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ZUSAMMENFASSUNG 

Diese Dissertation befaßt sich mit ganzzahligen rogrammen mit 0/1 
Systemen SetPacking-, Partitioning- und Covering-Probleme. Die 
drei Teile der Dissertation behandeln polyedrische, algorithmische und 
angewandte Aspekte derartiger Modelle. 
Teil 1 diskutiert polyedrische Aspekte. Den Auftakt bildet ei 
ne Literaturübersicht in Kapitel 1. I Kapitel 2 untersuchen wir 
Set-Packing-Relaxierungen von kombinatorischen Optimierungspro­
blemen über Azyklische Digraphen und Lineare Ordnungen, Schnitte 
und Multischnitte, Uberdeckungen von Mengen und über Packungen 
von Mengen. Familien von Ungleichungen für geeignete SetPacking-
Relaxierungen sowie deren zugehörige Separierungsalgorithmen sind 
auf diese Probleme übertragbar. 

Teil 2 ist algorithmischen und rechnerischen Aspekten gewidmet. 
Wir dokumentieren in Kapitel 3 die wesentlichen Bestandteile ei 
nes Branch-And-Cut Algorithmus zur Lösung von SetPart i t ioning-
Problemen Der Algorithmus implementiert einige der theoretischen 

rgebnisse aus Teil 2. Rechenergebnisse für Standardtestprobleme der 
Literatur werden berichtet. 

Teil ist angewandt. Wir untersuchen die Eignung von et 
Partitioning-Methoden zur Optimierung des Berliner Behinderten­
fahrdienstes Telebus, der mit einer Flotte von 100 Fahrzeugen täglich 
et 1.500 Fahrwünsche bedient. Der Branch-And-Cut Algorith­
mus aus Teil 2 ist ein Bestandteil eines Systems zur Fahrzeugein­
satzplanung, das seit dem 3. Juni 1995 in Betrieb ist. Dieses Sy 
stem ermöglichte Verbesserungen im Servic und gleichzeitig erhebli 
che Kosteneinsparungen 

Schlüsselbegriffe. Ganzzahlige rogrammierung, olyedrische 
Kombinatorik, Schnittebenen, Branch-And-Cut, Anrufsammeltaxi 

steme, Fahrzeugeinsatzplanung 
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ABSTRACT 

This thesis is about integer programs with 0/1 constraint stems: et 
packing, partitioning, and overing problems. The three parts of the 
thesis investigate polyhedral algorithmic, and application aspects of 
such models. 
Part discusses polhedral aspects. Chapter 1 is a prelude that sur­

eys results on integer 0/1 programs from the literature. In Chapter 2 
we investigate set packing relaxations of combinatorial optimization 
problems associated with acyclic digraphs and linear orderings, cuts 
and multicuts, multiple knapsacks, set overings, and node packings 
themselves. Families of inequalities that are valid for such a relaxation 
and the associated separation routines carr over to the problems un­
der investigation 
Part 2 is devoted to algorithmic and computational aspects. We docu­
ment in Chapter 3 the main features of a branch-and-cut algorithm for 
the solution of set partitioning problems. The algorithm implements 
some of the results of the theoretical investigations of the preceding 
part. Computational experience for standard test set from the liter­
ature is reported 
Part deals with an application We consider in hapter 4 set par­
titioning methods for the optimization of Berlin' Telebus for handi 
capped people that services 1,500 requests per da with a fleet of 100 
mini busses. Our branch-and-cut algorithm of Part 2 is one module of  

scheduling s s t e m that is in use since June 3, 1995 and resulted in 
improved service and significant cost savings. 

eywords. nteger rogramming, olhedral Combinatorics, 
utting Planes, Branch-and-Cut, Vehicle cheduling, DialA-Ride 

Systems 
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REFACE 

Aspects of set packing, partitioning, and overing is the title of this 
thesis, and it was chosen deliberately The idea of the thesis is to tr 
to bend the bow from theory via algorithms to a practical application, 
but the red thread is not alwa pursued conclusively. This resulted in 
three parts that correspond to the three parts of the bow and belong 
together, but that can also stand for themselves. This self-containment 
is reflected in separate indices and referenc lists. 
There is no explanation of notation or basic concepts of optimization 
Instead, I have tried to resort to standards and in particular to the 
book Grötschel, Loväsz & Schrijver (1988), Geometric Algorithms and 
Combinatorial Optimization Springer Verlag, Berlin 
It is perhaps also useful to explain the s s t e m of emphasis tha t is at 
the bot tom of the writing. Namely, emphasized words exhibit either 
the topic of the current paragraph and/or the mark contents of the 
various indices, or the sometimes just stress a thing. 
I am grateful to the enate of Berlin's Departments for cience, Re 
search, and Culture and for Social Affairs that supported the Tele 
bus project and to Fridolin Klostermeier and Christian Küttner for 
their cooperation in this project. I am indebted to the onrad-Zuse 
Zentrum for its hospitalit and for its support in the publication of 
this thesis. 
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thank Andreas Schulz and Akiyoshi Shioura who have kindl pointed 
out a number of errors in an earlier version of this thesis. M friends 
Norbert Ascheuer, Bob Bixby, and Alexander Martin have helped me 
with man discussions on aspects of this thesis and I want to express  

gratitude for this. A special thanks goes to Andreas Löbel for 
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apte 

nte 0/1 am 

u m This chapter tries to surve some of the main results of the literature for integer 
programming problems associated with set packings, set partitionings, and set coverings: 
Blocking and anti-blocking theory, the field of perfect, ideal, and balanced matrices, and the 
results about the facial structure of set packing and set covering p o l h e d r a . 

1.1 Two Classical Theorems of König (Introduction) 

önig book Theorie der endlichen und unendlichen aphen of 1936 is the first s s t e m a t i c 
treatment of the mathematical discipline of graph theor1. Two hundred years after Euler' 
famous primer2 on the bridges of Königsberg gave bir th to this area of discrete mathematics, 
it was König' aim to establish his subjec as "a branch of combinatorics and abstract set 
theory"3. I this spirit, he investigated structural properties of general and of special classes of 
graphs. Among the latter, bipartite graphs are the subject of two of his most famous theorems, 
the König-Egervär and the edge coloring theorem. I his own words*, these results read as 
follows. 

""̂ Sachs [1986], page 314 of König [1986]. König [1936] himself made an effort to compile all previous 
eferences on graph theory. 

2Euler attributes the notion of graph theory or geometria situs, as he called it to Leibniz and gives some 
eferences in this direction, see Euler [1736], page 279 of König [1986]. 

3König [1936], preface, page 9: "Second one can perceive it [the theory of graphs] — abstracting from its 
continuos-geometric content — as a branch of combinatorics and abstract set theory. This book wants to 
emphasize this second point of view . . " * 

Translation by the author 



nteger 0/1 rograms 

.1 e o r e m ( K ö n i g E g e r v a r y e o r e m , önig [1931]4) 
For any bipartite graph is the minimum number of nodes that drain the edges of the graph 
equal to the maximum number of edges that pairwise do not possess a common endpoint 

Here, we say that the nodes A\, , • • •, Av {(drain)) the edges of a graph if every edge of the 
graph ends in one of the points A , . . . A l , . 

1 T h e o r e m (Edge Coloring T h e o r e m , önig [1936]5) 
If at most g edges come together in every node of a unite bipartite graph G, one can subdivide 
all edges of the graph into g classes in such a way that every two edges, that come together 
in a node, belong to different classes 

önigs theorems can be seen as ombinatorial minmax theorems, and the are among the 
earliest known results of this t p e . Min-max theorems state a dualit relation between two 
optimization problems, one a minimization and the other a maximization problem, henc 
the name. n the König-Egervar case, these optimization problems are the minimum node 
coering problem and the maximum matching problem in a bipartite graph; the theorem states 
that the optimum solutions, the minimum covers and the maximum matchings, are of equal 
size. The edge oloring theorem involves also tw optimization problems: The (trivial) task 
to compute the maximum degree in a biparti te graph is related to the problem to determine 
the minimum number of colors in an edge coloring. The relation is again that the best such 
values are equal See the top of page 3 for an illustration of the two König theorems. 
Min-max results are important from an optimization point of view because the provide 
simple certificates f optimalit For example, to disperse an doubt whether some given 

over is minimal, one can exhibit a matching of the same size. The technique works also the 
other w round, or it can be used to prove lower or upper bounds on the size of a minimal 
over or maximum matching, respectivel And, most important of all, optimalit riteria are 

the first step to design combinatorial optimization algorithms. 
It goes without s a i n g that the relevance of his theorems was more than clear to önig6 

and he devoted two entire sections of his book7 to their consequences. König showed, for 
instance, that the popular (but fortunatel rarel applied) marriage theorem can be derived 
in this w He noticed also that the two theorems themselves are related and proved that 
the edge coloring theorem follows from the König-Egerväry theorem8 . Reading his book one 
has the impression that König looked at the first as a weaker result than the latter, and 
we ould find no evidence that he onsidered the reverse implication. But we know toda 
that exactl this is also true: It is one of the consequences of Fulkerson [1971]'s powerful 
anti-blocking theory, developed about 40 years later, that the König-Egervar and the edge 
coloring theorem are equialent This means that for bipartite graphs not onl node covering 
and matching are dual problems as well as edge coloring is dual to degree omputation, but, 
going one step further, these two min-max relations form again dual pair of equivalent 
companion theorems, as Fulkerson called it. 

See also König [1936], Theorem XIV 13/14, page 249 of König [1986] 
See König [1936], Theorem XI 15, page 187 of König [1986]. 

6König [1936], page 191 of König [1986]: "Theorem [XIV] 13 is an important theorem that can be applied 
to problems of very different nature .. ."* [Applications follow.]. Page 191 of König [1986]: "Theorem [XI] 13 
[that is equivalent to the edge coloring Theorem XI 15] can be applied to various combinatorial problems . " * 
Applications follow.] 

7König [1936] XI § 5 (edge coloring) and XIV § 3 (Königgervary) See (in both cases) a l o the preceeding 
paragraphs. 

König [1936] page 250 of König [1986] 



1.1 Two lassical Theorems of König (Introduction 

Let's go through an pplication of anti-blocking theor to the K ö n i g - g e r v ä r / e d g e oloring 
setting now to see how this theor works. The anti-blocking relation deals with integer 
programs of a certain "packing" t p e , and start by formulating a weighted generalization 
of the matching problem in this way, the bipartite matching problem (BMP). Taking A as the 
node-edge incidenc matrix of the biparti te graph of interest (a row for each node, a column 
for each edge), this BMP can be formulated as the weighted packing problem 

max wTx x < x > binar 

ere, is a vector of all ones of compatible dimension, is a vector of nonnegative integer 
weights, and taking := is to look for a matching of maximum cardinality. The "packing 
structure" in (BMP) is that the onstraint stem is 0/1 and of the form Ax < x > 0. 
Note that "matching" is a s n o n for "edge packing", henc the name. 
Now we appl sequenc of transformations to this program: Removing the integralit 
stipulations, taking the dual, and requiring the dual variables to be integral again 

max wTx max wTx min y min y 1.1 
Ax < Ax < yT > w yT > w 

x> x> T T 

integral y T integral 

we arrive at another integer program on the right. This program is the weighted bipartite 
node coering problem (BCP) of edges b nodes 

BC min y T yT > wT, yT 0T, yT integral 

B C ) is an example of a weighted coering problem, which means in general that the con­
straint stem is of the form yTA > wT

7 yT > 0 with a 0/1 matrix A and arbitrar integer 
weights on the r i g h t h a n d side. 
But the BCP is, for , exactl the node overing problem of the Kön ig -ge rvä r theorem! 
This relation allows us to paraphrase Theorem 1.1.1 in integer programming terminolog as 
follows: For , the optimum objective values of the packing problem (BMP) and of the 
associated covering problem B P ) are equal. 
The ke point for all that follows now is that this equalit does not onl hold for , but 
for any integral vector . In other words, a weighted generalization of the K ö n i g - g e r v ä r 
theorem as above holds, and this is equivalent to s a i n g that the onstraint stem of the 
packing program (BMP) is totally dual integral TDI) . This s i t u a t i o n a TDI packing stem 
Ax < x > 0 with 0/1 matrix A is the habitat of anti-blocking theor and whenever w can 
establish it, the anti-blocking machiner automaticall gives us a second companion packing 
program, again with TDI constraint s s t e m and associated min-max theorem! I the König-
Egervär case, the companion theorem will turn out to be a weighted generalization of the 
edge oloring theorem for biparti te graphs. 

The companion program is onstructed as follows. We first set up the 0/1 incidence matrix B 
of all solutions of the packing program, i e . , in our case of all matchings versus edges (a row 
for each matching, a column for each edge). This matrix is called the anti-blocker of A; it 
serves as the constraint matrix of the companion packing program and its associated dual 

max max min yT min y T 1.2) 
x < x < T > wT T > wT 

x> x> T T 

integral y T integral 



nteger 0/1 rograms 

The main result of anti-blocking theor is that , if the original packing program had a TDI 
onstraint s s t e m , the companion packing program has again a TDI onstraint s s t e m . This 

means that all inequalities in the sequenc (1.2) hold with equality for all integral weights 
and this is the ompanion min-max theorem. 

What does the companion theorem sa in the König-Egervär case for The solutions 
of the left integer program in (1.2) are edge sets that intersect ever matching at most once. 
Sets of edges that emanate from an individual node have this property, and a minute's thought 
shows that these are all possible solutions, means to look for largest such set, i e . 
to ompute the maximum node degree; this is one half of the edge oloring theorem. The 
second integer program on the right of (1.2) provides the second half, because it asks for 
minimum over of edges b matchings. But as the matchings are exactl the feasible color 
classes for edge colorings, the integer program on the right asks for a minimum edge coloring. 
And arbitrar weights give rise to a weighted generalization of the edge oloring theorem. 
We can thus sa that the weighted version of the König-Egervär theorem implies, b virtue of 
anti-blocking theory, the validit of a companion theorem which is a weighted generalization 
of the edge coloring theorem. ne can work out that it is possible to reverse this reasoning 
such that these two theorems form an equivalent pair. And one finall obtains the two König 
theorems b setting :— 1. The reader will have noticed that , in contrast to what we have 
claimed on page 4, this anti-blocking argument does not prove the equivalence of the wo 
unweighted König theorems, that both onl follow from their (equivalent) weighted relatives. 
Well sometimes it 's clearer to lie a little 

Our discussion of Königs considerations was alread in terms of weighted versions of his 
theorems, and further generalizations take us directl to t o d a ' s areas of research on integer 
0/1 programming problems. 
The first question that omes up is whether TDI results with dual pairs of min-max theorems 
also hold for other 0/1 matrices than the incidence matrices of biparti te graphs? This question 
leads to perfect graph theory, where Loväsz [1971] has shown that dual min-max theorems 
on stable sets and clique coverings on the one hand and cliques and node colorings on the 
other hold exactl for perfect matrices, the clique matrices of perfect graphs. This famous 
result, tha t was conjectured by Berge [1961] and is known as the perfect graph theorem, does 
not impl that the four optimization problems that we have just mentioned can be solved in 
time that is polynomial in the input length of the perfec graph and the objective, because 
the associated clique matrix and its anti-blocker can be exponentiall large. But exactl this 
is nevertheless possible! Fundamental algorithmic results of Grötschel Loväsz & Schrijver 
1988], often termed the polynomial time equialence of separation and optimization, and 

techniques of semidefiite programming were the key innovations for this breakthrough 
Another appealing topic on perfect graphs and their clique matrices are recognition problems 
An important result in this area, which follows from results of Padberg [1973b, 1976] but was 
first stated and proved (in a different w ) b Grötschel, Loväsz & Schrijver [1984], is tha t 
the recognition of perfect graphs is in o-AfP. This question, as well as the unsolved problem 
whether one can certif in p o l n o m i a l time that a given graph is perfec or, weaker, whether 
a given 0/1 matrix is perfect, is intimatel related to a stronger and also unresolved version 
of Berge's conjecture. This strong perfect graph conjecture states that a graph is perfec if 
and onl if it does not contain an odd hole or its complement; it is known to hold for several 
subclasses of perfect graphs. 



1.1 Two lassical Theorems of König (Introduction 

Another direction of research onsiders general 0/1 matrices that do not correspond to clique 
matrices of perfect graphs. The LP relaxations of the packing (and the dual overing) prob­
lems associated to such matrices are not integral, much less TDI, and min-max theorems do 
not hold in general. To solve such packing problems with LP techniques, additional inequal 
ities are needed One branch of research, pioneered b adberg [1973a], is concerned with 
finding not onl an feasible, but in a sense best possible facet defiing inequalities and to 
develop omputationall useful procedures to find them. For special classes of 0/1 matrices it 
is sometimes not onl possible to determine some facets, but to obtain a complete description, 

e., a list of all facet defining inequalities. In such cases, there is a chance that it is possible 
to develop p o l n o m i a l LP based or ombinatorial optimization algorithms for the four opti 
mization problems that come up in packing: Maximum stable set, minimum clique overing, 
maximum clique, and minimum coloring. And in ver rare instances, complete descriptions 
give even rise to TDI s s t e m s with associated min-max theorems. 

Analogous problems as in the packing case, but much less complete results exist for set 
coering problems One obtains the four optimization problems of this area b simpl reversing 
all inequalities in the four packing analogues. But this "technique" does not carr over to all 
theorems and proofs! It is in particular not t rue that ever overing min-max theorem has an 
equivalent companion theorem, and the connection to graph theor is much weaker than in 
the packing case. The well behaved 0/1 matrices are called ideal, but there are no algorithmic 
results as for perfect matrices. The stud of facet defining inequalities for the nonideal case 
seems to be more diffcult as well and little is known here, but comparable (even though more 
difficult) results exist for the recognition of ideal matrices. 

Finall one can look at the equalit onstrained partitioning case, that leads to the con­
sideration of a certain class of balanced matrices. These matrices give rise to partitioning 
programs with integer LP relaxations, but the balanced matrices are onl subclass of all 
matrices with this property. A spectacular result in this area is the recent solution of the 
recognition problem b Conforti Cornuejols & Rao 1991]. There are no investigations to 
determine further inequalities for programs with unbalanced matrices, because this question 
reduces to the packing and covering case. 

The following eight sections of this chapter give a more detailed surve on results for the set 
packing, the set partitioning, and the set overing problem. Section 1.2 gives basic definitions 
and references to surve articles. Section 1. describes the fundamental connections of set 
packing to graph theor and of set covering to independence s s t e m s . Blocking and anti 
blocking theory is visited a first t ime in Section 1.4. This topic extends to ection 1.5, where 
we discuss perfec and ideal matrices and the associated famous min-max results, the perfec 
graph theorem with its man variants and the width-length and max flow-min cut properties 
of ideal matrices. Section 1.6 is about the recognition of perfect and ideal matrices and, 
closel related, their characterization in terms of forbidden minors. Balanced matrices are 
treated in a separate Section 1.7. The last wo sections surve p o l h e d r a l results. Section 1. 
deals with the set packing p o l t o p e , and ection 1.9 with the set covering p o l t o p e . 
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1.2 The Set Packing, Partitioning, and Covering Problem 

Let be an m x n 0/1 matrix and an integer n-vector of weights. The set packing ( S P ) , 
the set partitioning (SPP), and the set coering problem (SCP) are the integer 0/1 programs® 

max wTx min wTx min wTx 
Ax < A Ax > 

x> x> 
a ; e { , l } n i e { , l } n x&{,l}n. 

Associated to these three programs are six polhedra: 

PF 
onva; G { , l} x < ) := conva; eW x< 

o n v x G { , l} ^ ) := convx e l f 

o n v x G { , l } n x> ) := convx e r + : A i > }. 

The set packing polytope PjÄ), the set partitioning polytope f ) , and the set coering 
polytope Qi(A) are defined as the onvex hull of the set of feasible solutions of SP), SPP), 
and ( S C ) , respectively, the polhedra P(A), P(A), and Q{A) denote fractional relaxations 
{fractional set packing polytope etc.). The fundamental theorem of linear programming, that 
guarantees the existence of an optimal basic (vertex) solution, allows to state the three integer 
programs above as linear programs over the respective integer pol tope: 

max min min 
xePi xePf x € ) . 

Let us quickl point out some technicalities, mpt columns or rows in the onstraint 
matrix A are either redundant, lead to unboundedness, or to infeasibility, and we can assume 
without loss of generalit that A does not ontain such olumns or rows, (ii) If A does not 
ontain empt rows or columns, Pi (A) and Q{A) are a lwas nonempt but Pf(A) — 0 

is possible, iii) B definition, P( Pi ) n Q(A), ie., it is enough to stud Pi (A 
and Q{A) to know Pf(A). (iv) The set covering po l tope Q(A), as we have defined it, is 
bounded, but the relaxation A) is not This "trick" is convenient for dualit arguments and 
does not give aw information because all vertices of QA) lie within the unit cube, (v) The 
wo packing poltopes Pi (A) and P(A) are down monotone, the covering polhedra Q(A 

and Q(A) are (in slightl different senses) up monotone, (vi) These observations can be used 
to assume w.o.g. that set packing or covering problems have nonnegati (or positive 
objectie, and so for set partitioning problems as well b adding appropriate multiples of rows 
to the objective, (vii) Similar techniques allow transformations between the three integer 0/1 
programs, see Garfinkel & Nemhauser [1972] and Balas & Padberg [1976] for details. 
All three integer 0/1 programs have interpretations in terms of hypergraphs that show their 
combinatorial signfcance and explain their names. Namely, look at A as the edgenode 
incidence matrix of a hypergraph A (on the groundset { , . . . , n} of columns of A) with node 
weights Wj Then the packing problem asks for a maximum weight set of nodes that intersects 
all edges of A at most once, a maximum packing, the covering case is about a minimum weight 
set that intersects each edge at least once, a minimum coer or (old fashioned) transersal 
while in the last case a best partition of the groundset has to be determined 

i i i i ith 0 l d " i e r 0 ith 0 i 



1.3 Relations to table ets and ndependenc Systems 

We suggest the following surve articles on integer 0/1 programs: Fulkerson [1971] (blocking 
and anti-blocking t h e o r ) , Garfinkel & Nemhauser [1972, Chapter 8] (set partitioning, set 
overing), Balas & Padberg [1976] applications, set packing, set partitioning, set packing 

p o l t o p e , algorithms), Padberg [1977, 1979] (set packing p o l t o p e ) , Schrijver [1979] (blocking 
and anti-blocking, perfection, balancedness, total unimodularit extensions), Loväsz [1983] 
(perfect graphs), Grötschel, Loväsz & Schrijver [1988] (set packing p o l t o p e , perfect graphs), 
Ceria, Nobili &; Sassano [1997] (set covering), Conforti et al. [1994] and Conforti Cornuejols, 
Kapoor & skovic [1997] (perfect, ideal, and balanced 0/1 and 0/ ± 1 matrices), Schrijver 
[1986, Chapter 9 & 22] (textbook), and finall Balinski [1965] as a "historical" article. 

1.3 elations t Stable Sets and Independence Systems 

We discuss in this section two insights that are the foundations for the combinatorial stud 
of the set packing and the set covering problem: The correspondence between set packings 
and stable sets, tha t builds the bridge from packing 0/1 integer programs to graph theor 
and the relation of set covering to independence s s t e m s . 

Figure 1.1: onstructing a Column Intersection Graph 

We start with set packing. Edmonds [1962, last two sentences on page 498] came up with 
the idea to associate to a set packing problem ( S P ) the following conflict or column inter­
section graph G(A): The nodes of GA) are the olumn( indice)s of A, and there is an edge 
between two olumn( node)s i and j if the intersect, i e . Aj. • A. / 0, see Figure 1.1. The 
onstruction has the propert tha t the incidenc vectors of stable sets in (A), i.e., sets of 

pairwise nonadjacent nodes, are exactl the feasible solutions of the packing program (SSP). 
This means that the set packing program ( S P ) is simpl an integer programming formulation 
of the stable set problem (SSP) on the associated conflict graph GA) with node weights Wj 
For this reason, we will occasionall also denote Pi (A) b Pi(G). 

Two consequences of this equivalence are: (i) Two 0/1 matrices A and A' give rise to the 
same set packing problem if and onl if their intersection graphs coincide, (ii) Ever row of A 
is the incidenc vector of a clique in (A), i.e., a set of pairwise adjacent nodes. In particular, 
G(A) G(A if A' is the cl iquenode incidence matrix of all cliques in G(A), or of a set 
of cliques such that each edge is ontained in some clique, or of all maximum cliques with 
respec to set inclusion, see Padberg [1973a]. Note that the last matrix contains a maximum 
of clique information without an redundancies. 

Set coering is known to be equivalent to optimization over independence systems, see, e.g. 
Laurent [1989] or Nobili & assano [1989], b the ffine transformation y := 1 — x: 
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in wT wT (I max T 
w 

" 
iii 

€ { , l} iv e{, 

To see that the program on the right is an optimization problem over an independence s s t e m 
we have to onstruct a suitable independenc stem. To do this, note first that one can 
delete from (ISP) an row that strictl ontains some other row. A 0/1 matrix without such 
redundant rows is called proper (Fulkerson [1971]). Assuming w . o . g . tha t A is proper, we 
can take its rows as the incidenc vectors of the circuits of an independence system 3(A) on 
the groundset of commn( i n d i c s of A. Then the r i g h t h a n d side (̂ 4 — J ) l = | supp 
of ever onstraint i in (ISP) equals the rank of the circuit supp^Lj and (ISP) is an integer 
programming formulation of the problem to find an independent set of maximum weight with 
respect to in 3A). 

We remark that there is also a graph theoretic formulation of the set covering problem in 
terms of a bipartite row-o lumn incidence graph that has been proposed, e.g., by Sassano 
[1989] and Cornuejols & assano [1989]. 

Thinking again about the relation of set packing and set covering in terms of stable sets and 
independenc stems, one makes the following observations, (i) The stable sets in a graph 
form an independence s s t e m , i e . , set packing is a special case of set overing with additional 
structure, (ii) This argument holds for almost an other ombinatorial optimization problem 
as well; we mention here in particular the generalized set packing problem and the generalized 
set coering problem, that arise from their s tandard relatives by allowing for an arbitrar 
uniform r i g h t h a n d side, see Sekiguchi [1983] (iii) Not ever independence s s t e m can be 
obtained from stable sets of some appropriatel onstructed graph, see Nemhauser & Trotter 
[1973, Theorem 4.1] or Padberg [1973b, Remark 3.15] for details. 

1.4 locking and Anti-Blocking airs 

The theor of blocking and anti-blocking pairs of matrices and p o l h e d r a , developed in Fulk­
erson [1970, 1971, 1972], provides a framework for the stud of packing and covering problems 
that explains why packing and overing theorems occur in dual pairs. Its technical vehicle is 
the dualit (or polarity, who likes the term better) between constraints and vertices/extreme 
rays of p o l h e d r a . We discuss the basics of the theor here in a general setting for nonnegative 
matrices and specialize to the ombinatorial 0/1 case in the following Sections 1.5 and 1.6. 
The center of the theor is the notion of a blocking and anti-blocking pair of matrices and 
p o l h e d r a that we introduce now. Consider a nonnegati (not necessarily 0/1) matrix A and 
the associated fractional packing problem (FPP) and the fractional coering problem FCP) 

max FC min 

x < 

x > 0. 

Associated to these problems are the fractional packing polytope and the fractional coering 
polyhedron, that we denote, slightl extending our notation, by P(A) and Q(A), respectively 
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W e s description theorem, see, e.g. chrijver [1986, Corollar 7.1b] these bodies are 
generated b their vertices and extreme r a s . Denote b a b l 4 the matrix that has the 
vertices of A) as its rows, and by b l 4 the matrix that has the vertices of QA) as its rows 
Then we have 

) = x <ER onv vert o n v a b l 

) = x<EW = conv vert onv(bl M™. 

(We must assume that does not ontain empt olumns for the packing equations to hold 
abl is called the anti-blocker of the matrix A, b\A is the blocker of A. Associated to these 
matrices are again a fractional packing p o l t o p e and another fractional covering p o l h e d r o n 

a b l ) := V x £ : ab\ ab\ 

b \ ) := yTx > V X G € R bl ( b \ ) . 

abl is called the anti-blocker of the p o l t o p e ) , bl is the blocker of ) . The 
general dualit between constraints and vertices/extreme ra of polyhedra translates here 
into a dualit relation between anti-blocking and blocking matrices and polyhedra. 

.4 h e o r e m (Blocking d A c k i n g Pairs , F k e r s o n 1971]) 
For any nonnegative matrix A holds: 

(i) If a is a vertex of &b\ P (A), aTx < 1 isei (iv) If a is a vertex ofblQ(A), a is a 
ther a facet ofP(A), or can he obtained facet o f Q . In particular 
from a facet by setting some lefthand 

side coefficients to zero. In particular v) bl ) = 

(ii) a b l ) = , M , . . 
vi) bl is proper and 

(Hi) If A has no empty column, so does abl A. bl A <^= A is proper 

ere, abl is short for abl abl, and so on. Theorem 1.4.1 (ii) and (v) state that the anti 
blocking relation gives indeed rise to a dual anti-blocking pair of polyhedra and the blocking 
relation to a dual blocking pair f polyhedra. This duality carries over to the associated 
matrices. Theorem 1.4.1 iv) and (vi) establishes blocking pair of proper matrices. The 
dualit is a bit distorted in the anti-blocking case, because the anti-blocking relation produces 
dominated vertices/rows. Since onl the maximal rows give rise to facets, one does not insist 
on including dominated rows in a packing matrix, and calls two matrices A and B an anti­
blocking pair of matrices, if the associated packing p o l h e d r a constitute an anti-blocking pair. 
Blocking and anti-blocking pairs of matrices (and p o l h e d r a ) are characterized b a set of 
four relations that provide a link to optimization Let A and B be two nonnegative matrices 
and consider the equalities 

min y = max B 1.3) max y = min B 1. 

> wT < wT 

y
T o T 

ere, min B is short for min B : i = , . . . , m } , and so on (1.3) holds for all 
nonnegati ectors , we sa that the min-max equalit holds for the ordered pair of matrices 
A B. If ( 1 . ) holds for all nonnegative vectors w, we sa that the max-min equality holds for 
the ordered pair of matrices A B 
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The other two relations are inequalities: 

max max 1.5) min min Bw < 1.6) 

f (1.5) holds for all nonnegati ectors and , we sa that the max-max inequality holds 
for the (unordered) pair of matrices A and B If (1.6) holds for all nonnegativ vectors 
and I, we sa that the min-min inequality holds for the (unordered) pair of matrices and 
These equations and inequalities are related to the anti-blocking and the blocking relation via 
appropriate scalings of the vectors and I such that the above optima become one; this is 
a l w s possible except in the trivial cases — 0 and/or / = 0. Such a scaling makes w and 
a member of the anti-blocking/blocking p o l h e d r o n . These arguments can be used to prove 

2 T e o r e m e r i z i o n of ckin cking Pairs , F u k e r s o n 
1971]) 

For any pair of nonnegative matrices A and B For any pair of proper nonnegative matrices A 
with no empty columns, the following state and B, the following statements are equiva 
ments are equivalent lent 

(i) A and are an antiblocking pair (vi) A and are a blocking pair 

(ii) andP() are an antiblocking pair (vii) and B) are a blocking pair 

(Hi) The minmax equality holds for A viii) The max-min equality holds for A 

(iv) The minmax equality holds for A. (ix) The max-min equality holds for A. 

(v) The maxmax inequality holds for A and x) The minmin inequality holds for A and 

Theorem 1.4.2 bears on dual min-max results for packing and covering optimization problems 
We give an interpretation of the anti-blocking part (iii) and (iv) of Theorem 1.4.2 in terms of 
the fractional packing problem, the covering case is analogous. The min-max equalit (1.3) 
can be interpreted as a "weighted max fractional packing-min fractional covering theorem": 
The rows of A are used for overing, the rows of B, that orrespond to the feasible solutions of 
(FPP) , for packing. If this min-max theorem can be established, anti-blocking theor ields 
a second, equivalent theorem of the same t p e , where the overing-packing roles of A and B 
are exchanged 

1.5 Perfect and Ideal Matrices 

The main point of interest in anti-blocking and blocking theor is the stud of anti-blocking 
and blocking pairs of matrices A and B tha t are both 0/1. S i n g that a 0/1 matrix A has a 
0/1 anti-blocking matrix B is definition equivalent to integralit of the fractional packing 
p o l t o p e associated to ; a 0/1 matrix A tha t gives rise to such an integral packing p o l t o p e 
P() = Pi (A) is called perfect. Analogous for covering: 0/1 blocking matrices correspond to 
integral covering p o l h e d r a Q(A) = Q(A); a 0/1 matrix A with this propert is called ideal  

Theorem 1.4.2, perfect matrices occur in anti-blocking pairs and so do ideal matrices occur 
in blocking pairs. Associated to an anti-blocking/blocking pair of perfect/ideal matrices is a 
pair of equivalent min-max/max-min equalities and one can either prove one of the equalities 
to establish the second plus the anti-blocking/blocking propert plus perfection/idealit of a 
0/1 matrix pair, or one can prove one of the latter two properties to obtain wo m i n - m a x m a x -
min results. 
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Anti-blocking/blocking pairs of perfect /ideal matrices often have combinatorial significanc 
and this brings up the existenc question for combinatorial coering and packing theorems. 
The min-max/max-min equalities (1.3) and (1.4) are not of combinatorial type, because the 
allow for fractional solutions of the covering/packing program. But onsider stronger, integer 
forms of these relations for 0/1 matrices A and B 

min y = max B 1.7 max y = min B 1.8) 

> wT < wT 

T T 

yT Z™ yT Z m 

f (1.7) holds for all nonnegatie integer ectors , we sa that the strong min-max equalit 
holds for the ordered pair of 0/1 matrices A and B; this is equivalent to stating that the 
packing s s t e m Ax 0 is TDI If 1.8) holds for all nonnegati integer ectors 

we sa that the strong max-min equalit holds for the ordered pair of 0/1 matrices A and 
B\ this relation corresponds to a TDI overing s s t e m Ax 0. The combinatorial 
content of these relations is the following. The strong min-max equalit can be interpreted 
as a combinatorial min covering-max packing theorem for an anti-blocking pair of perfec 
matrices: The smallest number of rows of A such that each olumn j is covered b at least 
Wj rows is equal to the largest packing of columns with respect to , where the packings are 
encoded in the rows of B An analogous statement holds in the strong max-min case for 
blocking pair of ideal matrices. 

We mention wo famous examples of such relations to point out the significanc of this concept. 
ilorth's theorem is an example of a well-known strong min-max equalit in the ontext of 

partiall ordered sets Let A be the incidence matrix of all chains of some given poset, let 
B be the incidence matrix of all its antichains, and consider the strong min-max equalit 
for A B: I states that , for an nonnegative integer vector of weights associated to the 
elements of the poset, the smallest number of chains such that each element is contained in 
at least Wj chains is equal to the maximum -weight of an antichain. For , this is 

the classical Dilworth theorem, and one can generalize it to the weighted case b appropriate 
"replications" of poset elements (the reader ma verif tha t this is eas). The validit of this 
weighted generalization of Dilworth's theorem implies that A and B form an anti-blocking 
pair of perfec matrices, because the strong min-max equalit for B ields, triviall the 
fractional min-max equalit for A B. This argument implies in turn the min-max equalit for 
i? A in its fractional form. What about the strong, integer version for i? AI One can work 
out that it holds as well and this is not strike of luck! But let's stop here for the moment 
and just consider the combinatorial ontent of the strong min-max equalit for B A: This 
theorem is identical to the weighted Dilworth theorem, except that the words "antichain" 
and "chain" have changed their places a combinatorial companion theorem. 
The most famous example of a strong max-min equalit is probabl the max flowmin cut 
theorem of Ford, Jr. & Fulkerson [1962] for two-terminal networks. Taking A as the incidence 
matrix of all (s, i)-paths versus edges and B as the incidenc matrix of all (s, i ) c u t s versus 
edges, the max flow-min cut theorem turns out to be exactl the strong max-min equalit for 
A, B. Hence, the incidenc matrices of (s , t ) -paths and ( s , i c u t s in a two-terminal network 
form a blocking pair of ideal matrices. an one also produc a companion theorem b inter­
changing the roles of paths and cuts as we did with the antichains and chains in Dilworth' 
theorem The answer is yes and no: One can in this particular case, but not in general. 
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We have alread hinted at one of the main insights of anti-blocking theor in the Dilworth 
example and we state this result now: The perfection of a matrix A is equivalent to the validit 
of the strong min-max equality for A and abl A which is itself equivalent to the validit of 
companion min-max theorem for a b l 4 and A 

1.5. T h e o r e m (Strong M i n - M a x Equality, Fulkerson [1971]) 
Let be a 0/1 matrix without empty columns The following statements are equivalent 

(i) A is perfect v) The strong minmax equalit holds for 

(ii) abl is perfect A, abl A. 

(Hi) The system Ax < x > is integral Vi) The strong minmax equalit holds for 

(iv) The system Ax < x > is TDI abl A A. 

nterpreting this result in terms of the stable set problem, see ection 1.3, we enter the realm 
of perfect graph theory. A minute ' thought shows that the onl candidate for a 0/1 anti 
blocker of the incidence matrix B of all stable sets of some given graph G is the incidence 
matrix A of all cliques versus nodes. Now onsider the two possible strong min-max equations; 
the optima of the four associated optimization problems are ommonl denoted b 

XW mm y T 

T > wT 

T 

yT integral 

min yT 

> VJT  

T 

yT integral 

'•= max B := max 

is called the weighted clique coering number of is the weighted stabilit 
umber, (G) the weighted coloring number, and u>(G the weighted clique umber Wi th 

this terminolog the strong min-max equalit for translates into the validity of the 
equation (G) = (G) for an nonnegative integer vector , and a graph with this propert 
is called ^-pluperfect imilarly, a P^uPerfec^ graph satisfies the second strong min-max 
equalit (G) = u ) forall " , and a pluperfect graph is both - and -pluperfect. 
Theorem 1.5.1 reads in this language as follows. 

5.2 T h e o r e m (Pluperfect G a p h T e o r e m , Fulkerson [1971]) 
graph is x-pluperfect if and only if it is x~pluperfect if and only if it is pluperfect 

This theorem can also be stated in terms of complement graphs noting that -pluperfection 
of a graph is equivalent to %-pluperfection of the complement graph G This equivalent 
version is: graph is -pluperfect if and onl if its complement is. 

One of the big questions in this context and the original motivation for the development 
of the entire anti-blocking theor was the validit of Berge [1961]'s famous perfect graph 
conjecture The conjecture claimed stronger form of the pluperfect graph theorem where 
w is not required to run through all nonnegative integer vectors , but onl through all 0/1 
vectors. In exactl the same w as in the pluperfec case, this oncept gives rise to '-perfect 

perfect, and perfect graphs, henc the onjecture name. Fulkersons idea to prove it was 
to show its equivalence to the pluperfec graph theorem; to establish this it is enough to 
prove the following replication lemma: Duplicating a vertex of a perfec graph and joining 
the obtained two vertices b an edge gives again a perfec graph The replication lemma and 
hence the conjecture was proved b Loväsz [1971] and, shortl after the result had become 
known, also by Fulkerson [1973]. 
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5.3 T h e o r e m (Perfect Graph T h e o r e m , Loväsz [1971]) 
A graph is x-perfect if and only if it is x-perfect if and only if it is perfect if and only if it is 
pluperfect 

There is also a complement version of the perfec graph theorem: graph is -perfect if and 
onl if its complement is. And let us further explicitl state an integer programming form 
of the perfect graph theorem that will turn out to have a blocking analogon. We include 
strong version of the max-max inequalit with identical 0 /1 vectors and I, also proved b 
Loväsz [1972] and Fulkerson [1973]. 

1.5. T h e o r e m P e r f e t Graph T h e o r e m , Loväsz [1971], Fulkerson [1973]) 
For 0/1 matrices A and without empty columns, the following statements are equivalent 

(i) A and B are an antiblocking pair 

(ii) The strong minmax equality holds for A and all nonnegative integer vectors 

(Hi) The strong minmax equality holds for and all nonnegative integer vectors 

(iv) The strong minmax equality holds for A and all 0/1 vectors 

(v) The strong minmax equality holds for and all 0/1 vectors . 

(vi) The max-max inequality holds for A and and all nonnegative integer vectors and 

(vii) The maxmax inequality holds for A and and all 0/1 vectors 

ere, we have used the expression the strong min-max equalit holds" in an obvious sense, 
slightl extending our terminology. A third interesting linear programming form of the perfect 
graph theorem is again due to Loväsz [1971]. 

5.5 h e o r e m (Perfect G a p h heorem, Loväsz [1971]) 
0/1 matrix A without empty columns is perfect if and only if the linear program max wTx 

x < 1 x > 0 has an integer optimum value for all 0/1 vectors 

Let' take a break from anti-blocking and perfect graphs at this point and turn to the blocking 
case. Unfortunatel the anti-blocking results of this section do not all carr over: It is not 
true and the main differenc between blocking and anti-blocking theor that the integrality of 
the fractional overing p o l h e d r o n corresponds to a TDI onstraint s s t e m , neither is it t rue 
that the strong max-min inequalit for A B implies the strong max-min equalit for B , see 
Fulkerson [1971] for ounterexample. And there are also no results that compare to perfec 
graph theory, because there is no suitable graph version of the set covering problem. 
The other Theorems 1.5.4 and 1.5.5 have analogues that are due to Lehman [1979, 1981]; 
proof of these difficult results are given in Padberg [1993] (from a p o l h e d r a l point of view) 
and mour [1990] (from a h p e r g r a p h point of view). We state them in the following two 
theorems, where we adopt the conventions that 0 • o = 0 (Theorem 1.5.6 (iii)) and that is 
an integer (Theorem 1.5.7). 

.5 . h e o r e m ( W d L e n g t h roperty of Ideal Matr ices , 1979 1981] 
For 0/1 matrices A and , the following statements are equivalent: 

(i) A and are a blocking pair 

(ii) The minmin inequality holds for all nonnegative integer vectors and 

(iii) The minmin inequality holds for all vectors w and I restricted to coefficients 0, 1 
oo, and at most one occurrence of another coefficient that is equal to the number of 

1-coefEcients minus one (The fourth type of coefficients is solely needed to exclude the 

incidence matrices of "degenerate projective planes", see the following Section 1.6.) 
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5.7 T h e o r e m ( M a x F l o w M i n Cut P r o p e r t y of de M a t r i e s , h m a n [1981]) 
A 0/1 matrix is ideal if and only if the linear program min wTx Ax > 1 x > has an integer 
optimum value for all 0/1 / vectors 

The names for these results come from Lehman's t e rmino log ; his width-length inequalit is 
the same as the min-min inequality, the max flow-min cut equality is the max-min equalit 
Generalizing the concepts of perfection and ideality to 0 / ± l matrices, we enter an area of 
research that is related to the stud of totally unimodular matrices It is beyond the scope of 
this chapter to discuss these fields or integral/TDI 0 / ± l systems in general; s u r v e s on these 
topics are given in Padberg [1975a] and Conforti, Cornuejols, Kapoor & Vuskovic [1997] 

1.6 inor Characterizations 

Both the perfect graph theorem and the max flow-min cut characterization of ideal matrices 
have alternative interpretations in terms of matrix minors and, in the anti-blocking case, also 
of graph minors that we discuss in this section The stud of minors bears on the recognition 
problem for perfect and ideal matrices. 
We start in the anti-blocking setting. Consider the perfec graph theorem in its linear pro­
gramming form 1.5.5 and note that setting an objective coeffcient Wj to zero has the same 
ffect on the optimum objective value as removing olumn from the matrix A Equiv 

lently, w ould remove node j from the column intersection graph or, yet another equivalent 
version, w ould intersect the fractional packing p o l t o p e P(A) with the h p e r p l a n e = 0 
and eliminate coordinate j . The operation that we have just described is called a contraction 
of coordinate (or column) j of the matrix A or of the intersection graph G(A) or of the frac 
tional packing p o l t o p e (A), and the resulting matrix or graph or p o l t o p e is contraction 
minor of the original object. With this terminology, considering all 0/1 objectives is the same 
as considering objective for all contraction minors and one obtains various minor forms of 
the perfec graph theorem b replacing the expression "for all 0/1 vectors " with "for all 

ontraction minors and ". For example, Theorems 1.5.5 and 1.5.4 translate (in different 
) into the following minor results. 

1 T h e o r e m (Perfect Graph T h e o r e m , Loväsz [1971]) 
0/1 matrix A without empty columns is perfect if and only if the linear program max 

< 1 > 0 has an integer optimum value for all contraction minors A' of A. 

1.6.2 T h e o r e m (Perfect Graph T h e o r e m , L o v a z [1971 1 9 ] ) 
The following statements are equivalent for a graph G: 

(i) G is perfect (iv) a{G \V for all minors G 

(Ü) G') = G' for all minors G' of G. °f G' 

(Hi) ) = for all minors G ofG. (Here, a minor is always a contraction minor 

The contraction technique can be used also in the blocking scenario to deal with the zero 
objective oeffcients in Theorem 1.5.7. A little more difficult is the treatment of the 
oefc ients . amounts to forcing to one; this ffec can also be obtained b removing 
olumn j from the matrix A as well as all rows that A. intersects, or b an intersection 

of the fractional covering p o l h e d r o n Q(A) with the h p e r p l a n e and a subsequent 
elimination of coordinate j . This operation is called a deletion of coordinate (or column) of 
the matrix A or the p o l h e d r o n Q(A) and its result is a deletion minor It is straightforward 
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to show that ontraction and deletion commute and one can thus call the matrix A' the arises 
b ontracting and deleting some set of coordinates of A (ontraction-deletion minor of A 
This nomenclature gives again rise to a number of minor theorems for ideal matrices, like 

3 T h e o r e m (Minor Character izat ion of Ide r i e s , [1981]) 
A 0/1 matrix is ideal if and only if the linear program min Tx A'x > has an integer 
optimum value for all contractiondeletion minors A1 of A. 

The minor characterizations for perfect and ideal matrices bear on the recognition problems 
for these classes: Given a 0/1 matrix A is it perfect/ideal or not? It is not known whether 
an of the recognition problems is in J\f or not, but Theorems 1.6.1 and 1.6. give a first 
o-HV answer. Recognizing perfect and ideal matrices is in o-JfP, if the input length is 

assumed to be ( x m) , i e . , if we consider A the input: Just exhibit minor such that 1.6.1 
or 1.6. fail and verify this b solving a linear program! This result is not ver deep, however, 
because one doesn't need the perfec graph theorem or the max flow-min cut characterization 
to ome up with p o l n o m i a l certificates for the existenc of a fractional basic solution of an 
explicitl given linear s s t e m . 
A n w a y , researchers are not satisfied with results of this t p e and we explain now wh this 
is so for the perfection test. The problem is that the recognition of imperfect matrices does 
not carr over to the recognition of imperfect graphs The reason is that although we could 
verif clique matrix of a graph as imperfec in p o l n o m i a l time, this does not help much 
for an effective investigation of some given graph, because a clique matrix has in general 
alread exponential size in the encoding length of the graph From this point of view 

o-AfP omplexit result as above "seems to be cheating; what we reall want are algorithms 
with running time p o l n o m i a l in the number of vertices [o lumns of ]" ( S m o u r [1990]). 
And nothing else but exactl this is in fact possible! One can devise such algorithms for the 
verification of imperfection as well as for the verification of nonideality, the latter in a sense 
that is yet to be made precise. 

The methods that resolve these questions are based on the concepts of minimall imerfect 
(or almost perfect) and minimall nonideal (or almost ideal) 0 /1 matrices, tha t are not per­
fect/ideal themselves, but any of their deletion/contraction-deletion minors is. Obviousl 
any imperfect/nonideal matrix must contain such a structure and recognition algorithm 
can in principle certif perfection b making sure that no such minor exists, imperfection 
b exhibiting one, and so for the idealit test. One approach to the recognition problem is 
hence to stud the structure of minimall imperfec and nonideal matrices. This structure is 
still not full understood, but to a significant extent and there are, in particular, complete 
characterizations of minimall imperfec and minimall nonideal matrices, and of perfect and 
ideal matrices in terms of forbidden minors A final terminological remark: As usual, there 
are also minimall imerfect (or almost perfect) graphs, and the same concepts exist for the 
fractional packing and covering polyhedra, that are called almost integral 
We begin with results on minimal imperfection, where the matrix structures of interest have 
the following appearance. We say that a n r x 0/1 matrix A has property nUt if 

ontains a regular n matrix with column and row sums all equal to 

ii) each row of which is not row of is either equal to some row of or has row 

sum strictl less than 

The matrix , that is obviousl unique up to permutations of rows whenever it exists, is 
called the core of A and denoted b ore A 
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e o r e m (Minimal ly Imperfect Matr ices , P a d b e r g [19 1 9 6 ] 
n 0/1 matrix A is minimally imperfect if and only if 

(i) A has propert TTUin, where 1 mod u and either n or UJ < [( ) /2j 

(ii) A has no contraction minor A with propert nUt f°r anY k < and any such 
that 2 < c o < l 

mxn 0/1 matrix A is perfect if and only if A does not contain any m contraction minor  
having propert r^^ for k < min { , n} and either k or u)< [k l ) / 2 j 

This theorem makes some progress toward the o-Af omplexit part of the recognition 
problem for perfect graphs, because a core has an encoding length that is p o l n o m i a l in 
and looks like a good candidate to ertif propert rw> for some contraction minor of 
the (onl implicitl known) clique matrix A of some given graph G. The onl problem that 
remains is to verif tha t some 0/1 matrix is a core of A1. In other words: How does one 
prove that all cliques in G [ s u p p 4 ] of size are alread ontained in A and that there are 
no larger ones? The answer to this question is based on strong structural properties of 
dual pairs of minimall imperfect matrices, how ould it be different! 
To start , note that the ore of a minimally imperfect matrix A with propert TrUi produces 

fractional vertex ~ ( o r e A)~l ( , . . . , 1 / ) of the almost integral p o l t o p e P{A). 
adberg [1976] has shown that this is the only fractional vertex. And much more is true: 

1.6.5 T h e o r e m (Pairs of Min imal ly erfect Matr ices , P a d b e r g [1973b, 1976]) 
Let A be an m x n 0/1 matrix and let B = a b b A be the integral part of its antiblocker 

Suppose A is minimally imperfect with propert TTU,^ 
Then 

(i) is also minimally imperfect 

(ii) A has property -K^^ and B has property ira,n where uia + 1 — 
A and B have unique cores that satisfy the matrix equation o r e o r e = E I. 

(Hi) () has the unique fractional vertex x (1/OJ, ..., 1/co). 

is adjacent to precisel vertices of P , namely, the rows of ove 

Moreover Pi (A) = x < x > 0 lTx < } 
ere, E is matrix of all ones, is the identity matrix, and the matrix equation in ii) is 

supposed to be understood modulo suitable column and row permutations. 
Theorem 1.6.5 has interesting onsequences. Note that part (iii) states that all that misses to 
make an almost integral packing p o l t o p e integral is one simple rank facet. This situation can 
ome up in wo w s . The first case is when A is not a clique matrix of its conflict graph G(A), 
e., some clique row is missing. As A is minimall imperfect, it must have propert 

G(A) must be a clique, and the missing row is lTx < 1. The second and exciting case is when  
is a clique matrix. Then see from Theorem 1.6.5 the following. 

) has exactl maximum cliques of size ) and exactl maximum 
stable sets of size G); the incidence vectors of these maximum cliques and stable 
sets are linearl independent. Each maximum clique intersects all but exactl one 
maximum stable set, its so-called partner, and vic versa. 

ii) For ever node j , G can be partitioned into maximum cliques of size and 
maximum stable sets of size , where 1 = 

ere, ej denotes the unit ector that has a one in coordinate j , and is the minor that 
arises from G b contracting node j . (i) is derived from olumn of the matrix equation 
ore A ore 1 — (ii) using Theorem 1.6.2 (iv). 
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graph that satisfies the strong ondition ii) on the preceding page is called partitionabl 
Note that , for such graph G (G) and G) must hold, and sinc a(Go(G) 

, partitionable graphs are imperfect b virtue of Theorem 1.6.2. ut it is 
eas to verif that a graph or a ontraction minor of a graph is partitionable, and this finall 
proves that perfection of a graph is propert in o-HV. This omplexity result was first 
stated (and proved in a different w ) b Grötschel, Loväsz & Schrijver [1984]. 

.6 e o r e m ogni t ion of Perfect Graphs , P a d b e r g [1973b, 1976] , G c h 
ovä &: S c h r i v e r [1984]) The recognition problem for perfect graphs is in co 

ut is that all that one can derive from adberg strong onditions ) and ii One can 
not help thinking that the stop just b hair short of a much more explicit characterization 
of all minimall imperfec matrices, which is a long standing research objective. In fact, onl 
wo infinite, but simple classes of minimall imperfect matrices are known The circulants 

C(2 ,2) , that are the incidenc matrices of odd holes (that w denote with the same 
mbol), and their anti-blockers abl C(2k 1, 2), the incidence matrices of the odd antiholes, 

the complements of the odd holes. Is that all? The strong perfect graph conjecture of Berge 
[1961], which is perhaps the most famous open question in graph theor claims that it is 
If so, odd holes and antiholes furnish simple minor certificates of imperfection. But there is 
more: I does not seem to be completel out of the question to detec the presence or the 
absence of odd holes and antiholes in p o l n o m i a l time, although nobod knows for now if 
this is possible or not. But if the strong perfec graph conjecture holds, and if the recognition 
problems for odd holes and antiholes can be solved in p o l n o m i a l time as well, these results 
together would solve the recognition problem for perfect graphs. 

Chvätal [1976] pointed out that the strong perfec graph onjecture holds if one can show 
that every minimall imperfect graph G ontains a spanning circulant C( + 1, ), i e . , the 
nodes of G can be numbered 0 , . . . such that an successive nodes , . . . i l 

(indices taken modulo aw ) form a clique; here, we denote (G), ) . When 
adberg' onditions became known, there was some hope that the would be strong enough 

to establish this circulant structure in ever minimall imperfect graph But Bland, Huang 
& Trotter [1979] showed that one can not prove the strong perfect graph conjecture in this 

y, because Padberg's condition (i) follows from (ii), and the partitionable graphs, that 
satisf (ii), do not all contain spanning circulants Cau> l ) . 
We turn now to the minimall nonideal matrices, where minor characterizations are known 
that are similar to the packing case, but more complicated. We start with the analogon of 
the imperfection propert n^^ We sa an 0/1 matrix A has property < if 

ontains a regular n matrix with column and row sums all equal to 

ii) each row of which is not row of is either equal to some row of or has row 

sum strictl larger than 

The matrix is again unique up to permutations of rows whenever it exists, and it is also 
called the core of A and denoted ore A 
Unlike in the packing case there is, however, an infinite class of minimall nonideal matrices 
that do not have constant row and olumn sums. These incidence matrices of degenerate 
projecti planes (points versus lines read 

J 
where denotes the identit matrix. 
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1.6.7 T h e o r e m Min imal ly Non idea l Matr ices , L e h m a n 1981] P a e r g [ 1 9 9 ] ) 
If a proper m x 0/1 matrix is minimally nonideal then either A J or 

(i) A has propert ipa,n> where ^ mod 

(ii) A has no m k contractiondeletion minor A with propert for any < n and 

any such that ^ mod 

A mxn 0/1 matrix A is ideal if and only if A does not contain any contractiondeletion 

minor A having propert f°r 3 < k < min { , n} 

The requirement that is proper can also be removed, but then we must change ) from 
UA J " into "A ontains J and some additional redundant rows". Note also that we have 
not claimed an equivalence as for propert irUj 

As the minimall imperfect matrices occur in anti-blocking pairs, so do their minimall non-
ideal relatives. 

e o r e m (Pairs of i n i m l l y onide M a t r i e s , 1981] , see so 
P a d e r g [1993] a S e y m o u r [1990]) 
Let A be a proper m n 0/1 matrix and let bl / A he the integral part of its blocker 
Suppose A is minimally nonideal Then 

(i) is also minimally nonideal 

(ii) Either 

a) A 

(A) has the unique fractional vertex ~ (n 2) / (n 1), l / ( n , . . . , l  
is adjacent to precisel vertices o f , namely, the rows of 

Moreover Q(A) = x>0{ 2) + Y > 1} 

or 

c) A has property tpa,n &n(l B has property <pßtn where aß = + r min } . 
A and B have unique cores that satisfy the matrix equation o r e o r e ) T = E + rl. 

(A) has the unique fractional vertex ' 1 / a , . . . , 1/a).  
is adjacent to precisel vertices o f , namely, the rows of ore 

Moreover Q(A) = x > 0 lTx > ß} 

The assumption that is proper can again be removed as in Theorem 1.6.7. Compare also 
the coefficients in the le f thand side of the additional facet in Theorem 1.6. (ii) (b) to the 
objective coefficients in Theorem 1.5.6 (iii) to see that the fourth t p e of objective coefficients 
(the 2) was onl needed to deal with the degenerate projective planes J 
S m o u r [1990] used Lehman' minor characterization 1.6.8 (for which he also gives a proof 
to establish that idealit is a co-NP propert in a sense that can be seen as the analogon of 
Theorem 1.6.6 on the recognition of perfection S y m o u r views the xn 0 /1 matrix A of 
interest as the incidence matrix of a h p e r g r a p h that "should" have an encoding length that 
is polynomial in the number n of elements. This creates the problem that the encoding length 
of an m x n 0/1 matrix A is in general certainl not p o l n o m i a l in n S m o u r assumes thus 
that A is given in the form of a filter oracle, tha t decides in constant time whether given 0/1 
vector ontains a row of or not. Calling this oracle a number of times that is p o l n o m i a l 
in , one can certif the existenc of blocking matrices core A and core B with properties as 
in Lehman's Theorem 1.6.8 that ensure that A is nonideal 
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ß 1 0 ß 0 
0 

0 
0 

0 0 0 0 

1.6.9 T h e o r e m (Recogn i t ion of Ideal Matr ices , S e y m o u r [1990]) 
The recognition problem for ideal matrices that are given by a ßlter oracle is in co 

There are some further results toward a more explicit characterization of minimall nonideal 
matrices. Lehman [1979] gave three infinite families of minimall nonideal matrices: The 
incidence matrices of the degenerate projective planes J (which are selfdual in the sense 
the oincide with their blockers, i e . J b l J ) , the odd circulants C(2k 1,2), and 
their blockers bl {2k , 2) that oincide via permutation of rows and olumns with the 
circulants C{2k ). But, different to the packing case, man more minimall nonideal 

matrices are known 
First, researchers have ompiled a substantial, but fnite list of "exception" matrices, that do 
not belong to the three infinite classes of Lehman. The incidence matrix of the Fano plane 

is one such exception matrix, see Cornuejols & Novik [1989] and Lütolf &; Margot [1998] for 
comprehensive lists. But the situation is more complicated than this, because further infinite 
classes of minimally nonideal matrices have been constructed. For example, Cornuejols & 
Novik [1989] prove (and give a reference to a similar result) tha t one can add a row ei + ej + e 
i < j < k, to any odd circulant C(2k + 1, 2), 2k + 1 > 9, where and are oth odd 

and doing so one obtains a minimally nonideal matrix. 
Does all of this mean that the set of minimally nonideal matrices is just a chaotic tohuwabohu? 
Cornuejols & Novik [1989] say no and argue that all minimally nonideal matrices in the 
known infinite non-Lehman classes have core C(2k + 1, 2) or C(2k + 1, k 1). This means 
geometrically that the associated fractional covering polyhedra arise from Q(C(2k + 1, 2)) or 
Q(C(2k + l,k + 1)) by adjoining additional integral vertices. Or to put it differently, the 
crucial part of a minimally nonideal matrix is its core and there, if one forgets about the 
exception list, only the three Lehman classes have been encountered. These findings motivate 
the following conjecture that can e seen as the covering analogon of the strong perfect graph 
conjecture 

1.6.10 Conjec ture (Ideal Matr ix Conjecture Cornuejols &; N o v i k [1989]) 
There is some natural number no such that every m x n minimally nonideal matrix A with 

> has core either C(2k 1, 2) or C(2k 1, k + 1) 

1.7 alanced atrices 

Perfect and ideal matrices were defined in terms of integral polyhedra; their characterization 
through forbidden minors was and still is a major research problem. The study of balanced 
matrices, tha t were invented by Berge [1971], goes the other way round: This class is defined 
in terms of forbidden minors and one investigates the combinatorial and polyhedral conse­
quences of this construction. It turns out that these properties subsume all characteristics of 
perfect and ideal matrices, and balanced matrices give, in particular, rise to a multi tude of 
combinatorial packing and covering problems. But not only do results from perfect and ideal 
matri theory carry over. There are additional genuine consequences of balancedness that 



Inte 0/ ro 

include TDIness of both associated covering systems and bear on combinatorial partitioning 
theorems. And there is another recent spectacular result tha t does have no parallel (ye t ) : 
Balanced matrices can be recognized in polynomial time! 
It is not the aim of this section to give an overview on the entire field of balanced matrices 
to say nothing of their 0 / l generalizations and/or the connections to totally unimodular 
matrices. Such surveys can be found in Padberg [1975a], Conforti et al. [1994], and Conforti 
Cornuejols, Kapoor & Vuskovic [1997], we summarize here just some basic results 
A matrix A is balanced if it does not contain an odd square minor with row and column sums 
all equal to two or, equivalent l , a row and column permutation of the circulant C(2k + 1, 2) 
In the context of balancedness, it is understood that minors are not restricted to contraction 
and deletion minors; instead, any subset I of rows and J of columns of A induces a minor 
A = JJ. As an immediate consequence, every such minor A' of a alanced matrix A must 
also be balanced, so is the transpose AT, and so is also any matrix that arises from A by 
replicating one or several columns any number of times. Note that the excluded odd hole 
minors C(2k + 1, 2) are one half" of the known structures that cause imperfection; and note 
also that a balanced matrix does not only contain no odd hole contraction minor, but no odd 
hole at all, i.e., no odd hole as any minor. The possible existence of such different, but similar 
forbidden minor characterizations for balanced and perfect matrices allows to view the study 
of balancedness as a precursor to a possible future branch of perfect matr i and graph theory 
after a successful resolution of the strong perfect graph conjecture. 

Back to the present (and actually 25 years to the past) , it is easy to see that the edge 
node incidence matrices of bipartite or, equivalently, 2-colorable graphs are balanced, and 
balancedness is in fact a generalization of the concept of 2-color ability to hypergraphs. The 
connection between 0/1 matrices and colorings of hypergraphs arises from an interpretation 
of the first as incidence matrices of the latter that goes as follows. We associate to a 0/1 
matrix the hypergraph M. = 'H(A), that has the rows of A as its nodes and the columns as 
edges10; V. is called balanced if and only if A is. Hypergraphs can be colored just like graphs: 
A node coloring of T-i assigns a color to each node such that no edge contains only nodes of 
a single color the chromatic number %(%) is the minimum number of colors in such a node 
coloring and T-t is 2-colorable if %(%) < 2. It is not so obvious that 2-colorability leads again 
back to balancedness, but e a c t l y this was Berge [1971]'s idea and his motivation to introduce 
the whole concept 

1.7.1 T h e o r e m (Ba lancedness and 2-Colorabil ity, Berge [1971]) 
A 0/1 matrix A is balanced if and only ifH(A') is 2-colorable for all minors A' of A. 

Many combinatorial properties of bipartite graphs carry over to their balanced hypergraph 
relatives. These similarities arise from (or are reflected in, who likes this better) analogous 
symmetries between the totally unimodular and balanced incidence matrices of biparti te and 
balanced hypergraphs, that are stressed in the "minor presentation" of the following theorem. 

1.7.2 T h e o r e m (Balanced Matr ices , Berge [1971], Fulkerson, Hoffman & O p p e n ­
h e i m [1974]) For a 0/1 matrix A, the following statements are equivalent: 

(i) is balanced. (iv) P(A') is integral for all minors A' of A. 

(ii) is perfect for all minors A of A. (v) Q(A) is integral for all minors of A. 

(Hi) A' is ideal for all minors A' of A. (vi) P=(A') is integral for all minors A' of A. 

10This is just custom (cf. the König examples of Section 11) the transposed way would be feasible as well 
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We do not delve further into the relations between total unimodularity and balancednes 
here and consider instead the amazing connections to perfection and ideality: The alanced 
matrices are exactly those that have only perfect or ideal minors. This has two consequences 
First, balanced matrices inherit the properties of their perfect and ideal superclasses for every 
minor, which includes in particular all combinatorial min-max and max-min results. Second 
Theorem 1 . 2 can be extended by many other equivalent characterizations of balanced ma­
trices in combinatorial, polyhedral, and in integer programming terminology just like in the 
theory of perfect and ideal matrices. We give three examples to illustrate these points. 
The first example is another combinatorial min-max characterization of alancedness that we 
derive with perfect matrix techniques. Consider the strong min-max equality for ^4',abl^4' 
and objective w = 1, where A is any minor of A. Interpreting this relation in terms of 
the hypergraph 1t{A) is to say that for any "partial subhypergraph" 'H(A') of 'H(A) the 
maximum size of a matching (edge packing) is equal to the minimum size of a transversal 
the equivalence of this relation with balancedness is Berge [1971]'s Theorem 4. 
Example two is an alternative integer programming characterization of balanced matrices 
that we obtain from transformations of Theorem 7 2 (ii). Namely, this statement is equiva­
lent to saying that the integer program max lTx7 A'x < 1, x > 0 has an integer optimum value 
for any minor A' of A, which holds if and only if the linear program max bTx7 Ax < w7 x > 
has an integer optimum value for any b E {0 ,1}" and w E {1, + o o } m . This is true if and 
only if the dual program min yTwA > b7 y

T > 0 has an integer optimum value for any 
b E {0, l } n and w E {1, +oo}TO (here, o is not considered to be an integer), and this holds if 
and only if the program min y T l , yTA > b7 0

T < yT < wT has an integer optimum value for 
any b E {0, l}n and w E { , l } m . The equivalence of this last statement with alancedness is 
Berge [1971] 's Theorem 6. 

As a third and last e a m p l e , we show that balanced hypergraphs have the Helly property: 
The transpose AT of a balanced matrix A is also balanced, hence AT is perfect, hence it is a 
clique matrix of a graph; but the cliques of a graph have the Helly property that if any two 
of a set of cliques have a common vertex, they all have a common vertex, and the same holds 
for the edges of a balanced hypergraph; this is Berge [1971]'s Proposition 7 
We turn next to two properties of balanced matrices that are "genuine" in the sense that 
they do not have this inheritance flavour: TDIness of balanced covering and their blocking 
systems, and a strengthening of this last result to one of the rare and precious cobinatorial 
partitioning ax-in theorems. 

1.7.3 T h e o r e m ( T D I Ba lanced Covering and Block ing S y s t e m s , Fulkerson, Hoff­
an & O p p e n h e i m [1974] 

If A is a balanced 0/1 matrix, the strong max-min equality holds for ^4,bl^4 and for b\A7 A. 

Hence, the balanced matrices satisfy an integrality relation that does not hold in the general 
blocking case. To avoid misunderstandings, we point out that the blocker of a balanced matrix 
is in general not balanced, see Fulkerson, Hoffman &: Oppenheim [1974] for a counterexample 
It is surprising and remarkable that the strong max-min equality for bl^4, A, can (in a certain 
sense) e strengthened further into a combinatorial max partioning-min covering theorem. 

1.7.4 T h e o r e m (Part i t ion into Transversals , Berge [1971] 
et AT be a balanced matrix and B l AT its blocker. Then: 

ma = min T1. 
1 T T > integral 
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To state Theorem 1.7.4 in terms of hypergraphs, note that the blocker B of AT is the incidence 
matrix of all transversals of 'H(A) versus nodes (each row is a transversal, each column a node) 
Then the theorem states the following: If k = min AT1 is the minimum size of an edge of a 
balanced hypergraph 'H(A), there exist k transversals in T-t{A) that partit ion the vertices or 
to put it differently, there is a fc-coloring oiT-t(A) such that each edge contains a node of each 
color; this is Berge [1971]'s Theorem 2. 

We have seen by now that balanced matrices have analogous, but stronger combinatorial 
properties than perfect and ideal ones and this trend continues in the study of the recognition 
problem. The scenario differs slightly from the one for perfection and ideality testing, though. 
First, we explicitly know the complete (infinite) list of all forbidden minors. Second, there 
is no controversy about using the matrix itself as the input to the recognition algorithm: 
Nobody has suggested a graphical (or other) representation of an m x n balanced matrix that is 
polynomial in n, and ran is accepted as just fine an encoding length. In this setting, one of the 
most startling results on balanced matrices was the recent construction of an algorithm that 
recognizes this class in polynomial time by Conforti, Cornuejols & Rao [1991]. This algorithm 
is based on decomposition methods, that recursively break a 0/1 matrix into "elementary 
pieces" in such a way that the balancedness of the whole is equivalent to balancedness of 
the pieces, and such that the pieces are of combinatorial types whose balancedness can be 
established or disproved. The recognition of the pieces is ased on earlier work on classes of 
so-called totally alanced, strongly balanced and linearl alanced matrices 

1.7.5 T h e o r e m (Recogn i t ion of Ba lancedness , Conforti , Cornuejols & R a o [1991] 
The recognition problem for balanced matrices is in V 

Like for perfect and ideal matrices there is a new branch of research that investigates the 
more general class of balanced 0 / ± l matrices. Conforti & Cornuejols [1992] show, for instance 
that the members of this class can also be characterized in terms of 2-colorability and that the 
associated packing, covering, and partitioning system are TDI, even in arbitrary "mixes". An 
overview on balanced 0 / ± matrices can e found in the survey article Conforti Cornuejols 
Kapoor & Vuskovic [1997]. 

We close this section with a remark on the integrality of fractional set partitioning polytopes 
By Theorem 1.7.2 (vi), the balanced matrices form a class that gives rise to integral polytopes 
of this type, like perfect and ideal matrices do, too, but these are not all matrices with this 
property. For a trivial e a m p l e consider the matr i 

1 

0 0 

0 0 

tha t is c o m p o s d from an impr fec t top" and a nonideal "bottom". It is easy to see that A is 
neither perfect, nor ideal, nor alanced, but one can verify that the fractional set partitioning 
polytope P=(A) is integral P=(A) consists, in fact, of the single point e±. We see that the 
occurrence of forced variables allows to blow up a matrix with all kinds of "garbage" and 
difficulties of this sort are the reason why there is no minor theory for matrices with integer 
set partitioning polytopes 
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1.8 The Set Packing Polytope 

The set packing problems of the previous sections were almost always assumed to have a 
constraint matrix that is perfect; now we turn to the general case with arbitrary 0/1 matrices 
Such matrices lead to nonintegral systems Ax < 1, x > 0 that do not suffice to describe the 
set packing polytope Pi (A). The polyhedral study of general set packing polytopes aims at 
identifying the missing inequalities and at developing methods for their effective computation. 
Such knowledge of the facial structure of set packing polytopes is useful in three ways: To 
develop polynomial time algorithms for classes of stable set problems, to derive combinatorial 
min-max results, and computationally in branch-and-cut codes for the solution of set packing 
or set partitioning problems. Let us say a word about each of these points. 
The link between polynomial time algorithms and facial investigations is a fundamental al­
gorithmic result of Grötschel, Loväsz & Schrijver [1988] that is often termed the polynomial 
time equivalence of separation and optimization. It is based on the concept of a separation 
oracle for a polyhedron P 1 1 that takes an arbitrary point as input and decides if it is con­
tained in P, or, if not, returns an inequality that separates and P. The theory asserts that 
whenever such an oracle is at hand, one can optimize over P in oracle polynomial time, where 
each call of the oracle is counted as taking constant time. When the separation can also b 
done in polynomial time, this results in a polynomial optimization algorithm — even and in 
particular when a complete description of P by linear inequalities has exponential size! And 
it turns out that one can construct such polynomial separation oracles for the set packing 
polytopes of quite some classes of graphs most notably for perfect graphs. 
Combinatorial min-max results require explicit complete descriptions by TDI systems. It is 
theoretically easy to "make a linear system TDI" , but it is difficult to obtain systems of this 
type with "combinatorial meaning". In fact, besides perfect and line graphs there seems to 
be only one class of "odd K4 free" graphs where a combinatorial min-max result is known. 
The computational use of set packing inequalities goes to the other extreme: Anything goes 
valid inequalities can be used as well as facet defining ones, and whether exact separation is 
always preferable to heuristics — well, it 's wiser not to enter this discussion! 
We try to survey in this section the main results of the polyhedral approach to the set 
packing problem. The organization of the section is as follows. Subsection 1.8.1 introduces 
the concept of facet defining graphs and gives a list of known such structures as well as 
of graphs where these inequalities yield complete descriptions. Subsection 1.8.2 deals with 
composition procedures, that construct from simple inequalities more complicated ones. Some 
results on a special class of claw free graphs are collected in Subsection .8.3. Quadratic and 
semidefinite approaches are treated in Subsection 1.8.4 The final S u s e c t i o n states 

some adjacency results, that bear on primal algorithms. 
Some asic properties of set packing polytopes for reference in subsequent susec t ions are: 

1.8.1 Observat ion ( D i m e n s i o n , D o w n Monotonic i ty , N o n n e g a t i v i t y 
et be a 0/1 matrix and P (Ä) be the associated set packing polytope 

(i) P {A) is full dimensional 

(ii) P (A) is down monotone, , x (A) = y (A) for all < y < x 

In particular, all nontrivial facets of P (A) have all nonnegative coefcients 

(Hi) The nonnegativit constraints Xj induce facets of Pi (A) 

The t r y wor l o for c n v x b i 
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1.8.1 F a c e t D e f i n i n g G r a p h s 

There are three general techniques to find valid or facet defining inequalities for the set packing 
polytope: The study of facet defining graphs, the study of semidefinite relaxations of the set 
packing polytope, and the study of combinatorial relaxations. We discuss in this section the 
first technique, semidefinite relaxations are treated in S u s e c t i o n and comina to r i a l 
relaxations in Chapter 2 and in particular in Section 2.5. 
The polyhedral study of general set packing polytopes through classifications of graphs, initi 
ated by Padberg [1973a] is based on the down monotonicity of Pj{A). Namely, this property 
implies that if H = G[W] is some node induced s u g r a p h of some given graph G = (V, E 
and the inequality aTx < a is valid for Pi(G) fl {x E My \ Xj = 0 Vj 0 W} and has a,j = 
for all j g- W, it is also valid for Pj{G). The consequence is that substructures of a graph 
give rise to valid inequalities for the set packing polytope of the whole graph a relation that 
can be stressed by identifying the polytopes Pi(G) fl {a; 6 M^ \ Xj = 0 Vj 0 and (H) 
(and we want to use this notation here and elsewhere in this section). 

An investigation of the rules that govern the transfer of inequalities from set packing sub 
polytopes to the whole and vice versa leads to the concepts of facet defining graphs and 
lifting, see Padberg [1973a]. We say that a node induced subgraph H = G[W] of G defines 
the facet aTx < a if this inequality is essential for Pj(H). Now, among all node induced 
subgraphs H = G[W] of G are those of particular interest tha t are minimal in the sense that 
they give rise to a facet "for the first t ime". This is not always the case: If H = G[W defines 
the facet aTx < a for P/(G[T1^]), it is possible that there is a smaller subgraph G[U] C G[W] 
(U W), such that a < a defines already a facet of Pi(G[U]). If this is not the case for all 
U C W such that \U \W\ — 1, the subgraph G[W] is "elementary plus/minus one node" 
and said to produce ax < a see Trotter [1975], and if this property extends to any subset 
U C W, the subgraph G[W] is said to strongly produce the inequality. Having mentioned 
these concepts, we do, however, restrict our attention in the sequel to facet defining graphs 
and refer the reader to the survey article of Padberg [1977] for a discussion of facet producing 
graphs. Moving in the other direction again, from small to large, the question of what kind 
of extensions of valid inequalities/facets from subgraphs result in valid inequalities/facets for 
set packing polytopes of supergraphs is precisely the lifting p r o l e m that we discuss in the 
next section. 

We give next a list of facet defining classes of graphs. For each such class £ , one can try to 
determine a corresponding class of C-perfect graphs, whose associated set packing polytopes 
can be described completely in terms of C (plus the edge inequalities, where appropriate) 
This concept, invented by Grötschel, Loväsz & Schrijver [1988], provides a general technique 
to identify classes of graphs with polynomially solvable stable set problems: Namely, to 
establish such a result, one merely has to prove that the inequalities from C can be separated 
in polynomial time! Our list includes also these results as far as we are aware of them. 

ge Inequal i t ies . Associated to each edge ij of a graph G = (V7 E) is the edge inequality 
Xi + Xj < 1. Edge inequalities are special cases of clique inequalities and inherit the face 
tial properties of this larger class, see next paragraph. The edge perfect graphs are exactly 
the biparti te graphs without isolated nodes and these have polynomially solvable stable set 
problems. For general graphs G, the system of edge inequalities (plus the nonnegativity in­
equalities) A{G)x < ,x > 0 defines an edge relaxation of P(A). This relaxation has been 
investigated by a number of authors, including Padberg [1973a] and Nemhauser &: Trotter 
1 9 7 ] , and displays some initially promising looking properties. Namely (A(G)) has only 



e S in l 

half integral vertices (all components re 0, 1/2, or 1 only) and stroger, all integer com 
ponents of a solution of the associated fractional set packing problem have the same value 
in some optimal integral solution and can thus be fixed! Unfortunately, this almost never 
happens in computational practice and neither does it happen in theory: Pulleyblank 1979] 
proved that the probability that the edge relaxation of a set packing problem with w = 1 on 
a random graph has an all 1/2 optimal solution tends to one when the n u m e r of nodes tends 
to infinity. And this is not only asymptotically true: For 00 the p r o i l i t y of a single 
integer component is already less than x 10~8. 

Clique Inequalities, Fulkerson [1971], Padberg [1973a]. A clique in a graph G = 
{V7E) is a set Q of mutually adjacent nodes see Figure 12. Associated to such a structure 
is the clque inequality 

eQ 

ig : A 

(The support graphs of) Clique inequalities are trivially facet defining. Moreover, Fulkerson 
[1971] and Padberg [1973a] have shown that such a constraint induces also a facet for the 
stable set polytope of a supergraph if and only if the clique is maximal with respect to set 
inclusion in this supergraph. By definition, the clique perfect graphs coincide with the perfect 
graphs. Separation of clique inequalities is A/T'-hard, see Garey & Johnson [1979], but this 
complexity result is irrelevant because Grötschel, Loväsz & Schrijver [1988] have shown that 
the clique inequalities are contained in a larger class of polynomially separable orthogonality 
inequalities, that we will discuss in Subsection 1.8.4. This implies that the stable set problem 
for perfect graphs can be solved in polynomial time! This result, one of the most spectacular 
advances in combinatorial optimization, subsumes a myriad of statements of this type for 
suclasses of perfect graphs see Grötschel Loväsz & Schrijver [1988] for a survey 

Odd Cycle Inequalities, Padberg [1973a] An odd cycle C in a graph G (V,E 
consists of an odd number 2k + 1 of nodes 0 , . . . , 2 and the edges (i, i + 1) for i = 0 , . . . , 2k 
(where indices are taken modulo 2k + 1), see Figure 1.3. Any additional edge ij between two 
nodes of a cycle that is not of the form (i,i + 1) is a chord. An odd cycle without chords is 
an odd hole; the odd holes coincide with the circulant( graph)s C(2k + 1, 2). Associated to a 
not necessarily chordless odd cycle C on 2k + 1 nodes is the odd cycle inequality 

5 > - l 
ec 

ig : A l e 
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Padberg [1973a] showed tha (the support graph of) an odd cycle i n e q a l i t y is facet defining if 
and only if the cycle is a hole; note that the "only if" part follows from minimal imperfection. 
Grötschel, Loväsz &; Schrijver [1988, Lemma 9 . 1 1 ] gave a polynomial time algorithm to 
separate odd cycle inequalities such that the stable set problem for cycle (plus edge) perfect 
graphs, tha t are also called t-perfect (t stands for trou, the French word for hole), is solvable 
in polynomial time. Series parallel graphs (graphs that do not contain a subdivision of K/± as 
a minor) are one prominent class of cycle (plus edge) perfect graphs. This was conjectured by 
Chvätal [1975], who showed that the stable set problem for w = 1 can be solved in polynomial 
time, and proved by Boulala & Uhry, a short proof was given by Mahjoub [1985]. In fact, even 
more is true, and for a larger class: Gerards [1989] proved that the system of nonnegativity 
edge, and odd cycle inequalities is TDI for graphs that do not contain an odd K^ i.e., a 
subdivision of K4 such that each face cycle is odd. This gives rise to a min cycle and edge 
covering-max node packing theorem. Perfect graphs, line graphs (see next paragraph) and 
Gerardss class seem to be the only instances where such a min-max result is known. A list 
of further cycle perfect graphs can be found in Grötschel Loväsz & Schrijver [1988]. 
Taking the union of clique and odd cycle inequalities, one obtains the class of h-perfect graphs 
see again Grötschel Loväsz & Schrijver [1988] for more information. 

B l o s s o m Inequal i t ies , E d m o n d s [1965]. The matchings in a graph H (V,E) are in 
one-to-one correspondence to the stable sets in the line graph L{H) : (E7 E E2} 
of H. Associated to such a linegraph L(H) is the blosso inequality 

Y<l2\ 
£E 

ig : A ne G le 

Edmonds &; Pulleyblank [1974] showed that a blossom inequality is facet defining for Pj(L(H)) 
if and only if H is 2-connected and hypomatchable. (If we denote by u(H) the maximum size 
of a matching in a graph H, this graph is hypomatchable if v(H) = u(H — i) holds for all 
contractions H — % of the graph H. It is known that a graph H = (V, E) is 2-connected 
and hypomatchable if and only if it has an open ear decomposition E = {Ji0 Ci, where Co 
is an odd hole and each d is a pa th with an even n u m e r of nodes v],..., vi

 % and distinct 
endnodes^ 1 7̂  v2ki, such tha t V(Ci)n\$Z}0V(Cj) = v}?ki}, see Loväsz & Plummer [1986 
Theorem 5. .2] and Figure 1.4.) Separation of blossom inequalities is equivalent to a minimum 
odd cut problem, see Grötschel, Loväsz & Schrijver [1988, page 256], for which Padberg & 
Rao [1982] gave a polynomial time algorithm. Edmonds [1965] has shown that the stable 
set polytope of a line graph is completely described by the nonnegativity, blossom, and the 
clique inequalities ^ee<5(i) xe — 1 ^o r a n i £ V] this means that the class of blossom (and 
clique) perfect graphs subsumes the class of line graphs. These arguments yield a polynomial 
time algorithm for the stable set problem in line graphs (the matching problem in graphs) 
alternative to the c e l e r a t e d comina to r i a l procedure of Edmonds [195] . Finally we mention 
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tha t Cunningham & Marsh [1978] have shown that the bove mentioned complete description 
of the set packing polytope of a line graph is even TDI, which results in a comina to r i a l min 
packing-max covering theorem for edges/blossoms and cliques in graphs 

Odd Ant iho le Inequal i t ies , N e m h a u s e r &; Trotter [1973]. An odd antihole C is the 
complement of an odd hole, see Figure 1 5 ; the odd antiholes coincide with the circulants 
C(2k + 1, k). Associated to an odd antihole on 2 + 1 nodes is the odd antihole inequality 

£ Xi < 2 

igure : A 7Antihole 

Odd antihole inequalities are facet defining by minimal imperfection. As far as we know 
no combinatorial separation algorithm for these constraints is known, but the odd antihole 
inequalities are contained in a larger class of matrix inequalities with 7V+-index 1, that can 
be separated in polynomial time, see Loväsz &; Schrijver [1991]; we will discuss the matri 
inequalities in S u s e c t i o n 1.8.4. These results imply that s t a l e set p r o l e m s for antihole 
perfect graphs can be solved in polynomial time 

W h e e l Inequal i t ies . A wheel in a graph G = (V, E) is an odd cycle C plus an additional 
node 2k + 1 that is connected to all nodes of the cycle, see Figure 1.6. C is the rim of the 
wheel, node 2k + 1 is the hub, and the edges connecting the node 2k + 1 and i = k, 

are called spokes. For such a configuration we have the wheel inequality 

Xj 

igure : A Wheel 

Note that wheel inequalities can have coefficients of arbitrary magnitude 
A wheel inequality can be obtained by a sequential lifting (see next subsection) of the hub 
into the odd cycle inequality for the rim. Trying all possible hubs, this yields a polynomial 
time separation algorithm for wheel inequalities. An alternative procedure, that reduces 
wheel separation to odd cycle separation, can e found in Grötschel, Loväsz & Schrijver 
[1988, Theorem 9 5 6 ] . Hence the s t a l e set problem for wheel perfect graphs is so lva l e in 
polynomial time. 
Generalizations of wheel inequalities that can e obtained by subdividing the edges of a wheel 
were studied by Barahona &: Mahjoub [1994], who derive a class of K4 inequalities (see the 
corresponding paragraph in this subsection) and by Cheng & Cunningham 1997] who give 
also a polynomial time separation algorithm for two such classes 
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We finally refer the reader to Subsection 2.5.1 of this thesis, where we show that simple as 
well as generalized wheels belong to a (larger) class of "odd cycles of paths" of a combinatorial 
rank relaxation of the set packing polytope; the inequalities of this superclass can be separated 
in polynomial time. We remark that the wheel detection procedure of Grötschel, Loväsz & 
Schrijver [1988, Theorem 9.5 is, with this terminology exactly a routine to detect cycles of 
paths of length 2 with one hu endnode 

Antiweb and Web Inequalities, Trotter [1975]. Antiweb is a synonym for circulant 
see Figure 1.7, and a web is the complement of an antiweb, see Figure 1.8. Obviously, every 
odd hole is an antiweb, and every odd antihole is a web. An odd antihole is also an antiweb, 
but the classes of antiwes and webs do in general not coincide; in fact, Trotter [1975] proved 
that an antiweb is a we if and only if it is a hole or an antihole. The inequalities associated 
to C(n7k) and C(n7k) : C(n7k) are the antiweb inequality and the web inequality 

< [ k \ 
eC 

igure e Anti 8 , ) i g r e e We 8 , ) 

An antiweb C(n, k) is facet defining if and only if either k = or and n are relatively prime 
a web C(n, k) defines a facet if and only if either k = 1 or k and n are relatively prime. As 
far as we known, no polynomial time separation algorithm for these classes themselves or any 
superclass is known. 

Wedge and K4 Inequalities, Giles & Trotter [1979], Barahona & Mahjoub [1989]. 
To construct a wedge, one proceeds as follows: Take a 3-wheel K±, subdivide its spokes {not 
the rim, and at least one subdivision must really add a node) such that each face cycle is odd 
and take the complement; the resulting graph is a wedge, see Figure .9 for a complement 
of a wedge. If we subdivide the nodes of a wedge into the set of nodes 6 that have an even 
distance from the original rim nodes of the wheel and the set of remaining nodes 0 the 
wedge inequality states that 

ee eo 

ig : A le We 
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The wedges are facet defining, see iles Trotter [1979] othing seem to know out 
the separation of this class. 
By construction, the complements of wedges (as in this thesis) are special subdivisions of A4 
All subdivisions of K± have been analyzed by Barahona &: Mahjou [1989]. It turns out that 
complete descriptions of the set packing polytopes associated to arbitrary sud iv i s ions of K4 
can be obtained by means of 19 classes of K^ inequalities. The separation of K^ inequalities 
does not seem to have been investigated. 

Chain Inequal i t ies , Tesch [1994]. A 2+l-chain H is similar to the antiweb C(2k+1, 3) 
the difference is that the two chords (0, 2k — 1) and (1, 2k) are replaced with the single edge 
(1,2k — 1), see Figure 1.10. This structure gives rise to an inequality for the set packing 
polytope. The chain inequality states that 

J 

JQ2—Vk 

ß> (gf 

T6J 

igure : A C a i n . 

A 2k + 1 chain is facet defining if and only if mod . Nothing is known a o u t the 
separation problem. 

C o m p o s i t i o n of Circulant Inequal i t ies , Giles & Trotter [1979] A composition of 
circulants is constructed in the following way. Choose a positive integer k, let n = 2k(k+2) + l, 
set up the "inner circulant" C = C(n, k 2) and the "outer circulant" C = C(n, k + 1) with 
node sets V . ,n — 1} and V' = { . . , (n — 1) '}, and add all edges i i ' , . ,i(i + 2k + l)' 
for all nodes i € V, (indices taken modulo n). The graph that one obtains from an application 
of this procedure for any positive A; is a composition of circulants that is denoted by C see 
Figure 11. Associated to such a structure is the composition of circulants inequality 

k + 1 ^ ^ - 2 k + X 

i g r e 11 sitio irculants 

It is known that composition of circulant inequalities are facet defining 
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Further Inequal i t ies . We close our list of ing i n l i t i e fo in 
polytope with some pointers to further classes. 
An enumeration of all facets of the set packing polytopes associated to certain claw free 
graphs (see next subsection) of up to 10 nodes has een done by by Euler & Le Verge [1996] 
We finally refer the reader to Section 2.5 of this thesis, where we present a class of facet defining 
cycle of cycles inequality as an example of a method to derive facet defining inequalities from  

"rank relaxation" of the set packing polytope 

We have seen that most of the facet defining graphs of our list appeared in pairs of graph and 
complement graph that give both rise to facets and one could thus be lead to believe that 
some (yet to be made precise) principle of this sort holds in general. Padberg [1977] offers 
some sufficient conditions in this direction but also points out that graphs like the line graph 
in Figure 1.4 have complements that are not facet producing (no facet defining inequality of 
the associated set packing polytope has full support) . 

Our discussion of facet defining graphs would not be complete without mentioning the neces 
sary and sufficient conditions that have been derived for structures of this type. It is hard to 
come up with interesting characterizations of general constraints and the literature focusses 
on the already notoriously difficult class of rank inequalities or canonical inequalities, as they 
are also called. Denoting, us usual, the stability number or rank of a graph G by a(G), the 
rank inequality that is associated to G is 

X <«(£) 

A necessary condition for a rank and more general for any inequality to define a facet is: 

1.8.2 Observat ion (2 -Connec tednes s of a Facet 's Support ) 
Let G be a graph and Pi(G) the associated set packing polytope Tx defines a facet 
of P(G), its support graph Gfsuppa1] is 2-(node)connected 

Observation 1.8.2, which is a special case of the more general Theorem 1.8.8 (to be discussed 
in the next section), is, as far as we know, the only general condition that is known the 
criteria that follow apply to the rank case with all one coefficients. 
We start with a sufficient condition of Chvätal [1975]. His criterion for facetial rank inequal 
ities is based on the concept of critical edges in a graph G = (V, ) . Namely, an edge ij 6 E 
is called critical if its removal increases G s rank, i e . , if a(G ) = a(G) 1. A graph 
itself is called critical, if all of its edges are critical 

1.8.3 T h e o r e m (Rank Inequal i t ies from Critical Graphs , Chväta l [1975]) 
Let G = (V, E) be a graph and E* be the set of its critical edges. If the graph G* := (V, E* 
is connected the rank inequalit ^2eV < a(G) is facet defining 

The reader can verify that most of the rank inequalities in this sections list satisfy the criterion 
of Theorem 1.8.3 (in fact, most have even critical support graphs) but this condition is not 
necessary, see Balas & Zemel [1977] for a counterexample. 
A set of further conditions, suggested by Balas & Zemel [1977], makes use of the notion of a 
critical cutset in a graph G = (V, E), i e . , a cut 8(W) such such that a{G S(W)) > a(G) 
In words A cut(set) is critical if its removal increases the rank. 
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1.8.4 Theorem (Critical Cutsets, Balas & Zemel [1977]) 
Let be a graph and P(G) be the associated set packing polytope. If the rank inequalit 
for defines a facet of P(G) every cutset in G is critical 

Balas &: Zemel [1977] give an example that shows that this condition is not sufficient. But 
it is possible to obtain a complete characterization of those rank facets that arise from facet 
defining subgraphs of a graph. 

1.8.5 Theorem Extension of Rank Facets, Balas &; Zemel [1977]) 
Let G be a graph, P(G) be the associated set packing polytope, W CV some subset of nodes 
of G, and let the rank inequalit ^2eWXi < a(G[W]) be facet defining for P(G[W]) Then: 

The rank inequality ^2ieW %i < a(G[W) defines a facet for Pi(G) if and onl if the cutset 
6(j) with respect to the graph G[W U }] is not critical for every 0 W. 

It has been pointed out by Laurent [1989] that Theorems 1.8.3, 1.8.4, and 1.8.5 carry over 
to the more general context of rank facets of set covering polytopes, see also Section 1.9. For 
the notion of critical cutsets, this correspondence is as follows. If we interpret the stable 
sets in a graph G as the independent sets of an independence system (see Subsection 1.3), 
Theorem 1.8.4 says that V is nonseparable, while stating that all cutsets S() with respect to 
the graphs G[W U }] are not critical as in Theorem 1.8.5 is equivalent to being closed. 

1.8.2 Compos i t ion Procedures 

In the preceding Subsection 1.8.1, we have studied and accumulated a list of facet defining 
graphs, that have a local relevance in the sense that they are facet defining for their associated 
set packing polytopes. In general, the given graph will rarely be of one of the special facet 
defining classes, but it is not only possible, but, as we known from the minor investigations 
of Section 1.6, inevitable that a given graph contains imperfect substructures of such types. 
Then, by down monotonicity, the associated inequalities carry over from the set packing 
polytopes of the subgraphs to the whole. 
The procedure that we have just described is a simple example of a constructive approach 
to the study of the set packing polytope. The idea here is the following: Given valid/facet 
defining inequalities for one or several "small" graphs, compose valid/facet defining inequali 
ties for a "bigger" graph. In this way, we can build on analytic classifications of facet defining 
graphs and synthesize global inequalities from elementary pieces. 
In this subsection, we survey two composition procedures of this type: The lifting method and 
the study of the polyhedral consequences of graph theoretic operations 

Sequential Lifting, Padberg [1973a]. The sequential lifting method, that was introduced 
by Padberg [1973a] in connection with odd cycle inequalities, applied to arbitrary facets of 
set packing and set covering polyhedra by Nemhauser & Trotter [1973], and further extended 
to arbitrary 0/1 polytopes by Zemel [1978], provides a tool to build iteratively facets for the 
set packing polytope (G) associated to some graph G from facets of subpolytopes of the 
form (G[W). 

1.8.6 Theorem (Sequential Lifting, Padberg [1973a], Nemhauser & Trotter [1973]) 
et (V,E be graph and Pi(G) the associated set packing polytope. Let further 

W = { w , W} C V be some subset of nodes of G that is numbered in some arbitrary 
order let := V \ W be the complement ofW and let T < be a facet deßning inequalit 
forP(G[W) 
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rmine numbers ß € R i = 1 , , k means of the rursio 

= a max ßjXj i = 1 , , k (1.9) 
ePi(G[wu{,...i}] 

Then: 

The inequalit 7x ^ j 1 < a is facet defining for P(G) 

The ordering of the nodes in W is called a lifting sequence, (1.9) is a lifting problem, the 
numbers are the lifting coefficients,, the inequality aTx + 5^ j = 1 /9jX, a is a lifting of the 
inequality aTa; a, and the whole procedure is referred to as "lifting the variables (or nodes) 
in W into the inequality aTx < a". 
Some simple properties of the lifting process are the following. If we start with a nonnegative 
inequality (which we assume in the sequel), all lifting coefficients will be nonnegative as well 
and the r i g h t h a n d side a of the original inequality is an upper bound on the value of each of 
them. Taking a lower bound for the value of some lifting coefficient is called a heuristic lifting 
step; if we do that one or several times, the resulting inequality will in general not be facet 
defining, but it will be valid. Next, note that different choices of the lifting sequence give rise 
to different liftings that have, however, an identical core aTx a. We remark in this context 
that one can also consider the possibility to compute several or all lifting coefficients at once, 
an idea that is called simultaneous lifting, see again Zemel [1978 

We have already encountered a prominent example of a lifting: A wheel inequality can be 
obtained by lifting the hub into the odd cycle inequality that corresponds to the rim. 
Sequential lifting is a powerful conceptual tool that offers an explanation for the appearance 
of facet defining inequalities of general set packing polytopes. Such inequalities frequently 
resemble the pure facet defining substructures as in Subsection 1.8.1, but with all kinds of 
additional protuberances; the aberrations can be understood as the results of sequential lift 
ings. We remark that one does in general not obtain all facets of a set packing polytope Pi(G) 
from sequential liftings of facets of subpolytopes, namely and by definition, when the graph 
itself is facet producing examples of facet producing graphs are odd holes. 
Turning to the algorithmic side of lifting, we note that the lifting problem is again a set 
packing problem, one for each lifting coefficient. So lifting is in principle a difficult task. But 
the procedure is very flexible and offers many tuning switches, tha t can be used to reduce 
its complexity in rigorous and in heuristic ways. First, note that when the r i g h t h a n d side 
a is bounded, the lifting problem can be solved by enumeration in pseudo polynomial time, 
i e . , t ime that is polynomial in the size of the data and the value of a. For instance, clique 
inequalities have a r i g h t h a n d side of one and so will be all lifting coefficients; sequentially 
lifting a clique inequality is simply the process to extend the clique with additional nodes in 
the order of the lifting sequence until the clique is maximal with respect to set inclusion, and 
this is easy to do in polynomial time. In a similar fashion, one can come up with polynomial 
time lifting schemes for antihole inequalities etc. all for a ixed lifting sequence. Second, 
there are many degrees of freedom for heuristic adjustments One can switch from exact to 
heuristic lifting when the lifting problems become hard, stop at any point with a result in 
hand, make choices in an adaptive and dynamical way, etc. To put it short: Lifting is not 
the algorithmic panacea of facet generation, but it is a useful and flexible tool to enhance 
the quality of any given inequality. Some applications of lifting in a branch-and-cut code for 
set partitioning problems and some further discussion on computational and implementation 
issues can be found in ection of this thesis. 
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The last aspect that we consider here is that the lifting method offers also an explanation for 
the difficulties that one encounters in classifying the facets of the set packing polytope: It is 
extremely easy to use the procedure to construct examples of arbitrarily complex inequalities 
with involved graphical structures and any sequence of coefficients. Does this mean that 
the at tempt to understand the facial structure of set packing polytopes by analysis of small 
structures is useless? Maybe — but maybe things are not as bad. Padberg [1977] argues 
that small facet defining graphs may, in a "statistical" sense, give rise to reasonable fractional 
relaxations of general set packing polytopes. It is, however, known that there is no polynomial 
time approximation algorithm for set packing, see, e.g., Hougardy, Prömel & teger [199 

Graph Theore t i c Operat ions . We consider in the following paragraphs composition pro­
cedures that are based on graph theoretic operations: Taking one or several graphs, possibly 
of special types, we glue these pieces together to obtain a new graph, possibly again of a 
special type. Studying the polyhedral consequences of such an operation, one tries to de­
rive (i) analogous procedures for the composition of valid/facet defining inequalities or, more 
ambitious, (ii) complete descriptions for the set packing polytope of the composition from 
complete descriptions for the pieces. 

Extens ions . The first operation that we consider is the extension of a graph with additional 
nodes. Sequential lifting is an example of this doing when we reverse our point of view from 
"top-down" to "bottom-up": If we do not look at the seed graph G[W] of Theorem 1.8.6 as 
a subgraph of a bigger graph that is given in advance, but as a graph of its own, the graph 
theoretic operation behind each lifting step turns out to be the addition of a single node. 
Adding bigger structures results in special simultaneous lifting procedures. As an example, 
we mention a procedure of Wolsey [1976] and Padberg [1977], who consider the extension of a 
graph G with a KijU: A single node is joined to every node of G with a path of length 2. Some 
aspects of this procedure are discussed in Subsection 1.8.2 of this thesis, and we mention here 
only that Padberg [1977] has shown that the method can not only be used to extend facet 
defining graphs, but to construct facet producing graphs (see this sections introduction) that 
give rise to facets with arbitrarily complex coefficients. 

Subs t i tu t ions . This is a second group of powerful graph theoretic manipulations: One 
takes a graph, selects some node or subgraph, substitutes another graph for this component, 
and joins the substitution to the whole in some way. 
A first and important example of such a procedure is due to Chvätal [1975], who considered 
the replacement of a node v' of a graph G' = ( V , E') by a second graph G" = (V" ") (node 
substitution). The graph G that results from this operation is the union of G' v and G 
with additional edges that join all nodes of G" to all neighbors of v' in G'. Note that node 
substitution subsumes the multiplication or replication of a node to a clique of Fulkerson [1972 
and Loväsz [1971, which plays a role in the theory of perfect graphs. Further, substituting 
graphs Gi and G2 for the two nodes of an edge yields the sum (sometimes also called join, 
but we want to use this term later in another way), and substituting G for every node of G 
the lexicographic product or composition of G' and G". Node substitution has the following 
polyhedral consequences. 

1.8.7 T h e o r e m ( N o d e Subs t i tu t ion , Chväta l [1975]) Let G and G be graphs and let 
A'x' < V, x > and A"" < b", x > 0 be complete descriptions of P ( G ' ) and Pi{G") Let 

' be a node of G' and G be the graph that results from substituting " for '. Then: 
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is a complete description of P(G) 

Note that this system is of polynomial size with respect to the encoding length of the starting 
systems A'x' < b1, x 0 and A"x" < b", x > 0. 
Other authors have considered similar operations. Wolsey [1976] obtains facet lifting results 
from studying the replacement of a node with a pa th of length 2 and of an edge with a path 
of length 3 (edge subdivision); different from Chvätal [1975]'s node substitution, these paths 
are not connected in a uniform way to the original graph. Some discussion of the first of these 
procedures can be found in Subsection 1.8.2 of this thesis. 
Operations related to paths have also been considered by Barahona & Mahjoub [1989]. They 
transform facets using subdivisions of stars, i.e., simultaneous replacements of all edges that 
are incident to some fixed node with paths of length 2, and replacements of paths of length 3 
with inner nodes of degree by edges (contraction of an odd path, the reversal of edge 
subdivision) 

ubdivisions of edges and stars are intimately related to the class of K4 inequalities, see 
Subsection 1.8.1. Namely, Barahona & Mahjoub [199] have shown that all nontrivial facets 
of Pi(G) for such a graph arise from a 4-clique (K4) inequality by repeated applications of 
these operations. The 19 types of inequalities that one can produce in this way form the class 
of ^ inequalities. 

Joins . The operations that we term here joins compose a new graph from two or more given 
graphs in a way that involves an identification of parts of the original graphs. Join operations 
often have the appealing property that they can not only be used for composition, but also 
for decomposition purposes, because the identification component is left as a fingerprint in 
the composition. If we can recognize these traces, we can recursively set up a decomposition 
tree tha t contains structural information about a graph. 
The composition/decomposition principle that we have just outlined is the basis for a graph 
theoretic approach to the set packing problem. The idea of this approach is to develop algo­
ri thms that work as follows: A given graph is recursively decomposed into "basic" components 
(i.e., components that can not be decomposed further), the set packing problem is solved for 
each component, and the individual solutions are composed into an overall solution by going 
the decomposition tree up again. 

To develop such an algorithm, we need the following ingredients: A join operation, an (effi­
cient) procedure that can construct the associated decomposition tree for a (large) class of 
graphs, a method to solve the set packing problems at the leafs of the decomposition tree, 
and a way to compose an optimal stable set in a join from optimal stable sets in component 
graphs. The last of these four tasks is where polyhedral investigations of joins come into 
play. Namely, if the join operation is such that one can construct a complete description for 
the set packing polytope of a join from complete descriptions for its components, and such 
descriptions are known at the leafs, then such a system can also be constructed for the root 
and used to solve the original set packing problem. 

Our first example of a join composes from two graphs G' = (V ') and G" = (V" ") their 
union U G (V ) hen the intersection G (V n V 
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of the component graphs is a clique, this union is called a clique identification. Looking at 
the procedure from a decomposition point of view, clique identification offers a decomposition 
opportunity whenever we can identify in a graph a node separator that is a clique. 

1.8.8 T h e o r e m (Clique Identif icat ion, Chväta l [1975]) 
Let GöG" be a clique identification of two graphs G' and G", and let Ax b and 
be complete descriptions of the set packing polytopes P(G') and P{G"). Then: 

The union of the systems A'' < and A"" < is a complete description of (G' U G") 

Unions of graphs that intersect on a coedge, i.e., on two nonadjacent nodes, were studied by 
Barahona & Mahjoub [ 1 9 9 . As in the case of clique identification, the set packing polytopes 
of coedge identifications can also be described completely if such knowledge is available for 
the components. This technique can be used to decompose a graph that has a coedge node 
separator. 

Coedge identification/decomposition bears on the derivation of complete descriptions of set 
packing polytopes that are associated to W4 free graphs, i.e., graphs that do not have a 
subdivision of a 4-wheel as a minor. It is known that such graphs can be decomposed into a 
number of components where complete descriptions are known (among them subdivisions of 
K±). The decomposition uses only three types of node separators: Node and edge separators 
(cliques of size one and two) and coedge separators. Using Chvätal [1975]'s result on complete 
descriptions for clique identifications in the first two and their own result in the coedge case, 
Barahona & ahjoub [199] construct a polynomial sized complete extended description of 
the set packing polytope of a general W4 free graph (V,E). Here, the term "extended 

description" refers to a system that defines a polytope P in a high dimensional space that can 
be projected into M^ to obtain Pj(G); extended descriptions take advantage of the observation 
that a projection of a polytope can have more facets than the polytope itself 
The last type of join that we want to mention is the amalgamation of two graphs of Burlet & 
Fonlupt [1994]. This concept subsumes the graph theoretic operations of node substitution 
and clique identification; it characterizes the class of Meyniel graphs. Burlet & Fonlupt [199 
show that one can obtain a complete description of the set packing polytope of the amalgam 
from complete descriptions for the components. 

1.8 .3 o l y h e d r a l R e s u l t s o n C l a w F r e e G r a p h s 

We have collected in this subsection some results about set packing polyhedra that are asso­
ciated to claw free graphs. Most of this material fits into other subsections of this survey, but 
the extent of the topic and some unique aspects seemed to suggest that a treatment in one 
place would be more appropriate. 
Claw is a synonym for , see Figure 1.12, and a claw free graph is one that does not contain 
such a structure. 

Figure 1.12 A Claw. 
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Claw free graphs stir the interest of the polyhedral community because the set packing prob­
lem for this class can be solved in polynomial time, see Minty [1980], but a complete polyhedral 
description is not known. The research objective is to determine this description. 
Line graphs are claw free and it was initially suspected that the facets of the set packing 
polytopes of claw free graphs resemble the facets of the matching polytope and would not 
be too complicated; one early conjecture was, e.g., tha t the only coefficients on the le f thand 
side are 0, 1, and 2. Giles & Trotter [1979] were the first to point out that these polytopes are 
complex objects. They did not only prove the 0,1,2 conjecture false, but gave also examples 
of claw free graphs that produce complicated inequalities that contain, e.g., arbitrarily large 
coefficients. We have mentioned two such classes in Subsection 1.8.1: The compositions of 
circulants and the wedges (one can and must delete some edges in a wedge as defined in this 
thesis to make it claw free). 

Some progress was made by Pulleyblank & Shepherd [1993] for a the more restrictive class of 
distance claw free graphs. These are graphs that do, for each node v, not only not contain a 
stable set of size 3 in the neighborhood of v, but they do also not contain such a stable set in 
the set of nodes that have distance 2 from v. Pulleyblank & Shepherd give a polynomial time 
(dynamic programming) algorithm for the set packing problem in distance claw free graphs 
and derive a polynomial sized complete extended description of the associated polytope. 
Gallucio & Sassano [1993] take up the subject of general claw free graphs again and investigate 
the rank facets tha t are associated to such graphs. It turns out that there are only three 
types of rank facet producing claw free graphs Cliques, line graphs of minimal 2-connected 
hypomatchable graphs, and the circulants C{au) + 1 , UJ). All rank facets can be obtained from 
these types either by sequential lifting or as sums of two such graphs. 

We finally mention Euler h Le Verge [1996]'s list of complete descriptions of set packing 
polytopes of claw free graphs with up to 10 nodes. 

1.8.4 Quadratic and S e m d e f i n i t e Relaxat ions 

Next to the search for facet defining and producing graphs, the study of quadratic and, inti 
mately related, also of semidefinite relaxations is a second general technique to derive valid 
and facet defining inequalities for the set packing polytope. While the first concept has a 
combinatorial and in the first place descriptive flavour, the quadratic/semidefinite techniques 
are algebraic and, even better, algorithmic by their very nature, and they do not only apply 
to set packing, but to arbitrary 0/1 integer programs. And the m e t h o d s wider scope and 
built-in separation machinery is not bought with a dilution of strength! Quite to the contrary, 
almost all of the explicitly known inequalities for set packing polytopes can be pinpointed in 
the quadratic/semidefinite setting as well and more: Superclasses of important types of con­
straints, most notably clique and antihole inequalities, can be separated in polynomial time. 
This implies, in particular, one of the most spectacular results in combinatorial optimization 
The polynomial time solvability of the stable set problem in perfect graphs. There is only 
one price to pay for all of these achievements: The number of variables is squared. 
We try to give in this subsection a survey over some basic aspects of quadratic and semidefinite 
techniques for the set packing problem. It goes without saying that we can not do more than 
scratching the surface of this fast developing field and we refer the reader to the book of 
Grötschel, Loväsz & Schrijver [1988] and the article of Loväsz &: Schrijver [1991] and the 
references therein for a more comprehensive treatment. Our exposition is based on the latter 
publication and focusses on the special case of the set packing problem. 
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We start by introducing the concepts of a quadratic relaxation, and, as a particularly strong 
variant of such a model, of a semidefinite relaxation of the set packing problem in some 
graph G = (V,E) with n nodes that will be numbered V = { l , . . . , . The idea is to 
consider not the convex hull of the incidence vectors x of the stable sets in W, but the convex 
hull of the matrices xxT E M . We will see that this quadratic representation gives rise to 
two additional cut generation procedures that are not available in the linear case. 
It is technically easier to study quadratic models that gives rise to cones instead of polyhe-
dra and this is the reason to consider a homogenization of the set packing polytope that is 
constructed with the aid of an additional component XQ 

(G) c o n e ( } x C ,... 

Pi(G) can be retrieved from this object by an intersection with the hyperplane XQ = 1. We 
introduce also a fractional relaxation of Hj{G) that is obtained by replacing Pi(G) with 
P(G) and denoted by H(G); we will assume here and elsewhere in this subsection that P(G) 
is described (canonically) by the nonnegativity and the edge constraints (we assume also that 
there are no isolated nodes) We will work in this subsection only with the cone versions of 
the set packing polytope and its fractional relaxation and call Hj{G) the set packing cone 
and (G) the fractional set packing cone. Going to quadratic space, we are interested in the 
set packing matrix cone 

(G) { o , . . . { o , . . , (G) 

The way to construct a quadratic relaxation of the set packing matrix cone is not just to 
replace Hi(G) with H(G) in the definition of the set packing matrix cone, which would yield 
a trivial quadratic relaxation. Instead, one can set up the following stronger relaxation. 

( Q P ) i) jY = e Vi 
ii) j = ej 
iii) v H(G)°, Vi = l, 

TYf H{G) V* = l, 
(iv) . - , . . . 

Here, we denote by S the polar of a set S and by / j , i = 1 , . . . ,n the vectors of the form 
fi := eo &i (where ej is the i t h unit vector). Their purpose is to serve as (the le f thand sides 
of) facets of the "homogenized unit cube" U := cone({l} x [0, l ] ) , which contains Hj(G). 
Associated to the system (QSP) is the fractional set packing matrix cone M(G) and this cone 
will serve as one relaxation of Mj{G) in quadratic space. 
Before we take a closer look at this object and at the system (QSP), let us quickly introduce 
another infinite set of linear inequalities, that strengthens the quadratic relaxation ( Q P ) to 
a semidefinite relaxation that we denote by ( Q + ) 

(v) R{°>-

Associated to the system (QSP+) is another fractional matrix cone M+(G). 
(QSP) (i) states that the matrices that are solutions to the system (QSP) are symmetric, a 
property that surely holds for all 0/1 matrices T with x E Hi{G) fl{0, l { ° > - } . (H) states a 
type of "quadratic constraints" For matrices xT as above (ii) stipulates , i = 0, 



40 Integer 0/1 Programs 

(iii) throws in what we know about H(G). Again for matrices xxT, we have that uTx > 0 for 
all le f thand sides (G) of valid constraints for H(G), and since H(G) C U, the same is 
true for the facets v 6 of the homogenized unit cube U (which are exactly the vectors e 
and fi), and this yields uTxxv > 0. (iv) is the same as stating that the matr i is positive 
semidefmite, which clearly holds for all matrices of the form xxT. 
The quadratic constraints (QSP) (ii) and the semidefmite constraints (QSP+) (v) are not 
available in the linear case and account for the greater strength of (QSP) and (QSP+) in 
comparison to the trivial quadratic relaxation. One improvement is, e.g., the following. Con­
sider the vector u = H(G) which is the left-hand side of the edge inequality 

Xi Xj + XQ > 0 <4=^ Xi + Xj x for H(G), and the vector ej E U which is the le f thand 
side of the nonnegativity constraint > 0 for U. Inserting these vectors in (iii) yields 

= ( TY. 0, 

and this implies y^j 0 for all ij E E. This property does not hold for the trivial relaxation. 
But (QSP) as well as (QSP+) are not only strong, they are also algorithmically tractable. 
In fact, (QSP) is of polynomial size and could be written down easily, a property that does 
not hold for (QSP+), but one can solve the separation and the optimization problem for this 
system in polynomial time as well, see Grötschel, Loväsz & Schrijver [1988] 
Having these fine relaxations in quadratic space at hand, we go back to the original (homoge­
nized) space by a simple projection to finally construct good relaxations of the (homogenized) 
set packing polytope, which inherit the superior descriptive and algorithmic properties of the 
matrix cones M(G) and (G). These relaxations are the cones 

(G) = M e M°>- (G) 

(G) = M E M ^ " (G) 

and any inequality that is valid for them is a matrix inequality. It follows once more from 
the general methodology of Grötschel, Loväsz & Schrijver [1988] that the weak separation 
problem for matrix inequalities can be solved in polynomial time such that one can weakly 
optimize over N(G) and N+(G) in polynomial time. 

1.8.9 T h e o r e m ( N and N + Operator , Loväsz & Schrijver [1991]) 
Let G be a graph let Hi(G) be the homogenization of its set packing polytope and let (G) 
be the fractional (edge) relaxation of this homogenization. Then: 

^G) N+(G) (G) H(G) 

The weak separation and optimization problem for (G) and N+(G) can be solved in poly­
nomial time 

We remark that the strong separation and optimization problems for N(G) are also in V. 
One can now go one step further and iterate the construction of the matrix cones, obtaining 
tighter descriptions in every step. Inserting N(G) into (QSP) (iii) in the place of H(G), one 
obtains a second matrix cone (G), tha t is projected into (n + l ) s p a c e to become a cone 
N(G), and so on; any valid inequality for such a relaxation Nk(G) is called a matrix inequality 
with N-index k. Analogously, we can iterate the Af+-operator to obtain relaxations ^_(G) 
and N+ matrix inequalities for any natural index k. One can show that these relaxations get 
tighter and tighter, that one can solve the weak separation problem in polynomial time for 
any fixed k, and that the th relaxation coincides with [G). 
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1.8.10 T h e o r e m (I terated N and N Operator , Loväsz & Schrijver [1991]) 
Let G = (V, E) be a graph with n nodes let Hj(G) be the homogenization of its set packing 
polytope and let H{G) be the fractional (edge) relaxation of this homogenization. Then: 

i) ( G ) ( G ) e N 

»*) (G) (G) e N 

iii) (G) (G) 

The weak separation and optimization problem for (G) and (G) can be solved in poly­
nomial time for every fixed natural number k. 

Theorem 1.8.10 gives a wealth of polynomial time separable classes of inequalities for general 
set packing polytopes, namely, all matrix cuts with arbitrary but fixed TV- or 7V_|_-index. The 
graphs whose associated set packing polytopes can be described completely in this way are 
also said to have N- or N+-index k. It turns out that a large number of graphs have bounded 
indices. We first state the results for the TV-index. 

1.8.11 T h e o r e m Graphs w i t h B o u n d e d N - I n d e Loväsz Schrijver [1991]) 
(i) An odd cycle C(2k + 1, 2) has index 1 

(ii) A complete graph Kn has index n — 2. 

(Hi) A perfect graph has index u(G) 2. 

(iv) An odd antihole C(2k 1, k) has index 2k. 

(v) A minimally imperfect graph has Nindex to(G) 1. 

It is more difficult to characterize graphs with bounded V+-index, but (with an analogous def 

inition) a number of inequalities are known to have small 7V+-indices, in particular clique and 

odd antihole inequalities, which are hence contained in the polynomially separable superclass 

of matrix inequalities with V+-index 1. 

1.8.12 T h e o r e m (Inequal i t ies w i t h B o u n d e d N + - I n d e Loväsz & Schrijver [1991]) 
Clique odd cycle wheel, and odd antihole inequalities have +index 1 

As the perfect graphs are exactly those with perfect clique matrices, i e . , the graphs whose 
associated set packing polytopes can be described completely by means of clique inequalities, 
it follows that the set packing problem in perfect graphs can be solved in polynomial time, a 
spectacular result that was first proved by Grötschel, Loväsz & chrijver [1988 

1.8.13 T h e o r e m (Set Packing P o l y t o p e s of Perfect Graphs , Grötschel Loväs 
Schrijver [1988], Loväsz & Schrijver [1991]) 
Perfect graphs have +index 

1.8.14 T h e o r e m (Set Packing in Perfect Graphs , Grötschel , Loväsz & Schrijver [1988]) 
The set packing problem in perfect graphs can be solved in polynomial time 

We finally relate the semidefinite relaxation N+(G) to the original approach of Grötschel 
Loväsz & Schrijver [1988. They considered the semidefinite formulation ( Q + ) , but with 
(iii) replaced by 

(iii e E 

We denote this semidefinite system by ( Q P ' + ) , and the associated matrix cone by M+(G). 
The projection of this matrix cone into ( l ) s p a c e yields an cone, and this cone 
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n te rec t ion with the hyperplane XQ = 1 yields the convex, but in general not polyhedral set 

TH(G) E R = e , i = l, (G) D = 1}} 

Grötschel, Loväsz & Schrijver [1988] have proved that TH(G) can be described completely by 
means of (nonnegativity and) orthogonality inequalities. Such an orthogonality inequality for 
a graph G = (V, E) with nodes V { 1 , . . . , n} involves an orthonormal representation of G, 
i.e., a set of vectors V{ 6 W with \vi\ = 1, one for each node i of G, such that VJVJ 0 holds 
for all ij 0 E, and an additional arbitrary vector e e l with 1. The orthogonality 

inequality that corresponds to this data is 

Y { c X i 

This class subsumes the clique inequalities by suitable choices of orthonormal representations. 

1.8.15 T h e o r e m (Orthogonal i ty Inequal i t ies , Grötschel , Loväsz &: Schrijver [1988]) 
For any graph G holds: 

(i) Orthogonality inequalities can be separated in polynomial time. 

(ii) TH(G) is completely described by nonnegativity and orthogonality inequalities 

(Hi) is perfect if and only if TH(G) = {G) 

1.8.16 T h e o r e m (7V+-Index f Orthogonal i ty Inequal i t ies ,Lovasz & Schrijver [1991]) 
Orthogonality inequalities have Nindex 

1.8.5 A d j a c e n c 

We summarize in this subsection some results on the adjacency of vertices of the set packing 
polytope and on the adjacency of integer vertices of its fractional relaxation. Such results 
bear on the development of primal algorithms for the set packing problem in a graph G. 
For the purposes of this subsection, we can define a primal algorithm in terms of a search 
graph 0 = (QJ, 6) , that has the set of all set packings of G as its nodes (and some set of edges) 
A primal algorithm uses the edges of 0 to move from one set packing to another. In every 
move, the algorithm searches the neighbors of the current node for a set packing that has, 
with respect to some given objective, a better value than the current one; this neighborhood 
scan is called a local search. When an improving neighbor has been found, the algorithm 
moves there along an edge of the graph; this edge is an improvement direction. When there 
is no improvement direction, the algorithm is "trapped" in a local optimum and stops. 
The connection between a primal algorithm of local search type and the adjacency relation 
on a set packing polytope Pi(G) is tha t adjacency is a natural candidate to define the edge 
set of the search graph 0 . Namely, we let UD € <£ if and only if the incidence vectors of the set 
packings u and D are neighbors on Pj(G), i.e., if they lie on a common 1-dimensional face of 
P / (G) . Doing so produces a graph 0 ( P / ( G ) ) which is called the skeleton of Pj(G). Skeletons 
have a property that makes them attractive search graphs: Not only are they connected, but 
there is a pa th of improvement directions from any vertex to the global optimum. 
Edmonds [1965] famous polynomial algorithm for set packing problems on line graphs, i.e. 
for matching problems, moves from one packing to another one by flipping nodes (in the line 
graph) of a connected structure that is called a Hungarian tree. For maximum cardinality 
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set packing problems on arbitrary graphs, Edmonds [1962] has derived a local optimality 
criterion that is also in terms of trees and characterizes all improvement directions: A set 
packing X in a graph G (V,E) is not of maximum cardinality if and only if the bipartite 
graph (V, (X V \ X) n E) contains a tree T = (W,F), such that XAW is a packing of 
larger cardinality than X. (Here, XAY denotes the symmetric difference of two sets X and 
Y.) It follows from a result of Chvätal [1975] that we will state in a second, that E d m o n d s s 
matching algorithm does a local search on the skeleton of the set packing polytope that is 
associated to a line graph, and that his tree optimality criterion characterizes adjacent vertices 
in the skeleton of a general set packing polytope. In view of these similarities between the 
line graph/matching and the general case, it was hoped that matching like primal techniques 
could also be applied to general set packing problems. An at tempt in this direction was 
undertaken by Nemhauser & Trotter [1975], who investigated Edmondss criterion further 
and used it, supplemented with lower bounding LP techniques, for the development of a 
branch-and-bound algorithm that could solve maximum cardinality set packing problems on 
random graphs with up to 100 nodes. 

The link between these results and polyhedral theory is the following result of Chvätal [1975 
that characterizes the adjacent vertices of set packing polytopes completely. The theorem 
shows that the above mentioned optimality criteria characterize adjacency in the skeleton of 
the set packing polytope, and that the algorithms perform a local search in this structure. 

1.8.17 T h e o r e m (Adjacency on t h e Set Packing P o l y t o p e , Chväta l [1975]) 
Let G = (V, E) be a graph, let Pi(G) be the associated set packing polytope, and let and 
be the incidence vectors of two set packings X and Y in G, respectively. Then: 

and are adjacent on i(G) if and only if the graph G[X/ is connected 

Theorem 1.8.17 brings up the question if it is possible to use polyhedral information to perform 
a local search in the skeleton. One idea to do this was investigated in a series of papers by 
Balas & Padberg [1970, 1975, 1976] and is as follows. Consider the fractional set packing 
polytope (A) that is associated to a given 0/1 matrix A. Any vertex of Pi(A) is also a 
vertex of P(A), which means that it is possible to reach the integer optimum by searching 
through the skeleton <5(P(A)) of the fractional relaxation. This is interesting because there 
is an effective and ready-to-use algorithm that does exactly this: The simplex method. In 
fact, nondegenerate pivots lead from one vertex to adjacent vertices, and, doing additional 
degenerate pivots, it is possible to reach from a given vertex all of its neighbors. In other 
words: The simplex algorithm performs a local search on the skeleton of the fractional set 
packing polytope with some additional degenerate steps. These statements were trivial, but 
point into an interesting direction: Is it perhaps possible to move with all integer pivots 
through the skeleton of the integer set packing polytope as well It is, and <S((A)) seems 
to have even extremely promising looking properties 

1.8.18 T h e o r e m (Skele ton of Set Packing P o l y t o p e s Balas & P a d b e r g [1970, 1975]) 
Let A be anmxn 0/1 matri Pi (A) the associated set packing polytope, P(A) its fractional 
relaxation and let 5 <S((A)) and 0 <S(P(A)) be the associated skeletons Then: 

(i) is a subgraph of<5. 

(ii) diam 2. 

(iii) S(t>) 7 ( ) 

Here, diam denotes the diameter of the graph 
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Theorem 1.8.18 (i) states that vertices are adjacent on Pi (A) if and only if they are adjacent 
on P(A), i.e., it is possible to reach the optimum integer solution by a sequence of all integer 
pivots. And not only is this possible: By (ii), one can reach the optimum from any given 
integer starting point in at most m / 2 pivots! (The theorem makes only a statement about 
nondegenerate pivots, but one can sharpen this result.) We remark that Naddef [1989] has 
proved the Hirsch conjecture t rue for 0/1 polytopes; this can sometimes yield a smaller bound 
on the diameter than Theorem 1.8.18 (ii). Finally, (iii) hints to a difficulty: Each vertex has 
a very large number of neighbors, and this may render the local search difficult. 
Balas & Padberg have developed and tested primal pivoting algorithms along these lines. 

1.9 The Set Covering olytope 

We survey in this section polyhedral results on the set covering polytope Qi(A). Analogous to 
the set packing case, such investigations aim at the characterization of valid and facet defin­
ing inequalities and the development of methods to compute them efficiently. But the main 
motivation for this doing is different, namely, to unify polyhedral results that were obtained 
for various kinds of combinatorial optimization problems that can be stated as optimiza­
tion problems over independence systems, a problem that is in a very direct way equivalent 
to the set covering problem. For example, the minimal cover inequalities of the knapsack 
polytope turn out to be so-called generalized clique inequalities, and the Möbius ladder in­
equalities of the acyclic subdigraph polytope can be seen as generalized cycle inequalities of 
an independence system/set covering polytope that is associated to an appropriately chosen 
independence system. 

The concepts that guide these polyhedral investigations are essentially the same as in the set 
packing case: One considers facet defining submatrices of a given 0/1 matrix, tries to identify 
facet defining classes, and uses lifting procedures to make local constraints globally valid. 
The similarity in the approaches carries over to the descriptive results, and we will encounter 
familiar structures like cliques, cycles, etc. What misses in comparison to set packing are 
significant classes of polynomially solvable set covering problems, polynomially separable 
types of inequalities, and completely described cases. This algorithmic lack is apparently due 
to the ineffectiveness of graph theoretic approaches to set covering. In other words The 
algorithmic theory of hypergraphs is way behind its graphical brother. 

This section is organized as follows. The remainder of this introduction states some basic 
properties of the set covering polytope, most notably the relation to the independence system 
polytope. The only ubsection 1.9.1 gives a list of facet defining matrices and some results 
on rank facets. 
The subsequent subsections resort to the following basic properties of the set covering poly-
tope. Recall from Section 1.3 that a set covering problem with 0/1 matr i A is equivalent 
to an optimization problem over an independence system 3(A) via an affine transformation 

P) in w y) = wTl ( I P ) max w 

A(y) (i) Ay<(A 
y ) < (ü) 
y) (iü) y < 
y) 0, l}n (iv) € {0 ,1} ' 



1.9 The et Covering Polytope 45 

The independence system 3(A) has the set of column( indice)s of as its ground set, and its 
cycles are the nonredundant rows of A. 
The above relation implies that (SCP) and (ISP) are equivalent problems, and in a very 
direct way: a; is a solution of (SCP) if and only of 1 is a solution of ( I P ) . This means in 
polyhedral terms that the associated polytopes satisfy 

(A) PlsP(A) 

and we need to study only one of them. ore precisely, we have the following. 

1.9.1 Corol lary (Set Covering and I n d e p e n d e n c e S y s t e m P o l y t o p e ) 
Let A be a 0/1 matrix and Qi(A) and Pjgp (̂ 4) be the associated set covering and independence 
system polytope respectively. Then: 

Tx > is valid/a facet for Q(A) < o is valid/ facet for P I S P ( ^ ) 

The significance of the set covering/independence system polytope for combinatorial opti 
mization is that polyhedral results for Qj (A) jF\sp (A) carry over to many combinatorial opti 
mization problems. Namely, combinatorial optimization problems can often be interpreted as 
optimization problems over special independence systems and this means that their polytopes 
inherit all facets of the more general body. We will point out some relations of this type that 
have been observed in the literature next to the discussion of the corresponding classes of 
inequalities. 

ome simple properties of the set covering polytope are collected in 

1.9.2 Observat ion ( D i m e n s i o n , U p Monotonic i ty , B o u n d s , and N o n n e g a t i v i t y ) 
Let A be a 0/1 matrix that has at least 2 nonzero entries in each row and {A) be the 
associated set covering polytope 

(i) (A) is full dimensional 

(ii) Q(A) is up monotone, i.e {A) = > E Q(A) for all y < 

(Hi) The upper bound constraints induce facets of Q(A) 

(iv) A nonnegativity constraint Xj > 0 defines a facet ofQi(A) if and only if the minor 
that results from A by a contraction of column j has at least 2 nonzeros in each row. 

(v) IfaTx > a defines a facet ofQi(A) that is not one of the upper bound constraints Xj 1 
all coefcients of 7 are nonnegative 

1.9.1 F a c e t D e f i n i n g M a i c e s 

The technique that is used in the literature to derive classes of valid and facet defining 
inequalities for the set covering polytope is the study of submatrices of a given m n 0 /1 
matrix A, similar to the study of subgraphs of the conflict graph in the set packing case. 
Likewise, this approach is motivated by and related to the study of minimally nonideal matrix 
minors: The general theory of nonideal matrices guarantees the existence of certain "cores" 
of locally facet defining structures. 

Let us get more precise. The derivation techniques for inequalities for set covering polytopes 
from submatrices are based on the up-monotonicity of Qi(A). Namely, if Au is some arbitrary 
minor of A, where / is some set of row( indice)s of A, and J some set of column indices, and 
the nonnegative inequality aTx > is valid for (A) n E W1 \ Vj 0 and 



46 Integer 0/1 Programs 

has ÜJ = 0 for j 0 J , it is also valid for Qj{A). The simple extension technique that we 
have just described is not very satisfactory, but it points to the principle that substructures 
of A give rise to valid and facet defining inequalities. This motivates the concept of a facet 
defining 0/1 matri in analogy to facet defining graphs for set packing problems We say 
that the matrix A defines the facet aTx a if this inequality is essential for Q(A). A 
first research topic on set covering polytopes is now to undertake a classification of such 
facet defining matrices and the corresponding inequalities. The facet defining matrices will 
serve as candidates for minors of some given 0/1 matrix of interest. Having identified such 
a minor, we can set up a corresponding inequality and try to extend it to an inequality that 
is globally valid. The investigation of possibilities to do this extension in a systematic way 
leads to the study of lifting techniques. The lifting problems for set covering inequalities are 
slightly more complicated then in the set packing case, because one deals with additional 
columns and rows, but the general principle is the same; we refer the reader to Nemhauser 
& Trotter [1973], Sassano [1989], and Nobili & assano [1989 for examples of sequential and 
combinatorial simultaneous lifting procedures. 
We give next a list of facet defining matrices for the set covering polytope. 

General ized nt iweb Inequal i t ies , Laurent [1989], Sassano [1989]. For natural 
numbers > q, a generalized antiweb AW(,t, q) is a n ( ~1) n 0 /1 matrix that 

has a row eo j for each gelement subset Q of each set of t consecutive column indices 
{j,..., j + t 1} (indices taken modulo ), see Figure 1 . 1 . Associated to this matrix is the 
generalized antiweb inequality 

> \ ( t l ) t ] 

Figure 1.1 The Generalized Antiweb 1>V(5, ,2) 

The generalized antiweb inequality is facet defining if and only if either t or t does not 
divide n(q 1), see Laurent [1989] and Sassano [1989]. 
Generalized antiwebs subsume a number of structures that have been investigated earlier: 
Generalized cliques (n = t) by Nemhauser & Trotter [1973], Sekiguchi [1983], and Euler, 
Jünger &: Reinelt [1987], generalized cycles (q = t and t does not divide ) by Sekiguchi [1983 
and Euler, Jünger & Reinelt [1987], and generalized antiholes, (n qt + 1) by Euler, Jünger 
&; Reinelt [1987]. The last mentioned authors have also investigated some generalizations 
of their antiwebs, that arise from (i) duplicating columns of the matrix AW{n,t, q) any 
number of times and (ii) adding any number of additional columns with certain rather general 
properties like not having too many nonzero entries; see also Schulz [1996, Section 4.4] for 
some further extensions. They can show that these generalizations are also facet defining. An 
application to the independence system of acyclic arc sets in a complete digraph exhibits the 
classes oik-fence inequalities for the acyclic subdigraph polytope as generalized clique, and the 
Möbius ladder inequalities as generalized cycle inequalities, a further example is mentioned 
in Nobili & assano [1989]. Nemhauser &: Trotter [197] mention a relation to the knapsac 

/ l 1 . 
/ 1 . 1 : A 

. 1 1 

. 1 . 1 . 

. . 1 1 . 

. . 1 . 1 
1 1 

1 . . 1 . 

V. i : : l) 
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problem, where the class of cover inequalities turns out to correspond to the generalized clique 
inequalities of the associated independence system polytope, see also Padberg [1975b] 
The antiwebs AW(2k + 1, 2, 2), the odd holes, have been investigated further by Cornuejols & 
Sassano [1989]. They study the effects of switching zeros in odd holes to ones and can com­
pletely characterize the cases where such operations do not destroy the validity and faceteness 
of the odd hole inequality. 

Sassano [1989] and Nobili & Sassano [1989] give two further (and more complicated) classes 
of facet defining matrices that arise from certain operations on the antiwebs AW( ) , one 
a lifting, the other a composition operation. 

General ized W e b Inequal i t ies , Sassano [1989] Generalized webs are the complements 
of generalized antiwebs: For natural numbers > > q, the generalized web W(n,t,q) is a 
(o) n ( o - i ) x n 0 /1 matrix that has a row X ^ G Q eJ f ° r each g-element subset Q of column 
indices such that Q is not contained in any of the sets {j,..., j + t 1} (indices taken 
modulo 77,) of t consecutive column indices, see Figure 1.14. Associated to such a web matri 
is the generalized web inequality 

n — t, 

Figure 1.14 The Generalized Web W(7, , 2) 

which is facet defining if t does not divide , see Nobili & assano [1989] 

Further Inequal i t ies . The inequalities that we have considered so far were all rank in 
equalities, i e . , they had all only 0/1 coefficients on their le f thand sides. We mention now 
two classes of facets with more general coefficients. 

Nobili &; Sassano [1989] have studied a class of inequalities from compositions of rank facets. 
Starting point is a matrix operation, the complete bipartite composition, that constructs from 
two 0/1 matrices A and the new matri 

i o 
2 

Here, E denotes a matrix with all one entries. Nobili & assano [1989] show that if the rank 
inequality l T x i > a\ is valid for Qi{A\) and the second rank inequality is valid 
and, in addition, tight for {A), the inequality 

(0 l ) 

defines a facet of Qi{A\ o 2) 

Finally, we mention that Balas & Ng [1989a,b] have completely characterized those facets of 
the set covering polytope that have only coefficients of 0, 1, and 2 on the le f thand side. 



48 Integer 0/1 Programs 

A second branch of research on the set covering polytope is devoted to the study of necessar 
and sufficient conditions that make a valid inequality facet defining. Like in the set packing 
case, the literature focusses on the class of rank inequalities. To set up this class, consider an 

0/1 matri A and define its rank as the number 

(A) min x > e {0, l 

Then, the inequality 

is the rank inequality that is associated to A. Rank inequalities are valid by definition, but 
there is no complete characterization of those matrices known that give rise to facet defining 
rank constraints. But a number of necessary and sufficient conditions have been derived that 
we survey next. It will turn out that deletion minors play an important role in this context, 
and, for the remainder of this subsection, we want to denote by A j the deletion minor of A 
that results from a deletion of all columns that are not contained in J, i.e., A.j consists of 
the columns of A that have indices in J and those rows, whose support is contained entirely 
in J. This matrix is the "uncovered" part of A that remains when one sets all variables 
j / J, to 1. 
The necessary conditions for a rank inequality to be facet defining can be given in terms of 
the notions of closedness and nonseparability. We say that a set J of column indices is closed 
if /3(Aju{fe}) > ß(Aj) holds for all columns J, ie., if the addition of any k to J strictly 
increases the rank. J is nonseparable if ß(A.j) + ß(A.ju) < ß(A.j) holds for any partition  

of into sets and J , ie., a separation results in a loss of rank. 

1.9.3 Observation (Necessary Conditions for Rank Facets) 
Let A be an m x n 0/1 matrix let be any subset of column indices and let be the 
minor that results from deleting from A the columns that are not in J. Then: 

If the rank inequalit (A) defines a facet ofQ(A) the set must be closed and 
nonseparable 

There are some cases where the condition in Observation 1.9.3 is known to be also sufficient 
When A is the circuitnode incidence matrix of a matroid, and when the independence sys 
tem 3(A) that is associated to is the set of solutions of a single knapsack problem, see 
Laurent [1989]. 
A sufficient condition for the faceteness of the rank inequality that is associated to an m x n 
0/1 matrix A can be stated in terms of a critical graph G (V,E). This graph has the set 
of column( indice)s of A as its nodes and two nodes i and j are adjacent if and only if there 
exists a covering ~ G Qi(A)r\1, that satisfies lTZc ß(Ä) and such that the vector 
which results from exchanging the elements i and , is also a feasible covering. 

1.9.4 Observation (Sufficient Condition for Rank Facets, Laurent [1989]) 
Let A be an m x n 0/1 matrix, let Q (A) be the associated set covering polytope and let 
be the critical graph of A. Then: 

is connected the rank inequalit j j ß{Ä) defines a facet ofQ(A) 
This observation generalizes a number of earlier results of ekiguchi [198] Euler, ünger & 
Reinelt [1987], and assano [1989] 
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We close the discussion of rank inequalities for the set covering polytope with two approaches 
to the heuristic separation of cuts this type. 

R a n k Inequal i t ies Fro -Projec t ion , Nobi l i &z Sassano [1992] Given an m x n 
0/1 matr i A, a subset J { 1 , . . n of columns, its complement J {1, J , and 
an integer + , a projection of A with respect to J is a 0/1 matr i A\xj=k with 

n — | J\ = \J\ columns and the property that any of its covers can be extended to a cover of A 
tha t contains exactly k columns from the set J . This matrix is unique up to permutation of 
rows; in fact, A\xrn=k hl((b\A. n f c ) . j ) , where h\A\A. jj\=k is the submatrix of bl^4 that 
has as its rows all the covers of A tha t contain exactly k columns from J . One can prove that 

{ A ) i s the orthogonal projection of the "equality constrained" set covering polytope 

conv{s € {0, l } : Ax > 1, x(J) = onto the subspace M , hence the name ^project ion. 
The operation has the property that ß(A) < ß{A\x^=k) + k. 
Under special circumstances, ^-projections can be used to construct rank inequalities. Namely, 
suppose that the equation ß(Ä) = ß{A\x^=k) + k holds such that A is kprojectable with 
respect to J , as we say. In this case, we can write the rank inequality associated to A as 

{A {A), 

i.e., we can construct it from the rank inequality for which is simpler in the sense 
that it has a smaller r i g h t h a n d side. 
Nobili & Sassano [1992] suggest a separation heuristic for rank inequalities that is based on 
the iterative application of ^-projections. They focus on the simplest case where k = 1 and J 
is the support of a row of the original matrix A, i.e., they always project with respect to one of 
the equations A^. = 1. Projectability is established using two exponential sufficient criteria 
which are checked in a heuristic way. As the construction of the 1-projections is exponential 
as well, the authors resort to heuristically chosen submatrices at the cost of a weakening of 
the r i g h t h a n d side. Projection is continued until the resulting matrix becomes so small tha t 
the covering number can be determined exactly. The separation routine, augmented by 
clever lifting heuristic, has been successfully used in a branch-and-cut code for the solution 
of set covering problems from a library of randomly generated instances from the literature 
with several hundred rows and columns. 

Condi t ional C u t s , Ba las [1980], Ba las & H o [1980]. The cutting planes that we 
consider in this paragraph are special in the sense that they can very well (and are indeed 
supposed to) cut of parts of the set covering polytope under investigation: They are only 
valid under the condition that a solution that is better than the best currently known one 
exists, hence the name conditional cut 
A more precise description is the following. uppose that an upper bound zu on the optimum 
objective value of the set covering problem (SCP) is known and consider an arbitrary family 
2U of column index sets D. If we can ensure that the disjunction \/oeWü) 0 holds 
for any solution with a better objective value than z , the inequality 

is valid for all x € Qi{A) such that cx < zu and can be used as a cutting plane. Here, for 
each column set D, Ar is an arbitrary row of A. 
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Conditional cuts are of "rank type the concept subsumes a number of earlier classes such 
as the ordinal cuts of Bowman & Starr [1973] and Bellmore & Ratliff [1971]s cuts from 
involutory bases. Balas & Ho [1980] suggest a separation heuristic for conditional cuts that 
is based on LP duality arguments; the procedure has been applied with success in a branch-
and-cut algorithm to set covering problems with up to 200 rows and 2,000 columns. 



hapter 

Set ackin elaxation 

Summary . This chapter is about set packing relaxations of combinatorial optimization 
problems associated with acyclic digraphs and linear orderings, cuts and multicuts, multiple 
knapsacks, set coverings, and node packings themselves. Families of inequalities that are valid 
for such a relaxation and the associated separation routines carry over to the problems under 
investigation. 

A c k n o w l e d g e m e n t . The results of this chapter are joint wor with Robert Weismantel1 . 

2.1 Introduction 

This chapter is about relaxations of some combinatorial optimization problems in the form 
of a set packing problem and the use of such relaxations in a polyhedral approach. 
Set packing problems are among the best studied combinatorial optimization problems with 
a beautiful theory connecting this area of research to Fulkerson's anti-blocking theory, the 
theory of perfect graphs, perfect and balanced matrices, semidefinite programming, and other 
fields, see the previous Chapter 1 of this thesis for a survey. Likewise, the set packing polytope, 
i.e., the convex hull of all node packings of a graph, plays a prominent role in polyhedral com 
binatorics not only because large classes of (facet defining) inequalities are known. Perhaps 
even more important, many of them can be separated in polynomial time, in particular odd 
cycle and orthogonality constraints, see Grötschel, Loväsz & Schrijver [1988] and Loväsz & 
Schrijver [1991] 

"""Ottovon-Guericke Universität Magdeburg, Fakultät für Mathematik, Institut für Mathematische Opti 
mierung, Universitätplatz 2, 39106 agdeburg, E i l robert.weismantel@mathematik.uni-magdeburg.de 
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Our aim in this chapter is to transfer some of these results to other combinatorial optimization 
problems. We show that the acyclic subdigraph and the linear ordering problem, the max cut, 
the &-multicut, and the clique partitioning problem, the multiple napsack problem, the set 
covering problem, and the set p a c i n g problem itself have interesting combinatorial relaxations 
in form of a set packing problem. Families of inequalities that are valid for these relaxations 
and the associated separation routines carry over to the problems under investigation. The 
procedure is an application of a more general method to construct relaxations of combinatorial 
optimization problems by means of affine transformations. 

The chapter contains seven sections in addition to this introduction. Section 2. describes our 
method to construct set packing relaxations. Section 2 3 is devoted to a study of the acyclic 
subdigraph and the linear ordering problem, see Grötschel, Jünger & Reinelt [1985a,b]. A 
main result here is that a class of Möbius ladders with dicycles of arbitrary lengths belongs 
to a (larger) class of odd cycles of an appropriate set packing relaxation; this superclass 
is polynomial time separable. Section 2 4 deals with set packing relaxations of the clique 
partitioning, the fc-multicut, and the max cut problem, see Grötschel & Wakabayashi [1990] 
and Deza Laurent [1997]. We introduce two types of "inequalities from odd cycles of 
triangles". The first of these classes contains the 2-chorded cycle inequalities, the second 
is related to circulant inequalities. Section 2.5 treats the set packing problem itself. We 
show, in particular, that the wheel inequalities of Barahona & Mahjoub [1994] and Cheng & 
Cunningham [1997] are odd cycle inequalities of a suitable set p a c i n g relaxation. We also 
introduce a new family of facet defining inequalities for the set p a c i n g polytope, the "cycle 
of cycles" inequalities. This class can be separated in polynomial time. Section .6 deals 
with the set covering problem. Again, we suggest a set packing relaxation in order to derive 
polynomially separable inequalities. We have implemented one version of such a separation 
procedure for use in a branch-and-cut code for set partitioning problems. Implementation 
details and computational experiences are reported in Section 3.3 of this thesis. Section 2.7 
considers applications to the multiple napsac problem, see Martello &; Toth [1990] and 
Ferreira, Martin & Weismantel [1996]. The final Section 2.8 relates some results of the 
literature on set packing relaxations for 0/1 integer programming problems with nonnegative 
constraint matrices to our setting. 

The following sections resort to some additional notation and two well nown results for the 
set packing or stable set problem. Let 

(SSP) max wTx 
A 1 

{0,l}y 

be an integer programming formulation of a set p a c i n g problem on a graph G = (V, E) with 
nonnegative integer node weights w G Z ^ , where A = A(G) G {0, l } E x y is the edge-node 
incidence matrix of G. Associated to (SSP) is the set packing or stable set polytope that we 
denote in this section by 

Pggp conv { x S : S is a stable set in G} = convja; G {0, l } n : x < l } 

or, where convenient, also by - P S S P ( G ) . For reasons that will become clear in the next section, 
we will actually not work with the stable set polytope PSSP itself, but with its anti-dominant 

PSSP = P S S P - M xeRv :3yE PgSP : x < y}. 
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Figure 1: A Polyhedron and Its Anti-Dominant. 

This construction allows to include vectors with arbitrary negative coordinates without de­
stroying the polyhedral structure of P S S P : Obviously, the valid inequalities for P S S P are 
exactly the valid inequalities for P S S P with nonnegative coefficients. Since the stable set poly-
tope P S S P is down monotone, its nontrivial constraints all have nonnegative coefficients, and 
we can thus work with SSP as well as with PSSP- Figure 2.1 gives an illustration of a polytope 
and its anti-dominant. 
We will need two results about SSP that are summarized in the following two theorems. 

2.1.1 T h e o e m (Edge , Cl ique, nd Odd Cycle Inequal i t ies , P a d b e g [1973a]) 

Let G = (V, E) be a graph and let P S S P be the antidominant of the associated set packing 
polytope. 

(i) Ifij is an edge in G, the edge inequality Xi + x3 < is valid for SSP-

(ii) If Q is a clique in G, the clique inequality 

ieQ 

is valid for P S S P ; it is facet defining for SSP if and only ifQ is a maximal clique (with 

respect to set inclusion) 

(Hi) IfCCV is the node set of an odd cycle in G, the odd cycle inequality 

> < (| l ) / 

is valid for SSP-

Separation of clique inequalities is A/P-hard, see Garey & Johnson [1979, Problem GT 19]. But 
the clique inequalities are contained in the class of orthogonality inequalities, see Grötschel 
Loväsz &; Schrijver [1988], that can be separated in polynomial time. Odd cycle inequalities 
are polynomial time separable, see again Grötschel, Loväsz & Schrijver [1988, Lemma 9.1.11] 

. 1 . T h ( O t h o g o n a l i t y & C y l e Inequal i t ies , G r ö t s c h l e [1988]) 

Let — (V, E) be a graph SSP the antidominant of the associated set packing polytope 
and x G Q y . Suppose that Xi + Xj < 1 holds for all edges ij G E. Then: 

(i) Orthogonality inequalities for SSP can e separated in polynomial time 

(ii) Odd cycle inequalities for SSP can e separated in polynomial time 
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2.2 The Construction 

Our aim in this section is to describe a method to construct set packing relaxations of combi­
natorial optimization problems. The setting is as follows. We are interested in some combi­
natorial optimization problem that is given by an integer programming formulation 

(IP) max x <b7 x G I 

Here, A G Z m , b G Z m , and w G TT are an integral matrix and vectors, respectively. The 
associated fractional and integer polyhedra are 

, b) := {xe x< b} and P I , b) := conv {x G x < b} 

If the meaning is clear, we also write P for , b) and for 7 b). 
Our method starts with an affine function 

Mn - W, x i-> Ux 7T° 

given by a rational matrix II G Q and vector 7r G Q n ; note that the image space can be of 
higher dimension than the preimage. We call such functions aggregation schemes or simply 
schemes. A scheme is integer if it maps integer points to integer points, i.e., 7r(Z") C Z n , or, 
equivalently, if II and 7r° are both integer, i.e., II G Z n x n and IT G Z n . Finally, the image 7r(P) 
of a polyhedron P under the scheme is called the K-aggregate or, if there is no danger of 
confusion, simply the aggregate of P. 

Our motivation for studying aggregations is that they give rise to vald inequalities for some 
polyhedron of interest. Namely, if aTx < ä is valid for an aggregate 7r(P), the expansion 

aT(x) < ä <^= ä T a ; < ä ä T 

of this inequality is a constraint in which is valid for the original polyhedron 
The facial structure of an aggregate is, of course, in general as complicated as that of the 
original polyhedron. But it is often possible to find a relaxation 

~P 2 

of the aggregate 7 ( P ) that is of a well studied type. In this case, one can resort to now 
inequalities for the relaxation P to get an approximate description of the aggregate i ) and, 
via expansion, a description of a polyhedral relaxation of the original polyhedron 
The crucial points in this procedure are the choice of the aggregation scheme and the iden­
tification of a suitable relaxation. The subsequent sections resort to the following method 
to construct set packing relaxations. Starting point is the observation that we are inter­
ested in combinatorial programs, i e . , 0/1 optimization problems (IP). Associated to such 
programs are integer polyhedra P = Pjp. Restricting attention to likewise integer schemes 
(i.e. r (Zn) C Z", recall the above definition), the resulting aggregates are integer as well: 

-£i P I V (integer) P I and integer 

The next step is to construct a conflict graph <5 (93, <£). To do this, we need a scheme that 
is bounded from above by one on the polyhedron P I P of interest, i.e. 

(X) < Va; G 
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Figure : Constructing a Set P a c i n g Relaxation. 

Such schemes give rise to a c o n i c t graph as follows. 0 has a node for every component of 

the scheme, i.e., QJ = { 1 , . . . , n}. We draw an edge uO between two nodes if ir can not at tain 

its maximum value of one in both components simultaneously: 

UÜ G £ : TTU(X) + T7v(x) < 1 Mx G p 

In this case, we say that u and 0 are in conflict. The anti-dominant P S S P ( Ö ) of the c o n i c t 

graph is now a set packing relaxation of the 7r-aggregate P[p) in the sense that 

P S S p ( ! 5 ) ( ^ 

Note that it is not possible to replace Pgsp((5) with P S S P ® ) ? because the scheme can at tain 

negative values, see Figure 2.2 for an illustration. 

Once the set p a c i n g relaxation P S S P ( ® ) (P) is found, inequalities and separation routines 

for P S S P ( ® ) carry over to the polyhedron of interest. Given some point x to be tested for 

membership in Ppp, we simply (i) compute T(X)7 (ii) solve the separation problem for ir(x) 

and P S S P ( ® ) > and, if a separating hyperplane äTx < ä has been found, (iii) expand it. If all 

of these three steps are polynomial, this yields a polynomial time separation algorithm for a 

class of valid inequalities for Pjp, namely, for the expansions of all polynomial time separable 

and polynomial time expandable inequalities of P S S P ( © ) - Promising candidates for this are, 

in particular, the odd cycle and orthogonality constraints for P S S P ( © ) -

The following sections present examples of set p a c i n g relaxations for a variety of combina­

torial optimization problems. 

We remark that for convenience of notation, we will occasionally consider paths, cycles, di-

paths, dicycles, etc. as sets of nodes, edges, or arcs, and we will denote edges as well as arcs 

with the symbols ij and (i,j)', the latter symbol will be used in cases like (,i 1). 

2.3 The Acyclic Subdigrap and the L inar Ordr ing Problem 

Our aim in this section is to construct a set packing relaxation of the acyclic subdigraph and 
the linear ordering problem in a space of exponential dimension. It will turn out that clique 
and odd cycle inequalities of this relaxation give rise to (and generalize) several classes of 
inequalities for the acyclic subdigraph and the linear ordering problem, namely, fence and 
Möbius ladder inequalities. We suggest Grötschel, Jünger & Reinelt [1985a] as a reference for 
the ASP, see also Goemans &; Hall [1996, and references therein] for a recent study of nown 
classes of inequalities, and Grötschel Jünger & Reinelt [198b] for the L P . 



Set Pac ing Relaxations 

The acyclic subdigraph and the linear ordering problem involve a complete digraph Dn = 
(V, A) on n nodes with integer weights wa on its arcs a G A. An acyclic arc set in A contains 
no dicycle. The acyclic subdigraph problem (ASP) asks for an acyclic arc set with maximum 
weight on its arcs. Acyclic arc sets that contain, for any pair of nodes i and j , either the 
arc ij or the arc ji, are called tournaments. The linear ordering problem (LOP) is to find a 
tournament of maximum weight. IP formulations for the ASP and the L P read as follows 

max WijXi 

(") Xi < \ 

(iii) e{o,i} 

max 2_ 
ijeA 

(i) Xij + Xji J e V , « / 
< \ V dicycles CC (ii) J ^ xtj < \ V dicycles C C 

WiXi 

(iii) G{0,1} 

ASP) ( L P ) 

(ASP) is a relaxation of (LOP) and, what is more, the linear ordering polytope PLOP
 1S a face 

of the acyclic subdigraph polytope PASP-
 i n particular, all inequalities that are valid for PASP 

are also valid for PLOP- TWO such classes of inequalities for both the ASP and the LO are 
the k-fence and the Möbius ladder inequalities, see Grötschel, Jünger &: Reinelt [198a] 

Figure 3: A 4-Fence. 

c2 

v \ c 

C\ J^ 

Figure 4: A Möbius Ladder of Dicycles. 

A (simple) k-fence involves two disjoint sets of "upper" and "lower" nodes {u±7.. Uk} and 
{/ i , . . , Ik} that are joined by a set of k pales {uil\,., Uklk}- All pales are oriented "down­
ward" . The fc-fence is completed by adding all "upward" pickets l{Uj with the exception of the 
antiparallel pales. We remar that one can also allow that pales and pickets consist not only 
of a single arc, but of an entire dipath, thereby obtaining a larger class of general fc-fences 
for simplicity of exposition, however, we want to restrict ourselves here and elsewhere in this 
section to simple fences. Figure 23 shows a (simple) 4-fence. 
A Möbius ladder consists of an odd number 2k + 1 of dicycles C o , . . , 2k such that d and 
Cj+i (indices taken modulo 2k + 1) have a dipath Pj in common, see Figure 2.4; this time, 
we want to consider also the non simple case. 
Fences and Möbius ladders give rise to valid inequalities for PASP : For a fc-fence F and a 
Möbius ladder M of k + 1 dicycles we have 

E 
ijeFk 

% ^̂* ' k + and ^ < ^ ^ i ft + i) 
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Note that a Möbius ladder inequality as above has coefficients larger than one if an arc is 
contained in more than one of the dipaths Cj \ P j . This is diferent from Grötschel, Jünger & 
Reinelt [1985a]'s (original) definition, where the coefficients take only values of zero and one 
and the Möbius ladder must meet a number of additional technical requirements to support 
a valid inequality. The two definitions of a Möbius ladder inequality coincide if and only if 
no two dipaths C% \ Pi have an arc in common (Möbius ladder without arc repetition). 
We will show now that fences and Möbius ladders are cliques and odd cycles, respectively, in 
an (exponential) conflict graph <S(Dn) — (03, 6) . <S has the set of all acyclic arc sets of Dn 

as its nodes. We draw an edge uO between two acyclic arc-set nodes u and ü if their union 
contains a dicycle. In this case, we say that u and 0 are in conflict because they can not be 
simultaneously contained in (the support of) a solution to (ASP). 

Figure Fence Clique. 

It is now easy to identify the fences and Möbius ladders with cliques and odd cycles of 0 
To obtain a &-fence F^, we look at the k acyclic arc sets F^ that consist of a pale UiU and 
the pickets Uj that go up from /j for i = 1 , . . . , k. Any two such configurations f and 

£, i , are in conflict (they contain a dicycle). Hence, all of them together form a clique. 
Figure 2.5 illustrates this construction. Likewise, the Möbius ladders correspond to odd cycles 
of c o n i c t i n g dipaths, namely, the dipaths C% Pj , see Figure 6. 

Figure 6: A Möbius Cycle of Dipaths. 
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The next step to obtain the fence and the Möbius ladder inequalities from the clique and odd 
cycle inequalities of the (anti-dominant of the) set packing polytope P S S P ( © ) associated to 
the c o n i c t graph <5 is to construct a set packing relaxation of the ASP. To this purpose, 
consider the aggregation scheme MA —> M5 defined as 

7r0 (x) := y xi (M 1) V acyclic arc sets 0 G Q 
ije 

ir(x) is integral for all integral x G . Moreover, for every incidence vector x G P A S P of an 
acyclic arc set supp(:r) C in Dn, we have that TT(X) at tains its maximum value of one in 
component V(X) if and only if ü is contained in supp(a;). Since two conflicting acyclic arc 
sets can not simultaneously be contained in supp(a;), we have that 

uü G TTU(X) + (X) P A S P n A 

and, by convexity, also for all x G PASP- This argument proves that S S P Ö ) is a set p a c i n g 
relaxation of P A S P -

3.1 L e m m (Set P c k i n g R e l a x a t i o n of t e A S P P A S p) P S s p ( © ( ) ) 

Note that it is not possible to replace SSP with P S S P , because the components of IT can 
take negative values. More precisely, (x) is in general not the incidence vector of a stable 
set in g s p Ö ) , but max {0,7(a;)} is, with the maximum taken in every component (recall 
Figure 2). 
Lemma 2.3.1 allows us to expand (see the definition on page 4) an inequality aTx < ä tha t 
is valid for P S S P

 m t o the inequality HrK{x) <a for P A S P - Our next theorem states that 
the fence and Möbius ladder inequalities are expansions of clique and odd cycle inequalities, 
respectively. 

2.3.2 T h e o r e m (Fence and Möbius Ladde Inequal i t ies) 
Let Dn the complete digraph on n nodes P A S P the corresponding acyclic subdigraph 
polytope the conüict graph associated to and P S S P ® ) the set packing relaxation of 

P A S P -

(i) Every k-fence inequality for P S P is the expansion of a clique inequality for P S S P ( ® ) -

(ii) Every Möbius ladder inequality for P A S P is the expansion of an odd cycle inequality for 

P S S P < 5 ) 

oof 
(i) Let Fk be a fc-fence. The acyclic arc sets F£, = 1 , . , k, defined on the previous page, 
form a clique in <5, see the discussion on the previous page. An expansion of the corresponding 
clique inequality yields the desired fc-fence inequality: 

fa) < 

Xi (\ 

Xi < k ft + 

v E E ^ J ) E x* +k < 
i ije jeFk 
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(ii) Let M be a Möbius ladder consisting of an odd number k + 1 of dicycles C o , . . , ik such 
that d and Cj+i have a dipath Pj in common. The argument on page 7 showed that the 
dipaths d \ Pi form an odd cycle of 2k + 1 acyclic arc sets in 0 . Expanding the corresponding 
odd cycle inequality for P S S P * 3 ) , one obtains the Möbius ladder inequality for M 

i 

E E ^ ( i ^ i ) <k 
i ijeCi\Pi 

E E xa E ^ ^ I fc + i) 

Fence and Möbius ladder inequalities have been discussed in a number of different frame­
works in the literature. Euler, Jünger Sz Reinelt [1987] interpret fences and Möbius ladders 
without arc repetitions as generalized cliques and generalized odd cycles of an independence 
system relaxation of the ASP. Müller Sz Schulz [1995, 1996] give cutting plane proofs of fence 
and Möbius ladder inequalities in the context of transitive packing, see also Schulz [1996, 
Chapter 4]. Caprara & Fischetti [1996] give a derivation of Möbius ladder inequalities in 
terms of {0 ,^} Chvdtal-Gomory cuts. The last two constructions wor for Möbius ladders 
with arc repetitions and yield a class that is "in the middle" between Grötschel, Jünger & 
Reinelt [1985a]'s Möbius ladder inequalities and our's, depending on the number of dipaths 
that contain a given repeated arc. 

Separation of fence inequalities was shown to be A/P-hard by Müller [1993]. Looking at the 
separation of Möbius ladder inequalities, we notice that the construction that we presented to 
prove Theorem 2.3.2 (ii) yields a class of odd cycle of dipath inequalities that subsumes the 
Möbius ladder inequalities. Generalizing this class further by allowing the paths , \ Pi to 
intersect themselves on nodes and/or arcs, i.e., by substituting in the definition of a Möbius 
ladder on page 6 diwalk for dipath and closed diwalk for dicycle, we obtain an even larger 
class of odd cycle of diwalk inequalities for the acyclic subdigraph polytope. Note that these 
inequalities do in general not correspond to odd cycles in the acyclic arc set conflict graph 
<5, because diwalks may contain dicycles. This obstacle can be overcome by extending 0 in 
a finite way (including certain relevant diwalks). At this point, however, we do not want to 
enter this formalism and defer the details of the extension to the proof of Theorem 2.3.3. 
We can devise a polynomial time separation algorithm for odd cycle of diwal inequalities, 
even though the number of diwalks is exponential and their length is arbitrary. The idea is to 
construct a most violated cycle of diwalks out of properly interlinked longest diwalks. Suppose 
that M is an odd cycle of diwalks (we want to denote these diwalks with a slight extension of 
notation by Ci\Pi) that induces a violated inequality, and consider the diwalk Pi linking the 
two (successive) closed diwalk d and +i- Rearranging, we can isolate the contribution of 
Pi in the constraint as 

1̂ E xa < E E xa PJ\) + E xa \ ( i u^) | + (fc +1) 
ijePi j^i ijeCj\Pj ijeci\(PiUP1) 

(Here, all sets are to be understood as multisets. Note also that we have < because the 
constraint was, by assumption, violated.) 

file://ijeCi/Pi
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If we replace Pj by a diwal that is shorter with respect to the length function 

we get a more violated cycle of diwalks inequality. If we think of any closed diwal d as being 
composed out of four diwalks, namely the diwalk P / := P,, that d has in common with the 
succeeding closed diwalk Cj+i, the diwalk Pf from 's head to the diwalk Pf :— P j , tha t 
Cj has in common with the preceeding closed diwalk Ci-i, and the remaining diwal Pf from 
P? ' s head to P / ' s tail, the same argument holds for any of these d i w a l s . This observation 
allows us to show 

.3.3 T h e o r e m (Po lynomia l Separabi l i ty of Odd Cycle of Diwalk Inequal i t ies ) 
Let Dn be the complete digraph on n nodes and P A S P the associated acyclic subdigraph 
polytope. Suppose that x 6 Q^ satisfies the constraints (ASP) (ii) and 0 < x < 1. Then: 

Odd cycle of diwalk inequalities can e separated in polynomial time 

oof 
Using Diks t ra ' s algorithm, we can compute a shortest diwalk (7 v) with respect to the 
length (21) from any node u to any node v of Dn. We can assume these diwalks P(u,v) 
w.lo.g. to be dipaths and, in particular, to be of polynomial length. This yields a polynomial 
number of shortest d i w a l s of polynomial length and, moreover, (not every, but) a most 
violated cycle of diwalks will consist of a polynomial number of these shortest diwalks. 
We can find a set of them forming an odd cycle of diwalks as follows. We think of all diwal 
P(u, v) as a possible common diwalk Pi of two successive closed diwalks % and Cj+i in a 
cycle of diwalks. To get the diwalks d \ P% as the pieces of the cycle, we compute for any two 
diwalks Pj and Pj the (21)-shortest diwalk Pi(Pj) that starts at Pj's head, contains Pj, and 
ends at Pj's tail. Such a diwalk Pi{Pj) will link (on Pj) properly with another diwal Pj(k 
to form a cycle of diwalks. Computation of the Pi{Pj) can be performed in polynomial time 
and yields, in particular, a polynomial number of n(n — 1) (n(n - 1) - 1) = 0{) diwalks of 
polynomial length. 

We can now construct a graph that has these diwalk Pi(Pj) as its nodes with node weights 
equal to the walk lengths (2.1) and that has all edges of the form (Pj(Pj),Pj(Pfc)). The node 
weight on an edge never exceeds one because x satisfies the dicycle inequalities (ASP) (ii), a 
most violated cycle of d i w a l s inequality corresponds to a most violated odd cycle inequality 
in the Pj (P^-graph, and we can find a most violated odd cycle inequality there with the 
algorithm of Grötschel, Loväsz & Schrijver [1988, Lemma 9.1.11]. 

3.4 Corol lary (Separat ion of Möbius Ladde Inequal i t ies) 
superclass of the Möbius ladder inequalities can e separated in polynomial time 

To discuss the results on Möbius ladder separation of the literature, we draw the reader's 
attention to a subtle difference between the ASP and the L P . While the length of the 
dicycles in a facet defining Möbius ladder inequality (as defined in this paper) for the acyclic 
subdigraph polytope can be arbitrarily large, the constraint can only define a facet for the 
linear ordering polytope if the length of each dicycle is at most four, see Grötschel, Jünger & 
Reinelt [1985a]. For the LOP, one can thus restrict Corollary 23 .4 to the case \d\ < 4 and 
then it also follows from Müller & Schulz [1995] and Caprara & Fischetti [1996]. For the ASP, 
Caprara &; Fischetti [1996] showed polynomial time separability of Möbius ladder inequalities 
where all dicycles have at most constant length. 
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2. The Cliqu artitioning, Multi-, and Max ut roblem 

In this section, we investigate set p a c i n g relaxations of combinatorial optimization problems 
in connection with cuts: The clique partitioning, the fc-multicut, and the max cut problem. 
We will see that the 2-chorded cycle inequalities for the clique partitioning polytope can be 
seen as cycles of "lower triangle" inequalities. An analogous construction for cycles of "upper 
triangle" inequalities is related to the circulant inequalities for the max cut polytope. As a 
reference for the clique partitioning problem, we suggest Grötschel & Wakabayashi [1990], see 
also Oosten, Rut ten &: Spieksma [199] for a recent report, for the multicut and the max cut 
problem Deza & Laurent [1997]. 

The three cut problems of this section come up on a complete graph Kn (V, E) on n nodes 
with integer weights w : E —> Z on the edges. The clique partitioning problem (CPP) is to find 
a partition of V into an arbitrary number fc of cliques V = C\ Id . . . Id Ck (where Id denotes 
a union of disjoint sets), such that the sum of the weights of the edges that run between 
different cliques is maximal. In other words, we are trying to find a multicut 8{C\ : • • • : Ck 
of maximum weight, where the number fc of (non empty) members C% of the clique partition 
C\ I d . . Id Ck is arbitrary. One obtains the k-multicut problem (fc-MCP) from this formulation 
by restricting the number of cliques to be less than or equal to some given number fc, and the 
max cut problem (MCP) by prescribing fc = 2. Thus, any (max) cut is a fc-multicut (A; > 2), 
and any fc-multicut comes from a clique partition. We remark that the C P P is often stated 
in an equivalent version to find a clique partition that minimizes the sum of the edge weights 
inside the cliques. 

Integer programming formulations of the clique partitioning and the fc-multicut problem read 
as follows (xi = 1 indicates that ij is in the multicut): 

max 2 wijxi m a x Z wijxv 
ije «ie 

(i) Y, <\E(W)\ VW 
ije(W 

with \W\ = fc + 

(ii) xi <0 , k (ü) Xi 0 , k 

(iü) G { 0 , 1 } E (in) G { 0 , 1 } 

(CPP) ( M C P ) 

Setting k to , inequalities (A:-MCP) (i) turn out to be the "upper triangle" inequalities 
Xij + Xjk + Xik < 2 for all {«, j , k} C V and (2-MCP) is an integer programming formulation 
for the max cut problem (we spea of upper triangle inequalities because their normal vectors 
are oriented "upward" such that the induced face is on the "upside" of the polytope). For 

= n, on the other hand, (fc-MCP) (i) becomes void and (n-MCP) coincides with (CPP) . 
Hence, (CPP) is a relaxation of (fc-MCP) which in turn is a relaxation of (MCP) and the 
associated polytopes P C P P ^ \ - M C P 5

 a n d ^ M C P satisfy 

-PCPP 2 - - M C P CP 

In particular, any valid inequality for the clique partitioning polytope is also valid for the 
fc-multicut and the max cut polytope. One such class is the family of 2-chorded cycle inequal­
ities of Grötschel &; Wakabayashi [1990]. 
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2-chorded cycle is an odd cycle C of together with its set of -chords , see Figure 7. 
The associated inequality states that 

J^Xi ^ Xij < (| l ) / 

• * ' @ \ 
(0 3) 

l} vl 

F i g r e 2 7 : A 2 - C h r d e d Cycl 

Müller [1996] and later C a p r r a &; Fischetti [1996], p o v e d that (superclasses of the) 2-chorded 
cycle i n e q u a l i e s can be s e p a a t e d in polynomial t im see also Müller & S c h l z [1996]. W 
will how now that this class arises f o m odd cycle i equa l i t i e s of a set packng re laxa ton 
of the clique p a r t i t i o n g (or fc-multit or max c t ) problem. Our a r g u n t ill yie an 
alternative proof for th po lynomal t m e separability of this class. 

The relaxation involves a "lower r i ange" conflict graph <5A{KU) = ( 2 ? A 5 ^ A ) - 2JA consis 
of all ordered triples (i,j, k) G Vs of distinct nodes of Kn, the edges <£ of 0 are of th form 
(ij,k)(l,j), (i,j,k)(l,j,i), (ijk)(lik), an (ijk)(lk, (th an of this d e f o n 

ll b c o m c l r in a second) 

k 

- 1 x / 0 

k , j 0 k, 

0 \ / - l 

Figure 8: Lab Lower Tri 

To construct a set packing relaxation of the clique p a o n obl th this graph, 
defi an aggregation c h e 7 : ME —> W<SA 

(x rdered riples (ij k) G A-

A r (x) 1S i f a s i , for e y m l t u t x G - P C , t 
m p n e n t iTAi x) a t a i n s i m a x m u m v of one if a f the nodes j and k 

b l o n g to the sam clique (xjh = 0), b t node i oes not (x ^ = 1). The r e d e r may 
think of the triples (ijk) as edge-labeled triangles" as shown n Figure 2 8 . E n e r a t i 
all possibl conflict ween these l a b e d r i a n e s is e y to see that 

UO G £ A TA (X TAo (X) < G PCPP D 1 

an thus fo all x G P C P - i n other words: C A was defined in such a way that two triples are 
joined by an edge if and only if it is impossibl that both triples at tain their maximum value 
of one under ir simultaneously. This a r g u n t ho that P S S P ) is a "lower r i a n l e " se 
p a c k i g relaxation of P C P P 

2.4.1 L e m m a (Set Packing R e l a x a t i o n of t h e C P P ) -Pcpp) C PSSP(< ( # ) ) 
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The construction is called a "lower triangle set pacing relaxation" because one obtains the 
components jk) ix) = xij xjk < 1 of from the lower triangle inequalities (CPP) (ii) 

_ x 

by setting k := 1. 
We are now ready to state our result that the -chorded cycle inequalities are expansions of 
odd cycle inequalities of PSSP(^A)-

.4. T h e o e m (2 -Chrded C c l e Inequl i t ies) 
Let n be the complete graph on n nodes, PCPP the corresponding clique partitioning poly-
tope, (5A the lower triangle conßict graph and PSSP ®A) the lower triangle set packing 
relaxation of PCPP- Then: 

Every 2-chorded cycle inequality for PCPP is the expansion of an odd cycle inequality for 

PSSP (©A) 

°o OJ3X-

l j@ ( 4 ) 0 Ü4 

l * \ / :® 

o2 - i 

Figure 9: An OddCycl f Lo Tri 

Proof. 
Let C U C b a 2-chorded cycle in K ith node set { 0 . , k}. By d e f n o n , C = {ij : i 

2k, j = + and {ij : i k, j = 2} here i d i e s are t a k n modulo 
2Jfc + l ) . 

Consider th + 1 triples 0j := (i, i — 2 i — 1 , i . . 2k (ndices modulo 2k . One 
verifies that üj € <£ represent a conflict and forms an edge of an odd cycle in 0 A , see 
Figure 2.9 for an example. Th assocated dd cycle i equa l t y xpands to th 2-chorded 
cycle inequalty question: 

^ i r ^ ( ( X ) = ^ X { 2 ) - X { 

je iJ^C 
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Calling the expansions of odd cycle inequalities for S S P ( ® A ) inequalities from odd cycles of 
loer triangle inequalities and noting | ? A | = 0()7 we obtain 

.4.3 C o o l l a r y (Separat ion of Ineq's from Odd Cyc les of ower Triangle Ineq's) 
Let Kn be the complete graph on n nodes and P C P P the associated clique partitioning poly-
tope. Suppose x G Q satisfies the constraints (CPP) (ii) and 0 < x < 1. Then: 

Inequalities from odd cycles of lower triangle inequalities can e separated in polynomial time 

4.4 Corol lary (Separat ion of 2 -Chorded Cycle Inequal i t ies) 
superclass of the 2-chorded cycle inequalities can be separated in polynomial time 

Note that the conflicts between successive triples Oj = («, i — 2, i — 1) and ö j i ( + l,i — l, 
in a 2-chorded cycle stem from the common edge connecting nodes i and i — 1 that has a 
coefficient of —1 in nVi+1 and 0 in -KVi. But conflicts arise also from common edges with + 1 
and —1 coefficients. Thus, besides possible node/edge repetitions and the like, odd cycles of 
lower triangle inequalities give also rise to inequalities that do not correspond to 2-chorded 
cycle inequalities. 
So far we have studied inequalities from pairwise c o n i c t s of lower triangle inequalities. In 
the case of the max cut problem, the constraints ( 2 M C P ) (i) form a class of "upper triangle 
inequalities" 

Xij + , k G V 

Analogous to the lower triangle case, we will now construct "inequalities from odd cycles of 
upper triangle inequalities" for the max cut polytope. These constraints are related to the 

(2k + l72)-circulant inequalities of Polja & Turzik [1992] 
C(2k + 1, )-circulant is identical to a -chorded cycle on an odd number of 2k + 1 nodes. 

We distinguish circulants Ck + 1, 2) with odd k and with even k. The associated inequalities 
are 

Xij < 3fc + 1, if k mod i y < 3fc, if k mod = 0 
jeC ijeC 

Figure 10: The dd-A: Circulant ( 7 , ) . Figure 11: The ven-A; Circulant ( 9 , ) . 

ven-A: circulant inequalities have been introduced by Poljak & Turzik [199] . These con­
straints have a right-hand side of 3&, whereas the odd case requires an increase of one in the 
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right-hand side: Figure 10 shows the odd-fc circulant (7, 2) (k = 3); the white and gray 
nodes form the shores of a cut with 10 = 3 3 + > 3 - 3 = 9 edges highlighted. Alternatingly 
put t ing pairs of successive nodes on the left and on the right shore of the cut except for the 
first node, one verifies that the right-hand side 3fc + 1 is best possible for odd k. Figure 2 1 1 
shows a tight configuration for the case where k is even. (A rigorous proof for the validity of 
these constraints will follow from the upcoming discussion.) 

We will show now that the circulant inequalities can be seen as "strengthened" odd cycle 
inequalities of an appropriate "upper triangle" set packing relaxation of the max cut prob­
lem; strengthened means that for even k, the right-hand side of the cycle of upper triangles 
inequality exceeds the right-hand side of the corresponding circulant inequality by one. Our 
considerations allow to design a polynomial time algorithm for separating inequalities from 
cycles of upper triangle inequalities. Polja &; Turzik [1992], on the other hand, have shown 
that separation of the exact class of ( 7 ( k + 1, 2)-circulant inequalities is A/P-hard. 

Figure 1 : Labeling pper Triangles. 

As usual, the upper triangle set packing relaxation is based on an upper triangle c o n i c t 
graph A{Kn) = (Q3A, £ ) . This time, ÜA consists of all -tuples (i,jk) G V x E such that 
i 0 jk, while £ A is the set of all (i,jk)(j, kl). To construct a set p a c i n g relaxation of P M C P 
by means of this graph, we introduce the aggregation scheme A : .E —> i ® defined as 

(X) : = xij + 

ne gets A (x) 1 from the upper triangle inequality 

Xij - Xij - i S 

by setting X 0, hence the name "upper triangle" c o n i c t graph. This rearrangement also 
proves that ^ (x) attains its maximum value of one if and only if node is on one side of 
the cut, while nodes j and k are on the other. Again, one may think of the nodes i, j , and 
as forming triangles with the edges labeled as indicated in Figure 1 and sees that 

u 0 G (a;) + (a;) < Va; G CP H 

Thus, SSP) is an "upper triangle" set p a c i n g relaxation of CP 

4.5 e m m (Set P c k i n g R e l a x a t i o n of t C P ) A C P ) S S P ( ) 

This construction yields the circulant inequalities for k mod 2 = 1 as expansions of odd cycle 
inequalities for the upper triangle set packing relaxation of the max cut polytope. The case 
k mod 2 = 0 can be settled by strengthening the associated odd cycle inequality, i e . , one can 
a posteriori decrease the right-hand side by one and the inequality remains valid. 
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2.4. Theorem (Circulant Inequalities 
Let Kn be the complete graph on n nodes CP the corresponding max cut polytope, 0 A 

the upper triangle conßict graph and P S S P ) the upper triangle set packing relaxation of 

P C P -

(i) Every odd- circulant inequality for P C P is the expansion of an odd cycle inequalit 

f o r S S p ( 0 
(ii) Every even-k circulant inequality fo CP is the expansion of a strengthened odd cycle 

inequality for S S P Ö A ) 

Figure 13: An dd Cycle of pper Triangles. 

oof 
(i) Let k + 1 , ) be an odd-A: circulant with node set { 0 , . , 2k + 1}. Consider the k + 1 
2-tuples := (i, (i + 1 , % + 2)) (with indices taken modulo 2k +1). One verifies that the tuples 
Oj and öj+i are in conflict, i.e., öjöj+i G £A , and form an odd cycle in (5A, see Figure 2.13. 
The associated odd cycle inequality expands to an odd-fc circulant inequality: 

Jx)<k 

^(x(i (i 1) < k 

= ^ xi < 3/c + 
i j e C + l 
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(ii) The even case is analogous to the odd case. To see that one can reduce the right-hand side 
of the odd cycle inequality by one and Yli=o ^uu+i i+2)) (x) < k — 1 is still valid, suppose this 
is not so and let x G P M C P be the incidence vector of a cut that violates this constraint. Now, 
max {0, TTA(X)} is the incidence vector of a stable set in (5 A , and, clearly, this vector must be 
tight for the (unstrengthened) odd cycle inequality. This means that we have k -tuples with 
max {0,7f! ( j + l i + 2 ) ) ( x )} — 1) a n d k + 1 2-tuples with max {0,T^UU+ 1 J + 2 ) ) ( X ) } — 0? that are 
arranged in such a way that the two types appear alternatingly except for one time, where we 
have two "zeros" next to each other. Looking at a tuple with max { 0 , ^ n + l i + 2 ) ) ( x ) } = 1? 
we see that node % must be on one side of the cut while nodes i + 1 and + 2 must be on the 
other. The next "one" max {0,7r^+ ,i+3 i+i-\\ (x)} = 1 forces nodes + 3 and i + 4 to be on 
the same side as i. Starting without loss of generality at 7rÄ ,X 2^ 1 and continuing k times 
like this, all nodes of the circulant are assigned to one side of the cut or another in a unique 
way. When k is even, this results in nodes 2k — 1, 2k, and 0 ending up on the same side 
such that t f c i ( o))(x)} = ~ ^ > s e e ^ n e riS^ side of Figure 2.13 for an example; but then 

? 7 r $ ( i ) ) (x)<kl,& contradiction. 

Calling the expansion of an odd cycle inequality for S S P ) an inequality from an odd cycle 
of upper triangle inequalities, we obtain 

2.4.7 Corol lary (Separat ion of Ineq's f o m Cycles of U p p e r Triangle Ineq's) 
Let be the complete graph on n nodes and P M C P the associated max cut polytope. Suppose 
s G Q satisfies the constraints (2-MCP) (i) (ii) and 0 < x < 1. Then: 

Inequalities from odd cycles of upper triangle inequalities can be separated in polynomial time 

4.8 C o o l l a r y (Separat ion of C i c u l n t I n e q u l i t i e s 

(i) A superclass ofodd- k + 1, circulant inequalities can e separated in polynomial 
time. 

(ii) A superclass of even- C(2k + 1,2) circulant inequalities with their righthand sides 
increased by one can e separated in polynomial time 

We remark again that Polja Turzik [1992] have shown that it is A/T'-complete to determine 
whether a graph contains a C(2k + 1, ) circulant and thus, separation of the exact class of 
Ck + 1, 2) circulant inequalities is A/^-hard. 

2.5 The acking roblem 

We have demonstrated in the examples of the preceeding sections that certain combinatorial 
optimization problems have interesting set packing relaxations. Perhaps a bit surprising, we 
show now that the set packing problem itself also has interesting set packing relaxations! 
These considerations yield alternative derivations, generalizations, and separation techniques 
for several classes of wheel inequalities, including two classes introduced by Barahona 
Mahjoub [1994] and Cheng & Cunningham [1997], as well as new classes such as, e.g., certain 
"cycle of cycles inequalities". A survey on results for the set packing problem can be found 
in Chapter 1 of this thesis. 

The examples of this section are based on a "rank" set packing relaxation that we introduce 
now. Given a set packing problem (SSP) on a graph = (V, E), the associated conflict graph 

= (03, 6) of the relaxation has the set 03 := {H : H C G} of all (not necessarily node 
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induced) subgraphs of G as its nodes. In order to define the set of edges, we consider the 
aggregation scheme T R y —> M25 defined as 

(X)= Xia{H)l) V subgraphs G 23 of G, 
ie 

where a(H) denotes the rank, ie., the maximum cardinality of a stable set, of H. We draw an 
edge between two subgraphs H and W if there is no stable set in G such that its restrictions 
to H and W are simultaneously stable sets of maximum cardinality in H and W, ie . 

(X) + (X) < Va; G P S S P ( G ) 

By definition, the rank conict graph 0 depends only on G and this is why we occasionally 
also denote it by ©(G). Well known arguments show that P S S P ( © ) is a set packing relaxation 
of PSSP

 m the exponential space R51 

5.1 Lemm ( R n k Set Packing Relaxation of t e SSP PSSp S SP<S) 

2.5.1 W h e e l Inequalit ies 

One method to derive classes of polynomial time separable inequalities from the rank relax­
ation is to consider subgraphs of <S of polynomial size. A natural idea is to restrict the set of 
(5's nodes to 

:={H:\V(H)\<k}, 

the subgraphs of G with bounded numbers of nodes jV^i?)! < k for some arbitrary, but 
fixed bound k. The smallest interesting case is k = 2, where H (\V{H)\ < 2) is either empty, 
a singleton, an edge, or a coedge (complement of an edge). The odd cycle inequalities that 
one obtains from this restricted relaxation P S S P ( © [ 3 A ] ) contain, among other classes, the odd 
wheel inequalities of the set packing polytope. 

2k + 1-wheel is an odd cycle C of 2k + 1 nodes { 0 , , k} plus an additional node 2k + 1 
that is connected to all nodes of the cycle. C is the rim of the wheel, node 2k + 1 is the hub, 
and the edges connecting the node 2k + 1 and i i = 0 , . . , k, are called spokes. For such a 
configuration, we have that 

kx yXj< 

Figure 14: A -Wheel 

An odd wheel inequality can be obtained by a sequential lifting of the hub into the odd cycle 
inequality that corresponds to the rim. Trying all possible hubs, this yields a polynomial time 
separation algorithm for wheel inequalities. An alternative derivation is 
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Figure 1 heel and a Cycle of Nodes and dges. 

.5. T h e o e m (Odd W e e l Inequalities) 
Let G — (V, E) be a graph, PSSP the corresponding set packing polytope t i e rank conflict 
graph and P S S P ( © ) the rank set packing relaxation of PSSP- Then: 

Every odd wheel inequality for PSSP is the expansion of an odd cycle inequality for PSSP © [ ] ) 

Proof. 
Consider a k + 1 wheel with rim = {0, . . . 2k} and hub node 2k 1. The subgraphs 
t>j := G[{i k + 1}], i 1, 3 , . . . 1, induced by the spokes with odd rim nodes, and the 
subgraphs Oj = G[{}], i = 0, , . . , 2k, induced by the even rim nodes, form an odd cycle in 
<5, see Figure 15. xpanding the associated odd cycle inequality yields the wheel inequality 

2k 

X M (X ) + = kx ^<k 
j i , . . . i , . . . i 

2 5 3 Cool lary (Separation of Ineq's from Odd ycles of Nodes, Edges, Coedges 
Ineq's from odd cycles of nodes edges, and coedges can e separated in polynomial time 

We show now two examples of cycles of nodes, edges, and coedges that give rise to facetial 
inequalities that do not correspond to odd wheels. The cycle on the left side of Figure 16 
consists of the nodes 0, 2, and 3 and the edges (1, 5) and (4, 6), the one on the right of the 
edges (1,6), (2,7), (3,8), and (4,9) and the coedge ( 0 , ) . The associated inequalities are 

+ (X5 + ) + + (XQ + ) < i xi < 

(x5 + 1) + (Xß + ) + (x7 + ) + {x8 + ) + (x9 + ) < ^ Xi ^ 3 

*i< Xi < 3 

Figure 16: Two Generalizations of dd Wheel Inequalities. 

Another generalization of odd wheel inequalities was given by Barahona & Mahjoub [1994] and 
Cheng &; Cunningham [1997]. They introduce two classes of inequalities that have subdivisions 
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of odd wheels as support graphs, where each face cycle must be odd, see Figure 2.17. Following 
Cheng &; Cunningham [1997] 's terminology and denoting the set of end nodes of the even 
spokes (with an even number of edges) of an odd wheel W of this kind with some number 
2k + 1 of faces by £, the set of end nodes of the odd spokes (with an odd number of edges) 
by Ö, and the hub by h, a wheel inequality of type I states that 

kxh+ Xi + 2_^Xi<  
ie ie£ 

second variant of wheel inequalities of type II (associated to the same wheel) states that 

IWI +101 
k + l)xh + Xi + ^Xi< 

ie ieo 
3) 

We remark that these wheels do in general not arise from cycles of subgraphs of bounded size 
because they contain potentially very long paths. 

2.5.4 T h e o e m (Odd W e e l Inequalities) 
Let G = (V, E) be a graph, P S S P the corresponding set packing polytope t i e rank conflict 

graph and P S S P ( © ) the rank set packing relaxation of PSSP- Then: 

Every odd wheel inequality of type I and II for P S S P is the expansion of an odd cycle inequalit 

for P S S P (Ö) 

hub 
even spoke ends = {2, 6} 
odd spoke ends O = {4, 9,10} 

Figure 17: -Wheel and a -Cycle of Paths of Type I. 

oof. 
(i) Wheel inequalities of type I. 
The idea of the proof is to obtain the wheel inequality ( ) of type I as a cycle of paths. 
Orienting a 2k + 1-wheel clockwise, it consists of 2k + 1 spoke paths Si, i — 0, . 2k, and the 
same number of rim paths P j such that P j connects the ends of spokes Si and Si+i (indices 
in the proof are taken modulo 2k + 1). We can then compose the wheel from the paths 

Pi-.- Si 
Ri, 

Ri \ Si 

if Sj is even 

if Sj is odd w, 
if is odd 

if is even 
0 , f c , 
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see Figure 2.17. By definition, a pa th Pj consists of the spoke Si (plus minus the hub depending 
on i) and the full rim path Ri if the end node of the next spoke (in clockwise order) is even, 
or the rim path Ri without the end of the next spoke in case this spoke is odd. In this way, 
the even spoke-ends, having a coefficient of two in the wheel inequality, appear in two paths, 
the odd spoke-ends in one. Finally, the hub is removed from all paths with even index. It 
is not hard to see that any two successive paths Pj and j + i are in pairwise conflict: The 
subpaths Pi \ {h} (with the hub removed) are all odd and in pairwise conlict , and the hub is 
in conflict with any of these subpaths. The odd cycle inequality corresponding to the paths P 
expands into the odd wheel inequality (2.2): 

^Pi(x) < k 

£ £ 
i je 

»>/ ) / < k 

| W l + fc + | fc + l) 
kxh + XJ + ^ X 

je\{h} jes 
\W\ + \ \W\ + \ 

kxh+ Xj + ^Xj!—± !_L 2 

je\{h} jes 

ere, |Pj | denotes the number of nodes in the path Pj . 

hub 
even spoke ends = {2,6} 
odd spoke ends Ö = {4,9,10} 

Figure 18: -Wheel and a -Cycle of Paths of Type II. 

(ii) Wheel inequalities of type II. 
The wheel inequalities (2.3) of type II can be derived in much the same way as their relatives 
of type I. For the sake of completeness, we record the pa th decomposition 

p . _ a Ri' i f Si i s o d d 0' i f 1S e v e n 

Ri \ Si if 5j is even {h}, if is odd 
= 0, 
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One can verify that , again, any two successive paths are in confict. A final calculation to 
expand the resulting odd cycle inequality yields the wheel inequality (2.3) of type II: 

KPi(x) <k 

^ ( l ^ | l ) / W E x j ( \ ) / < k 
i \jeP 

, ,, \Wl + (k + l) + \ 0 \ k + l) ^ 

j e \ { je 

, is \w\ + \o\ | t | + |0| 
k + l)xh + xj + ^ X j K ^ ! - i ^  

je\{ je 

One can also derive polynomial time separation algorithms of much the same flavour as for 
the Möbius ladder inequalities; such procedures are given in Cheng &; Cunningham [1997]. 

2 . 5 . 2 A N e w F a m i l y o f F a c e t s for t h e S e t P a c k i n g P o l y t o p 

The ran r e a t i o n of the set packing problem offers a m p e possibiities to define n w casses 
of polynomially separable inequalities for the set packing problem. We discuss as one such 
example a cycle of cycles inequality; cycle of cliques inequalities and certain liftings of them 
are studied in Tesch [1994, Section 7.3]. 
The way to construct a cycle of cycles inequality is to link an odd number 2k + 1 of odd cycles 
C o , . . . , C2k to a circular structure such that any two successive cycles are in pairwise conflict 
i.e., irciix) + TTci+1(x) < 1 (indices taken modulo 2k + 1). 
One way to do this is to select from each cycle C, three successive nodes L, C d tha t will 
serve as a part of the inter-cycle links yet to be formed. The link Li has the property that 

d(x) = 1 implies that at least one of the nodes in Li is contained in the stable set spp(a ; ) 

C(x) = E xi ~ (l )l = E 
jeC jeu 

If we make sure that any two successive links L and £ + i are joined by the edge set of the 
complete biparti te graph ^ 3 ^ , we have that 

TrC(x) = = = = ° = nc+A*) < ° VxPSSF(G) niX 

and, vice versa, that i^ci+1 (x) = 1 = > ^c{ (x) < 0 holds for all incidence vectors x of 
stable sets in G. But then, every two successive cycles C, and Cj+i are in conflict, i.e. 
KCi(x) + irc'+1(x) < 1, and the cycles Cj form an odd cycle in <5, see Figure 2.19 links are 
colored gray 
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Ci 

L 4 ( 

Lt 

L2 

1 LT^J^ c 

i g r e 19 5-Ccle of 5-Ccles 

2.5.5 Theorem (Cycle of Cycles Inequality) 
Let G = (V, E) be a graph and PSSP be the corresponding set packing polytope. Let Ci 
i = 0 , . . . , 2k, be an odd cycle in G and L;h C d, i = 0 . . , 2k, a set of three successive nodes 
in Ci. Assume further that L and L + i = 0 2k are joined by a complete K^^. Then: 

The cycle of cycles inequalit 

2k 2k \ 

E E ^ ^ E(i i - i ) /2)-(fc + i) 
jeCi ) 

is valid for PSSP • 

roof 
2k 

( ( | C i | - l ) / 2 - l )  

E((|C,| - l)/2 - 1) + k = X ( | | - l)/2 (k 1) 

.5.6 Theorem (Separation of Cycle Of Cycles Inequalities) 
Cycle of cycles inequalities can be separated in polynomial time 

Proof. 
The number of potential links Lj is polynomial of order Od^j 3) . We set up a link graph that 

as t e links as its nodes; t i s device will in a second, turn out to be a subgrap of <5. wo 
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inks are c o n n e t e d by an edg if and only if they ar oined by a -^33. To assign weight 
the links, w calculate for ach link Lj the s h o r t e t even pa th P in G (with an even numbe 
of n o d e ) th c o n n c t s the two p o i n s of the link; here, s o r t e t ans s o r t e t with 

spect to the length function (1 j)/2 for all edges ij £ E j U forms a s o r t e s 

dd cycle Cj through L with r e s p t to the length Yljeci^ xj ~ xj+^)/ V ^ c(x) 
i.e., a long odd cycle Cj through i j with respect to the length TTC^X). We et the weight 
of link L to the value TC^X), obtain the link graph as a subgraph of ©[{C}] (some edges 
that correspond to "non-link conflicts" are possibly miss ing , and detect a v ioa ted dd cycle 
i n q u a l i y in the link graph if an only if a violated cycle of cycles i n e q u a y in G exis 
( e t u a l l y , we first have to s p a r a t e the edge i n q u a i s of the link graph). 

A cycle of cycles i nqua l i t y will in g e e r a l not be facet inducing, for example, if one of the 
cycle as a chord t h t joins two non- ink nodes But one can come up with conditions tha 
ensure this property. The most simple cas is w h e e the cycle Cj are holes, all node disjoin 
and the onl edges that run between i f f e n t holes belong t the links, i.e., we have a "hole 
of holes" this cas the cycle of cycles i n e q u a t y is asily shown to be facet inducing using 
t a n a r d t e n i q u s ike noting that e r y ed in a le of les is critical 

2.5.7 Propos i t i on (Facet Induc ing Cycle of Cyc les Inequal i t ies) 
If every cycle in a cycle of cycles inequality is a hole, and the only edges that run between 
different holes emerge from the links, then the cycle of cycles inequality is facet inducing for 
the set packing polytope P S S P ( G ) associated to the support graph G of the inequality. 

We want to giv now an alternative proof for the face teess of the hole of holes i n e q u a y 
The t e h n i q u e t h t we are going t demonstrate works a s o for other constructions of this 
type. It is our aim to give an xample how aggregation techniques, although not designed for 
facetial investigations, can s o m e t i m s l e d themsel o r s u l t s in this d i r t i o n 
P r o o f (of Propos i t i on 2.5.7) 
The idea of the proof is to xploit the composition s t r u c u r e of a le of les £ C o , . , C ^ 
To this purpose, it is convenin t to consider £ sometimes as a le in the conflict graph (5, in 
w i c case we want to denote it by C, and s o m e t i m s as a s t r u c u r in the origina graph G 
and then we want to use the original notation <. The first step is t look at the i n e q u a t y as  

l i n a r form in the image spac of the aggrga t ion , namely, as the dd cycle i n q u a l i 

^2 
t > = C o C 2 

of the et packing p o y t o p e P S S P (£) associated t the odd hole As consra in t (2.4) is a 
facet of P S S P ( C ) , the are 2k + 1 affmely i n d e p e n d n t incidence ors 5;r, r = 0 , . . , 2k, of 
set packings on the induced face. Likewise each of the individual holes Cj has a set of |Cj 
affmely i n d e p d e n incidenc vectors of set packings xt in the grap Cj, s = Cj tha 
are tight for the odd cycle i n q u a i t y associated t Cj, i e . 

£ i C * ) / = 0 2 f Ci 

o r o v r the is an incidenc or of a set packing in Cj such th 

E i = ( C i ) / = 0 2 f 
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te th 

i= ~ {Ci ) / 1) = 0 2 k Ci 

E i Ci ) / = 0 = 0 2f 

We will use the vctors o expand the v e o r s If i n o a set of E o IQ affinely i n d e d e n 
incidence vectors of stable sets in £ tha are tight for the h l e of les inequaty in q t i o n 
T this purpos w can assum without loss of g r a l i t y t h t 

cr = 0 2K 

i.e. the r-th componen of the r-th aggregated) incidenc tor If is one. We now blow 
up" eac or of in v e o r s ys E M£, s = 1 | | defned as 

V if ^ = o 
g^ ii^ = l a n i / = 0 2k 

if 3 ^ = 1 and i = r 

y " indees th s u v e c o r of y E M£ w t h all compone th corrspond to the hole C, 
n other words: We take each incidenc or 5fr and s u t u t e for ach of i s componen 

XQ i 2k, a vector x : If ~xr
c we take x , if 'xr

c = 1 we take xtl. The only 
excepion this procedur is coordinate her we do not only s u t i t t e x but t ll 
p o s s i b l i t s xr In all cas h w e (yrs) = äf for all = 1 . , \ 
This r su l t s in a t t of E ^ o \Ci\ v e o r s yrs. t is asy to see that the expansions of 
stable et by table sets" ar incidence vecors of sable sets in £ and that they are tight 
for the h l e of holes inequaity under consideration. We aim t h t they are also affinely 
independent. For suppos not; then there are multipliers X no all zero th sum up 
zero such th E ^ = 0. But this imp th 

2k C \ 

) = ^ p = o 

an affin i n d e d e n c of the aggrgated or Z eld 

c 
= 0 = 0 2 f c 

onsidering the r o s of = 0 th corrspond t the i n i v i u a l h l e btain 

E ^ c = 0 = 0 2 f c 
is 

s for % / the ors y" = a; ar consan for all t h e e equaions simpify t 

L 

E ^ E = 0 = o2* 
0, = l 

see ( 5 ) 

an imply 0 a contraicion. Thus the incidence vectors y we indeed affinely 
i n d e d e and the h l e of les inequality facet inducing for i s support. 
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5 3 in litie 

We hav een in the preceding subsections a variety of derivations of casses of inequalit 
from le and que inequal i t i s of appropriate set packing relaxations. To give an xample 
of a if combinatorial type, we show in this subse t ion th a family of chain inequalities 
th e introduced by Tesch [1994] can be seen as s t r n g t h e n e d ( e e page 5) expansions 
of N h a u s e r & Trotter [1973]'s a n t w e b i n e q u a l i t i , see so a u r n t [1989] 
A 2k + 1-chain C is similar o a 2chorded c y l e th 2k nodes 0 , . . . , 2k; the d i f n c e 
is that the two chords (0, 2k 1) and (1, 2k) ar r p a c e d with the single e d e (1, 2k — ), see 
Figure 220 . An antiweb C(k71) is a graph on k nodes 0 , . . . , k — 1 such that any t successiv 
nodes i, + l , . . . , ? + £ — form a cliq ee Figure 2 2 1 . C a i n s are ry s imia r 2 c o r d e d 

c l e ; t h , in urn, coincide ith the ass of a n w e b s C(2k + 1, 3 
Chains and antiwebs giv rise to i n e q u a s for the et packing polytope. The chain an 
antiweb inequalities s t t e t h t 

igur ain igur The web 

2.5.8 T h e o r e m (Chain Inequal i t ies ) 
Let C he 2k 1-chain, PSSP the corresponding set packing polytope, 0 = (03, 6 the rank 

conflict graph, and P S S P ( © ) the rank set packing relaxation of PSSP- Then: 

Every chain inequality for P S S P is the expansion of a strengthened antiweb inequalit for 

P S S P ( ) 

P r o o f 
Consider in the 2k — node 

Oi =Gl,2k = G{i] , . . . , 2 f t - an v2k = G2k - 1 , ] , 

and let 2 o i , . . . , t > 2 f c - The ader vr i f ie that W i n u c s an a n w e b in mor 
prcisely, 

2J] 2 f t - l , 

X 
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xpansion of the a n w e b i n e q u a t y c o r r s p o n i n g eld 

/ 

3 
k  

k ~ k XO 

2k 
1. 

f n a ngthening of this i n e q u a t y reducing the r i g h t a n side by on see pag 
yields the desired hain i n e q u a t y . The val id ty of the s t rng then ing can be in f r r ed in 
s imia r way as in the proof of Theorem 2 4 . 

2 . 5 . 4 S o m e C o m p o s i t i o n P r o c e d u r e s 

le the examples of the preceding subect ions had analytic flavour, y in this sub 
s e i o n applications of set packing relaxations to constructive approaches the stable set 
polytope. Our r s u l t is that c e t a i n composition p r o c e d u r s of the l i t e rau re hav a n a u r a 
interpretation in terms of set packing relaxations. 
The general principle behind composition approaches is the fol lwing O e considers som 
graph theoretic operation to construct complex graph G from one or mor simpler on 
an i n s t i g a t e s the polyhedral consequences of this ope ra ion Such conseqences can be 
(i) o obtain analogous operations to construct vali or facet defning i n e q u a t i s for G from 
known o n s for the original grap or, in rar c a s , (ii) to obtain complete descr ipion 
of Ps$p{G) from l i k i s complete descripions of the a n t i d o m i n a n s of the set packing 
polytopes associated the original grap A survey on composition ethods for the et 
packing problem can be found in S i o n 2 5 of this thesis 

O r a t i o n s of typ (i) tha t giv rise to facets are called facet producing procedures an 
s t y t h e e examples of this type in the emainder of this s u b t i o n ( invesigate only their 
v a d i t y . The graph theoretic composition technique behind all of the is node substitution 
(in iffrent variants): G i v n is some graph G; lacing one or several node by graphs and the 
affected edges by appropriate ets of e d , one obtains a n grap G. The facet p r o u c i n g 

rocedur associated o suc s u b i o n ranslates v a d / f a c e t defining i n e q u a s for 
^ S S P ( G ) i n o v a d / f a c e t defning inequalities for PSSPG) 

This c o n c t has an obvious r e l t i o n t expansion amely conside the expansion 

a <== a 

of an inequal ty for the rank relaxation P S S P ( ) of some grap G: O btains the suppor 
graph fsuppa^TI] of the expansion from the suppor grap S s u p p a ] of the aggregated 
i n e q u a t y by a sequence of node subs i tu t ions and idetif icat ions. Constructing inequaliti 
in this way ans thus to look at a given graph as the conflict graph or a subgraph of i 
of som grap G t h t can be constructed from 

c o n s r u c such th G = 0 

This technique —to start with the conflict graph and construct a s u i b l e origina graph— is 
our interpretation of composition in terms of a g g r g a i o n 
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igur pplying a omposiion rocedure. 

We turn no the examples and s a r w t h a procedure of Wosey 196]. Givn a graph 
G = (VE) th node V { 1 , . . . , n} the operation constructs a new graph G (V,E) 
from G b acing node n w t h a path (n + 1, n, n + ) involving two new node n an 

+ such t h t n + 1 is adjacent to some s u e t 7 of nighbors of the "old" node n hile 
n + 2 is adjacent t the maining nighbors igur 222 hows an xample here node 6 of 
a graph is repaced by the path (7, 6, 8) and the node 7 is c o n n t e d t the old eighbors 
7 = {3,4} of 6. The procedur ass that if iT < a was a va inequaity for SSP 
the consrain 

ä änn+ änn+ an 

lds for P S S P ( G ) . This inequalty can be btained from a rank relaxaion of th invo 
the aggrgaion sche MY — d e f e d as 

j , ^ n 

n+ n+ I, n. 

TT maps ach node o n o i e l f xc for the path (n, n 1, n ic is aggrgated i n o a 
single node. One easily checks 

2.5.9 Lemma (Composition Procedure I) G = © 

xpansion of äTx ä yields inequality (2.6). We mark that this argumnt d s no 
how that this procedure transates facets i n o facets 

Our second example is due to l ey [1976] and Padberg [1977]. The procedure joins an 
additional node 2n + 1 to all nodes 1 , . . . ,n of the given graph G = (VE), and the graph 
G = (V E) a r i ss from this join by subdiviing eac of the ne edg ( n 1, ) with a node 

. I this cas the inequality T
 Y ~ä~ ^ f° r

 PSSP) g ivs rise t the consrain 

\ 
ä n+ + I ä ä n+ ä 

for PSSP{G) and is in fac ven facet inucing if Tx ä was) igure ows an 
appicaion of this t e c n i e t the grap G on the lef side th node 1 , . . . , 5 (adding the 
grey node 6 in the middle esults in a c a i n graph G tha ll be expained in a secon) 
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igur nothe ompos i ion rocedure. 

To obtain i n e q u a t y ) from a rank re laxa ion conside the sche : M 
defined as 

n+ n + 1, 1 , . . . , n 

1, 

he we hav et { E) 

2.5.10 L e m m a ( C o m p o s i t i o n P r o c e d u r e II) = G) 

n othe words the conflic grap of G coincides with G augmented an a d d i o n a node 
n + 1 that is no c o n n t e d to any ther node. Obviously an i n e q u a t y X)* ^i^ ^ ^ tha 

is valid for P S S P ( G ) is also valid for P S S P ( G ) 

It is now not true th an xpansion of the i n e q u a t y Y17= ®i — ® for PSSP ) yield the 
desired i n e q u a t y ( ) t get it with on additiona " s n g t h e n i n g t y p " a r g u m n t . 
This argum is th if ^i^ is valid for PSSP{G the r o n g r inequality 

n+ 

is p e a p s no ong valid for PSSP{G ), t is v a d for K(PSSP{G)) A expansion of this 
inequai ty yields the inequality ) of interest (but again no facetial result). 
As an example of a much mor general composi ion t e h n i q u we consider no the substi 

tution of a node of G y some graph Gv, such that the esulting graph G E) is the 
union of G v and Gv, t h ll nodes of Gv joined to all ighbors of in t i tutions 
of this typ w ed by h v ä a l [19 ho showed no only th if ä T ä is a facet 
of PSSP) an ß a facet of PSSPGV the i n e q u a t y 

Gv 

is vali for S S P ( G ) , but that all facets of PSSP{G) are of this form Note that this o p r a i o n 
s u s u m the famous multiplication of a node to a c l i u e of Fulkerson 1972 and Loväs 
1 9 1 ] th p s an importan role in s t d i n g the polyhedra associated to perfect graph 
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To derive the v a t y of i n e q u a e s ( 2 ) for ed b a r t r a r an ß as a o v 

from a set packing re laxa ion conside the a g g r g a i o n sche M^ ^ g i v n as 

Xu, _ 

is bounded by one in e v r y component, integra in all coordinate differen from v not 

integral in v an in p a r i c u a r not a rank a g g r g a i o n ( is our only non-rank xample in this 

ion). B if b is a support of PSSP{) e. t h e e is an incidence or x of a 

stable et in G such that the inequality is tight the a g g r g a t e (PSSP)) as no 
only i n t e g r and thus zero-on t i c s only, , in fact 

2.5.1 L e m m a ( C o m p o s i t i o n P r o c e d u r e III) P s s p ) ) PSSP 

Once this r e l i o n is e s b l i s h e d , an expansion of the i n e q u a t y li^ß ä eld h v ä F 
i n e q u a t y (b no an equ iva le t sult bout complete descripions) 

P r o o f (of L e m m a 2.5.11) 

We prove first th (PSSP)) is integral The proof is y c o n r a i c i o n e. suppos 

7 T ( P S S P ( G ) ) is no integral. Then the must be a non i n t e r v t e ir(x°), he ° is a 

v e t e x of PSSP(G ote that x° > 0 and so must be TT(X. The only fractional component 

of TT°) can be X) an must be nonnull. By a s sumpion t h e e exis incidenc ors 
an 1 of stable ets in Gv such t h t 

bT an bT ~ 

The ors an th arise from by acing ^ t h an y ar again incidenc 

ors of s a b l e ets in becaus % is nonnull and the able et supp as a node in 

Gv. B t the 

TT^ (ß- ) / ) / 

is not a v t e a c o n r a i c i o n . 
The las te tablis (PSSP(G)) PSSP) is o note th TTW 1 h l d s for 

any v t e ) G { 0 , 1 of P S S P ) ) if a n only if uw G E D 

2.6 The Set Covering Problem 

We propos in this s t i o n a set packing re laxa ion of the set covering proble t h t gives 
rise to polynomially parable c a s s s of i n e q u a i t i s . This is important for w asons: 
(i) Set covr ing d e a s ith g e n r a l i n d e d e n c e ystems, see S t i o n 1.3 of this thesis while 
many problems in combinaor ia o p i m i a t i o n aris from s p c i a i n d e d e n c e s y t e m s ; henc 
the set covering results carry o v e . Unfortunately, h r , ii) v r y classes of polynomia 
i m ) s p a r a b l e i n e q u a l i s for the et covr ing problem are kno are only awar of the 

odd hole inequalities, see S u b t i o n 1.9.1 Nobili & Sassano [1992]'s kprojection cuts, Balas 
1980]'s conditional cuts an certain c l a s s s of {0 ^} C h v ä - G o m o r y cu see aprara & 
ischetti 199 ee lso S l z [1996, S i o n 4. for som a s s s of this t y e . 
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The need t develop cutting p l a n s for the set covering polytope was the arting poin for our 
work on set packing relaxations. We have mplemented one v r s i o n of suc a procedur for us 
in a b r a n c h a n d c u t algorithm for set p a r t i o n i n g problems; details abou and c o m p u t i o n a 
x p r i e n c e with this r o u i n are ported in Chapter 3 of this thesis 

The set covering proble ) is the i n t e r program 

) 

w h e e A G {0, l } m x n and w G Z . The sociated po lyhedon is denoted in this s i o n by 
PSCP or PSCP(^4 ) - For a survey on set covr ing , ee C a p t e 1. 
The set packing relaxation for (SCP) th we s u g g s t is based on an e x p o n i a conflic graph 
<3 = (23, £) t h t c o r s p a i r i s e conflicts of s u b s t r u c u r s of the matrix A. We take the et 
03 2 { l n J ( h e r e 2s denote the powerset of som et S) of all subsets of column( i n d i c ) s 
of as the nodes of and d e f e an aggrga t ion sche W M93 as 

min 

mx an G Z 

ez 

KJ VJ C 1 , . . . , n 

We draw an edge between wo (no ecssar i ly disjoin) sets I and of c o u m n s whe their 
union c o v r s a row of or equivalently some variable in / U J as be et to one: 

: I J D M nj pscp n 

2.6.1 L e m m a (Set Packing R e l a x a t i o n of t h e S C P ) P S C p) S S P ( -

This set packing re laxa ion as bee consideed b Sekiguc [198] in a special case. He 
s t d i s 0/1 matric A with the p r o p e t y that there is a p a r t i o n 2U of the c o u m n ( indice)s 
Ut2r» ö { 1 , . . . , n} into nonempty c o u m n sets ü such t h t (the support of) each ro is 
the union of xactly two suc c o u m n sets i.e. V : 3u, 0 253 u / b A supp. 
Figur 2 2 4 h s an xample of a 0/1 m a r i x that has suc a Sekiguchi partition 

1 2 8 9 

A = 

I 1 

1 1 

1 1 
1 1 1, 4,5 

8,9 

igur kiguc a r i o n a b l e rix 

Using s s e i a l l y the same t e c n i q u e as we did to prov roposition 2 ( a o u t the faceteness 
of hole of holes inequaities) Sekiguc [1983] h t h t for a 0 m a r i x A that has a 
Skiguchi p a r t i o n 53 is no only true th 

P S C P P S S P 2 5 3 ] 

ven mor that the facets of P S C P ar exactly the expansions of the facets of PSSPÖ5[253] 

We mark that ekiguchi considers in is proof the as would sa a g g r g a i o n sche 
7f : defned as 

E 
t h is " c o m p l e a r o ours in the nse th ir = 



et cking Re lxa ions 

We mention the odd hole inequalities for the S ee, e.g Cornuejol &; Sassano [1989] as 
one example for a class of inequa t h t can be btained from a set packing relaxaion in 
the sense of Sekiguchi. 
n this conte t of set covering the term odd hole is commonly used to refer to the e d e n o d e 

incidenc mar ix A2k 1,2) A(C 2k+ 1,2)) e^k+i)x(2i) Qf the circuan C ( 2 / 1 , 2) 

m o 2 / 
2k l, = I 1, if J 

e le . 

i or j 

The associated odd holt inequality ass th 

is va for PSCp 1 , ) ) 

2.6.2 Proposition 
Let A(2k + 1,2) he an odd hole PSCP the corresponding set covering polyhedron, <5 the 
conflict graph associated to A(2k 1, 2), and Pssp(0[2Ü]) the Sekiguchi relaxation of PSCP, 

where W {{«} | i 1 , . . . , 2k is the (unique) Sekiguchi partition of A(2k + 1,2). Then: 

The odd hole inequality associated to PSCP is the expansion of an odd cycle inequality for 

Pssp(&m 
We omit the simple proof of this proposition an proceed with an example of an expanded 
cyle inequaty tha can not be obtained from a kiguci relaxation; we call this larger class 
of i n e q u a l i s from xpansions of) c l e i n e q u a i s for 0 aggregated cycle inequalities 

igur kiguc a r i o n a b l e rix an an ggrgated le. 

The mar ix on the le of igur 5 givs rise to a -cyle £ in 0 formed by the nodes 
{1, 2, 3 üi { } , o2 {5, } Ü3 = {4, 7} and 0 8, 9} A is not Sekiguchi parttionable 
bcaus row A\. calls for the ets supp4i. \ supp {3,4 and supp^i . n supp {4} 
as e l e s of the partition, t the ets ar not disoint. A xpansion of the dd le 
inequaty corrsponding to £ ields 

X X7 
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Turning back to g n e a l ca and looking at the separation of i n e q u a s fo P S C from the 
et packing re laxa ion P S S P ( ^ ) , w can obtain polynomially eparable classes by estricting 

a t t e t i o n to node induced s u g r a p s (5[2ff] of the conflict grap of polynomia size. heuristic 
ay t d this is o s p t the suppor of ac ro A in wo "equa sized h v e s " 

supp : I 

th e s p c t to a g i v n fraciona covr ing e. sp such th j K ^J and tak 
as the et of the " h l s " : 

l , . . . , m 

The dea behind this procedure is i) obtain a " rasonable (polynomia) number of 
nodes (in f a c , in our c o m p u t i o n s a l of thes lwa turned out t be identical) with va 
of TTI),IJ) close t rj tha t l e d (ii) with some p r o b b i l t y not only to a significant numbe 
of e d g s at all but (hopefully e o " i g h t e d e s " of the et packing relaxation which 
in turn (iii) o f r s some potential to i d e i f y violated i n e q u a i e s . We hav implemented 
this procedure t separate agg rga t ed c l e i n e q u a e s in a branchand-cut code for set 
partitioning problems; for more i m p l e i o n de t a i s an computational experience i th 
this routine see C a p t e 3 of this thesis 
Another s p a r a t i o n ide th suggests itself would be to deri i n e q u a l i s from submatrices 
of A. B t in contrast to the set packing cas such i n e q u a e s ar in g r a l only va for 
their ro and/or column support. They have to be lifted to become g lob l l y vali an we d 
no kno how t derive efficintly separable classes of i n e q u a l i e s in this way. 
We close this s u b s e i o n with an a t tempt to demonstrate the fexibility of the concept of the 
set packing relaxation P S S P ( ® ) by stating a r s u l t of Balas & 1980 on cutting planes 

from conditional bounds in "set packing re laxa ion terminology 
Balas & Ho assume that some upp bound zu on the optimum objecive va of the et 
covr ing program ( S C ) is known. this situation, they consider some family of variable 
index sets 2U C Q an i n t i g a t e condt ions that ensure th at least one of the corresponding 
aggregated variables nv( 0 G 2Ü has a v a u e of on for an solution x with a better objective 
value than u. If this condition can be established ( B a s 1980 s u g g t a r g u m s and 

gorithms ased on LP uality the conditional cut 

U D e a s u P P ^ ) 

can be used as a cutting plane. H e e , for ach c o u m n set is an a r r a r ro of 
te th conditiona cuts are again of set covr ing t y e . 

2.7 The Multiple Knapsack roblem 

In this s i o n we i n i g a t e a set packing re laxa ion of the multiple knapsack problem in 
an e x p o n e t i a space. It w l l turn out that the v a d i t y of certain casses of x t e d e d cover 
and combined cover inequait ies can be explained in terms of a single conflic of two "item-
knapsack congura t i ons" . s r ferences t the multiple knapsack proble we give W o l e y 
[1990], the t e t b o o k Martello &; Toth [199 , hapter 6] F r r i r a Martin & Weismantel 199 
ee so the thesis of r r i r a 1994] and the survey a r i c l e ar Weismantel 1 9 9 ] 
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The ultiple napsack proble ) is the i n t e r program 

max ^ 
£ 

i) Y G K 

ii) V« G 7 

ii) {0,l 

H e , 7 1 , . . . , n} is a set of items of nonnegativ intege ights and profit G Z+ 
t h t can be stored in a set K of knapsacks of capacity ach. ssociated th the is 
the multiple knapsack polytop P M K P -
The set packing relaxation th we propos involves the following conflict graph 5 (93, ( ) 
(S has the set 93 2Ix (wher denote the powerset of som set S) of all sets of possible 
"item-knapsack pairs" as i s n o d e . We ll call such a set of item-knapsack pairs a(n item-
knapsack) configuration. To define the e d s of the conflic grap conside the a g g r g a i o n 
sche xK 93 defned as 

= ( k ) -

H e , 7( {i G 3k G K : ik G denotes the set of items th a p p a r somewhere in the 
c o n g u r a t i o n 7rB(x) is on for som s o l i o n x of ( K ) if and only if a assigns all items 
in to feasible knapsacks th r e s p e t to i.e. all tems i G 7(o) of the configuration satisf 

ik 1 for some (« k) G . Two configurations and 0 ar in conflict and we draw an ed 
between them if TTU(X) + T0(X) < 1 holds for all x P M K P H Z 7 X Ä ' e. is no possible t 
simultaneously assign all tems in u an 0 o fas ib le knapsacks 

2.7.1 L e m m a (Set Packing R e l a x a t i o n of t h e M K P ) ( P M K P ) Q S SP(<8) . 

We h w no that the asses of extended cover inequalities and combined cover inequalities 
of Ferreira, Martin & Weismantel [1996] aris from expansions of edge inequalities of this set 
packing relaxation; our discussion r r s to rreira [1994]' description of the inequai t i 
An extended cover inequality invol wo c o n g u r a i o n s ü' an tt" of the form 

' x { an " x 

w t h two knapsacks an and two sets of items 7 and I . In this situation, it is in g e r a 
not true that 7y () r0// x) < 1 h l d s , b t one can look for combinatorial conditions th 
nsure this i n e q u a t y . r r i r a [1994 pag 4] assum t h t 

(i) forms a cover for knapsack k\, i e . the tems in I o no ll fit in and th 

ii) " {i} forms a c o v r for knapsack for ach item i G 7' 

( u a l l y , he assumes a s o 7 n 7 = 0 ) (i) means that if x) , .e. all tems 7 of 
the firs configuration are assigned to the knapsacks k and k2, then at leas one ite of 7 
must be assigned t k and the TTH(X) < 0 due to (ii). This implies the v a l i t y of the ed 
inequal ty y ) + rB» < 1 that e x p a n s i n o the extended c o v r i n e q u a t y 

^ k ^ ^ L 
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f simi flavour a e the omined c ineualitie. This im the o n g u r i o n s a 

an 

th t h e e dif knapsacks an an s a i s f i n g conf r r i r a 1994 page 8 

(i) i U 2 and 2 | = , 

(ii) is a c o v r for \, 72 a cover for 2 , and 

iii) " {i} is a c o v r for knapsack for ac te i G 7 

( F r r i r a [1994] a s s u m s again I " 0 ) irüi = an i) together imply th at least 
on te from 7' must be assigned to knapsack £ and the ii) r s u l t s in i(x 0 as for 
the e x t e d e d c o v r i n e q u a l i t . Expanding the ed i n e q u a t y y/ btain 
the c o m i n e d c o v r i n e q u a t y 

X k X E * X A !• 
e/ 

The f o l l o i n g theor summarizes our r s u l t s on x t e d e d an c o m i n e d c o v r inequa 

2.7.2 T h e o r e m ( E x t e n d e d and C o m b i n e d Cover Inequal i t ies) 
Let MKP be a multiple knapsack problem, P M K P the associated multiple knapsack polytope 
and P S S P ( 1 S ) the set packing relaxation of P M K P -

(i Every extended cover inequality for P M K is the expansion of an edge inequality for 

P S S P ( < 5 ) . 

(ii) Every combined cover inequality for P M K P is the expansion of an edge inequality for 

P S S P ( < 

2.8 The 0/1 P r o g r i n g Problem ith N o n n e g i v e D 
We hav seen in the previous s i o n s xamples of set packing re laxaions for specia combi 
natoria o p i m i t i o n problems. To give a perspective in a more g e e r a l d i r i o n , e want 
to draw the r d e r ' s attention now to a set packing relaxation for a class of 0/ integer pro­
gramming problems th was suggs t ed by Bixby &; Lee 1993]. This consruc t ion assum 
only nonnegativity of the constraint matrix no p a r i c u a r structure; it elds cli dd 
ycle, etc. inequal i t i s in the natural variables 

Set packing constraints of this type form one of the rare f a m i s of structural cuts for g r a 
integer programming problems, e., cuts that are derived by searching d e t e t i n g and ut 
ing some combinatorial structure in an a priori unstructured constraint system. Set packing 
elaxations t y to set up a conflict graph the famous single knapsack relaxation of C r o d e 

Johnson & adberg [1983] analyzes the diophantine structur of an individual row P d b e r g 
van Roy & Wolsey [198] ' flow covers are based on comina to r i a l p r o p e i e s of fixed charge 
problems, an the feasible set inequalities of Martin & Weismantel [1997] com from inter 
s e t i o n s of s r a l knapsacks. These a s s s of s t r u c u r a l c u s are the firs of only t h e e typ 
of tool to so 0 1 integer programs by branchand-cut . Enumeration is, unfortunately, the 
second and the third consists of general cutting planes for 0/1 integer programs: Gomory 
1960] 's cuts, see B a s , C r i a , C o r n u e l & Natraj [1994] for an exciting r n t naissanc 

l if tand-proje cut ee Balas C r i a &; C o r n u s 1 9 9 ] , or oväsz & Schrijver [1991]'s 
matrix cuts. To pu t b r i f : There is significan inte in i d e i f i n g further f a m i s of 
t ructura cuts for g e r a integer programs 
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e class of integer programs with a mbedded et packing s r u c u r consiss o programs 
th nonnegative constraint ystems 

(I max G {0, l 

H G Z an b G 1 are a nonngaive integral mar ix and righthan side tor 
and w G Z is an integer o j e i v e ; no further s r u c u r a p r o p s ar assumed. The polytop 
associated to this program is denoted by -PIP+ 

ixby &; Lee [1993] propose for suc programs the folloing "nau ra" set packing relaxaion 
The conflict grap <S (03, 6) of the elaxation as the column( indice)s of the mar ix A+ 

or if want the variables, as its node ie . 23 { 1 , . . . ,n}. The e d s are defined in terms 
of the d e t y aggrgaion sche : M that has 

l,...,n. 

There is an e d e betwee wo coumns i an j if an only if not b t h of the can be conained 
in a sol t ion o ( I P ) at the same tim ie . 

ije£ ^^ ^^ P+ 

2.8.1 Lemma (Set Packing Relaxation of IP+, B b y & L e e [ 9 3 ] ) r( PSSP(( 

The natura set packing relaxaion yields c q odd c l e , and other set packing i n e q u a i e 
in the origina variable A extension of the natura et packing elaxation t the mixed 
integer cas is currntly ed by Atamurk N h a u s r & Savelbergh 1998]. 
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incidence matrix of a graph 5 
independence system 9 

relation to set covering 9, 44 
independence system polytope see set 

covering polytope 
inequality 

with bounded Vindex k 41 
with bounded 7V+index k 41 

inequality from an odd cycle of lower trian­
gle inequalities 

for the clique partitioning polytope 64 
separation 64 

inequality from an odd cycle of upper tri 
angle inequalities 

for the max cut polytope 67 
separation 67 

integer 0/1 program 8 
integer aggregation scheme 54 
integer program 

feasible set inequality 85 
flow cover inequality 85 
general cutting plane 85 
Gomory cut 85 

lift-andproject cut 85 
matrix inequality 85 
structural cut 85 

intersection graph 
of a set packing problem 9 

intersection of two graphs 36 
item in a multiple knapsack problem . 84 
item-knapsack configuration 

in a multiple knapsack problem . 84 

J 
join of graphs 36 

K 
A;-fence see fence 
A;-multicut see multicut 
^-projection inequality 

for the set covering polytope . . . 49, 80 
separation 49 

K4 inequality 
faceteness 31 
for the set packing polytope 31, 36 

König 
edge coloring theorem 4 
König-Egerväry theorem 4 
marriage theorem 4 

knapsack 
in a multiple knapsack problem . . . . 84 

knapsack cover 84 
knapsack polytope 

cover inequality 47 
knapsack problem 47 

^-perfect graph 26 
lexicographic product of two graphs. 35 
liftand-project cut 

for an integer program 85 
lifting 33, 34 

coefficient 34 
for the set covering polytope . . . 46, 83 
for the set packing polytope 33 
heuristic 34 
in pseudo polynomial time 34 
problem 34 
sequence 34 
sequential method 33 
simultaneous method 34 
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line graph of a graph 28 
linear ordering polytope 56 
linear ordering problem 56 
link graph for a cycle of cycles 73 
link in a cycle of cycles 72 
local optimum in a local search 42 
local search 42 

improvement direction 42 
local optimum 42 
search graph 42 

M 
marriage theorem of König 4 
matching 

in a bipartite graph 4 see 
König-Egerväry theorem 

in a graph 28 
matching problem 

in a bipartite graph 4, 5 
matrix cone 39 
matrix cut see matrix inequality 
matrix inequality 

for a 0/1 integer program 85 
for the set packing polytope.. . . 29, 40 
separation 40 
with index k 40 
with 7V+index k 40 

matroid 
rank facet 48 

max cut polytope 61 
circulant inequality 64 

separation 67 
even-A; circulant inequality 

separation 67 
inequality from an odd cycle of upper 

triangle inequalities 67 
separation 67 

odd-k circulant inequality 
separation 67 

upper triangle inequality 61 
max cut problem 61 

set packing relaxation 65 
max flow-min cut equality 16 
max flow-min cut theorem 13 
max-max inequality 12 
max-min equality 11 
Meyniel graph 37 

min-max equality 1 
min-max theorem 4 
min-min inequality 12 
minimally imperfect 

0/1 matrix 17 
graph 17 

TVindex 41 
minimally nonideal 

0/1 matrix 17 
minor 

of a balanced matrix 22 
of a graph 16 
of a matrix 16, 22 
of a polytope 16 

Möbius ladder 
in a digraph 56 
with arc repetition 57 

Möbius ladder inequality 
for the acyclic subdigraph polytope46 

56 
separation 59, 60 

multicut in a graph 61 
multicut polytope 61 
multicut problem 61 
multiple knapsack polytope 84 

combined cover inequality 85 
extended cover inequality 84 

multiple knapsack problem 84 
item 84 
item-knapsack configuration 84 
set packing relaxation 84 

multiplication of a node in a graph .35, 79 

7V+index 
of a graph 41 
of an inequality 41 

index 
of a graph 41 
of an inequality 41 

node coloring of a hypergraph 22 
node covering problem 

in a bipartite graph 5 
node separator in a graph 37 
node substitution in a graph 77 
nonseparable set 

in an independence system 33 
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O 
odd K4 28 
odd antihole see antihole 
odd cut in a graph 28 
odd cycle 

in a graph 27 
chord 27 

TV-index 41 
odd cycle inequality 

faceteness 28 
for the set packing polytope.. . . 27, 53 
7V+-index 41 
separation 28, 53 

odd cycle of dipaths inequality 
for the acyclic subdigraph polytope 59 

odd cycle of diwalks inequality 
for the acyclic subdigraph polytope 59 
separation 60 

odd cycle of lower triangle inequalities 
for the clique partitioning polytope 63 

odd cycle of upper triangle inequalities 
for the max cut problem 66 

odd hole 
circulant matrix 19, 82 
in a graph 6, 19, 27, 47 

odd hole inequality 
faceteness 28 
for the set covering polytope . . . 47, 82 
separation 28 

odd wheel in a graph see wheel 
odd-A; circulant in a graph 64 
odd-A; circulant inequality 

for the max cut polytope 64 
separation 67 

open ear decomposition of a graph 28 
optimization 

polynomial time equivalence with sep­
aration 6 

oracle 25 
orthogonality inequality 

for the set packing polytope 27, 42, 53 
7V+-index 42 
separation 42, 53 

orthonormal representation of a graph . 42 

P 
packing in a hypergraph 8 

packing problem 5 
pale in a fence 56 
partially ordered set 13 
partition in a hypergraph 8 
partitionable graph 19 
partner of a clique or stable set 

in a minimally imperfect graph . . . . 18 
perfect graph 6, 14, 79 

antihole perfect 29 
blossom perfect graph 28 
%perfect 14 
%perfect 14 
clique perfect 27 
cycle perfect see t-perfect 
edge perfect 26 

perfect 28 
^-perfect 26 
pluperfect 14 
tperfect 28 
wheel perfect 29 

perfect graph conjecture 14 
perfect graph theorem 6, 15 
perfect graph theory 6, 14 
perfect matrix 6, 12 
picket in a fence 56 
pluperfect graph 14 

%pluperfect 14 
%-pluperfect 14 

polar of a set 39 
polyhedral consequences 

of graph theoretic operations 33 
polynomial time equivalence 

of optimization and separation 25 
polytope 

extended description 37 
poset 13 
powerset of a set 81, 84 
primal approach 

to the set packing problem 42 
projective plane 15, 19 
proper 0/1 matrix 10 
property TT^ of a 0/1 matrix 17 
property >~pa of a 0/1 matrix 19 

Q 
quadratic relaxation 

of the set packing problem 38, 39 
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R 
rank 

in an independence system 10 
of a graph 32, 68 

rank inequality 
faceteness 32 
for the set covering polytope . . . 47, 48 

faceteness 48 
separation 49 

for the set packing polytope 32 
faceteness 32 

for the set packing polytope of a claw 
free graph 38 

rank relaxation 
of the set packing problem 30, 67 

recognition 
of balanced matrices 24 
of ideal matrices 6, 17 
of perfect graphs 6 
of perfect matrices 6, 17 

relaxation 
set packing relaxation of a combinato­

rial program 54 
single knapsack relaxation of an integer 

program 85 
replication lemma 14 
replication of a node in a graph 35 
rim of a wheel 29, 68 

scheme see aggregation schem 
search graph for a local search 42 
Sekiguchi partition of a 0/1 matrix 81 
Sekiguchi relaxation 

of a set covering problem 82 
semidefinite relaxation 

of the set packing problem 26, 38 
separation 

of 2-chorded cycle inequalities .. 62, 64 
of aggregated cycle inequalities . . . . 83 
of antihole inequalities 29, 41 
of blossom inequalities 28 
of circulant inequalities 67 
of clique inequalities 27, 41, 53 
of conditional cuts 50 
of cycle of cycles inequalities 73 
of cycle of paths inequalities 72 

of even-A; circulant inequalities 67 
of fence inequalities 59 
of inequalities from odd cycles of lower 

triangle inequalities 64 
of inequalities from odd cycles of upper 

triangle inequalities 67 
of ^-projection inequalities 49 
of matrix inequalities 40 
of Möbius ladder inequalities . . . 59, 60 
of odd cycle inequalities 28, 53 
of odd cycle of diwalks inequalities. 60 
of odd hole inequalities 28 
of odd-A; circulant inequalities 67 
of orthogonality inequalities . . . . 42, 53 
of rank inequalities 49 
of wheel inequalities 29, 41, 69 
of wheel inequalities of type I 72 
of wheel inequalities of type II 72 
polynomial time equivalence with op­

timization 6 
separation oracle 25 
separator in a graph . . . see node separator 
sequential lifting method 33 
series parallel graph 28 
set covering polytope 8 

aggregated cycle inequality 82 
separation 83 

conditional cut 49, 80, 83 
separation 50 

facet defining matrix 46 
generalized antihole inequality 46 

faceteness 46 
generalized antiweb inequality 46 

faceteness 46 
generalized clique inequality 46, 59 

faceteness 46 
generalized cycle inequality 46 

faceteness 46 
generalized web inequality 47 

faceteness 47 
^projection inequality 49, 80 

separation 49 
odd hole inequality 47, 82 
rank inequality 47, 48 

faceteness 48 
separation 49 

up monotonicity 8 45 
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set covering problem 7, 8, 8 
conditional bound 83 
relation to independence systems... 44 
Sekiguchi relaxation 82 
set packing relaxation 81 

set packing cone 39 
set packing polytope 8 

adjacency of vertices 42 
antihole inequality 29 

iV+-index 41 
separation 29, 41 

antiweb inequality 30, 76 
faceteness 30 

blossom inequality 28 
faceteness 28 

canonical inequality 32 
faceteness 32 

chain inequality 31, 76 
faceteness 31 

clique inequality 27, 53 
faceteness 27 
iV+-index 41 
separation 41 

composition of circulants inequality 31 
faceteness 31 

cycle of cliques inequality 72 
cycle of cycles inequality 32, 72 

faceteness 74 
separation 73 

cycle of paths inequality 70 
separation 72 

down monotonicity 8, 25 
edge inequality 26, 53, 84 

faceteness 26 
facet defining graph 26, 32 
facet defining inequality 7 
facet producing graph 26 
facet producing procedure 77 
faceteness 29 
generalizations of wheel inequalities 29 
homogenization 39 
K^ inequality 31, 36 

faceteness 31 
matrix inequality 29, 40 

separation 40 
with index k 40 
with index k 40 

dd cycle inequality 27, 53 
faceteness 28 
7V+-index 4 
separation 28 

odd hole inequality 28 
faceteness 28 
separation 28 

of a claw free graph 38 
orthogonality inequality 27, 42, 53 

7V+-index 42 
separation 42, 53 

polyhedral consequences 
of graph theoretic operations 35 

rank inequality 32 
faceteness 32 

web inequality 30 
faceteness 30 

wedge inequality 30 
faceteness 31 

wheel inequality 29, 68 
7V+-index 41 
separation 29, 41 

wheel inequality of type I 70 
separation 72 

wheel inequality of type II 70 
separation 72 

set packing problem 8, 36, 52 
approximation 35 
combinatorial relaxation 26 
composition approaches 77 
conflict graph 9 
edge relaxation 26 
intersection graph 9 
primal approach 42 
quadratic relaxation 38, 39 
rank relaxation 30, 67 
semidefmite relaxation 26, 38 
set packing relaxation 68 

set packing relaxation 
conflict graph 54 
construction 54 
of a 0/1 integer program with nonneg­

ative data 86 
of a combinatorial program 54 
of the acyclic subdigraph problem.. 58 
of the clique partitioning problem.. 62 
of the max cut problem 65 
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of the multiple knapsack problem .. 84 
of the set covering problem 81 
of the set packing problem 68 

set partitioning polytope 8 
set partitioning problem 7, 8 
simplex algorithm 43 
simultaneous lifting 34 
single knapsack relaxation 

of an integer program 85 
skeleton of a polytope 42 
spoke of a wheel 29, 68 
stability number of a graph 14 
stable set in a graph 9 
stable set polytope see set packing 

polytope 
stable set problem 9 see set packing 

problem 
strengthening of an inequality 65 
strong max-min equality 13 
strong min-max equality 13 
strong perfect graph conjecture 6, 19 
structural cut 

for an integer program 85 
subdivision of a star 36 
substitution 

of a node in a graph 35, 77, 79 
of subgraphs in a graph 35 

sum of two graphs 35 
support graph of an inequality 32 
supporting inequality of a polyhedron.. 80 
symmetric difference of two sets 43 

perfect graph 28 
TDI (total dual integrality) 5 
total dual integrality 5 
totally unimodular matrix 16, 22 
tournament in a digraph 56 
transitive packing problem 59 
transversal in a hypergraph 8 
triangle inequality 

for the max cut polytope 61 
two-chord in a cycle 62 
two-colorable hypergraph 22 
two-terminal network 13 

U 
union of two graphs 36 
up monotonicity 

of the set covering polytope 8 45 
upper triangle inequality 

for the max cut polytope 61 

W 
W4 free graph 37 
web 

generalized 47 
in a graph 30 

web inequality 
faceteness 30 
for the set packing polytope 30 

wedge in a graph 30 
wedge inequality 

faceteness 31 
for the set packing polytope 30 

weighted covering problem 5 
weighted packing problem 5 
wheel in a graph 29 
wheel inequality 

for the set packing polytope 29, 68 
generalizations 29 

iV+-index 4 
separation 29, 41, 69 

wheel inequality of type I 
for the set packing polytope 70 

separation 72 
wheel inequality of type II 

for the set packing polytope 70 
separation 72 

wheel perfect graph 29 
width-length inequality 16 

Z 
zero-one program 8 
zero-onehalf ChvätalGomory cut 59 
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Summary. We document in this chapter the main features of a branchand-cut algorithm 
for the solution of set partitioning problems. Computational results for a standard test set 
from the literature are reported. 

Acknowledgement. We thank Robert E. Bixby1 for many discussions about outpivoting 
and for making this method available in the CPLEX callable library 

3.1 Introduction 

This chapter is about the design and the implementation of a branch-and-cut algorithm for 
the solution of set partitioning problems: Our code BC. We assume for our exposition that the 
reader is familiar with the features of such a method. In particular, we do neither discuss the 
theoretical background of cutting plane algorithms, see Grötschel, Loväsz &; Schrijver [1988] 
nor the basic features and the terminology of branch-and-cut codes, see Nemhauser &: Wolsey 
[1988], Padberg & Rinaldi [1991], Thienel [1995], and Caprara k Fischetti [1997]. In fact, our 
algorithm BC is to some extent a reimplementation of Hoffman & Padberg [1993]'s successful 
code CREWJDPT: The flowchart of BC coincides with the one of CREW_0PT, and the same applies 
to the primal heuristic, pool and searchtree management, and even to the data structures. 
Thus, we elucidate only those parts of our implementation where we see some contribution. 
This applies to the mathematical core of the algorithm: Separation and preprocessing. 
Our description is intended to give enough information to allow a reimplementation of the 
routines in BC. We do, however, neither discuss software engineering and programming issues 
nor do we report the computational tests that guided our design decisions 

R o t E. Bi ep Ma i Houson TX 77204- A, mail xby@riceedu 

xby@riceedu
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Our first contribution is a separation routine. We have implemented a new family of c u i n g 
planes for set partitioning problems: The aggregated cycle inequalities of Section 2.6. Re 
call that these inequalities stem from a set packing relaxation of the set covering problem. 
Together with Nobili & Sassano [1992]'s A;-projection cuts and the odd hole inequalities for 
the set covering polytope, see page 47 in Subsection 19.1 of this thesis, that have report 
edly been implemented by Hoffman & Padberg [1993], these cuts form one of the very few 
families of combinatorial inequalities for the set covering polytope that have been used in a 
branch-and-cut algorithm. 
Our second contribution concerns preprocessing. We have extended some known techniques 
of the literature and explored their performance with probabilistic methods. We have also 
investigated the interplay of iterated use of preprocessing operations with a dual simplex 
algorithm. It turns out that much of the potential of preprocessing can only be realized after 
certain degeneracy issues have overcome. We have developed a novel pivoting technique that 
resolves this problem completely. 
Pointers to other recent computational work on set partitioning problems are Atamturk, 
Nemhauser & Savelsbergh [1995] (Lagrangean relaxation with iterated preprocessing), Wedelin 
[1995] (Lagrangean relaxation with a perturbation technique) and Chu & easley 1995] (pre 
processing and genetic algorithms) 
This chapter is organized as follows. In Section 3.2 we discuss preprocessing. We give a 
list of preprocessing operations from the literature and perform a probabilistic analysis of 
their running time. The iterated application of such techniques in a simplex based branch-
and-cut algorithm runs into an unexpected obstacle: Degeneracy problems prevent us from 
removing large redundant parts of the problem without destroying a dual feasible basis. We 
show how to overcome this problem. Separation procedures are treated in Section 3.3. We 
discuss implementation details of our routines for the detection of violated clique cycle and 
aggregated cycle inequalities. Computational results are presented in Section 4.7. 
The subsequent sections resort to the following notation. We consider set partitioning prob­
lems of the form 

(SPP) min wo + wTx 
Ax = l 

* e { 0 l } n , 

where A £ {0, l } m x " and I B G Z " are an integer matrix and a nonnegative integer objective 
function, respectively, p is the density of the matrix A7 A is supposed to be the maximum 
number of nonzero entries in a column, and /i is the average number of entries in a column. 
G = G(A) is the column intersection graph associated to A; this graph gives rise to termi 
nology like "the neighbors -y(j) of a column A.j" etc. The real number WQ, the offset, is a 
positive constant that plays a role in preprocessing. We denote by x* an arbitrary but fixed 
optimal basic solution of the LP relaxation of (SPP), its objective value by z , the reduced 
costs by w, and by F the set of fractional variables of x* 
Associated to (SSP) are the set packing and set covering relaxatio 

(SSP) max wo + w (SCP) min wo + w 
x<l x>l 
a ; e { 0 l } a ; e { 0 , l } n . 

It is well known that all of these problems are MV-hard, see Garey & Johnson [1979]. We do 
not discuss further complexity issues here (see Emden-Weinert et al 1996] for this topic) 
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3.2 reprocessng 

Preprocessing or presolving is the use of automatic simplification techniques for linear and 
integer programs. The techniques aim at "improving" a given IP formulation in the sense 
that some solution method works better. We are interested here in preprocessing for branch-
and-cut algorithms. These algorithms have LP (re) optimizations as their computational bot­
tleneck and their presolvers try to make this step more effective by (i) reducing the size of 
and (ii) "tightening" IP formulations, and by (iii) identifying "useful substructures". Here 
tightness is a measure for the quality of an IP formulation: We say that (IP) is a tighter for 
mulation than (IP') if the integer solutions of both programs are the same, but the solution 
set of the LP relaxation of (IP) is contained in that of (IP'). 
There are many ways to put (i)-(iii) into practice: Fixing of variables, removing redundant 
constraints, tightening bounds, reduced cost fixing, probing, and constraint classification 
are just a few popular examples of reductions, as preprocessing techniques are also called 
Surveys on preprocessing for IPs can be found in Crowder, Johnson &; Padberg [1983], the 
textbook Nemhauser &: Wolsey [1988, Section 1.1.6] and the references therein, Hoffman & 
Padberg [1991], and Suhl k Szymanski [1994], while Brearley, Mitra k Williams [1975], the 
lecture notes of Bixby [1994], and Andersen &: Andersen 1995] review (closely related) LP 
presolving techniques. Most of these methods are simple — but amazingl effective, as the 
above publications' computational sections document. 
Special problems offer additional potential for preprocessing, and set partitioning is one of 
the best studied classes of integer programs in this respect. The following subsections sur 
vey preprocessing techniques for set partitioning, discuss efficient implementations, analyse 
expected running times, and report some computational results 

3.2.1 Reduct ions 

We give next a list of reductions for set partitioning problems that subsumes (as far as we 
know) all suggestions of the literature. Each technique describes, in principle, a transforma 
tion and a back transformation of a given set partitioning problem into another one and a 
correspondence of (optimal) solutions, but as the reductions are quite simple, we state them in 
a shortcut informal way as in Andersen k Andersen [1995]. These reductions will be discussed 
in more detail in Subsections 3 2 4 - 3 2 1 2 

PO (Empty Column) j : A. 
/ / column j is empty, oe can 

(i) elimiate column j j > 
(ii) elimiate column j d add to Wj < 

PI ( m p t y Row) 3r : AT. 0 
/ / row r is empty, the problem is infeasible 

P2 ( o w Singleton) 3r,j : Ar. = ej 
If row cotais just oe column , oe can " to oe", ie 

(i) elimiate column j d add Wj to WQ, 
(ii) elimiate all colums i e 7(7) that are neighbors of colum , a 

(iii) elimiate all rows s supp A that are covered by colum 



An A l m f r S t P a n i 

P3 (Dominated Column) 3i, J : A, = ^jeJAj. A > ^jeJv * ̂  ^ 
/ / column i is a combiatio of other columns j € > 2 j e J , oe ca elimiate 

the "domiated" colum i 

P3 (Duplcate olumn) 3i,j : A j A wj to,, i 7 j 
/ / too columns i ^ j are idetical and , oe ca elimiate colum i 

P4 ( o m i n a t e d Row) 3r : Ar A 
If row r is cotaied in row s, one ca 

(i) elimiate all colum j € supp(A- — 

(ii) elimiate the "domiated" row 

P4 ( D u p c a t e Row) 3r, s Ar. As., r ^ s 
If two rows s are idetical, one ca elimiate the "duplicate" ro 

P5 (Row Clique) 3rj : supp Ar. C j(j) A j 0 supp A 
/ / a// colums in row are neighbors of a column j not in row , oe ca elimiate column j 

P6 (Paralle Column) Br s,«, j : Ar. — As. = ej — ej, r / i 7 
If two rows r / s have a common support except for two elements i 7̂  j , one of them cotaied 
in row ad the other in row s, the variables "parallel", and one ca 

(i) elimiate colums i a if they are eighbors, ie, i € E ) 
or 

(ii) merge colum i a to a "compoud" column A4 with cost +W otherwise 

P 7 Symmetric Difference) 3r, s , j : Ar. > As. — At + eJ, r / sr / ts 7̂  t 
If row r contais all columns that are in row s, but ot i , ad some column j that is i 
row but ot in s, one can eliminate column j 

P 7 ymmetric Difference) 3r,s,t: supp A- 5 supp(A- — ) s / 
If row r covers the symmetric differece of rows s an t, one ca 

(i) elimiate all colum supp(A At) the symmetric differece a 
(ii) elimiate row s 

P8 ( C l u n Singleton) 3rj : A.j = er A (| supp Ar.\ = 2 V 3s : Ar. ej < A 
/ / column j is a unit column er and either row r is a "doubleton" (has only two zero 
elemets) or row r with a set to zero, is covered by some other row s, one can 

(i) substitute Xj = X ^ the objective to obtain (WQ + Wj) T WjAr) 
(ii) elimiate column j , a 

(iii) elimiate row . 

The next two reductions assume knowledge of an upper bou z 

z min 
= l 

x € {0,l} 

on the optimal objective value of the set partitioning problem and knowledge of LP infor 
mation: P9 requires an optimal basis of the LP relaxation of (SPP) and associated data, in 
particular the objective value z*, the solution x*, and the reduced costs w, P10 lower bounds 
on the values of certain LPs. For these reasons rules P9 and P10 are called LP based 
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uc st i xng) j : ( 0 A zu < z W 

(i) X*A zu * + , oe ca elimiate colum 

(ii) X*A z W, oe can f to oe 

0 ( r o b n g ) jz min c x = 1 0 x < l j Xj 0 1 } 

(i) zu min x = 1,0 x < , oe can fi to one. 

(ii) z min x = 10 x < , oe ca elimiate column j 

Some of these reductions are "folklore" and do not have a genuine origin in the literature. But 
however that may be, P2-P4 appear in Balinski [1965, page 285] (in a set covering context) 
P1-P4 and P7 in Garfinkel & Nemhauser [1969], and P1-P5 in Balas & Padberg [1976]. P 
is due to Hoffman & Padberg [1993], substitution techniques like P8 are discussed by Bixby 
[1994]. P9 was introduced by Crowder, Johnson & Padberg [1983], probing techniques like 
P10 are mentioned in Suhl & Szymanski [1994], some related procedures of similar flavour in 
Beasley [1987] (for set covering problems). 
Given all these reductions, the next point is to devise a good strategy for their application. 
As the application of one rule can result in additional possible simplifications for another 
rule, one usually applies reductions P0-P8 in a loop, doing another pass until no further 
simplifications can be achieved. P9 and P10 can be applied at any other point: Once the 
LP and/or bounding information is computed, these reductions are independent of the other 
rules. 
Table 3.1 gives an impression of the significance of preprocessing for the solution of set 
partitioning problems. The figures in this table were obtained by preprocessing the Hoffman 
&; Padberg [1993] acs test set of 55 set partitioning problems from airline crew scheduling 
applications with the preprocessing routines of our code BC, that uses a subset of reductions 
P1-P10. The first column in Table 3.1 gives the name of the problem, and the next three 
columns its original size in terms of numbers of rows, columns, and matrix density p, i.e 
the percentage of nonzero elements in the matrix. Applying some of the non LP-based 
preprocessing rules P1-P8, the problems are reduced as indicated in the three succeeding 
"Presolved" columns. The remainder of the table goes one step further: After solving the 
LP relaxation of the preprocessed problem and calling some primal heuristic, the problem is 
preprocessed again. This time, knowledge of the LP lower bound z* and the upper bound zu 

from the heuristic allows also the use of LP-based techniques, in this case reduced fixing (P9) 
The results of this second round of preprocessing, using a subset of reductions P1-P9, are 
reported in the "Presolved: LP-based" section of the table. The success of the LP based 
methods depends on the size of the gap between the heuristic upper bound zu and the LP 
lower bound z*, and this gap (zu — z)/zu, given as a percentage of the upper bound (the 
possible improvement of zu), is reported in column "Gap". A value of +oo means that no 
valid solution is known. Sometimes, the LP relaxation is already integral and the problem is 
solved. In this case, indicated by the entry "LP" in the Gap column, it is not necessary to 
compute a further upper bound or perform a second round of preprocessing, hence the dashes 
in the corresponding preprocessing columns. One problem, nwl6, was even solved in the first 
preprocessing phase such that not a single LP had to be solved; this outcome is indicated by 
the entry "PP" in column Gap. The final "Time" column gives the sum of the preprocessing 
times for, depending on the problem, one or two calls to the preprocessor in CPU seconds on 
a Sun Ultra Sparc 1 Model 170E. 
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ame 
Original Presolved Gap Presolved: LP-based ime 

ame 
Rows Cols Rows Cols Rows Cols Sec. 

nw41 19 

nw32 19 13 
nw40 19 19 33 13 
nw08 19 28 LP 

nwl5 31 LP 

nw21 91 19 
nw22 19 31 
nwl2 LP 

nw39 11 19 
nw20 11 

nw23 19 11 11 

nw37 19 19 39 13 
nw26 

nwlO LP 
nw34 99 28 28 
nw28 39 99 11 

nw25 11 
nw38 88 11 
nw27 13 31 13 19 
nw24 19 13 33 19 33 11 28 
nnOl 

nn02 19 19 28 
nw35 8.7 19 91 28 
nw36 

nw29 31 31 13 88 
nw30 88 88 

nw31 

nwl9 28 13 LP 
nw33 31 31 13 19 
nw09 31 33 19 LP 

nw07 33 31 LP 11 
aa02 31 19 3928 LP 
nw06 93 88 28 
aa06 19 
klOl 13 11 
aa05 33 
aa03 58 58 
nwll 39 88 28 00 

nwl8 8 93 
us02 13 LP 
nwl3 13 

us04 28 28 
nw03 

nwOl 13 19 13 LP 

us03 LP 

nw02 58 LP 39 
nwl7 11 1133 

nwl4 LP 
nwl6 139 33 PP 13 
nw05 288 58 LP 

kl02 99 
usOl 313 
nw04 31 
aa04 19 
aaOl 58 

11 33 19 

Table 3 1 : P r p r n g A i e C r w S d u n g P r b l m s 
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The figures in Table 3.1 show that already without LP-based information, the problem size can 
often be reduced substantially by rules P1-P8. Using additional LP and heuristic information 
leads often (but not always) to a further reduction in problem size of about an order of 
magnitude, and the preprocessing can be performed in a short time. Note that the matrix 
density is essentially unaffected by preprocessing, i.e., it is not true that "only very sparse or 
dense parts are removed". The extent of the reductions can be explained as a consequence of 
the generation of the acs problems: The instances are the output of an automatic, heuristic 
and randomized column generation process that tends to produce redundant formulations for 
various reasons that we can not discuss here. 
The second goal of preprocessing namely, tightening of the formulation, could, however, not 
be achieved: In all cases (except nwl6), the optimal objective values of the LP relaxations of 
the original and the preprocessed problem are identical. (The values are not reported in the 
table) And in fact, (strictly) dominated columns, for example, can not become basic in an 
optimal solution anyway and neither does their identification provide information that is not 
also given by the LP solution, nor does elimination of dominated columns help in the sense 
that it leads to a different LP solution. One can check that similar conclusions hold also for 
most of the other preprocessing rules; only P7, P7', and P10 can potentially fix variables to 
values that would not automatically be assigned to them by an optimal LP solution. 
The last two paragraphs argued that the effect of preprocessing set partitioning problems is 
less a tighter LP relaxation than a reduction is problem size. There are three main advantages 
of solving smaller problems in a branch-and-cut context. First, a better use of the cache: If 
large contiguous parts of the problem data can be transferred into high-speed memory, list 
processing operations, like the computation of inner products can be carried out much more 
efficiently. Note that some care has to be taken to profit from this effect; it is in particular 
not enough to fix or eliminate variables just by adjusting bounds, because this can result in 
useless data being not only transferred into and out of the cache, but also in "clogging" it 
Instead, fixed columns must be purged from memory that is accessed for calculations in the 
cache. A second advantage is that a reduction in the number of rows results in a smaller basis 
and this speeds up the simplex algorithm. Third, it is of course also true that elimination 
reduces the number of arithmetic operations. Considering problem usOl, for example, it is 
clear that pricing out 36,000 columns is much faster than pricing out one million, even if all 
of the redundant ones are fixed by bound adjustments. To illustrate these effects, we can 
compare the total time to solve the LP relaxations of the 55 original acs problems with the 
time needed to solve the presolved instances: Preprocessing halves LP time from 547.380 
to 266.970 seconds, just as it halves the number of nonzeros, and this trend can safely be 
extrapolated. But simplex iterations, as expected in the light of the above discussion, are 
nearly unchanged: 13,277 with in comparison to 16,128 without preprocessing (using the dual 
simplex algorithm of CPLEX [1997], steepest edge pricing, and turning off the preprocessing 
capabilities of this code again on a Sun Ultra Sparc 1 Model 170E). The numbers for problem 
usOl are 116.840 seconds/296 iterations to 280.110 seconds/240 iterations, i.e., this problem 
(that makes up about half of the test set in terms of nonzeros) does not bias the results of the 
above comparison into a misleading direction. A rule of thumb for practical set partitioning 
solving is thus that after solving the first one or two LPs, the bulk of the data will have been 
eliminated, and the remainder of the computation deals with comparably small problems. 
We close this introductory section with some general remarks on algorithmic aspects. At first 
glance, preprocessing appears to be completely trivial, because it is so easy to come up with 
polynomial time procedures for all rules except P3 and indeed, straightforward implementa-
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tios work well for small and medium sized problems. The only essential issue is to keep an 
eye on exploiting the sparsity of the constraint matrix (e.g., by storing columns and rows as 
ordered lists of their nonzero entries) and this is the only implementation detail mentioned in 
most of the literature. For large scale problems, however, naive implementations will not work 
any more. For example, searching for duplicate columns by comparing all pairs is out of the 
question for problems with 100,000 or more columns, although this algorithm has a polyno­
mial complexity of 0(n2) operations (assuming that each column has at most some constant 
number of nonnull entries). Recent algorithms for large scale set partitioning problems of 
Hoffman & Padberg [1993] and Atamturk, Nemhauser &; Savelsbergh [1995] thus (i) use only 
simple preprocessing rules that are (ii) implemented in a more sophisticated way. Both of 
these articles contain discussions on design and implementation of preprocessing routines. 
The remainder of this section describes the design and implementation of the preprocessing 
module of our set partitioning solver BC. Subsection 32.2 contains some preliminaries on data 
structures. Subsections 3.2.4 to 3.2.12 investigate the individual preprocessing rules P1-P10 
We describe and discuss our particular implementations and do a probabilistic analysis of the 
expected running times. Subsection 3.2.13 draws the readers attention to a conflict that comes 
up in repeated calls of preprocessing routines in a branch-and-cut framework: Elimination 
of variables and/or rows can destroy the dual feasibility of the basis. We argue that this 
phenomenon is a significant obstacle and develop a pivoting technique that overcomes the 
problem completely. The final Subsection 3.2.14 puts the pieces together and describes the 
global layout of the complete preprocessing module 

3.2.2 Data Structures 

We will see in the discussions of individual routines in the following subsections that the whol 
task of preprocessing consists of doing various kinds of loops through the columns and row 
of the constraint matrix, occasionally deleting some of the data. The data structures of the 
preprocessing module must allow to perform these basic operations efficiently and we discuss 
in this subsection some basic issues that come up in this context. These explanations are a 
preparation for the probabilistic analysis of the following subsection. 
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Figure 3 1 : Storing Sparse 0/1 Matrices in Column Major Format 

We use a representation of the matrix in row and colmn major format as ordered and 
contiguous lists of the nonzero entries of the columns and rows. Figure 3.1 gives an example 
of column major format, row major format is obtained by storing the transposed matrix in 
column major format. The matrix in the example has 7 rows and 6 columns that are numbered 
starting from 0. Its 13 nonzero entries are stored by row index column wise, in ascending 
order, and contiguously in an array nd[]: The first three entries 1,2, and 5 give the row 
indices of the nonzero entries of column 0, the next four entries correspond to column 1, and 
so on; the empty column 4 has, of course, no entry. The arrays cnt [] and beg [] are used 



2 P r p r n g 

to locae the data for a p a i c u l a r column in the ind [] array: cnt [ i ] gives the number o 
nonzero elements in column i, and beg[i] denotes the starting index for data of this column 
in the array ind. For more details, see e.g., the manual CPLEX [1995]. 
Column major format allows fast loops through columns. As an example, consider the fol 
lowing C-type pseudocode to scan column 

i n t nne; 
eg i s t e in t *colpnt = ind + b e g [ i ] ; 
eg i s t e const i n t *colend = colpnt + c n t [ i ] ; 
r (; colpnt < colend; colpnt++) { 

nne = *colpnt; 
. . . / / some further operations 

Note that this loop requires per nonzero just one comparison of two pointers that can be 
kept in registers, one increment of a pointer in a register, and one memory dereference, ie . 
only three operations. The slowest of these is the dereference, but this operation can benefit 
from loading the ind[] array, or large contiguous parts of it, into the cache. Note that this 
doesn't work for pointer oriented data structures if data got fragmented in the computer's 
main memory, at least not if no additional precautions are taken. Note also that a pointer 
oriented structure requires at least one additional pointer dereference. 
The structure also offers various kinds of possibilities to eliminate columns conveniently. The 
simplest method is to just set the cnt to zero. This technique results in some superfluou 
data in the cnt and beg arrays, and chunks of "dead" data in the ind array, with the already 
mentioned negative effects. At some point, it hence pays to restore the matrix, eliminating 
garbage of this type; this can be done in time linear in the number of remaining nonzeros. 
Column major format is, of course, unsuited for any kind of row oriented operations. To 
perform these efficiently as well, we store the matrix a second time in row major format. We 
like to point out that this is still more memory efficient than a pointer oriented representation 
because only two entries are required for each nonzero (one ind entry for each nonzero in the 
row and one in the column representation). 

We have to pay for the simplicity of row and column major format when it comes to keeping 
the two copies of the matrix synchronized: Eliminating columns with any one of the above 
mentioned methods renders the row representation invalid (and vice versa), and the only 
method to make them match again is to transpose the matrix, i.e., to set up the row repre 
sentation from scratch. This can be done in time linear in the number of nonzeros in two 
passes through the matrix: The first pass determines the number of entries per row, and the 
second pass puts the elements in their places. To keep this bookkeeping effort at a minimum, 
it is of course advisable to first perform all column oriented operations, then transpose once 
do row computations, transpose once, and so on. This strategy yields reasonable results: The 
first round of preprocessing in Table 3.1 spends 10.010 seconds out of a total of 80.830 in 
transposition and these numbers are also representative for later stages of the computation. 
This means that we pay a price of about 15% in computation time for using the simple row 
and column major format. It is not so easy to estimate how this compares to other possible 
data structures because of the effect of additional operations performed in a row or column 
scan and we have not implemented an alternative version, but we feel that the above consid­
erations together with our computational findings justify the use of row and column major 
format for preprocessing purposes 
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3.2.3 robabilistic A a l y s e s 

We estimate in this subsection the expected running time of two basic list processing operations 
that we will use frequently in the sequel. These results will allow us to compute expected 
running times for the preprocessing rules of Subsection 3.2.1. Our results are summarized in 
the following Table 3.2. Here, each number gives the expected running time for the application 
of an entire rule, i.e., the value O(nlogn) for rule P3' gives the expected running time for 
removing all duplicate columns and so on. A means that we have not analyzed the rule 

Operatio Expe te Running Time 

PO Empty Columns (n) 
PI Emp ows (m) 
P2 ow Sinle (mn) ( a m o i d ) 
P3 D o m i n d Clumns 
P3 Duplicate Columns (nlogn) 
P4 Domin ows {mp 
P4 Duplicate ows (m\ogm) 
P5 ow Cli 
P 5 M Row C l i e Heuristic 0(Me-(n)M(l )M) 
P6 allel Columns 
P7 Symmetric Differences 
P7 mmetric iffere (n 
P8 Column Sinle (n 
P9 Reduced Cost F i i n (n) 
P10 Probin 

Table 3 E s i m a i n Running Times of P r i n g O p e i o n s 

The first list processing operation that we consder is the lexicographic comparison of two 
random 0/1 sequences of infinite length, which is supposed to model a test whether two 
columns or rows of a random 0/1 matrix are identical or not. We will show that (under 
certain assumptions) this test takes constant expected time. The second operation is the 
iterative intersection of random 0/1 sequences of finite length. This time, we think of a 
situation where we want to find common rows in a set of columns or common columns in a 
set of rows Again, it will turn out that the intersection of random 0/1 sequences becomes 
empty "fast" 

Lexicographic Comparison of Two Random Infinite 0 /1 Sequences. We compute 
in this paragraph the expected number of operations for a lexicographic comparison of two 
infinite random 0/1 sequences in a certain uniform probabilistic model. Our analysis will be 
based on the following assumptions 

(i) We look at infinite random sequences of zeros and ones, where the ones appear de 
pendently with some probability p € (01). 

(ii) The sequences are stored in a sparse format as ordered lists of the indices of thei 
nonnull entries 

(iii) Two sequences (from {0,1}°°) are compared lexicographically by scanning their index 
lists from the beginning, doing as many comparisons as there are common entries in the 
two index lists plus one additional comparison to detect the first difference 
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We have already pointed o t that we want to use this s e i n g as a model for a lexicographic 
comparison of two columns or rows in a 0/1 matrix (of a set partitioning problem). In this 
context, assumptions (ii) and (iii) are canonical, (i) assumes identically and independently 
distributed ones in the sequences. Formally such a sequence a belongs to a probability space 

0 1 } P ) 

that has as its groundset the set of all 0/1 sequences with an associated a-algebra A and a 
probability distribution P such that the border distributions are binomial with parameter p 
i.e., the two probabilities P(a,i = 0) = 1 — p and P(ai = 1) = p, i € N, exist and have the 
stated values. This is certainly unrealistic: The model results in low probabilities for the 
existence of duplicate columns and this obviously contradicts the computational findings of 
Table 3.1. But, for want of something better we will nevertheless work with (i). Making 
the best of it, we can be happy about the technical advantage that this model has only one 
parameter, the probability p, which is to be identified with the matrix density. Our goal will be 
to obtain the expected number of operations to compare two 0/1 sequences lexicographically 
as a function of p. Considering infinite sequences for this purpose has the advantage that the 
analysis becomes independent of the number of rows or columns. As it takes certainly more 
time to compare two infinite sequences than two finite ones, this results in a model that is 
valid for lexicographic comparisons of rows and columns. 

In this (not completely specified model) ( { 0 , 1 } , A , P) consider the following random exper 
iment: Choose two 0/1 sequences at random and perform a sparse lexicographic comparison 
according to (iii). Let the random variable Yp : {0,1}°° x {0,1}°° 4 NU {oo} denote the 
number of comparisons until the first two indices differ. Assumptions (i)-(iii) suggest that the 
probability that such a lexicographic comparison takes k comparisons of dividual indices of 
nonzeros (k > 1) should be 

P(Y k) jr ! V ^ ' ( l p ) D D p(l p) e N (31) 
=k 

In this expression, p2 is the probability that a common nonzero appears at a random position 
in both 0/1 sequences, and (1 — p)2 is the probability for a common zero. There are ( j ^ ) 
possibilities to distribute k 1 common ones over the first j 1 positions in both sequences 
that account for the first 1 comparisons and 

j y ( u ( 1 p ) i ) u 

is the corresponding probability. The final term 2p(l — p) is the probability for a difference 
in position j that is detected in the kth. and last comparison. The following theorem assumes 
that the model ( { 0 1 } , P ) has property (31) 

3.2 emma ( L e x i c o g r h i c Comparison of Two Random 0 / Sequences) 
Let p € (0,1) and ({01}° A, P) be a probability space. Let further Yp be a random variabl 
th couts the number o index comparisons in a lexicographic comparison of two random 

ts a from 0 1 } P ) . If condition (31) holds, then: 

(Y ( 2 ) / ( 2 * l 
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of The term P(Y k) can be simplified to 

=k 

P ^ h p ( l P ) ^ P ( 2 P ) ) 

p2^hP(lP) 

p(2p) 
2(1 p) 

where (2 p)/{2 p). In this calculation, the identity 

arises from considering the Taylor series around o = 0 of the function 

=k y 

at t p{2 p). 
Since ß = (2 2p)/(2 - p) £ (0,1) for p G (0,1), the function p : N > [01], & Ĥ  P(yp = jfe) 
is the density of the geometric distribution Geoe on 2N with parameter g. If we consider 
motivated by the above arguments, the term Geog({k}) = P(Yp k) as the probability that 
exactly k comparisons of indices are necessary to compare two infinite 0/1 sequences that 
are stored in sparse format, with the ones occurring independently at each position with 
probability p, the expected number of individual index comparisons is simply the expectation 
of this distribution 

{Y (Geo g = (2 p)/(2 p) 

The number { (2 p)/(2 p) tends fast to one as matrix density decreases 

{Y ^ - -
^ 

even though the we are considering sequences of unbounded length: For a comparably high 
density of p = 0.2 (cf. Table 3.1) we would expect 1125 comparisons, for p = 0 1 only 1 5 
and for p 01 only 1005 comparisons 
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Iterated Intersection of Finit Random 0/1 Sequences. The infinite sequence mode 
of the previous paragraph is not suited for an analysis of iterated intersections of 0/1 se 
quences, because (under any reasonable assumptions) a finite number of such sequences will 
have an empty intersection with probability zero. Thus, we modify our model to deal with 
finite sequences: We look at the sequences as the result of m independent repetitions of a 0/1 
experiment where the one has probability p. Formally this model can be stated as 

0 l } 2 { l \ 

the m-fold product of the model ({0,1}, 2,1>, Bii;P that describes a single experiment (here 
Bi„j)P denotes the binomial distribution with parameters m and p). This finite model is, of 
course, subject to the same criticism as its infinite brother. 
To analyze the sequence intersection algorithm, consider the following random experiment 
Initialize an index set R as R : { 1 , . . . , m}, draw one sequence from {0, l } m after the other 
at random, and update the set R by intersecting it with the sequence's support; this process 
is continued forever. Let a random variable X count the number of sequence intersections 
until R becomes empty for the first time 

3.2 emma ( t era ted ntersecton Random 0/1 Sequences) 
Let p (0,1) and 0 l } , 0™ 1 2 1 * , be a probability space. Let futher X be a 
random variable th returns for an infinite nmber o randomly dra sequences a , - - -
from 0 l} 0 2i'1> the smallest mb such tht D supp = 0. Then: 

{X^ < mp/(l p)^mp p 

Proof. The first step to compute E(XmjP) is to note that the probability for k sequences to 
have a common one in some place is pk, not to have a common one in some place is 1 — p 
to have empty intersection in all places is (1 pk)m, and the probability for k sequences to 
have nonempty intersection in some of their places is 

P ( X k ) (l GN 

The expectation can now be computed as 

(X JkP(X k) 
fc= 

] P ( X A ; ) £ 
fc= fc= 

£ m l { l ( l 
fc=  
mp/(lp) 

Here the inequality 

(1 ) m l (1 (1 

follows from applying the mean value theorem to the function ffi 

Considering the term 1/(1 p) as a constant, we arrive indeed at about mp = p sequences 
that have to be intersected. Note that this number does not count the number of operatio 
in the iterated sequence intersection algorithm, but the number of itersections 

(i (i 
k= 

mp 
k= 
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3.2.4 E m p t y C u m n s , E m p t Rows , and R o w S i n g l e n s 

Reductions P0, PI , an P2 are trivial and ther is not much to say about their implemntation. 
To find empty colums it is enough to go once through the objctive and through the cnt [] 
array of the matrix's column representation, which can be done in 0(n) time Empty rows 
are identified analogously in 0(m) time. The neighbors of a row singleton j are identified as 
follows: Scan column j ; each nonzero entry identifies a row and all entries in this row, xcept 
for the singleton j itself, denote neighbors of the singlton and can be eliminated. Note that 
a nonzro in a row is used at most once to identify th nighbor of a row singlton, i , th 
routin has l inar amortized running tim o v r all passs 

3.2.5 D u p i c a t and o m i n a e d C l u m n s 

Elimination of duplicate column is a striking example for the effectiveness of e n very 
simple preprocessing rules. Table 3.3, that gives statistics on the success of BC's inividual 
non LP based preprocessing subroutines when applied to the Hoffman & Padberg [1993] 
airline crew scheduling t s t set (in "Pass" many passs), shows the impact of this simple 
reduction. A quick glance at the table is enough to see that removing duplicate columns is 
th most significant preprocessing operation in terms of reduction in th number of nonzeros 
an columns (but not in rows, of course). One reason for this was a l reay mentioned earlier: 
The acs problems, as many other "real world" s t partitioning instances, wee set up using 
automatic column generation procedures that produce the same columns more than once. A 
secon reason is that identical columns can very well correspond to d e r e n t activities: In 
airline crew scheduling, for exampl, two rotations may srvic th sam flight lgs , but on 
d i n t routes at ifferent costs. 

The implementations of the literature seem to identify duplicate columns by comparisons of all 
pairs of columns enhanced by hashing techniques. Hoffman &; Padberg [1993] compute a hash 
value for each column, quicksort the columns with respct to this criterion, and compare all 
pairs of columns with the same hash value. The hash valu itself is the sum of the inices of th 
first an the last nonnull entry in a column. Atamturk, Nemhauser &; Savelsbrgh [1995] us 
the same algorithm, but a more sophisticated hash function: They assign a random number to 
each row and the hash value of a column is the sum of the random numbers corresponding to 
its nonnull entr is . oth procedur o, in th worst c a s , a quara t ic number of comparisons 
of two columns. 

BC's algorithm does an (expcted) number of 0{n log n) comparisons by simply (quick)sorting 
the columns lexicographically. We remark that this s t ra tgy is particularly easy to implment 
calling, g., the C-library's qsor t ()-function. In practice, one can slightly improv the run­
ning time by applying some l inar time presorting oprat ion to the columns using, g., some 
hashing technique. BC puts the columns into "buckets" according to the column cnt (see 
Subsection 3.2.2), i e , th numbr of nonnull n t r i s , an sorts th i n i v i u a l buckts as 
described abov 
To estimate the expected running time of BC's quicksorting procedure, w resort to Lemma 3.2. 
that states that in a certain uniform probabilistic model the expected number of operations 
to compare two random columns is constant (for bounded matrix density). Since uniform dis 
tribution of th sorted items in the partitions is an invariant of the quicksort algorithm, this 
results in an exected complexity of th compl procedur for rmoving uplicat columns 
of (nlogn) oprations. 
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ame 
Original 

Rows Cols 
Pass 

Rows Cols Rows Cols 

nw41 
nw32 

nw40 
nw08 
nwl5 

nw21 
nw22 88 
nwl2 
nw39 11 
nw20 11 
nw23 11 
nw37 
nw26 

nwlO 
nw34 99 
nw28 
nw25 
nw38 33 
nw27 42 

nw24 
nnOl 

nn02 

nw35 
nw36 
nw29 

nw30 
nw31 39 

nwl9 28 
nw33 
nw09 

nw07 
aa02 39 11 
nw06 

aa06 
klOl 
aa05 11 11 
aa03 
nwll 39 88 28 11 
nwl8 

us02 33 
nwl3 39 
us04 28 
nw03 
nwOl 

us03 393 
nw02 
nwl7 11 

nwl4 28 
nwl6 39 33 
nw05 288 

kl02 99 
usOl 58 
nw04 
aa04 
aaOl 

11 11 

Tabl 3.3: Analyzing P r p r o c n g Ruls . 
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Elimination of dominated columns is a gera l iza t ion of removing duplicate columns: Th 
latter reduction is the special case where the is restricted to contain just a singl 
member. The main ifficulty in implementing the general rule is, of course, to find this set J 
in an efficint way. The only known algorithm seems to be enumeration, which is out of th 
question even for medium sized problems. This an the already mentioned property of the LP 
relaxation to keep dominated columns at zero values in optimal solutions anyway can explain 
the apparent lack of impleentations of this rul in the literature and the prprocessor of our 
algorithm BC does also not search for dominated columns. We remark that th ar uristic 
procedurs for th t covring variant of th eduction, see Beasly [1987] 

3.2.6 Dupicat and ominaed Row 

Rmoving dupicate rows of a 0/1 matrix is equivalnt to removing duplicate columns from 
the transpose. Hence, the implementation of this operation is governed by exactly the same 
considerations as for th columns. T probabilistic analysis carries o v r as well, since it 
assumes only the i n d e d e n t random occurrence of o n s in th matrix with probability 
qual to the density. The sult is an e x c t e d numbr of ( m l o g ) index comparisons to 
move all uplicat rows. 
his favorable running time does not entirly show up in our computations for the acs t s t 

set. T e reason is that these instances come ordeed in a "staircase form" with sequnce 
of conscuti ones in the rows, which increass th probability of common nonzeros in two 
rows. This s not fit with th analysis an s to an incras in running tim of th 
procedur 

igur 3.2: ringing t Partitioning Probl nw41 (17 197) int aircase Form. 

A simpl way out of this problem would be o p r m u t ows an columns randomly, but 
staircase form also has its advantage elswhere. Since emoving duplicate rows is not a 
bottleneck operation, we opted to leave the matrices as they are and employ more elaborat 
presorting techniques instead. We use a two level hashing, first assigning th rows to "buckts 
according to the number of nonzero entries (as we d d for th columns) an then subdiviing 
t h s e buckets further into subbuckets of rows with the same sum of nonzero indices. The 
inividual subbuckets are sorted using shakersort (an altrnating bubesort with almost 
linear expected running time for small arrays) for "small buckets (< elements in our 
implemntation) and quicksort else. With this tuning, rmoving uplicat rows t a k s about 
th sam tim as rmoving uplicat columns. 
As was already pointed out earlier, removing rows from a set partitioning problem is partic­
ularly advantageous for branch-andcut solvers, bcaus it reduces the siz of the LP basis 
which has a quadratic impact on parts of the LP time lik factorization. For this reason, 
exending the removal of duplicat rows to dominated rows is of significant i n t e s t . Use of 
the latter reduction is rpor ted by Hoffman & P a r g [199 an Atamturk, N m h a u s r & 

a v l s b r g h [1995] 
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C's procedure to rmove dominated rows is based on the ence intersection algorithm of 
Subsection 3.2.3. It exploits th simple observation that the set of rows that ominat som 
row Ar. can be exprssed as th " in t rsc t ion of th columns in this row" 

P| suppA 
j s u p p Ar 

The method is simply to comput this set by intersecting th columns iteratively, stopping 
as soon as either r is the only row ft in th t or w h n th is exactly on additional last 
candidate row, that is compared directly to . 
We will argue in the next paragraph that one can expect the stopping criterion in this proce 
dure to apply after about ß intersections of columns. Considering about ß nonzero elements 
in each column and, if necessary, one mor (see Subsection 3.2.3) in the final comparison of 
two columns, this results in an expected 0p?) operations per row. Doing this m t i m s for  

rows, we expct to rmov all ominated rows in (mp), or, if on l iks this b t t r , in 
(m3p2) s t p s . 

To estimate the number of column intersection until the stopping criterion applies, we will 
make use of Lemma 3.2.2: We claim that E{Xm-i^p) is an upper bound on the expected num­
ber of in t rsc t ions in the column intrsection algorithm. To see this, note that all columns 
consideed in th algorithm hav an ntry in row , but t h i r rmainders ar istributed 
accoring to th model ({0, l} 0 ^ i , i)|0) for on row ss, namly, row 

In this TO 1row model, E(Xm-itP) counts the number of intrsections until no row is left, 
which corresponds, in the original TO-row model, to the number of intersctions until onl 
row r is left. This ignors, of course, th possibility to stop earlier if \R\ < 2 (in the m-row 
model), and h n c E(X\t) is an u p p r boun on th numbr of columns consideed by 
th algorithm. 

3.2.7 R o w liques 

Elimination of columns that e x t d a row cique seems to have een used for computation by 
Chu & Beasley 1995]. Using the same rules as Hoffman & Padberg [1993] (P1,P2,P3',P4' 
and P6) otherwise, t h y r p o r t a slightly bigger reduction in problem size. A straightforward 
way to impement th rule would be to tentatively set each variable to one, all its neighbors 
to zero and check whether this contradicts some equation. This algorithm requires, however, 
on row scan for each nonero e m n t of the matrix. This is not acceptable, and as far as 
we know, nobody has suggested a better metho to implment this reduction. But we will 
argue now and give som computational videnc that an exact i m p l n t a t i o n of this rul 
is not worth the effort. 
We would expect from the analysis of th sequence intersection algorithm in Subsction 3.2.3 
that the probability of a column to intersect many o t h r columns (in a row) is extremely small 
such that the chances to eliminat such a column are at best questionable. This argument 
can be made more precise using the probabilistic model of Subsection 3.2.3. As we computed 
in the proof of L m m a 3.2.2 ibidem, th probability for k columns to intersect in some of t h i 
m rows is P{Xm,P >k) l { l p m . This probability, which increases with larger p values 
and larger m and decreases with larger k, respectively, is almost zero for the applications that 
we have in mind: Considering "unfavorable" settings like a rather high density of p 0.1 and 
a comparably large numb 000 of rows (cf. Tabl 3 . ) , an a tiny row cli of just 

columns, this numbr is 8) - 6 
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For this reason, and for the sak of speed, BC i m p l n t s a heuristic version of P5 that consid 
rs only rows with at most som constant numb M of ntries (16, in our implemntation). 

Th rule is denoted by P5 and the effect of P5 on the Hoffman & Padberg [199 test se 
can be see from Table 3.3. To satisfy our curiosity, we hav sted the full rule P5 as well 
Applying P5 instead of P rsul ted in 1 more rows and 8,140 mor columns rmoved by 
the preprocessor, at the e x n s of several days of computation tim 
BC' impementation of rul is based on th formula 

n 7(J) n u S UPP^ 
j£suppAr j£suppAr sEsuppAj 

Here, the neighbors of (all columns in) row r are determined by intersecting the neighbor set 
(j) of the individual columns and these are computed by scanning all correponding rows. 

The complete routine determines, for some given matri A, all row with at most M nonzeros, 
and applies the above procedure to each of these rows. 
To compute the expected complexity of this algorithm, we consider again the probabilistic 
model of Subsection 3.2.3, that looks at each row of the m x n 0/1 matrix A as the result of 
n independent 0/1 experiment with a probability of p for one If the random variable Yn 

counts the number of nonzeros in a row, we would expect P 5 M to take 

0{mP{Ynp <M)-M- mnp2) = 0{Mnp2P{Yn,p < M)) 

operations. The irst term mP(YntP < M) in this expression is the expected number of row 
with at most M nonzeros. Each of these M nonzeros (term two) corresponds to a column 
with mp entri on average and for each of t h e e entries, we have to can a row with about 
np entries. 
Arguments in the next paragraph ugget that P(YnP < M) (M + l)e~(np)M/(l — p) 

hi reul t in a total of 

(Mnp(np)(l - p) 

expected operations to perform P 5 M For a numerical example consider "unfavorable" pa 
rameters of M = 16, TO = 100, n = 1000, p = 0.1; the result is less than 10~3 

he upper bound on the probability P(YnP < M) can be computed a follow 

M \ 
p(y„,<M) = £ ( " ( i - p ) 

0 

- ^ - ssuming np(l - p) > 1 
n 

= (M + 1)(1 - /m)m^m • JW-
\l-p 

< (M + 1) e-^{np)(l - p) 

= (M + 1) e(np)(l - p) 



3.2.8 Parallel Columns 

Elimination or merging of parallel columns has been used by Hoffman & Padberg [1993]. The 
rule requires some book keeping to be able to undo the merging of columns into compound 
column once a solution has been found; note that repeated merging can result in compound 
columns that correspond to sets of original variables. BC doe not implement thi rule and 
we do not analyze it here 

3.2.9 Symmetr ic Differences 

The symmetric difference rule P7' is particularly attractive, because it leads to the elimination 
of both rows and columns. An implementation based on checking all triples of rows is 
disaster, but the column intersection technique of Subsection 3. can be used to design an 
efficient procedure. he algorithm in BC compute for each row s the column j ith the 
mallest upport Now we distinguih two cases: 

(i) Column j is suppoed to be contained in the symmetric difference of row s and some 
not yet known row t he only possible r o s to cover the symmetric difference are the 
ro in upp A . \ {s For each uch ro the potential ro are limited to the et 

P upp A 
Gsupp As \ u p p Ar 

that agree with s on the columns that are not covered by r. This set is computed u ing 
iterative column intersection and each of the resulting candidates is checked. 

(ii) Column j is suppoed to be contained in the intersection of row s with some row t / s 
clearly, s 6 supp A For each such row i, the ymmetric difference u p p ( s . — At) i 
computed and a ro r covering thi difference from the et 

P uppA 
esupp(As. At.) 

determined by mean of iterative column interection 

A heuristic estimate of the running time of this procedure is as follows. In case (i) we expect 
to consider a column with less than the mean of p = mp nonzeros. For each nonzero, we apply 
the column interection algorithm which takes 0(p2) operations and yields (less than) O(p) 
candidate ro For each of these candidate rows, we scan three rows which take 0(np) 
operations. W would thu expect that performing (i) once for each of m rows takes a total 
of 0{m • p • (p2 + pnp)) = 0 ( m / ( l + n/m)) operations. n c a e (ii), we conider the same 
column with expected p nonzeros. For each of t h e e entries, we scan two rows to compute a 
ymmetric difference hich takes 0(np) operations. Then the column interection algorithm 
ith 0(p2) operations is applied and, eventually, p candidate rows checked, taking another 

O(pnp) operations. This reul ts in 0(m • p • {np + p2 + pnp)) overall operations, hich i 
of the same order as in the t ca hus, the total expected number of operation in thi 
procedure i an acceptable 

0((m n)p) = (np). 

The same technique could also be used to implement the generalization P7 of thi rule but 
unfortunatel thi not done for the preproceing module of BC 

file:///upp
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3.2.10 Column Singletons 

Elimination of rows and columns using column singletons is a special case of a more general 
substitution operation his technique work as follos. Conider an integer program 

min w + wTx Ax — b, Cx < d, I < < u, i e Z 

ith an objective that contains a contant offset term WQ, some equations, inequalities, and 
lwer and upper bounds (possibly ±00) on the variables. Without l s s of generality we can 
assume an to be poitive and bring the t equation into the form 

%i = han - a u a i i X 
i> 

This equation can be used to eliminate x\ by Gaussian elimination in the objective, the other 
constraints, and the bounds. The result of this operation is one variable [x\] and one con­
straint {A\.x = b\) l s s , potential fill in the equations and inequalitis, and a tranformation 
of the two bound h < x\ < u\ and the integrality tipulation i j E Z into the form 

b\ — a± o,u b\ — a\\l and b\a\\ — a\a\\X £ Z 
>2 

Sometime t h e e constraints will be redundant One restrictive but relevant and easily de 
tectable case i when the transformed integrality tipulation on the right of (32) hold because 
the equations Ax = b have integer data, i.e., A 6 1,mxn and b € Z m and a n = 1, i.e the 
pivot is one and there is no division in the Gaussian elimination and hen in addition the 
tranformed bounds are redundant becau 

h - min {au ai max {au au h~h 
2 

Under these circumstances, the ubstitution results in a reduction in the number of rows and 
columns of the program and we peak of preprocessing by substitution This technique i 
widely used in L and MIP solvers, e.g in CPLEX [1997. To control fill, implementation 
generally restrict substitution to columns with few entries, like singleton columns, or to ro 
with few entries, like doubleton rows, see Bixby [1994]. 
An obstacle to the application of this rule to et partitioning problems is that the bound 
redundancy criterion (3.3) is computationally useless in this application. Namely, ssum­
ing that all fixed variable have already been removed earlier, condition (3.3) reads 0 
I supp(^4i. — ei)I < . This can and will hold exactly for the trivial c a e of a doubleton ro 
Another criterion i thu needed for et partitioning problems, and 

for another row s 7̂  r, as suggested in rule P8 s a suitable choice to guarantee (3.2). 
ow s can be identied by column interection and thi yield a running time of at mo 

(m • /j, • np) = (n/ 

operations: At m o t m singletons can be eliminated, each candidate requires one application 
of the column intersection algorithm with 0(/J,2) operations, and the reulting candidate ro  

checked and ubti tuted into the objective in (np) operation 



Note that the result of a equene of substitutions is independent from e elimination rder 
but the amount of work i not. The three equation example in Figure 33 illustrates how this 
is meant. n the example, column ingleton x\ can be eliminated from equation (1) After 
the first row and column have been deleted x<i can be eliminated using equation and 

nally £3 from (3). Doing the substitutions in this order —x\ from (1), X2 from (2), and 
X3 from ( ) — produces no fill. Given the original matrix A and this ordered "substitution 
history" l i , one can reproduce a P8-processed problem in time proportional to the number 
of nonzeros in the subtitution equation by substituting t h e e equations in the given order 
into the objective and by eliminating rows and columns. Uing ome other order leads to 
additional work. For example, substituting in Figure 3.3 for X2 first using (2) produce two 
nonzero in equation (1) at % and £4 and continuing to ubt i tu te in any order reul t in a 
worst p o i b l ll 

X l (1) 
x 2 + X4 

X3 + X4 

i u r e .3: E l i m a t i n g olumn S i g l o n rder t Av 

his phenomenon can become relevant in a branch-and-cut context on two occasions. Firs 
when a solution to a preprocessed problem has been found and subtitutions have to be re­
versed this should be done in reverse order of the substitution history by computing the 
values of the substituted variables from the corresponding original equations; note that thi 
does in general not work with some other elimination order. And econd, when a preprocessed 
subproblem in the searchtree has to be reproduced. BC does not store the objective of pre 
processed subproblems, becaue this would require an array of 0(n) double variables at each 
node. stead, the objective is recomputed from scratch each time. Doing this without mak­
ing any substitutions in the matrix requires a zero ll substitution order he conequence i 
to tore the order of column singleton substitution on a "history s tack. 
A final word ha to be aid about the impact of substitution on the objective function and the 
solution of the LP relaxation. Many set partitioning problems from scheduling application 
have nonnegative objectives, and o do the acs problems. Substitution destroys this property 
by producing negative coefficients. Unexpectedl the LP relaxations of problem that were 
preprocessed in this way become difficult to solve, probably because the start basi heuristic 
do not work satisfactory any more. But fortunately, there is a simple way out of this dilemma 
The idea to counter the increae in LP time is to make the objective positie again by adding 
uitable multiple of the r o s . BC' procedure implement the formula 

WQ + wTx + ir(Ax — 1) 

here 

7Tr = max esUppAr.:Wj< wj\/ upp A.j\, r = 1 . . . m 

The impact of rule P8 on the acs test can be read from Table 3. A nice success is that 
problem nwl6 can be solved by preprocessing with this rule. P8 ha also proved valuable in 
dealing with set packing constraints (see the vehicle availability constraints in Chapter 4) in 
a set partitioning solver Transforming such inequalities into equation introducing a lack 
variable produce column ingleton that can potentially be eliminated 
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3.2.11 Reduced Cost Fixing 

Reduced cost xing is another example of a strikingly simple and effective preprocessing opera 
tion We draw the readers attention to Table 3.1, where a comparison of the "Presolved" and 
"Presolved: LP-based" columns indicates that reduced c o t fixing (based on the knowledge 
of a good upper bound from the primal heuristic) account for a reduction in the number of 
column and nonzero of one order of magnitude 

3.2.12 Probing 

Probing (a rule that we have not completely specified) belongs to a group of expensive prepro­
cessing operations in the sense that they require the exact or approximate solution of linear 
programs. There is additional information gained in this way that makes these operation 
powerful (P1 is, for example, stronger than P5), but there is of coure a delicate t radeof 
between time spent in preprocessing and solving the actual problem. 
An implementation of probing by tentatively setting variables to their bounds can be done 
with postoptimization techniques, using advanced b a s information: Having an optimal basis 
at hand, one sets one variable at a time to one of its bounds and reoptimizes with the dual 
simplex method; after that, one reloads the original bas and continues in this way. Thi 
method ha the disadvantage that there is no control on the amount of time spent in the 
individual LPs. Some control on the computational effort is gained by limiting the number 
of simplex iterations in the postoptimization process at the cost of replacing the optimal LP 
value with some lower bound. If the iteration limit allows only "few" iterations, this offers the 
additional possibility to avoid bas factorizations sing an eta file technique: In each probe 
the bas is updated adding column to the eta file; when the iteration limit is exceeded (or the 
problem solved), the original basi is restored by simply deleting the eta file. This technique 

implemented in CPLEX 1997], but despite all these efforts, probing is still expensive 
BC uses probing of variables in its default strong branching strategy, (cf. Bixby, personal 
communication) Some set of candidate variable for probing are determined (the 10 most 
fractional ones), each of these is probed 25 dual simplex iterations deep, and any possible 
fixings are carried out; the remaining bound information i ed to guide the branching 
deciion 

3.2.13 Pivoting 

We have een in the introduction to this section that preprocessing i an effective tool to 
reduce the ize of a given et partitioning problem and that technique of this sort can help 
to solve these IP faster. There is no reason to believe that thi does not also work in the 
same way for the subproblems created by a branch-and-bound algorithm. Rather to the 
contrary, one would expect iterated preprocessing on subproblems to be even more effective 
since ubproblems contain additional fixings due to branching decisions and the lower bound i 
better. To exploit thi information one would like to preprocess not only the original problem 
formulation, but also subproblems repeatedly throughout the branch-and-bound tree 
LP-based methods, on the other hand, live on maintaining dual feasibility of the basis: Instead 
of solving an LP from scratch each time a variable has been fixed in a branching deciion 
or a cutting plane has been added, the dual simplex method is called to reoptimize the LP 
tarting from the adanced basis obtained in the preceding optimization tep 



These two p r inc ip l e r epea t ed roblem reduction and maintenance o a dual fesible 
can get into confict Reduction that do not interfere ith a dual feaible ba are 

(i) liminating nonbasic columns. 
(ii) Eliminating basic rows, i.e, rows where the associated lack or artificial variable i basic 

(i) it does obviously neither affect the basis itself nor its dual feasibility, (ii) is possible since 
the multiplier (dual variable) associated to a basic row r is zero. But then the reduced cost 
wT — wT — TTTA = wT — ^2s^ TSAS. are not affected by removing row r and, moreover, if AB 

denotes the matrix that arises from the basis matrix Aß by deleting ro r and column e 
this reduced b a s Aß is dual feaible for the reduced problem 
Rule (ii) can be slightly extended with a pivoting technique to 

(iii) Eliminating rows with zero multipliers. 

he method is to reduce (iii) to (ii) by performing a primal pivot on arj = 1, here row r with 
7rr = 0 is supposed to be eliminated and j the unit column corresponding to its slack/artificial 
"primal pivot" means that the slack/artificial column er is entering the basis. A 7rr = Wj = 0 
this pivot will be dual degenerate. We are interested here in the case where row r is known to 
be a (linearly) redundant equation; then, its artificial variable is zero in any feaible solution 
and the pivot will a l o be primal degenerate This in-pivoting procedure s developed 
by Applegate, Bixby, Chvätal &; Cook [1994] for the olution of large cale SP and i 
implemented in CPLEX V2.2 and higher versions. 
One possible strategy for iterated preprocessing in a branch-and-cut algorithm is thu the 
following. Apply the preprocessor as often as you like and eliminate rows and columns using 
(i)-(iii) doing in-pivoting prior to the actual elimination of rows where necessary. If a basic 
column was eliminated or fixed to one by the preprocessor, change its bounds, but leave it in 
the formulation, and do also not remove rows with nonzero multipliers form the formulation 
even if the preprocessor detected their redundancy. If too much "garbage" accumulates, 
eliminate everything discard the (useless) basis, and optimize from cratch. 
One might wonder whether it is at all possible that redundant r o s can have nonzero mul 
tipliers. Do not all row elimination rules (except for the column singleton rule P8), after 
elimination of certain columns, result in sets of duplicate rows where at most one represen­
tative can have a nonzero multiplier? The folloing imple example ho that thi not 
and hy Consider the set partitioning problem 

min a; 1 + 

(cl) xl + yl 4i 
(c xl + 

xl, x2 E { ,1} 

Here, the variables y\ and j/2 denote the artificial variables of the constraints cl and c2 
respectively. The first two columns of the constraint matrix correpond to the variabl x\ 
and X2 and contitute an optimal ba for ( 4 ) ; the correponding implex tableau read 

min yl 

(cl) yl 
(c xl + 

xl, x 0,1} 

he value of the dual variabl are both nonzero 7Ti = 7T2 — 1 
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Suppos that in this situation preprcessor investigates formulation (3.4) and finds out tha 
variable X2 can be eliminated. (Consider the example a a part of a bigger problem and 
ignore the possibility to solve the problem by fixing also x\ to one.) liminating 2 (in the 
preprocessing data structures, not in the LP) result in two identical rows cl and c2. Suppose 
the preprocessor finds thi out as well and uggest to eliminate one of them. But whether 
we try to eliminate cl or c2, neither of these suggestions is compatible with dual feaibility 
of the basis and we can not eliminate rows and columns that we know are redundant. Since 
linear dependent and much less duplicate rows can not be contained in a basis, there mus 
be some fixed variable in the basis. Clearly, there must be alternative optimal ba that do 
not contain one, or some, or all fixed variables: We suffer from primal degeneracy. 

he degeneracy phenomenon that we have just described doe not only appear in theory, but 
is a major obtacle to the solution of set partitioning problems by branch-and-cut. Unexpect 
edly, it turns out that for the airline test set often almost half of the basis matrices consist 
of fixed variables, "blocking" the same number of rows from possible elimination t i clear 
that a larger number of rows and a larger basis has a negative impact on P time. 
This problem can be overcome by a novel out-pivoting technique that force fixed variables to 
leave the basis. The method is to perform one "dual pivot" with the fixed basic variable leaving 
the basis (allowing slacks/artificials to enter). the leaving variable is fixed, this pivot i 
primal degenerate, but the dual solution changes, and the entering variable i determined in 
uch a way that optimality is reetablished , by a ratio test. 

Out-pivoting is available in CPLEX release V5.0 and higher version. Its u e to eliminate fixed 
variables from the basis allows for ignificant additional problem reductions while at the same 
time maintaining dual feasibility. We remark that although the method i best possible in the 
sense that it require just a single dual pivot for each fixed basic variable, out-pivoting is not 
cheap. Tabl 3.4 shows that 7% of the total running time that our branch-and-cut algorithm 
BC needs to solve the airline t e t set is spent in out-pivoting (column Pvt under Timing 
And the number of outpivot ceeds the number of other pivot by a factor of about five! 

3.2.14 T h e P r e p r o c e s s o r 

Combining the routines of the previous ubections yields the preprocessor of our et parti 
tioning solver BC The module consists of 67 kilobytes of source code in 10,000 lines. 
The module doe not work on the LP itself, but on a (possibly smaller) auxiliary representation 
of the problem where reductions can be carried out no matter what the LP b a s status is 
The preprocessor is called for the first time prior to the solution of the firs P. All later 
invocations involve pivoting to maintain the dual feasibility of the basis. First, the bass i 
purged by pivoting out fixed variables (from previous invocations). Preprocessing starts with 
reduced cost fixing according to rule P9. hen the main preprocessing loop is entered that 
calls, in each pass, all the individual rules. First a couple of column oriented reduction 
are carried out: P (row singletons) and P 1 6 (row clique heuritic) Then the matrix i 
tranposed, and row oriented operations follw: P4' (duplicate rows), P4 (dominated rows) 
P7 (symmetric difference), and P8 (column ingletons). The matrix is tranposed again for 
the next pass. This loop continues as long as some reduction was achieved When no further 
reduction can be achieved s many of the found ones as possible are transferred to the LP 
Artificial of redundant rows are pivoted in and redundant nonbaic columns and redundant 
basic rows are eliminated from the LP. The reader can infer from Table 3.4 that the running 
time for thi module i not a computational bottleneck for the entire branch-and-cut code 
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3.3 Separation 

"Branch-and-cut" — this term lists the two sources of power of the algorithms of this class. 
The second of these, the computation of cutting planes, aims at improving the quality of the 
current LP relaxation in the sense that the lower bound rises. If this can be achieved, it 
helps in fathoming nodes and fixing variables by preprocessing techniques, provides criteria 
for intelligent earchtree exploration, and, ideally, "pushes" the fractional solution toward 
an integral one. This, in turn, can be exploited for the development of heuristics by trac 
ing histories of fractional variables etc., and there are certainly more of such practitioner's 
arguments in favor of cutting plane that are all based on the many algorithmically useful 
degrees of freedom in (as the name says) a generic branch-and-cut method The theoretical 
justification for the u e of cutting plane is perhaps even more convincing: By the general 
algorithmic reul ts of Grötschel, Loväsz &; Schrijver [1988] w know that polynomial time 
separation allows for polynomial time optimization, and even if we give here the dual simplex 
algorithms reoptimization capabilities (not to speak of the availability of suitable implemen­
tations) preference over the ellipsoid method theoretical power, there is no reaon to believe 
that not some of this favorable behaviour will sho up in codes of the real world. And in fact 
the number of implementations of this principle with successful computational experience i 
legion, see, g., Caprara & Fischetti [1997] for a urvey 

he eparation routine for set partitioning problem are b a e d on the relation 

Pf(A) = P(A)nQ(A) 

between the set partitioning, the set packing, and the set covering polytope: To solve set 
partitioning problems, we can resort to cutting plane for the associated packing and covering 
polytopes. We have already pointed out in Section 1.2 why the polyhedral study of the latter 
wo bodies is easier than the study of the first, and we have also listed in the Sections .8, 1.9 

, and 2.6 many known type of valid and often even facet defining inequalities that qualify 
as candidates for cutting planes in a branch-and-cut code for set partitioning problems. 

But not only these classes are available General cutting planes sugget themelves as well 
Gomory [1960] cuts, liftand-project cuts, see Balas, Ceria & Cornuejol 1993] or Martin & 
Weismantel [1997]s feaible et cuts. 

We have selected only a small number of them for our implementation Clique inequalities 
becaue they give facets, are easy to implement, numerically stable (onl 0/1 coefficients and 
sparse, cycle inequalities for the same reaons and because they can be eparated exactly, and 
the aggregated cycle inequalities from the set packing relaxation of the et covering problem 
of Section 6 because we wanted to evaluate the computational usefulness of our aggregation 
technique T h e e cut are all simple, but a the duality gaps in real world et partitioning 
problems are usually quite small, there is some jutification for a trategy that opt for 

whatever one can get in a hort time" 

We discuss in the following subsections the individual routines of our separation module 
All of the procedures work with intersection graphs that we introduce in Subection 3.3 
Separation and lifting routines for inequalities from cliques are treated in Subection 3.3.2 
for cycle in Subsection 3.3.3, and for aggregated cycles in Subsection word on our 
trategie to call t h e e routine can be found in the following Section 
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3.3.1 he Fracional erect ion Gr 

All of our separation routines will be combinatorial algorithms that work on intersection 
graphs. Namely, we look for our set packing inequalities on subgraphs of G(A), the intersection 
graph of the set packing relaxation and we identify aggregated cycle inequaliti on ubgraph 
of the conict graph <&(A) that i associated to the aggregation. 

A quick calculation is enough to see that it i completely out of the question to set up G(A) 
completely and much less (5 (A) and even if we could do this it is very unlikely that we could 
make any use of these gigabytes of information. But luckil it follows from the nonnegativity 
of all nontrivial facet of et packing polytopes and the 2-connectedness of their support 
graphs, is well known, and was mentioned, for example in Hoffman & Padberg 1993] that 
one can retrict attention to the "fractional part 

G(A)[ = G(A and «(A) [ = <&(A 

of these structures for eparation purposes. These graphs are the fractional intersection 
graph and the aggregated fractional intersection graph repectively. As there can be at mos  

many fractional variables as is the size of the ba i s as is the number of equations of the 
LP relaxation, this reduces, for "typical" real world set partitioning problems like the airline 
instances, the number of nodes from ten- to hundred thousands in G(A) to some hundreds in 
G(A.F) by two to three orders of magnitude, and the number of edges even more. his is not 
so for the graph &(A.F, which i exponential by construction. We cope with this difficulty 
in a heuristic way by using only some ubgraph of &(AF)- ote that the above mentioned 
2-connectedness of the support graphs of facets makes it possible to retrict eparation to 
individual 2connected components of G(A.p) and of <6{A.p). 

Separating on the fractional variables only has the disadvantage that the resulting cutting 
planes have a very small support in comparison to the complete set of variables. One way 
to counter the stalling effects of "polishing" on a low dimenional face of the set partitioning 
polytope is to extend the support of cutting planes by lifting Our overall separation strategy 
will be to reduce the effort to identify a violated inequality a much as possible by working on 
fractional interection graphs, and we enhance the quality of hatever e were able to obtain 
in this first tep a posteriori by a subsequent lifting step. 

We turn now to the algorithmic construction of the fractional intersection graph. We treat 
only G(A.F) and do not discuss here how we set up a subgraph of &(A.F), because this s so 
intimately related to the separation of aggregated cycle inequaliti that it i better discussed 
in this context in Subsection 3.3. 

The procedure that we have implemented in BC ets up a new column interection graph 
G(A.p) after the solution of every single LP i G(A.p) i constructed "on the y", a 
Hoffman &; Padberg [1993] say Our routine u two copies of the matrix A.p, one stored 
in column and the other in row major format. A.p can be extracted from the column major 
repreentation of the "global" matrix A in time that is linear in the number of nonzeros of 
A.F- Next, we compute the neighbors of each column j F by scanning its rows and store 
the reul t in a forward tar adjacency list (see, e.g., Ahuja, Magnanti & Orlin [1989]). Under 
the assumptions of Subsection 3 . 3 we expect that this will take about 0(fip\F\2) operation 
on average — fast enough to just forget about We do not u e a procedure to decompo 
G(A) into two connected component 
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3.3.2 C l i u e Ineual i t ies 

We have already mentioned in the introduction of this section hy we use clique inequalities  
cutting planes in our branch-and-cut code BC: This class yields facets, it is easy to come up 

with separation and lifting heuritics, and such inequalities are sparse and pose no numerical 
difficulties. One must admit, however, that these appealing properties are strictly peaking 
outmatched by the unsatifactory theoretical behaviour of the simple cutting planes. Clique 
separation is not only AfP-hard, see Garey & Johnson [1979], but, even worse, this class 
contained in polynomial separable superclasses like orthogonality inequalities or matrix cuts 
One could argue omewhat around the first difficulty, namely, we have implemented an exact 
clique separation routine as well and found that, even ithout any tuning, our heuristic 
already found nearly every violated clique inequality there was, and it is a little thing to tune 
the heuristic routines such that containment becomes equality. But we feel nevertheless that 
the above arguments show that it is not the right way to compensate the conceptual weakness 
in clique inequality separation by additional computational effort. 
Our branch-and-cut code BC goes thus to the other extreme and concentrates on the compu­
tational advantages of heuristic clique detection by u ing only simple separation and lifting 
routines. We compute violated inequalities with a row lifting and a greedy heuristic, and a 

semiheuritic" (the meaning of this term will become clear in the description of this method) 
recursive smallest last (RSL) procedure and we lift the cutting planes that they return with 
tailor made procedures that fit with the separation routine "philosophy" (these statement 
have been evaluated in computational experiment he eparation and lifting routine 
are decribed in the next paragraphs. 

Row Lifting, Hoffman & Padberg [1993]. The idea of this separation routine is to 
exploit the knowledge of those cliques that are already encoded in the ro of the matrix A 
to design a very fast procedure. The details are a follows. 
One considers each row ArF of the matrix A.F (that consists of the columns of A with 
fractional variables in the current solution x*) in turn; note that the sum over the fractionals 
in a row is either zero (there are no fractional variable becau ome variable ha a value of 
one) or one 

Arx*F<E 1} Vr = l . . . m . 

In the latter ca this row induces a minimal clique Q : upp^4rF such that the clique 
inequality Yljeoxj < 1 is tight for the current LP solution x*. If one additional fractional 
variable can be lifted (sequentially) into Q, a violated clique inequality is detected. ifting 
more fractional variables increases violation, and one can lift some additional variabl with 
zero value in the end as well to extend the cut's support. Hence, the procedure has three 
steps: (i) Determining the "core" clique Q = upp ArF, (ii) sequential lifting of fractional 
variable into the core, and (iii) upplementary sequential liftings of zero variables. 
Here are some implementation issues. While (i) is clear one can come up with numerou 
strategies for the lifting steps (ii) and (iii). The method that we have implemented in BC 
opts for speed because we do not expect to find many additional neighbors of (a part of) 
a matrix row clique that is usually of substantial size — a philosophy that fits ith the 
idea behind the ro lifting method and that is supported by the probabilistic results of the 
previou Section 32 and by our computational experiments. For each of the step (ii) and 
(iii) et up a l i t of candidate variabl that we arrange in a fixed lifting order and thi 
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candidate sequen is used for every row. In step (ii), the andidate c o n s o om 
constant number kF of the fractional variables with the largest :r*-values (we u e kF = 20 in 
our implementation) which are tried greedily in order of decreasing x* values, and another 
constant number hi of zero variable we u kj ) for tep (iii) that impl elect at 
random. 
Turning to the expected running time, we note that one sequential lifting of a variable Xj can 
be done by checking whether all variables in the current clique Q are neighbors of j Using a 
forward star representation of G(A.p) this t a k e y ( j ) | ) 0 ) steps here \ \ denote 
the number of fractional variables in the current LP solution x*). oing thi + kL < |.F 
times for m row results in a total of (m\) operation for thi routine hich i fa 

s one could possibly hope. 
The apparent disadvantage of the method is, however, that the cutting plane that one com­
pute with such a technique do, by construction, resemble much subset of rows with a small 
extension here and there. Generally speaking, the row lifting clique separation routine i 
a good starting method in the initial p h a e of a branch-and-cut run and yield reaonable 
reu l t there; it i less eful in later stages of the computation 

Greedy Algorithm. The greedy method is certainly the most obvious and simple to im­
plement separation strategy that one can come up ith and our branch-and-cut algorithm BC 
also uses a clique detection method of this type. 
Our routine is implemented in the following way. The greedy criterion is to go for a mo 
violated clique inequality and it makes sense to do so by considering the fractional variabl 
in order of decreaing x value here x denote the current fractional olution) 

Ki £2 ••• £|F| here { a . . . u \ } = 

Our greedy does no \ trials, one for each fractional "eed" variable x*. In trial j , w 
initialize a clique Q := {<TJ}, that will (hopefully) be g r o n into the support of a violated 
clique inequality, and try to lift into Q all variables xa.+... xa,F, of smaller x* value in thi 
order. The motivation behind this is to give variables with small x* values also a "chance" 
to foter a violated clique. We do not restrict the number of fractional lifting candidate thi 
time because we expect for familiar reason that the clique that we can compute in thi 
way will not be very large Note that this is different from row lifting, where we start a 
priori with a "large" clique This inspires the different lifting philosophy that we should "at 
least lift uch small cliques reasonably", to put it nonchalantly. But how can we get a large 
extension when all our probabilitic analyses and computational experience indicates that w 
can not obtain it sequentiall Our idea is to u e the large clique that we already know and 
to do a simultaneous lifting ith matrix rows, similar to the ro lifting separation routine 
Namely, we do the following: Given some fractional clique Q, we determine its common 
neighbors 7(Q) ^jeQl(J) (note that it is not clever to compute this for a large clique, but 
no problem for a small one!) and then we look for the larget interection jQ) upp^4r of 
this set with the support of some row r; this set is added to Q. 
Looking at running times we have again that one sequential lifting of a fractional variabl 
takes 0 F | ) operations. Lifting at most |F | variable in the greedy clique growing phase 
results in 0 ( | teps. The common neighbors of at most F\ members of such a clique can be 
determined in 0 ( F | • mp-np) teps using the matrix ^4's row representation (not the complete 
intersection graph G(A) which we did not set up!), and the maximum intersection of this set 

ith a matrix ro in (mp-np) tep hich i maller uming mp-np) .F 
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and doin all of these steps t i m s , once for each of the seed variables, amounts to 
total of 0F\2mnp2) expected step — which does not look very good. But our analysis i 
a very conservative estimate becaue the expensive simultaneous lifting step is only called 
when a violated inequality is found, which (unfortunately) is not the case for every starting 
candidate he method can be tuned further u ing obviou break criteria b a e d on the "tail 
um 

... 4- 7 — 1 
•L' ' ' F \ ' •' — ' ' ' I ' 

that make the routine bail out whenever there is no more chance of finding a violated clique 
inequality. ith this and other improvements of this type, one obtain eparation procedure 
that diplay a reaonable behaviour in computational practice 

Recursive Smallest First. ne of the most popular branch-and-bound approache to the 
maximum weight clique problem baed on the recurion 

max Q) — max max Q) max Q) C\ 
Q clique in G ' Q clique in G[j)] Q clique in G " °> 

Here, G is some graph with node weights x* and j one of its nodes. The first successful 
implementation of (3.5) is, far as we know, due to Carraghan & Pardalos [1990] and since 
then this branching rule ha turned into the progenitor of a large family of algorithms that 
differ by node selection and clever bounding criteria that try to r eue information that i 
computed once as often a possible. 
Recursive smallest first (RSF) is one member of this class. t uses the special branching 
trategy to select in each step a node j that attains the minimum degree in the current graph 
he idea is obviously that one of the two subproblems, namely, the one on the neighbor of j 

i.e., on the graph G[y(j)], will hopefully be "small" and can be fathomed or olved fast. For 
fathoming, we can develop simple criteria in terms of sums of node weight of the current 
graph And the subproblem can urely be olved f a t if the number of nodes in the current 
graph s small, say, smaller than some contant When such circumstances supervene in 
every ubdivision step, the RSF algorithm solves the maximum weight clique problem to 
proven optimality in time that i polynomial of order he wor t c a e running time i 
exponential, however. 
The observations of the previou paragraph suggest a simple way to combine, under favorabl 
conditions, the advantage of RSF —a certificate of optimality— with a polynomially bounded 
running time. The idea is to turn the algorithm dynamically into a heuristic whenever we are 
about to walk into the complexity trap Namely, we pursue the following strategy: We us 
in principle the generic RSF algorithm as described above but whenever the current graph 
has more than k nodes and our fathoming criteria fail, we solve the associated subproblem 
heuristically We call such a hybrid method with both exact branch-and-bound and heuristic 
components a semiheuristic. A scheme of this type has the advantages that it (i) is able 
to exploit some structural properties of the graph, namely, to reduce it systematically by 
cutting off low degree parts, (ii) it a l l o s to control the tradeoff between exactness and peed 
by tuning the parameter k, and (iii) it sometimes even proves optimality of the result. 
In our implementation of the RSF method e set the parameter k := 1 When the current 
graph has l s s than thi number of nodes, we determine the maximum clique by complete 
enumeration. The heuristic that we apply in subproblems that involve graphs with more than 

node the greedy procedure that we have decribed in the previou paragraph find a 
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nod with s a l l e s t gree in each branching step store the nodes of graph in a binary 
heap that is sorted with respect to node degrees. For familiar reaons, we do not expect 
the RSF algorithm to return a large clique. In this vein RSF has the flavour of an improved 
greedy algorithm. Therefore we apply the ame strategies to lift variables that have a value of 
zero in the current LP olution Hoffman & Padberg [1993] decribe a imilar implementation 
of the RSF method. 
The running time of \F\k): The time to compute lower bound is 0 ( ) , the 
greedy heuristic takes 0 F | 3 ) , enumeration takes ( k ) , and the heap update require 
0( |F | 2 log \F\) operation finall lifting result in 0(\F\mpnp) steps. hi give total 
running time of 0(\F\k + \Fmnp), which we assume to be of order 0(\F\k). 
To evaluate the quality of the RSF method we have implemented an exact branch-and-bound 
algorithm for the maximum clique problem as well It turned out that, even without any 
tuning, RSF almost alway produced a largest clique Our computational experiments showed 
that the choice k = 16 w s the optimal tradeoff between speed and quality. In fact, with k = 
16, R F produces alway the largest clique on the airline test problems. For this reason, and 
because of the arguments mentioned in the introduction of this section, we do not use the exact 
branch-and-bound algorithm for clique eparation although thi method i implemented 

3.3.3 Cycle Inequalities 

Cycle inequalities are the second separation ingredient in our branch-and-cut algorithm. Like 
the clique inequalities, cut of this type have small support and they tend to have a nice 
numerical behaviour (only 0/1 coefficients in unlifted versions). An additional bonus that 
they can be eparated in polynomial time with the GLS algorithm of Grötschel, Lov 
Schrijver [1988]. We use this cycle detection algorithm in our branch-and-cut algorithm. 
The GLS algorithm works on a bipartite auiliary graph B := B(G(AF)) that is constructed 
from the fractional interection graph G(A.p) = (V, E) as follos. he nodes of B are tw 
copies V' and V" of V. There i an edge u'v" in B if and only if uv an edge of G. To each 
uch edge u we associate the weight here x the current fractional 
P solution. Note that 0 < w < 1. 

The main steps of the procedure are a follows. One computes for each node v! E V the 
shortest path Pu in B to it pendant u". Each such path Pu, interpreted as et of nodes, 
correspond to an odd cycl Cu in through possibl ith node repetitions. he weight 
of Cu is 

w(C) = w(P) = u V p u ( l - < - x%) = x*(P) = *(C 

Hence 

w{Cu)<\ ^ CuKx*{Cu) ^ > Cu\-l)2<x*(Cu). 

Thus, a path Pu in B with weight less than one corresponds to a violated odd cycle inequality 
Conversel a shortest odd cycle through a node u corresponds to the path Pu. This proves 
that the GLS algorithm olve the eparation problem for cycle inequalities in polynomial 
time. 
Our implementation of the GLS algorithm computes the shortest paths Pu using Dijktra' 
algorithm. When the distance label of the node are kept in a binary heap this results in a 
running time of 0(\F\2 log F | + |-F||i?|) = log \ ); here the number of 
edges in the fractional interection graph 
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We use a number f implementation tricks to make this method wor in practice. F i r t not 
that it is not necessary to set up the auxiliary graph explicitly because adjacencies in B can 
be read off from the neighbor lis of G(A.p The only place where the auxiliary graph show 
up explicitly is the heap, where we have to store a distance label for each of the two copies 
of a node. Second, one can exploit the pecial form of the ditance function 1 — x — X for 
computing expression of the form 

istfv] = min { s t [ s t [ (1 — x*u — x*} 

that come up in the relabeling step he three arithmetic operations that are required to 
compute the term distfu] + (1 — £* — a ) for every neighbor v of u can be reduced to one 
by a precomputation of the term distfu] + 1 — x*u. A minor speed up can be achieved by 
turning double x* values into integers (this saves about 10% of the running time) Third 
Dijkstra's algorithm is a dynamic program. A we are interested in path of length smaller 
than one onl we can fathom a node as soon as its distance label d i s t f ] attains a value of 
one or more Fourth, note that the generic GLS algorithm computes the shortet path Pu for 
every node u 6 G(A.F)- Once this path Pu is computed for a particular node u this node 
can be deleted from the graph without looing the exactness of the method Thi is correct 
because a most violated cycle inequality passes through the node u or not In the first case 
the path Pu yields such a most violated inequality. In the second case, u is not relevant and 
can therefore be removed. Note that this elimination strategy ha the additional advantage 
that it tends to produce violated cycle inequalities with disjoint support. It also paves the 
way for a fifth implementation trick that i based on a special ordering of the starting node 
for which we call i jktra algorithm We order the node ith repect to decreaing x* 
value 

i > x t 1 * 2 - - - * m 

If we denote by G% the graph G(A.F)[{(7i,-• • ,cr\F\}] obtained from G(A.F) by deleting the 
nodes {<TI . . . , C i } (the starting node for the previou — 1 call of i jktra algorithm) 
all edge distance in atify 

Any odd cycle C in m u t contain at l ea t three uch edge and we have for it weight 

w(C) = \ C \ e C < 2 \ C K i -

he l t value in this sequence exceed 1 if and only if 

(l-l/\\)/ = l ( l - l i . 

This will be the c a e if xa < 1/3, i.e., we can stop computation as soon as the maximum 
a;*-value drops below 1/3 We compute with the GLS algorithm and these tricks paths Pu 

that correpond to odd c l e d walk in G(AF) and extract from t h e e a cycl ithout node 
repetitions. 
Lifting odd cycle inequalities is a bit more complicated than lifting clique inequalities. 
Let us first turn to sequential lifting. Note that it is not difficult to lift a constant number of 
variabl into a cycle We tried an implementation that doe thi for the fir t two variable 
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such that, in each of e two steps, a maximum additional iolation of x ime he lifting 
coefficient is achieved More fractional variables were lifted heuristically. This sequential 
method turned out to be slow, taking more time than the eparation of the pure cycles. 
Moreover, it did not produce many nonzero lifting coefficients. 
Therefore, a simultaneous lifting method was implemented. Thi method identifies for each 
edge ij in the cycle C a ro r = j in the matrix A.F such that {i,j} Q supp^4rij.. (breaking 
ties arbitrarily). These rows are used to compute a Chvatal-Gomory cut that can be seen a 
a lifting of the cycle inequality that corresponds to C We add up the rows ATi.., divide by 
t and round the coefficient d o w . Exploiting sparsity, this method can be implemented 
in 0(\C\np) time and exhibits a satifactory computational behaviour. 
One final issue on cycle separation is that it i possible that a violated inequality can result 
from a lifting of a pure cycle inequality which is not tight. We exploit this heuritically in our 
routine by increasing the "target length" of the paths in the GLS algorithm form one to some 
larger value in a dynamic and adaptive fahion depending on the number of cycle inequaliti 
found in the previou call 

3.3.4 ggregated Cycle n e u a l i t i e s 

The third class of inequalities that we try to separate are the aggregated cycle inequalities 
of Section 2.6. Recall that these inequalitis stem from et packing relaxation of the et 
covering problem. 
Set packing inequalities tend to have the disadvantage of "smearing" the values of the LP 
olution over their upport Thi tends to increase the number of fractional variables with 

small values, which has all kind of negative impacts on the solution process. To counter 
these effects, one would like to use cutting planes for the set covering polytope that gather 
some x* value on their support and prevent the LP solution from dilution nfortunately 
little algorithmically useful knowledge about such cutting planes availabl Thi our 
motivation for the development of the aggregated cycle inequalities. 
Aggregated cycle inequalities are separated with the implementation of the GLS algorithm 
that we have described in the previous subsection. The only difference is that the input graph  

a (small) subgraph & = (93, £') of the aggregated fractional intersection graph &(A.p) 
which is of exponential size The selection is guided by the desire to find a subgraph of "reason­
able" polynomial size and with many edges UO with small weights 1 — 7ru(a;*) — 7rB(a;*) = wUX 

Such edge make it likely that cycles in (5 give r i e to violated aggregated cycle inequalitis. 
We do not lift aggregated cycle inequalities. 
Our heuritic to generate the subgraph & i the following. We generate two node and / 
for each ro AIF of the matrix A amel ubdivide the upport of each ro into 

"equal ized halve 

uppAip — 

ith repect to a given fractional LP solution x* plit (in ome way) uch that 
*j « j j and take 9 the et of t h e e "halve 

! = l . . . m } . 

w such nodes u and 0 are in conflict if their union contains some ro of the matrix A 
h e e conict define the edge of the graph ( 
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3. omputational Results 

We report in this section on computational experiences ith our branch-and-cut code BC 
intend to invetigate the follwing questions: 

(i) Performance What is the performance of BC on a standard test set of set partitioning 
problems from the literature he acs te set of Hoffman & Padberg [1993] 

(ii) Branching versus Cutting. Do cutting plane make a ignificant contribution to the 
solution of the problems in our test set 

(iii) Aggregated Cycle Inequalities hat i the effect of the aggregated cycle inequaliti 

We have chosen the airline crew scheduling problems of Hoffman &; Padberg [1993] a our test 
set (see this reference for a thorough discussion of these instances) because they are publicl 

vailabl and well known to the community. his makes it possible to compare our result 
with those of the literature ee, eg., Hoffman Padberg 1993] Atamturk emhauer 
Savelsbergh [1995], and Chu & Bealey [1995]. 
According to the guidelines of Crowder, Dembo &; Mulvey [1979 and Jackson, Boggs, Nas 

; Powell [1991] for reporting about computational experiments, we state that all test run 
were made on a Sun Ultra Sparc 2 Model 200E worktation with 512 MB of main memory 
running SunOS 5.5, that our branch-and-cut code BC was ritten in A S I compiled with 
the Sun cc compiler and switches - f a s t -xD5 and that we have u e d the CPLEX [1997 
Callable Library V5.0 our LP solver. 
The results of the following computational experiments are documented in tables that have 
the following format. Column 1 gives the name of the problem, columns 2-4 its size in terms of 
numbers of rows, columns, and nonzeros. These size are reduced by an initial preprocessing 
to the numbers that appear in the next three columns. Columns 8 and 9 report solution values. 
~z is the value of the best solution that the algorithm has computed. The —s in the succeeding 
"Gap" column indicate that all of the problems have been solved to proven optimality The 
following 5 columns give details about the branch-and-cut computation. We list, from left 
to right, the number of in- and out-pivots (Pvt) that are performed by the preprocessor the 
number of cutting plane (Cut) added, the number of simplex iterations to solve the LP 

tn), the number of LPs solved (LP), and the number of branch-and-bound nodes (B&B) 
Running times (as a percentage of the total time) for these routines are contained in column 
15-19: Problem reduction (PP), pivoting (Pvt), separation (Cut), LP-solution (LP) and 
primal heuristic (Heu). The l a t column gives the total running time in CPU seconds. 
f not explicitly stated otherwise, all of our computations u e the following default parameter 

settings and strategies for our code BC. We u e a best first search on the branch-and-bound 
tree, the branching rule is strong branching (cf Bixby, personal communication), e., we select 
a et of fractional candidate variables close to 0.5 (we try 10 candidates) fix them tentativel 
to 0 and and perform a couple of dual simplex iterations ith these fixings (we do 25 
iterations). The variable that yields the largest increase in the smaller of the corresponding 
two lower bound value is the branching variable. Our primal heuristic is a plunging method 
that iteratively round fractional variables to the nearest integer and reoptimizes the linear 
program (we round to 1.0 all variables with values above .8 or, if no such variable exists 
the one with the largest value, breaking ties arbitrarily). This heuritic is called once after 
the olution of the initial LP relaxation and once at each node of the earchtree he default 
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strate for separatio is to call the row clique lifting routine the greedy clique detection 
the RSF semiheuristic, and the GLS cycle algorithm All of these procedure are called after 
each individual LP. Among the violated inequalities that we have found, we select the mos 
violated ones up to a threshold that depend on the size of the P and the number of cut 
found. n each iteration, cuts ith positive slack (of more than 0.1) are removed from the 
present LP. To avoid tailing off, we use an early branching strategy that stops the cutting 
plane phase if the duality gap does not decrease significantly from one iteration to the next 
(to 0.75 within any four successive iterations). Like the separation routines, the preprocessor 
is invoked after each solution of an he LP themelve are olved ith the dual simple 
algorithm and steepest edge pricing. 
We have performed three computational experiments to anwer the quetions (i)-(iii) ur 
Experiment 1 applies BC with the default trategy to the acs te set. Experiment 2 we 
also separate aggregated cycle inequalities, all other parameter setting are identical. For 
Experiment 5, we turn off the cut generation module of BC completely .e , we apply branch-
and-bound with preprocesing. Our results are summarized in Tables 34-3.6. 
The statistics in these tables have quite some similarities and not only at firt glance. W will 
in fact, argue in our analysis that the outcome of the three experiments is essentially the same 
except for three "hard instances namely, nw04, aa04 and aaOl; the other problems fall into 
a number of categories of readily solvable instances. Our discussion will try to explain the 
difference in the computational behavior of the instances in terms of two meaure of problem 
difficulty: Response to and/or ize after preprocessing and the initial duality gap. Note that 
these are a priori criteria, i.e., they are available prior to the solution of the problem and 
can be used to predict expected solution efforts. We remark that we found these indicator 
satisfactory not only for the acs problems, but also for two ets of "Telebus clustering and 
chaining instances" (of different characteristics) from a vehicle cheduling application confer 
Section 4.7 for a discussion of computational results for these instances. 
A first imilarity is that the initial preprocessing does not depend on the different parameter 
setting of the experiments, the reductions are always the same, see the "Preprocessed 

columns -7 in Table .4-3 We have already given more detailed tat i t ics on the initial 
preprocessing step in Table 3.1. Taking another look at thi data we see that the first 
27 intances up to nw31 are reduced to very small problem with less than 30 r o ; all of 
these simple instances can be solved in well under a second with all strategies. 
Many of the remaining 28 problems are also fairly small and/or diplay minimal initial duality 
gaps already after the first invocation of the primal heuristic and without adding any cutting 
planes, see column "Gap" in Table 3.1. In fact all but 9 of the instance 2855 have a duality 
gap of 10% or less. One would hope that the solutions of the initial LP relaxations of these 
problem are close to integrality i.e., they have only few fractional variables (one can not see 
this from the tables), and this is indeed the case: 11 of the instances 2 8 - 5 have integral LP 
solutions the remaining fractional solutions are rounded to optimal ones at the root node 
in all but 9 cases by BC's simple plunging heuritic (thi data is a l o not in the tables). I 
is thu not surpriing that those 19 of instances 2855 with gap < 0% can be solved in 
about 30 second with all trategis. ote that the olution statistics for the "hardest" of 
t h e e 19 problems, instances aa06, klOl, a a 0 , and aa03, see the "Branch-and-Cut" column 
in Table 34, fit with our difficulty indicators in terms of size and gap: The difficulty of the 
three aa instances is due to a large number of ro which leads to large bases and a relatively 
large number of pivots in the LP solution process, see column " tn" in Table hil lOl 

diplay the larget initial duality gap of 1 see column "Gap" in Table 
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The remaining nine instanes nw06, nwl8, nw03 nwl7, kl02, usOl, nw04, aa0 and aaOl 
the ones that require the use of cutting planes, see column "Cut" in Table 3 , several LPs, 
see column "LP", and some branch-and-bound, see column "B&B". The first five of these 
can again be olved fast in about 30 CPU econds no matter if many or no cutting planes at 
all are used. Thi behavior is due to the fast decrease of the duality gap in the root section 
of the searchtree: In Experiment 1, e.g, the optimum is not found in the fir t rounding of 
the solution of the initial LP relaxation, but it comes up rapidly in trial 4, 2, 2, 4, and 2, 
respectively, (recall that the plunging heuristic is called once after the solution of the initial 

P and once at each node, i.e., a means that the optimum is found rounding the second 
LP at the root node, while 4 refers to the first LP at node number 3). Comparing these 
numbers with the size of the searchtree in column "B&B" reveal that the problem were 
olved immediately after this happened. 

The analysis of the previou paragraph applies also to problem usOl: The optimum is found 
at the root node with the second call to the heuristic, and then the problem essentially 
finished in all three experiments. usOl is not a hard problem but a large one, accounting 
for about 35% of both nonzeros and column of the entire test set and it j u t takes some 
4 minutes to process all this data: The initial LP alone takes about 2 minutes. 
We are thus indeed left with only three intance here the different use of cutting plane 
in our experiments can make a difference: nw04, aa04, and aaOl Note that these problems 
account for 363 out of a total of 444 branch-and-bound node in Experiment 1 (similar 
tatements hold for the other experiments), for 1 1 out of 1,355 LPs, for 54,307 out of 

64,361 dual simplex iterations, for 293,737 out of 312,587 in- and outpivots, and for 619.99 
out of 10089 CPU seconds, i.e., the performance of our algorithm BC on these four problem 
determines the outcome of our computational experiment completely. We would, however 
like to stress that the hitherto treated simple instances" are formulations of real worl 
problems and that the ability to solve airline cre scheduling problems to proven optimality 
in such short time is one of the most remarkable successes in operations research. To put it 
in a pointed way: It is the computational well-behaviour that makes set partitioning model 
so useful. s even the hard problems in the acs test set can be solved in about 5 minutes with 
the default strategy, we answer question (i) about the performance of BC on the acs problem 
with a confirmation of Hoffman & Padberg [1993] s conclusion that "it is possible to solve very 
large set-partitioning problems to proven optimality" and that "by using the [branch-and-cut 
technology described above and solving larger set-partitioning problems exactly . . . than is 
done today the airline indutry could ee immediate and ubtantial dollar aving in thei 
crew costs". 

he three hard instance themelves fall again into two different categories, namely, intance 
nw04 on the one and aa04 and aaOl on the other hand. The difference between them is that 
nw04 has fe rows and many columns, while the aa problems have the opposite property. W 

ill give now a number of heuristic arguments that suggest that set partitioning problem 
with many ros tend to be more difficult for a branch-and-cut algorithm than problem with 
many columns. In fact there are only two occasions where BC examines the complete set of 
columns: In the pricing step of the dual implex algorithm and in the preprocessing But thes 
teps take linear or log-linear time only. The more expensive modules work on data structure 

whose ize depends on the number m of rows: Refactorization works on a matrix of size 0(m2 

and has quadratic running time, separation works on a fractional intersection graph of the 
same size and has at least the same order of running time, and we expect the primal heuritic 
to perform (m) rounding tep requiring the ame number of LP reoptimization 
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I light of e argumens, it is n t s p r i s i n g that nw04 an be solve to six ime 
faster than aa04 and aaOl. In fact, the olution time for nw04 is at most 85 seconds with 
any strategy such that one could even question the classification of nw04 as a hard intance 
Looking at the solution statitics in the "Branch-and-Cut" columns 11-15 of Tables 3.4-3. 
however, shows that nw04 has the same complexity as the aa problems: Its solution requires 
a number of nodes, LPs, simplex iterations, and cutting planes that is in the same order of 
magnitude a the figures for the aa problems. The three hard problems have in common that 
the initial L solution doe not immediately reveal the optimum nor a proof of optimality 
and that the solution takes some algorithmic effort. The smaller running time for nw04 i 
olely due to the smaller amount of computation at the individual node of the earchtree. 

Recalling how the "simple intances nw06, nwl8, nw03, nwl7, kl02, and usOl could be 
solved easily once the optimal solution was found one might wonder if the hard problem are 
difficult becau BC's simple plunging heuristic is unable to find good olutions? To anwer 
this question, we have run our code with the optimal solution as an additional input. It 
turns out that primal knowledge does not make the problems much easier For the default 
trategy, e.g., we till needed 75/121/101 nodes, 247/392/ LPs, 3,569/1780/2,936 dual 
implex iterations, 09/1,333/1,067 cuts, and 38.110/181.900/289.320 CPU econds to solve 

nw04/aa04/aa01, respectively (the decreae in the running times of nw04 and aa04 i mainl 
due to a more effective reduced cost fixing, while aaOl takes, in fact, even longer to olve!). 
Clsing the gap from the dual side thus seems to be what makes instances nw04 aa04, and 
aaOl hard. Here is where cutting planes come into play and where the different separation 
trategies in Experiments 3 make a difference. We first turn to question (ii) about the 

significance of cutting plane for the solution process. Comparing the results of Experiment 1 
in Table 4 with the default strategy to the outcome of the branch-and-bound Experiment 
in Table 3.6 gives the disappointing result that the negligence of the cuts is not punished 
with an increase in running time There is only a redistribution away from cut generation 
and the LP to the other modules of BC. Hence, our timing tatistics give no arguments in 
favor of cutting planes. The "Branch-and-Cut" part of Tables 34 and 3.6, however, provide 
ome justification for the use of cutting planes: Cuts reduce the size of the searchtree from 

203/441/131 nodes in Experiment 1 to only 85/181/97 in Experiment 3, and similar albeit 
maller reductions apply to the number of L s , dual implex iterations, and in- and outpivots 

These finding do certainly not peak against the u e of cutting plane in computational et 
partitioning 
Experiment 2 s designed to investigate another step in this direction Do the aggregated 
cycle inequalitis of Section 2.6 yield a computational advantage The answer to quetion (iii) 
s similar to our finding for question (ii) Comparing the results of Experiment 1 in Table 3.4 

with the statitics on Experiment 2 in Table 3.5 displays an increase in running time by a 
factor of three when aggregated cycle inequalities are ued . This outcome is, however, solely 
due to the experimental statu of our aggregated cycle separation routine: An examination 
of the "Cut" column in the "Timings" section of Table 5 shows that about 70% of the 
running time is spent in thi module. he "Branch-and-Cut" statistics show some encouraging 
effects of aggregated cycle separation The searchtrees are reduced from 85/181/97 nodes to 
49/133/111 nodes, and similar savings can be observed for the number of LPs and dual simplex 
iterations. We feel that these results indicate some potential for aggregated cycle inequalitie 
and strongly believe that cuts of uch aggregation types are valuable for solving hard integer 
programming problems (not only set partitioning problem). The separation module itelf 
leave ample room for improvement and thi one of the i u e of future reearch 



o m i o n a l ul 

1 1 1 



44 An A l h m r S on 

I I I 



o m i o n a l ul 

l l l 



An A l h m r S on 



ibliography of art 

huja, Mgnant i & Orlin 9 . l o s . em Rinnoy Kan 
[1989] chapter IV, pp. 211-369 

Andersen & Andersen (1995) Presolving in Linear Programming. Mat. Prog. 71, 221-245 
Applegate, Bixby Chvätal &; Cook (1994). Large Scale Combinatorial ptimization Talk at 

the 15th Int. Symp on Math. Prog., Ann Arbor, MI 
Atamturk, Nemhauser & Savelsbergh (1995). A Combined Lagrangian inear Programming 

and mplication Heuritic for argeScale Set Partitioning Problems. Tech Rep 
5-07, Georgia Inst of Tech 

Balas, Ceria & Cornuejols (1993. A Liftand-Project Cutting Plane Algorithm for Mixed 1 
Programs. Math Prog. 58, 295-324 

Bala & Padberg (1976). Set Partitioning: A Survey SI AM Rev. 18, 710-760 
Balinski (1965). nteger Programming Methods, s, Computation Mgmt Sei 2(3) 

253-313. 
Beasley (1987). An Algorithm for Set Covering Problem. Europ. J. on OR 31, 85-9 
Bellman & Hall (Eds.) (1960 Combinatorial Analysi Proc of Symposia in Applied Math­

ematics Providence, RI 

Bixby (1994). Lecture Note for CAA 571 Combinatorial ptimization and nteger Pro­
gramming Spring 199 Rice niv., Houston, TX 

Brearley, Mitra & Williams (1975). Analy of Mathemtical Programming Problem Prior 
to Applying the Simplex Method. Math. Prog. 8(1), 54-8 

Caprara & Fischetti (1997) Branch-and-Cut Algorithms. I ellAmico Maffioli & Martell 
[1997 chapter pp. . 

Carraghan &; Pardalos (1990). An exact Algorithm for the Maximum Weight Clique Problem 
Operations Research Letters 9, 375-382. 

Chu & Bealey (1995). Contraint Handling in Genetic Algorithms: he Set Partitioning 
Problem. Working paper Imperial College, London, K. 

CPLEX (1995). Using the CPEX Callable Library2. Suite 279 30 Tahoe Blvd, Bldg 802 
Incline Village NV 8951 SA CPLEX ptimization, Inc. 

CPLEX (1997). Using the PLEX Callable Library. 889 Alder Avenue, Suite 2 0 , n­
cline Village, NV 89451 SA CPLEX iviion nformation available at UR 
http//www.cplexcom. 

Crowder, Dembo &; Mulvey (1979). On Reporting Computational Experiment ith Mathe 
matical Software ransactions on Mat Softare 5(2) 193-20 

1 Avail, at URL h t tp : / /mscmga .ms . ic . acuk / jeb / jeb .h tml  
2 I f avail at URL h t t p : //www. cplex. co 

http//www.cplexcom
http://mscmga.ms.ic.acuk/jeb/jeb.html


PH 

rowder, Johnon P a b e r g (19 olvin a r g a l e Z r o in rorammin 
Problems. Op es. 31, 803-8 

ellAmico, Maffioli &; Martello (Eds.) (1997). Annotated Bibliographies in Combinatorial 
Optimization. John Wiley &: Sons Ltd, Chichester. 

mden-Weinert, Hougardy Kreuter Proemel & Steger (1996) Einführung in raphen und 
Algorithmen3. 

Garey & Johnson (1979) Computers and Intractability: A uide to he Theory of NP 
Completeness. ew York: W H Freeman and Company 

Garfinkel & Nemhauser (1969). The Set Partitioning Problem Set Covering ith quality 
Constraints. Op. Res. 17(5), 848-856. 

Gomory (1960 Solving Linear Programming Problem in ntegers. n Bellman &; Hall [I960] 
Grötschel, Loväsz & Schrijver (198) eometric Algorithms and Combinatorial Optimization 

Springer Verlag, Berlin 

Hoffman & Padberg (1991) mproving LP-Repreentation of Zero-ne Linear Program for 
Branch-and-Cut. OA J. on Comp. 3(2), 121-134 

Hoffman &; Padberg (1993) Solving Airline CreScheduling Problem by Branch-And-Cut 
Mgmt. Sei 39 657-68 

Jackon, Boggs, sh &; Powell (1991). Guidelines for Reporting Results of Computational 
Experiments. Report of the Ad Hoc Committee Math. Prog. 49, 4^3-425 

Martin & Weismantel (1997). The Intersection of Knapack Polyhedra and xtenions. 
Preprint SC 97-614, Konrad-Zue-Zentrum Berlin 

emhauer, Rinnooy Kan & Todd ( s . ) (1989). Optimization volume 1 of Handbooks in 
OR and Mgmt. Sei. Elsevier Sei B.V, Amsterdam. 

emhauer & Woley (198) Integer and Combinatorial Optimization John iley & Sons, 
nc 

Nobili &; Sassano (1992). A Separation Routine for the Set Covering Polytope, pp 201 - 219 
Padberg & Rinaldi (1991). A Branch and Cut Algorithm for the Resolution of Large-Scal 

Symmetric Traveling Salesman Problems. SIAM Review 33, 60-100. 
Suhl & Szymanski (1994). Supernode Processing of Mixed-nteger Models. Computational 

Optimization and Applications 3, 31731 
hienel (1995) ACUS A Branch-AndCUt System. PhD thess, Uni zu Köln 

Wedelin (1995) An algorithm for large cale 0-1 integer programming ith application to 
airline cre cheduling Ann. Oper es. 57 283-30 

Avail. at URL h t t p : / / w w w . i n f o r m a t i k . h u - b e r l i n . d e / I n s t r u r o r m e n 
Avail at URL ht tp : / /www.z ibde /ZIBbib /Publ ica t ions / 

http://www.informatik.hu-berlin.de/Instrurormen
http://www.zibde/ZIBbib/Publications/


I n e x of a r t 

acs .. se airlin ulin blem 
advanced LP basis 

in a cutting plane algorithm  
in-pivoting technique  
out-pivoting technique 30 

aggregated cycle inequality 
for the et packing polytope 1 
lifting 1 
separation with the GLS algorithml 

aggregated fractional intersection graph 
for a et covering problem.... 32 

airline crew scheduling problems 
computational results . . . I l l 20 
Hoffman & Padberg test et  
preprocessing I l l , 20 
taircae form 22 

B 
b a s see advanced P ba 
BC et partitioning solver  

advanced LP basis  
aggregated cycle inequality  

lifting  
separation 13 

aggregated fractional intersect'n graph 
32 

b a s see advanced P ba 
best first search  
branching strategy 139, 14 
cache usage 113 
clique inequality 33 

lifting 134, 1 
separation 33-13 

column major format 11 
column singleton reduction... 110 
computational reul ts 

preprocessing acs problem 111 20 
olving acs problem 4 

utting planes 
aggregated cycle inequality 38 
clique inequality 33 
cycle inequality  

cycle inequality  
lifting  
separation 13 

data structures 107, 114 
dominated column reduction 11 22 
dominated row reduction . . . . 1 1 , 23 
dual feasibility. see advanced LP ba 
duplicate column reduction .. 11 20 
duplicate row reduction 11 22 
early branching  
empty column reduction 109, 20 
empty row reduction 10 20 
fill in column ingleton reduction 2 
flowchart  
fractional intersection graph . 132, 

LS algorithm 
for aggregated cycle separation 
for cycle inequality eparation .. 

greedy heuristic 
for clique inequality eparation 

in-pivoting technique  
intersection graph 132, 38 
lifting 32 

of aggregated cycle inequalities . 
of clique inequalities 4, 
of cycle inequalitis 13 

LP based reduction 11 
node selection strategy  
out-pivoting technique 30 
parallel column reduction 110, 
pivoting 

in-pivoting technique  
out-pivoting technique 30 

plunging heuristic 39 
pool management  



EX 

reprocessing  
advanced LP basis 12 
cache uage 11 
column singleton reduction 110 
computational results I l l 20 
dominated column reduct 'nl l 22 
dominated row reduction .. 11 23 
duplicate column reduction 11 20 
duplicate row reduction 11 22 
empty column reduction . . . 20 
empty row reduction 109 20 
LP based reduction I l l 
parallel column reduction.. 11 
pivoting 129 30 
probing I l l 
reduced cost fixing I l l 28 
ro clique reduction 11 23 
row ingleton reduction . . . . 10 20 
symm difference reduct'n.. 11 

preprocessor 30 
primal heuritic 107 
probing I l l , 
recursive smallest first semiheuritic 

for clique inequality eparation 
reduced co fixing I l l 28 
reductions see preprocessing 
ro clique reduction 11 23 
row lifting heuristic 

for clique inequality eparation 133 
ro major format 11 
row singleton reduction 109 20 
earchtree management  
eparation  

of aggregated cycle inequalities . 1 
of clique inequalities 33-1 
of cycle inequalities  

teepest edge pricing  
trong branching 128 

symmetric difference reduct'n 110, 1 
best first search node selection trategyl 
branch-and-cut algorithm  
branching strategie in BC 

early branching  
strong branching 39 

b u b b l o r t algorithm 22 

cache usage in p r e r o s s i n  
clique inequality 

for the et packing polytope 33 
lifting 134, 
eparation 

ith the greedy heuristic 34 
ith the ro lifting heuristic 33 

with the RSF semiheuristic 13 
column intersection graph see intersection 

graph 
column major format of a matri 11 
column singleton reduction 110, 
complexity 

of the et covering problem  
of the et packing problem  
of the set partitioning problem.... 

computational reul ts 
preprocessing acs problems .. I l l 20 
solving acs problems 40 

contraint classification for IPs  
CREW_0PT set partitioning olver  
cutting plane algorithm 107, 
cutting planes in BC 

aggregated cycle inequality 38 
clique inequality 33 
cycle inequality  

cycle inequality 
for the et packing polytope 
lifting 1 
eparation with the GLS algorithml 

D 
data structure in BC 11 

column major format 11 
row major format 11 

degeneracy see primal degeneracy 
diameter of a graph 43 
dominated column reduction 110, 122 
dominated ro reduction 11 23 
doubleton row in an IP  
dual feasibility see advanced LP ba 
duplicate column reduction 11 20 
duplicate ro reduction 11 22 

E 
early branching trategy in BC  



EX RT 2 

empty column reduction 20 
empty row reduction 20 
eta file technique for probing 28 
expected running time 

for a lexicographic comparion of tw 
random 0/1 sequences 11 

for the equence intersection algorithm 
119 

of intersection graph construction 132 
of preprocessing reductions 11 
of the column singleton reduction 26 
of the dominated row reduction... 23 
of the duplicate column reduction 20 
of the duplicate row reduction 22 
of the empty column reduction . . . 20 
of the empty row reduction 20 
of the GLS cycle separation 36 
of the greedy clique separation.... 
of the ro clique heuristic  
of the ro clique reduction  
of the ro singleton reduction . . . . 20 
of the RSF clique separation 136 
of the ymmetric difference reduct'nl 

F 
feasible set cut  
fill in column singleton reduction  
fixing a variable  
flowchart of BC 07 
fractional intersection graph 132 

aggregated fractional intersect'n graph 
for a set covering problem 38 

for a et packing problem 32 

G 
LS algorithm 136 

for aggregated cycle inequality separa­
tion  

for cycle inequality separation . . . . 
Gomory cut  
greedy heuristic 

for cycle inequality eparation . . . . 

H 
hahing 20 22 

I 
in-pivoting technique  

intersection graph 
aggregated fractional intersect n graph 

for a set covering problem 38 
for a set packing problem... . 108, 32 
fractional intersection graph 132 

interection of random 0/1 sequences .. see 
sequence interection 

iterated preproceing  

le icogrphic c o m r i s o n 
of two random /1 equences 11 

lift-and-project cut 3 
lifting 32 

of aggregated cycle inequalities . . . 
of clique inequalitis 134, 
of cycle inequalities 13 
b a e d reduction for IPs 11 

N 
node election trategy in BC  

O 
offset in a set partitioning problem.... 
outpivoting technique 30 

paallel column r e u c i o n 125 
pass of a preprocessor I l l 
plunging heuristic  
pool management in BC  
preprocessing for s  

constraint classification  
doubleton rows 12 
LP based reductions 11 
probing  
reduced cost fixing 1 
reduction (preprocessing operation) 1 
redundant constraint elimination. . 
substitution reduction  
tightening a formulation  
tightening bounds  

preprocessing for set partitioning  
advanced P basis  
basis see advanced LP bas 
cache usage 11 
column major format 11 
column ingleton reduction... 110, 



EX 

computational ult 120 
data structures 114 
dominated column reduction. 110, 22 
dominated row reduction 110, 23 
dual feasibility. see advanced LP ba 
duplicate column reduction .. 11 20 
duplicate row reduction 11 22 
empty column reduction 20 
empty row reduction 10 20 
fill in column singleton reduction 27 
in-pivoting technique  
iterated preprocessing  
lexicographic comparison 

of two random 0/1 equences . . . 11 
LP based reduction 11 
operations  
out-pivoting technique 30 
parallel column reduction . . . . 110, 125 
pass of a preprocessor I l l 
probabilistic model 

for lexicographic comparion. . . . 116 
for sequence interection 119 

probing I l l , 
reduced cost fixing I l l 
reductions  

column singleton 110, 26 
dominated column 11 22 
dominated row 11 23 
duplicate column 11 20 
duplicate row 11 22 
empty column 20 
empty ro 109 20 
LP based I l l 28 
parallel column 110 
probing I l l 
reduced cost fixing I l l 28 
ro clique 11 23 
row singleton 10 20 
ymmetric difference 11 25 

ro clique reduction 11 123 
ro major format 11 
row singleton reduction 109, 120 
equence intersection algorithm... 119 

symmetric difference reductn 110, 12 
tightening an P formulation 11 

preprocessor of BC 130 
preolving see preprocesing 

rimal egeneracy 
in a set partitioning problem 30 

primal heuristic in BC 107, 39 
probabilistic model 

for a lexicographic comparion of tw 
random 0/1 sequences 11 

for the equence interection algorithm 
119 

probing 111 

Q 
quickort algorithm 20 

R 
recursive smallest first emiheuristic 

for clique inequality eparation . . . 
reduced cost fixing 109, 111, 
reduction (preprocessing operation) . . . 
redundant constraint elimination for I P l 0 
ro clique reduction 11 23 
ro lifting heuristic 

for clique inequality separation . . . 133 
ro major format of a matri 11 
ro ingleton reduction 109, 120 

see recursive smalle fir 

earchtree mangemen in BC  
emiheuritic  
eparation  

of aggregated cycle inequalities . . . 
of clique inequalities 

ith the greedy heuristic 34 
ith the ro lifting heuristic 33 

with the RSF semiheuritic  
of cycle inequalities 136 

equence intersection algorithm 119 
et covering polytope 

aggregated cycle inequality  
et covering problem 

complexity  
et packing polytope 3 

clique inequality 33 
cycle inequality  

et packing problem 
complexity  
intersection graph  

et partitioning polytope 



EX RT 2 

partitionin blem  
complexity  
offset in the objective  
preprocessing  
primal degeneracy 30 
et covering relaxation 08 
et packing relaxation 08 

staircase form 22 
hakerort algorithm 22 
taircase form 

of a set partitioning problem 22 
teepest edge pricing  
trong branching strategy in BC .. 128, 
ubstitution reduction for IPs  
ymmetric difference reduction... 110, 

T 
tightening an IP formulation 11 
tightening bound of an  



EX 



art III 

l i c t i o ec 





apte 

ic li 

Summary. T h s chapter is about set partitining m e o d s for vhicle scheduling in diala-
ride systems We consider the optimization of Berlin's Telebus for handicapped people that 
services 1,500 requests per day with a fleet of 100 mini buses. Our scheduling system is in 
use since June , 1995 and resulted in improved service and significant cost savings 
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1 ntroducio 

This chapter is about set partitioning methods for vehicle scheduling in dialaride systems 
and their application at Berlin Telebus for handicapped people 

1Intranetz GmbH, Bergstr 22, 10115 Berlin, Germany, URL ht tp : / /www.int ranetz .de  
2Konrad-Zuse-Zentrum Berin, Takustr 7, 14195 Berlin, Germany, URL http:/ /www.zib.de 
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Dial-a-ride systems give rise to chal lengg optimization problems that involve stratgic as 
well as operational planning, uncertainty and on-line aspects, decisions in space and time 
complicated feasibility constraints and multiple objectives, "soft" data, "fuzzy" rules, and 
applications of large scale. This colorful manifold of topics is matched by the wide variety 
of methods that have been developed to solve the planning questions of this area: Dynamic 
programming algorithms, network models, set partitioning/set covering and other integer 
programming approaches, and all kinds of combinatorial heuristics single and multi-phased, 
clusterfirst schedulesecond and vice versa, etc. For surveys on diala-ride problems and 
solution methods we refer the reader to Desrosiers, Dumas, Solomon &; Soumis [1995] and 
the thesis of Sol [1994, Chapter 1], see also Hamer [1997] for a recent description of a modern 
largescale dial-aride system for handicapped people in Toronto and the thesis of Tesch [1994 
(German) for the example of the German city of Passau. 
We discuss in this chapter the application of some of these optimization methods to vehicle 
scheduling in a specific dial-a-ride system: Berlin's Telebus for handicapped people. Our 
approach is based on a decomposition of this dial-a-ride problem into a "clustering" and 
"chaining" step. Both of these steps lead to set partitioning problems that we attack with 
heuristic and branch-and-cut methods. These procedures form an optimization module that 
is the heart of a computer system that integrates and automates the complete operation of 
the Telebus center. This system is in use since June 3, 1995 and lead to improvements in 
service, cost reductions, and increased productivity of the center. 
This chapter is organized in seven sections in addition to this introduction. Section 4.2 de 
scribes Berlin's Telebus transportation system for handicapped people and our project to 
optimize the operation of this service. The core of the project was the development of mathe 
matical optimization methods and software to solve the vehicle scheduling problem that comes 
up at Telebus; this particular diala-ride problem is discussed in Section 4.3. Section 44 in­
troduces our two-phase clustering and chaining solution approach and the associated set par 
titioning models. The approach involves cluster and tour generation steps that are discussed 
in Sections 45 and 4.6. Computational experiences with our vehicle scheduling method are 
discussed in Section 4 7 and some possible future perspectives in the final Section 4 

F i u r e 4 1 : A T e s Picks Up a C u o m e 



2 Tebus 

4. Telebus 

Accessibility of the public transportation system for mobility disabled people has become an 
important political goal for many municipalities: They introduce low-floor buses, install lifts 
in subway stations, etc. But many handicapped and elderly people still have problems because 
they need additional help, the next station is too far away, or the line they want to use is not 
yet accessible. Berlin, like many other cities, offers to these people a special transportation 
service: The so-called Telebus provides (i) doorto-door transportation and (ii) assistance at 
the pick-up and the drop-off point. The system is operated by the Berliner Zentralausschuß 
für Soziale Aufgaben e.V. (BZA), an association of charitable organizations, and financed 
by the Berliner Senatsverwaltung für Soziales (SenSoz), the city of Berlin's Department for 
Social Affairs. Figure 4.1 on page 158 shows a Telebus that picks up a customer. 
Telebus is a diala-ride system: Every entitled user (currently about 25,000 people) can order 
up to 50 rides per month through the BZA's telephone center. If the order is placed one 
day in advance, Telebus guarantees to service the ride as requested, later "spontaneous" 
requests are serviced as possible. The advance orders, about 1,500 during the week and 
1,000 on weekends, are collected and scheduled into a fleet of minibuses that Telebus rents 
on demand from service providers like charitable organizations and commercial companies 
These buses pick up the customers at the requested time (modulo a certain tolerance) and 
transport him/her to the desired destination; if required, the crew provides assistance to leave 
the apartment, enter the vehicle, etc. This service is available every day from 5:00 am in the 
morning to 1:00 am in the night Figures 42 and 4 3 illustrate operation and organization of 
the Telebus system. 

& order customer 

w telephone center ZA 

Ö bus scheduling ZA 

s bus renting ZA 
j i - . . , . . transportation service provider 

G3=sg3 financing goals SenSoz 

F i r e 42: O p e i o n of the T e s Sytem. 

Telebus was established in 1981 and ever since then the number of customers and requests has 
been rapidly increasing. Figure 4.4 on page 161 gives an impression of the dramatic history of 
Telebus in this period of time; the numbers for the years up to 1993 are taken from T 336 of 
the report of the Rechnungshof von Berlin (Berlin's audit division) for the year 1994, the other 
data was provided by the BZA. We see first that there is a constant growth in the number of 
entitled users. But not all registered persons drive: The number of customers, i.e., persons 
that order rides, was basically constant and started to increase only after the reunification 
of Germany in 1990; the delay until 1992 is due to the initial lack of private telephones in 
the East. Costs got out of control in 1988, when a taxi voucher system, was introduced that 
allowed for a certain number of spontaneous rides with taxis in addition to the bus rides 
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Telebus 

Fahrdienst für Behinderte 

F i u r e 4 3 : O r a n i o n of the T e s Sytem. 
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When costs topped 30 million DM in 1 9 , drastic service reductions were taken to stop this 
trend: The voucher system was replaced by a taxi account system that limits taxi rides to 
300 DM per person and month. But with new demand from East Berlin and a doubled area 
of service costs were almost immediately up at 30 million DM again. What could be done? 

Telebus Computer System 
Taxi Account System 

Taxi Voucher System 

* • 

88 90 92 

• Costs in Million D 
• Entitled Users in Thousands 
O Customers in Thousands 

96 

F i r e 44: I n r e s i n g Usage and Costs of Tel 

The best way to control costs without reducing the service was a better vehicle scheduling to 
service more requests for the same amount of money. The scheduling was traditionally done 
manually by experienced planners who could work out a feasible bus plot in about 16 man-
hours. Now it became clear that this method was no longer appropriate to cope with rising 
demand and cost pressure The core scheduling problem of the BZA could only be solved 
with modern computer hard- and software and the Telebus project, a cooperation involving 
the ZIB, the BZA, and the SenSoz (Intranetz joined later, see next paragraph), was started 
to develop it. The Telebus dial-a-ride problem, the methods that we use for its solution, and 
our computational experiences are what we are going to discuss in the subsequent sections of 
this chapter 
The project developed a broader scope It soon turned out that a mathematical vehicle 
scheduling tool alone was not enough and the project evolved quickly into the development 
of a comprehensive Telebus computer system, that integrates and automates the complete 
operation of the BZA: Reservation, confirmation, and cancellation, vehicle scheduling, radio 
telephony, accounting, controlling, and statistics. The system consists of a tool box of software 
modules and runs on a network of 20 Macintosh PCs; it is in operation since June 3, 1995 
Design and installation of the Telebus computer system lead further to a reorganization of 
the center and the whole Telebus service with issues that ranged from a new bus renting 
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mix" and "mode" to schedling t r in ing of BZA saff. Fridolin Klotermeier and Christian 
Kiittner, in particular, worked with great personal dedication for more than a year in the 
Telebus center drove on Telebuses, etc. Finally, they even set up their own company, the 
Intranetz GmbH, that has scheduling systems for diala-ride systems as one of its business 
areas. More information on the consulting aspect of the Telebus project can be found in the 
articles Borndörfer et al. [1996, 1997a and the thesis of lostermeier & iittner [1993] (all 
these publications are in German) 
All these measures together —negotiations with vehicle providers, reorganization of center 
and service the new computer system, and improved vehicle scheduling— resulted in 

(i) Improvements in service: A reduction of the advance call-in period period from three 
days in 1992 to one day and increased punctuality of the schedule in comparison to the 
results of manual planning 

(ii) Cost reductions: Today, about 30% more requests can be serviced with the same 
resources as in 1992, see Figure 4.5 for a comparison of a month in 1994 before and in 
1996 after the Telebus computer system went into operation. 

(iii) ore productivity in the Telebus center 

F i u r e 4 : R e s of the T e l s Proje 

4.3 The Vehi le S h e u l i n g Problem 

The most important task at Telebus is the daily construction of the vehicle schedule, which 
determines the two most important objectives of the service: Operation costs and customer 
satisfaction. This vehicle scheduling problem is a diala-ride problem that can be stated in 
an informal way as follows: 

Given the customer requests rent a suitable set of available vehicles and schedule 
DARP) all requests into them such that a number of constraints on the feasibility of 

vehicle tours are satisfied and operation costs are minimum. 

In the remainder of this section, we discuss the Telebus DARP in detail 
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F i r e 46: T e b u R e q u e s in June 1 

4.3.1 P ieces of Work 

The basis for vehicle scheduling are the vehicles Vehicles always come together with a crew 
for a possible shift of operation; following the terminology of Desrosiers, Dumas & Soumis 
[1988], we call such a part or all of a workday, during which a crew and a vehicle is available 
to service requests, a piece of work. The supply of pieces of work is determined by the vehicle 
providers who offer about 100 pieces of work of different types. The available pieces of work 
are known in advance and Telebus can rent them on a daily, weekly, or monthly basis (long 
term renting can be cheaper). 
The following data is associated to a piece of work w: 

(i) vw vehicle type: Teletaxi, l b u s / 2 b u s small/large 
(ii) c{vw) = (cc, cw, cnf, cf, ca)(vw) capacity: 

total # of customers and wheelchairs 
of non-folding/folding wheelchairs 

# of ambulatories 
(iii) G(w) group: vehicle type, depot type of shift 

The vehicle types are five: Teletaxis (taxis that are rented like buses), 1-buses (with one 
driver), that can be small or large, and 2-buses, also small or large. The vehicle type is 
important for deciding whether a request can be serviced by a particular piece of work: 
Teletaxis can transport only ambulatories and customers with folding wheelchairs, non-folding 
wheelchairs require a bus, and staircase assistance a 2-bus, see Figure 46 for statistics on 
Telebus requests which show a typical weekly distribution pattern. 
Each vehicle has a capacity, that depends on the type: It can transport c(vw) persons in 
folding and cni(vw) persons in non-folding wheelchairs, but at most cw(vw) wheelchairs at 
the same time, plus ca(vw) ambulatories, in total at most cc(vw) customers. Teletaxis have 
a capacity of c{vw) — (3,1,0,1,3), i.e., they can service up to three customers at the same 
time and one of them can have a folding wheelchair. The small buses have a capacity of 
c(vw) — (5,2,2,2,3), large buses have c(vw) = (7,3,3,3,4); note that this allows to account 
for the (Telebus) rule that persons in folding wheelchairs travel in buses in their wheelchair 



164 h i l e Schedung at T e u s 

(i) vivi 
(") P(v),P(v 

(iii) T(vt) = (vt),i(vt 
T(v) = {v)-t{v 

(i ++(v+),t++(vr 
(v (v),(v 
(vi) a ( ? ) = ( a , a , a n f , a « K ) , 

a ( v ) = (a,0,0^,0^ a-){v 

Finally, the set W of all pieces of work falls into disjoint groups W = [J G. A group G is 
a set of pieces of work that are considered to be indistinguishable for the purpose of vehicle 
scheduling, i.e, the pieces of work of the same group have vehicles of the same type, which are 
stationed at the same depot, and they can be rented for identical shifts of operation; possible 
shifts are 8.5 and 10.5 hours fixed length, and early, late, and certain flexible shifts of variable 
duration. The groups will become important for the construction of vehicle tours, namely 
we will require group specific parameter settings or even group specific algorithms to come 
up with tours that can be serviced by the pieces of a work of a given group. 

4.3.2 eques t 

The pieces of work will be used to service some number m of transportation requests 

pick-up and drop-off event 
pick-up and drop-off location 
pick-up time window 
drop-off time window 

R) ++v^),t++v~ pick-up and drop-off service time 
set of feasible pieces of work 
total # of customers and wheelchairs 

of non-folding and folding wheelchairs 
of ambulatories 

Associated to each request i is a pick-up node vf and a drop-off node v~ that corresponds to 
the pick-up and drop-of event of a request; these nodes will be part of a spacetime transition 
network that will be defined in the next section. 
The pick-up and the drop-off nodes are mapped to locations or points p{vf) and p(v~) in 
road network of Berlin (different from the transition network) that is shown in Figure 4 7 We 
estimate travelling times and distances by average values that are stored on the 2,510 edges 
of this network and use this data to compute shortest routes between the 828 nodes. 
In addition to this spatial information, a request bears temporal data that is measured in 
units of 5 minutes of Telebus time. The customer communicates a desired pick-up time t*(v^ 
(or a desired drop-off time which is treated analogously) that gives rise to a window of feasible 
pick-up times T(v^~). The pick-up time window is computed according to Telebus specific 
rules that try to fnd a compromise between punctual service and more degrees of freedom 
for the vehicle scheduling process. Currently, most requests have 

T{vj) = t(v) + [-3, 3 (units of Telebus time), 

i.e., the vehicle is allowed to arrive up to 1 minutes early or late. Similar but more complex 
rules are used to determine a feasible drop-off time window T(v~): Here, the shortest possible 
travelling time and maximum detour time play a role. Finally, some service time t++(v^ 
and t++ (v) is needed at the pick-up and the drop-off location. 
The required assistance, the wheelchair type, etc. determine the set of feasible pieces of 
work W{vf) = W(v~) that can or must be used to service the request; this set consists 
of all suitable groups. 
a{vf) and a(v~) give the total number of customers and wheelchairs, the number of folding 
and non-folding wheelchairs, and the number of ambulatories that enter and leave the vehicle 
in the pick-up and drop-off event respectively 
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F i u r e 47: Hihways and ajo Roads in B e n . 

4.3.3 onstraints 

Given the available pieces of work and the requests, a schedule of feasible vehicle tours has to 
be determined that satisfies a number of constraints. Following Desrosiers, Dumas & Soumis 
1988], we distinguish the following types of constraints for feasibility: 

each pick-up and drop-off event has to be serviced exactly once 
pick-up and drop-off of a request is serviced by the same vehicle 
each customer must be picked up before dropped of 
pick-up and drop-off events must be serviced in time 

F) (v stop it is not allowed to stop and wait with a customer on board 
the vehicle capacity must not be exceeded 
the vehicle must return to its depot 
each piece of work must conform to its type of shift 
one can not use more pieces of work or others than availabl 

Shifl constraints arise from renting contracts and labour regulations for bus drivers At 
Telebus, pieces of work have to be of certain fixed or maximum lengths and/or have to begin 
and end in certain time intervals, the exact parameters depend on the type of shift. Such types 
are, for example, 85 or 10.5 hour shifts between 5:00 am and 1:00 am and flexible shifts of 
variable length. Labour regulations prescribe maximum driving hours and obligatory breaks: 
A break of 30 minutes has to be taken between the fourth and sixth hour of a shift 
The meaning of the other constraints is self explanatory 

(i) isitin 

(i time window 

(v stop 

(vii) 
(viii) s 
(i avililit 

4.3.4 Object ives 

The main objective of the DARP is to minimize operation costs, i.e, the costs for renting 
pieces of work from the service providers. Customer satisfaction is another important goal; 
it is treated by means of the time windows. Finally, Telebus uses some auxiliary objectives 
that reflect security issues. These criteria try to prefer "safe" tours to "risky" or "packed" 
ones in an attempt to safeguard against emergency situations and unpredictable events like 
cancellations spontaneous requests traffic jams vehicle breakdowns, etc 
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4. S o l i o n Approa 

In this section, we discuss our solution approach to the Telebus diala-ride problem. Starting 
from a network formulation of the DARP, we decompose the problem into a clustering and a 
chaining step. Both steps lead to set partitioning problems 

4 . 4 1 T r a t i o n N e t w o r k 

The basis for our solution approach is a formulation of the DARP in terms of a transition 
network D = (V,A). The transition network is a spacetime digraph, see Figure 4 for an 
illustration of the following construction. 

Spce 

Depo Request 1 
(D 

Request 2 
© 

Request 3 
© 

Depot 

Time 

' v 

© © © © © Time 

F i g r e 4 : Constructing a Transition Network. 

The transition network's set of nodes V = V+ U V~ U VG+ U VG~ U V^ consists of all pick-up 
events V :— {vf}, all drop-off events V := {v~}, tour start nodes VG := {vt

 + } and 
tour end nodes VG~ := {vt } for each group G of pieces of work and each possible point of 
Telebus time t = 60 , . . . , 300 (60 * 5 minutes is 500 am and 300 * 5 minutes is 1:00 am on the 
next day), and break nodes V^ :— {vf^ for all Telebus times We set6 

T{v) T(v) = T{vf) := { 
+ + K ) ++{v) and ++(uf 

a(v) <v) a(v) : 0, and 

{v) (v) and {v) : 

The arcs of the network are defined to reflet the local feasibility of possible vehicle tours 
We draw an vent arc uv between two event nodes u and v if 

(u)++(u)+tv<t(v), 

that is, if it is possible to arrive at u, service u, drive to v, and arrive there in time. Here, 
we denote by t v the shortest time to get from location p(u) to p(v) in the road network 
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Analogously we introdce tour start arcs from he t o r start nodes to the event nodes, tou 
end arcs from the event nodes to the tour end nodes and break start arcs and break end arcs 
from the event to the break nodes and vice versa ore precisely, we draw a tour start arc 

v from a tour start node u = v to a pick-up node v if 

t + t v < t(v) and (v) G, 

where tuv is the time to get from the location of the depot associated to the group G of pieces 
of work to the event location p(v). Tour end, break start, and break end arcs are defned in 
the same way, only that the break arcs get zero duration tvvu := tvuv := 0 
With this terminology, we can state the DARP in terms of the transition network. Feasible 
vehicle tours correspond to such dipaths in D that satisfy the constraints (F) (ii)-(viii) as 
stated in Subsection 4.3.3 on page 165; we assume here that a break is taken by visiting a 
break node. A feasible vehicle schedule is a collection of feasible vehicle tours that satisfies 
the remaining constraints (F) (i) and (ix) as well. The DARP is the problem to find a best 
possible schedule with respect to some (not yet precisely defned) objective function. 

4 . 4 2 ecompos i t io 

The construction of feasible vehicle tours in the transition network as dipaths subject to 
additional constraints is, although simple in principle, difficult in practice because of the 
many constraints (F). We use a decomposition approach to cope with this difficulty in a 
heuristic way. The method focusses on local feasibility in a first step. When validity of the 
local constraints is ensured, we deal with the remaining global restrictions in a second step. 

Figure 4.9: Clusters at Telebus. 

The decomposition is based on the concept of a clust or, as schedulers at the BZA say, a 
Verknüpfung". A cluster is a dipath in the transition network that qualifies as a segment 

of a vehicle tour in the sense that it satisfies the "local" constraints (F) (ii)-(vi): Pairing, 
precedence, time windows, no stop, and capacity. Figure 4.9 shows a number of typical 
clusters at Telebus: Collections, insertions, simple and continued concatenations. 
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We denote a cluster-dipath C — (v1,... ,vk) as a sequence of visited nodes. In doing so, we 
want to adopt the convention that a cluster contains only pick-up and drop-off nodes, ie., no 
tour start, tour end, or break nodes. We also stipulate that a cluster contains a node onl 
once. 
A cluster C satisfies the pairing constraints if it contains for every pick-up node the corre­
sponding drop-off node and vice versa. The precedence constraints hold if every pick-up node 
of the cluster precedes its drop-off counterpart. We say that the capacity constraints are valid 
for C if there exists a piece of work w such that the capacity c(vw) of the associated vehicle 
type is always at least as large as the load ß ) at each node v of the cluster: 

c(vw) > = Y)= a(v)i l , k 

The time window and the no stop constraints hold if the recursion 

) : 7 V ) 
):={++(v)+ii+l)nT(vl), i = l , k - l , 

that computes the feasible time windows at the cluster nodes, terminates with T^{C) / 0. 
(Here, we denote by [a, b]+t the interval [a + 1 , b +1].) In this case, it is possible to start the 
service of the cluster at the first node v1 at a feasible time in T C ) , service v1, go immediately 
(no stop) to the next node, arrive there at a feasible time T2(C), service 2, and so on until 
the vehicle arrives at the last node vk in the feasible time interval Tk{C). 
Before we discuss the use of clusters for vehicle scheduling, let us record the data that we 
associate with a cluster: 

— (v cluster as sequence of visited nodes 
++ (C cluster service time 

T( cluster start time window 
W set of feasible pieces of work 

By the no stop constraints and recursion (4.1), the service time of a cluster is constant 

++) : f = + + ( « ) + i W + -
This results in a cluster start time windo of possible times to begin the service of a cluster: 

T() : ),t( ++) 

Finally, there is the set 

) :={wef {v) | c(vw), i = 1, k 

of pieces of work that can possibly service 

Clusters are useful for vehicle scheduling, because they can serve as the building blocks of 
vehicle tours: We can chain clusters to feasible tours just as we constructed clusters from 
the individual requests. As the clusters already satisfy the local constraints (F) (ii)-(vi), the 
chaining can concentrate on the remaining global conditions (F) (i) and (vii)-(ix); the onl 
local constraints that appear again are the time window constraints (F) (iv) that transform 
into the cluster start time windows. This largely independent treatment of local and global 
constraints is one of the main benefits of request clustering. 

(C) 

(i) 
(") 
(iii) 
(iv) 
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These observations suggest the following two step mpitn a c h to the DARP: 

(i) Clustering Step: Construct a set of feasible clusters. 

(ii) Chaining Step: Chain clusters to a set of tours that constitute a feasible schedule. 

This generic clustering/chaining method is the vehicle scheduling procedure that we use for 
the solution of the DARP. 

4 . 4 3 Set P t i t i o n n g 

A refinement of the two steps of the clustering/chaining vehicle scheduling method leads to 
clustering and chaining set partitioning problems of identical structure. 
The objective of the clustering step is to construct a set of clusters that is "good" in the sense 
that it provides a "reasonable" input for the chaining phase. In the best case, the clustering 
algorithm would yield a set of clusters that can be chained to an optimal solution of the 
DARP. While this is of course a hopeless criterion, one can look for computable necessary 
conditions that an optimal set of clusters must satisfy. If such conditions can be found, they 
can be used as a measure for the quality of a set of clusters and as a guide to construct it. 
One way to derive a necessary condition is to note that any feasible schedule decomposes in 
a canonical way: The maximal tour segments such that the vehicle is always loaded form a 
set of minimal clusters with respect to set inclusion (interpreting, for the moment, clusters 
as sets of nodes) and this minimal cluster decomposition of a schedule is unique. Then, a 
necessary condition for the global optimality of a schedule is that its cluster decomposition is 
also locally optimal in the sense that the objective can not be improved by rescheduling the 
service of individual clusters. 
Assuming that a local objective value can be associated to and computed for an individual 
cluster, we can approximate the global objective value of the schedule by the sum of the 
local cluster objectives. Applying this simplification to the DARP results in the following 
optimization problem over clusters: 

Given the customer requests, find a set of clusters such that each request 
(CLUSTER is contained in exactly one cluster and the sum of the cluster objectives is 

minimal 

We use CLUSTER as our formulation of the clustering step; this model aims at inputs for 
the chaining phase that are optimal in a heuristic but welldefined sense. 
Popular local optimization criteria for clustering are the internal travelling time ( T T ) of a 
vehicle in a cluster, the internal travelling distance (ITD), and mixtures of these. Clusters 
with small TT or ITD aim at a good vehicle usage in terms of transported customers per 
kilometer or per minute. One would expect that a minimal ITT or ITD clustering makes use 
of large vehicle capacities by transporting several customers at once where possible, see again 
Figure 4.9 for examples in this direction. In other words: inimal TT or ITD clustering 
yields "reasonable" results that planners accept in practice. 

LUSTER can be formulated as a set partitioning problem 

(SPP) min cTx Ax = 1, x G {0, l } n 

where A is the m x n incidence matrix of requests versus clusters and G W is the vector of 
cluster objectives. 
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Having decided for a set of clusters, we can treat the chining step in exactly the same way 
as we just did with the clustering step. Approximating (or even expressing) the objective 
value of the DARP as a sum of objectives of individual tours, the D R P for ixed clusters 
simplifies to (becomes) the following optimization problem over tours: 

, A T Given a clustering, find a set of vehicle tours such that each cluster is contained 
in exactly one tour and the sum of the tour objectives is minimal 

We use C A I N as our formulation for the chaining step; natural objectives associated to 
tours are operation costs for vehicles and/or customer satisfaction criteria like accumulated 
waiting time. 
CHAIN can also be modelled as a set partitioning problem but needs one additional thought. 
In the simplest case, the matrix A records the incidences of clusters versus tours, and c is the 
vector of tour costs; this model is correct if there are no availability constraints. The presence 
of availability constraints leads to additional equations and variables, but the enlarged model 
is again of set partitioning type. Namely, availability constraints for a piece of work w 
prescribe that one can only choose at most one of the (incidence vectors of) tours A^wy that 
correspond to w: 

Adding a slack variable and appending the new row and column to (SPP) results again in a 
set partitioning problem. 

4 . 4 4 A Vehicle Scheduling A l g o t h 

We are now ready to state the vehicle scheduling algorithm that we propose for the solution 
of the DARP. The algorithm is a refinement of the generic clustering/chaining method of 
Subsection 4.4.2 in terms of the clustering problem LUSTER and in terms of a sub-problem 
of the chaining problem AIN: 

(i) Cluster Generation Enumerate all possible feasible clusters. Set up its clustering SPP. 

(ii) Clustering Solve the clustering SPP. 

(iii) Tour Generation Enumerate a subset of all feasible tours. Set up its chaining SPP. 

(iv) Chaining Solve the chaining SPP. 

Here, the term "setting up the clustering SPP for a set of clusters" means to construct the 
request-cluster incidence matrix and to compute the cluster cost vector c to set up a 
clustering set partitioning problem for the given set of clusters. The analogous expressions 
are used in the chaining case, but here we enumerate only some subset of all feasible tours 
to construct only a submatrix of the complete cluster-tour incidence matrix and a subvector 
of the complete tour cost vector. The resulting chaining set partitioning problem is hence a 
subproblem of the complete chaining SPP. The reason for this simplification is that it is out 
of the question to set up the complete chaining SPP: The number of possible tours is in the 
zillions (where zillion is an incredibly large number). Restricting the chaining SPP to some 
subset of "promising" tours is our heuristic way of dealing with this difficulty. 
We use the branch-and-cut algorithm BC, see Chapter 3 of this thesis, to solve the clustering 
and chaining set partitioning problems. Ho we do the cluster and tour generation is described 
in the following Sections 4. and 4.6. 
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4 . 4 5 elated L i r a u r 

Dial-a-ride problems and solution approaches similar to our's have been discussed in a number 
of publications in the literature. In Bodin & Golden [1981]s vehicle routing and scheduling 
classification scheme, the Telebus DARP qualifies as a subscriber diala-ride routing and 
scheduling problem and our method is a cluster-first schedule-second algorithm, with some of 
the clustering transferred to the scheduling-chaining phase. For survey articles on dial-a-ride 
and, more general, vehicle routing and scheduling problems we give the classic Assad, Ball 
Bodin k Golden [1983, see Sections 4.84.10 for DARPs], the thesis of Sol [994, Chapter 1] 
Desrosiers, Dumas, Solomon & Soumis [1995, see Chapter 6 for DARP and the annotated 
bibliography of Laporte [1997], and we suggest Barnhart et al. [1994] and the literature 
synopsis of Soumis [1997] for references on column generation techniques. 
The termini "clustering" and "chaining" stem from Cullen, Jarvis & Ratliff [1981], who de­
velop a set partitioning based two-phase clustering/chaining vehicle routing algorithm. Their 
approach differs from the one we give here in the use of column generation techniques and 
a possible overlap of clusters in the chaining phase. oachim, Desrosiers, Dumas &; Solomon 
[1991], based on earlier work of Desrosiers, Dumas & Soumis [988], report about clustering 
algorithms for vehicle routing problems in handicapped people' transport using column gen­
eration and a problem decomposition into time slices. Tesch [1994] develops a set partitioning 
method that optimizes over a fixed set of heuristically generated columns to solve dial-a-ride 
problems that come up in the German city of Passau. We finally mention Sol [ 9 4 ] as a recent 
reference for the use of column generation techniques for pick-up and delivery problems. 

4.5 u s r G n e i o 

We discuss in this section the algorithm that we suggest for cluster generation: Recursive 
enumeration of all dipaths in the transition network D (V, A) that correspond to feasibl 
clusters by dept first search. 
The procedure works with sequences of nodes that are extended in all possible ways until 
they eventually form clusters. Such a sequence S (v.. ) € V* is called a state, where 
V denotes the set of all inite sequences of elements of V. Not every state can be extended 
to a cluster; necessary conditions for feasibility of a state S are 

(i) event sequence (V V S contains only event nodes 
(ii) no loop Vi / j S contains each node at most once 
(iii) precedence W J i < j pick-ups precede drop-offs 
(iv) time windows, no stop T(S) the state time window is nonempty 
(v) capacity, availability W(S there is a feasible piece of work 

Here, we use the expressions time window of a state and its set of feasible pieces of work in 
analogy to the terms for clusters of the same name, see the defnitions on page 1 6 . A state 
is a cluster or terminal if it is feasible and the constraint for 

(vi) pairing 3v there is a drop-off for each pick-up 

holds. Finally, a new state S' = ( w 1 , . , vk1) is produced from S = (u1 vk) by appending 
node ; this transition is denoted by 

S' = S < 
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To state our depth first search cluster generation algorithm in C-type pseudocode, we intro­
duce predicates inf eas ib le : V* i> {0,1} and terminal : V* i> {0,1} for feasibility and 
terminality of states, t a i l : S* V is a function that returns the terminal node vk of a state, 
and the procedure output is supposed to compute the cost and the request-state incidence 
vector of its argument and to store the result somewhere. 

vo id dfs (state S, digraph D=(V,A))) 
d c r ( d h D(V,A 

f ( e (S) r n ; 
if (terminal (S)) output (S) 12 for all v G V 

13 dfs ((v), D); 
or all u G 7+(til(S)) 14 

s (S <-u, D 

Figure 4.10: Enumerating Clusters by Depth First Search. 

The complete cluster generation procedure c s t e r is given in Figure 4.10. Here, 7 ( w ) 
denotes the set of endnodes of arcs in D that go out from v. 
The running time of c l u s t e r can be improved by strengthening the predicate inf eas ib le by 
further state elimination criteria. For example, S is infeasible when it contains an unserviced 
pick-up v£ that can not be dropped off in time regardless how S is extended: 

(vii) timeout 3v £ (S) + kv- > t(v can not be dropped in time 

c l u s t e r with the in feas ib le predicate strengthened by (vii), is the cluster generation 
algorithm that we use for vehicle scheduling at Telebus. To make this method work in 
practice, one needs, of course, efficient data structures, recursive updates of the predicates, 
and many other ingredients; the reader can find the implementation details in the thesis of 
Klostermeier &: Küttner [1993] (German). For a typical Telebus DARP with 1,500 requests, 
our depth first search procedure enumerates the complete set of all possible clusters in a 
couple of minutes. Depending on the values of the time window, lateness, detour, and some 
other BZA parameters for cluster feasibility, this usually results in 100,000, sometimes up to 
250,000, feasible clusters for input into the clustering set partitioning model. 
We remark that similar results are not reported for comparable clustering problems in the 
literature. For instance, Ioachim, Desrosiers, Dumas & Solomon [1991] develop a multilabel 
hortest path algorithms for cluster generation problems that come up in the optimization of 

Toronto's Wheel-Trans Service. Although this dynamic program uses elaborate state space 
elimination criteria, special initialization strategies and data structures, and sophisticated 
preprocessing techniques to reduce the size of the transition network, it is in this case not 
possible to enumerate all feasible clusters. 
Two Telebus specific factors may be responsible for the different outcome in our case. One 
is the combination of average service, driving, and detour times: As a rule of thumb, a 
transportation service takes in Berlin 5 minutes for pick-up, 20 minutes of driving, and another 
5 minutes for drop-off. When the maximum detour time is 15 minutes, one will already be 
happy to pick up a single additional customer en route. Second, not every technically feasibl 
cluster is accepted by BZA schedulers. To safeguards against accumulating delays etc., they 
often impose additional restrictions and forbid continued concatenations above a maximum 
length. These two factors limit the number of feasible clusters to a computable quantity. 



4.6 Tour Generation 

4. ur ne 

The topic of this section are tour generation algorithms that chain clusters to feasible vehicle 
tours. Starting from a simplified network formulation of the chaining problem, we develop 
a recursive depth first search tour enumeration algorithm and a number of tour generation 
heuristics. Some of these heuristics can also be used as stand-alone vehicle scheduling tools. 

4.6.1 ining twork 

The tour generation algorithms of this section work on a chaining (transition) network D 
(V, A) that one obtains from the transition network D = (V, A) by a contraction of clusters. 
To give a more precise description of this construction, let (J C — V U V be a clustering of 
requests. D is set up from the transition network D in two steps. We (i) delete for each cluster 
C (v,..., v) all entering and leaving arcs except the ones that enter the first node v and 
the ones that leave the last node vk, i.e., we delete all arcs from 5(C) \ ( ( • u 1 ) U 8(v)) 

hen this has been done, we (ii) contract each cluster into a single (super) node that we 
denote with the same symbol Note that we inherit in this way the definitions for the 
service time of a cluster node + + ) , its start time interval T(), and its set ) of 
feasible pieces of work 

4.6.2 T o r E n u m e r a i o n 

Feasible vehicle tours correspond to dipaths in the chaining network that satisfy the con­
straints (F). Such dipaths can be enumerated in much the same way as the cluster-dipaths 
in the transition network by a depth first search procedure. Using identical terminology and 
analogous definitions as for the cluster generation, a state is feasible 
when the following conditions hold: 

(i) tour start G, t : vt start at a tour start node 
(ii) no loop / ü Vi / j S contains each node at most once 
(iii) time windows T(S) the state time window is nonempty 
(iv) availability W(S there is a feasible piece of work 
(v) shift t G # ) + [48, 66 break during 4th-6th hour of shif 

t(v l) < (G maximum shift length respected 
etc. 

Here, we denote by (G) the maximum duration of a piece of work of group G. The onl 
difference to cluster generation is the update of the time window, that must allow for waitin 
(stops) between the service of two clusters: 

(S) : (S) + ++(S) + ^ + i T ( ^ ) , * = 1, k - 1 

state is a tour or terminal if it is feasible and the 

(vi) depot G,t,t tour start and end at the same depot 

constraint holds. Continuing with the dipath enumeration exactly as we did for the cluster 
generation in Section 4.5, we arrive at a very similar depth first search tour enumeration 
routine chain, see Figure 4.11 on the next page for a C-type pseudocode listing. 
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vo id dfs (state S, digraph D=(A)) 
10 id chin (dig 

f ( e (S) r n ; 
if (terminal (S)) output (S) 12 for all vf 

13 dfs ((vf), D); 
r a l u G 7 ( t ( S 14 

s (S <r- u, 

Figure 4.11: Enumerating Tours by Depth First Search. 

Computational practice, however, turns out o be completely different. While there were only 
some hundred thousand feasible clusters, the number of tours is zillions! The reason for this 
change is not the additional tour start, tour end, and break nodes (there are many, but not 
too many of these), but the possibility to wait between the service of two clusters. This degree 
of freedom, that is not available for cluster generation, leads to an enormous increase in the 
number of eligible clusters to extend a state: Looking one hour in the future, any cluster 
qualifies as a possible follow-on. Unlike in clustering, tour state extension does not have a 
local character and, although the chain routine works as fast as the c l e r generator, there 
is no point in attempting a complete enumeration of all feasible tours. 
The way that we deal with this difficulty is by reducing the number of arcs in the chaining 
network heuristically. One of our strategies is, for example, to keep only a constant number of 
outgoing arcs at each cluster node that are selected by local criteria, the "fc best successors". 
While such methods are likely to produce individual efficient tours in some number, there is 
no reason other than pure luck to believe that the right set of unavoidable "garbage collection 
tours", that complete a good schedule, will also be produced in this way. We are aware of this 
fact and mention this unsatisfactory arc selection as a weak point in our vehicle scheduling 
algorithm. What we can do, however, is to produce, in some minutes of computation time, 
several hundred thousands of tours as input for the chaining set partitioning problem, see 
again lostermeier & üttner [993 for more implementation aspects. 
Löbel [997] has dealt in his thesis with a similar arc selection problem in the context of 
multiple depot vehicle scheduling. He has developed a Lagrangean pricing technique that 
resolves this issue for his extremely large scale problems completely. It is perhaps possible 
to use this technique, based on a suitable multi commodity flow relaxation of the DARP, to 
obtain better chaining results and we have in fact performed some preliminary computational 
experiments in this direction. These computations indicated, in our opinion, a significant 
potential for this approach. We remark that a multi commodity flow relaxation gives also 
rise to l e r bounds for the complete chaining problem ( C ) . 

4.6.3 eu i s t i c 

The chaining transition network can also serve as a basis for all kinds of combinatorial 
vehicle scheduling heuristics to produce individual tours or to produce complete schedules. 
Heuristic scheduling is a particularly attractive method of tour generation because it provides 
not only "reasonable" input for the chaining set partitioning problem, but also primal solu­
tions and upper bounds. We give here a list of heuristics that we have developed for Telebus,  

more detailed description can be found in lostermeier & Küttner [ 



4.6 Tour Generation 

Our first method is designed for the construction of individual tours. 

K Best Neighbors. We have already mentioned the idea of the k best neighbors heuristic: 
Applying the depth first search algorithm chain to a reduced version of the chaining network 
where at most k arcs have been selected from each set S(v) of arcs that go out from a node. 
We use in our implementation local criteria like proximity to select the arcs that lead to a 
node's uk best neighbors". 

The following heuristics produce complete vehicle schedules. 

Tour-by-Tour Greedy. This heuristic produces the tours of a complete vehicle schedule 
iteratively one by one. Starting from some tour start node, the tour is extended by "best 
fitting" follow-on clusters (including breaks) in a greedy way until a tour end node is reached. 
The serviced clusters are removed from the chaining network, the next tour is started, and 
so on. The tour-by-tour greedy heuristic tends to produce "good" tours in the beginning and 
worse later when only far-out or otherwise unattractive clusters are left. 

Time Sweep. This method uses some linear order on the clusters, the "time". The planning 
process constructs all tours of a complete schedule simultaneously. n each step of the time 
weep, the next cluster with respect to the given order is assigned to the best tour with respect 

to some local criterion, until all clusters are scheduled into tours. The orders that we use are 
the natural ones from morning to evening and vice versa, and a "peaks first" variant that 
tries to smooth the morning and afternoon demand peak by scheduling this demand first. 

Hybrid. The tour-by-tour and the time sweep heuristic can be seen as the extreme represen­
tatives of a class of vehicle scheduling heuristics that vary from the construction of individual 
tours to a simultaneous construction of all tours by assigning clusters to tours in some order. 
Hybrid belongs to such a class of mixtures of these two procedures: It does a time sweep, but 
it adds not only one follow-on cluster to a tour, but some sequence of several clusters. 

Assignment. This method belongs to the same class as the hybrid heuristic, but it aims 
at some global overview. The assignment heuristic subdivides the planning horizon into time 
slices (we use a length of 30 minutes) that are considered in the natural order. In each step, 
a best assignment (with respect to some local criterion of all clusters in the next time slice 
to the current set of partial tours is computed, starting new tours if necessary. 

BZA. A set of other methods imitates the traditional hand-planning methods of the BZA. 
First, the request clusters are grouped according to time and space such that the clusters in 
one group start in the same hour and city district (or similar criteria). Doing a time sweep 
from morning to evening, one constructs tours with an eye on the distribution of clusters and 
vehicles in the city districts. In the starting phase of the Telebus project, these methods were 
particularly important to build up confidence in computerized scheduling, because they can 
be used to produce vehicle schedules of "familiar" type. 

The heuristic vehicle scheduling methods that we have just described already produce, in 
a few minutes, schedules that have significantly lower operation costs than the results of a 
manual planning. And they do not use "a posteriori changes of scheduling rules" (that is, 
they do not produce infeasible tours!), which lead to a quantum leap in punctuality of the 
schedule. Klostermeier & Küttner [1993] give a detailed account of these improvements. 
We use the heuristic methods of this subsection as a stand-alone scheduling tool and, in 
combination with the enumeration routine chain of the previous subsection, to set up chaining 
set partitioning problems with up to 100,000 columns. 



76 Vehicle Schedulng at Telebus 

4. Compuional Resul 
We report in this section on computational experiences with our vehicle scheduling system 
The cluster and tour generation modules and the heuristics of Sections 4.5 and 4.6 and 
the branch-and-cut solver BC, that is described in Chapter 3 of this thesis. Our aim is to 
investigate two complexes of question 

(i) Performance. hat is the performance of our vehicle scheduling system on Telebus 
instances? Can we solve the clustering and chaining set partitioning instances 

(ii) Vehicle Scheduling. Does our system result in a better vehicle scheduling? Does cluster­
ing reduce the internal travelling time (ITT)/internal travelling distance TD)? Does 
the chaining set partitioning model yield better results than the heuristics 

Our test set consists of 14 typical Telebus DARPs: 7 from the week of April 15-21, 1 6 (in­
stances v0415-v04217 (clustering) and t0415-t04217 (chaining)) and another 7 for the week of 
September 16-22, 196 (instances vl616-vl622 (clustering) and tl716-tl722 (chaining)). 
April 20/September 21 and April 21/September 22 were Saturdays and Sundays, respec­
tively. The two weeks differ in the adjustment of feasibility parameters for clusters and 
tours. Generally speaking, the April instances represent a restrictive scenario with continued 
concatenations limited to a maximum length of only three, small detour times, etc. The 
September problems were produced in a liberal setting with more degrees of freedom; the 
maximum concatenation length was, e.g., doubled to six. 
We have run our vehicle scheduling system on these problems and report in the following three 
subsections about the results. We give statistics on solving the clustering and chaining set 
partitioning problems, and we investigate the relevance of our integer programming approach 
for vehicle scheduling at Telebus. We do not give detailed statistics for cluster and tour 
generation, because these steps are not a computational bottleneck; the interested reader can 

nd such data in Klostermeier & Küttner [ 
Following the guidelines of Crowder, Dembo & ulvey [1979] and Jackson, Boggs, Nash & 
Powell [1991] for reporting about computational experiments, we state that all test runs were 
made on a Sun Ultra Sparc 1 odel 170E workstation with 448 B of main memory, running 
SunOS 5.5, that our branch-and-cut code BC was written in ANS C compiled with the Sun 
cc compiler and switches - f a s t -x05, and that we have used the C E X Callable 
Library V4.0 as our LP solver. 
Our computational results are listed in tables that have the following format. Column 1 gives 
the name of the problem, columns 2-4 its size in terms of numbers of rows, columns, and 
nonzeros, and columns 5-7 the size after an initial preprocessing. The next two columns give 
solution values. 1 reports the value of the best solution that could be found. This number is 
a proven optimum when the duality gap is zero, which is indicated by a . Otherwise, we are 
left with a nonzero duality gap (z — z)j~z, where z_ is the value of the global lower bound. The 
following five columns give statistics on the branch-and-cut algorithm. There are, from left 
to right, the number of in- and outpivots ( v t ) 8 , cutting planes (Cut), simplex iterations to 
solve the LPs ( tn ) , LPs solved (LP), and the number of branch-and-bound nodes (B&B). The 
next five columns give timings: The percentage of the total running time spent in problem 
reduction (PP), pivoting (Pvt), separation (Cut), LP-solution LP), and the heuristic (Heu). 
The last column gives the total running time in CPU seconds. 

Available at URL http: / /www.zib.de/borndoerfer  
8Conf Chapter 3 for an explanation of is concept 

http://www.zib.de/borndoerfer
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4 . 1 l u s t n g 

Table 4.1 lists our clustering results. The first seven rows of this table correspond to the April 
instances, the next fourteen to the September instances which were solved twice: We used a 
time limit of 7,200 seconds to produce the results in rows 8-14 and 120 seconds in rows 15-21. 
We can see from column 2 of the table that the DARP instances that we are considering here 
involve 1,500 or more requests during the week (Tuesday is usually a peak), and significantly 
less requests on weekends. These numbers were typical for Telebus in 1996. The requests were 
clustered in all possible ways and this resulted in the number of clusters that is reported in 
column 3. The restrictive parameter settings for April lead to a rather small number of feasible 
clusters, only about four times the number of requests (v0417 is an exceptional instance that 
contains extraordinary large collective requests). More planning freedom in September lead 
to a 5-fold increase in the number of feasible clusters. We note that the average April cluster 
contains three requests, while the number for September is four. 

As the number of feasible clusters for April is very small, one would expect that clusters do 
not overlap much and that there are often not many choices to assign requests to clusters. 
The statistics on preprocessing in columns 5-7 of rows 1-7 show that this is indeed so. The 
extremely large reduction in the number of rows indicates that, in particular, many requests 
can only be assigned in a single way to a cluster (either to a single possible cluster or in 
exactly the same way as some other request). The results for September are different, see 
rows 8-15. We observe also significant and encouraging problem reductions, but not to the 
same extreme extent as for the April problems. 

The trends that we observed in the preprocessing step continue in the branch-and-cut phase. 
Largely orthogonal columns and few rows in the April instances translate into simple LPs with 
more or less integral solutions. The problems could be solved with a few LPs, cutting planes, 
and branch-and-bound nodes, two even at the root of the searchtree, see columns 11-15 in 
rows 1-7. Iterated preprocessing played a major role in these computations, as can be seen 
from the large number of pivots in column Pvt (this is a measure for successful preprocess 
ing, see Subsection 3.2.1); note that the code spent about half of the total running time in 
problem reduction (sums of Timing columns PP and Pvt). All in all, about three minutes of 
CPU time were always sufficient to solve the easy April problems to proven optimality. The 
situation is different for the September data. The problems are larger, and substantial overlap 
in the clusters results in highly fractional LPs. Significant computational effort and extensive 
branching is required to solve the September problems, see columns 11-15 of rows 8-14; in 
fact, three instances could not be solved completely within 7,200 seconds. But the remaining 
duality gaps are so small that any practitioner at the BZA is perfectly happy with the so­
lutions. And these results can even be obtained much faster: Setting the time limit to onl 
120 seconds yields already solutions of very good quality, see column Gap in rows 15-21. 
The objective that we used in the April and September clustering set partitioning problems 
was a mixture of ITD and a penalty that discourages the clustering of taxi requests; servicing 
all but the most "clusterable" taxi requests with individual taxi rides was BZA policy at 
that time. Figure 4.12 compares on its left side the number of requests and the number of 
clusters that were obtained by optimizing this mixed criterion for the September data. Note 
that the number of taxi clusters (that contain only taxi requests) is largely identical to the 
original number of taxi requests, ie., the taxi requests were essentially left unclustered. The 
observed reductions are thus solely due to the clustering of bus requests. The right side gives 
an impression of the reduction of TD that can be achieved with a clustering of this type. 
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Figure 4.12: Reducing Internal Travelling Distance by Clustering. 

4 . 2 ining 

We have used the best clusterings that we computed in the tests of the previous subsection to 
set up two sets of chaining problems. Table 4.2 lists our results for these problems: Rows 1-7 
correspond to the April instances, rows 8-14 are for the September chaining problems. 
The instances for April contain redundant data, namely, identical rows for every request in 
a cluster, i.e., tours are stored by requests (not by clusters); thus, these problems have the 
same number of rows as their clustering relatives. This is not so for the September instances 
which are stored by clusters. In addition, we have also already removed from these instances 
all clusters that correspond to individual taxi rides: These clusters have to be serviced exactly 
in this way (with an individual taxi ride) and would give rise to row singletons. The number 
of rows in the September instances is thus exactly the sum of the heights of the columns for 
-bus and 1-bus clusters in igure 4.12. 

The picture for tour optimization has the same flavour as the clustering: A small number 
of tours was produced for April, more potential is present in the September data, where the 
average tour services between four and five clusters. Thinking about the possible success of 
preprocessing, one would guess that tours, which extend over a long period of time and a large 
area of service, have a significantly larger overlap than clusters, which have a local character 
in space and time. Hence, it is potentially much more difficult to find out about possible 
reductions. The real situation is even worse. Mostly only duplicate tours are eliminated in 
the preprocessing step. The chaining problems contain these duplicates in large numbers, 
because our tour generation procedures tend to produce, unfortunately, the same "locally 
promising" tours many times. The large reduction in the number of rows for the April 
instances is solely due to the removal of the duplicates that represent each cluster several 
times and to the detection of row singletons that correspond to individual taxi rides. These 
redundancies were already eliminated during the generation of the September problems, and 
not a single further ro could be removed there. 

Small reductions in preprocessing are a good indicator for the computational hardness of a set 
partitioning problem, and the chaining instances turn out to be very hard indeed. Although 
the problems are at best medium scale, we can solve none of them to proven optimality 
with our branch-and-cut code, and the duality gaps are disappointingly large in comparison 
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to results for similar applications, most notably airline crew scheduling. For the September 
problems, we do not even get close to optimality. Looking at the pivoting column Pvt, we see 
that substantial reductions are achieved in the tree search, but this does obviously not suffice. 
n fact, the LPs do not only have completely fractional solutions, they are also difficult to 

solve: The average number of simplex pivots is well above 100, and, what one can not see 
from the table, the basis factorizations fill up more and more the longer the algorithm runs. 
Another problem is the primal LP plunging heuristic, that does not work well: An integral 
solution has about 100 variables at value one for 100 tours in a schedule, and if the LP solution 
is not strongly biased to an integral one or decomposes after a few decisions (as in clustering), 
it is not a good idea to search for such a solution by iteratively fixing variables. 
As these results are as they are, we must unfortunately speculate now why this is so. We see 
three points, (i) Our current column generation process produces a set of vehicle schedules 
plus some variations of tours using greedy criteria. This works well as a heuristic, but it 
does not result in a large combinatorial variety of tours and there is no reason to believe that 
such tours can be combined in many ways to complete schedules. Rather the contrary seems 
to be the case: One can observe that the heuristics in BC nearly always fail in the chaining 
problems. If the set partitioning problems that we produce have b construction only few 
feasible solutions, it is not surprising that a branch-and-cut algorithm gets into trouble. We 
remark that one can not compensate this flaw with simple minded tricks like, e.g., adding 
tripper tours (unit columns), because these invariably lead to schedules of unacceptable costs. 
(ii) There are some reasons why Telebus DARPs might result in set partitioning problems that 
are difficult per se. In comparison to the Hoffman & Padberg [ 9 3 ] airline test set, where our 
algorithm BC works well, see Chapter 3, the Telebus chaining SPPs have more rows, and the 
solutions have a much larger support, (iii) nd maybe there is a structural difference between 
airline crew and bus scheduling: Marsten & Shepardson [1981] also report the computational 
hardness of set partitioning problems from bus (driver) scheduling applications in Helsinki 

4 . . 3 Vehcle Schedl ing 

We can not solve the chaining SPPs of Telebus DARPs to optimality, but the approximate 
solutions that we can obtain are still valuable for vehicle scheduling. 
Table 4.3 on the following page gives a comparison of different vehicle scheduling methods 
for the September D A R s . Column 1 lists the name of the instance, column 2 the day of the 
week, and column 3 the number of requests. The next three columns show the results of a 
heuristic vehicle scheduling that used the cluster and tour generators of Sections 4.5 and 4.6 
as stand-alone optimization modules: There are, from left to right, the number of clusters 
in a heuristic clustering, its TD, and the costs of a heuristic vehicle schedule computed 
from this clustering. We compare these numbers with the results of two set partitioning 
approaches. Skipping column 7 for the moment, we see in columns 8 and 9 the clustering 
results of Figure 4.12. Using this optimized clustering as input for the chaining heuristics 
results in vehicle schedules with costs that are reported in column 7. The fnal column 1 
lists the costs of the vehicle schedules that we computed in Subsection 4.7.2. 
These results indicate substantial potential savings. n our tests, the set partitioning clustering 
yields 10% less clusters than a heuristic clustering and about the same improvement in ITD. 
Heuristic vehicle scheduling based on such a clustering can save 5,000 DM of operation costs 
per day in comparison to the purely heuristic approach. Set partitioning based chaining can 
reduce costs by another 5, per day. 



82 Vehicle Schedulng at Telebus 

Name Day Requests 

Heuristics 

Clusters Tours  

TD 

Set Partitioning 

Clusters Tours  

TD 
616 
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61 

61 

620 
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Su 

143 

61 

603 

1612 

156 

938 

85 

1167 

1266 

125 

1276 

1242 

748 

1090 

1187 

127 
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1263 

41 

885 

6652 

71450 

74851 

745 
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45842 

42782 

60831 

677 

68166 

68271 

63345 

47736° 

44486a 

1011 
11 
1107 

1121 

08 

676 

62 

10248 

1129 

11813 

11821 

11757 

8561 

8243 

557 

6269 

6111 

64863 

61532 

4138 

388 

76 4474 42627 6721 3734 386443 

"S 

Table 4.3: Comparing Vehicle Schedules. 

4.8 Perspecives 

Telebus is an example that mathematical programming techniques can make a signifcant 
contribution to the solution of large-scale transportation problems of the real world. We 
mention here three further perspectives and refer the reader to Borndörfer, Grötschel & Löbel 

8] and the references therein for a broader treatment of optimization and transportation. 

Telebus. We have pointed out in Section 4.2 that mathematical vehicle scheduling methods, 
as one factor, have translated into cost reductions and improvements in service at Telebus. 
And the optimization potential at Telebus is not yet depleted: At present, the BZA utilizes 
only the heuristic modules of our scheduling system. We have seen in Subsection 4.7.3 that 
integer programming allows for further cost reductions that have to be put into practice. 

Computer Aided Scheduling. Automatic scheduling paves the way for a systematic sce 
nario analysis not only at the BZA. The scheduler of the future will use software planning 
tools based on advanced mathematical methods to simulate, analyze, and anticipate the impli 
cations of changing operation conditions and variations in contractual obligations. Computer 
aided design (CAD) has replaced the drawing board, computer aided manufacturing (CAM 
controls the factories — computer aided schedulin (CAS) for logistic systems is just another 
step in this direction. 

Pa ra t rans i t . Berlin's Telebus system of today is only a remainder of a comprehensive 
paratransit concept that was developed as a part of the seventies' efforts to revitalize the 
public transportation sector. The idea to reduce costs and simultaneously improve and extend 
service in times and areas of low traffic with demand responsive systems was convincing 
and immediately tested in a number of pilot schemes, in Germany in Friedrichshafen, in 
Wunstorf near Hannover, and, with a slightly different scope, in Berlin, see Figure 4.13 for 
the dimensions that were initially projected for Telebus. But some years later, most of these 
systems had either disappeared or turned into special purpose systems. And there can be no 
doubt that, for instance, the handicapped only used a system with advance call-in periods of 
initially three days because there was no other choice. The main reason for the lack of success 
of dial-a-ride systems seems to have been scheduling problems: After initial enthusiasm in 
every single one of these projects, the systems were virtually "killed by their own success" 
beyond a critical size. 
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Zeitplan 
Forschungsvorhaben 

Testphase 

Anfang 1979 
bis Mitte 1979 
200- SOOPers/Tas 

Kleiner 
Probebetrieb 

Mitte 1979 
bis Ende 1980 
800-1200 PersJTag 

Großer 
Probebetrieb 

Anfang 1981 
bis Ende 1981 
4000-B000 Pers/Iag 

ab Anfang 1982 
8000 PersJTag und mehr 

Weitere Informationen: 
Telebus-Zentrale 
Joachlmstaler Straße 17 
1000 Berlin 15 
Telefon: {030) 88 27 427 

igure 4.13: From a Telebus roject lyer. 

But right now the situation is changing and old reasons have kindled new interest in para-
transit, see, e.g., Südmersen [1997] (German) for some examples of ongoing projects. Why? 
The driving force behind renewed popularity of demand responsive systems and many other 
developments is the upcoming deregularization of the European public transportation sector 
according to Article 90 of the Maastricht II treaty of the European Union, see Meyer [1997 
(German) for some background information and a survey of the current situation of public 
transport in the EU. This law gives a new chance to dial-a-ride type systems. The future will 
sho if mathematical programming techniques can help to take it. 
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