. The symbol "oo" is used, where interference cannot arise due to 
separation requirements. 

A2i 22 A3 A3i C2 C2i 

A2 

A2i 

A22 

A3 

A3 

B2 

C2 

C2i 

Tabl 3. Separaton and interference for NY 

The spectum is the set { 7 1 1 , 7 . The local blockings ar 
listed in Table 3. 

| || | I A2i | A22 | A3 | A 3 I | | | B2 | | C2 | C2i~ | 

\ B. || | | | | | | | | 11, 12 | 19 | | ~ | 

Table 3.2: Local blockings for INY 

Four assignments for the network are s h o n in Table 3.3. The assign
ment y, which is the same as that in Table 7, is feasible and incurs no 
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co-channel interference, but a total of 0.02 adjacent channel interference. 
The assignment y is also feasible and incurs no interference at all. The 
assignments y and y are both infeasible. The local blocking of channel 
719 for B2Q is not obeyed by y, whereas the required separation of 
between the channels for the carriers and A3 is not achieved in 

A2i 22 A3 3i B2 C2 C2i 
15 13 22 11 20 20 11 15 14 23 18 

1 13 28 22 25 11 20 11 20 13 13 15 18 
yA 13 30 24 11 15 14 12 13 19 22 
y4 12 11 15 13 16 19 20 13 11 22 23 

Table 3.3 Asignments for INY 

Our objective is to determine a feasible assignment that minimizes 
the sum of co- and adacent channel interferences. 

Definition 3.1 iven carrier network N, we call the optimization 
problem 

min V vw V cadvw (FAP) 
y feasibl ^—' - — ' 

vw£E: vwdE: 
y(v)y{w) y(v)y(w) 

the frequency assignment problem FAP 

Focusing on interference minimization is justified if feasible assign
ments can be produced sufficiently well. This is the case for (most of) 
the planning scenarios we are interested in, but not necessarily in general 
as is shown in Section 3.2. The example of planning a capacity extension 
for an already congested area underlines that even in practice-relevant 
situations this assumption will not always be satisfied. Two questions 
naturally arise in such a situation: Is no feasible extension found because 
none exists? And if so, how many of the established assignments have 
to be changed the least (and which are the ones) in order to obtain a 
feasible plan for the extended network? 

Both questions are linked to interesting lines of research. The first 
question has close connections to the "min-span problem," compare with 
Section 3.1.2, and the second one is related to the "minimum blocking 
problem. The latter problem addresses the minimization of the call 
blocking probability per cell, i. e., the maximization of the portion of the 
specified demand per cell that is satisfied. either of those questions is 
pursued here, because, as already mentioned, feasibility is almost always 
easily obtained for the test instances at our disposal see Section 5.1.1. 
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We point the interested reader to the surveys given by oser [1999] and 
urphey et al. [1999] 

Our objective function asks for minimizing the sum of all interfer 
ences. One consequence is that we will exchange a number of small 
interferences for one big interference between two carriers as long as the 
total interference is reduced. Not much effort is required to come up with 
an example where this is inappropriate. Such examples, however, do not 
seem to be typical for GSM frequency planning practice, and the objec 
tive of minimizing the total interference is widely accepted in practice. 
In addition our model does allo to counteract undesired exchanges in 
at least two ways. One method is explained as "tightening the sepa
ration" in detail in Section 4.1.2. Roughly speaking, high interferences 
between pairs of carriers are ruled out by introducing extra separation 
requirements. The other method, we have in mind, transforms the speci 
fied interference ratings by applying a monotonously increasing function. 
This changes the trade off between many small interferences and one 
large interference in favor of the many small ones. 

Another comment on our model is the following. Each vertex of the 
carrier network corresponds to an individual TRX in the GSM network. 
As an alternative, one might identify "equivalent" TRXs per cell and 
represent those by one vertex. Two TRXs of a sector would be considered 
equivalent if they shared the same planning requirements. The number of 
channels to assign to a vertex would depend on the vertex, and within the 
set of channels assigned to a vertex the minimum co-cell separation would 
have to be met. Both alternatives are equivalent in the mathematical 
sense, of course. But the latter may be more appealing if synthesized 
frequency hopping is applied and more channels can be assigned to a cell 
than there are TRXs. In our model this is mimicked by introducing 
extra carriers for those cells. 

3.1.1 r i n t s 

There are some straightforward generalizations of FAP. The first one, we 
present, addresses the question of finding an interference-minimal assign
ment extending a given partial assignment. In the second variant, an 
assignment is given and the objective is to find a costminimal assign
ment, when, in addition to interference, cost for changing the channel of 
a carrier is accounted for. The third variant generalizes the first and the 
second one. An assignment is given together with a set of carriers, which 
are not to be changed. Furthermore a cost function on the changeable 
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carriers is given, and if a carriers channel is changed, then the corre
sponding cost is accounted for in the objective function. The second 

bicriteria and the the third variant are both examples for bicriteria optimization 
timiation problems. The general arguments about the trade off between the t 

competing optimization goals apply here too. 

partial assignment FAPp partial assignment p: P C with P CV is given. The carriers 
extension in are already assigned. A frequency assignment y extends p if 

y(v) equals p(v) for all carriers v Our first variant is the 
optimization problem 

vw cadvw (FAPP) mm 
y feasible  
extends y(y( y(y( 

If there is no partial assignment specified, this problem is just the 
ordinary frequency assignment problem FAP. Conversely, this can 
also be expressed as an ordinary FAP by setting Bv C \ )} 
for all carriers in 

reassignment FAPr A frequency assignment ypre: V) C is supplied, and a penalty 
enalty has to be paid if any of the channels is changed. The individual re

assignment penalties are specified by a mapping r: V> Q+. The 
penalty for changing the channel of a carrier is independent of the 
amount by which the new and the old channel differ, because im
portant is merely whether the assignment is changed. The objective 
is to minimize the total cost of a frequency assignment, where the 
savings in interference are traded off against the spending for re
assigning carriers. Our second variant is the optimization problem 

min Y vw advw V 
y feasible * ^ — *-^ 

y(v)y{w) y(V)y( y(v)yprev) 

(FAPr) 
The ordinary frequency assignment problem FAP is obtained in case 
nothing is charged for reassigning a carrier. 

FAPpr Given are a frequency assignment ypre: V —v C and a set P C V of 
carriers, which are supposed not to be altered. Moreover penalties 
for reassigning each carrier v are specified by a function r: V —>• Q+ . 
(Because the carriers in P cannot be changed, the values r{v) for 
j ) £ P are irrelevant. These values are given merely for notational 
convenience.) In order to give a mathematical formulation consider 
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the partial assignment p: P —>• C obtained from ypre by letting  
Upre\p, i. e., p maps every carrier v contained in P to the channel 

p{v) and is undefined on all carriers not in Our third variant is 
the optimization problem 

min vw advw 
y feasible —' ' — ' — ' 
exends y(y( y(v)y(w) y(ypr(v) 

{ r A rpr ) 
A similar effect can be achieved by using the model FAPr and setting 
r(v) for all v G P to an arbitrarily high value (exceeding all other 
penalties by far) 

By specializing FAPpr, the two first variants and FAP itself can be 
obtained: in case r(v) 0 for all penalties, FAPpr reduces to FAPP; in case 
P = 0, FAPpr simplifies to FAPr; and in case both previous restrictions 
hold, then FAPpr turns into FAP. 

Conversely, an equivalent instance of FAP exists for every instance of 
FAPpr for which the maximum penalty for reassigning is bounded by 2 
The penalties for reassigning in FAPpr are accounted for as co-channel 
interference with additional carriers in FAP. The bound of 2 comes from 
the definition of a carrier network, in particular from the maximum 
admissible amount of co-channel interference. 

Let A (V,£,C,{B„} v G V ,d ,c ,c o d ) , P C V, : V ) [0, 2]Q, and 
Upre V —• C be an instance of FAPpr. We define a FAP instance iV as 
follows. An extra carrier is introduced for every / e C . The edges in N 
are all edges from A plus all vf for v G V, f 6 C with r{v) ^ 0 and 
Vpre{v) 7 /• The spectrum is unchanged and so are the locally blocked 
channels for all v G V. We set Bf = C \ {/} for the new carriers / G C. 
The edge labelings d, , and cad are extended to the new edges with 
zeros for d and cad and ith f) r(v). (The transformation can be 
generalized to the case where r(v) > 2 for some v G V. More than \C 
additional carriers become necessary, which may lead to carrier networks 
of significantly increased size.) 

Notice that if changing the channel allocation of a TRX is penalized 
too heavily in comparison to the interference it would incur without a 
change, then the character of the optimization problem may change. In 
this context, optimal solutions for problem with up to one thousand 
TRXs are reported by Aardal, Hurkens, Lenstra, and Tiourine [1996] 
on test instances which do not arise from GSM frequency assignment. 

evertheless these findings are likely to hold for GS instances too. 
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3.1.2 ternat ive M d e 

The scientific study of frequency planning started in the late sixties. The 
presentation of etzger [1970] is often seen as the starting point. Ten 
years later, Hale [1980] published a classification of frequency planning 
problems and their applications. To our best knowledge, these early 
works do not address problems that are equivalent to frequency planning 
for GSM. This changed with the deployment of GSM networks. 

Several different problem types are subsumed under the general terms 
frequency planning, frequency assignment, and channel allocation. In 
our following discussion of alternative models, we focus solely on models 
which we consider relevant for GSM frequency planning. More compre
hensive treatments of frequency planning in general are given by Koster 
[1999] and by urphey et al. [1999]. Notice also that we only address 

FCA Fixed Channel Allocation (FC A), where the channel demand per cell is 
fixed. Two other types of problems ith varying demands are briefly 
explained and references are given. 

DCA Dynamic Channel Allocation (DCA) considers varying traffic profiles 
and, consequently, also varying channel demands per cell. Channels have 
to be assigned on request. GSM does not support dynamic channel allo
cation. The planning is done statically for the busy hour, i.e., with the 
peak traffic in view although the traffic load is clearly changing over time. 
Studies on the potential impact of using DCA for GSM networks are de
scribed by Kennedy, Vries, and Koorevaar [1998], for example. More 
general studies of DCA are performed by alesihska [199 Grace Burr 
and Tozer [1998], and Grace [1999] 

HCA A mixture of FCA and DCA is called Hybrid Channel Allocation 
(HCA). Some basic demand is covered by solving an FCA problem, and 
additional demand is handled dynamically in the sense of DCA. Hybrid 
channel allocation is studied by alesihska [199 for example. CA is 
also not supported by GSM 

We now turn back to FCA and alternative models for FAP. The ac
tual quality of a frequency plan is at best predictable with very time-
consuming simulations using a GSM link-level simulator. In practice 
the quality will typically be only observed once a frequency plan is in
stalled. The model underlying the planning process should express the 
anticipated quality reasonably well and be pessimistic in doing so. It 
would be unrealistic to expect that the model is completely accurate. 
Consequently, there is a range of different and yet reasonable models 
focusing on different quality aspects of a frequency plan. 

min-san model In the minspan model frequency planning is handled as a generalized 
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graph coloring problem (see Tesman [1993]). Each vertex has a set of 
available "colors" and the edges are labeled with minimum separation 
requirements. The result is a mixture of list and T-coloring as explained 
in Section 3.1. The objective is to find a coloring of the vertices, which 
satisfies the list as well as the T-coloring constraints and which uses 
"colors" from an as narrow range as possible. The span is the difference an 
between the largest and the smallest "color" used. 

Interference information is not directly taken into account within this 
model. Instead, when setting up the underlying graph and fixing the min
imum required separation along each edge, a distinction is made between 
"acceptable" and "unacceptable" interference. This is typically done by 
means of a threshold value. For example, co-channel interference above 
the threshold is ruled out by introducing a separation requirement of at 
least 1. Interference below the threshold value is neglected altogether. 
The min-span model is not directly applied in GSM frequency planning, 
but occurs as the core problem in minimizing the maximal interference. 
This is the next approach described below. 

A detailed discussion of the min-span model and an extensive survey 
of related mathematical results and algorithmic developments is given 
by Murphey et al. [1999], see also Koster [1999, Section 24] and FAP web 
[2000]. Numerous authors have addressed the problem of computing 
lower bounds on the required span. We mention only a few important 
contributions: Gamst [1986] provides a bound basing on cliques in the un
derlying graph; Raychaudhuri [1994] Roberts [1991b], Smith and Hurley 
[1997] obtain bounds from solving the TRAVELING ALESMAN PROBLEM 

(see Section 6 4 . ) on subgraphs; and Janssen and Kilakos [1996] as well 
as Janssen and Kilakos [1999] derive bounds from polyhedral studies. 

In GSM frequency planning practice the min max interference ap- min max 
proach has been popular until recently. At first, similar input data is interference 
generated as required for the specification of our carrier network. In a 
second step, the interference predictions are the basis for increasing sep
aration requirements in order to prevent the occurrence of severe inter 
ference. As indicated in the context of the min-span model, a tentative 
threshold value is chosen to separate "acceptable" from "unacceptable" 
interference. "Unacceptable" interference is transformed into additional 
separation requirements, and "acceptable" interference is simply ignored. 

The result is a min-span problem with local blockings recorded at the 
vertices and with minimum required separation recorded at the edges. 
An attempt is made to solve this min-span problem. Two outcomes are 
possible. In one case, a feasible solution is generated. This corresponds 
to a frequency assignment obeying all imposed conditions. In the other 
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case, no solution is found. The tentative threshold value is increased 
which results in less "unacceptable" interference and, correspondingly, in 
fewer additional separation requirements. The planning process is started 
over with the new input. 

The final threshold value is the result of repeatedly increasing or de
creasing the value with the goal of finding an assignment that barely fits 
into the available spectrum. In practice, the threshold value is driven 
up beyond desirable limits by capacity-related interference problems in 
metropolitan areas. As a consequence, interference not exceeding this 
threshold becomes generally invisible to the planning process. Although 
avoidable outside of the critical areas by careful planning, many inter 
ference situations are not resolved because they have become impercep
tible. Alternatively, the planning radio engineer may choose (potentially 
many) location-dependent threshold values. Either way this planning 
style proved unattractive in practice. 

min max local Minimizing the maximal interference experienced by a TRX can be 
interference done on the basis of our carrier network representation as well, but the 

use of a directed version is also conceivable. The difference to our fre
quency planning problem is primarily in the definition of the objective 
function. The goal here is to keep the maximal interference experienced 
by a TRX as low as possible. To that end, the impact of the interfering 
TRXs is recorded for every TRX and the maximum is determined. This 
maximum is to be minimized. Most prominently, this approach is pur 
sued by Fischetti, Lepschy, Minerva, Jacur, and Toto [2000], who also 
give satisfactory computational results for realistic planning problems 

ith several hundreds of TRXs. 

3.2 Computational Complexity 

The results presented in this section are the justification for our focus 
in Chapter 4. Resorting to heuristic methods for solving FAP would not 
be (easily) ustified if reasonable approximations of optimal frequency 
assignments were computable in polynomial time. We sho in Proposi 
tion 3.11 that this is not the case. 

3.2. Preliminaries 

Throughout the following discussion, we assume basic familiarity with 
the concepts of computational complexity. Several textbooks contain 
introductions see for example Garey and Johnson [199] Bovet and 
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Crescenzi [1994], Papadimitriou [1994] as well as Cormen, Leiserson, and 
Rivest [1990, Chapters 36, 37]. With respect to the complexity of ap
proximation, we recommend the book of Ausiello, Crescenzi, Gambosi 
Kann, MarchettiSpaccamela, and Protasi [1999], which is also our pri 
mary reference here. Nevertheless, we recall the basic definitions, which 
are required in the following, from the literature. 

We start with the complexity of an algorithm. (See any of the above 
mentioned books for a discussion of the subtleties of defining "algorithm.") 
For an algorithm A, let IA{X) denote the number of steps executed by 

on input . The worst case running time of A is defined as tAiji) 
max{£^(:r) | x : \\ < n} . The size \x\ of an instance x depends on the 
encoding scheme. We assume here that a "reasonable" compact binary 
encoding of the instances is used, see the discussion in Garey and Johnson 
[1979, Chapter 2] or Grtschel, Loväsz, and Schrijver [1988, Section 1.3] 
for example. Algorithm A has a running time complexity ö(g(n)) if i^(n) 
is in ö(g(nj), see Appendix A for the meaning of the (9()notation. In 
accordance ith this definition, we say that A runs in polynomial time if 
tA{n) is in öp(n)) for some polynomial^. Likewise, A runs in exponential 
time if £A(^) is in 0(2^) for some polynomial p. Similar definitions for 
the space complexity of an algorithm exist. 

Next, we deal with decision and optimization problems. We address 
decision problems first. Formally, we define a decision problem as a 
tuple (/, SOL), where / is the set of instances and SOL: I —> {0,1} as 
sociates with every instance x either zero or one. The problem P 
is identified with the language L {x G / | SOL(x)}. Answer 
ing the question whether x G Lp for any given x is called to recognize 
the language Lp or to solve the problem P. The two most prominent 
complexity classes concerning decision problems are defined as follos. 

Definition 3.2. A decision problem P is solved by a deterministic al 
gorithm A if the algorithms halts for every instance x G lp and returns 
YES if and only if x G Lp. The class V consists of all problems solvable 
in polynomial time by some deterministic algorithm 

worst case 
unning time 

unning time 
complexity 

olynomial time 

exponential time 
ace complexity 

decision problem 

language 
recognize 

solve 

In addition to deterministic algorithms, nondeterministic algorithms 
are considered. One way of thinking about a nondeterministic algorithm 
is that the algorithm nondeterministically chooses one out of at most t 
possible instructions for execution at each step. 

nondeerministi 
algorithm 

Definition 3.3. A decision problem is solved by a nondeterministic 
algorithm A if for any instance x G LP, A halts and x G LP if at least 
one possible sequence of instructions causes the algorithm to return 

MV 
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ucible 

complete 

minimiat 
problem 
feasible solutions 
measure function 
value 

timal solution 

underlying 
language 

FAP 

The class MV consists of all problems solvable in polynomial time by 
some nondeterministic algorithm 

Clearly, V C J\fV. One of the challenging open problems in com
putational complexity theory is to settle the question whether V \TV. 
Despite continuous and serious efforts over the past three decades this 
problem is still open. It is, however commonly believed that V HV. 

Given two decision problems Pi and P2, Pi is said to be (poly
nomial time m-)reducible to if a polynomial time algorithm A ex
ists hich maps instances x G Ip1 into instances A(x) G p2 satisfying 
x G Lpx <̂ => A(x) G Lp2. On the basis of this reducibility the notions 
of A^P-completeness and A/'P-hardness are defined. 

Definition 3.4. A decision problem P is called J\fV-hard if every problem 
in NV is reducible to . The problem is AP-complete if aditionally  

itself is in MV 

If V C AfV, then no A^P-complete problem can in general be solved 
deterministically in polynomial time; in Section 3.2.3, we show that de
ciding whether there is a feasible assignment for a carrier network is 

TP-complete. 
We now turn to the complexity of optimization problems and approx

imation. Our focus is on minimization problems, and all our definitions 
are specialized to this case. Definitions applying simultaneously for min
imization and maximization problems can be found in Ausiello et al 
[1999, Chapters 1, 3, and 8]. 

Formally, a minimization problem P is characterized by a triple (IP 

SOLp, mp), where Ip is the set of instances of SOLP is a function 
that assigns to every instance G Ip a set SOLP(x) of feasible solutions 
for ; and mp is the measure function that assigns to every pair (x,y 
with x G Ip and y SOL a positive integer called the value of the 
feasible solution y. 

Given some x G the obective is to find an optimal solution y* G 
SOLp(x), satisfying mp(x,y*) yeSoLp(x)mp{xiy)- We denote the 
value of an optimal solution by m*P(x). A decision problem is associated 
to every optimization problem in a natural manner: let PD (I 
Z+JSOL), where SOL(x,K) 1 if mPx) < K and SOL(x,K) 
otherwise. The language LpD is called the underlying language of P . 

According to the above definition, FAP itself does not qualify as a 
minimization problem, because the objective function may take every 
value in Q+ . By adding the following measure function, this is remedied. 
Given an instance x, let digits(x) denote the number of decimal digits in 
the smallest interference value (other than zero) in PFAP is defined by 
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^FAP, whih is the set of all c a r e r networks 

S'OLFAP, which associates ith each carrier network its set of feasi 
ble assignments 

mpAP, which computes digits(x) and the total interference of an 
assignment, scales the result by the factor of I0dlglts(a) (in order to 
make it integral) and adds one (in order make it strictly positive). 

With respect to optimization problems plays a role similar to 
that of among decision problems. 

Definition 3.5 minimization problem P = (IP, SOL m belongs MVÖ 
to the class MVÖ if the following three conditions hold: 

(i) the set of instances is recognizable in polynomial time; 

(ii) a polynomial q exists such that \y\ < q(\x\) for all y G SOL( an 
such that it is decidable in polynomial time whether y G SOL 
for every y with 

(iii) the measure function is computable in polynomial time 

The problem PFAP is in MVÖ. First, it is recognizable in polynomial 
time whether a string encodes a carrier network. Second, the encoding 
of a feasible assignment does not take more space than the encoding of 
a carrier network (assuming that all carriers are listed individually and 
that all channels in the spectrum are listed as well); and it is recognizable 
in polynomial time whether an assignment is feasible. Third, digits(x) 
and the total interference of an assignment are computable in polynomial 
time and so is the above measure function. 

An optimization problem P 6 MVÖ is NT-hard if the language un- MVhar 
derlying P is A/"P-complete. (The precise definition of .AAp-hardness for 
optimization problems is more involved, compare e.g., Ausiello et al 
[1999, Definition 1.19]. Our definition is merely an immediate conse
quence of the more general definition.) Sometimes, the .AAp-hardness 
of a minimization problem P is only due to instances involving large 
numbers. If this is not the case, the problem is said to be strongly 

fP-hard. PFAP is strongly AfP-hard as we sho in Section 3 . 3 . 



3.2 O M U T A T I O N A L O M L E X I T Y 

stronglhar Definition 3.6. Consider a problem P G MVÖ, and let max( i ) denote 
the value of the largest number occurring in the instance x. For a polyno
mial p pmax' is the restriction of P containing only the instances with 
max(a;) j5(|x|). The problem is called strongly MV-hoxd i _pmax> is 
Mhar for some polynomial 

Finally, we address the complexity of approximating optimal solu
tions for minimization problems. Given a minimization problem P, the 

erformance ratio performance ratio of a solution y SOL ith respect to instance 
is defined as 

R(  

Recall in this context that the measure function takes values in the pos 
itive integers even though it often seems convenient to allow zero or 
negative values too. But this would clash ith the previous definition. 

rapproximate Definition 3.7. Given an optimization problem , an algorithm A for 
solving P, and a function r: Z + > ] l , then A is an rapproximate 
algorithm for P if for every instance x G Ip with SOL) ^ 0 the 
performance ratio of the approximate (feasible) solution A is bounded 
by , i. e R ( ) ) 

In case the function r maps all arguments to some constant c G Q+, we 
also speak of a capproximate algorithm. The class ÄPX contains of all 
minimization problems in HVÖ that are approximable with a constant 
performance guarantee in polynomial time. We sho in Section 3 . 3 
that PF A P is not in AVX. 

ÄPX Definition 3.8. minimization problem P G MVÖ is in AVX if, for 
some constant c , a capproximate polynomial time algorithm for 
exists 

3.2.2 ass ica r o b l e m s r e a t e d t o FAP 

The variant PFAP of FAP is in MVÖ. PFAP is closely related to several 
optimization problems studied in the literature. We quote some examples 
from the list of A/W-prob lems of Ausiello et al. [1999 Appendix B]. The 
labels correspond to those given in the reference. 

G T 5 INIMUM RA OLORING 

GT22 XIMUM LIQUE 
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GT27 INIMUM DGE-DELETION B G R A H WIT P R O E R T Y n 

GT INIMUM DGE DELETION K-PARTITION 

GT33 XIMUM K - O L O R A B L E BGRA 

D1 XIMUM UT 

D1 XIMUM K - U T 

D55 INIMUM K - L U S T E R I N G UM 

S 1 XIMUM FREQUENCY ALLOCATION 

We pick out the MINIMUM EDGE DELETION K-PARTITION problem 
and show in which way PFAP generalizes this problem. We then quote 
results on the complexity of MINIMUM EDGE DELETION K-PARTITION 

from the literature and derive lower bounds on the complexity of PFAP 

Definition 3.9. An instance of the MINIMUM DGE DELETION K-PAR

TITION problem consists of an undirected graph (V, E), a weighting 
w: E> Z + of the edges, and a positive integer k < . The objective is 
to find a partition o into at most k disoint sets Vp such that 

Y v 
ijE-.eV 

is minimized. The associated measure function evaluates the obective 
function and ads 1 

Proposition 3.10. The following statements hold with respect to the 
computational complexity o MINIMUM DGE DELETION K-PARTITION 

(i) The problem is strongly Nhar 

(ii) Unless V = M, the problem is not in VX (Sahni an onzalez 
[1976] 

(Hi) For k > 3 an approximation within Ö( is AfV-hard, even when 
restricting the instances to graphs with \E\ = £2(\V\) for a fixed 
, 0 < (Kann, Khanna, Lagergren, and Panconesi [1997] 

(iv) Unless V = MV, no polynomial time algorithm can achieve a better 
performance ratio than 1.058 in the case of k (Hästa [1997] 
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In case of k , a polynomial time algorithm with a performance 
guarantee of lo is known arg, Vazirani, and Yannakakis 
[1996] 

(vi) In case of , a polynomial time algorithm with a performance 
uarantee o for any 0 is known (Kann et al [1997] 

Although the first fact listed in Proposition 3.10 is certainly known 
we are not aware of a reference. The folloing simple proof is given for 
the sake of completeness. 

Proof of Proposition 3.10 (i). Let P denote the minimization problem 
MINIMUM DGE DELETION K-PARTITION. We show that the restricted 
version ™ 1 is AA'P-hard by reducing the A^P-complete decision prob
lem GRAPH K-COLORABILITY, see Garey and Johnson [19 GT4] to 
the language underlying Fm a x '1 . 

We associate to every instance G, k) of GRAPH K-COLORABILITY 

an instance xGjk of MINIMUM EDGE DELETION K-PARTITION by simply 
labeling every edge in G with a weight of 1. Clearly, G is A;-colorable if 
and only if the optimal solution to the associated instance XG n a s a 

value of 0. ence the language underlying ™3*' is A"P-hard. D 

3.2.3 mplexity of FAP 

We now transfer the negative results concerning MINIMUM EDGE DELE

TION K-PARTITION to PFAP- TO every instance of the former problem 
we associate an instance of PFAP as follo 

(V, E) (V,E,{ } , (vev, ), 

where c(ij) 10dlgl^ (ij) and digits(iu) denotes the number of 
digits of max{w(ij) | ij -E1} (in a representation to the basis 10). The 
corresponding carrier network can be computed in polynomial time and 
in particular, its encoding length is polynomially bounded in the encod
ing length of the MINIMUM EDGE DELETION K-PARTITION instance. 
The /c-partitions of the graph (V, E) and the frequency assignments for 
the carrier network are in one-to-one correspondence. By definition the 
measure functions produce identical values for all partitions of V with 
respect to both problems. ence, the hardness results from Proposi 
tion 3.10 translate directly to PFAP- Together with the already established 
ATP-hardness of finding any feasible assignment for a carrier network, w 
obtain the folloing list of results. 
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roposition 3.11. 

(i) Deciding whether a feasible assignment exists for a carrier network 
is MV-complete 

(ii) P e MVÖ 

(iii) P is strongly Nhar 

(iv) Unless V NV, PFAP is not in VX 

v) Unless V MV, an approximation o PFAP within 0 is impos 
sible in polynomial time for 

Unlike in the case of MINIMUM EDGE DELETION K-PARTITION, pos 
itive results on the approximation of PFAP cannot be proven due to Propo
sition 3.11 (i) unless V J\fV. We read the above negative results on 
the approximation of PFAP in the following way: even if feasible solutions 
were producable in polynomial time ( h i l e still assuming V ^ •A/*73) 
finding approximately optimal solutions would be hard nevertheless. 

As a final remark concerning the approximation complexity, we add 
that the result stated in Proposition 3.11 (v) does not depend on the par 
ticular measure function associated ith PFAP- The result of Kann et al 
[1997] also transfers directly to FAP because their proof only involves 
instances ith edge weights of 1. 

3. Alternative Formulations 

In the remainder of this chapter, two integer linear programming formula
tions of FAP are presented. Solving either of the associated integer linear 
programs (ILPs) for a given carrier network to optimality is equivalent 
to solving FAP. 

The modeling of the nonlinear separation constraints v) — y(w)\ > 
(vw) poses a problem in linear formulations. The two models cope 

with them differently. Our first formulation, called "stable set model," is 
classical. The variables are only allowed to take the values zero or one. 
The second formulation, called "orientation model," uses binary as well 
as integer variables. For the ease of notation let us define 

E vw e vw }, (3.3) 

vw e vw vw }, (3.4) 
ad vw e vw cadvw 0}, (3.5) 

for a given carrier network A (V, E, , {Bv}veV, ad 
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3.3. St Se od 

Binary variables yl are used to select a channel per carrier. The co-
and adjacent channel interference indicator variables zw and z^, re
spectively, are needed for accounting the total amount of interference in 
the obective function. The folloing I is equivalent to FAP 

Y cco zco Y cad zad 

/ - v w v w / J ^VWVW 

we vweEad 

s.t. 

(3.a) 
c\Bv 

yw 
vw e d (3.b) 

zco vw e e C {Bv U Bw) (3.c) 

za vweadeCBvjieC (3.d) 

l v,feBv (3.e) 

zco vw e (3.f) 
a vw e ad (3-g) 

We first explain the constraints and then the objective function. The 
constraints (3.6a) model that precisely one available channel has to be 
assigned to every carrier. In case channel / is assigned to carrier v, then 
yl takes the value 1. Otherwise, the value is 0. The inequalities (3.6b) 
enforce that the selection of the available channels also satisfies all sep
aration constraints. Every 0/1-assignment of the variables yl satisfying 
the constraints (3.6a) and (3.6b) corresponds to a feasible frequency as 
signment for N, see constraints (3.1) and (3.2) on page 34. 

We now turn to the interference accounting. A binary variable z™w 

is used for every edge vw co to indicate co-channel interference, i.e., 
z™w 1 has to hold if vw G E and v and w receive the same channel 
This implication is implemented by the constraints (3.6c). Likewise, a 
binary variable z^ is used for every potential adjacent channel interfer 
ence. In case vw 6 Ead and v and w have adjacent channels, z^ = 1 has 
to hold. This is achieved by the corresponding constraints (3.6d). Ex
changing v and w and replacing / by 1 in (3.d) yields the constraint 

y-w ^vw — •*-• 

Notice that the interference accounting variables are not fully con
trolled by the given constraints in the sense that ^ for example may 
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take the value 1 where a value of 0 would be sufficient. This never hap
pens in an optimal solution because we are minimizing and all obective 
function coefficients are assumed to be strictly positive. 

We call the formulation (3 . ) a stable set model for the following rea
son: if no interference were allowed, then the set of carriers receiving the 
same channel in a feasible assignment would be stable sets in the under 
lying graph G (V, E). (A subset of the vertices in G is called stable or stable 
independent if no two vertices are adjacent.) Hence, a feasible assignment indeendent 
not incurring any interference partitions the vertices of G (V, E) into 
stable sets. The Ph. D. thesis of Borndörfer [1998] contains an in-depth 
treatment of set partition problems and the related problems of set cov
ering and set packing. We also refer to the Ph. D. thesis of Schulz [1996, 
Chapter 4], where an extension of the set packing problem is described. 
This so-called transitive packing puts our interference accounting con- transitive acking 
straints (3.c) and (3.6d) into a general framework. 

We come back to the stable set model in Section 

3.3.2 rientation de 

The orientation model, as presented here, is only correct if the input 
data satisfies additional restrictions. The first type of restrictions is that 
cvw > cvt n a s t° be met for every edge vw G E with dvw 0. This 
is uncritical from a practical point of view and can be seen as a merely 
technical restriction. The second type of restrictions concerns locally 
blocked channels. Those are not handled in the model, and we assume 
that none exist. This restriction is drastic, but we explain how to by
pass it later on. The model is introduced and discussed thoroughly by 
Borndörfer, Eisenblätter, Grötschel, and artin [1998b] 

As the main difference to the stable set model no binary variables y 
with v G V and / G C are used. Instead an integral variable yv with 
domain C is introduced for every carrier v E V. The value of y indicates 
the channel to assign. As before binary variables z™ and z0^ are used 
for accounting interference. 

The intuition behind the model is to consider FAP as two nested 
problems. An acyclic orientation A of the edges E in the graph underlying 
the carrier network is determined in the outer part. Such an orientation uter art 

of the edges induces a partial order <A on the carrier set: we declare 
v <A w if a directed path starting at v and ending at w exists in (V, A) 
(Checking that <A is indeed a partial order is straight forward.) The 
inner part of the nested problem is to find a feasible frequency assignment inner art 
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atible y: V> C ith minimum interference, which is compatible ith the 
partial order in the folloing sense 

< y 

Two variables, 0(„)U)) and 0(WjV), are introduced for every edge, one for 
each possible direction. The orientation model reads as follos for the 
carrier network (V, E, , {Bv}veV, cad 

min 
y,zco 

V cco 

we 

CO 

£E 

ad a 

s.t. 

w ) v ) vw G (3.a) 

Vv + Vw 

Vv - Vw 

w) 

v) 
M vw G (3.b) 

Vv + Vw 

Vv - Vw 

w) 

v) 
M vw G (3.c) 

Vv + Vw 

Vv - Vw 

ad  
vw 

w) 

v) 

v) M vw G ad 

(3.d) 

Vv + Vw 

Vv - Vw 
z°° a w) 

v) 

v) vw G ad 

(3.e) 

v ve (3.7f) 

vw G (3-g) 
ad vw G ad (3.h) 

w) v) vw G (3.i) 

We set M = Cmax max{/ | / G C} . The different parts in the ILP 
formulation are explained in the folloing. The obective function is the 
same as before. 

By means of the constraints (3.7a), a direction is selected for every 
edge in the carrier network. Depending on the direction, one of the 
"paired" constraints in (3.7b), (3.7c), and (3.7d) is vacuously true be
cause the value of the left-hand side cannot be less than Cmax M 

Concerning (3.7b) if the edge vw G E is oriented from v to w, i.e. 
v,w) 1 a n d 0(WjV) 0, then the channel yw has to be at least as large as 
. The separation constraint yv — \ > dvw simplifies to dvw 
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This is expressed in the first constraint of (3.7b). Conversely, if the edge 
vw is oriented the other way around, the separation constraint reduces 
to yv yw dvw, as imposed in the second part of (3.7b). 

Concerning (3.7c), if the edge vw 6 Ed is oriented from v to w, then 
Vw > Vv has to hold. This is enforced by the first constraint of (3.7c). Co-
channel interference arises in the case of yw = yv, and the same constraint 
drives the variable z^w to 1. The reverse case is analogous. 

Accounting adjacent channel interference is more subtle. The cases 
vw 6 Ead \ E and vw G Ead n are distinguished. First, we consider 
two carriers v,w £ V with dvw 1 and c"^ > i e . vw £ ad \ E 
Examining the two cases of either 0(VjW) 1 and 0(WjV) = 0 or (VjW) = 0 
and 0,jt)) 1, we observe that the pair of constraints of (3.d) drive 
z%w to 1 if yv — y = 1. Second, we consider two carriers v,w e V 
with dvw = 0 and C cad i.e., vw e Ead n E . We pick the 
orientation expressed by 0(VjW) 1 in order to discuss the effects of the 
paired constraints (3.e) . Assuming 0(„jW) 1 and the second 
part is vacuously true and the first part reduces to 

z
vw

 z
vw 

Consequently z™w 1 has to hold in case of yv = yw. If yw yv = 1 
however, both z™w 1 and z%w 1 would satisfy the constraint. At this 
point the additional assumption of c ^ steps in to guarantee that 
z% 1 holds in an optimal solution. 

The integrality constraints need no further explanation but recall 
that Bv 0 is assumed for all carriers. 

Although we do not give all the details here, it should be clear that 
solving the orientation model to optimality is equivalent to solving FAP 
if the additional restrictions mentioned above hold. 

Finally, we indicate how the restriction of Bv 0 for all carriers v E V 
can be by-passed. We do not formalize how to include locally blocked 
channels in the orientation model, because it is simpler to express in 
words. The problem with the local blockings is that they may "puncture" 
the otherwise contiguous domain C of the y-variables. Let B veV Bv 

denote the union of all locally blocked channels. (By definition, B C C. 
We introduce an artificial carrier b for each b G B and restrict its available 
set of channels to the singleton {b}. Additionally, for each carrier v with 
b £ Bv, &n edge vb is inserted and the edge labelings d, c , and cad are 
extended by setting d(vb) = 1, c(vb) = 0, cad(vb) 0. The orientation 
model for this extended carrier network fixes the values of the variables 
yb to b G C. A closer inspection of the extended model reveals that some 
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new constraints may be superfluous but the detais are technical and 
skip the corresponding discussion. 

The "inner part" of the orientation model, which deals with finding 
an assignment of minimal interference among all feasible assignments 
compatible ith a given orientation, forms the basis of the improvement 
heuristic . This is discussed in Section 4.3.4. 



CHAPTER 

st euristic ethod 

Before we proceed, let us recapitulate our points up to now. The problem 
of generating "good" frequency plans for GSM networks was explained in 
detail, see Section 2.3, and the notion of a carrier network, see Section 3.1 
was introduced to represent the essential characteristics of a GSM fre 
quency planning problem: N = (V, E7 C, {Bv}veV, d, c , cad) denotes a 
generic carrier network, the carriers in the set V represent the TRXs 
the edges in the set E the relation between carriers the channels in the 
set C the available spectrum and the sets {Bv}veV the locally blocked 
channels; furthermore, d, c , and cad represent the required minimum 
separation, the expected co- and the expected adacent channel interfer 
ence between pairs of carriers, respectively. 

We argued that the sum over all co- and adjacent channel interferences 
between carriers is an adequate measure for the quality of a frequency 
assignment. This quantity is minimized in the mathematical optimization 
problem FAP, see Section 3.1. Furthermore, we pointed out that the 
generation of reliable input data for setting up the carrier network is 
intricate. This holds in particular for interference data. But we also 
stated that the generation of input data can be mastered ith a sufficient 
accuracy today see Section 3. 

We are now at the point to address the optimization problem FAP 
computationally. Recall from Section 3.2.3 that solving FAP is jVP-hard 
and that finding solutions which are guaranteed to be close to optimal 
is also jVP-hard. Hence, according to present understanding, both tasks 
are unlikely to be algorithmically solvable in a running time which is 
polynomially bounded in the size of the input. This is our justification 
for the development of fast methods which neither necessarily produce 
close to optimal nor even feasible assignments (provided some exist) 

Our focus is on frequency planning heuristics, capable of dealing with 
carrier networks of around 2000 carriers in a quarter of an hour on a mod
ern PC or workstation. Such methods are wellsuited for GSM frequency 
planning in practice ith particular emphasis on the intermediate steps 
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in the planning cycle, see Section 23.3. Several of these methods are no 
in use at the GSM operator E-Plus Mobilfunk GmbH & Co. KG. 

More elaborate but also more time-consuming methods are capable 
of producing better results than our fast heuristics. This type of meth
ods targets primarily the generation of the final frequency plan, where 
running times in the order of one or two days are acceptable. We come 
back to this issue in Section 5.6. 

The algorithmic solution of frequency planning problems is not a new 
topic, of course. Well over a hundred articles and reports propose and 
discuss algorithmic techniques for frequency planning in general or in the 

urveys specialization to GSM. Recent surveys are given by Jaumard et al. [1999] 
oster [1999], and Murphey et al. [1999]. 

The published algorithms can be distinguished according to whether 
they guarantee to produce optimal solutions or approximately optimal 
solutions or neither of both. None of the enumeration or cutting-plane 
algorithms, however, which may produce provably optimal solutions in 
the general case are suited for frequency planning in practice, because 
their running times grow exponentially with the size of the carrier net 
work. And for the algorithms proven to produce (approximately) optimal 
assignments for special cases in polynomial running time the relevant 
cases are not known to appear in practice. ence, these two types are 
not of interest to us. Among the algorithms without quality guarantee 
there are proposals for procedures building on the meta-heuristics Sim
ulated Annealing, Tabu Search, Genetic Algorithms, Neural Networks 
etc. Such procedures typically have much higher running times than the 
ones we are aiming at. But also fast methods are proposed, which mostly 
build on ideas published in connection with computing graph colorings. 

Despite our focus on fast methods, we also performed extensive exper 
iments with Simulated Annealing and Tabu Search, see Schneider [1997] 
for an early report on these experiments. A general introduction to local 
search methods as well as to Genetic Algorithms and Neural Networks is 
given in Aarts and Lenstra [1997]. The implementations of those meth
ods typically have running times in the order of several hours up to one 
or two days on large carrier networks. Our own results are in the range 
of what is published by Beckmann and Killat [1999]. Further imple
mentations of Simulated Annealing or Tabu Search for GSM frequency 
planning are discussed by Duque-Anton et al. [1993] Castelino, Hurley 
and Stephens [1996], urley Smith, and Thiel [1997], Hao Dorne, and 
Galinier [1998], Smith, Allen, Hurley, and Watkins [1998], and Correia 
[2001, Section 4.2.5]. This list is incomplete but provides starting points 
for a further exploration of the literature. 
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The chapter is organized as follows. In Section 4.1, we describe tech
niques for preprocessing the carrier network prior to running frequency 
planning procedures. Then, we turn to two types of algorithms, which are 
generally known for efficiently "solving" combinatorial optimization prob
lems: greedy construction heuristics and simple improvement heuristics. 
We describe methods of these kinds in Sections 4.2 and 4.3, respectively. 
Computational results for our methods are reported in Chapter 5. 

For the most part, this chapter describes joint work with Ralf Born
dörfer, Martin Grötschel, and Alexander Martin as well as ith the stu
dents Daniel Haberland and Margherita Hebermehl. The M C F method is 
described together with the orientation model (presented in Section 3.3. 
by Borndrfer et al. [1998b]. The other heuristics of Sections 4.2 and 4.3 
except for K - O P T and VDS, are also contained in Borndrfer Eisenblät 
ter Grtschel and artin [1998a] 

r e r o c s i n g 

Prior to calling some planning method, a carrier network may be prepro-
cessed in order to simplify the frequency planning problem. Techniques 
to identify possible simplifications are, for example, studied in the field of 
constraint satisfaction programming (CSP). We are not aware, however 
of any specific study for our version of the frequency planning problem. 

We consider two types of modifications here. In the case which we call 
structurepreserving, the modified carrier network allows feasible assign- structure 
ments if and only if the original carrier network a l l o s them. Moreover preserving 
for each optimal assignment for the modified network, an optimal assign
ment for the original network can be generated in polynomial time. In the 
other case, we call it heuristic, the modifications may change the feasibil heuristic 
ity status, and optimal assignments to both networks are not necessarily 
related. We are interested in this type of modifications, nevertheless, be 
cause the frequency assignments produced by some of our methods are 
often better when such a preprocessing is applied. 

We present structurepreserving modifications in Section 4.1.1 and 
heuristic modifications in Section 4.1. 

1.1 liminating C h a n l s an arriers 

We specify a few situations in which the carrier network may be reduced 
structure-preservingly by either dropping available channels for a carrier 
or by dropping a carrier altogether. 
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r o p i Chan 

As a motivating example, we look at a carrier network, where some of the 
carriers are effectively fixed by having only one channel available. Let v0 

denote such a carrier with C \ BVo {/o oreover let w be a carrier 
with d(v0w) > 0. Then the channels f0 — (d(vow) — 1 ) , . . . , fo + (d(v0w) — 
may be added to Bw without changing the set of feasible solutions. 

This can be generalized to situations, where v has a fe channels 
available and for a fixed g C \ Bw the relation f g\ < d(v0w) holds 
for all channels / G C \ Bvo. Then the channel g may be added to Bw 

The idea can be pursued further and extended to larger sets of carriers 
than merely two carriers. The computational burden of recognizing such 
a situation, however becomes significantly harder ith each additional 
carrier considered. 

None of the above cases turns out to be relevant for our test instances 
introduced in Section 5.1.1. In planning practice, however, the first case 
is relevant and therefore part of our preprocessing. The other cases are 
not addressed. 

r o p i n arriers 

Clearly, we may drop every carrier for which only one available channel is 
left. This is preferably done after dropping channels. Another situation 
in which carriers may be dropped without harm, is described next. We 

generali degree call the generalized degree of a carrier v the quantity 

2_] maxvw), h(vw)} l) 
£E 

ith 

if cad(vw  

if cvw) cadvw 

otherise. 

For a fixed carrier w, the summand "2 m.ax{d(vw), h(vw)} 1" equals 
the maximal number of channels which may become burdened with sep
aration constraints or interference for carrier vifw gets assigned. Hence 
the above sum gives an upper bound on the effect of assigning channels 
to all adacent carriers of v. The actual effect however may be much 
smaller. 

If the generalized degree of a carrier is less than the number of avail 
able channels then the carrier may be dropped for the folloing reason. 
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Whatever the assignments to the adjacent carriers a r , there is always 
at least one channel available which can be assigned ithout causing a 
separation constraint violation or interference. 

As reported in Section 5.1.1, this form of preprocessing often allows 
to drop a few carriers. If one carrier is dropped, the generalized degree of 
its adjacent carriers reduces. Consequently, the technique can be applied 
repeatedly until no more carrier is dropped. A feasible assignment for 
the reduced carrier network is extended in the reverse dropping order 
to a feasible assignment of the original network and without introducing 
extra interference. Carriers may also be dropped if the generalized degree 
exceeds the number of available channels by some small factor. In that 
case, however, the modification is heuristic. 

We also look for possibilities to reduce the size of a carrier network 
by amalgamating carriers, i e . , by treating them exactly the same way. 
Let v and w be two nonadjacent carriers. We say that v dominates dominates 

if Bv and if the edge vx is in E for all wx 6 E satisfying 
d(vx) > max{d(wx),h(wx)}. The function h is the same as defined 
above. Then, a feasible assignment for a carrier network without w can 
be extended to include w by simply assigning the channel of v to w as 
well. Although appealing in principle domination plays no role for any 
of our planning instances. 

1.2 Tihtening t e seration 

The following modification is a heuristic in the sense defined above. Let 
v and w be adjacent carriers, then d(vw) is the minimum necessary sep
aration between the channels assigned to v and w. In case d(vw) > 1 
the same channel must not be given to both carriers. This rules out 
co-channel interference between v and w. Similarly in case d(vw) > 2 
no adjacent channel interference between v and w occurs in a feasible 
assignment. 

One approach to control interference beyond minimizing its overall 
sum is to exclude assignments causing large interference between individ
ual carrier pairs. To this end, we introduce a threshold t. The threshold threshol 
is used to impose a sufficiently large separation between carriers hich 
may other ise cause interference exceeding 

max vw)}, if cvw t and cadvw 

max{ vw)}, if cadvw 

d(vw), otherise 
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The carrier network iV = (V, E, C, {Bv}veV, d, c , cad) is obtained 
tightening from N by tightening the separation with t. A feasible assignment for JV 

may still incur interference, but none exceeding the threshold t between 
a carrier pair. Because an assignment causing high interference between 
one pair may save considerably between others, no optimal assignment 
for the original problem may be feasible for the modified one. 

Despite this fact, tightening the separation works well in conjunction 
with some of our heuristics. By applying heuristics to N for different 
threshold values, solutions of varying quality are usually obtained. A 
suitable threshold value t may be determined by some search routine. 
One example for such a search routine is described in Section 5. 

.2 eedy Method 

Greedy methods compute a frequency assignment from scratch, step-wise 
extending an initially empty assignment to a complete assignment. In the 
course of the construction, partial frequency assignments occur. A partial 

artial assignment frequency assignment is a mapping : A> C that is defined on a subset 
A of the carrier set V. In case a partial assignment is ust an 
ordinary frequency assignment. 

We have performed experiments with several greedy methods and 
describe three prototypical ones in the following. Among them is the 
adaption DSATUR WITH COSTS of the well-known graph coloring heuris 
tic DSATUR. This is our most successful greedy method and it is used 
in frequency planning practice at E-Plus obilfunk Gmb Co. G. 

2 T - l o r i n 

We recall the definition of a T-coloring. Given an undirected graph G 
(V, E) and nonempty finite sets T(vw) of nonnegative integers for all vw G 
E. A T-coloring of is a labeling / of the vertices of G with nonnegative 
integers such that \f) f(w $_ T(vw) for all edges vw G E. Since 
their introduction by Hale [1980], T-colorings of graphs and methods to 
produce them have been studied by several authors. A survey is given by 
Murphey et al. [1999]. Here, we are interested in the blend of T-coloring 
and list coloring introduced by Tesman [1993], where each vertex has a 
list of colors available. 

Our OLORING heuristic, designed and implemented by Haber 
land [1996], is a modification of a T-coloring procedure proposed by 
Costa [1993]. The underlying idea is however already used in the graph 
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gorit OLORING 

I n t : carrier network w h o u t interference informaton 
V, E, C, {Bv}veV, d 

tput: a feasible assignment y or a resignation message 
{Initialization} 
for all v o 

sadeg[ BV {saturation degree unavailable channels} 
deg[ YJ vw spacing degree YJ vw 

&E vwdE-.w unassigned 

end for 
Assigning} 

V contains unassigned carriers} 
ile U ^ 0 do 
ick u s.t. sadeg[ maxsadeg[ deg[ maxdeg[w] 

v£U wdU 
es are broken a r b i a r y } 

UU\{u} 
let y(u) be the available channel for u of least index 
if no such available channel exists then 

resign y is merely a artial assignment} 
en if 
for all v U with u G E do 

update sadeg[] deg[ 
end for 

end while 
y holds a feasible assignment} 

coloring heuristic DSATUR by Brelaz [1979]. T C O L O R I N G is our only 
"min-span" method, compare with Section 3.1.2. That is, T-COLORING 

does not try to minimize the overall interference but focuses solely on 
computing a feasible assignment using channels from a spectrum which 
is as narrow as possible. In conjunction with the reprocessing tech
nique of tightening the separation, see Section 4.1.2, T-COLORING may 
be employed to search for assignments for which the maximal incurred 
interference between carrier pairs is minimal. 

Algorithm 1 gives a sketch of the procedure. After the initialization, 
the carriers are assigned in the while-loop. The carrier to assign next is 
determined by means of the saturation and sacing degrees. For a formal 
definition of both quantities see Algorithm 1. Roughly speaking, the 
saturation degree keeps track of how many channels from the spectrum saturation degree 
are no longer available for each of the remaining unassigned carriers. The 
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spaing degree spacing degree represents how much impact assigning all of a carriers still 
unassigned neighbors would have on its own assignability. If this impact 
is larger than that of its neighbors, the carrier should be handled before 
its neighbors. For similar reasons, carriers ith a high saturation degree 
should be assigned as soon as possible. 

T-COLORING is implemented using binary heaps (see Cormen et al 
[1990, Chapter 7]) for bookkeeping of hich carrier to assign next. The 
running time obtained this way is in (9(|C||i?| + \E\ log|V|), and the 
space requirement is in 0( |C| |V + |£"|). Computational results for the 
T - O L O R I N G heuristic are given in Sections 5.2.1, 5.4, and 5.5. 

4.2.2 Dsatur W i h Costs 

The DSATUR WITH COSTS heuristic is another modification of the graph 
coloring heuristic DSATUR proposed by Brelaz [1979], and again we in
corporate ideas of Costa [1993]. The goal of DSATUR WITH COSTS is 
to produce a feasible assignment of least possible total interference. Re

eatedly, that carrier is assigned next, which seems to be hardest to deal 
with. The measure for "hardest to deal ith" generalizes the saturation 
and spacing degrees introduced with the T-COLORING heuristic. Each 
carrier is assigned the channel presently incurring the least additional 
interference. An outline of the procedure is given as Algorithm 2. 

A matrix cost is used to record the cost ( interference + separa
tion violation penalty) of the carrier/channel combinations. The row 
of cost are indexed by the carriers, and the columns are indexed by the 
channels. All entries corresponding to unavailable carrier/channel com
binations are invalidated during the initialization. The matrix cost is 

pdated throughout the process by adding update matrices, which re
flect the effect of the current s t e . The generic u d a t e matrix A^'^ is 
defined c o m o n e n t i s e by 

^[w][g] 

M, ifvweE,g\Bw,\f-g\<d(vw), 

cco(v), if vw e E, d(v) = 0, / = g g G C \ Bw, 

cad(v), if vw E E, d{v) < 1, | / - 1, g G C \ Bw, 

otherise. 

M is a suitably chosen constant. The still unassigned cariers are main
tained in a heap H carrier's hea key is defined by 

key{v) + V h(cos][}) with h{) = \ f c - M 

fiE\Bv
 c ' t h e r w i s e 
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A l g r i h m 2 SATUR WITH C O S T 

Input: carrier netwrk TV V, E, C, {Bv}veV d, cco c 
Output: an assignment y, possibly infs ib le 

Initializtion} 
ll v V d 

i r i / e C \ ^ i t i l i 
c o s J [ J : 

loo, therwise { n v l i d t e 
sert the he with key 

d f 
s s igng} 

hile H ± 0 do 
extrac carrier i with aximum key(v) from he ? 
y ) := / , where / is ilable of l e s t the cos 
update cos by addin v, f 
u p t e key for ll H 

nd whle 
lds the res l t i ssignm 

While th eap is not empty a carrie with ximum vaue v) is 
extracted and ssigned its least cotly availble hannel / . This annel  

indue s e p a t i o n violtion but then all other i lble nnels  
s well assumig that M is se l r ge enough). 

A Fibonacci h e p (see C o e n et al. [1990, Chapter 21] is used in 
ou impleentation d e t e r m e the next carrier. The nimum-cost 
hannel for a carrier v is determined simply by a search the matrix 
ow c o s t [ . Notice t h t , onc a carrier is assigned the corresponding 
ow in cost is no onger eeded and ay becom outdated withou h r m . 

This fact is e x i t e d our m p l e n t a t i o n and in the analysis of the 
amotized running t i e (see Cormen et al. [1990, Chpter 18]) 
s u m g that the graph underlyig the carrier network is connected a d 
hece , \V\ e Ö(\E\), the running time of DSATUR WITH COSTS is i 

C | |£ | + \V\ log|V|) and the spac require is n C?(|V||C| + \E\ 

The co ic of the first carrier o ssign h a considerable impac starting point 
on the quality of the resulti assignment. No sufficiently general rule 
however is known to de t e r ine the carrier o start with s ather 
time c o n s u m g c o u n t e r m e r e , ll carriers may be tried i rn, nd the 
best reslting ssignmnt is ked the end. The following ompomise 
betwee the tw extre of oosing only one or all carriers as s t i n g 
ponts roves effective Som m l l subset of the carriers, 5% say, is 

se t r o m , ac of t h s e is sed s s t r t i po the best 
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resuting ssignm s reurne in end. T computatonl behavio 
of DSATUR WITH STS is d u m n t e d i tions 5.2. nd 5.4, see 

lso S t i o n 5.5. 

4.2.3 l G e e d y 

he UAL G E E D Y heristic constrcts an ssignment by me of elim
ating alternatives. Reeatedly, a option fo assigning some nnel 

to a carrier is elimiated until only a single annel remans for very 
carrier. Our interest in this type of m e t h d is d e to the results o b t e d 
by Jünger, M r t i , Reielt , and Weismantel [1994] in VLSI design. 

The DUAL GREEDY is greedy i the following sense: the exclusion 
of carrier/hannel combintion is based on oca perception of wh 
s e e s to be n unfavoble combintion. We use a set A C V x 
keep track of the r e m n i n g eligible combiat ion. Initially, A contain 

ll carriers paired with ll their availble nnels A si version of the 
cedure is shown Algorithm 3. 
Hebereh l [199 investigates this b s i c version and several vriants 

The principal distintion among the studied variants lies in the defini 
tion of "unfavorble." The following example, where is the already 
estblished rtial assignment nd A is the set of r e g eligible om 
biations is ken fom Hebereh l [199 

unfavorable A; g)) = 2_, co y , adw) 
(v,g)eA: v,g±l)eA: 

£E,(vw)=0 aE,dw)<l 

+ Y^ Mi coväic{g))\W 
(vj)eA-.eE 

f-g\< 

The set conflict g)) contains the alredy assigned carriers in y whic 
re adjacent t which stisfy on of the three condition g = 

y(vcco) > 0 or y(v) l c ) > — y w) 
Mj nd W are two p m e t e r s . 

This definition of unfavorable(-, • is not the best e r f o n g amon 
those investigted, but it is easily e x p l e d . On assigning chnnel / 
carrier , the parameter is used to pnalize ll still eligible ombia
tion that would r e s l t in nterferece or a separation violation if one of 
them were cked for ssignment. Among the still unassigned carriers, 
potentia co an djace channel terfere is diretly accounted for  

potentil s e p t i o n constraint vilation are p a l i z e d with the pa 
eter Mj High es fo should l e d t little nterfere few 
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paation o l a t i o n i f an Mj weighs p a a t o n v o n ains 
nterfere High es fo Mj put e m p s i s on bt sible 
ssignm 

A l g r i h m 3 UAL G 
Input: carrier netwrk T V, E, C, {Bv}veV d, cco c 
Output: an assignment possibly infs ib le 

Initialization} 
= {v, f) G C | / C \ Bv] eligible ombiation 
s s i g i n / E l i a t i 

e A 
s s i g n g 

r all v,f x C s.t. \{g G C \ v,g) 1 d 
set v) : d remov v, f om 
d 
l iminti  
A ^ 0 then 
delete g) with highest unfavorable A; g)) om 

w h l e 
lds the res l t i ssignm 

he s u e s he UAL GREEDY p r d u nges on the definiton 
of unfavorale(-, -, . Reasonable rules for a giv carrier e twrk could 
be identified n extesive e x e r i m t s b t t h s e les re ther ble 
d e d e t . 

Fibonacci heaps see Cormen t al. [199 Cha te r 21 are sed to 
keep track of unfavorable eligible carrier/channel ombinations. Us 

g such heaps, the DUAL G E E Y heuristi has a runni time in 
ö ( | C | 2 | F | l o g C | | V | + |Cf |£|) an requires 0{\C\\V\ + \E\) a c . In 
order t d e r e s e the practical r u n n g time, the method for icreasing 
the key of a hea element ( the DA 3.6.1 [1998] i m p l e m e t i o n ) is 
uned The amortized runn ig time of this operation is till ö(logn 

t actica t i e savings of oughly 25% re achieved (See Cormen 
t al. [199 hapter 18] for n introduction to the concept of amortized 
nalysis.) Nevertheless, the computational s t d y of Hebermehl [199 
ggests that this method is generlly inferior i term of assignment 

uality as well as in t e r s of runnng time n comparison to (most) other 
methds presented here. We therefore e x d e DUAL EE om ou 
omprison n C t e r 5. 
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4.3 Improvement Methods 

improveent n improvement heuristi takes (partial) assignmnt as input and tries 
euristic o mprove it. Neither the assignmet t be impoved nor the assignmnts 

btained re required to be feasible 
In the followig, we generically refer to N s the carrier netwrk 

iV (V E, C, {Bv}vey, d, cC0 c)- reover for (p r t i assignm 
y fo TV, the set Ey is defined as Ey = {vw G | y y re defined 
The " " of the (parti ssignmnt is 

cos iner inf 

where 

iner Y^ cow) Y^ 
vweEV, vweEV, 
v)=y{ (v)-{w=l 

inf Mj Ey \ \ yw)\ < 

V | y u n d e f e d | 

Mj and M are a r e t e r s . he definition of c o s t ) d e s no pnalize 
the use of ocally unav i lb le hannels, becase our methds ever assig 

n unavailable channel The st of a carriercannel c o m b i t i o n v, / 
/ 6 C \B, with r e s t t ssignm is d e f e d 

cost y, / )) i n e r v, / ) ) inf / ) ) 

where 

iner «, /)) \ ^ cow) \ ^ 
vwdE: vwdE: 
) defined, (w) defined 

}=w /-2/(w)|=l 

inf v, / )) -— w £ | yw) d e f e d | / — \ < d\ 

gether with 

costv,-)) 
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the cost for not ignn carrier v, we o n at o s y is e u a  
the sum over the costs fo all combintion y(v)) if v is assigned 

or (ft, —) if v is not ssigned We set M a d we let Mj be l rge 
enough o pnalize s e a t i o n tion more h e i l y th nterfere 
under "usua ircumstaces" 

W exp fou mprov heuristi in the following, namely, IT 
E A T E D 1-OPT, V S , K-O an M C F he first three heristics rely 
on classical l c a l impovement teps and ave alredy been applied nu 
merou times n other ontexts The l s t method d e s not easily fit into 
the mework of loca improvement d its m o t i t i o n is gi by the 

r i e a t i o n model (3. desribed i tion 3.3. 

4.3.1 at 1-OPT 

Our simples mprovement method, TERATE - O P T , r e a t e d l y ap 
lies n 1-opt step, where the assignment of one carrier is changed to the 1-opt ep 
rren best channel The 1-opt steps themselves are organized in psses 

Within a pass, each carrier is considered one , accrding t a giv or pass 
der. This rder is determined at the beginn of ss by rderin the 
carriers decreasigly according to their cost. On o more passes ma 
be er fored up o the pont where no further mprovem is achieved 

lgri thm 4 is a c h e t i fomuation of the r o e d r e 

A l g r i h m 4 TERATE - O T 

Input: carrier etwork T V, E, C, {Bv}veV d, cco c 
(prtial) a s s i g n m t y0 

tput: an assignmen possibly infs ib le 
Initializtion} 

Vo  
all v 6 V d 
rt carriers to decreasing order O accordi to cost(y; v,y(v))) 

u n s s i g e d carriers should be the beginnin of 
e d 
{Pss} 

ll carriers v V, accordig o order O 
k / . cost v, / )) = minseC\B„ cos g)) 

y ) ••= f 
update the rder O onfo with the i t i l s t i riterion 

nd for 
lds the res l t i ssignm 
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T E A T E 1-OP is a c l a c a l loca earch mthod. The sates in h 
search pac are the ssignments, the neighborhood relation is defned 
through the 1-opt ste nd the merit of movng to a neighbor is the 
differece of the sts omprehesiv suvey on cal se e t h d s 
is g i n by A t s a enstra [199], for example  

miim Unless the current assignment ontitutes local nimm with re 
ect to the neighbrhood relation an the cost structure, conse t ive 

passes result i reeated improvemnts e iterate while impovements 
re bta ied, a computationl e x e r i n t s idicate no need for som 
iling-off contro n practi 

Fibonacci hea (see C o n et al [1990 h a t e r 21]) are sed 
to determ which carrier to consider next and what hnne l to as 
sign t that carrier. We observe th the running time of a single 

ss is in 0( |C| | i? | log|C| + \V\ log|V|) and t h t the required space is in 
C(C||V^| -h I-£71). In theory, the number of impovng psses is not poly-
nomally bounded the size of a carrier graph, because that umber 
may depend exponentilly on the values of cco c . Compuationa 
res l t s fo the I T E A T E - O re reported i tion 5.3.1 5.4. 

4.3.2 ariab th S a r c 

The VDS herist i is an mpleentation of the onep of variable depth 
eighbrhoo s e a h as i n t r c e d by n nd Kerigh [193] see als 

Aarts an enstra [199 h a t e r 1]. The carriers are sorted to om 
rder 0 , a d the ssignme of each carrier is c g e d one by on accrd 

ing to this order The bes alterative channel the resently assigned 
one is tentatively selected. O n e all carriers bee onsidered, the 
sequene of t e n a t i e changes is canned om art to nd d the t of 
very intermediate ssignment is recorded Finlly, the t e a t i v e ges 

are committed up to the pont where the first assignm of le 
is btained. All further t e a t i ges re rejected 

Like n the case of TERATED - O P call the oessing of on 
pass rder pass. Psses are erformed s lon a i m p r o v n t s re achieved 

f o l desription of DS is g i n lgri thm 5 
VDS is local seach me tho . G n n assignment another assig 
nt is its neighbor if this assignme can be o b t a e d by the mprove 

ment rocess desribed bov for some order of the vertices Hence, the 
neighbrhoo of a g ien assignm consists of ll ssignmnts that ca 
be r o c e d by executing the tentati ssignng an the committi 

rt of lgr i th 5 for som rder In t h t r e s t our meth 
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A l g r i h m 5 DS 
Input: carrier e twrk T V, E, C, {Bv}veV d, cco c 

assignment 
tput: an assignm possibly infs ib le 
Initializtion} 

yo 
c* cost(y0)  

all carriers 
rt carriers d e r e s i rder O accrdi cost v,))) 

or 
tative chages  
ll carriers v V, a c c r d i g the rder O, d 

. cost v, / ) ) = mmgeC\{BvU{yv)}) cos g)) 
v) 
c o s y ) < c* th 
c* cost 

nd for 
Commit ges 

=yo 
ll carriers up o v accrdi the rder O 
) : 

nd for  
cost cost th 
o y 
ot Ini t i l iz t ion i t e r t e i case of mpov  

if 
lds the res l t i ssignm 

is rather limite cause only a s inle ig is determine the 
ost of the origi assignme is already m among the se of 
b t n e d ssignmnts the search is t rpped an ted 

The number of improving execution of the core part of V is no 
polynomially bounded in the size of a carrier graph in general. he 
complexity nalysis is therefore only given for a s igle pass. he runnin 
time of VDS is in C(|£711C| log|C| + |V|log|V|) and the required ace 
is in 0( |C| |V| + \E\). Computational results for the V heris t i re 
reported i tion 5.3. and 5. see lso S t i o n 5.5. 
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A extended version of the T E A T E 1 - O T procedre may choose more 
than just one carrier t the tim nd optimize their nnels s i m u l t e 
ously with resec o ach ther well as with respect the remanin 
fixed assignments. In the K - O P T heuristi k carriers are piked ou 
eac tim The umber of possible assignmnts on carriers is \C\ in 

rinciple. This quantity grws exponentially with k, t the amount of 
feasible ombinations is uually m u h smaller in practice The r e o n fo 
this reduction is typcally not due genuine locally blocked channels 
Insted, it stems om the restriction imposed by the carriers which are 
not to be chaged Nevertheless the possibilities re still too numerou 
o simply rely on numertion. W use b r n c h - d - c u t lgorith in 
t e d (The principle of b r c h - d - u t lgorith is briefly explaned  

Setion 7.4. Comprehensiv treatments are given by Jüger , Reiel t 
d Thienel [1995b] nd Thieel [1995], for example.) 
The stable set model see Setion 3.3.1, forms the basis for the ro 

ed re . et K denote the set of carriers to optimize over d let 
v C C\BV denote the set of nnels a s s i g b l e v K without caus 

ing s e a t i o n volation with any carrier in \K This restricted version 
of the rresponding stable set fomuation (3.6) is sated here fo con 
venie Recall the definition of the sets Ed Eco Ea om 3. 
(3. (3.5) respetively 

rco co ad ad 

7 W^ / W^ 
weEco weEad 

veK vex 

1 VD (4. 
feA 

< 1 V v w £ v , \ f \ < (4.1b 

Z < 1 Vvw G co v , f vn (4. 

w - l
v i < 1 V v w e a d , v , f J - (4.1d 

Z < 1 V v w e C 0 , v , y w ) = (4.1e 

< 1 Mvw e ad\ v yw) ± Av 

(4.f) 

,1 Vvef (4.1g 

,1 Vvw eC0 (4.1h 

1 Vvw e a d (4.1i 
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Our m p l e t a o n uilds on h ABACUS f r k deelop by 
hieel [1995]. he jet ive here is not t desig effective b r c h -
nd- algorithm solve FAP i general. Our o computational ex
e r i n t s as well the experiences of other research groups ompre 

rda, Hipolito Hoesel, Janse , Roos, a d Terlaky [1995] and Jau-
mard, Marcotte, and Meyer [1998] indicate that eve rather s a l l carrier 
networks with 2 carriers a d 20 channels say, are h rd ly ble o op 
t i l i t y The P relxation is highly degenerte. 

Due to stoage capacity a d r u n n g ti onsiderations, we do no 
t a t with the full description of the rogrm (4 . ) Initially, only the 
o n s t r n t s listed under (4.1a (4.1c), 4.Id (4.1e), a (4.If) are con 
ained the LP r e l a t i o n . In ddition to that the relxation of (4.1g 
4.lh), nd (4.1i to rbi t r ry alues betwee an are als imposed. 

The contraints 4.1b reflectig the inmum sepration requiremnts, 
re separated t need. They are not considered i d i v i d l l y , howver 

t i the stronger ggregate form of the well-knon c l i e contrants 
re reisely, given fractional solution of the LP relaxtion gr 

W, F is o n s t r t e d om the nonzer y v a r i b l e s where 

v , f ) e C \ f , y > 0 

v , f g ) ( v , f ) , , g ) e 

uy( + Vi< 1" is listed in (4.1b 

he vertices of the graph are weighted with the ^ - v l u e s W s s a t e to 
very ubset of the vertex set the otal weight of its verties. B mean of 

an lgorithm s i i l a r to that proposed by r raghn r d s [1990] 
we compute a maximum weigh clique Q n the gr W,F f the 
weight of exeeds 1 the the lid i n e q l i t y 

v,f)eQ 

is ol ted, d this constraint is dded t the Notie that the p b 
lem of ding maximum weighted cli n a grap is A/'Phard, ompare 

siello et al. [1999, Appendix B G T 2 . In ou pplication hwever 
a clique is u a l l y found suf ient ly f s t 

We lso make use of ABACUS' bility o remove slack o n s t r n t s 
om the LP n order kee the ll he b r c h i g is e r f o e d 
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on d z va rb les only Among thoe, vaab le f v u e lo 
est to 0.5 is seleted. here are, of course, m n y ways impove ou 
oarse implemenation. Two examples are the se of r e f e d brnchi 

schemes and the separtion of other valid equalities (such as blen 
of the fasibility o n s t r a t s (4.1b with the nterfereceaccountig con 
strants (4.1c) and 4.Id the fo of t r s i t i l i e s see lz 
[1996, C h t e r 4]). 

Computional res l ts fo the - O heristic are o n e d i 
tion 53.3 5. see lso 55. 

4.3.4 n-Cost F 

The M C F ethod is o r i g i l l y roposed s the inner art of a twolevel 
heuristi o solve the frequen assignmen poble he tw levels cor 
respond the "outer and the nner" optimization goa in the orientation 
model explaned in Sction 3 .3 . . O present ion follows ong the l i e s 
of the more detailed exposition gi by Borndörfer et al. [1998 W 

retric tre only the most bs ic case here he rrespondi restrition re: 

) no nnel om the trum is blcked cally; 

ii) for all carrier pairs with no required sepaation the channel in
t e r f e r ee is t l e t twi mu s the djac nnel i t e r 
fere 

We ssum that the carrier etwork N (V E, C, {Bv}veV, d, cco c) 
satisfies the above restrictions nd tha is an associated feasible as 
signment. A directed version of the g r h V, E underlying the carrier 

etwork is de fed : let each edge poin om the vertex with the s l l e r 
hannel o the vertex with the rger cannel; f the nnels of both 

verties are the s a e , either rientation is fine s long as the resultin 
rienttion does no ontain a directed ycle. Such an orientation can 

always be omputed i polynomil tim et (V, denote the direted 
g r p o b t n e d n this ay. Noti th is ompatible with A in the 
sese of Setion 3.3. The M C F meth ds the best fesible ssig 

y which is ls ompatible with 
We set up a l i e a progrm whih is clsely related to the dual of the 

L r e l a t i o n of 3.7) he rimal rogram is modified slightly before 
f o r i n its d a l . The nges are the followi add constraints un 
der 3 .b) for ll remining edges with w = 0 and we drop the upper 

ound o n s t r n t s on the ™ an ribles. Both t y e s of modifi-
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catons do no 3. t will b o n i e 
the followin 

Notie that fo xed rientation of the edges, eac of the constra 
pairs (3. 3.7), a (3.7d) reduces to on cons t rn t Furthermore, 
a consequen of the above restritions the o n s t r a t s 3.e) disappa 
from the orienation model formuation 3.7). The linea progra we re 

terested i is the dual t the L r e l t i o n of the resulting ILP. 
he du riables %w x° and 0^ are ssociated t the con 

traints (3.7b 3.7c, and (3.7d, respectively The d u l riables l 
nd uv are assoc ted with the upper d lwer ound c o n t r n t s whic 
re impliitly given by 3 . ) . With C = min{/ | / 
ax{ / | / C the d l gr no r e d s follows: 

^lf^ad J / / v) 
eE eEc° £Ead v£V 

Vve (4. 

Vvw e co 4. 

yvw G ad \ Eco 4. 

yvw € 

yvw e CO 

yvw e ad \ ECO 

yv 

og 4.2) m be lve y computing a st fow 
(see huja, Magnnti and Orlin [ 1 9 9 , for example) on an auxiliary 
g r h First observe t h t the inequlity con t r i n t s ( 4 . ) may be t r n e d 
into e q t i o n s becase ny slack ca be e l i t e d by ncresing l with 
positie or no e on the objeti e t F t h e r 

essry t r f o t i o n re: 

E 
vweE 

(v,)eA 

/ 
vwdE wdE 

{v,)eA v)eA 

2.^ l^ 
vw£Eco: eEc 

{v,w)eA v)eA 

E ad 

eEad\E eEad\E 

(v,w)eA v)eA 

v 
co 

< o 
< CC° 
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the ject ie function of 4.2) is multilied b th ax 
oper r e a c e d by the min operato 

the o n s t r n t s 4 . ) with e q l i t y sign) re multilied by 

a ew vertex is dded, d the ribles re r e a c e d 
by vs sv 

he o n s t r t s 4. re no 

E co co 

vweE weE vweEco: eEco 

{v,)eA v)eA (v,w)eA v)eA 

eEad\Ec eEad\Ecc: 
(v,w)eA w,v)eA 

4.3) 

m n s f those t r f o a t i o n s th roblem (4. urns the 
poble of computing a m n - o s t direted g r a h with paallel 
edges. The edges corresponding t vs d xsv re uncapacitated, 
the edges rrespondin t xc°w d x^ h e l i i t e d capacity There 
is no si or source. Instead, we re lookin for ircuation eeti 
the onse r t ion constraints (43). Numerous e t h d s for olving 

a proble are described the li teratre, see Ahuja et al [1992, 
Chpters 9-11, for example n o p t i a l cirulation we y con 
t r t integr node potentils n a dual solution) with is = 0. etti 

y(v) = T for all G V, w o b t n the desired f r e e n y ssignm A 
more detiled d i s s s ion on this onnection is gi by Bodörfer et al 
[199b 

lgorith gives a sket of the e m o y e d procedure, where we ls 
sho how to handle the case n whih the a o v e restrition (ii) is not met 
M C F reduces the adjacen channel interfere of the orrespondig edges 
temporarily in order o meet this cons t rn t . Th ay, M C F s in 
a heris t i with resect to its wn optimization goal. The flo alon 
each the s s i a t e d direted g r p h incurs integral st. From 
gee r m i n - s t f w theory, may c o n d e that the d u l s t i o n 
is also ntegr In fact the tion es asible fre 

ssignmet. 
Restriction (i) lso be relaxed i the followig sese . Let v be 

carrier where some hnne l is blocked locally, that is ^ 0. The 
cal exception puncture the set of otherwise ontiguou nnels in C  

ay thi of the set the unon of axi n t e r l s of 
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oniguou channls call e inter ndow, and, ven indow 
sible ssignment the window I%° with yo(v) I%° is called the 

active window fo v. If ocal blockigs re resent, the jet ive function ve window 
of 4 . ) ca be nged by replac C an by I%° min{/ / i^0} 

a d 1%° max{ | / I%, respectively The effet of this ge is 
t h t eac node receives a channel from the active window. 

he xil iry directed graph is easily o n t r u t e d in Od-E"! time 
The mincost flo problem is solved by mean of a e twrk implex 
Method implemeation, see Löbel [1997. The s a c e requirement of this 
lgorithm is in Od-El), but its wrst-case r u n n g t i e is exponnti 
n the input size lthough there re strongly polynomia m i n - c t fow 
lgrithms (see huj et al. [199 Capte r 10]), we hoose this imple 

m e n t i o n of the etwork Simplex lgorithm for its typically ompetitiv 
unning time a c t i . Compuation res l ts fo the M C F herist i 
re repoted i tion 5.4. 
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A l g r i h m 6 M C F 
Input: carrier etwork V, E, C, {Bv}veV d7 cco c 

feasible assignmen 
tput: a feasible assignmet 
Initialization: orient edges of G V E 

ll edges w G with y ^ w 

O u ^ ^ ty < yw) 
{(w f y w) 

for 
ll edges vw G with ) = (w 

Ouv7 r O O U {( u)} 
re th the f r i e a t i o n is a c l i 

nd or 
C o n t r t i o n of xil iry direted graph D (W 

ll v, w) G withou = 0, c™ > 0, c > 0 
w = 0, cc° > 0 then 

J 4 u w , w ) with caacity cc° —1 
i 1, c" > 0 t h n 

J 4 u w , w ) with caacity c^ —1 

A U with capacity o an t — d  
fo  
ll ) e with = 0, cc° > 0, c ^ > 0 

{sv 

AU , s with cap. ax{c™ - cad \cc° st - 1 
A U s„ with cap. an 
A U ^ , with cap. in{c \ ^ st 
A U ^ , with cap. 

W{s}  
ll v V d 

AU {(sw with caacity st %° 
A U s with caacity st %° 

n 
S o e mn- prblem} 

so resulti m i s t flow proble on D = 
let v) = T(V) v for an optim i tegr tion 

lds the res l t i sible ssignm 



CHAPTER 5 

omputational Studies 

In this ter we report on computtional experimets erfomed with 
the frequen p l n n i g heuristics desribed in the p r e o u ter Re 

lts are gi for eleven relistic b e h m a r k s r i o s 
We introdue these senarios i tion 5.1. The indiidu erfor 

m a e of the herist i nd their parameter interdeendenc is nlyzed 
n S t i o n s 5. and 5.3. he conerted acting of the heristics is studied  

Section 5.4, where we ls select our favorite o m b i t i o n of me thds 
together with the r e l e n t parameter sett igs. e f o s on three ou of 
the eleve s n a r i for these extensive studies In S t i o n 5.5 our 
vorite combintions of heuristics are pplied t ll benchmark scenrios  

detiled lysis of the resulting frequncy s is given. Fially,  
Section 5 , ompre our swiftly geerated p l n s with t h s e om 

puted by the e l a t e lannng heuristi rocedure of Hellebrandt an 
Heller 2000] exp l aed n Setion 5.12. We give r e o m m a t i o n fo 
the use of the riou heuristis in p a c t i e . 

he followin t e n i c a l information on the omputer system environ 
ent should a l lw o estimate how the running times of the herist i 

provided here t r s l a t e to other system environmnts. The computation 
are erfomed on BM h i a d 00X with a Intel Pentium II p o 
cessor operatin t 6 0 M z lock speed, and equpped with 576 MB of 
system memory The operatig syste is GNU/Lnu the uSE 
distribtion, kerel version 14. 

The herist i are impleented the p g r m m n g langage C++, 
u s i g d t ruct res for g r h s and riority quues from the Library of 
Efcie Data structures lgrithms ( L A ) , version 3.6.1, see Mehl-
ho and Näher [1999 DA 6.1 [1998]. The compilations are per 
formed by m n s of GN ++ version 295.2, with -mcpu=i686 -06 
optimization ags The m c o s t fl problem arising withi the M C F 
heuristic is ved usi the etwrk Simplex Method i m p l e m e t i o n of 
Löbel [197], version 0 A B C U version 2.2, is used to implement the 
K-O herist i ll re ved s i g C E X version 5. 

PHI, 650 MHz 
GNU/Linux 

C++ 

LEDA 3.6. 

ABACUS 2.2 
CPLEX 6.5 
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The reported runn t i e s of the e u t i s do no lude the ini
tialization of the test ewrk, the r e d i of the the setup of 
the carrier netwrk. 

A graphical ser nterface GU llows t call the riou methods 
nd to visualize the interferene i n r r e d by a freq n. his 

user interface was implemnted usi the p rg r ammn laguage 
fo a demonstration a the CeBIT 99 ir Figure 5.1 shows the display 
panel of the p o g r m . Within the display pae l , geogrhica l and ther 
nformation on the planning i s t a n e K, see ection 5.11, is listed. In 

addition informtion on the curre f r e u n c y p n is given in numbers 
(in the lower right el) as well ictorilly (in the upper left pnel) 
Every node in this nel denotes a site a d edges betwee tw sites 
r e r e s e t interfere mon RXs of the tw sites 

5.1: nn 

.1 enchmarks 

A f i r comprison of omput iona l experiments is often rd to achieve 
The running times of the s e methd , for example, deped hevily on 
the omput ig environmnt as well on the actual i m p l e n t a t i o n of 
the method This can hardly be r eed i ed Another soure of uncer 

inty, however can be remedied by m of sing publicly available 
d estblished nput d ithi the action the bgroup 
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on " t a n d r d nari fo Frequncy nnng establishd a cllection 
of relistic GSM f r e y p n n n g s e n a r i s in order to allow oun 
omparison of diferen anning e thds . Sveral of these tes s c a r i o s 
re used here, p l s one addition n r io . ll our nr ios re avail 
ble via the Internet rom the P web [2000] hey are i n t r e d i 

Section 5.11, tgether with an analysis of their racteristis. 
In S t i o n 5 . 2 , we describe the f r e q e n y a n n g heuristic pro 

posed by Hellebrandt and Heller [2000 This heuristic is presently the 
most competitive one fo ou a r i s and w se its res l t s s refere 

the omprison of ou ter ethods 

5.1.1 st Insta 

Our b e n m a r k i n snces re i n t r o e d i the following noationa 
o n v i e e , we use other abels t h n the riginal ones but povide the 
rigina mes in the descrition The brief des r i t ions of the nnin 

r i s are mostly taken from E i seb l t t e r ü r e r [2000 ac 
ri gives rise a carrier e twrk 

for a GSM 1 0 0 network with 92 active sites 4 cells 
an verage of 1.01 TRXs per cell Fifty contiguous chnnels fo 
the trum (Povided by bilfun GmbH & o. 

at fo GS 800 etwork with active sites and 88 cells B[d] 
The paameter t scales the traffic d e a d . The a v i l b l e trum 
consists of 75 contiguou chnnels. (Povided by P bil 
fun GmbH & Co. " b r f o r d _ i e 

he basic trffic load is d r w n at random accordi a distri 
bution observed empirically by Gotzner, a m t nd Rathgeber 
[199 his t r a c is then scaled with the fact r d e q l to 0, 1, 
2, 4 nd 10 rior to pplying the r lag-B formula n rder t 
btain the required number of TRXs per ell. he res l t i ver 

age numbers of TRXs per cell re 00, 1 , 1.17, 1 nd 220, 
respectively The different t r c demands ay be seen a the evo 
lution of a etwork over time The interference preditions base on 
signal opaation predition accrding to the p lu" model, see 

tion 3.2. The two alterative rediction models "free pace 
and race, also mentioned i ection 3.2, re no considered here, 
because in most of the cases frequency without any interfer 

e is asily b t b l e , see iseblätter Küre r [2000 
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SIEI at fo a GS 900 ntwork with 1 active site 506 lls and an 
averge of 1.84 TRXs per cell The i lble pe t rum consists of 
two contiguou b l k s o n i n g 20 an 23 nnels r e s t i v e l y 
(Povided by iem s i e s l 

SIE2 at for a GS 900 netwrk with 8 active sites 254 ells and an 
averge of 3.85 TRXs er ell he i lble pectrum consists of 
two ontiguous blcks o n i n 2 nnels, r e s t i v e l y 
(Povided by Siem sie 

SIE3 for a GS 1800 network with 366 active sites, 89 cells and 
an average of 2 TRXs per cell. he vailble trum omprises 
55 ontiguou hnnels (Povided by i e e n s "siemen3. 

SIE4 at fo a GS 900 network with 276 active sites 760 ells and an 
verage of 3. TRXs er cell. The ailble trum consists of  

ontiguou nnels (Povided by ieme as s i e 4 . 

Sw ta fo GS 900 network n a ity with many locally blcked 
hnnels On averge, 09 TRXs are istalled per cell. here 

are 148 ells with 1 to TRXs an 70 neighbor reltion In 
general, 52 nnels in tw ontiguous blocks of sizes 49 are 
v i l b l e , but 36 cells h v e l c a l restrictions. Only 15 nnels 
re available i the worst case the edian of vailable nnels 

per ell is 29 (Other figres c o n e r n i g the availability of chnnels 
are provided with the scenario. We give the results of our 
computations.) Together with the senario, a rtia assignme 
is supplied which is supposed to be extended The restriction 
mposed by the uncangeable TRXs are l redy ken nto accoun 
n the abov figres (Povided by wissom td "Swissom. 

Fr the r details c o n e r g the underlying GSM etwork are listed i 
ble 5.1; amely: the number of site in the p l n n rea; the numbe 

of cell no site hosts more t h n three cells); the spectrum size or, in the 
rese of gloally blcked nnels, the sizes of the ontiguou portion  

the trum; the average number of TRX per cell; an the maximum 
nmber of TRXs per cell. Notie that i ach of the s n r i o s with 
glbally bloked channels, the reslting g p n the s t r u m exceeds the 
maximal required sepration. Thus there is no dire ouplig betwee 
distinct contiguous portions of the spectrum 

Three further figures are given for each s n a r i o in Table 5 . hese 
re esies e x n e d i term of the carrier e twrk which is b t e d 
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ble 1: is 

each cell operates only one TRX Then, every carrier n the etwork 
corresponds to a cell and the graph underlyin this network r e t s the 
relation mong the ells For this g r h , the verge degree (averag 
number of adjcent cells) the ximum degree (maximu number of 
adjacent cells) an the meter of the largest c o n n t e d o m p o n t ) 
re listed. See ppndix fo definitions of these terms 

W poin out a few peculiarities of those g rahs . First for reson 
which re no entirely c le r the g r p h is not c o n n t e d fo all s e n r i o s 
Sometimes a few ells form small s b g r p h s , whi are isolated rom the 
rest. (This henomenon might be due shielded doo cells he sizes 
of the s a l l c o n n t e d components are follows: x 1 1 x 2 , and x 3 
for B[l 1 x 34 for SI and 1 x 1 for Sw. All t h s e sml l omponents 
are l iues with the excetion of S I E , where the lrgest l i e con 
only of the 34 verties 

RX 

00 
05 

10 20 

ble 2: operties of d] d e d i on the tr fac 
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cond, ookng the olumn s w i n aveag n u m r of dja 
ce cells, we see that cells are djacent to urprisigly man other cells 
on average. In enr io K, for examle, eac ell is adjacent to more than 

f of ll ells. (We belie t h t the comparatively high numbers for the 
cenari provided by E s Mobilfunk GmbH & Co. KG are e t the 
se of 20 dB threshold distiguishing between interferen ted 

d unaffected pixels see Sction 2.3. for further e x l a t i o n . ) 
Finlly, the l s t umn shows that the cells re all r t h e r " n r b y 

in most all sceari Recall tha the dimeter in a connected graph is 
the maximum length mong ll shortest paths between pairs of verties 

hus, diameter of , fo example, mplies th for every nonadjacen 
p i r of ells, there is on cell bein adjacet to both of them If the 
graph ha more t h n on conneted componnt, we give the diameter of 
the lrges o m p o n . The d i a e t e r of the mall connected compon 
of S E 3 is The diameter of ll ther small omponents is either 0 r 1 

After ha ing looked the c e r i o s , we turn to the carrier networks 
derived fom the s r i o s he f o s is on the undirected graphs under 
lying the s a r i s a d on a few aracteristi of the edge lbelings d 
cco nd cad he results of our a l y s i s are gi in Table 5 , whih is 
r g i z e d i ve blocks of c u m n s . In the first umn, the label of the 

assciated scenario is given. The next block contans information on the 
graph, namely, its number of verties, its edge density tha is, number 
of edges relative o the maximum possible number of '), the aver

ge degree of its vertices as well the maximum degree, and the size of 
a aximum li The third block addresses the imum separation 
requirements a ecified by the lbeling d. he tota number of edges 
with nonzer separation requirements as well the breakdown of the to 
ta accrding the required s e p a t i o n is displayed he forth and fth 
block provide formation on the c and adjacent channel interference 
labelings cco and cad, respectively. In each b l k , we list the to umber 
of interference reltions, their verge and mximal iterfere v e s 

s well a the um over ll interferen vales. 
There are again some noteworthy facts First, the average degree of 

a carrier is sigificantly higher th the number of available chnnels in 
all the carrier networks excep fo Sw. This dicates that the nnel 
ssignme for difere ells h s t be carefully uned n order t 
ood frequency p l a s . 

Second, the size of the aximum liques in most carrier networks is 
rger than the number of avilable channels. Fo those carrier networks 

every sible assignm mu i n r interfere We investigte this 
futher C h t e r 6 
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Third, reca om Section 3.1 ha he n t e c e labelings are ob 
ed by summing up the two direted nterference tings between pairs 

of TRXs Those directed ra t igs are normalized a d take vaues be 
twee nd 1 The sum is thus bounded by 2 In several cases the 
maxim co- or adjacnt channel i te r ferece is, i fact, close to 2. he 

c c r r e e of ch hevy interference is cnsidered cmpletely unaccep 
able in ractie. In Setion , we see t h t such heavy interfere can 
typically be avoided by good frequency assignments. his happens ei 
ther by coi idence, indirectly due to the optimization g o , or is imposed 
by "tighten the s e t i o n " s explained in S t i o n 4 . 2 . 

Fourth, we see th o co-channel interferene is reported for Sw 
hen generati the s c e r i o , the radio laner apprently decided to rule 
t this t y e o n te r fe ree etirely by d d i g the essry s e a t i o 
straints 
Fifth, o e might hav guessed t h t the g rphs underlyig carrier net 

anar gra works re ot mu deser t h n r g r h s . A lanar graph ca 
be drawn the Euclidean p l n e in ch a manner t h t edges are rep 
resented by iece-wise str ight lines d o edges cross P l n a r g r h s 
are of interest becase m n y generally A/'Phard roblems on graphs are 
solvable in p o l y o m l time if restricted to anar graphs he following 
relation betwee the number o vertices a edges i gr is 
wel lkow follows fro ler formu 

P r o o s i t i o 5.1. A anar graph G = {V,E) satisfs \E\ < 3 \V\ — 6. 

For the carrier network K, for example, the expression yields 3 267 — 
6 = 795 as opposed to 27388 edges. Even the number of edges with 
separation costraints is roughly 1.3 times this valu. Consequently, the 
graph underlyig the carrier network cannot be planar. The large max 
imum cliques in the carrier networks as well as the small diameters of 
the connected components also idicate substantially tighter c o p l i g s 
among large sets of carriers than one might have suspected. 

The degree of interdepedencies clearly affects the possibilities for de 
composing the optimization problem. Ideally, we wold like to be able 
to independentl solve small subproblems to optimality a d assemble an 
optimal solution for the whole problem from the solutions to the sub-
problems. The stronger the depedencies between the subproblems we 
choose, the harder is the assemblig. In the thesis of Koster [1999], 

tree such an approach is described using a ree decomposition of a graph, see, 
dempo for example, Bodlaender [1993] for an introduction to tree decomposi 

tion. We do not give details here, but merely state that this approach is 
ccessfll applied to graphs with a treewidth of p to 11, say, a d that 
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the r u n n g time grows exponentially in the treewidth. Because the size 
of maximum cl iue minus one is a lower boun for the treewidth, this 
approach is likely to fail o all o r scenarios 

In an heuristic decomposition approach, the subproblems need not 
to be solved optimally, and the reassembling might introduce controlled 
degradation. But even in this relaxed sense, no convincing decomposition 
method has bee proposed so far We explai e of the obstacles to 
overcome 

We define a labeling mc: V —>• Z + of the carriers in a network N = 
(V, E, C, {Bv}vV, d, cco cad) by se t t ig mc{v) to the size of the largest 
clique in which v is contained. (On o r instances, a maximm cliq 
can be compted i reasonable time by m e a s of a brach-and-bound 
algorithm.) We then consider the graphs Gl = G[{v G V \ mc(v) > z}] 
i. e., the sbgraphs of G = (V, E) induced by the set of all carriers which 
are contained a clique of size at least i. The graphs Gl are ntrivial 
for between 1 d the size of a maximm cl iqe i 

Figures 5.2, 5.3, and 5.4 show the sizes of the connected components 
of G for the carrier networks of the instances K, B[l], and SlEl, respec 
tively. Obviosly, large cliques are no isolated phenomena in these carrier 
networks. O the contrary, a major portion of all carriers is contained in 
cliques which are larger than the number of available channels. Similar 
results can also be observed for the other scenarios. Leaving the small 
connected c o m p o n t s of the carrier etworks aside, we also see that o 
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in case of SlEl the subgraphs G decompose. (For i = 32, the cliqes 
observed for 31 disappear, and from i = 33 up to 50 a new componen 
splits off from the major chunk.) Good frequncy plans thus have to 
resolve separation conflicts a d interferece a m o g large sets of s t rogl 

terdependent carriers 
n this context, we also report on the effects of the preprocessing preprocessi 

techniques proposed in Section 4.1. Table 5.4 docments that these tech
niques have only a rather limited impact. A few carriers can often be 
safel excluded from frequency planning due to a small generalized de 
gree. Most dominated carriers, however, are in fact isolated nd th 
trivially dominated by ever other carrier. The sceario Sw may be con 
sidered as a minor exception, because the reduced 85 carriers constitute 
a significant portion of all carriers. Nonetheless Sw is the scenario for 
which almost no feasible assigment can be prodced s i g o r heristics 
from Chapter 4, compare with Sectio 5.5. 

B[0] B[l B[ B[4] B[10] SlEl SIE2 S I E 3 S I E 4 Sw 

reductio 15 27 26 22 19 21 60 96 10 83 
domination 

Table 5.4: Effects of preproces 

With a number of benchmark cenarios i stock, we n o a 
"bechmark" heristic to compare o r o heristics with. 

5.1.2 T h r e s o l d Accepting 

We use the heristic proposed by Hellebrandt an Heller [2000 to com
pare o r computational results with. The implementation of H n s Heller 
Siemens AG, Germany, shows presently the best performance in compar 
ison with several methods o the COST 259 scenarios, see the study of 
Eisenblätter and Küre r [2000. The refereced frequenc plans are also 
available via the Internet from the FAP web [2000. Because the method 
is not yet published in open li teratre, we give a tline of this method, 
drawing freely on ur presentatio n Correia 2001, Section 4.2.5]. 

The method of Hellebrandt and Heller [2000] makes use of the Thresh
old Acceptig paradigm. Threshold Accepting is proposed by Dueck and 
Scheuer [1990] as a variant of Simulated Annealing with a deterministic 
acceptance criterion: a proposed change of the solution, also called a 
move, is accepted if an improvement is achieved or the deterioration is move 
below a threshold. The value of this threshold declines with the progress 
of the algorithm. The basic scheme is agmented here b a l t e r a t i g be 
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tween andom changes a d local optimizatio ke th of the algorithm 
is give as Algorithm 

lgorithm 7 T H R S H L D A C C P T I N G 

nput: carrier network N = (V, E, C {Bv}V, d co cad 

assignmet yo, time bound Ttt 
Output: an assigment y, possibl ifeasible 

nitialization} 
itialize threshold 
hile stopping criterion not met do 
for time T do 

select random move M 
cost of M threshold en 
xec te M 

end if 
select r a d o m cell a d optimize it 

end for 
decrease threshold 

ile 

The cost of a move is the difference between the cost of the assig 
ments after a d before the move. For the most part, Threshold Accepting 
inherits from Simulated Annealing the variety of popular implementa
t i o s for each geeral step. The followig choices are made b elle 
b r a d t a eller 2000 

Start Solution: The random moves described below are not specially 
suited for findig a feasible assigment if many hard constraints 
have to be taken into account. I uch feasible assignment 
shold be provided at the start therwise, any assigment is f e 

nitial Threshold: The threshold value controls how much deviatio is 
allowed from the cost of the current s o l t i o . A binary search is 
performed to identify a threshold, where 0-90% of the proposed 
r a d o m moves are accepted. 

S t p i n g Criterion: The terminatio is triggered whe the acceptace 
rate for r a d o m moves s i k s belo 5% 

er Loop/Threso ld Reduction: The r u n n g time of the proce 
dure depends on the initial threshold, the factor b which the 
threshold is reduced, the length of the inner loop, and the stop
pi criterio The l eg th of the inner loop is limited b a time 
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bound of 10 sec, for example. Taking this a d a maximum desired 
r u n n g time into account, a factor for redcing the threshold at 
the e d of each outer loop is compted. R u n n g times in the r a g e 
of 10 minutes to several h o r s moder PC are sed for 
bechmark scearios 

dom Moves: First, a TRX is chosen at r adom. Then, an available 
channel is chosen for this TRX that does not cause any separation 

straints. This c s t i t u t e s the random chage. Both choices are 
done according to a uniform distributio. In case no channel is 
available for the TRX, the choice of the TRX is repeated. 

ll Optimization: The optimization of a cell is done by Dynamic Pro
grammig. This is the topic of the followig paragraphs 

The essential feature of this variant of the Threshold Accepting algo
rithm is the cell optimization step. Cell optimizatio is a counterweight 
to the perturbatio nd deterioratio of random moves. The special 
s t rc ture of the GSM frequncy assignment problem allows a complete 
and yet efficient optimization of one cell, provided that the assignment i 
all other cells is kept fixed. The reaso for this is that co-cell separation 
is usually at least 3 a d , therefore o i ter ferece ca arise am TRXs 
within the same cell 

The optimization of a cell is first explained under the provision that a 
broadcast control channel ( B C H ) nd a traffic channel (TCH) show n 
differece with respect to f r e q u e y planning. How this restriction can 
be removed is discussed later. Two observatios can be made under this 
provisio sider a feasible a s s i g m e t a a cell with tw or more 
TRXs 

The channels assigned to the cell's TRXs ma be redistributed 
a m o g the TRXs without chaging the feasibilit or the cost of the 
assignment. (Recall that the TRXs in a cell are ordered.) Hence 
it suffices to consider assignments, where the channels assiged to 
a cell's TRXs are i creasi order 

(ii The current costs of the channels and the currentl forbidden chan 
nels have to be compted o ce, becase the are the same for 
all TRXs i the cell 

Finding an optimal assignment for the cell can thus be reduced to 
the following problem. Identif an creasing list of channels such that 
its legths matches the number of TRXs i the cell, s c h that sccessive 



90 5.2 LYS OF G D Y H U R S T 

channels are at least the r equed cocell s e p a r a t n apart, and such that 
the list i nc r s mi imal cost. This optimization problem is efficientl 
olvable sing Dynamic Programmig with Memoization see Cormen 

et al. 1990, Chapter 16]), where a top-down computation strateg is 
sed a d the solutions to subproblems are stored for later lookups 

We now come back to the assmptions made above. These assump
t i o s are trivially met b splittin up each cell into as many v i r t a l cells" 
of TRXs with identical eeds as ecessary The cell optimizatio is the 
performed merel within the v i r t a l cells 

Section 5.6, we give computational results for the THRESLD 
E P T N G heristic and compare them with the ones obtained from our 

wn methods Our methods are analzed in the following three sectios 
d we start o t b lookig at the c s t r c t i o heristics 

5.2 Analysis of Greedy Heuristics 

n this sectio, the behavior of the two heuristics T - C O R I N G and 
DSATUR WITH COSTS, described i Section 4.2, is analyzed n the three 
carrier networks K, [l], and SlEl. We observe that tightening the sepa
ration has a significant impact. As explained i Section 4.2.3, the DUAL 

GREEDY heristic is not cnsidered here, because neither the quality of 
its frequecy assigments or its runn time efficie have met 
xpectatios 

5.2.1 T-Colorin 

In order to study the effect of tightening the threshold on the assig 
ments prodced by T-COLORING, compare with Section 4.2.1, we allow 
the se of a unounded number of channels. Recall, however, that the 
T-COLORING heuristic does not assign a previosly unused channel un
less all of those already in use are infeasible In that case, the smallest 
possible new channel is taken T h s , inspecting the assigment after ter 
mination reveals which spectrum wuld have been sufficient for finding a 
feasible assigment. The separation is t ighteed with thresholds vales 
betwee 0.0 and 1.0 in steps of 0.01 The conumed spectrum size an 
the incrred total interference are shown in the Figures 5.5, 5.6, and 5. 
Roughly speaking, the interference increases an the required spectru 
size decreases with i c r e a s i g threshold values. A minor surprise may 
be the fact that the interferece icreases more eve tha the reqired 
spectr size decreases 
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5.2.2 SATU Co 

For the DSATUR WTH COSTS heuristic two parameters are relevant 
compare with Section 4.2.2. These parameters are the threshold value for 
tightenig the separatio and the amount of carriers selected randomly 
as starting points We consider the threshold values t = 0.01, 0.025, 0 .5 , 
0.075, 0.10, 0.15, 0.20, 0.25, 0.50, 0.75, and 1.00. Moreover 1, 2, 3, 5, 

0, 25, 50, and 100% of the carriers are sed as starting points i tu 
For all possible combinatios of these two parameters freq pla 
are compted for the carrier networks K, B[l], an SiE 

The runnng times of this algorithm do not depend significantly on the 
threshold v a l e and scale linearly with the percetage value Table 5.5 
shows the running times i s e c d s of DSATUR WITH STS for 1% of 
the carriers as s t a r t ig points a s i g a threshold v a l e t = 0 . 5 . 

Si 

time 0. 04 

Table 5.5: u n n g times i s e c d s of DSATUR STS 

The total inerference i u r e d y the resulting frequenc p l s ar 
give Figres 5. 5.9, a d 5 .0 . We make three observatios: 
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The results depend ignificantly on the threshold value for tight 
ening the separation. The best results are typically obtaied for 
small threshold vales at which alread a sbstantial portio of the 
prodced assigments is feasible 

There is little dependece o the percentage of starting points 
The improvements from taking more than 5% of the carriers as 
s t a r t ig points are often negligible a d do ot j s t i f the additioal 
o m p t a t i o a l effort 

In all cases, the threshold val yielding the best result if all carriers 
serve as starting points 00% also gives the best r e s l t a m o g the 
sol t io obtaied for 

Certainly, similar observations cannot be expected to be made for all 
possible carrier networks. Nevertheless, based n the above observations 
which are i accordace with our general computatioal experience with 
the DSATUR WITH COSTS heuristic for practicerelevant carrier networks 
we make the following assumption: the interference decreases with the 
v a l e of the threshold as long as sufficiently many feasible assignments are 
found, and it increases again if the threshold value is lowered beyond that 
point. This assumption is exploited in a b i a r search for an appropriate 
threshold value During this search, only 1% of the carriers serve as 
s t a r t ig po i t s . Once a good threshold is found, higher percentage vales 
like 5%, are sed for c o m p t i g a assigment 

F i g e 5. SATUR W STS ce 
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Threshold 
0,250 

0,500 0,750 1,000 

Fig re 5.9: SATUR STS s t ace l] 

0,010 0,025 n ncn ' ~ 
U ' U ^ D 0,050 0075 0 1 0,150 

Threshold 
0,200 

t r 1 % 
1 f 2% 
f 3% 

£ 5 % r10% 
' 25% 
50% 

100% 
0,250 

0,500 0,750 1,000 

F i g e 5 .0: SATU STS ce Si 
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A few details concerning the search are important. It is advantageus 
to randomly select the starting points once and for all in the beginning. 

ur search proceeds in two phases. First a coarse approximation t\ of a 
good threshold value is determined. T h e , the search is repeated betwee 
t\/ nd 2 for the final threshold value t2 The desired accuracy is 1% 
of ti. Table 5.6 lists the outcomes of applying this procedure in case the 

itial threshold valu t0 is set to 1.0. In this particular se t t ig , DSATUR 

WITH STS is exected 9 times i the first as well as i the seco 
phase 

Sl 

total interferece 0.93 3. 
ime 322. 4 

al threshold 0.02 0 . 3 9 0 . 3 0 

Table 5. SATUR STS c l d i g threshold sear 

5.3 Analysis of Improvemen euristics 

First, we investigate the performance of the two improvements heuris 
tics ITERATE O P T and VDS whe started from randomly generate 
assigments 

One hundred random a s s i g m e t s for each of the arrier networks K, 
B[l], and SlEl are generated. None of these assignments is feasible. Ta
ble 5.7 lists the average umber of separation violations and the average 
interference. These assignments are taken as starting points for applying 
both heuristics. The threshold t for tightening the separation is set to 
the values 0 . 0 , 0.025, 0,050, 0.075, 0.100, 0.150, 0.200, 0.250, 0.500, 
0.750, and 1000. If o tightening is applied, we write t = 2.000. 

For the instances K, B[l], and SlEl, the Tables 5.8, 5.9, and 5.10, 
respectively, show the number of feasible assignments obtained; the best 

0 0 R A M A S E N 

p a i o n violaio t o l i f e n c 
mi g. max. mi g. max. 

2. 82 43. 59.43 2. 
80 320. 0. 300. 322. 

Sl 25. 5. 5 

Table 5 . : E l u a i o 00 r n d m a i g m e 
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the average as well as the w t total interfernce among he btain 
feasible assignment; and the average number of separation constrai 
violations among the infeasible assignments. The Figures 5.1 up to 5.1 
are generated from the total interference of the feasible assignments and 
give a qualitative impression of the best, the 25th, 50th, 5th nd the 

00th assigments 

I T - O V D 

fea 
sible 

t o l i f e n c avg. 
iol 

fea 
sible 

t o l i f e n c avg. 
iol 

fea 
sible mi g. max. 

avg. 
iol 

fea 
sible mi g. max. 

avg. 
iol 

0. 9 5. 
0.025 4. 0. 2. 5.50 2. 
0.050 5. 5. 5. 2.3 0.90 3 3. 
0. 2. 3.3 4.49 2.0 94 0.99 2.25 
0.00 3.43 5. 00 0. 2. 
0.50 2. 5. 0 00 0.90 29 
0.200 90 2.5 4. 0 00 35 
0.250 2.30 3.5 0 00 0. 30 
0.500 00 2. 2. 00 0. 3 
0.50 00 2.2 3. 00 02 35 

000 00 2.2 2. 00 02 3 
2.000 00 2.2 2. 00 0.99 3 

Tb le 5.8: E l u a i o n of 100 r n d i g m e s f r i n c impro 
by ITERAT 1 - O T and VDS 

5.3.1 rated 1-

Let us now fous on ITERATED 1-OPT and examie the Tables 5.8, 5. 
as well as the Figures 5.11, 5.12, and 5.13. 

A significant spread between the best and the worst result n typ
ically be observed for each threshold value. For small threshold values 
where feasible solutions are barely obtained, the few feasible assignments 
are often mediocre to bad with respect to their total interference. Once 
the threshold value is large enough to yield feasible assignments for most 
of the random assignments the results h a r l y epend the actual value 
of the threshold 

The Table 5.11 lists the average number of passes performed and the 
average runnng times in seond of the I T E R A T D 1 - O T heuristic on 
the set of 00 random assigments. We obser that more passes are 
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I T R A - O VD 
fea 
sible 

t o l i f e n c avg. 
iol 

fea 
sible 

t o l i f e n c avg. 
iol 

fea 
sible mi g. max. 

avg. 
iol 

fea 
sible mi g. max. 

avg. 
iol 

0.0 39. 
0.025 3. 4. 
0.050 2.9 3.50 4.5 5. 2 
0.0 50 0 8. 3.8 4.49 5.29 
0.00 5.95 39 0 00 3.8 4. 5.3 
0.50 00 5.89 4 00 4.04 4. 5.3 
0.200 00 5.80 2 00 4.2 4. 5.3 
0.250 00 5.82 5 4 00 4. 4. 5.39 
0.500 00 5.9 25 00 3.95 4. 5. 
0 .50 00 0 5 00 4. 4. 5.25 

000 00 5. 5 32 00 4. 4. 5. 
2.000 00 02 00 4. 4.59 5. 

Table 5.9: E l u a t i o of 00 random ssigments for i s t anc im 
p r o d by I T R A T O T and V D 

I T R A - O V D 

fea 
sible 

t o l i f e n c avg. 
iol 

fea 
sible 

t o l i f e n c avg. 
iol 

fea 
sible mi g. max. 

avg. 
iol 

fea 
sible mi g. max. 

avg. 
iol 

0.0 58. 
0.025 2.9 9. 
0.050 4.3 4. 2. 
0.0 5.82 25 2. 4.3 4.90 5. 
0 .00 54 5. 2 4.4 4. 5. 
0 .50 5.3 00 4.4 5. 5. 
0.200 5. 89 0 00 4.5 5. 5. 
0.250 99 5. 2 8 0 00 4.5 5.02 5.49 
0.500 00 5. 2 00 4.59 5. 5.55 
0.50 00 5.3 80 00 4.30 4. 5. 

000 00 5. 59 00 4.5 5.02 5.59 
2.000 00 5. 00 4. 5.04 5.89 

Table 5 .0: E l u a i o of 00 random i g m e r i n c Sl 
improed by I T R A - O nd V D 
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p e r m e d as the number of cariers inceass from instance K o Sl 
to l] There is, however, little ependnce o the threshol t 

I T R A - O 

Sl 
pa ime pa ime pa ime 

0. 2 0. 2.43 4. 8.4 2. 
0.025 0. 0. 2. 92 
0.050 39 0. 9. 2. 
0. 2 0. 9. 2. 2 
0.00 0. 9. 2. 
0.50 32 0. 9.25 2.39 34 80 
0.200 24 0. 9. 2.29 89 
0.250 35 0. 9.0 2.25 
0.500 5.92 0. 9. 2.35 
0.50 5.8 0. 9.0 2. 05 

000 5. 0. 9. 2.3 8 
2.000 0. 9. 2.30 92 8 

Table 5.11: Averaged figur r the umber f passes and the running 
times in s e n d s for ITERA 1-OP on the 00 random assignments 

In conclusion, we reommend not to tighte the separation duri the 
applicatio of the ITERATED 1 - O T heuristi 

5.3.2 Variable ept arc 

Now, we focus on the performance of the V D heuristic on the same sets 
of 100 random assignments as before for each of the carrier networks K, 

[l], and SlE The Tables 5.8, 5.9, and 5.10 are once more of nterest 
oreover, the Figures 5.14, 5.15, and 5 .6 are relevant. 

Aga i , we observe a significant spread between the best and the worst 
result among the feasible assigments for a specifc threshold value. Un 
like in the case of the ITERATED 1-OPT heuristic, however, in two out 
of the three cases the best assignment is found for the smallest thresh
old value for which a feasible assignment is produced at all n the o 
remaining case, the result is second best The results for K clearly ad 
vocate the tightening of the separation with a small threshold value, but 
the results from the other two instances are less conclusive. 

Table 5. displays the average number of passes performed nd the 
verage r u n n g times for the V D heuristi observed the set of 00 
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0,010 0025 
0,050 0075 

0,100 0,150 0,200 0250 

Threshold 
0,500 0750 

Figure 5 . : I T R A O 00 r a n d m assigments for K 

0,010 0025 
0,050 0075 

Threshold 2,000 

igur 5 .2 : I R A O 00 r n d i g m e s fo 
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0,010 0,025 
U ' U 2 b 0,050 0,075 0100 

0,150 0,200 

Threshold 
0,250 0,500 

2,000 

igure 5 .3 : I T R A O 00 rand s s i g m e t s fo Si 

Threshold 1,000 
2,000 

Figur 5 .4: V D 00 r n d i g m e s f r i n c 
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0,025 0,050 0,075 0100 
0,150 0,200 

Threshold 
0,250 0,500 

1,000 
2,0 

igure 5 .5 : V D 00 random assigments for i s t anc l] 

0,010 0025 
0,050 0075 

Threshold 0,750 
1,000 

igur 5. V D 00 r n d m a i g m e s f r i n c Sl 
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V D 

Sl 
pa ime pa ime pa ime 

0.0 8. 5. 50. 235.05 2. 35 
0.025 20.5 5. 30. 2. 20.30 4.85 
0.050 5.82 4.32 0 3. 9. 
0.0 4. 3.89 4. 3.50 2 8.04 
0.00 3.45 3. 77 99.55 35 8.0 
0.50 2. 3.45 20. 45 2 8.0 
0.200 2.45 3.3 90 93 
0.250 2.3 3.3 2. 02.34 0. 
0.500 4 3. 0 25 
0.50 40 3. 9 02. 0. 

000 3. 00.0 
2.000 4 3.04 2. 3. 0.84 

Table 5.12: Averaged figur ovr the number of passes and he r n n 
times in s e n d s for VDS the 100 random assignments 

random assignments for the instances K, B[l] S lE . There is a sigific 
dependenc of the number of passes on the value of the threshold t. In 
comparison to not tightenng the separation (t = 2.000) the number of 
passes increases by a fator of 2.4, for example for the smallest threshol 
(t = 0.010 n case of B[l] 

In conclusion, we favor not to tighten the separation. In our opinion 
the sometimes better alternative of choosing small threshol values has 
a too negative effet on the r u n n g times 

5.3. k - p t 

The tractability of f op t steps strongly epends on the restrictions whi 
are imposed by the carriers that remain unchage on those carriers to 
be optimized. If k becomes too large, we are o longer able to solve 
the corresponding optimization problem in r e a s a b l e time Moreover 
it turns out that experiments like those for ITERATED 1-OPT and V D 

fail. Starting from n infeasible assigment, which most of the randomly 
generated assignments are, has a strong egative effe n the boundin 
part and blows up the branch-andbound tree 

Therefore, we perform different experiments here to ompare opt 
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and VDStype ps o o e hand, and A;opt seps he other hand 
Starting with 100 random assignments, we run ITERATED 1 O P T and 
V D on e c h of them and appl K - O P T to the best assignments obtained 

Instead of selecting carriers completely at random, we select the carri 
ers by sites. This is reasonable because the co-site and, in particular, the 
co-cell separation constraints impose strong mutual restrictions on their 
assignment The optimization is again organized in passes. All sites are 
arranged a random order in the beginning, and the course of a pass 
the first unprocesse sites are iteratively selected until either at least k 
many arriers or the arriers from many sites are selected. 

cosider three ases First, one site is optimize at a time for 
1 and no bound k. In the two remaining cases s is unbounded 

nd as many sites as ecessary are selected to obtai k carriers i total 
We let k either be the number of available hannels in the sceario or o 

nd a half times that quantity. I case s = 1, we stop after completin 
one pass without improvement. In the other two cases, the optimizatio 
is halted once two passes without improvement are completed 

W t h the abve parameter choices the optimization gets sometimes 
"stuck" for some selection of carriers and either runs for hours or ex 
hausts the available memory. We avoid such "deadends" by restricting 
the permitte branch-and-bound tree to at most 8 levels. This number 
is determind experimentally as a ompromise between completing most 
omputations and abor t ig when continuing a computation seems futile 

The results are sho in Table 5.13. The interference incurred by the 
best plans from I T E R A E D 1-OPT and VDS is contrasted with the resul 
obtain from K - O P T . For the ifferent runs of the - O P T heuristic we 
list the number of passes, the verage umber k of carriers optimized 
over, the average number s of consiered sites, and the number of times 
the growth of the branch-and-bound tree triggered termination. No run 
ning times are listed, beause these omputatios are performed o 
different computer system. Translated into runnin times n the P 
used otherwise, they range from some minutes to o or two ays. 

O ious ly , the local optimization performed by K - O P T is apable of 
improing n the results from ITERAT 1-0 PT and V D in all cases 
except for one namely V D applied to B[l]. Notice that in three cases 
two for K nd one for [l] K O P T omputes a better result when started 
from the inferior assignment produced by ITERATED 1-OPT. TO some 
extent unexpected, however, are the merely modest improvements if we 
onsider the large amoun of carriers optimize ver simultanously W 
ome back to this issue i Setio 5.5. 
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nterferenc - O 

ig. pa g. g. 
- O 2.90 00 

0.71 30 4.50 5.3 
0. 3.00 

V D 0.99 0.9 2.90 00 
0. 4.50 5.3 
0. 3.00 

- O 5. 5.9 3.04 00 
3. 5. 24.94 
3.09 09.50 0 

V D 4.05 4.05 3.04 00 
3. 5. 24.94 
2.9 09.50 0 

Sl - O 5.4 5. 5.20 00 
4. 29 4.29 8. 40 
3. 55 4.5 2.43 

V D 4. 4.55 5.20 00 
3. 4.29 8. 
3. 39 4. 2. 

Table 5 . 3 : us I R A nd V D 

5.3.4 i n C o t F 

The M C method, as described in Section 4.3.4, does not succeed i 
turning a y of the infeasible 100 random assignments into a feasible as 
signment. This is due to limitations of the possible changes A more 
interesting application of M C F is n combinatio with the other improve 
ment methods, see Setio 5.4. 

5.3.5 Coparison 

The - O T heuristic is alrea compared with I T R A T D 1-OPT and 
V D Setion 5.3.3. There is nothing to add here. In order to compare 
I T R A T E D 1-OPT and VDS, we reexamine the Tables 5.8, 5.9, and 5 .0 . 

First of all V D is more successful in producing feasible assignments 
than I T R A T E D 1-OPT. With the threshold values as chose, we observe 
that VDS is essentially one value earlier capable of producing feasible 
assignments, whih also show ompetitive interference values. Morever 
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if the results of the two h e u r i s s a compared per threshold value, then 
the worst result of VDS is in most cases better than the best result of 
ITERATED 1 - O T . The average of the VDS results is always better tha 
the best of ITERATED 1-OPT, see also Figures 5.11 up to 5.16. 

On verage VDS performs between 2 and 3 times as many passes as 
ITERATED 1 O P T , and each pass takes about three times as long. The 
resulting effet on the total running time for the sets of 100 assignments 
is not uniform Taking averages again V D is about 5 to 0 times slower 
than ITERATED 1-OPT. 

In conclusion, VDS is our method of choice in practice, because O 
is p r a t i a l l y not an alternative and VDS always outperforms ITERAT 

1 O P T in our experiments. n addition, we consier the increase in ru 
ning time to be tolerable. Reiewing our previous discussion about which 
threshold value to use for V D , we tend not to tighten the separation for 
ts potential negative effect o the r u n n g time 

5. ombinations of euristic 

n this sectio, we study the ncerted ting of our heuristics Numerous 
combinations of the greedy cns t ru t ion and the improvement heuristics 
are possible. We idntify favorable combination of these methods to
gether with the relevant parameter settings. 

Given two frequency plans of different quality, the application of (the 
same) improvement heuristis ca possibly lead to plans for which the 
quality rankig is reversed. As we observe in extensive comparisons, this 
is selom the case for the heuristics cnsidered here. Therefore, we use 
for each heuristic the parameters se t t ig w h h is favored in Section 5.3, 
that is, the se t t ig we o b t a i d from looking at ea of the heuristic 
separate from the others. 

compare combinatio of heuristics on the istances K, B[l], and 
SlEl in Table 5.14. For each instance, three assigments are p r o d c d 
u s i g a greedy s ta r t ig heuristi 

Plain T-COLORING is alled without t i g h t e n g the separation T-COLORING 

This usually results i assignmet, where o l y few of the avail 
able channels are use 

The acronym Ts C L O R I N G stands for calling T-COLORING Ts T-COLORING 

with the separatio being tightened with the least possible thresh
old value yielding an assignment that still fits into the vailable 
spectrum This threshol is computed the same fashio as for 
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DSATUR W , s e S e i o 5.2.2. The t h r h o s i i t 
value is 0.5. 

s Dc5 We ote by Ts Dc5 the followig applicatio of DSATUR WIT 
COSTS. The value of the threshold t for tightening the separation 
is determine as explained in Section 5.2.2. The threshold's initial 
value is 0.5. During the threshold search 1% of the carriers are 
randomly selected as startin p o i t s whereas 5% are seleted at 
the fnal threshol 

the subsequent improvemet phase, the separation is never tight 
ened Each of the previously construted assignments is alternatively 

-OPT improed by calling either M C F , I T E R A D 1 - O T ( 1 - O P T , for brevity) 
or VDS. In the latter tw ases, we try to obtain further improvements 

('MCF - O P T J + by alternately calling M C F nd 1-OPT, note by " ( M C F 1 - O P T ) + , " or 
('MCF VDSJ+ nd V D ote by (M V D S ) + " respetively, until this fails 

B[l] Sl 
ime ime ime 

T - N G 558. 0.03 92 0. 35 0. 
49.2 0.2 32.89 2. 2 9 8 2. 

O 84 0.83 3.3 2.09 
O O O ) + 84 11 5.92 0.80 5.94 2 

V D 39 3.04 4. 25.02 5.05 8.25 
O O V D ) + 39 3.61 4.55 4 5.04 2. 

NG 2. 0.95 20.50 5.92 5.59 2.3 
2.4 9. 4.2 4.82 3. 

O 4 2 4.32 24. 5. 3. 
O O - O ) + 4 52 4.0 2.23 5. 84 

V D 25 3. 3.54 22. 4.95 8.9 
O O V D ) + 25 3. 3.54 8 4.8 5. 

0.93 20. 4. 3. 53.90 
0.93 20.85 59 3.59 55.00 

O 0.93 20.84 8. 3.54 4.50 
O O O ) + 0.93 40 8. 3.54 55.80 

V D 0.8 23. 2.34 3.4 59. 
O O V D ) + 0.8 8.0 61 3.4 6190 

ble 5 .4: C m p u t i o l r u l s f m b i i o heuris 
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Table 5. isplays the incurr t oa l i n t e r n c e of the reul 
frequency plans nd the required running times in seconds. A "o" in fro 
of the name of an improvement heuristic i n d a t e s that the assigme 
obtaine from the last preceeding construction heuristic is improved. 
"oo" indcates that the result of the iretly preceedg heuristi is use 
as starting point The running times in econds a totals in all cases. 
A few observatios ca be m a e : 

The start heuristics show a lear r a k i g with respect to their re
sults: Ts Dc5 is best, Ts T C R I N G second, and T - C O L O N G 

thir The order reverses whe s i e r i g running times 

The r a k i of the assigments produced by different start heuris
tics is in no case change when the same ombination of improve
ment heuristics is applied. Leaving M C F aside, this is also true 
without reuiring the use of the same ombiation of heuristics 

The heuristi has no arguable use its own. E the simple 
I T E R A D 1 O heuristis beats M all ases 

The M C F heuristic is of some use in ombiatio with I T R A 

1 O T , but h a r l y ever in combinatio with V D 

VDS alone is the preferable imprvement heuristi to be applie 
after a start heuristi 

The total runn ig times required by T - O L R I N G V D nd 
C O L N G VDS are about the same i all ases 

COLORING or Ts T - C O N G n combination with VDS pro
uce worse assignments than 5 alone, but spend nly about 

a fifth of the time required by c5. 

n summary, our ombination of choice is s D O V D That this 
selection is not best in all cases, however, is documented Table 5.15. 
If a feasible assignment is ot easily obtained, then T - N G O V D S 

and T C O I N G O V D are attrative alternatives 

5. Selected Results for all Benchmrk Scenarios 

The total amoun of iterference incurred by a frequency assigment is 
used as cost function during the optimization. As mentioned in Sec 
tio 2 .3 . , this figure reveals only a small part of the pi ture from 
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p r a c a l point of ew. In the following, we ive a mor detailed a 
count of a frequency plan's properties than previously. Nevertheless, w 
stress again that the ultimate benchmark for a plan' quality is its perfor
mance in the network. Not e e n network simulatio give a fully reliable 
predictio of a frequency plan's i m p a t ince such simulations are not 
an option here, we have to resort to e simpler m e a s of a a l y z i g a 
f reuency plan. 

Interference plots are commonly used in network planning p r a t i c e 
interference plot An interference plot depicts the likely occurrenc of interference the 

basis of the signal level p red ic t ios at pixellevel. Two v a r i n t s are om
mon, both of which implicitly a s sc ia t e e a h pixel to the sector providin 
the s t roges t s i g a l (best server m o e l ) . I the o e case the difference i 
dB b th i h t l 
th 
be 
i 

ur 5 . 7 : nce pl m p r o m e s fro p t m i 

line plot ru v i s u a l z a t n of i n e r f e r n c , calle l e plo h e r , requi 
only coordinates for the carriers (sites) in the Euclidean p l a e in additio 
to the carrier etwork. igure 5.18 gives two examples of l i e plots. Two 
sites are connecte by a olored line if the frequency assignment results 
in interference among TRXs from the two sites. If the line is drawn in 
a pale color, then the interference is small th increas ig interference 
the color of the lin t u r s into black. 

A line plot still provides qualitative information the interference 
nd its geographial distribution For s e e r a l of the s a r i o s , however 
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a) b) 

Figure 5 . : L e plots nterference r e t i o from optimizatio by 9 

we lack the require site coordinates Solely on the basis of the arrier 
network the following characteristics of a frequenc assigment be 

etermied compare with Eiseblätter and Kürner 2000 

The umbers of eparaton violation inal channel assme 
and unassi rri are reporte 

The total interference is the sum over all - and dj hannel 
interferenc ccurrig between carriers 

The co- and adjacet channel interference is give in terms of the 
maximum, average ( a m g the occurrences), and standard evia 
tion of interference of e h type 

The interfence at carrier is give in terms of the maximum, av 
erage (among the occurrences), and standard deviation. The inter
ference is summe up from the perspective of a arrier, regardless 
if it is co- and adjcent hannel interference from other carriers 

The histogram f interference isplays how many times the inter
ference between two carriers exceeds the value of 0.01 0.02, 0.03, 
0.04, 0.05, 0 .0 , 0 . 5 , 0.20, and 0.50, respetively 

Four assignments are geerate for e of the ele benchmark 
stances by mean of 
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T-COL VDS a. NG followe VD 

T-COL VDS b. T C O N G with automati tighte of the separatio followe 
by VD 

s Dc5 VDS DSATUR W T H COSTS with 5 % of the carriers randomly selecte 
as s t a r t ig points, automati tightenin of the separatio, and fol 
lowe by VD 

THRESHOL a. HOLD A C C N G (the a s s i g m e t s are kindy pro by 
CCEPTING eller ieme Germa 

These fortyfour assignments n total are analyzed according to our abo 
criteria, and the results are displayed in Table 5.15. The fields whic 
would otherwise contain a zero are left blank for the sake of better leg 
ibility. We first observe a few points concerng the feasibility of the 
assigments 

C O L O R N G fails to generate a (feasible assigment for SI 

SIE4, and w, e v n without the separation bei t ighteed In 
this case, no assignment is generated by T-COLORING, and we 
take the situation with all carriers uassig as s t a r t ig point for 
VDS. Hence the assigments obtained for T C O L O R I N G o VDS and 
Ts T-COLORING VDS are the same. For these three s n a r i o s the 
resultig assigment is ifeasible 

Ts Dc V D also fails to geerate a feasible a s s i g m e t for i 
stances SIE3, S I 4 , and Sw 

Next, we fous ur attention to the results o V D and 
THRESHOLD ACCEPTING o the istances, where V D pro

es a feasible a s s i g m e t 

In all cases, the assignmet from the combination V D 
ncurs more interference in total than that from THSHOLD A 

CEPTING. The dfference rages between 29% and 90%. The a 
erage ifference is 60 %. 

The values for the maximum co and d j a n t channel interferenc 
nd the maximum interference affectig a arrier are about equal 
n the case of instance 4], the THRESHO C C P T N G result is 

n o t i a b l y worse i that respet 
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The second point c be explaned as a sde effect of automatically 
tightening the separatio in Ts Dc5. It is, nevertheless, fair to say that 
the T H E S H O L D A C C E P I N G heuristic is the clear winner among the 
methods compared here in terms of the verall incurred nterference and 
it is ompetitive with respect to the loa l distributio of interference 
No of our improvement heuristics (except for K - O P T improves the 
T H R E L D A C C T I N G results. We also apply the K O P T heuristic to 
the T H R E S H D ACCEPTING assignments for the instances K, B l ] , and 
SlE without any success. The parameter k is set to .5 times the number 
of available hannels, the parameter s is left unbounded We stop the 
optimizatio after two unsuccessful passes, ompare with Setio 5.3.3. 

We should keep i mind, however, that one of our primary design 
goals has been to devce methods with a small verall r u n n g time 
Although the precise runnng times of THRESHO ACCEPTING are not 
known to us, it takes about one order of magnitu loger tha Ts Dc5 
o VDS Heller [2000]) Taking this into account, s Dc5 o VDS presents 
tself as a fast plannng method which oes not ompromise too mu 

the optimization goal. In ase Ts Dc5 V D is still too slow, the 
T - C O L O R N G V D or, even faster, s T C O L O R I N G O I T E R A T E D 1 

O P T are alteratives gain, some egraatio of the solutio has to be 
ccepted. 

We come ba to the issue of ho goo frequency pla is i the 
ext hapter 

5.6 onclusions and hallenges 

A stead expansion of GSM networks an still today be observed i 
terms of overage as well as apacity. Every hange of the network in 
this respect calls for a h a g e of the frequency assignment. Up to this 
point, we focused on how to use mathematical optimization techniques 
in order to provide frequenc plans for GS ellular networks ncurrin 
little interference between r a i o signals 

Plnning the use of freuencies is o ntral tasks in engieering the 
radio nterface of a GSM network and corerstone for p r o d i n g the 
desired grade of service as well as the desired quality of s e r e . One 
of the limiting fators is interference; and it has bee our o b j t i v e to 
design algorithmic methods for quickly geerating freuency pl that 
ncur as little interference as possible 

Typically, a etwork operator tries to keep the assignment essetially 
fixed for a onsierable time, performing o l y m i o r hanges, whi are 
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rced by m o i f i c t i o n s f the n e t w r k . But e e r y now and hen, once  
year, say, a new assignment is generated for (maor portions of) the 

network. Then, all previous changes are fully taken into account and 
the foreseen future c h a g e s are prepared for. This is a highly complex 
task with literally tens or even hundreds of thousands constraints to 
consider. Clearly there is a nee for algorithmic optimization p r o d u r e s 
to support the radio planner in this task. From our poi of iew three 
distinct p l n n i n g tasks be i n t i f i e d i p r a t i c e 

In what we call the relaxed planning situation, the p l n n e r wants to relaxed planning 
produce a new frequency ass igment for a large region in a network 
and is in the fortunate position to have ample frequencies available 
The objective is then to minimize interference and thus to eliver 
the r a i o s e r i ce at high quality 

In what we call the congested planning s i t u a t i o , again a new plan 
for large portions of a etwork is to be produced, but this time the 
number of available frequencies hardly allows to provide the desired 
grade of s e r e (at the least accepted level of quality) 

I the adaptin planning ase, the planner is terested n adapti adapon planning 
l oa l ly the frequenc ass igment to h a g e s i the etwork. 

Accordng to our experience each of these situation alls for differe 
algorithmic planning methods. Our focus here is clearly o the relaxed 
p lannn situation. Nevertheless, we nsider the K - O T heuristic dis
cussed ection 4.3.3 as a prime choic for adapting loa l ly to changes 
Surveys o research directed more towards the "congeste case are given 
by Koster [1999], Murphey et al [1999], and Jaumar et al. [1999, for 
example. The book of Nielsen and Wigard 2000] is also of interest in that 
respect because deals with the use of GSM features like slo f reuenc 
hopping ( F H ) i order to tune the radio interface 

In the course of the previous chapters, we ga a thorough intro
duction to the G M frequency planning problem and disussed several 
algorithmi m e t h o s solving this problem heuristically more detail 
we explained the t echn ia l background of frequency planning and p i k e 
an adequate m a t h e m a t i a l m o e l of the p l n n i n g task. The resulting op
timization problem is j V P - h a r , and s o l g this optimization problem 
to optimality is ot p r a t i a b l e (from today's point of view). 

We therefore designed number of planning algorithms with small 
theoretical and practical running times The latter property, in partic
ular, renders them a t t r a t i v e for use i n in tera t ive p lannng p r o e s s 

congested 
planning 
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whee fequency plans a e geneated for a l rna t ive t e n v e hanges i 
the network. We analyzed their omputational behaior on eleve realis 
tic p l n n n g scnarios These scenarios have been made publily available 
at the FAP web 2000] through the COST 259 a t ion see Eiseblätter and 
Kürner 2000] or orreia [2001, S t i o n 4.2.7] 

Our ndings an be summarized as follows. The selfset goal of swiftly 
generating lowinterference frequency plans is achievd reasonably well 
on all senarios except for one, where no feasible assigment is obtained 
This exeption, however, represents a har "congested" planning situa
tion. Among our methods, we identified a combiation of two heuristi 
namely, UR WIT COSTS and V D , as a reasonable compromise be
tween planning effectiveness and running time efficiency In comparison 
to the best alternative method we are aware of our assignment incur at 
most twice the amount of interference on the studied scenarios 

Notice however, that this alternative planning heuristic THRESHOL 

A C C E P T N G proposed by Hellebrandt and Heller [2000] is a randomize 
local search p r o u r e similar to Simulated A n n a l i g , and it often re
quires at least one order of magitude higher runnng times tha our 
heuristics espite the superiority of that metho i terms of the over
all incurred interference our favorite combination produces assignments 
which are competitive in terms of local interference Such local properties 
are of e u a l practical interest. Therefore we consier our methods a rea 
soable choice uring the interactive p l n n g process. More elaborate 
plannin methods, like T H R E S D A C C E T I N G , may be used prefer
ably for computing the final p r o t i o n pla in a batch process. 

We mention two more points concerning the heuristics before turn 
ng to their practical merits First, although we applied kopt steps for 

values of k as large as 1.5 times the number of available frequencies 
the assignments p r o i d by Heller Siemen AG, were not improed in 
our experiments (see tion 5.5 for details). This is surprising because 
THRESHOLD A C C E P I N G relies on a mix of a comparatively weak local 
optimization step and small random perturbatios of de l inng deteriora
tion. It is not obvious to us why a much more powerful loa l optimizatio 
fails to improve the three resulting assignments for the scenarios K, B[l] 
and SiEl—i particular, since we show in the ext chapter that at least 
the assignment for K is far from optimal 

The second point concerns the question whether some sort of ecom 
position might be applied to a planning problem The goal would be to 
olve the resulting parts separately and to combine the partial solution 

to an assigment for the whole problem i the end Our experiments i 



M P N A 11 

this i r t i o n faile The discusion c n c e r n g the high c o n n e i t y ob
served in the planning instances (see Section 5.1.1) is certainly e item  

explaining this failure, but we lack a better understandng. 
After having dwelt on the mathematial optimizatio problem and 

discussing the pros and cons of trading o running time versus solutio 
quality it is time to turn b a k to p r a t i e To ut a long story short ur 
oftwa is ued successfully in practce at E-Plus, nd better freqcy 

assmets have ee taind more much quickly han t pre 
viou lnning process. n e example, a region containing 2118 cells 
with -3 TRXs per ell and 75 available frequencies was planne usi 
DSATUR W H COSTS followed by ITERATED 1-OPT. The assignment 
was istalled into the network. After performing fewer changes of cells 
in reaction to unforesee hea interference than usual (a regular on 
line optimization p r e s s , the down-li quality hand-over request rate 
had dropped around 20 % n ompariso to the preiousl operatioal 
freuency pla 

Finally, G M networks will certainly remain n operation throughout 
this e c a e Most European networks face major capacity extension 
in o r e r to support the foreseen ncrease in data services. Hence, the 
presently satisfying planning methods may reah their limits at some fu
ture point in time W lose by l i s t ig four directions for further resear 
n that respe 

Imprvements in the planning methos are still possible. We giv 
reasons for our point of view in the next chapter, where we ob
tain a muc better assigment for the benchmark scenario K tha 
those presented up to now. Among others, however, the unsuc
essful attempts to improve the assignments p r o v i d by Heller 

Siemens AG, using the loa l optimiation K - O P T indicate that th 
loa l optimization steps sidered so far are not powerful enough 
to eal with the omplex nterependencies among large amounts 
of TRXs 

A more practical point is the design and tun of software whi 
automatically handles all three types of the above mentioed plan 
ning situations. Suh a software should also suggest whe to per
form a maor replannng. 

Instead of aggregatig all pixel-based signal predictions into inter
ference relations at cell-level, all the available data should be fed 
nto a more omplex optimization m o e l This woul allow for a 
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m e acurate nalysis of a frequency plan during the op t imi t ion 
process. Morever, the effects of GSM features like iscontinuous 
transmissio DTX) or slow frequency hopping (SFH) ould better 
be taken into ccout . (We are aware that some work in this di
rectio is already done within companies and at the versity of 
C a r f , but further studies are er tai ly of use) 

Among the several ways to enlarge the scope of the freuency plan 
optimization, we want to highlight the following. Given a network 
nd the istalled frequency plan, find an optimized assignment and 

migron pth migration path from the given assignment to the ultimate new one 
Here, we understand a migration path as a sequence of changes to 
be performed, one after the other, such that all the intermediate 
stages constitute feasible frequency plans and the changes comply 
with restritions related to the available maintenance persnnel for 
example 



CHAPTER 6 

uality of Frequency Plans 

In the preious two chapters we explaine nd alyzed seeral heuris 
methods to generate frequency plans for GSM etworks. A significa 
spread is o b s e r d in how well (combinations of) these methods achieve 
the goal of finding feasible assigments incurring minimum interference 
So far, however, it remains open whether the best results are actually 
good or merely the relative bests among mediocre ones. In order to rem 
edy this uncertainty we would like to prove statements like the following 
this assignment, for the given plnning scenario, incurs at most twice the 
amou t of interference which is unvoidable. Such a s tatemet is called a 
quality guarntee Our aim in this chapter is to p r e suc guarantees qualit guarantee 
for the assigments of Sectio 5.5. 

Let us put our uest for lower bounds and uality guarantees into 
perspective. We show in Section 3.2 that unless V = J\fV no polynomial 
time algorithm is capable of computing frequency assigments that are 
close to optimal (or merely feasible in all cases. As a consequence, 
we do not analyze algorithms here We analyze the algorithms' input 
namely, the carrier networks. We want to prove that a ertain amount of 
interference is unavoiable due to the network layout. Hence, the bound 
have to be computed on perinstanc basis For reasons to become 
clear, our bounds take o-channel but o adj channel interferenc 

to accoun 
We p r d e the first s i g n i f n t lower bounds for the o b j t i v e of 

minimizing overall interferenc n realistic frequency plnning scenarios 
Large gaps between the amount of nterference incurred by the heuristi 
cally generated frequency plans and the lower bounds still exist. We give 
reasons that these gaps are not to be blamed entirely on the weakness of 
the lower bounds. Instead, the gaps also indcate room for improveme 
on the side of the frequency planning methods 

Up to ow, our bounds have no direct practical impact. The situation 
may improve if information from the lower bound computation were to be 
exploited the frequency p l n n n g process With the approach pursued 

11 
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hee, however, it is not yet lear how this be e effeciv 
The chapter is organzed as follows. In Section 6.1, we introduce the 

relaxed frequency planning problem." Optimal solutions to this problem 
yield lower bounds on the unavoiable interference in the original prob
lem. In Section 6.2, the tight nnectio between the relaxed plann 
problem and the wellknown MINIMUM K-PARTITION problem is sho 
Morever, two possible approaches for (approximately) solving a MIN 
MUM P A T I I O N problem are described. In Sction 6.3, lower bound 
are proided by means of one of the approaches, namely, by solving large 
semidinite programs We use these bounds to estimate the quality of 
the freuency assignments from Section 5.5. In ection 6.4, we revisit fre
quency plannig heuristis. Our goal is to tur feasible frequency plan 
for the relaxe frequency plnning problem into feasible plans for the 
ordinary planning problem. some cases it is possible to produce sig 
nificantly better frequency plans than before. This supports our opinio 
that, from the point of view of mathematical optimization the frequency 
planning problem is not yet fully mastered; this also sheds a ew light 

n the lower bounds, which now appear stronger tha before. 
Including this chapter, our focus is primarily on frequency assignment 

We change our point of view for the last two chapters, where we deal with 
the mathematics behind our computations of unavoidable interference 
that is, the M N I M U M K P A T I O N nd ts s e m i e f i t e relaxatio 

.1 elaxed Frequency Plannin 

We consider a relaxed version of our frequency p n n i g problem where 
the feasibility constraints are weakened and the objective function is sim
plified. Although the complexity status of both problems is formally the 
same the resulting problem is more accessible than the original freuency 
assigment problem The simplifcatios are the followig. 

ropping adjacent channel interference The major portion of the 
total interference incurre by a frequency plan is often co-channel 
interference, see Table 5.15 in Chapter 5. Good lower bounds for 
our enarios are, thus, hardly obtain without fully exploiting co-
channel interference, whereas a d j c n t channel interference ofte 
plays a minor role (An exeption is the scenario Sw, where nly 
adjacent channel i terferene is specified Our approach does not 
allow to erive a nontrivial lower bound for the scenario Sw, but 
as explai n S t i o 5 . , this s n a r i o is atypial 
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r o p i n g local blockings: Only few local blockings are present in ur 
cearios Thus, assumig Bv = 0 for all v E V leads to minor 

changes the scenarios We pointed out, however, that in a real 
life planning numerous local blockings may be present. One sour 
of blockings are the agreements between GSM network operators on 
the use of available spectrum border regions, e. g., along national 
borders. Another source is the essity to seamlessly integrate the 
frequency plan for a rearranged ortion of the network with the 
assignment for the remaining part of the network. The frequency 
pl for an entire network is h a r l y ever haged at once 

ting down required separation: A ertain debatable step is to 
relax the separation requirements by bounding the maximal re
quired separatio n d by But this is essential for arri ing at a 
simpler" problem 

All three s impl i fa t ios toether yiel a problem, whi is almost  
MINIMUM EDGE ETIO K P A R T I T I O N problem, see Setion 3.2. 
omputational methods may ow be applied that are not suited for sol 
g the original frequency plannng problem, see S t i o n s 62 and 6.3. 

Formally we write the relaxed problem as o r a r y frequency plan  
problem on a simplified carrier graph. Gi a carrier network  
(V,E,C,{Bv}veV,d,cc°,cad), the associated simplif carrir net 

work is defined as the 5-tuple Ns = (V, E, C, d cco) where E — {0,1} 
with vw i> mm{d(vw),l}. The sets Bv of locally blocke channels as 
well as the adjacent channel interference cad disappear, and the reuire 
minimum separatios in d are ut ff at 1 

As before, a frequency assignment or just an assignme for Ns is a 
function: V —> C that assigs a channel to every carrier A assignmen 
is feasible if \v) — y(w)\ > (vw) for all vw E E. 

efinition 6 1 . A instce relaxe frequency p l n n g problem 
coists of rri etw Ns, and the objectve i to lve 
the optiizat lem 

min \ 
y feasibl ' J 

vweE: 
y{v)=y{w) 

vw) (RFAP 

Solving the relaxed frequency ssignmet prblem clerly yields a 
lower bound n the optimal solution for the ordinary assignment prob
lem, but not e versa. nding a optimal solutio for the relaxe 

implißed carrie 
network 

gnment 

easib 

relaxed FAP 
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frequency planning problem is not k n to be simpler than for the 
original problem. Both problems are A / h a r d . (The considerations of 
Section 3.2 for the ordinary frequency planning problem transfer irectly 
to the relaxed problem.) The following observation, however, points out 
one maor dfference between the origial problem nd its relaxed version 

Osevation 6.2. Fo imifie rrie netw nd an assat 
freuecy assnment y ing ds. Lt f\ and f2 be tw cha 
nels fro spectrum, and t t assnmet y be btaine fr y b 
changing al rrie wh channel f\ nd al carrie h channe 
f2 fi. T , y is feasibl nd nly feasib Furrmre, y 

nd inur me un inrfere 

onsequently, all assigments dffering ony the permutation of 
channels may be considered equivalent If all channels are in use, the 
there are \C\\ many assigments whi are e u i v a l e t in that sense 

2 inimum fc-Partition 

Relaxed frequency plnning is o a simplified carrier etwork Ns = 
(V, E, C, d, cco), where o adjaent channel interference or loally blocked 
channels are specifie and minimum separatio is at most 1. Basically 
a partition Vi,.. Vp of V into at most k \ disjoint sets of arriers 
(using distinct freuencies has to be determine such that no tw vertices 
v w with d(vw) = 1 are i the same set and such that the sum over the 
edge weights in the induced subgraphs G[V ]̂, 1 < I < k, is miimized 
This problem is almost the same as findng a minimum ^-partition of the 
vertex set of the graph G = (V,E), which underlies the simplified carrier 

etwork. The edge weights for G are d e r i d from d nd cc° 
Let Eco = {vw E E : c™w > 0} and Ed = {vw e E : dvw > 0}. We 

may assume that the intersection of Eco nd E is empty and that their 
union is E. Furthermore, we set M = J2weE cc

v°w + 1. The edge weight 
function c: E —> K_|_ is define as c(vw) = c° in ase of vw G Eco an 

vw) = M in case of vw E E 
Any solution to this MINIMUM KPARTITION problem induces a fre

quency assignment for Ns The same channel is assigned to all vertices 
in one block, and dist int channels are given to distinct blocks. If an 
optimal solution to the fc-partition problem has a value less than M 
then the indued assignment is feasible for iVs. The solution value is the 
interferen incurred by a corresponding assignment—no matter how we 
choose to istribute the freuenies among the bloks If, on the other 
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hand, the optimal s l u t i o n lue is t l e t M, the h e e is no f i b l e 
assignment for iVs. 

Another way of looking at the problem is to find a weightminimum set 
of edges whose removal results in a A;-partite graph. A graph is k-partite k-arte rap 
if its vertex set can be partitioned into at most k independent sets, i e 
all edges have their endpoints in distinct sets. A graph is obviously k-
colorable if and only if it is partite. A graph without edges is fc-partite 
and a graph containing a clique of size k 1 is not. A natural question to 
ask is: what is the maximum number of edges that a partite graph on n 
vertices may have? The wellknown answer is ( ) |_|J +r( 1) |_|J + Q 
where r denotes the remainder of the integer division of n/k. Hence, k-
partite graphs can be fairly ense. The complete graph K2$7 for example 
has (^7) = 3 5 5 1 edges, a 0par t i t e graph on 267 vertices an have as 
many as 34926 edges, which is onl (ln/

2
k]) + (k - ([n/

2
ki) = 585 less 

than in the complete graph. 
Formally, the minimum graph ^par t i t ion problem or K-

P A T I O problem an be state s follows 

efinition 6. An insta M N I M K - P A R T I O problem M I M U M 

nists f undirect gra V, E), a hting c E o f P A I T I O N 
edges, and a ive ineger objective is t find a pa 
in at st in t s . , Vp ch that te value 

weE(G[V 

inimiz 

The M N I M U M K - P A T I T I O N problem is a generalization of the M I N 

IMUM E D G E D E L E T I O N K - P A R T I T I O N problem, see Definition 3.9, to 
general rational edge weights. Therefore, the computational comlex i ty 
of the former is at least as hard as that of the latter. 

The M I N I M U M K - P A R T I T I O N problem is explicitly studied by Chopra 
and Rao [1993], b t more is known from related problems, e. g., by means 
of the following equivalence: for every partition, an edge has either its 
both endpoints within the same block or within distinct blocks; hence 
the problem of finding a minimum ^par t i t ion is equivalent to finding a 
k-cut, where the sum over the weight of all edges with their endpoints in 
distinct sets is maximized. The M A X I M U M K - C T problem has received 
more attention in the literature than the MINMUM K-PARTITION prob
lem, see, e g , Deza, Grötschel, and aurent [199 992 and C h o r a 



22 U M I O 

and Rao [1995]. Results on the approximation the MAXIMUM K-CUT 

problem are obtained by Karger, Motwani, and Sudan [1994] as well as 
by Frieze and Jerrum [1997]. Those results are, however, of little help 
here The optimal c t value is underestimated so that the value of the 
MINIMUM K-PARTITION is overestimated, and no lower bound is supplied 
that way. Assming that all edge weights are nonnegative, Goldschmidt 
and Hochbau [1994] show how a maximum partition of the g r a h into k 
nonemty components can be computed in ö(nk _ 3 / / + 4 T(n, m)) time 
where T(n, m) is the time required to compute a minimum (s, i ) c t . Du 
to the sign-constraint, their result does not apply here either 

AXIMUM CUT Notice also the connection to the MAXIMUM C U T problem: an edge-

weighted graph is given, and the task is to find a partition of the vertex set 
into two sets (one possibly empty) such that the sum over the weights 
of all edges with their endpoints in different sets is maximized. The 
literature on the MAXIMUM C U T problem is extensive, see the survey 
article by Poljak and Tuza [1995], the book by D e a and Laurent [1997] 
and the references contained therein. The MAXIMU roblem is 
equivalent to the MINIMU 2 - P A O N problem. 

6. nterference is not e s s n t i a l y metri 

The MINIMUM K - P A T I T I O N problem gets simpler if the edge weights 
are nonnegative and fulfill the triangle inequalities, i.e., cvx + cxw cv 

for all triangles in the g r a h . The roblem is then also called MINIMUM 

K-CLUSTERING SUM, see Ausiello et al. [1999, Appendix B, ND55], and 
is proven to be approximable within a factor of two in polynomial time by 
Buttmann-Beck and Hassin [1998]. We show, however, that the triangle 
inequalities are far from being fulfilled by our data sets 

A systematic reason is d e to the mapping of separation constraints to 
large weights. Consider the placement of transmitters and their pairwise 
interference as depicted in Figure 6.1. The rectangle in the center repre 
sents an obstacle. Assume the availability of only two adjacent channels 
and that the channels for transmitters a and b need to be at least one 
apart. If all triangle inequalities are to be met, then the triangle between 
a, b, and c bounds the value of M to at most 0.2. Setting M to 0.2 
or less, however, implies that the minimum-weight solution assigns a, b, 
and d the same channel. The resulting assignment is infeasible. Hence 
separation conditions can, in general not be represented adequately by 
an appropriately chosen weight without violating the triangle inequality 
This first obstacle stems solely from reresenting separation constraints 

INIMUM 

K-CLUSTERING 

SUM 
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by w 

ig 1: T i n g s i o n to in la with A i n l i t i e 

A second obstacle is based on interference entries alone. Interference 
redictions are derived by means of signal propagation predictions for an 

outdoor environment so that the edge weights are not arbitrary Maybe 
this implies that the triangle ineqalities are (almost) flfilled This is 
not the case, as we show now. 

We drop all edges carrying a separation constraint from the graph 
and check whether the triangle inequalities are met among the remaining 
edges. To this end, we solve the following linear rogram derived from 
the g r a h G = (V, Eco) with the edge labeling c: 

s t 

c Vvx,xw,vw e Eco (61) 

Vvwe Eco 

The optimal value to this linear program gives the total sum of how 
much the weight of individual edges have to be decreased in order to 
obtain weights that meet all triangle inequalities. Clearly, if the ptimal 
value is zero, then all triangle inequalities are met without change. Notice 
that the alternative of increasing the edge weights is not available to s 
because we want to use the results as lower bounds 

Table 6.1 shows how severely the triangle inequalities are violated 
by the interference predictions for the realistic scenarios K, B[l], and 
SlEl from hapter 5. We generate (6.1) on the basis of the entire car 
rier network (all), the carrier network indced by all vertices in a clique 
larger than the set of available channels (union), and the carrier net
work induced by a maximum clique (clique). In order to obtain LPs of 
reasonable sizes, the searation is tightened with 0 . , see Section 4 1 2 

w£E 

Cx p 

r 
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and all dges with co-chann interference less than 0.001 are dropped 
This reduces the number of potentially violated triangle inequalities in 
the carrier networks. The first two columns of Table 61 indicate the in
stance and the type of the (sub-)network. Then, the number of violated 
triangle inequalities, the maximum violation, and the average violation 
are shown. Next, the number of variables and constraints in the gen
erated LPs are reported. Finally, the optimal value of the LP is given. 
The optimal solution could not be computed for B[l]/all due to a lack of 
computer memory (CPLE reqests more than 4 GB of memory). 

iol ma L P 1 ) iol 
iolaion on 

all 3229 47 32 477 3739 89 
ion 17 47 32 6744 12000 82 

li 447 33 00 33 
B[l] ll 4338 31 437 8265 B[l] 

ion 5495 47 31 982 44 3865 
B[l] 

li 811 43 11 5112 18 
ll 81683 66 217 3236 72 

ion 8686 66 827 118833 8886 
li 111 47 3153 

le 6 1 : Violaion i n e q l i t y by in icion 

The r u c t i o n s of the edge weights that a e necessary to fulfll all tri 
angle inequalities are in fact, orders of magnitude larger than the total in
terference incurred by the feasible frequency plans analyzed in Table 5.15 
Hence, is seems futile to consider the (olynomial time) 2-approximation 
algorithm for the MINIMUM K - C L U S T E I N G SUM problem by Buttmann-
Beck and Hassin [1998] as a reasonable option for computing strong lower 
bounds on the navoidable interference. We therefore t r n back to the 
general MINIMUM K P A T I T N problem. 

6. ILP formulation d a S relaxation 

Two formulations of the MINIMUM K - P A R T I O N problem on a complete 
graph Kn with n > k > 2 are given next. (The graph G = (V, E) with 
edge weights c is completed to K\V\, and the edge weighting is extended 
to all new edges by assigning a weight of ero) These two formlations 
have relaxations of quite different kind. 

The first formlation is a lain integer linear rogram LP) see 62) 
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with an LP r e l a x o n obtained by dropping all grl i ty con t r i n t s 
A binary variable w is associated to every edge vw of the graph. The 
valu of zvw equals 1 if and only if both endpoints are in the same partite 
set. The constraints (6.2a) require the setting of the variables to be 
consistent, that is, transitive. For example, if zvx and zxw indicate that 
v, x, and w are in the same partite set (by transitivity), then the setting 
of zvw has to reflect that as well. The constraints (6.2b) impose that at 
least two from a set of k + 1 vertices have to be in the same partite set 
Together with the constraints 6.2a) this implies that there are at most k 

artite sets. We deal with the LP 62) extensively in the next cha ter 

Vv,x,weV (62a) 

V Q c y with Q\ (62b) 

The second formulaton can be seen as a semidefinite program wi 
"integrality" constraints. This formlation builds on the following two 
facts: there are k unit vectors in 1 with m u a l scalar products of 
r̂jy and this value of the scalar prodcts is least possible. Consider, for 
xample, a simplex with k vertices in R centered at the origin and scaled 

such that all vertices have a Euclidean distance of 1 to the origin The 
vectors pointing at the vertices of this simlex have the desired roer ty 
Formally the following can be roved 

emma 6.4. Fo all egers n nd k satisfyng 2 th 
llowng ds: 

(i) There exist uni vers ü % uch that (üj üf) j ^ 
fo all i ^ j 

i) ny k uni vers .. atisfy: 

(ui Uj) < S all i ^ j , th j ^ 

in J2 
W(V 

S t 

w£Q 

e [0,1] 
integer 
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Hence, the scalar proucts among the unit vectors üi,..., ük E Mn 

are indeed least possible. Although we believe that Lemma 6.4 is folklore, 
we only know references for the first and the last claim, see, e. g., Karger 
Motwani, and Sudan [1998] or Frieze and Jerrum [1997]. We give a 
complete proof of Lemma 64 here for the sake of comleteness. 

Proof. Ad (i): Considering the case of k n + 1 sufces to rove the 
existence of k unit vectors üi,... ,ük E K such that (üi,üj) = ^ y for 

7 j . Since the onedimensional case is trivial, we focus on the cases 
n > 2 Let U, n + 1, be the (n + ldimensional vector with all 

entries e q a l to —.n(^ except for the ith one, which is ^J^h- Every  

is a unit vector in R , and (ij.t,-) = ?\^ 77 — for i ^ j 
' " JI n ) n+1 n ' J 

If the vectors ij were in R instead of R"+1, then the claim would 
be proved; indeed, the subsace spanned by those vectors is at most n-
dimensional, becase (U, [l .. l] } — n Jn,^+1 + \l^i = 0 for all 
i. Hence, we may rotate the coordinate system in such a way that the 
vector [l . . . l] turns into a multiple of the vector [0 . . . O l ] 
Then the last coordinate of each vector £j is ero according to the new 
coordinate system, and we obtain the vector üi from ti by truncation 
Clearly, each is a nit vector in W1, and we have ü i ü j ) ^ for 
all ^ 

Ad (ii): For proving the first claim, we fix n and se induction 
on k. For k 2, the scalar product of any unit vector u E W and its 
negative — u is 1 = ^ - this is least ossible We now consider k > 3 
By indction hyothesis 

22i,Uj}—— k. 
i<j 

mming up all these ineqalities yields 

i<j i<j 

and the claim follows. 
Finally, we turn to the second claim of (ii). From the fact that the 

norm of a vector is nonnegative and the a s s t i o n , we conclude 0 
(uH \-,ui-\ Vuk) = J2(uhui)+^i,uj) < (k 
This imlies ^ - as desired D 
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According to Lemma 6.4 we may fix a set U = { . . , uk} C 
of nit vectors with (ui,Uj) = j ^ - for i ^ (and (ui,Ui) = 1 for i = 

. . , k). These k vectors are sed as labels (or reresentations) for the 
k partite sets. The MINIMUM K-PARTITION problem can then be phrased 
as follows We search for an assignment (f>: V ^ U that minimies the 
expression 

£ (Kn) 

3) 

Ntice that the quotient in the summands evaluates to either 1 or 0 
depending on whether the same vector or distinct vectors are assigned to 
the respective two vertices. 

If we assemble the scalar products {<ß(v), 4>{w)) into a square matrix 
X, being indexed row- and column-wise by V, then the matrix X has 
the following properties: all entries on the principal diagonal are ones, all 

ff-diagonal elements are either -^ or 1, and X is positive semidefinite 
Notably, every matrix X satisfying the above properties defines a k-

partition of V in the same way as 4> does. This can be seen as follows 
Since X is a positive semidefinite matrix, there exists a matrix C uch 
that X = CC. We claim that C contains at most k distinct co lmn 
vectors For the sake of a contradiction, let us assume that Ci,.. Ck+ 

are k distinct column vectors from C. Then (Q, Cj) = -j^j for all i ^ j 
and (CJ, Ci) = 1 for all i. According to Lemma 64, the k + nit vectors 
may only have a mutual scalar product as low as k^_1 = -jjr > f~[ 
a contradiction. Therefore, the columns of C may indeed serve as the 
vectors assigned by (/>, representing the partite sets. 

The combinatorial problem to minimize (6.3) may be relaxed to a 
semidefinite program (SDP). First, the explicit reference to the set U is 
dropped, and the roblem is rewritten as follows: 

p 
weE(K 

s t 

vv Vv 

E { l } Vv 

64a) 

(64b) 

x y 

Then, we replace the constraints (64b) by Xvw > ^ - . Notice that 
Xw < 1 is enforced imlicitly by X being ositive semidefinite and 
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Xvv Th DP ion o lem is e fllowin 

^ (A 1) X + 1 
mm ^ 7 

w£Kn) 

s t 

Xvv 65a) 

YZ\ 65b) 

Loväsz [1979] introduces this type of relaxation of a combinatorial 
ptimization roblem to compute the Shannon capacity of a graph, and 

Goemans and illiamson [1995] use it in an approximation algorithm 
for the MAXIMUM C U T problem. Although published some years a a r t 
Karger et al. [1994, 1998] as well as Frieze and Jerrum [1997] used around 
the same time and independently the semidefinite relaxation (6.5) in com
bination with randomized ronding to obtain a polynomial time approx
imation algorithm for the MAXIMUM K-CUT problem. 

An introduction to semidefinite programming and an analysis of the 
semidefinite program (6.5) are provided in Chapter 8. Our interest is here 
merely in the fact that the semidefinite relaxation of the MINIMUM K 

P A R T I T O N problem associated to o r test instances are (approximately) 
solvable on today's P s 

6.3 Numerical Bounds and Quality Assessments 

In this section, we provide nontrivial lower bounds on the amount of un
avoidable cochannel interference We consider all our planning scenarios 
with the natural exception of Sw, because no co-channel interference is 
specified for Sw. The lower bounds are obtained through solving the 
semidefinite relaxation (6.5) associated to the simplified carrier graphs 
In fact we solve a slightly modified semidefinite program, where the con
straint Xvw > -ĵ y is enforced at equality for all edges with d(vw) = 1 
in the simplified carrier graph. The previously suggested construction, 

sing very high weights for these edges, is therefore not necessary 
We (mostly) apply dual solution methods to solve the SDPs. A d a l 

method is not guaranteed to find the value of the optimal solution, bu 
it computes a lower bound on the optimal value and terminates if no 
further (significant) improvement is foreseen. Primaldual methods for 
solving SDPs exist as well ch a method comptes primal as well as 
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d a l feasible s o l i o n s and terminates if a provably optimal solution is 
f o n d or the value of the primal solution is sufficiently close to the lower 
bound. Hence, by design, a pr imaldual method produces more reliable 
information on the optimal v a l e than a dual method. 

To our best knowledge, however, no presently available primal-dual 
SDP solver can handle the s i e s of our problems. For example, the soft 
ware package SeDuMi of Sturm [1998] requires more than 800 MB of SeDuMi 
memory to solve a problem on merely 100 vertices. Hence, we use two 
implementations of dual methods, namely, B M Z by Burer, Monteiro, and BMZ 
Zhang [1999] and SB by Helmberg [2000]. In both cases, the running SB 
times for solving our SDPs range from several minutes up to days or 
even weeks. 

Due to the dual character of the employed SDP solvers, a few irregu
larities can be observed in their computational behavior. The best lower 
bound, for example, may not be obtained for the SDP derived from the 
entire (simplified) carrier network, but rather for one which is derived 
from an induced subnetwork. A thorough comparison of these and other 
SDP solvers is currently performed as part of the seventh D M ACS im
plementation challenge, see Johnson, Pataki, and Al i adeh 2000] and 

ittelman [2000, Semidefinite/SQL Programming]. 

We give an account of our computational results in Table 6.2. In 
addition to the bound obtained for the entire carrier network (all), we 
report results for a subnetwork induced by a maximum clique (clique) 
and for the subnetwork induced by the union of all cliques larger than 
the number of available channels (union), not counting blocked channels. 

field is left blank if no reasonable result has been produced, either 

clique nio all 

0.0206 0.1735 0.1836 
B[ 0 .01 0.0096 
B[l 0.052 0.0297 
B[2] 0.021 0. 0.1097 
B[ 0.2893 03 
B[1 2.7035 0989 

0.0165 0.1 0.1280 
1.337 6.83 6 . 9 6 3 
0. 0 . 1 3 2 0.4103 
0.4598 21.461 27.6320 

Table 6. ower bounds n unavoidable i n t e r n c 
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because the solver stops prematurely with a negative objective function 
value or because this value is still negative after running for at least one 
day. The best lower bound for each scenario is typeset in bold face. 
Almost all entries are produced using BMZ, due to its superior running 
time behavior in comparison to SB. The exceptions are as follows. The 
bound for K/clique is computed with SeDuMi. The other two bounds 
for are best for SB The same holds for B[]/all and B[10]/all 

Table 6.3 lists quality guarantees for the assignments from Table 5.15 
on the basis of the best bound for each scenario except for Sw. In order 
to provide information on the split between co- and adjacent channel 
interference in the assignments, we give the respective values for the 
assignments from T H R E S H O D ACCEPTING. The gap IjL^- between the 
total interference Iy incurred by a assignment y produced heuristically 
and the lower bound L on the unavoidable cochannel interference is 
reported in percent. If no feasible assignment is generated by a heuristic 
for some scenario, then the corresponding cell contains a " " 

These are the first significant lower bounds on the amount of overall 
unavoidable interference for realistic GSM frequency planning scenarios. 
(Some forerunners of these bounds, obtained from an even weaker re 
laxation, are described by Eisenblätter [1998].) We learn, for example, 
that the best of the assignments listed for K, B[10], SIE2, and SIE4 incur 
no more than three times the amount of provably unavoidable interfer 

lower 
bound 

best assignment gap [% lower 
bound ch. a d . h . 

1836 0.43 0.02 145 47 668 657 
B[ 0096 0.55 0.02 838 692 259 325 
B[l] 0297 0.8 0.02 2796 525 12762 538 
B[2] 3.1 0.07 68 07 221 
B[4 03 7.29 0.4 339 
B[10] 0989 42.09 4.11 273 339 316 
Sl 128 1. 1. 1697 2525 365 3845 
SI 6 . 9 6 3 2.57 2.18 12 175 195 01 
SI 132 3.6 1.62 1173 1911 191 
SI 27.632 71.09 9.87 193 279 279 

a. T-COLORING o VDS; b. Ts T-COLORINGO VDS; C. T S D C 5 O VDS; 

d. THRESHOLD ACCEPTING 

Table 6. Quality g u a r n t e s for seleced quency asignment 
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ence. Yet, it is fair to say that our quality guarantees are not particularly 
strong. The gap between the upper and the lower bound is considerable 
in all cases. Nevertheless, the gaps are small enough so that the differ 
ences in quality between simple (and fast) methods like D R WITH 
COSTS and the more intricate method T H NG are not 
diminished. 

One might conjecture that the large gaps between upper and lower 
bounds are to be blamed primarily on the lower bounds. After all, we are 
merely approximately solving a relaxation of a relaxation of the original 
problem. n the next section, however, we present a frequency plan for the 
scenario K that is much better than the best one reported in Table 5.15. 
This shows that the heuristically generated plans are ot generally as 
good as one might have hoped. 

6.4 Relaxed and Ordinary Frequency Planning 

We would like to turn a feasible frequency assignment for a simplified 
carrier network into a feasible one for the associated ordinary carrier 
network. The only change we allow is to relabel the channels in the 
assignments. Thus, among the \C\\ many equivalent assignments for the 
simplified carrier network we look for one which is feasible for the original 
problem (and incurs as little adjacent channel interference as possible). 
How to find such a permutation is the topic of this section. 

The absence of locally blocked channels, of separation constraints 
larger than one, and of adjacent channel interference simplifies the tasks 
of a planning heuristic. Running the same heuristic methods as before, 
we often obtain frequency plans with less co-channel interference than 
in the original setting, and we try to take advantage of this as follows. 
First, we heuristically produce a frequency plan for the relaxed problem; 
then, provided the plan is feasible, we try to turn this plan into a feasible 
one for the original problem by relabeling the channels. If we succeed, 
the new plan will have the same amount of cochannel interference as 
the one for the relaxed case. The amount of additional adjacent channel 
interference should be as small as possible. Although this procedure is 
certainly of limited applicability, we obtain the best known frequency plan 
for scenario K in this way. This assignment incurs 18% less interference 
than the previously best one. 

6 . 1 Feasibl rmutations 

We start out by formally introducing the notion of a feasible permutation. 
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easble D e f i n t i o n 6.5. Given a carrier nework N and a feasible asgnment 
ermutation y for the associated simplifie carrier netork Ns, we call 7 : C> C a 

feasible permutation of t annel if t assignment TT O is feasible 
forN. 

Testing whether a feasible permutation exists is A/'P-hard in general 
(The jVP-complete problem of checking for a Hamiltonian Path in an 
undirected graph, compare with Garey and Johnson [1979, GT39], can 
be reduced to it.) In the following, we describe a method for finding a fea
sible permutation. Despite the fact that the running time of the method 
is not polynomially bounded in the input size in general, the method 
is merely a heuristic. Its results are, however, optimal if no channel is 
locally blocked (in particular, the spectrum has to be contiguous). 

The major building block of the proposed method is to find a Hamil 
tonian path of minimum weight satisfying one extra condition. Recall 

Hamiltonian ath that a path in a graph is called Hamiltonian if it contains every vertex. 
The extra condition rules out "shortcuts," which are defined below. 

Given a carrier network JV = (V, E, C, {Bv}v€V, d, co, ad) and a fea
sible assignment y for the simplified network Ns = (V,E,C,d,cC0) we 
construct a complete graph K\C\. The channels in the spectrum C are 
the vertices. The weight Wij of edge ij is the maximum of 1 and the sep
arations required among all carriers assigned channel and all carriers 
assigned channel , i.e., w: K\V\)> Z+,cc > WCC> = m a x j l , d(vx) 
vx E E : y(v) c,y(x) = c } . We call this edge-weighted graph the 

searation gra eparation graph associated to carrier network iV and assignment y. 
Every Hamiltonian path p VQ,...,V\C\-I in the separation graph 

defines a permutation np: C> C'. The permutation 7rp is obtained from 
the order in which the vertices occur in the path p irpci,..., 7rp 

learly, the following holds. 

Observation 6.6. Te Hamiltonian paths in the separation grap and 
e permutations on C are in one-to-one correspondence. 

We call a path p = VQ, ... ,vi in the separation graph a shortcutting 
shortcut path or simply a shortcut if ^2i=i wVi_lVi < wvm. A path p = a,b,c 

with three vertices, for example, is a shortcut if and only if the triangle 
inequality wab + w^ > wac is violated. We say that a path contains a 
shortcut if some of its consecutive vertices form a shortcutting path. 

Figure 6.2 gives an illustration of a separation graph on the vertex 
set , 6, , e . The edge weights are written next to the edges; tha 
is, ab, a e, bd, and de require a separation of 1; ae,ce a separation 
of 2; and a separation of 3. The triangle inequality is violated once, 
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namely, % + wbc ac, and the pahs abc and cba are shortcuts. The 
Hamiltonian path of weight 4 contains a shortcut, whereas the 
Hamiltonian paths bcdea of weight 5 does not. The Hamiltonian path 
abedc contains no shortcut and its weight of 4 is minimal The associated 
permutation >Kabedc is defined by nabedc(a) = a, 7abedc , Trabedc 

nabedc , and 7abedc 

Figur 6.2: Separation graph with sor tcut 

Although, shortcuts in a separation graph may contain more than two 
edges, their length is bounded by the largest edge weight in the separation 
graph, and thus by the largest required separation in the underlying 
carrier network. 

Observation 6.7. Given a shortcut VQ, ..., vi in a separation graph, the 
number of its vertices is bounded by I < wvm. Hence, every shortcut 
contains at most maxjwj \i,j } many vertices. 

The first part follows from Wij > 1 for all i,j 6 C and the latter 
is a consequence of the former. For the carrier graphs introduced in 
Section 5.1.1, the largest required separation is three in all cases except 
for K, where it is four. Four is also the largest value for which we 
a technical reason in the underlying SM network. 

Obervati 6.8. If a Hamiltonian path p in a separation graph has 

• weight Y}S Vi_lVi C\ 

or contains shortcut 

then 7TP is not feasible. 
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Hence, only Hamiltonian paths with all edges having weight 1 may 
give rise to feasible permutations. The converse, hwever, holds only if 
no channel is locally unavailable. 

In addition to finding some feasible permutation, we also want to keep 
the adjacent channel interference under control. This issue is addressed 
as follows. We set /^ Wi | maxj'a^ eC^ for every edge in the 
separation graph, where 

d: ->• K % cad 

v: 
{w)j 

Then Wij < Uj < w^ + \C\ , and every Hamiltonian path of least weight 
with respect to I is of least weight with respect to w. With our preceding 
discussion in mind, the following is easy to see. 

Propositio 6.9. Given are a carrier network N without blocked chan
nels, that is, Bv = 0 for all v £ V, and a feasible assignment y for the cor 
responding simplified carrier network. Moreover, let p be a Hamiltonian 
path of least weight with respect to I in the eparation graph associated t 

and y. Then the folloing holds. 
If p has weight \C\ 1 with respect to w and does not contain a 

shortcut, then npoy is a feasible solution for the carrier network N. Fur 
thermore, iipoy incurs the least amount of adjacent channel interference 
among all feasible assignments n o y. 

Next, we explain how such a Hamiltonian path can be computed 
heuristically by solving a modified A V G S E S M P R E M 

6.42 T o u s without s h t c u t s 

Finding a Hamiltonian path of minimum weight in a graph is traditionally 
done by solving a T R A V L I N G SALESMAN PROBLEM. An instance of the 

TSP TRAVELING SALESMAN PROBLEM (TSP) consists of a complete graph 
tour together with edge weights. The task is to find a minimum weight tour 

(or cycle) containing every vertex. The weight of an edge is usually 
called its length in the context of a TSP, and a tour of minimum weight 

shortest tour is called a shortest tour. We stick to this tradition. The TSP and many 
of its variations receive considerable attention in the literature. Jünger, 
Reinelt, and Rinaldi [1995a], for example, give a survey on the TSP, and 

pplegate, Bixby, Chvatal, and Cook [1998] report on recent progress. 
Our restricted Hamiltonian path problem is transformed into a re

stricted SP as follows. First, we add one additional vertex a to the 
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separation graph, which is made adjacent to every other vertex. (This is 
the first step of the classical transformation of a Hamiltonian path prob
lem to a TSP.) We call the result the augmented separation graph. The augmente 
edge weighting / of the separation graph is extended to the augmented searation gra 
graph by letting luv maxj/j,, \ i,j E C } for every edge incident to o. 

The notion of a shortcutting path is transfered to the augmented sep
aration graph. A path p = i>0 , . . . , vi is called a shortcut if Yli=i lAi-n>d < shortcut 
lAwJ) where [x\ denotes the largest integer less than or equal to x. The 
slight change in the definition of a shortcut has the advantage that a path 
is a shortcut in the augmented separation graph (with respect to I) if and 
only if it is a shortcut in the separation graph (with respect to w). No 
shortcut contains a. A Hamiltonian paths (of minimum weight) in the 
separation graph gives rise to a (shortest) tour in the augmented graph 
by connecting both endpoints of the path to a. Conversely, every (short 
est) tour in the augmented graph gives rise to two Hamiltonian path (of 
minimum weight) by chopping off a and reading the remaining path in 
both possible directions. The same direct correspondence holds under 
the condition that no shortcuts may be contained. 

The ILP (6.6) is the classical integer linear programming formulation 
of the TSP, extended by the constraints (6.6c), called shortcut constraints shortcut 
here. A binary variable x^ is used for every edge ij in the augmented constraints 
separation graph, and an edge ij is in the tour if and only if xij is 1. 
Without the shortcut constraints, every optimal solution corresponds to 
a shortest tour. With the shortcut constraints included, each optimal so
lution corresponds to a tour that does not successively contain a shortcut 
and is shortest among all those. 

min y xi 
ijE 

s.t. 

^ x^ =2 (6.6a) 
evE 

^2 Xi ßCSC (6.6b) 
s,jev\ 

E 

x^ p \ s h o r t c u t s p (6.6c) 
j 

x^ {0 EE 

The use of a TSP for finding a feasible permutation is inspired by 
the SP bound for the minimum span of particular T-coloring problems, 

E 
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see Section 3.1.2. This connection is first observed by Raychaudhuri 
[1985] and used by Roberts [1991b]; Janssen and Kilakos [1996, 1999] 
Allen, Smith, and Hurley [1999] extend this idea and augment their TSP 
formulation by introducing "excess"variables in order to rule out conflicts 
with shortcuts. Our idea is similar to their's, although in a slightly 
different context and with different goal 

6 . 4 3 o m u t a t i o l R s u l t s 

Any branch-and-cut method for the ordinary TSP can, in principle, be 
modified in order to solve the ILP (6.6). Recall from the previous subsec
tion that in our case one of the separation graphs contains a shortcut of 
length four or more. In this case, the number of shortcuts is polynomi 
ally bounded in the problem size, and all shortcuts can be enumerated in 
polynomial time. We do not pursue this further here, because this is not 
in the center of our interest. Instead, we use the s t a t e o f t h e a r t solver 
for the ordinary TSP with some additional processing. The C O N C O R D E 

program, developed by Applegate, Bixby, hvätal, and ok [1997], is 
employed to solve the basic TSPs. 

We are often lucky and find a shortest tour not containing a shortcut. 
But there are, of course, cases where the shortest tour oes contain a 
shortcut. We then resort to the following crude heuristic. A shortcutting 
path is determined, and the length of one edge is increased in such a 
way that this shortcut is eliminated and no other is introduced. (There 
are several possible variations of this principle.) The TSP is then solved 
afresh, and the process is repeated until a tour without shortcut is ob
tained. If any such tour exists, then one will ultimately be found due to 
the way in which we increase the lengths. 

Computational results are given for the scenarios K and B[l] in Ta
ble 6.4. The scenario SlEl is omitted here, because its spectrum is not 
contiguous and this does not fit with our assumptions. A feasible so
lution is generated with the T H R E S H O L D A C C E P T I N G heuristic for the 
associated simplified carrier networks (all), for the subnetworks induced 
by a maximum clique, and for the subnetworks induced by the unions of 
cliques larger than the size of the spectrum. Every available channels is 
used at least once in each assignment. The table displays the co-channel 
interference of the assignments with respect to the simplified carrier net 
works. The adjacent channel interference and the number of separation 
violations with respect to the associated carrier networks are also given. 
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interference sep. 
viols. o-h. adj.ch. 

sep. 
viols. 

all 0.37 1.38 38 
nio 0.37 1. 

clique 0.02 0.76 
[l] all 0.59 2.23 212 [l] 

nio 0.1 0.21 21 
[l] 

clique 0.01 0.2 

Table 6. nalysis of asignments for simplified carier neworks 

Table 6.5 gives details concerning the separation graphs constructed 
from each of these assignments. Ordered by columns, we first list the 
number of vertices in the (induced) simplified carrier network. For the 
separation graph, we then list the number of vertices, a histogram of 
the edge weights, the number of violated triangle inequalities, and the 
minimal number of edges of weight 1 incident to a vertex (minimal 1-
degree). Recall that every violated triangle inequality gives rise to a 
shortcut of length two. In the case of B[l]/all and the given assignment, 
some vertex in the associated separation graph has no incident edge of 
weight 1. feasible permutation cannot exist. 

C\ 
weight viol min. 

1-deg. C\ 
viol min. 

1-deg. 

all 267 50 76 78 
nio 23 51 71 92 

clique 69 01 123 
B[l] all 1971 75 2532 B[l] 

nio 25 75 098 69 373 38 
B[l] 

clique 75 255 218 198 

Table 6.5: nalysis of sparation graphs 

n all other feasible permutation is obtained by applying the 
TSPbased heuristic. Notably, the resulting assignments incur no or only 
very little additional adjacent channel interference. This is achieved by 
using the augmented separation graph when determining the best permu
tation. All permutations are optimal with respect to the amount of adja
cent channel interference incurred. If additional interference is incurred, 
then the corresponding permutation is obtained without changing any 
edge weight in the augmented separation graph. The results are given 
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in Table 6.6. The table also displays the gap b e t w e n the permuted as 
signments and the lower bounds listed in Table 6.2. Attempts to further 
improve the assignments using V fail: only in one case a negligible 
improvement is achieved. 

interference sep. 
viols. 

gap 
o-ch. adj.ch. 

sep. 
viols. 

gap 

all 0.37 0.0009 102 
nio 0.37 0 . 0 9 11 

clique 0.02 0. 
B[l] all B[l] 

nio 0.1 0. 
B[l] 

clique 0.01 0. 92 

Table 6. nalysis of permuted asignments for ca r ie r neworks 

As stated before, the assignment obtained for the instance K/all is 
significantly better than the previously reported ones. The total inter 
ference is reduced from 46 or more to a value of 37. orrespondingly, 
the gap is reduced from 51 % or more to 102 %. 

6.5 onclusions 

In the preceding chapters, we have dealt with models and heuristics for 
frequency planning in SM networks. Here, we considered the issue of 
proving that , for a given carrier network, a certain amount of interference 
is unavoidable by any feasible frequency plan. This allows to compare 
the interference incurred by a frequency plan with the amount of prov-
ably unavoidable interference. In the ideal case, where both values are 
equal, the plan is proven to be optimal (in terms of the mathematical 
optimization problem FAP). But also in the more likely case, where the 
values do not coincide, knowing how much interference is unavoidable 
can be very helpful. We may use this information to estimate the quality 
of a frequency assignment, or use it as a common reference point when 
comparing results from several heuristics. 

Unfortunately, it is still unknown how to compute strong lower bounds 
on the interference in general. We proposed an approach to bound the 
unavoidable co-channel interference from below. In this context, we intro
duced the "relaxed frequency planning problem" and explained its relation 
to the M N I M U M K - P N problem. Drawing on the semidefmite 
relaxation of the M M K - P O N problem and using s ta teof 
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the-art SDP olver, we computed the first significant lower bounds for 
the frequency planning problem FAP. In the best case, we show that 
a frequency assignment incurs merely twice the amount of provably un
avoidable interference. In the worst case, however, the factor is almost 60. 
This situation is not satisfactory and deserves further investigations 

A drawback of our approach is that solving the large semidefinite 
programs is presently quite challenging and may take days or even weeks 
of running time. Moreover, it is not yet clear ho information acquired 
through the solution of the semidefinite program can be effectively ex
ploited to generate better frequency plans. This also deserves additional 
ttention. 

We pointed out that for our scenarios many triangles in the carrier 
graph violate the triangle inequality significantly. Alternative approaches 
to compute strong lower bounds on the unavoidable interference may fail 
if they rely on the triangle inequalities being (almost) fulfilled. 

Finally, frequency planning methods for GSM networks have been 
developed for almost a decade now, and several of the recent methods 
show good performance in practice. One might conclude that frequency 
planning, at least from a practical point of view, can be considered as 
"solved," see also our comments in Section 5.6. In this respect, however, it 
is irritating that we were able to provide a significantly better solution to 
a realistic planning problem than known before. The employed method, 
i.e., first solving the relaxed frequency planning problem heuristically 
and then trying to fix all separation violations by relabeling the chan
nels, is certainly of limited applicability. Its success, however, documents 
that improvements on the presently used techniques are possible. This 
will be of interest for GSM network planners if, at some future point in 
time, frequency planning again becomes a limiting factor. From the com
binatorial optimization point of view, the frequency assignment problem 
FAP, even on the rather restricted set of realistic planning data, is clearly 
ot yet fully mastered. 





CHAPTER 7 

Partition Polytopes 

The focus of the remaining two chapters is no longer directly on frequency 
assignment. Instead, we pursue the problem of finding a ^-partition of 
the vertex set in a complete graph such that the edge weights in the 
induced subgraphs are minimal ( M N I M U M KPARTITION) . We are led 
to this problem by its close relation to the relaxed frequency planning 
problem, see Section 6.2. 

In this chapter, we mostly survey results from the literature concern
ing the polytope V<k{Kn), which is defined by the convex combination 
of all feasible solutions to the ILP formulation (6.2) of the MINIMUM 

K-PARTTION problem. This polytope is full-dimensional in the space 
spanned by the edge variables. A particular emphasis is on the hyper-
metric inequalities. Moreover, we address the complexity of solving the 
separation problem for several classes of (facetdefining) inequalities. 

n the next chapter, we turn to the semidefinite relaxation (6.5) of 
the MINIMUM K P R T I I O N problem. The set of the relaxation's feasible 
solutions is studied and related to the polytope V<Kn This is done 
mostly on the basis of the hypermetric inequalities. 

The chapter is organized as follows. Section 7.1, two binary lin
ear programming formulations of the MINIMU K-PARTITION problem 
are compared. We explain why the formulation (6.2) is favored. In Sec 
tion 7.2, the polytope obtained for k = n is studied. Several classes of 
facet-defining inequalities from the literature are reviewed. In Section 7.3, 
we consider the polytope V<Kn) for k < n with a strong emphasis on 
the hypermetric inequalities. In Section 7.4, we briefly discuss the issue of 
developing a branch-and-cut algorithm for the MINIMUM K-PARTITION 

problem on the basis of the classes of valid inequalities presented in the 
preceding two sections. 

Appendix A contains a compilation of mathematical notions, which 
are used but not introduced here. 

Usually, we assume k > 3 or even k > 4 in the following. Clearly, if 
, then only one "partition" exists; in the case of k the M 



R P R M S 

2-PARTITION problem is equivalent to the wellknown MAXIMUM C U T 

problem, see the survey article by Poljak and Tuza [1995] or the book 
by Deza and Laurent [1997] and the references contained therein. 

1 Binary Linear Programs 

Let G = (V, E) be a graph with at least three vertices, w: E —) Q be 
a weighting of the edges, and 2 < k \ integer. Two binary linear 
programming formulations of the M K - P I O problem are 
considered in the literature. 

The first formulation (7.1) given below is the same as (6.2). It is 
restated here for convenience. One binary variable is used for every edge 
of the graph, which has to be complete. Thus, (2 ' ) many variables 
occur. The intended meaning is that Zij — 1 if and only if the vertices 
i and j are in the same partite set of the partition. The number of 
triangle inequalities (7.1a) is 3( ' 3 ' ) , and there are L\) many clique 

inequalities (7.1b). The value of the expression {L\) grows roughly as 
fast as \V\k as long as 2k < V\. Hence, the number of constraints is not 
bounded by a polynomial in \V\ and \ogk. Deza et al. [1991, 1992] as 
well as Chopra and Rao [1995] consider this formulation. 

Vhje 7.1a) 

VQC V with k + 7.1b 

For the second formulation (7.2) the graph does not have t be com 
plete. In addition to the edge variables, k binary variables y\, I . . . k, 
are introduced for every vertex i with the obvious meaning of y\ 1 if 
and only if the vertex i is in /th set of the partition. Hence, the number 
of variables is k\V\ + \E\. There are |V| many constraints of type (7.2a), 
and 3k \ constraints of type (7.2b). This formulation is considered by 

inz2 
i j v 

s.t. 

Y^ za > 
jeQ 

Zi E [0,1] 
z^ integer 
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Chopra and Rao [1993], for example. 

min ij zi 

s.t. 

7 - 2 a ) 

+ ^ > ij e E e { . . . k } 

Zij > ij e £ e { . . . k} 7.2b) 

+ y Zij > ij e E e { . . . k ) 

zijE [ 1 ] 

Zij integer 

For a sparse graph, the formulation 7.2) may have significantly fewer 
variables than (7.1) after the graph is completed with edges of weight 
zero. Despite this fact, the formulation (7.2) has a major drawback. In 
case the vertex set of a graph is partitioned into k (nonempty) sets, then 
there is a unique variable setting corresponding to this partition in (7.1). 
But there are A;! many corresponding settings in (7.2). This is because the 
introduction of the y variables goes along with the necessity of labeling 
the classes of the partition. Although such a labeling is mandatory in an 
ILP formulation of the frequency planning problem, compare with (3.6) 
in Section 3.3.1, it introduces unnecessary and nwelcome degrees of 
freedom here. 

We are not aware that either of these formulations has been used suc
cessfully for solving MINIMUM K-PARTITION problems with nonnegative 
weights on dense graphs with several hundred vertices. 

No formulation using edge variables alone is known for incomplete 
general graphs. Taking, for example, simply the first formulation and 
applying the trianglebased constraints (7.1a) and the clique-based con
straints 7.1b) merely to induced subgraphs does not work. One reason 
is that a consistent setting in the vector z cannot be ensured for incom 
plete graphs by considering triangles alone. Instead, restrictions on all 
chordless induced cycles apply. Let C be a chordless induced cycle in G 
and let rj be any edge in , then 

X) %-% 
ijeE(c) 
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has to be satisfied. The number of chordless cycles in a graph can, in 
general, not be bounded by a polynomial in the number of vertices. An
other, more intricate reason is the following: imposing that every induced 
clique of size (k + 1) is partitioned into at most k classes does not guar 
antee that the entire vertex set is consistently partitioned into at most k 
classes. Instead, the following has to be imposed 

A vector E {0,1} is infeasible unless the graph obtained 
from by contracting all with z is A;-partite. 

One way to impose this condition is the introduction of vertex variables, 
as done in (7.2). 

The focus in the remainder of this chapter is on the first formulation 
and its associated polytope, i.e., the set of all convex combinations of 
feasible solutions. From now on the underlying graph is assumed to be a 
complete graph Kn with n > 3. We denote the convex hull of all integral 

k{K) points satisfying the conditions given in (7.1) by 

V< = c n v ( { E { K ^ zhi + zi:j - zhj < VhjeV; 

^ % > ! VQcy, =A; + 1} 
Q 

Every partition of the vertex set of Kn into at most k many sets is also 
a partition with at most k + many sets. Thus, 

V<Kn C • • • V<Kn V<k+1Kn C • • • V<Kn 

and each inclusion is proper. very inequality valid for V<n(Kn is also 
valid for V<k{Kn) for every < k < n. The boundary cases k 2 
and k = n, i.e., at most two classes and no restriction on the number 
of classes, have already been studied extensively in the literature. The 

(Kn) shorthand notation Kn for V< is used in the following. 

Observ 7.1 Kn, but 0 0 V< for every 

Hence, no matter how good the knowledge of V{Kn) in terms of 
valid and facet-defining inequalities is, without taking the clique inequal 
ities (7.1b) into account, the optimal value of (7.1) will always be non-
positive. In fact, if all weights are nonnegative, then the zero-vector is 
always an optimal solution when minimizing over VKn 
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The Polytope T(Kn) 

Our survey on properties of V{Kn) does not aim at completeness. The 
Ph. D. thesis of Rutten [1998] contains a more comprehensive compilation 
(which, however omits the results of Deza et al [1991]) 

Propos i t ion 7.2 (Grötsch nd Wakabayashi [1990]) The poly-
ope V(Kn has dimension 2 ) 

The clique inequalities (7.1b) are void for V(Kn). The remaining 
constraints in the binary linear programming formulation are the trian
gle inequalities (7.1a), the bounds on the variables, and the integrality 
conditions. The bound constraints are called trivial inequalities trivial inequalities 

Propos i t ion 7.3 (Grötschel a d Wakabayashi [1990]). Wth respec  
the poltope V(Kn > 3 

every nonnegaivi consrain Zij > defnes a face 

every riangle inequaliy (7.1a) defnes a face 

no upper bound consrain z^ < 1 defnes a facet 

Some properties are shared by all nontrivial facet-defining inequalities 
for V(Kn). One of the three properties listed next concerns the support 
graph of an inequality. Given some inequality aTz > ao, the suppor 
graph of aT > ao or just , is the subgraph of Kn induced by all edges support graph 
ij with 

Propos i t ion 7.4 ( G r ö t s h e l and Wakabayashi [1990]). L aTz < 
ÜQ e a nontrivial inequali defining a facet ofV{Kn) then 

ao > 

has posiive and negaive enries 

he suppor graph of Tz < ao is 2-conneced 

Corollary 7.5. Under the same assumpions as in Proposiion 74 the 
subgraph H+ of Kn induced by E = [i e E(Kn) \ 0} is a 
connected, spannig subgraph of the suppor graph 

Proof Let [S, T] be any cut in the 2-connected support graph H i n u c e d 
by Ea. There exists a vector ~ E 0 l}E(K> satisfying aT~z ao > 0 for 
which restriction to the cut S, T] is not identical to zero. (Otherwise, 
the facet efined by aT~z > ÜQ woul be contained in all the trivial facets 
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efined by zst > 0 with st E [ T , which is a contraiction.) The vector 
_ obtained from ~z by setting 

\Hje[ST 

otherwise, 

is also the characteristic vector of a partition and thus satisfies a1\ < CLQ 
Consequently, aT aF_ — astersT] ~Zt > , and at least one of the 
aS 's, st E [S,T\, has to be positive. 

The claim now follows since this h o l s for every cut in H D 

Notice, however, that H is not always 2-connected. The 2-chorded 
path inequalities, see (7.4), form a counterexample. They can even have 
arbitrarily large support. 

Recall that we want to partition the vertex set of a complete graph by 
means of deciding for each edge whether or not its two endpoints are in 
the same partite set. The setting of the edge variables has to be transitive, 
i.e., the subgraphs induced by selected edges have to be complete. In 
that respect, Proposition 7.4 and Corollary 7.5 can be read as follows: 
all facetdfining inequalities for V(Kn) are concerned with imposing the 
additional (fractional) selection of edges with negative coefficient once 
some set of edges with positive coefficient has already been (fractionally) 
selected. No inequality may, however, impose the selection of an edge to 
begin with, because the origin is contained in V(Kn) 

2-cho 
2-cho cycl 

2-chorde cyl 
inequalit 

7.2.1 c h d e d I u a l i t i e 

Two fairly general classes of valid inequalities are known for the polytope 
V(Kn). These are treated in the two subsequent subsections. Here, we 
list a few other classes, which have in common that the support graph of 
the inequality has 2-chords. Given a graph G (V, E), we call an edge ij 
a 2-chord if there exists some h E V such that h jh E E. A 2-chorded 
cycle is a cycle with all 2-chors add A 2-chor cycle with q vertices 
along the cycle is denote by C2 

Proposition 7.6 (Grötschel and Wakabayashi [1990]). Let C2
q he 

a 2-chorded cycle of length q > 5 in Kn. Let C b the edges of the cycle 
and let C b he set of 2-chords, then he 2-chor cycle inequality 

z(C) z(C) < 7.3) 

is valid for V{Kn). The 2-chor cycle equal efines a face 
V(Kn) and only if q 5 s odd 



Figure 7.1 depicts a 2chorded cycle inequality on a cycle with 7 ver 
tices. Solid lines indicate a coefficient of +1 in the corresponding inequal 
ity, whereas broken lines have a coefficient of —1 

Figur 7.1 Support graph of a or ycle inequality o 7 v e i c 

A 2-chorded path is a path with all 2-chors a d d . W enote the 2-chorded path P 
2 c h o r d path on q vertices by P£ 

Proposition 7.7 (Gröschel and Waka 
a 2-chord path of length q > 2 together 
V(Pg). L P b the edges of the path P 
the set of dges from the impliial verex 
starng wh the second path vertex, an let 
the simplcial verex h to every other vertex 
verex i the pa Then the 2-chordd path 

z(P UR)- z(P U R) < 

s valid for V(Kn) The 2-chor pa nequal efins a V(Kn) 
f and onl if i even 

In Figure 7.2, a 2-chorded path inequality on a path of length 3 is 
shown. As before, soli lines indicate a coefficient of +1 in the corre 
sponding inequality, and broken lines have a coefficient of —1. 

Consider a graph consisting of a cycle and one additional vertex, 
which is adjacent to all vertices on the cycle. This is called a wheel and 
denote by Wg, where q is the number of vertices along the cycle. We call 
every edge incident to a vertex on the cycle and to the simplicial vertex 
a spoke. A 2-chordd wheel is a 2-chordd cycle wheel with an additional 
simplicial vertex. 

ayashi [1990]). Lt 
th a simplicial vetex 

ie the set of 2-chords, R 
o every other vertex o Pg 

R e the set o dges from 
of Pg, starng w the fir 
inequality 

q + 7.4) 

2-corded pat 
inequalit 

spoke 
2-corded ee 
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Figur 7. Support graph of a chor path inequalit 

Proposition 7.8 (Grötschel and Wakabayashi [1990]). L C\ 
2-chorded cycle of even length q > 8 n Kn and let h $ V(C^ We deno 
by C he edges f the cycle, by the set of 2-chords, by he set o 
dges from he simplicial vertex h to the every other vertex of C^, an by 

2-chorded even the se remaiing spokes The 2 - c h o r d even wheel inequality 
eel inequalit 

C UR)CuR)<j- 7.5) 

s valid for V(Kn) and defines a face V{Kn) 

A 2-chordd even wheel inequality for a wheel with 8 vertices on the 
rim is depicted in Figure 7.2. Again, solid lines indicate a coefficient of +1 
in the corresponing inequality and broken lines a coefficient of —1 

Figur 7. Support graph of a hor ven whel inequalit 

Generalizations of the previous three types of inequalities are given 
by Rutten [1998] 

7.2.2 Clique-web Iequal i t ies and S c i a l Cases 

The next two types of inequalities are specializations of the rather general 
cliqueweb inequalities (except for bounary cases), which are described 
at the end of this section. 
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roposition 7.9 ( C h o p a and Rao [1993]). Let W e a heel in Kn 

th q > 3. W denote by C the edges along the rm, an by the spokes  
the wheel The gwheel inequality 

R) - C) < 7. 

s valid for V(Kn) an defins a f f s odd 

The support graph of a 5-wheel inequality is depicte in Figure 7.4. 
Solid lines indicate a coefficient of +1 in the corresponing inequality, 
and brken lines indicate a coefficient of —1 

el inequli 

Figure 7.4 Support graphs of a 5 w h e l inequality 

A graph consisting of a cycle and two additional vertices, which are 
adjacent to each other and to all vertices on the cycle, is called a bicycl 
in the following. We denote a bicycle with q vertices along the cycle by 
BWq 

Proposit ion 7.10 C h o p a and R [1993]). Let BW a bcycl 
n Kn wh q > 3 s± and be he two v t s no on cycle, E^ 

the spoke cidet t s\, an spok iidet t ^-bicycle 
inequality 

{Ei) - (E U {Sls2}) < 2 [J 7.7) 

s valid for V(Kn) an defins a fac s odd 

Figure 7.5 shows the support graph of a bicycle inequality with 5 
vertices along the cycle. As before, a solid line stands for a coefficient 
of +1, and a broken line stands for a coefficient of — in the inequality. 

Extening the notion of a 2-chord in a graph G (V, E), we call an 
edge ij an lchord, I 2, if there exists a path of length / in G with i 
and j as endpoints We say that a cycle of length p is augmented with 
all lchords, 2 < / < | , if the endpoints of each path of length / on the 
cycle are connected by an edge. 

cye BW 

q-bicyc 
inequalit 

ch 
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Figur 7. Support graph of a 5bicycle inequalit 

e f i t i o n 7.11 (Deza and Laurent [1992b]). Given two nonnega 
antib A eg , r satifng p > 2r , an antiweb AW* s a graph on a v 

set {vi,..., v}. I = 0 then there are no e d . I case > 1, AW  
is a spanning cycle augmed by all lchords with I ,... , . T web 
W* th graph compl th anib AW* 

The web W, for example, is a complete graph on p vertices; WJr+1 is 
a graph containing 2r + 1 isolated vertices; and VFJr+3 is a cycle on 2r + 3 
vertices A AWf antiweb and a W web are shown in Figure 7.6 

a) b) 

Figure 7 . : A is epicte in a) an in b) 

Proposition 7.12 ( e z a et al. [1991]). L Wr
v W, F) b 

n Kn wth p > 1 an > and lt U be s with U C 
clique-w V(Kn) \ W, \ such tha 2r cliqueweb 
inequalit inequality 

(E{ W)) - ) - (E()) < q{r + 7. 
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is valid r V(Kn) e b uali defins a V{Kn) 
cas 2r or p 2r + 1 an q>2 

Setting p = q, r ^ , and \U\ 1 in the cliqueweb inequality 
yields a (/-wheel inequality Keeping the same setting for p q, and r, but 
considering \U 2, we arrive at the ^bicycle inequality. Furthermore, 
for U = S and T = W?T> the 2-partition inequality, see 7.9 below, is ob
tained. The support graph of a cliqueweb inequality on a AW% antiweb 
and a set U of size one is depicted in Figure 7.7. As before, solid lines 
indicate a coefficient of an broken lines a coefficient of 1 in the 
corresponding inequality 

Figure 7.7 Support graph of cliqueweb inequality on with \ 

7.2. on Cl qual 

The hypermetric inequalities are introduced by Deza and Laurent [1992a 
for the MAXIMUM CU polytope, i.e., for the case of k 2. They 
are generalized to 2 < k < n by Chopra and Rao [1995]. The right 
hand side of a hypermetric inequality depends on k in a nontrivial way. 
We therefore defer the discussion of the hypermetric inequality to the 
next section, which is evote o V<k{Kn). Only two special cases are 
presente here. 

Proposition 7.13 (Grötschel and Wakabayashi [1990]). Let Q 
subs of t ve n Kn of iz t last 3, and let S, T be nonmp 

disjo subss o th \S\ 2-partition inequality 2-partitio 
inequalit 

([T])-(E())-(E()) (7.9) 

is valid for V(Kn) 2-paron qual defins a fac V(Kn) 
and only if \S\ ^ 
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The 2par t i t ion inequalities generalize the t i ang le inequalities (7.1a). 
Figure 7.8 shows a triangle inequality and a (2,3)-partition inequality. 
Other generalizations of the 2-partition inequalities are the general 2-

general 2-partiti partition inequalites, described by Rutten [1998], as well as the clique 
inequalit web inequality ( 7 ) , both of which are not themselves hypermetric in

equalities 

ig p o t g wo ition i n l i t i e 

Propos i t ion 7.14 (Oosten, R u t t e n , nd ieksma [1995]). L 
1 e integer and fix a v e x s G Kn an a v C V {Kn)\{s 

l inequalit he claw inequality 

c 5> E *™̂  71 

vwE(T) 

s valid for V{Kn) case c , a fac defined i an onl 
T\ > + 2 

Notice, for c = 1, the claw inequality 7 1 ) is a special case of the 
2-partition inequality 79) 

7.3 The Polytope T<k{Kn) 

We now drop the restriction k = n and look at cases with 4 < k < n. 
Sometimes k = 2 or k = 3 is also considered. By restricting the number 
of classes in the partition the dimension of the polytope does not drop. 

Propos i t ion 7 1 5 ( B a r o n nd M h j u b [1986]) polop 
V<k(Kn) has dinsion (™) for ry 2 k < 
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The origin, h o w e v , is no longe contained in V<k{Kn) if k < n. The 
valid inequalities for V<k(Kn) which are violated by the origin have large 
support namely: 

Propos i t ion 7.16. Lt a ÜQ a valid iqual for V<k(Kn) an 
s support graph f H s kpar t n a0 

Proo. Assume H — (Va, Ea) is ^-partite, and let , . . . 14 be a partition 
of Va into at most k many independent sets et z be the characteristic 
vector of the partition (V(Kn)\V)U V2, • • • 14- Then aTz = because 
zvw — 0 for all vw £ E. Hence has t hold in order for 
o be valid. D 

Corolla 1 az < a0 0 > is valid for V<k{Kn), 
suppor et E = \ £ E \ a^ ^ 0} f s of iz t last ^"1) 

Proof. The claim follows directly from Proposition 7.16, because every 
graph which is not fc-partite has at least * + many edges, see West 
199 p. 1 for example D 

A number of results in the literature give sufficient conditions on how 
a facet-defining inequality for the polytope V(Km) can be extended onto 
the additional variables associated with V(Kn), m < n, such that the 
extended or "lifted" inequality is facet-defining for V(Kn). The simplest 
such result states that all new variables ay receive the coefficient zer 
in the extended inequality. This is called ro-lng. zerolifti 

Propos i t ion 7 1 eza and a u e n t [1992a]; Chopra and R a 
[1995]). Let z a facetdefinng inequalit for V<k{Km), > 2, 

> 3. Then, fo evry n m, the inequality z < defins a facet 
V<k(Kn), wh ae if e £ E{Km) and ae ae otrwi 

Recall that all inequalities valid for V(Kn) are also valid for V<k(Kn) 
for all 2 < k < n. In fact, several of the inequalities from Section 7.2 
remain facetdefining when turning from V{Kn) to V<k(Kn) Sometimes 
restrictions on the relations between k and the inequality parameters 
apply. The following section contains a survey over several such results 
Notice that none of the inequalities dealt with so far is violated by the 
origin (except for the clique inequalities (7.1b)). This is different for 
many cases of the hypermetric inequality which is discussed in the next 
but one subsection. 
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nequal wi h t a n i n e n e n t of k 

Several of the facetdefning inequalities for T(Kn) are als facetdefning 
iovV<k{Kn) 

P r o s i t i o n 7.19 ( C h o a an ao [199] ) . For 3 < k < n, 
f o i n inqualiti defin facet V<k{Kn): 

trigle inqualiti 71a) 

q-wh inqualiti 7 nd onl 3 i odd 

q-bcycle wh inqualiti 77) i nd only f 3 i odd 

The cliqueweb inequalities quite often als remain facetdefning 

Prpos i t i on 20 ( e z a et al. [1992]; C h o p a and Rao [1995]) 
For k > 2 and integers p , > 0 wit n = p + q and p — q > 2r + 

folling assertions it spt to V<k(Kn): 

(i) For k andp — q = + 1 cliqu qual 7 defin 
facet > 2kr and 1 < — 2. 

(ii) Forp q = 2r + l clqu qual 7 defins a facet 
q > 2. 

(iii) For r > 1 and q > 2r + 2, the clqub inequali 7.8) defin 
a facet in case \(p — q)/( + 1)] + 2 < k < n, but do ot defin 
facet cas 2 < k < (p — q)/(r + 1)] — 1. 

(iv) p — q = (r + 1) w > 1 en t clqu qual 7 
ot facetnducg. 

(v) For r = nd p q > 2 the clque- qualit 7 ) defines a 
facet if > p — q + 2, bu t do ot defin facet < p — q — 1. 

The above results are cited from (i) Chopra and Rao [1995], Thm. 5.1 
dealing with the special case of hypermetric inequality (712) called 

antiwe iequalit antiweb iquality) (ii) Deza and Laurent 1992b; (iii) Deza et al. [1992] 
Thm. 1.1 (ii, iv) (iv) Deza et al [1992 Thm. 117 (v); and v) Deza 
et al 199 Thm 120 
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y p m e t i c nequalit ie an S p i a l 

The hypermetric inequalities are introduced for the case k = 2 by Deza 
and Laurent [1992a] and generalized to k > 2 by Chopra and Rao [1995] 
Their right-hand sides involve a peculiar function, depending on two in
tegral parameters r\ and k r > 1: fhm(ilk) 

k — 

k) A;) 

711 

As usual, (^) = 0 in case < b If rj < k for example then straightfor 
ward calculations show 

(vk) L (» fc) 

Equivalents, fm(r],k) = ^^{YJi<i<j<kxix3 I E j U ^ = ^xi e Z + } 
can be defined. This definition makes the connection to ^-partitioning 
more explicit, but is inconvenient in several of our computations The 
following facts are, however, obvious from this characterization. 

Observation 21 . Th ncton fhiV ncras nd trongly 
ncreases wit 

The function /ftm(-,-) appears as some kind of "correction term" in 
the r igh thand side of the hypermetric inequality defned next 

Propos i t ion 7.22 (Chopra an Rao [1995]) Gien k > nd 
complete graph Kn and vertex b G Z r\ = eViK 

Th hypermetric inequality hypermi 

yZ zvw ^2 {rk) 712 
vweE(K vwE(K 

valid for V<k(Kn) 

The condition " { f e V | bv > 0} | > k" given by Chopra and Rao 
[1995] in their Lemma 2.1 concerning the validity of the hypermetric in 
equality is not necessary, and it is in fact, not used in their proof. The 
hypermetric inequality generalizes a number of previously known inequal 
ities. The claw inequality (7.10) is one example. (The claw inequality 
was introduced later than the hypermetric inequality, but the previously 
known cases in which the hypermetric inequality defines a facet do not 
include that of the claw inequality.) Other examples are the clique in
equality 71b) and the following general clique inequality 

iqual 
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r o s i t i o 3 ( h o r a and R [1993]). Consider a cliqu 
general cque th q Q\ ert Kn. Then general clique inequality 
iequalit 

Yl Z ( mod k) r ^ mod k) 713) 

al for V<kKn) nd et defin nd onl ot ulipl 

The general clique inequality (7.13) is obtained from the hypermetric 
inequality 712) by setting the weights of all vertices in Q to 1, and to 0 
otherwise. A straightforward calculation shows that the right-hand sides 
of both inequalities are indeed the same. Moreover the right-hand side 
of (7.13) is positive if and only if q > k. Hence, each of the general clique 
inequalities 7.13) separates the origin from V<k(Kn) 

There are other cases in which the r igh thand side of the hypermetric 
inequality 712) is positive 

roposit ion 7 2 4 ien n ger k > 2 and a complet rap Kn 

k <n, wh ertex ei = ± for al v G Kn) su 
V(Kn) = } nd T = {v e V{Kn) v = 1} satisf 
Then yperet inqual 712) ds as fows: 

(E())(E())([,T ^ ^ ^ * ) 

714) 
acet o V<k(Kn) is defined if (\T\ ) mod 
The nequal (714) i alid for origi if — 2 k. I 

vilaed by the org if T\ — 2 k + 1. Th nd ht for 
1 < \ k and can e rlaed for k. 

Theorem 2 of Chopra and Rao [199 states that in case S| > 2 
\T > k, \T\ > \S\, and (|T| — \S\) mod k ^ 0 the inequality (7.14) defines 
a facet. Proposition 724 relaxes the first two conditions so that the 2-
partition inequality for V{Kn) and the triangle inequality for V<k(Kn) 
are now covered, too. In the part of the proof concerned with facets 
we apply the same technique as Chopra and Rao [1995], but a weaker 
version of their Lemma 2.2 suffices. Their full Lemma 2.2 is stated next 
but only the case with the third set M being empty is used later 

e m m 25 Chopra and Rao [1995]) Let aT a0 valid 
qual it spct to V<k(Kn). Moreover, let (Kn) 
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e tree pai sj et Let fi , . . . , V), r partition 
ofV(Kn) such l5 C i and C V and su ncdenc 
vector z(jji) safi a 1 ) qualy. Th on of t 
parttion Hi a defined 

, ...,V 
, \M , ...,V 

Mx U M : U , . . . , V 

ncdenc ctor ) , i = 2,3 al sa aT en 

M!eM2 £M2eM3 

as = 0 en 

M!veM2 

We now turn t the proof of Proposition 724. 

Poof positon 7.24- Consider any valid and facetdefning inequal 
ity aT

 0 for V<k{Kn) such that 

V<k(Kn) satisfies ( 7 4 ) at equality} C e R | a z a 

An incidence vector z of a partition attains equality in (7.14) if and 
only if corresponds t a partition Vi, . . . 4 of (/fn) with 6(V )̂ G 
{ [ T | - \\)/k\, \(T\ S\)/k]} for alH = 1 , . . . k (see e.g., the proof 
of Lemma 21 given by hopra and Rao [1995]) Since we presuppose 
that ( S\) mod ^ 0, we may assume that i) = )/k~ 
and b{V2) = L(|T| - |5|)/fcJ holds. 

We first show that all entries in a corresponding to edges with both 
endpoints in T have the same value 7 and that the entries corresponding 
to edges in the cut [S, T] are —7. In order to prove this, we may also 
assume without loss of generality that Vi contains at least one vertex s G  

and at least two vertices t±,t2 G T. Let M = {s,}, M2 = {t2}, and 
M3 = 0. It is straightforward but technical o check that the incidence 
vectors of all three partitions as constructed in Lemma 7.25 satisfy (7.14) 
at equality and therefore oF z do as well. We omit the details Applying 
Lemma 7.25, we obtain — astl = at The roles of ti and t2 can be played 
by any pair of distinct vertices in T. This allows to derive atlt2 = 7 for 
all t ikewise as —7 can be obtained for all s G and t G 
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case S contain re than one element, it remains to show that 
aSlS2 = 7 for all Si 2 G S. We consider the same partition as bove 
but exchange V\ and V% so that now (Vi) = [(l^l — \S\)/k\ and biVz) = 
\(\T — \S\)/k~\. This time, we may assume without loss of generality 
that V\ contains two vertices S\, and one vertex t G T. With 
M± = {si,t, M2 = {s2}, and = 0 the incidence vectors of the 
partitions as constructed in Lemma 7.25 satisf 714) at equality. As 
before emma 7.25 allows us to conclude that and, further 
on aslS2 = 7 for all Si 2 G S. 

Together with {z G V<k{Kn) \ satisfies (7.14) at equality} 0, this 
shows that aTz > a0 is a multiple of the hypermetric inequality 7.14) 
The scaling factor has to be positive, because both inequalities are valid 
for V<kKn). Therefore, the hypermetric inequality 714) does indeed 
defne a facet under the specified conditions. 

Finally, the claims concerning the right-hand side of the inequality 
are immediate consequences of Proposition 7. below. D 

Our next result addresses the righthand side of the hypermetric in
equality (7.12). We want to identify conditions under which the right 
hand side is strictly positive. Instead of bounding the right-hand side 
from below, we only manage to bound it from above. For those cases, in 
which we show that the upper bound is attained, we can draw conclu
sions 

P r o o s i t i o n 7 2 6 ien e n inter k > nd complet rap 
Kn, n > k toeter w ral ertex Kn) sa 

ev(K) etr JV:v> v nd a V: 

(i) The fo qual i al 

£ < ( ™ 
vwE(K 

Equality n t inquality f nd onl all poi g 
ffer by mot on nd al egai fer by mot on 

(ii) Th t-and de f ypermetrc inequaly (712) orrspond
o th ien vertex s bnded from ab 

y^ fh k) 
vwE( 

Ly od 
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Equal nder sae condon as (i) 

(Hi) Morer 

k + 1, for 
— 2 

k for 

en 

y od k — 

e condon — 2 k + 1 sary 

of We prove the three parts separately 

(i) et v e {Kn) bv > 0} (Kn) 0} 
then 

<fhm( </tm 

y^ Y2 ^2 ^ 
vwE(K vwE( vwE( vwT] 

^ 

The inequality is fulflled at equality if and only if th boun on th two 
first terms are tight This happens precisely if max{|6 — bw v, E 

< 1 and max \ \ 1, see the defnition (711 of 
) 

(%): We define q = [Ij^-\ and r = (r — a) mod k Recall that  
by hypothesis) Two cases are distinguished 

If r = then 

k) = k) 2 ^ qq 
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sin this eqation an eriv th esired result: 

k) 
vwE( 

: 

k) k) 

fc) ^ 

- ( 

- 2{ ) - )] 

- - 2 

If r > 0, the derivation is more involved but does not require addi 
tional insight We therefore omit the details 

(Hi) et h,a) = L ^ ^ ) mod then 

(k + , a 

^ 1 +U 
• < 

k + 

1 + 

k + ) mod 

od k) — 

{ la H 

2 - , ii 
+ (1 + )r - (qk + r) if a > kq = |f mod 

The result is zero in the first two cases n the case of k we further 
deduce 

, a k k I r + r) k I 

using the identity (q^1) + (I) The last strict inequality holds 
because either q = 1 and r > 0 or q > 2. Finally, we observe that, for 
fixed , h(ra is strictly increasing with (> a). Let q = \J-Y-\ and 
r = (r—a) mod k, then /i(r, a) = kfy+r—a. For fixed c/, this expression 
increases with r Hence the only problem may arise when p increases and 
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T — a becomes divisible by k Due to A;(<?^) = k(f)+kq > k(£+q(k — l) 
this is not the case. The sufficiency and the necessity of the conditions 
now follow as claimed D 

By Proposition ii) the righthand side of 14) is equivalent 

(7 

Hence, the inequality (714) is equivalent the 2partition inequal 
ity (7.9) whenever \T\ — \S\ < k 

The hypermetric inequality (7.12) is also known to be facet-defning 
is several other cases where the vertex weights are not restricted t 1 

roposition 2 (Chopra and Rao [1995]). T yermet 
equaly 71 defins a fet ofV<k(Kn) k> on of foowng 
ondon ds: 

(i) 2 < d Z, R {v e = , R { V \ v 

S+ = = d v e V | = -d = R+U R 
+ U S- \, > d, R+ ) mod 

(ii) < d e Z, R v e | 1} S { V v = d), 
= RU S\ >k, k- od k)d +1, od k < k-2, 

+ d modfc^O 

(iii) < d E Z, R v e V | S v e bv = d 
= RUS,\R\ h-\)d+l, S\ < k, (\ + d \S\) mod k £ 

Another example for the case f k n is the claw nequality (7.10) 
Under the conditions give in Proposition 7. (ii) the rigi is not feasi 
ble whereas it is feasible u d e r the condition give iii) This f l l w s  

P r s i t i o n 

ycle Inequalities 

For the sake of completeness we also address the cycle iequalities here 
The cycle inequalities are introduced the case k = by Deza a 
Laurent [1992a] and generalized 2 by Chopra Ra [1995] 
Their left and righthand sides also involve the function fhm(-, •) defned 
in (7.11). This type of iequalities is even more complicated than the 
hypermetric iequalities (712), and it is not addressed in Chapter 8. The 
reason for mentioning them nevertheless is that u d e r certai ondition 
the cycle iequalities als separate the rigi V<k{Kn) 
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iqualt 

rops i t ion 7.28 (Chopra and Rao [1995]). Gien complete graph 
Kn, 3 k < n, and T C V(Kn) wit \T\ > k, let v G VKn), be 

egral vertx wets satisfyng r\ = £V(K ^, T {v E {Kn) 

> 0}? lYV£V(Kn) /k\ > 2, and v( m o d k = l. Let C be 
spannng cycle n te sbgrap ndu y T e cycle iequality 

/ w Zvw yV "0 — hiV ~ 1) / j zvw 
vwE( vwE( 

^ 2 ( r k ) - ( r k ) - ( r - l ) 
vw 

ald for V<k{Kn) 
A ycle quali efines a t of V<k{Kn) e following condi 

ons ae mt: \T\ > k + 1, p for ome p G Z nd all v E , and 
= for a l l v { e Kn) 0} 

ssume that k + 1 with 0 < 2 the the l l w i g h l d s 

fhm(v) - f 1) 

fhk + 1 k) - -l) l) 

+ l 
+l 

-l)- + l ) ( l ) l) 

(Some ntermediate steps are omitted) Furthermore, assume that all 
positive vertex weights differ by at most one and that all negative ver
tex weights als differ by at m s t one, the by Proposition 7 6 (ii) 
Y.vweE{Kn)

 bvK ~ fhm(v k) = k(l) + l s . The r i g h t h a d side 
f the cycle iequality 1 ) reduces 

k(t Y-(((t 
s 

We now consider tw sets f conditions u d e r which the rigi is no 
valid for the iequality (7.16), but a facet V<k(Kn) is defied 

irst, fix tw d i s j t subsets S a d T of V(Kn) such that \S\ k — 
= 2 et 1 f r all ve l f r all G 
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v 0 otherwise. Th correspon le lit 
'P<k{Kn). The r i g h t h a d side is 

2\ 2 - k + 1 + k){2) -2k) 

k + 2 - + 1 + | ) ( 1) 

(fc + l) 2 ( l ) 

Second, fix an integer p with 1 p < | 1 a two disj subsets 
S, Kn) such that 2k 1 and \S p - 1 Let p f 
v € bv 1 fo v E , and 6„ = otherwise We have r\ = p\T\ — \S = 
p(2k + 1) (p — 1) = 2pk + 1. The cr respondig cycle inequality defnes 
a facet o V<k(Kn). The right-han side of (7.16) simplifies as f l l w s 

der the give assumption with s m e derivation mitted): 

^ 2p- (p-l) - k + { ^ -2 

k^y-((^y2 
1 + k + 1) p) 

Further details oncern the cycle iequality ( 1 ) are described 
by Chpra a o [1995] 

7.4 Separating Violated Valid Inequalities 

Several classes f valid and sometimes facet-defining inequalities for the 
plytope V<k{Kn) are presented n the previus sections. We are now 
at the p o i t where a cu t t i g p laes algrithm r a branch-and-cut al 
gorithm on the basis f the known valid or eve face t -def ig iequali 
ties f r V<k(Kn) cu ld be developed in order to solve the M N I M U M K-

RTITION problem computationally. Cutting planes as well as branch-
nd-cut algrithms have been successfully applied to solve nstances of 

numerous A/'Phard c m b i a t r i a l optimization problems. r example 
the already metioned C N C R D prgram, by Applegate et al. [1997] 
for the TRAVELING SALESMAN PROB is certaily among the m s t 
advanced branch-and-cut algorithms 

The reader not familiar with cutting p laes and branch-and-cut alg 
rithms may f example, consult J ü g e r al 1995b], Nemhauser a 
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ti 

ti 

cuting 
alorith 

banch-and-
alrith 

Wolsey [1988], or Schrijver [1986] fo t h o u g h introductions Roughly 
speaking, the notion of a "cutting plane" can be explained as fl lows. We 
use the example of ptimizin a linear objective fuc t ion over V<k{Kn) 
nstead optimizin over the mplete description of V<k(Kn) in terms 

of linear equalities (which is unknown r general n and k y h w ) 
the linear fnc t ion is optimized over [0, l ]v ) subject t me set l i e a r 

equalities which are all valid for V<k{Kn). 
Assume the r e s u l t i g optimal solution is a fractional vecto z , then 

there exists another linear inequality which is valid for V<k{Kn)1 but 
violated by z°. Since an inequality (usually) defines a half-space delimited 
by an hyperplane, such an nequality is often called a utting plane. If 
a cutting plane can be identified, it may be added to the present set 

f iequal i t ies in order o "cut off" the vecto z . This is also called 
eparate z om the p l y t o p e V<k{Kn). Geeral ly , given a class C o 

inequalities and a vector z, the sepation proble is to check whether 
all inequalities in C are satisfied by if no p r d u c e at least on 
v i l a t e d inequality out f C. 

The optimization process is iterated d possibly ther cutting planes 
are added. If some h a p p e s t be an ntegral v e c t r , then this might 
be a vertex of V<k{Kn). If so, z is optimal in V<k{Kn) with respect 
the given linear objective function. Otherwise, there gain exists an in 
equality which is valid fo V<k{Kn) nd is violated by z% We iterate with 
an appropriate equality added A a l g r i t h m e m p l y i g this paradigm 
is called a uting planes algorhm. 

A branch-and-cut algorm may also use "branching:" assume some 
z% is fractional and / is one the fractional coordinates, the two sub-
problems can be gee ra t ed . In one of the subproblems, the /th coordinate 
is fixed to 0, in the ther to 1 The vector z is infeasible i each of the 
two subproblems Both subproblems have to be processed in order to 
determine which of the "branches" contains the better solution inside 
V<k(Kn). Of course, more complex b r a n c h i g rules tha just b r a c h i 
on a fractional variable can also be used. 

We pursue neither of these appraches here. Our initial computational 
experiments were not ecouraging. Among thers we exper imeted with 
the p r g r a m developed by Ferreira, Marti de S u z a Weismantel, and 
Wolsey 1996] for the N O D E C I T T E D G H P A R T I T I O N problem. 
This is an extension of the M N I M U M K-PARTITION problem, where each 

tex is assigned a weight and t h e e are upper limits on the weight a 
partite set may have. Their program, howeve did not provide nont 
ial lower unds for the i n s t a c e s we tested. ( J h n s o n , Mehro ta , and 
Nemhause 199 ] descibe a ch -ad-cu t a l g i t h m which, i addi 
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on, uses column g e e r a o n fo the NODE C C I T A E D GRA PAR 

TITIO prblem. We also like to mention the branch-and-cut a l i t h m s 
developed for ther related p t i t i o n prblems, which, howeve o not 
omprise the M I M U M K-PARTITION prblem. See Grötschel a Wak-

abayashi [1989] or a bnch-and-cut a l g i t h m s the clique p t i t i o n 
prblem, a d J ü g e r and Rialdi 1998 or on for the MAXIMUM C U T 

prblem. We a not awae of ny b c h - d - c u t a l i t h m s the 
NIMUM K-PARTITION prblem itsel 
Another reason not t rsue this further is that the semidefmite 

progam 6.5) t u e d out to e an appealig a l t e t i v e whe it mes 
o p rve lowe ds on the timal value of IMUM K-PARTITI 

stances. 
Nevertheless, we briefly addess the c u t a t i o n a l complexity of find

in lated inequalities in the couse of a branch-and-cut algrithm. The 
ILP fmulat ion (7.1) itself is huge the instaces we are inteested i 
Table 7.1 indicates the actual amount of the 3 (") (facetdefning) t i a n 
gle constraints 7.1a) and (^"-J ( facetdefng) clique constraints 1b) 
fo three of our test instaces, see Cha te r 5 and 6. uch vast amounts 
of onstaints can hardly be handled at once by presently available L 
olver. A brch-and-cut algorithm would therefore have to separate vi 
lated clique onstaints a prbably als lated t i a g l e constaints. 

1a) - Q l b ) - ^ 
50 9,10, 055 

19 2,85, 075 

00,882,080 1 

Table 1: Num of f a c e t d e g iqua l i t i es V<kKn) 

oposition 719 states that all iangle inequalities 7.1a) listed i 
ur st integer linear p r o a m m i n frmulation 7.1) for the MINIMUM 

K - P R T I T I O N problem defne facets of the polytpe T<k(Kn). Thee a 
3Q) equalities of that t y e s that the llowig is us. 

Observation 7.29 e s an algor hat eck n ö 
many teps whhe ivn rational ctor z £ [0, l ] w , n 3, f 
lls all trngle onsr (71a). I not ase, a qual  

urnd th s vila 

The same holds for the classes of odd wheel inequalities (76) a d 
dd bicycle wheel equalities ). This is pr by Deza al 1992] 
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basin on an agument of Gerads 1985]. Both types of qualities dein 
facets oiV<k{Kn) u d e faily g e a l onditions, see P s i t i o n 9. 

roposition 7 0 (Deza et al [1992]) followng as be 
omhd b lynomial ti algor 

ckng all q qualit q > nd od 

y i n onal vector G [0, l ] , n 3, ee all 
ngle qual 1a) ot, a vila qual 

ckng all q l e quali ( ) q > 5 nd od 

y i n onal vector z G 0, l ] , n 3, wh ee all 
ngle qual 1a) ot vila le qual 

Separating the class of clique iequalities ( 1 b ) , h o w e , is fV-ha  
k is consided as of the i u t : 

roposition 7 . Gi omle grap Kn, n 3, nd onal 

ctor [0,1] d qual 

Y 
j 

for all Q C V(Kn) it k + 1. role s H 

Proof. The proof is a simple reduction of the I N D E N D E N SET prob
lem, see Garey and hnson 199 , 20], to the searation problem. 

We a e gi a g p h G = V, E) for which we want t kno whethe 
it contais an deendent set of size k + 1. Let n \V\ define 
ze [0,1]© by zlj = lii ij nd ^ 0 othewise. The z lates 
the clique inequality ^ g„ 1 i only i Q* is a d e d e 
set of size k + 1 i G. D 

One may think of several heuristic ways to sepaate violated clique 
inequalities. O e simpleminded examle is the following. Gi a ra
tional vect [0,1] , let Gz (V, Ez) denote the s u b g p of Kn 

with ij G Ez if and only if z^ < (fe^1) Fo very clique in Gz of 
size k + 1, a corresponding clique constraints is vilated by z. Testi 
whether such a clique exists is, of course, also A/'P-coplete. But a sim 
ple greedy heuistic may often d such a clique as lon as not very many 
clique cons t a i t s have bee s e a t e d . Anothe examle is the heuistic 
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descibed by Krumke [1996, Section 5.5]. This heurisic is a olynomial 
time 2-approximation algorithm as long as the metic t i a g l e iequalities 

ij + Zjk > zik) are all satisfied by z 
Recall that the clique inequalities 7.1b) are a secial case of the hy-

permetric inequalities (7.12). The complexity status of separatig hy 
metic inequalities is not yet fully settled i g e a l . Deza and Lau 
[1997, Section 28.4] discuss this issue and gi refeences to related w 
e. g. on heuristic appraches to separate hyermetric inequalities. To our 
best knowledge, the complexity of separating cycle inequalities 16) is 
no fully settled as well. The llowig h d s i g e a l 

roposition 3 . Suppo er ts a las of poop Vc, 2 
n, suc 

(i) V<k{K) C V C 1 ] all2 n; 

(ii) t iqualit m Cn^ efni Vc arable i poomal 
t all 2 n; 

(Hi) ter a S f mm-pk(Kn) c mm-p 

all G {0, 1} all 2 n; 

V = HV. 

Proof Let G = E) be a grap on n tices. We def cG by cfj = 1 
if ij £ E and cfj 0 therwise. The MINIMUM K - P R T I T I O N prblem 
assciated with cG has timal value mhizlzV<^ (cG)z 0 i only 

G is ft-patite (or A;-coloable), a d at least otherwise. 
By assumption (ii) the result of rötschel et al 988, Theorem 4.9] 

oncerning the use of strong separation oracle solving the s ton 
timization prblem in aclepolynomial time implies that any linea 

function can be timize Vc lynomial time. tice that 
Vr u is "welldescried.") 

Exploiting assumtion (i) a (iii)7 we can the fo re check in p l y 
nomial time whethe the graph G is A;-cloable. ce this problem is 
known t be A / 'P -co l e t e , c m r e Gaey an on 9, 4] 
the assumtions take gethe i m l y V = MV. D 

Recall in this context from ollary 7. that every valid inequality 
az ÜQ with ositie righthand side has to have a suppr t of size at 
least (fe+1) or k = 50,7543, this is 127 2850, and 946, respectively. 
In addition the prblems of identifying violated iequalities with such 
a lage supp the is another ptential prblem ce. I many such 
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inequalities are separated in the c o u e of b d - c u t procedue, 
this may lead to numerical problems i the LPsolver. With this in m i d 
we proceed o the next chapte. Thee, we ague that the s e m i d e i t e 
elaxation (6.5) of the MINIMUM K - A R T I T I O N prblem can be solve 

^pproximately i polynomial time and that its set of feasible solution 
ca e see as a easonble appr ima t ion of the l y t e V<k{K). 



CHAPTER 8 

Semidefinite elaxation of the 
inimum fc-Partition Problem 

Lower bounds on the optimal solution of several MINIMUM K-PARTITION 

instances are r e t e d in Section 6.3. We use these results to bound the 
unavoidable interfrence in a frequency assignment problem from below. 
The bounds are obtained from (approximately) solving the semidefinite 
relaxations (6.5) from Section 6.2.2. Semidefinite programming is the 
task of minimizing (or maximizing) a linear objective function o e r the 
c o n x cone o positive semidefinite matrices subject to linear constaints. 

Here, we discuss the strength of the semidefinite relaxation. We elate 
the solution set of the semidefinite relaxation to the polytope V<k(Kn 

as defined in Section 7.1. This is done by considering a projection of an 
affine image of the solution set into The image of the projection 
is called 9 ^ n and contains V<kKn). We bound the extent to which the 
valid and often facetdefining hyprmetric inequality (7.2) for V<k(Kn) 
may be violated by points in Qk,n- We prove that this bound is tight 
in seveal cases. We also show that for the MINIMUM K-PARTITION 

problem, neither the LP relaxation of the ILP formulation (6.2)/(7 
no the SDP relaxation (65) is geneally stonger than the other. 

The chapter is organized as follows. We fix notation in Section 8.1. A 
short introduction to semidefinite programming is given in Section 8.2. 
We treat the semidefinite relaxation (6.5) of the MINIMUM K-PARTITION 

problem and its connection to the elliptope in Section 8.3. The relation 
between the polytope V<k{Kn) and the set Qk,n is studied in Section 8.4. 
Finally, we state ossible diections of f t h e r reseach in Section 8.5 

8.1 Preliminaries 

We ecall here basic proerties o symmetric and positive (semi)definite 
matices, which a e used in the following sections. See Appendix A 
geneal notation. 

69 
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symmetric and 

skew-symmetric 
matrices 

A square matrix A is symmetric f the matrix is identical to its trans 
pose, e., A = AT. The set of n x ndimensional symmetric matrices is 
denoted by Sn. The matrix A is skew-symmetric if A = —AT. The two 
sets of ndimensional symmetic and of skewsymmetric matices orm 

thogonal subspaces of Rnx of dimension (^"1) and ( ) respectively. 
Every square matrix can be witten uniquely as the sum o a symmetic 
and a skewsymmetic m a t x : 

A + AT A-AT 

The inner product o two matrices A, B £ RT is defined here as 
A,B) = YllLi S j = i AijBij. For the inner product of a square matrix 

A £ Rnx and a symmetric matrix X Sn, the skewsymmetric part of 
A is irrelevant because 

A,X) -^—X) 
A *̂> ^ U 

orthonormal 

orthonormal 
diagonalization 

A matrix P £ W is orthonormal if its column vectors Pi, • • • ,p 
satisfy ||pj|| = 1 (they are unit vectors) and (jPj) = 0 for i ^ (they 
are pairwise orthogonal). A diagonal matrix D £ Sn is an orthonormal 
diagonalizati of a matrix A £ Wix if D = PTAP for some orthonor 
mal matrix P £ R n x . The following result from linear algebra states 
that every symmetric matrix has an orthonormal diagonalization. 

Proposition 8.1 (orthonormal diagonalization). Le A £ Sn. All 
egenvalues of A are real. There exts a rthnormal maix P £ Mnx 

such that PAP = AA, were A^ s a diagal matrix for whic the 
nties are the egenvalues of . T lumn v r s of P are eigenvrs 

of 

An immediate consequence of the orthonormal diagonalization is that 
every symmetric matrix can be written as the sum of rank-one matrices 

Proposition 8.2. Le A £ Sn, thn A = 5Z"=1 X(A)piPiT, were(^4) 
1,. are the egenvalues of A a the pi 's are assci igen 
rs 

positive 
(semi-)deRnite 

A symmetric matrix A £ Sn is posite semidefine or A y. 0, for 
short if xT Ax > 0 for all x £ n . If in addition, xTAx > 0 for 
all x T̂  0 then the matrix is po efe or A >- 0 for short.The 
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subsets of Sn consisting of all positive midefinite and positive definit 
matrices are denote here by S+ and S*++, respectively. The following two £+, + 
propositions give known characterizations of positive semidefinite and 
positive definite matrices 

Proposit ion 8.3. Let A be a symmetic n x nmatix. T foll 
ropertes are equalet: 

(i) p o e semefte 

(ii) All egenvalues of A are egate 

(Hi) A be wrtten as t of a matrix C of rank(A) a ts 
raspose, A = CCT 

(i (A, B) > for all matices B G S+ (Fejer's Trae Trem 

v) det(A7") > for eery cial submatrix Au of 

reer for ea p o e semefte matrix A ds: 

(i) IBeS+ A, B) = 07 t AB 

(ii) A agoal element omiating all entes, 3i : Aü = max{\Aki\ 
1 < 1 < n } ; and if diagnal element is zero, so are all entres 
in the crrespding r an lumn, i , Aü = 0 mples A^ = 
for all j 

(Hi) B e Rnx s a regular matrix, ten i e S + < ^ BTAB e S+ 

Proposit ion 8.4. Let A be a symmetrc n x nmatr follng 
propertes are equalent: 

(i) s p efinte 

(ii) All egenalues of A are p 

(in) s te pr of a regular matrix C and its transpse, A = CCT 

d e t ( A ^ ) > 0, j = 1 , . . . , and Ix C • • • C for a neste se 
quence of prcipal submatres 

reer for ea efinte matrix A ds: 

(i) B G S*++ s aner p efinte matrix, ten A, B) > 

(ii) B G Rnx s regular, ten A G S++ ^ BTAB G S++ 
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(strictly) A matrix A G R is diagonally dominant if \AÜ\ > YTj=i j^il^-i 
diagonall holds for all i = 1 , . . . n. In case the inequalities are all strictly fulfilled 
dominant then the matrix is strictly diagonally dominant. The following sufficient 

criteria for being positive (semi)definite are direct consequences of Gers 
gorin's disc theorem. 

Propos i t ion 8.5. Let A G Sn be diagonally inant with onnegative 
entries n the prcipal diagnal, then A is p o e semidefinte n case 
he prcipal diagnal s p e an s strl diagnally nant 

en A s p efinite 

The trace of a square matrix is the sum of its eigenvalues. Bounds on 
the inner product of two positive semidefinite matrices are easily obtain
able from this fact. 

P r o o s i t i o n 8.6. Let A,B 5*+ en A, B) an be 
bel an frm a e : 

{A)maxB) A) -B) 

(A,B) 

\nax(A)B) max(A)maxB) 

Given a symmetric matrix for which it is known that some principal 
submatrix is positive definite, the following theorem states the neces 
sary and sufficient condition under which the entire matrix is positive 
semidefinite. 

heore 8.7 (Schu o m p l e n t ) . Let A S++, B G Rmx, C 
, ten 

^ A~B. 

A partial characterization of the cone S*+ of positive semidefinite ma
trices is the following. 

Propos i t ion 8.8. The set of ptive semidefinte matries S^ is a full 
dimensinal clsed, and ponted cone in the vector space S of symmetri 
matres e pos efinite matres S++ are t nter of ne 

Proof olklore). Obviously, S+ is a nonempty cone. In order to see 
that S is pointed, pick any A G S^ other than the matrix containing 
only zeros. There exists a vector x G W1 such that xTAx > 0. Thus 
xT (—A) x < and —A ^ S+- Now consider the set of symmetric 

A B 
BT C 
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matrices that have ones at positions (ii), (j,j), {i,j) and (j,i) and zeros 
elsewhere for possibly equal i and j . There are ("J1) such matrices, 
all of which are positive semidefinite and mutually linearly independent 
Thus, 5*+ is full-dimensional. Finally, a symmetric matrix is positive 
semidefinite if and only if all principal subdeterminants are nonnegative 
and it follows from continuity that S+ is a closed set. D 

The plar cone C* of a cone C C R is the set C* = {y G R n 

Vx G C (y,x) > 0} . Hence, another way of stating Fejers Trace 
Theorem, see Proposition 8.3, is to say that the polar cone of positive 
semidefinite matrices coincides with itself, that is, S+ is selfpolar. This 
fact is important in the duality theory of semidefinite programming. 

P r i t o n 8.9. $n 

We state the simple proof 

Proof (Folklore). S+ C S+: Consider A e S+ and let AA = PAPT 

be its eigenvalue decomposition with PPT = In, see Proposition 8. 
Then for every positive semidefinite B G S*+ 

A, B) = PAAP B) = PAA, BP) = AA, PBP)  

\(A)(PiPi.>0, 

olar cone 

self-olar 

since i(A) > 0 and (P f) BP{. > 0. Thus, A e S+. 
$n — ^n: The square matrix xxT of rank one is positive semidef 

inite all x G R . If A G S*+* then x1Ax (A,xxT) > 0 and hence 
A G S+ D 

Given two convex sets F and C with FCC the set F is called a 
face of C if x, y G C, a G ]0,1[, ctx + ( — o;)y G F x, G F . The 
cone 5+ has the following faces 

heor 8.10. E fae F of S+ ne of the sets 0, {0} PWPT  

G S for some 1 < n an me P G Rnxk P = 

Every positive semidefinite matrix can be expressed as ^ixixi 
with j > 0 according to Proposition 8.2. For each x G R the set 
{\xxT | A > 0} is a face of S+- None of these faces can be expressed as 
the convex combination of smaller faces of S^. Hence, {X = <]C*XJ I 11 *jC 11  
l,x G Rn} is a minimal generating system of S+ (strictly speaking, a 
restriction like "the first nonzero coordinate of each x is positive" has to be 

face 
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added). This implies that the cone S+ is not polyhedral, i.e., S+ cannot 
be described as the intersection of finitely many hyperplanes for n > 1 
Since the faces of S+ have dimension ( ^x) for some k, there are gaps of 
more than one between the dimensions of nested faces. 

Let A4 i = , . . . , m, be symmetric matrices from Sn, then a lnear 
operatr A: Sn — Rm is defined via 

X ^AX 

AiX) 

_(X) 

The a pera AT: W of A is give by VM n ( 

X,A) = AX,) = MiX) = y^X) 

The following three simple results are used in Section 8.4. 

O b s r v a t i o n 8 .11 . Let X G S+, m > , and J C { l m 
\ here exsts a matrix l e S su at X XJJ 

Proof Let be the identity matrix with the submatrix IJJ replaced 
b y X . D 

Notice that if X is positive definite then the constructed matrix 
is also positive definite. 

In the course of our further calculations, matrices of a particular struc 
ß() ture are of importance. Let Da@n) denote the symmetric square matrix 

of order n > 1 with all entries on the principal diagonal equal to a and 
) all other entries equal to ß. Let E(m,n)E Wx be the matrix with all 

entries equal to . The following properties of D{n) are easily observed. 

P r o s i t i o n 8.12. , the etermnant of Da s gen by 

det(D)) = (a - ß a + )ß 

r ß ^TJ; c\ te matrix Da s regular and its erse 

. Da+(2)ß Y (g 
a - ß a + )ß 

D a n is ptive semidefinite if an nly if a > ß > - ^ is p 
definte if and only strict inequalty hlds n bth ases. (In ase n 1, 
Da'ß) = [a] an is assumed be 0 n the a formulas reer  

dition UB > -^SL" bemes id 
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We are intereste under which cnditions o , 5, nd e the 
matrix 

DaP(s) fE(s,t 
E(t, s) Ds{t 

A = (8.2) 

is positive semidefinite. They be derive by m e n s of the Schur 
Complement see Theorem 8.7. 

P r i t o n 8.13. Gi ntegers s,t>, te matr 

A = 
Dß(s) fE(s,tj 
#( t , s) Ds(t) 

is poitive semidefinite if and nly if D(s), D(t) are 
semidefinte an [a + (s — )ß ( + (t — )e > st 

Proof. Clearly, the composite matrix cannot be positive semidefinite un
less Daß(s) and Ds(t) are both positive semidefinite. 

We first deal with the case of Da(s) being positive definite. By the 
Schur Complement Theorem 8.7, A is positive semidefinite if and only 
if Ds'£(t) y 7E(t, s) DaP(s) jE(s,t). We compute the expression on 
the righthand side of this inequality: 

E(t s)Da+(sV(s)E(s t E{t,s)D{s)E{s,t ^ s > u W ^ W 
l ' ' K ' K ' (a-ß)(a+(s-)ß) 

a-ß)E(t,s)E(s,t 

a -ßa+(s- )ß 

E(t,t 
a + (s-

_ ?+(s_ Ds-^-(t) = D^( t ) - 7 E(t , s ) D^{s) ^E{t,s) By 
Proposition 8 . , this matrix is positive semidefinite if and only if > \ 

~w After resubstituting for L the latter condition reads 

For a; = 

nd e — u 
as (a + (s- l)ß) +(t- )e) > st/ 

Finally, let Da(s) be positive semidefinite. Then Da+®ß(s) is pos 
itive definite for all 9 > 0. Let A{9) denote the matrix A with a being 
replaced by a + 9. From what is proven so far A{9) is positive semidefi
nite if and only if ( + 9 (s - )ß) S (t - l)e > st for all 9 > 0. 
The cai now folows fom the fact that ST+ s c o s d . D 
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8.2 emidefinite Programming 

primal 
semidefinite 
program 

In a semidefinite program a linear objective function is minimized (or 
maximized) over the cone of positive semidefinite matrices subject to 
linear constraints. This cone is closed and convex but not polyhedral 
The duality theory for semidefinite programming is not as smooth as 
that of linear programming. A gap between the optimal primal and dual 
objective function value is possible. This gap vanishes under a simple 
condition, which holds for the M I N I M U M K - P A R T I T I O N relaxation. 

We give a brief introduction to semidefinite programming here. More 
comprehensive treatments of this topic are, for example, given by Al 
izadeh [1995] Helmberg [2000], and can be found in the book edited 
by Wolkowicz, Saigal, and Vandenberghe [2000]. 

The generic 'prmal semidefinte 'program reads as follows 

i n C , X ) s t AX-beK,Xy ( P S D P 

K is one of the following convex cones: {0} m , R™, or {0} m i x 
This formulation is not entirely standard but has been used before. The 
appearance of the cone K may seem awkward at first. In the cases 
K = {0} m , K = R™, and K = {0} m x R™ the corresponding semidefi
nite programs have equality constraints, inequality constraints, or a mix 
ture of both. Hence all cases of linear constraints can be represented 
adequately. Moreover we will also have a nice formulation when turning 
to the dual program. 

If the inner product in the objective function is spelled out and the 
effect of the operator A of X is written explicitly, then it is obvious that 
the objective and all restrictions are indeed linear The only nonlinear 
ingredient is the condition "X y 0. 

What constraints does X y 0 impose on the entries of XI We give 
some examples. Straight from the definition of positive semidefiniteness 
follows that all diagonal elements have to be nonnegative. Moreover, the 
absolute value of each offdiagonal element is bounded from above by the 
maximum of the diagonal elements in its row and column. A strength
ening of this constraint is obtained by considering the determinant of  

principal submatrices. Let {i j} with 1 < i j then the 

submatrix XJJ 

computation yields 
X-Ü 

is itself positive semidefinite nd a short 

et 
Y  

Y 
) > Xjj > and XXjj. 



E M E F N I T E R E A X A T O N F M N I M U M / E - P A R T O N 

Hence, \Xy\ y/XaXjj has to hold for all i and j . 
In order for a real, symmetric, 3 x 3ma t r ix to be positive semidefinite 

it is necessary but not sufficient that all principal 2 x 2 submatrices are 
positive semidefinite, recall Proposition 8.3. We give an example for the 
insufficiency. The parameterized matrix 

has the determinant 1 + 2ac — b . Hence this matrix is positive 
semidefinite if and only if — 1 < a, b, c < 1 and 2abc — a2 — b2 c2 > 0. 
If we set a = b = 1 and = 0, then all three 2 x principal submatrices 
are positive semidefinite, but the determinant is —1 and the matrix itself 
is thus not in S%. Similarly, the positive semidefiniteness of a matrix 
in S+ can generally not be solely guaranteed by the fact that all its 
(n 1) x (n — ) principal submatrices are in S^_v We do not pursue 
this further and turn to the duality theory of semidefinite programming 
instead. 

The dual semidefinite program is obtained by a standard Lagrangian 
approach: 

i n f C , X ) s t AXbE inf sup C,X) b - AX, 
xto xes+eK* 

sup inf C, X) b- AX, 
eK* xes 
sup inf b ) + C- A X) 
eK* XES 

sup b, s t C — A E S 
eK 

Using that 5+ is self-dual, i.e., (S+) S+ we may define the generic 
dual semidefinte program as follows: dual semideßnite 

program 
b, s.t. C - A 0, E K (D-SDP 

The dual cones of K = {0}, K = R , and K {0} x R^2 are W 
R+, and R i x R™, respectively. In other words, a dual variable asso 
ciated to an equality constraint is unrestricted, whereas a dual variable 
associated to an inequality constraint has to be nonnegative. This is in 
perfect accordance with what we know from linear programming. 

Notice that in the same fashion as above, a more general optimization 
problem can be "dualized. ne may replace the condition "X y " (or 



8.2 E M E F N I T E P R R A M M 

equivalently, "X 6 S+") by the condition X 6 L for any convex cone 
L, see Ben-Israel, Charnes, and Kortanek [191], for example. Instead 
of the self-dual cone of semidefinite matrices, the polar cone L then 
appears in the constraint section of the dual program. Take L = K." and 
K = { 0 } , for example, then the primal program is a linear program 
with equality constraints and nonnegative variables. The corresponding 
dual program has inequality constraints and its variables are unrestricted. 
Thus, classical weak LP-duality appears as special case. 

Although (D-SDP) does not look like a semidefinite program at first 
it is one nevertheless. The feasible sets of the primal and of the dual 
program are both intersections of an affine subspace with the semidefinite 
cone, see Nesterov and Nemirovskii [1994]. 

Weak duality holds as explained above. 

P r o s i t i o n 8.1 (Weak d u l i t y ) . r a semidefinte 'program and its 
ual follwing ds: 

s u p 6 , C - A y O , i n f C , X ) AX beK,Xy 

inf0 = + o an sup 0 = — o 

Strong duality does not always hold. Here is an example with 
duality gap taken from Vandenberghe and Boyd [ 9 9 ] 

Example 8. ( M i s s i g s t o n g d u l i t y ) . Cnsider 

\ X) AX , X y 

Ai 
f 

A A M = 

rrespng ual seidefinte prram 

. Z C ~ V A i = o. 

ce t agnal element Z22 z e , te elements Zu = ^Y~ an 
Z32 = —1/4 n rresponding row and column ve to be er as well 

nsequently, , an the maxmum of I is aie by y 

O O ] The optimal value of e prmal semidefinte program 
. Hene, tere s a duality gap of 1 
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Conditions are nown under which a duality gap does not occur 

Definition 8.1 (strictly f s i b l e ) . (PSDP s strictly feasible if there 
s a solutin which is positiv efinite, i. ., he inter of the set of 

soluns nonempty. Analusly, (D-SDP) s strly feasble 
nter of e set of ual s l n s s nnempty 

Recall that is one of the convex cones {0 or 
{0} n thee cass s g d u a l y holds if the dual prgram 

is strictly feasible, see, e.g., Helmberg [2000]. Stoer and Witgall 
for example describe more general results on strong duality. 

heor 8 . 7 (Strong d u l i t y ) . Assume (D-SDP s strl feasble 
en 

MC,X) XyO,AX-be snpb, C 

is value is finte, that is in case the prmal problem s feasble en  
optmal alue s attane for sme X y th AX b E 

The strict feasibility in the theorem is indeed necessary. Here is a 
folklore example to illustrate this 

ample 8.18. nsid 

i n X X I n 
X22 

strictl feasible 

ts dual 

o. 

e primal problem s strly feasble, e , X y 0 for Xu = X22 
The dual optimal s l n 0 s attaned fo y± = 0, which is t, the 
onl feasible slutio. Due to din X y 0, Xu an X22 must 
satfy Xu,X22 > 0 an XUX22 > nsequently, Xu > -^—. F 
X22 —> o, te r a n ide tends t e primal optmum alue 

t attaned 

Asume that we want to solve 

in C, X) s.t. AX b E K,X h 0, (8.3 
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where a, ß are real number hen we may as well solve 

minC,X) s t AX-beK,X>O, (8.4 

multiply the optimal value by a and add ß. The optimal solutions them 
selves are the same in both cases. A minor technical difference concerns 
the dual programs. In the former case the dual is 

6, ) + s t . aC - A 0, 

whereas scaling and shifting the objective function of the dual to (8.4 
yields 

6, s.t. C - / 0 j 

Those programs are equivalent This can be seen by substituting ay for 
y in the first dual and canceling a in the constraints. Recall that a > 0 
and that S+ is a cone.) 

Hence, in order to obtain a lower bound on the optimal value of the 
primal program (8.3) we may try to find a feasible solution to 

6, s.t. C - A 0, 

If y is such a feasible solution, then a(b,y) + ß is a lower bound. This 
procedure is applied a number of times in Section 8. and we summarize 
it for reference. 

Obsrvation 8.19. Let be a feasble s l n t 

b, C - 0, 

en b, s a lwer b fo 

mmC7X) + AX - b G K, X y 0. 

Finally, we turn to the computational complexity of solving semidefi
nite programs. Such programs can in general not be solved in polynomial 
time. One reason is that the feasible set is not generally contained in a 
sufficiently bounded area around the origin. In fact, it is not even known 
whether testing the solution set for nonemptiness is in MV in the Turing 
model of computation, see Ramana [1997] and the references contained 
therein. If, however, the feasible set of the semidefinite program is known 
to be contained in the hypercube [1 ,1 ]^ >, for example, then an opti 
mal solution can be approximated with arbitrary precision in polynomial 
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time. This is a consquence of the general theory on optimization ove 
circumscribed convex bodies developed by Grötschel et al. [1988]. 

In order to make this more precise, let us recall what the weak opti
mization problem is The definition relies on the following two notions 
Given a convex set C W and a real number e > the e-ball ar 
K is defined by 

K,e x E R \\x - e for some 

where \\x — y\\ = ^{x — yx — ) is the Euclidean norm in R and the 
nter e-ball is defined as 

K,-e) xEK {x},e } 

Definition 8.20 (Grötschel et al. [1988]). An nstance of the weak 
optimization problem onssts of a mpact and coex set K, a weak otimization 

E Q, and a ratnal number e > 0 Te tas s t er 

find a vecto y E Q su at E BK, e an x) ) + 
for all x E BK, — 

assert tat BK, —) s empty 

A simple adaptation of the proof of Theorem 9.3.30 by Grötschel et al 
[1988] shows that for every fixed e > 0 the weak optimization problem for 
a semidefinite program is solvable in a running time which is polynomially 
bounded in the two parameters n and R. Here, n is the dimension of the 
space, and R is the radius of a ball around the origin which is known to 
contain an optimal solution. 

The hypercube [—1, l] is contained in £?({0},n), and the Corol
lary 4.2.7 of Grötschel et al. [1988], concerning the use of a weak separa
tion oracle for efficiently solving the weak optimization problem imme 
diately yields the following. 

Propos i t ion 8.21. Let F 1, l l be the feasble set of a semid 
inite program wth m linear onstraints. Then, for eery fixed e > 0, th 
weak o p t a t n prblem er an be s d in plynoal tme in m 
an 

If e is considered part of the input, then the running time of the 
ellipsoid method, used for the proof of Corollary 4.2.7 by Gr t sche l et al 

88], depends exponentially on the coding length of e. 
In the above mentioned counterexample for the general solvability of 

semidefinite programs in polynomial time the radius R grows exponen
tially in the size of the problem formulation. 

ball around K 

interior ball 
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8.3 The Minimum fc-Parition Relaxatio 

In Section 6.2.2, the program (6.4) is stated as an alternative formula
tion of the MINIMUM K-PARTITION problem and the program (6.5) is its 
semidefinite relaxation. After having elaborated on the basics of semidef 
inite programming, we now come back to this relaxation. We study the 
semidefinite program (6.5) from a particular point of view. Namely, we 
relate the set of feasible solutions to the semidefinite program to the k 
partition polytope V<k() as defined through (6.4) in Section 6.2.2 see 
also (7.1) in Section 7.1. 

We briefly recall how the semidefinite program (6.5) is obtained. 
Given are a complete graph Kn on n vertices together with an edge 
weighting w: E{Kn) —> R and an integer A;, 2 < k < n. We assume for 
notational convenience that the vertex set of Kn is { 1 , . . . , n} and that 
the edge set is [ij | 1 < i < j < n} . According to Lemma 6.4 we may 
pick a set U of k unit vectors v,\,..., u^ G R such that (ui, Uj) = -^ for 
all pairs of distinct vectors. Let Tk : R K be the affine transformation 
x i->- ^Y~ x | , mapping 1 onto 1 and ^ - onto 0. With the vectors as 
labels the INIMUM K - P A R T I O N problem can be stated as follows 

J^}nr WijTkd&^j)) (8.5) 
i<-Ht>i eE( 

The weight of an edge is accounted for if and only if its endpoints have the 
same label Every such labeling of the vertex set defines a matrix X 
[((ßi,ßj)]1< •< G Mn xwith the following properties: (i) X is positive 
semidefinite; (ii) all entries on the principal diagonal of X are equal to 
1; (iii) all off-diagonal entries of X are equal to ^ y or ; and (iv) X has 
rank at most k. 

In case the last property is not enforced and the second last is relaxed 
to the request that all off-diagonal entries are between -0^ and an 
optimal matrix X can be found by solving the semidefinite program 

mh^Fw'x) + iw'E) 

s.t. 

X) = , . . . (8.6) 

X ) > _ Z L i j G } , i < j 

x t 
This is the same semidefinite program as (6.5) in Section 6.2.2, only stated 
in different way. Here denotes the symmetric matrix obtained 
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Wij for al from the vector w E by letting Wü = 0 and Wt 

1 < i < j < n- Moreover, Ei{n) denotes the symmetric n x nmatrix 
with an 1entry at positions (i, j) and (j, i) and zeros elsewhere. If the 
dimension is clear from the context we simply write E Let 

X E 5 Xü = Xi:i > -j—^ij 

6 then this semidefinite program 

# * (8.7) 

denote the set of feasble solutions of 
can be rewritten as 

mm±W,Tk{X)) s.t. l e t 
Since all the diagonal elements of elements X E \&fcj„ are equal to all off 
diagonal elements are confined to take values between ^ y and 1. Thus 
\tfc is contained in the hypercube in Sn with vertex coordinates from 
{—1,1}, and Proposition 8.21 implies that the semidefinite program (8.6) 
is approximately solvable in polynomial time. 

n the case of ^k is the elliptope 

{XeSXu = i e , . . . } 

For k > 2, ^k,n is obtained by intersecting the elliptope £n with the 
halfspaces defined by X^ > ^ - for all i,j E { , . . . , n } . Projections 
of the elliptope £ and the truncated elliptope ^ 3 ^ on the set of upper 
triangular matrix entries are depicted in Figure 8.1. The elliptope is 
studied extensively in the literature in terms of the following notions 

A boundary point A0 of the nonpolyhedral but convex £n is an ex
treme point if {A0} is a face of £n; it is called a vertex if the cone of nor 
mal vectors to the hyperplanes supporting £n at A0 is fulldimensional 
Moreover, we denote the smallest face of £n containing A by F£ (A). The 
following characterizations are taken from Deza and Laurent 1997 but 
most of them are originally due to Laurent and Poljak [ 9 9 , 996b 

heor 8 . 2 . e elliptope has t follng propertes 

(i) vertices of £n are te matres xxT for x E {± ere are 
many of em 

(ii) Let A be a bondary nt of rank(^4) = r an let I = 
(F£(A)), ten 

0, ( ^ Q 
Furtermore for all ntegers r, I > 0 satng the aboe inequality, 
a bary pnt A of rank r an = dim(F£(Aj) exsts 

olynomial time 

ellito 

extreme point 
vertex 
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Figure 8. and 3] 

(iii) Let be a polyhdral fce of En w dimens , ten 

n — 1. nversely, for eery nteger 1 satng C 
exsts adimensnal lydral of Sn 

Gien b G K 7 t optmal alue of e maxat prblem 

X ) XeSn 

s attane at a ertex of e elliptope an nl 

m i n S c { i , . . n } e s ^ _ e s ö ° an b b\ for al1 

i = 1 

N b\ for some « e ,... 

A vector b 6 R satisfying öj X ^ ^ for a lH 1 , . . . , n is called 

balanced vector balanced, and the quantity m i n , g c { i , . . n } e , bi ~ ^ b\ i s a^so known 
ga of a vector as the gap 7(6) of b in the literature. 

The next section deals with the relation between the positive semidef 
inite relaxation (8.6) of the M I N I M U M K - P A R T I T I O N problem and the 
integer linear programming formulation (6.2) given in Section 6.2.2, see 
also (7.1) in Section 7.1. For this purpose the set of feasible solutions 
to (8.6) is mapped injectively from to KU) in such a way that 
the objective function values are preserved. The image of this injection 
is called Qk- We study relations between O f and V<{) 
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The afne transformation Tk is extended from R to S (which is iso-

orphic to by letting 

k — 
Tk: S S —-— - E(n) 

(Recall that E(n, n) is the n x n matrix with all entries being equal to 
one.) hich dimension applies will be clear from the context. Let 

: S P O = z w i t h % = TkiX) for i < j 

and consider 6 

©* Ä ) = PO X e ** 8-8) 

The restriction of Ck,n onto ^ n is onetoone and vkn
 : ^k,n> ©*;, 

is an afne bijection. Moreover for any given X ^ and any given 
w G ) the identity 

±{Tk(X)) = (X)) 

holds,where W is again the symmetric matrix obtained from by letting 
Wa = 0 and W^ = Wij for all 1 < i < j n. 

A direct consequence of our definitions is as follows 

b s r v a t i o n 8 . 3 . e optat prblem 

min - Tk(X)) s X G \t f an min z) s z G 6^ 

ar qualnt 

The afne image 0^> of the truncated elliptope \tfj contains the 

polytope V < ) and is itself contained in the hypercube 

P r o s i t i o 8.24. ry an n > 3 w n, t t Qk 

ex, an 

v < c e k 

We call Qk)U emidefin laxatn ofV<k(Kn). A related connec emießnite 
tion between the MAXIMUM C U T polytope and the elliptope is observed relaxation 
by Laurent and Poljak [1995, Lemma 4.1] See also their eorem 25 

ic aracerizes the verices of the ellipope 
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Proof of Propositn 8.24- The s t Qk, is o i n e d by p o j i n g the pre
viously scaled and translaed convex se ^k,n As such, t is self convex 

Let Vi , . . . , Vi be a partition of the vertex set V(Kn into k many 
sets and let z E KU) be the characteristic vector of this partition, i e 
Zij = if i and j are in the same class and Zij = 0 otherwise. Moreover let 
U = {ui,... Uk} be a se of k unit vecors suc that the scalar produc for 
every pair of vectors is -^y, see Lemma 6.4 inally, let 4 V(Kn) 
be the mapping th assigns eac verex in Vi ui eac verex in V 
o u2, and so on h atrix X (P,<Pj)]l< .< is then conained in 

^ and (X) = z Consequently, V<k{Kn) C ,«**,«) = ©f 
Finally we observe that every marix X E ^k,n satisfies -^ < X < 

1 for all (ofdiagonal) entries. e lef-hand side is explicitly enforced by 
th corresponding condiions The right-hand side is implicitly enforced 
by fixing the entries on the principal diagonal to 1. (Recall that th 
absolute value of every fdiagonal element in a positive semidefini 
marix is bounded from above by th maximum of the diagonal elemen 
in its row and c o l u m ) Hence : Sn> maps very X E ^k 
ono a vecor z w th z^ for all i E() us Of 

oreover Ofe>n conains only inegral poin from ) 

Proposition 8.25 Giv integers k, n th thn Qkn and 
V<k{Kn) contn th same ntegral nts 

Proof Let z be an integral (binary) vector in 0^>n. If a all, vio 
laes triangle constrains (71a) or clique constraints (7.b) by an inegral 
amount. Let X denote the preimage of z under the mapping (k ll 
enries of the positive semidefinite matrix X are either -r̂ y or 

N triangle consraint (7.1a) is violated either because suc iola
ion would imply th as one of the m r i c e s 

a fh 

A 
A 

fh 
as a principal submatrix. In any case the determinant is (jpj) < 0 

ence, none of these matrices appears as a principal submarix of X. 
According to Lemma 6 no subset Q of size larger than an induce  

submarix XQQ with all its off-diagonal elemens equal o -^j. Thus  
least one off-diagonal element in XQQ equals 1 for ach set Q of size  

and consequenly no clique constrain ( 7 b ) is iolaed by z D 
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e following o s e i o n is used in some o the followin roofs 

rvation 8.26 ry trix C 6 S th emefin prog 

min Ci 

X) = )>-ZL je{,...n}i< 8 

XeS+ 

nd 

10 
j J ^ y t 

Y, ^ K ^ - € 1 
j< 

dual to ot nd oth s 

Th dual variable associaed to the primal consraint X) = is 
and th associated th primal constrain X) > -j^ is y^ 

Proof. he two programs are simply (P-SDP) and (D-SDP) see Sec 
tion 82 specialized wth paricular constraints. 

The identity matrix is ositive defini and fulfills all inequali 
constraints of (8.9) w th strict inequality Hence i is in the relati 
inerior of the solution space, and the firs program is strictly feasible. 

e vector y e RU) with yü — 'YTj=\\^ij\~n f° r a ^ * a n d Uij = 1 f° r 

all i < j is a feasible dual soluion All sign restricions on y are strictly 
met, and the matrix C — J2i<i<nyij ^ ^s positive definite, because 
it is strictly diagonally dominant \see roposiion 85) erefore th 
program 81 is ricly feasible, too D 

8.4 The semidefinite relaxation &k,n and V<k(Kn) 

As reported in Secion 63 , a nontriial lower bound on the optimal value 
of MINIMUM K-PARTITION problem can often be obtained from solving 
the positive semidefinite relaxation (65)/(86). In search of an explana
tion of this, our approach is to bound the maximal possible violaion of 
facet-defining inequalities for V<k(K) by points in Qk, T results pre 
sened ere are obained in this conex also how th neither th 
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solution et of th L r e x a i o n of the MINIMUM K-PARTITION prob
lems ILP formulation (7.1 is generally contained in 9fcjn nor vice versa 

While wriing down this material, we became aware of th strong 
connecion the elliptope and the related work of Lauren and Poljak 
[199 1996a,b as well as Laurent, Poljak, and Rendl [1997]. With their 
resul in mind, some of our findings are more easily s taed and someimes 
also more easily proved. We also discovered that some of the results had 
been known before, in particular roposiion 8.28. We give our original 
proofs, nevertheless. Sometimes we indicae an alernativ proof as well 

A close connection between th ellipope £n and the polytope V<k(Kn) 
is given by the following result, wich characterizes £n in terms of hyper 
metric inequaliies compare th auren and Poljak [1995]. 

emma 8.2 

£n = { eSn\ Xu = l for = l,...n; 

Y^ bXij > for all b e Z } 
<j< 

I X is positive semidefinite, then in particular, bTXb 0 for all 
b e Z . T inequality in Lemma 827 is merely a reformulation of this 
Conversely, bTX 0 for all !) G Z implies that this also olds for all 
b £ Q . Because Q is dense in Rn , the latter implies th T b > for 
all b G R , i.e X is positve semidefinite. 

Recall from Section 73 that the ypermetric inequalities (712) are 
valid for V<kKn) and that they are also facet-defining under certain 
conditions. If those inequalities are "shifted a little," they become valid 
for Qk,n- The shift is obtained by changing the constant on the right-

and side of the inequaliies. The necessary change is bounded by | , see 
Figure 8.2. Later we tate condiions under w i c this bound is ight 
and others under whic the bound an be improved 

Proposition 8. Given ntegral egral bi for 
i 6 K). T neqalit 

w* ^ ( ( k) 0 (8n) 
e E ) 

ald for &k,n 

Proof. Let b be the edges weighting obained by setting = bfij for 
integral vertex weights 6j. Moreover, let B denoe the symmetric matrix 

th on s ofdiagonal posiions and zeros on the principal diagonal 
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Figure 8.2: S i f i n g the h m e t r i c inequalities (712) f r th ion 
polyope V<k(K) by S < | yields valid inequaliy for Qk 

all th sol in 

mm ^ s z E Qk and mm-T s . X E ^k 

jeE(Kn) 

is equivalent. We argue that the optimal value of the minimization prob 
lem on th right is bounded from below by th right-hand side of (811) 
To this end, we show that y E RV2 ith yü —bf and yij 0 if i ^ j is 
feasible for the dual program (8.10) th B in place of C. The claim then 
follows from th fac tha the objec function value of scaled by ^-
and shifted by ^ ^ijeE( es th r i g h t a n d side of (811 
recall Remark 819 

irst, the vecor y as defined abo is f e a s i b l e : ) E 
<j< 0 ' bbT h 0 Second 

E *) + — y 
eV{Kn 

E 
K„) 

i E * + E E 
s E 

Kn) 
£ ?) 

ev(Kn) 

s d i r e d is comple th oo D 
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The preceding proof uses a feasible soluion t the dual program (8.1 
in order t give lower bound on th opimal value of (8 ith th 
primal cost matrix C = bbT, b G Z . This dual soluion y is zero in 
all entries corresponding t the constraints restricting the offdiagonal 
values Hence, the obained bound also olds withou those resrictions 
and in fact, the same ound is obained from Lemm 8.27) as follows 

he funcion maps any matrix G ^ to a vecor z G &k,n 
suc that Xij = ^ - / c % 1) holds for every < i < . Plugging 
this in the inequaliy given in Lemm 827) ields 

Y -f~r v~i £ h: £ A-> 
<j <j <j 

is is equivalen to the inequaliy given in Proposiion 828. 
he difference between the righthand side of the hypermetric inequal 

ities (7.12) and the right-hand side of (811) is bounded by a erm th 
depends on the relation beween th sum of th verex weight and 

Proposition 8.29. Given nege 2 inegral ig 
for rte G V(K) Then the derene beween the right-

e th yprmeri neqalit (712) for the polytope V<k{K)  
r i t d hyprmeri neqality (811 for Qk 

Y mod 
ev( 

ev(Kn)
 m o d 

k 

ssn i e b | e b ttne 

e y ( K n ) m o d | 

roof Let p = (£ev(*„) &0/ f c and r {2iev(Kn)i) mod A then 
simply plugging these parameers into the right-and side f (712) ields 

fU Y Y mod eV{^  
ev( ev( 

= fh -^-
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We e n d this ressi l l s : 

f -^-

2) 

— A;3 

— 

e right-and side f (811) is: 

k E E *) 
£V(K eV(K 

U E E E 
ev( 

evi E 
ijeE(K 

ijeE(K eV(K 

E ^ " ' l
2 f " o d 

The first part of the claim fllows rom this. As far as he second par 
is concerned we observe ha ^r is a quadratic plynomial in r 
maximum of f is attained \ This c m p l e e s he proof D 

Other than the nsrain on th variables o be binary, the ineger 
linear prgramming formulaon (7.1) linked t V<k{Kn contains only 

n s r a in s on riangles and on cliques of size k + Both classes of 
consrains are facet-defining hypermetric inequalities for V<k(Kn). Re 
call from Section 7.4 that the class of triangle inequaliies (7.1a) can 
be separated in running time ö(n and that separating iolated clique 
inequalities (7.1b) is jVP-hard if is considered as part of the input 
Recall also f m S e c t n 73 that every inequality separating he origin 
and the polytope V<k{Kn) has a s u p p t of size a leas • Wi 
his in mind we obser he llwing 
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Propositio 8.30. Given coete aph Kn te it 
n for every z k 

j 

ds for every ri 

V2 

^ 
ij£E( 

12) 

(813) 

ver que iz k Kn. B bo are ht. 

In other words, all riangle inequalities (71a) and all clique c n 
traints (71b) are "more han half satisfied" by every p i n t in Qk>n in 

the sense hat the v i l a o n is bounded by \ rather tha by , whic 
is wr s t possible oth ounds are special cases of result to follow. A 
direct proof can be given by considering a principal 3 x 3-submarix of 
X G ̂ k,n in the first case and by applying Lemma 6.4 in he second case 

Before we continue investigating he relaion betwee the p o l y p e 
'P<k{Kn and its semidefinie relaxaon ©kn, we l°° at the rela 
betwee Qk<n and the l u t i n se of the LP relaxation of he ILP fo 
mulat in (71) t which V<k{Kn) is associated. From P p o s i t n 8.3 

llows hat Qk,n contains poins whic are infeasible fo he LP relax 
a t n of ( 7 1 . Hence, 9 ^ n is not contained in he soluon set of the 
LP r e l a x a t i . In general, he reverse inclusion does ot ld either. I 
rder to see his, we fix integers k and n such tha < \f. Let 

z G R e the vector wi all coordinates equal to ^ The z is 
feasible for the LP relaxation of (7.1) because 0 < z^ < 1 for all ij and 
z satisfies all triangle inequaliies (71a) as well as all clique inequali 
ties (7.1b). The vector z is hwever not contained in O ^ , because he 
valid inequaliy (811) wi = 1 r every verex i is v i l a e d by 

jeE( 

(n 
- (n 

This foll (n — 1) < (k + l) k) <^=^ 0 < and ur 
assump / . In summary he llwing h lds . 

Propoti 1. two nt and n w 4 < k /n, then 
either Qk, s cntai the ol et of the L relaxat of (71) 
or the cvere t 



M / 19 

This is interesting, since the wea p i m z a t i o n problem over Qktn can 
be solved in polynomial time see P r o p o s i n 8 2 1 , whereas s l v i n g he 
LP r e l a x a n of (7.1) is j P - h a r d , see P roos i t ion 7.31. 

We now turn back to sudy ing relations between V<k{Kn and k,n 
The left-hand side of the inequality dealt w i h in the next p r p o s i 
tion maches that of the general clique inequality (713), which is facet 
defining for V<k {Kn) the size of he clique is larger han k bu ot an 
integer multiple of k 

Propos i t ion 8.32. Given the comlee graph Kn and n integer wi  
k < Le e a clique i Kn of ize larger tha . The 

E * ; ^ (814) 
ijeE(Q 

valid for ©&„ nd there i oint z G u sfyi the iqual 
(8.14) t qualy. 

A proof using Lemma 6 4 is possible bu we give a m r e c n s r u c i v e 
argument using SDP dua l iy h e r y 

Proof The inequality (8.14) is obtained f r m (811) by setting ftj = 1 
alH Q nd bj = 0 otherwise. Hence, it is valid or 6jt,n-

Let q = \Q. We sh hat there exis asible s l u to the 
i m i z a n p r b l e m 

m i n ^ D 0 1 ^ ) ) s.t. X * k 

with bjective n c o n value ^q . (See P o s i t i o n 812 for he 
definition of Dq).) The claim then follows from Observaton 811 

The matrix D '«Iri (q) is primal feasible because all i s entries he 
principal diagonal are equal to and it is osiive semidefinite, see P r o o 
s i n 812. The c r r e s p n d i n g objecive f u n c n value is as desired: 

\ { D ^ { ^ ) ) ) 

^ { D ^ ) ) j - ( D ) )  

l ) ^ 

-^ 

D 
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n c e i n condition n he r e l a n g k \S 
"shied p a r n inequali is ght for k 

Proposition 8.33. Given the comlee gra Kn, n > 3, and a nte 
ger k with 2 < n Let S nd em disjoint ub of 

Kn wi \S The 

)) T))-([T]±-((\-\S \S (815) 

valid for ©&,„. Furthermore here is a point z G &kn isfying the 
qual (815) qualty of the followig condio holds: 

(i) \S\ = 1 nd 1; 

(H) \S > 2, \S \T nd either \S or \S ogeher 
I SI 

wi k < ' .I 
— \ S \ Z 

roof The inequaliy (815) is ained 811) by setting 

+1, i 

- l , i e S, 

otherwise 

is th lid ^. 
Let s = \S t and let Cs he llowing symmeric marix 

of dimensi 

D - E t ) 
-E ) 

(See P r o p o s i n 81 or th n o t ) sh feasile lu 
exist to the i m i n prblem 

m i n ^ C T f O ) s V 

with objective functin value 2fc ^ n e c l a i m hen l lws from 
bse rva tn 811 We give diferen primal asible l u n s he cases 

1 and 
n case we assume t and le 

\{l  
1' 
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The matrix X h only entries o prinipal diagonal nd all of its o 
diagonal elements are no less than ^ y . Moreover, X is posiive semide 
inie. This is verified by checking he c n d i n s of P r s i n 813 

^ii — nd 

nsequenly, X laer reference, w ha 
\ + 2g)f - 1) = -(t + 1) = - + 
w, he case is nsidered. We assume tha + t and ha 

lds t a %%[^ eiher t togeher wih k t ^ 

' T ^ V a n d s e 

) 

W ceck con i tons given in Proposi 12 and 8.13 in order to 
prove ha is p s i i v e semidefinie Firs is p s i i v e semidef 

—^r is: 

) -

fc> 

Both of e latter inequalities hold due to the conditions th re laons 
a m n g s, t, and k. (This can be verified by case d i s t i n c n . ) Secnd 
D1,(t) is psitive semidefnite if 1 > ß j z i e ^ j j ^ 
which h l d s ecause k Finally 

+ )/ 
i) -

- ( k 1 

als olds due to t > 2. Thus, X is psitive semidefinite. Next, we 
sho tha ^k,n by checking ha he diagonal enries of X are n 
less han ^Py This is bviusly rue nd 7. F we disinguish 
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-^j n 

i) -
; —TT- TT 
( 

<=^ ) -

^ 
t> 
-<= k > 

is holds by asum 
Again evaluaing yields: 

) -

tk tk 
~^  

~(s t) 

Thus in both cases the corresponding solution X yields  
nd he resuling bjecive f u n c n values are: 

^ jj- + )) 
) -

^ ~ 
kt 

This cncludes he proof. D 

The reatment of the case \S\ = in Props i ion 8.33 is not fully 
satisfactory, because the most prominent representative of the 2-partiton 
inequality, namely he riangle inequaliy, is not covered The ase of  

and is h e r e r e cnsidered separaely 
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ition 3 . ivn t complet gra Kn nd integ  
Let S nd be sjoint ub ofKn wi 

The 

)) )) ([T\) 

-vi 
(816) 

vald for kn, and point z G Qk,n flfills (816) equalty. 

In the proof we again exhibit primal and dual s o l u t n s with matching 
bjective function values F r the first time hwever he dual variables 

H linked to the primal nsraints (E^,X) /(k — ) are p s i i v e 

Proof We give s o l u t n s X and y to the dual programs (8.9) and (8.10) 
respecively with matching objecive function values fo he primal cos 
matrix C (see he proof of s i n 833 for n o t o n ) . W hen 
compute ^ ( + ^ ( C { )) and show hat this is he 
desired value 

We firs onsruc a slution y to the m a x i m i n prblem 8.10) 

t a = V t-t} sh m p u n reveals ha 0 < provided 

t . L /n = J yu a i . . , 1 t = yn 

for all j = . . . + t, and y^ — a for alii, 6 {2,.. t} 
The vecto is a feasible s l u because y r all nd 

-E 
J2 V 

<j<n 

The latter is a direct nsequence of P s i n 813 
The bjecive f u n c n evaluaes to 



19 T H E S I D I N IO V<Kn 

ix 

h 
^ 1 ^ ^ 

is a primal feasible solution. Given tha < k — 2, all ff-diagna 
entries are at least as large as -^j. By o p s i o n 8.13, X is positive 
s e m i d e n i e . We chec he nly ndi ha is ot trivially fulfilled: 

\l  
in iv lu is 

r t e r m o r e , w in l l i n r a r m e d jec 
ive n c n value: 

^ ^ ) + 
1) t\ 

2 ~ ~ 

t) t) 

6) T e claims c n c e r n n g the v y d tightnes of the inequal 
is hereby proven c m p a r e P o p s i t i o n 8.11 and Remark 819. 

Finally, we show ha —y/i bounds the above term from below. A 
raightfrward a p p l i c o n of l 'Höspial 's rule yields hat the expression 

J t ) { k l ) - t ) r- . „ T+ 

— j converges to /t as goes to infinity It remains 
hec hat the value of he express in is b u n d e d m below by /i: 

/- t ) t ) 

/i t) 
k>t tk/i t) tk )k 

t> /i )k 

m v~^ 
The las inequaliy h l d s r a lH This c m p l e e s he proof D 
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8.5 Summary and Outlook 

The semidefinie prgram (8.6) is a r e l a x a n of he combinatorial MIN 
IMUM K-PARTITION problem. It is known f r more than a decade that 
such a semidefinite prgram is in principle solvable in lynomial time 
Merely within the last one or two years however, SDP solvers have ma 
tured to the p i n t , where the semidefinite programs associated to graphs 
of sizes in the order of a few hundred vertices becme cmpuationally 
tractable in practice We are now in he position to solve our large 
semidenite r e l a x a n s w ih a sufficien degree of accuracy in tolerable 
running imes 

The wer unds obtained in Section 6 on the o i m a l value of 
minimal c - p a r n are higher than we had expected. The previously 

own computatinal sudies n related problems like the M I M U M 

C U T prblem (wi k = 2) or the graph partitio problem wih given 
sizes fo the partite sets and with values k up to 4, see Wolkowicz 
nd Zhao [1999] can hardly give an indicaton of what to expect for he 

INIMUM K - R T I T I O N problem r values of k btween 39 and 76 
We attribute the strength of the bound to a large extent to the "shifted 

hypermetric inequalities" (8.11), which are implicit in he semidefini 
relaxaon. Cnsequently, the solutions to the semidefnite relaxation 
always fulfill at least partially every single valid (and oft facet-defining) 
hypermetric inequality (7.12) the plytope V<k{Kn). paricular 
with respect to the ILP formulation (7.1) of the MINIMUM K P A R I O N 

problem, all triangle constraints (7.1a) are violaed by at most y/2 1 
and all clique cns t r a ins (71b) are violated less han \. Hence, in the 
LP relaxatin o a i n e d from the ILP (71) by dropping the integrality 
consrains, this corresponds to the s i m u l n e u s parial fulfillment of all 
(exponentially many) consraints. 

The semidefinite relaxaion (8.6) of the MINIMUM K-PARTITION prob 
lem thus appears as an intriguing alernaive to the classical LP relax 
ation. Due to the enormus a m u n t of constraints he latter seems to 
be hardly olvable in practice. f his ottleneck is t be bypassed by 
adding the triangle and clique constraints as m d e l cuts, then he sepa 
r a t i n problem he clique inequaliies in paricular has to e slved 
effectively. 

As an alternaive to develping a radiional branchand-cut algo 
rithm for slving MINIMUM K - P A R T I I O N prblems wit guaranteed 
quality, we may as well cnsider a brancand-cu algorithm on the basis 
of he semidefinite relaxation and an SDP solver. Successful applications 
of his kind are r e p e d by Helmberg 1995]; Helmberg Rendl, Vander 
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bei, and Wlkowicz [1996]; H e l m b g d Re [1998]; Helmberg an 
Weismantel [1998]; Karisch Rendl, and lause [1998], for example. I 
heir conclusion, Karisch et al 1998] s t e : " u r results compare fa 

rably to previously published nes [for graph bisection], which were 
obtained with cutting plane m e t h d s based on linear p r g r a m m i n g re 
l a x a t n s . " As po ined ou before t is not even clear h w mpetitive 

wer unds an LP-based branch-and-cut algorithm for the M I N I M U M 

K - P A R T I T I O N problem uld p r v i d e he insances we are i n e r e s e d 
in, see Sect 6 3 

In the c e x of an SDP-based branch-andcu algorithm for the 

I N I M U I O N p r b l e m , he llowing p i n s deserve cns ide r  

F u r h e r invesigations concerning the re la ion tween the polytope 

^<k{Kn) and its semidefinite relaxation 0fc]Jl in rder to give a 

tter t h e r e i c a l underpinning of our empirically bserved l w e r 

nds 

A computational udy of the reng of the semidefinite re laxaio 
n a larger se of INIMU ION insances wi own 

imal s o l u n 

For which classes of valid inequalities for V<kKn) is the s e p a r a o n 
problem (heuristically) well solvable in practice and wha is he 

fec he s r e n g of he c r r e s p n d i n g r e l a x a n ? 

Another interesing issue is the generation of goo ^ - p a r n s on he 
basis of the s l u t i n for the semidefinite relaxation 8.6). How well fo 
example, does r andmized r n d i n g p e r r m ? Whic other heurisics are 
of pracical use? 
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otation 

The follwing survey on basic o t t ion and facts f r m linear algebra 
linear programming, and graph t h e r y is primarily intended to serve as 
a glossary. For cmprehensive inroductions see, for example, hvätal 
[1983] or Padberg 1995] linear programming; Schrijver [1986] o Nem 
hauser and Wolsey 1988] or integer linear programming; Schrijver [1986] 
or iegler [1994] f olyhedral heory; Wolkowicz al. [2000] for semidefi 
nite programming; West [1996] or Diesel 1997] for graph theory; Cormen 
et al. 1990] for algorithm and data ture; and Garey and J h n s 
1979] as well as Ausiell t al 1999] comutional comlexi 

Basics 

The cardinality of he set A is deoted by \A\. The Cartesian produc \A\ 
of ses A and B is written as A x B. The se difference of A and B A x B, A\B 
is A \ The intersection and union of A and B are denoted by An B Af]B, Au B 
and Au B, respectively. The symbls C and C denote se inclusin and AC B, AC B 
prpe r se inclusion, respectively. 

The sets of real, rational, and ineger numbers are denoted by K, Q, M, Q, Z 
and Z, respectively. Their restrictions to the nonnegative numbers are 
denoted by K+, Q+ , and The symbol K. is used to represent Q and R Q Z 
in cases where the defini r p r p e r y applies to bot fields The se 
of all column vectors with n c m p o n e s , and enries me 
se is denoted by Bn, in particular, Rn , Q Z Q Z 

Let k, n be a nnegative integers. Then k\ is equal to k\ 
nd equal to 1 • . . . • k otherwise. Moreover, (™) is equal to _^y_ (£) 

0 < k < n and equal t 0 otherwise The expression mod k s n d s n mod k 
he remainder of the integer divisi of n divided by k. 

F r x £ K, he ceiling \x\ of x is the smallest integer larger than \x 
equal t x, and he foor [x\ of x is he largest integer less or equal to x [x\ 

For , | / e [x,y] and ]y[ denot the clsed and open inerval of [x,y],]x,y 
real numbers ween x and , respecively n a l u s l y ] and x,y]]x. 



incide v 

support 

V 

]X,;?/[Q denot in 
bers x and y 

For a finie set E, the f u n c n x £"—) K is identified w i h an \E 
dimensional olumn vector x £ K ^ L Given a finie set E and a subse 
F he incidence vector of in E is t h e d i m e n s i o n a l vecto 
XF £ 0, wit x F ( e F and x F ( e otherwise. The 
support of a function / : X —> Y is the set { 0} The 
expression f is used as an alernat ive to f(x) 

The s y m l s 3 and V s n d he niveral and exienal qanifier 

inear Algebra 

AJJ 

det(A) 
tx(A) 
singula 
regula 

< > 

{AB,C) = (A,C 
(AxxT) = x 

cala prodct 

ositive 
emi-)deRnite 

+ c 

eigenvalu 

The set K m x n c n s i s s of all (m x n)-matrices with enr ies om K. Th 
n d i m e n s i n a l c l u m n vectors are identified w i h K"x r a m a r i x 

Wnx he e r y in row i nd column j is referenced by ^, he ith 
row by Ai the th lumn by A.j, and the submatrix cns is t ing of the 
elements in the rows cn t a ined in set / and he columns ained in se  

is referenced by u If I = J, then u is rincipal ubmtri of A 
The determinant of a square m a r i x A £ K n is denoted by det) 

and its race, i e , the sum of s diagonal elements is denoted by tr(A). A 
square m t r i x A is singular if i s deerminant is z e r , and it is nns ingula r 
or regular otherwise The m u l t i p l i c i ve inverse of a regular m r i x is 
d e o t e d by A- and denotes he enty m in 

ix rix AT 

th th lumn of A o r i n he r w s of AT. In p a r t i c l a th tr 
se of a lumn vec is a vector. The inner produ n KmX 

(• ) Kmxn x Kmx wi , B) ^ , B) = YT=i i AiJBiJ 
ti(BTA). The ident ty AB, C) = A,CBT h l d s all m r i c e s wi 

mpa ib le dimensions. F u r h e r m r e , the identity TA 
holds or every vector x £ Kn and every atrix A £ K n . The in 
ner produc of w (column) v e c r s is als alled scalar produ The 

uclidean norm of a vector x £ K is \x\ /(,x 
A m a r i x A £ K is symmeric if A = AT. A symmeric matrix 

is positive semidefini (A y 0) i xTAx > 0 for all vectors x Kn . I 
furthermore, xT Ax = 0 implies x = 0, then A is positive definite (Ay 0) 
The sets of n x ndimensional posiive semidefinite and positive defini 
matrices are denoed by 5+ and respecively 

A scalar A £ K is an eigenvalue of a matrix £ WlXn if Ax for 
some x £ K n x ^ 0. If A is an eigenvalue of ^4, hen all vectors x £ K 
saisfying x are eigenvecors o A associaed he eigenvalue A 
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Th determinant of a matrix A is the pro ll i g e l u 
he race is the sum of all its eigenvalues 

A vecor x Kn is a linear combination of vectors in X if 
f inie number vecors x1,..., x G X and scalars A i , . . , A K. exis 
such that x = Y x % The vector a; is a conic combinaion he x 
if, in addition, Aj > 0 for all is an affine combinaion X^i=i = 1 
and a convex combination if X^=i Aj = 1 as well as Aj > 0 for all i The 
linear, affine and convex hull as well as the cone of A , denoted by lin(X) 
aff(A), c o n v X ) , and cone(A) are the s e s of all linear a f n e , convex 
and conic combinations respecively. A set X is convex if X conv 
A set X saisfying X = cone(X) is a cone. A cone is poin 
implies for every nonzero vector x 

A se I C P of vecors is linearly independent only one linear 
combination of vecors in X is equal to he zero-vector in K . The 
dimension dim A of A is maximal number of linearly independent vecors 
from A, ha is the dimension f the linear hull o as a subspace o 

affine, conic 
convex, linea 

combintion 

convex 
ointed) cone 

linearly 
indeendent 

dim A 

olyhedral Theory 

Given a vector a G W1 \ } and a scalar K, hen he se {x IK™ 
aTx = a } is a hyperplane, and {x G K | ax < is the half-space 
delimied by he hyperplane The finie inersection half-spaces, given 
by { Kn | Ax < b} with A G K m , b G K m , is polyhedron. A set 
S C W is bounded if it is contained in a set { | | x | | < r } for 
some r G K. A bounded polyhedron is a poltope 

The inequali a ra; < a0 for a G K \ { } K is wa/ for a 
polyhedron P if is contained in the half-space {x aTx < and 
it is tight for P i it is valid for P and he hyperplane aT 

contains a leas one point in P. 
T h e s e t P n j j : G Kn | aTx = a } is the face of induced by aTx < a 

A zerodimensional face is a vertex. A face F C P o f a polyhedron P is 
face of if it is a maximal face w i h respect o inclusion An inequali 

x < is facet-defining for P if it is valid for P and F G 
aT is a facet f P . An equivalen c h a r a c e r i z i o n face 
ha im im P 

yperplane 
alf-space 

olyedron 

olytop 
valid 

tig for P 

face of 
vertex 

facet of P 
cetdeRning 

inear rogramming 

A polyhedron P { i I " x < 6} C Kn , a vector c G K" and an 
bjecive define a linear rogram or LP for shor The minimizaion and lin prog 



P} and i n { a ; x G P}. A.l) 

A vector x G P attaining the maximum minimum) in (A.l), provided 
timal solution this exists, is an optimal oltion. In case P is a nonempty polytope, at 
al prog least one ve rex o P is an optimal soluion The dual program to a linear 

program { T x < b x > 0} is vamTy Ty > c, 0} 

T h e o e m l (Dual i ty of l i n a r programming) Le x n 

a n . In ca 

x < b, 0} ^ an > c, 0} ^ 0 

t/ie opimal olion val of 

x < 6, x > 0} an min > c, 0} (A. 

are fini an 

x < 6 x > an > c, 

exi uc ha 

binry/integer A linear program turns into an integer linear program (ILP) if all 
liner prog variables are required to take integer values. In the special case of a 

binary linear program the values of the variables are restricted to 0 and 1. 
LP relation The LP relaxation of an integer linear program is obtained by dropping 

the integrality constraints 

aph Theory 

ur graph theoretic nomenclature is mostly taken from West [1996] 
(simple) graph A simple graph G with n vertices and edges consists of a vertex set 
vertex/edge et V(G) = {vi,..., vn} and an edge set E(G) = { i , . , em}. Each edge is 

an unordered pair of distinct vertices. The edge {v, w} is also written as 
incident adjcent vw. If e = vw G E(G), then is incident to and w, the vertices v and 
neighborood w are the endpoints of e, and v and w are adjcent. The neighborhood of 
degree a vertex are its adjacent vertices. The degree of a vertex is the number 

olated vertex of incident edges. A vertex in a graph is olated if its degree is zero. 
graph complement The graph omplement G of a graph G is a graph on the same vertex 
subgrap set as G with t w G -E(ö) if and only if G E(). A subgraph of a 

graph is a graph if such that ) ) and ( ) ) The 
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subgraph H of is an inded subgraph if every edge in E(G with both 
endpoints in V(H) is in (H). If H is an induced subgraph of ith 
vertex set S, then this is written as H = G] 

A nonempty subset Q of the vertices of V is a clique in G if every 
pair of vertices in Q is an edge in E(G). A set S C V(G) is an independent 
set if G^S] contains no edge. A clique (independent set) is maximal if 
no larger clique (independent set) contains it, and it is maximum if no 
clique (independent set) of larger size exists. The size of a maximum 
clique in a graph G is its clique number, denoted by u(G), and the size 
of a maximum independent set is its independen or stability nmber 
denote by a(G). 

A graph is complete if its vertex set is a clique. Kn is complete graph 
on n vertices. A vertex is simpliial if its neighborhood is a clique. 

A vertex labeling of a graph G (with elements from a set Y) is a 
function / : V . Analogously, an edge labeling is a function 

G ) ^ r 
A graph is bipartite if its vertex set can be partitioned into at most 

two independent sets; it is k-partite if its vertex set may be partitioned 
into k or fewer independent sets. A fc-partite graph is kolorable, and 
a fccoloring of a graph is a vertex labeling / : V(G) —> { 1 , . . . , k}. The 
coloring is proper if f(v) ^ f{w) for every pair of adjacent vertices. The 
minimum number k such that a graph is properly /colorable is its 

romatic number, denoted by x ( ) . 
A walk of length A; in a graph is a sequence vQ, Vi €2, • • •, e^ 

vk of vertices and edges such that e* f - iU for a lH = 1 , . . . , k. The 
endpoints of the walk are v0 and Vk- A pa£/i is a walk containing no vertex 
more than once. A Hamiltonian path contains every vertex of the graph. 
A cycle or tour is a walk with both endpoints being the same vertex and 
no repeated vertex otherwise. A cycle of length 3 is also called a triangle 
The graph Cn contains n vertices and its edge set is a cycle. An edge v 
is a (I)chord with respect to a walk if v = Vi and w = V+i for some i. 

A graph is connected if a path exists between any two vertices. A 
tree is a connected graph which does not contain a cycle. A component 
of a graph is a maximal induced subgraph that is connected. A horte 
path between two vertices v and w is a path with endpoints v and w 
of shortest length. In a connected graph, the diameter is the maximal 
length of a shortest path; otherwise, the diameter is infinite. An (edge) 
cut in a graph is a subset of the edges for which its removal disconnects 
the graph. For a partition of the vertex set into two nonempty, disjoint 
sets S and T, the cut [S, T] contains all edges ith one endpoint in S and 
the other endpoint in T. A graph is 2(edge) onneed if every cut has 

in surap 

G 
liq 

indeendent et 

liqu number 
indeendence 

ber 

complete graph,K 
simplicial vertex 

vertex labeling 
edge labeling 

bipartite 
k-partite 
coor 

tic nber 
walk 

amitoni pa 

cle, to 
triang 

Cn 

(l-)cord 
connected, tree 

comonent 

ortet path 
ameter 

(edge) c 

2 c t e 
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(simple) digrap 
vertex/arc et 

d, t 
acyclic 
orienttion 

size at least 2. A subgraph H of a graph is spanning if (H 
and H is connected. 

A simple direted graph with n vertices and m arcs consists of a 
ertex set V(D) = {vi7... ,vn} and an arc set A(D) { a i , . m } , 

where each arc is an ordered pair of distinct vertices. We write vw for 
the arc (v,w). The vertex v is the head and the vertex w the tail of the 
arc vw. A digraph not containing any directed cycle is cycli. A digraph 
D is an orientation of a graph if V(G) (D and u> G ^ O if and 
only if either M G E(D) or w (D) 

(M 

Asymtotic Function rowhs 

Given a function / : Z + Z+ , let 

: Z + Z + I c, a, n Z + \/n > (n < c(n) + a 

and 

: ^+ ^+ I c, a, n Z + Vn > (n) + a > / («)} 

Every funcion g G ö ( / ) grows asymptotically no more tha / , h e a s 
every / ) g r o s asymptotically at least as much as / . 
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Zusamnfassung 

Eine Schüsseltecnologie im Informationszeitalter ist die mobile Telekommunikation. 
Diese kann durch Interferenz empndlich gestört werden. Für GSMMobilfunknetze 
untersucht die Dissertation wie sich Interferenz möglichst weitgehend vermeiden läßt 
indem die verfügbaren Frequenzen geeignet an die Basisstationen zugewiesen werden. 
Mathematisch wird dieses Ziel als Minimierung der Gesamtinterferenz aufgefaßt. 

Heuristisce Methoden zur Lösung des Frequenzzuweisungsproblems werden ent 
wickelt und anhand der Laufzeiten und Ergebnisse für Planungsfälle, die der Praxis 
entstammen, verglichen. Der Großteil der Methoden eignet sich aufgrund des guten 
Laufzeitverhaltens für den interaktiven Einsatz bei der Netzplanung. Die Resultate 
sind im Vergleich mit denen des besten derzeit bekannten (aber deutlich langsame 
ren) Verfahrens durchaus akzeptabel. Eine Auswal der Metoden ist eute bei der 
E-Plus Mobilfunk GmbH & Co. KG erfolgreich im Einsatz. 

Weiterhin wird in der Dissertation der Frage nachgegangen, wieviel Interferenz in 
einem gegebenen Netz bei der Frequenzzuweisung unvermeidbar ist. Die Ergebnisse 
entsprechender Berechnungen werden verwendet, um (im mathematischen Sinne) 
Qualitätsgarantien für Frequenzzuweisungen hinsichtlich der Interferenzvermeidung 
zu geben. Im besten betrachteten Fall verursacht eine Frequenzzuweisung nur doppelt 
oviel Interferenz wie nachweislich unvermeidbar. 

Das Frequenzzuweisungsproblem läßt sic zu einem fcPartitionierungsproblem 
eines vollständigen Graphen relaxieren. Dem fcPartitionierungsproblem ist (ausge 
hend von einer Formulierung als ganzzahliges lineares Programm) eine Polyederklasse 
zugeordnet, wobei die Ecken der Polyeder jeweils die Partitionierungen des zuge 
hörigen Graphen darstellen. Anstelle der sonst üblichen polyedrischen Relaxierungen 
wird eine nichtpolyedrisce Umschreibung des Polyeders analysiert, die sich als Lö
sungsmenge eines semidefiniten Programmes ergibt. Dieses Programm läßt sich für 
festes e > 0 in Polynomialzeit eoptimal lösen (im Gegensatz zur linearen Relaxie 
rung des ganzzahligen Programmes - ? ^ J\fV vorausgesetzt). 

Die Lösung der semideniten Programme f ü r t zu den derzeit mit Abstand be 
sten unteren Abschätzungen der unvermeidbaren (Gleichkanal)Interferenz. Zudem 
handelt es sich um eine der ersten Anwendungen von semidefiniter Programmierung 
bei großen industriellen Problemen mit kombinatoriscem Hintergrund. 

Schlüsselwörter: GSM, Frequenzzuweisung, Minimale Ä;Partitionierung, Heuristi 
ken, Semidefinite Pogrammierung, Ganzzahlige Programmierung, Polyeder. 
Mathematics Subject Clssification ( S C 2000): 90C27 90C35 90B18 90C 
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