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Mechanical Theorem Proving 

in Projective Geometry 

Jürgen Richter- Gebert 

Abstract: We present an algorithm that is able to confirm projective incidence statements by 
carrying out calculations in the ring of all formal determinants (brackets) of a configuration. We 
will describe an implementation of this prover and present a series of examples treated by the 
prover, including Pappos' and Desargues' Theorems, the Sixteen Point Theorem, Saam's Theorem, 
the Bundle Condition, the uniqueness of a harmonic Point and Pascal's Theorem. 

0. Introduction 

Mechanical theorem proving deals with the question of developing algorithms 
which automatically produce proofs for given theorems. Mechanical theorem prov
ing is on the one hand an interesting research goal for itself. On the other hand it is 
of great influence for topics like computer aided geometric reasoning [11], robotics 
and robot motion planning [10], computer vision and scene analysis [15], rigidity 
of frameworks [39], [40], molecular conformation [18], [16], computer aided design 
and computer aided manufacturing [23], and a lot of other related topics. In this 
paper we want to sketch an approach to mechanical theorem proving, based on 
the method of bi-quadratic final polynomials as introduced by J. Bokowski and 
J. Richter-Gebert in [2]. This method is of special interest for the case of projective 
incidence theorems since it makes use of the underlying geometric structure of the 
problem. Furthermore it provides a polynomial-time algorithm for confirming a 
large class of projective incidence theorems. Later on we will apply the prover to 
various problems. 

One possible general outline for mechanical geometric theorem proving by 
algebraic methods can be described as follows 

1. Choose a coordinate system 

2. Translate the geometric theorem into an algebraic statement 

3. Carry out the required algebraic manipulations 

4. Retranslate the algebraic conclusions into geometric statements 
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0. Introduction 

In 1951 A. Tarski gave a first decision method for what he called "elementary 
(real) geometry", which was based on an algebraic method [36], This decision 
method was far from being of any practical use, but a first theoretical breakthrough 
was made. Later improvements like G. Collins' cylindric algebraic decomposition 
method [13] led also to practical algorithms which can be used to prove elementary 
geometric theorems, by algebraical methods. 

When talking about algebraization of a geometric statement one has the choice 
between different levels of the algebraic translation. In particular, for the case 
of projective geometry we obtain the following hierarchy of algebraization levels 
(compare [38]). 

1. Grassmann algebra 

2. Bracket algebra 

3. Coordinate algebra. 

An introduction to Grassmann algebra (also called Cayley algebra) can be 
found in [38], [17]. Roughly speaking, Grassmaan algebra is a multilinear algebra 
where projective subspaces are represented by their Plücker-coordinates. Oper
ations like joins (V) and meets (A) of projective subspaces can be carried out 
directly. There is a one-to-one correspondence between projective incidence prop
erties and the terms in Grassmann algebra. Unfortunately it is difficult to check 
directly whether two terms of the Grassmann algebra are identical. 

The next lower level of algebraization of a projective property is the bracket 
algebra. A bracket can be regarded as a formal variable representing the value 
of a determinant. The bTacket ring as introduced by N. White [37] is the ring all 
bracket polynomials modulo the ideal generated by the Grassmann-Plücker poly
nomials. Up to a common scalar multiple, brackets are the fundamental invariants 
under projective transformations. Therefore the first theorem of invariant theorem 
states that any projective invariant, geometric property can be expressed as a ho
mogeneous bracket equation. The bracket ring forms a suitable algebraic setting 
to deal with projective configurations in an invariant theoretic point of view. The 
bracket algebra is the most general structure where projective properties can be 
expressed in a coordinate free way. Any Grassmaan algebra term can be easily 
expanded into a bracket algebra term. Using this fact one has a simple procedure 
for translating projective incidence properties into bracket algebra terms. The 
converse problem "Cayley Factorization" is up to now not solved satisfactory. 
There is a theoretical result proved by B. Sturmfels and W. Whiteley [35] stating 
that every bracket algebra term can after multiplication with a suitable bracket 
monomial be factorized into a Grassmann algebra term The algorithmic part of 
"Cayley Factorization" is up to now only solved for special cases (compare [38] 
[14]). 
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0. Introduction 

After introducing coordinates every bracket algebra term can be expanded 
into a term of the usual coordinate algebra. In the coordinate algebra the geo
metric objects are directly represented by a suitable parameterization (vectors for 
points, center and radius for spheres etc.). The calculations are carried out di
rectly, and arbitrary geometric objects (not only projective ones) can be expressed. 
Relations between geometric objects axe expressed by suitable polynomials in the 
parameters. In general not all coordinate algebra terms factor into a bracket ex
pression. Only those ones which are invariant under projective transformations 
can be so translated. In general it is difficult to recover the geometric meaning 
from the algebraic equations on the coordinate level. 

Automated proving of theorems of projective geometry can be carried out 
on all different algebraic levels. An attempt an the level of coordinate algebra, 
lead to the well known approaches by Ritt's characteristic set method of W.T. 
Wu [41], [42], [43], [11], [12] and to the Buchbcrger's Gröbner bases algorithm of 
B. Buchberger [9], [10], [23], [24]. In both cases the main idea is to translate 
the hypotheses of the theorem as well as the conclusion into polynomials in the 
object parameters. After this is done a certain normal form algorithm is applied, 
which either proves that the polynomial representing the conclusion lies in the 
ideal generated by the hypotheses polynomials or generates certain non-degeneracy 
conditions under which the theorem becomes true (usually a complete collapse of 
the geometric configuration is induced by the non-degeneracy conditions if the 
theorem is false). In general both methods have the disadvantage that the success 
of the prover is heavily dependent on the choice of the "right" coordinate system 
and that the CPU-time grows over-exponential in the number of objects involved. 

On the level of bracket algebra a geometric theorem prover can be imple
mented, using the so called straightening algorithm [17], [44]. The main idea 
behind this approach is to rewrite the projective incidence statement as a term 
in Grassmann algebra which vanishes if and only if the statement is true. After 
this the Grassmann algebra term is expanded into a bracket term. If this term 
vanishes modulo the ideal generated by the Grassmann-Plücker polynomials then 
the theorem is proved. There exist various implementations of the straighten
ing algorithm which can solve this ideal-membership problem for special cases. 
The algorithm produces for a given bracket term an equivalent unique normalized 
term in standard tableaux form. This normalized term is zero if and only if the 
original bracket expression vanishes modulo the Grassmann-Plücker ideal. It was 
proved by N. White and B. Sturmfels [35] that the straightening algorithm can be 
considered as a special kind of Gröbner bases algorithm for bracket polynomials. 
The straightening algorithm works in full generality but requires over-exponential 
CPU-time as well. 

The prover we want to present in this chapter works also on the bracket 
algebra level and makes use of the bi-quadratic final polynomial method introduced 
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1. Bi-quadralic expressions 

in [2], [26]. Here any incidence relation is represented by a whole class of bi
quadratic equations. The main idea is to linearize the problem in a suitable way 
and to check whether a certain bi-quadratic equation can be deduced from a set 
of others. This can be done in principle by solving a system of linear equations. 
The necessary calculations can be carried out in polynomial time. Since only a 
restricted type of conclusions is allowed the algorithm will not work in general and 
will only be able to confirm theorems, not to disprove them (except of special cases 
as we will see in section 2). None the less, up to now the prover could manage 
all projective incidence theorems we tried to confirm with it. Section 2 will give 
an overview over a large class of examples. Using the automated prover based on 
bi-quadratic final polynomials, projective incidence theorems up to 25 points in 
the plane could be proved completely automatically. 

1. Bi-quadratic expressions 

Bi-quadratic final polynomials as introduced by J. Bokowski and J. Richter-
Gebert [2], [26] are a method to prove non-realizability for oriented matroids [1]. 
bi-quadratic final polynomials can be considered as a specialization of the more 
general structure of final polynomials as introduced by J. Bokowski and B. Sturm-
fels [7]. The existence of a final polynomial forms a general criterion to prove the 
non-realizability of (oriented) matroids over a given field. In contrast to ordinary 
final polynomials, the bi-quadratic final polynomials are not generally applicable, 
but therefore very effectively to compute. 

In this section we will adapt the bi-quadratic final polynomial method to the 
case of projective incidence theorems. In principle we will give a version of the bi
quadratic final polynomial method for the case of (ordinary) matroids. We prove 
an incidence statement by proving the non-realizability of a counterexample. This 
in turn can be done by finding a suitable bi-quadratic final polynomial. However 
we will present our results in a way that they are directly applicable to the case 
of projective incidence theorems. 

A problem when proving geometric theorems automatically, is that a state
ment which is true for generic situations can become false when certain degenera
tions occur. Our first example will demonstrate this. 
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1. Bi-quadraicc expressions 

EXAMPLE 1 .1. 

Consider Desargues' Theorem: as pure incidence theorem it is often stated as 
follows (compare Figure 1.1.(a)): 

Given ten points in the projective plane 0 , . . . , 9. Whenever the following triples 
of points are collinear: 

(1,2,3); (1,4,8); (2,4,0); (2,5,9); (3,5,6); (3,0,8); (5,0,7); (9,4,7); (7,6,8) 

then the triple (1,6,9) is. also collinear. 

Figure 1.1 Desargues' Theorem. 

This version of Desargues' Theorem is only true whenever the points are in 
suitably generic position. If one allows too many degenerations in the configuration 
the theorem becomes false. In Figure 1.1.(b). all the hypotheses of the above 
statement are fulfilled but the conclusion is obviously false. 

To avoid such difficulties we will assume that the configurations under consid
eration are always suitable non-degenerate. To make this precise we define, how 
we want to express incidences in the real projective space H P ~ := ( H /]R) —{0}. 
Points are as usual represented by non-zero vectors in 1R and vectors differing only 
by a non-zero scalar multiple represent the same point. Given d points xj,..., xj 6 
R lie in a common hyperplane of Pd_1 if and only if d e t ( i i , . . . , X&) = 0. 
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1. Bi-quadraicc expressions 

We now assume that a configuration X := ( x j , . . . , xn) of n points in P d _ 1 ig 
given. We set E := { 1 , . . . , n } . For a subset A := {aa , . . . , a*} C E; d < k < n we 
define a logical predicate hd(a.\, • • •, <ik)x to be equivalent to the statement: 

All points in xtt; a € A are incident to a common hyperplane H 

and none of the remaining points xe; e E •£/ — A is incident to H. 

Furthermore we define a weaker predicate h*d(A)x indicating: 

All points in x„; a 6 A are incident to a common hyperplane H. 

Using the predicates /i<f(A)x and /i^(A)x we can now restate Desargues' Theorem 
as 

For any ten points X := (x0,,..g)xg) in P2 we have 

/ l3(l ,2,3)x; / i3(l ,4,8)x; 7*3(2,4,0)x; h3(255,9)x; ^ ( 3 , 5 , 6 ) x ; 

^3(3,088)x', h3(5,0,7)x; ^3(9,4,7)x; ^3s7,6,8)x 

implies li^Jl,6,9)x-

Desargues' Theorem stated this way is true, as we will see later. 

Whenever no confusion can occur, we will drop the "For all configurations 
X .."" part of the statement and the subscript X in the logical predicates h(A)x 
and h*(A)x- We will also drop the subscript d whenever the dimension of the 
projective space is clear. Using this convention Desargues' Theorem can be simply 
stated as: 

(&(1,2,3); ft(l,4,8); h(2,4,0); h(2,5,9); /*(3,5,6) 

/i(3,0,8); /i(5,0,7); /i(9,4,7); h(7,6,8)) => hfc*(6,9). 

Sometimes it will be necessary to state a certain non-degenerate situation 
explicitly. Therefore we define a third logical predicate </d(A)x equivalent to the 
statement that the points of X indexed by the elements of A lie in general position 
(i.e. no d points of A He in a common hyperplane). In terms of the underlying 
matroid Mx of the configuration X the predicate <fa(A)x is equivalent to the fact 
that the restriction of Mx to the elements in A is uniform. Notice that we have 
the following logical implications: 

hd(Axx =*• h*\A)x and 

hd(Axx => 9d({ai > • a • > ad-i > e}) for ( a l t . . . , a<j_i) € A(Ad d ) 1) and e £ £7 - A. 

With the above predicates h, /i* and g any projective incidence theorem con
taining only points and hyperplanes as objects can be expressed. Hyperplanes 
must be encoded implicitly as dependencies of points. 
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1. Bi-quadratic expressions 

DEFINITION 1.2. For given rank d and a given set E := { l , . . . , n } and given 
subsets Al5..., Afc Gi,.. . ,(?/ € E and a d-clcment subset C C E we call the 
statement 

(hd(Al)t...,hd(Ak),gd{Gi),...,gd(Gi)J =* hd(C) 

a projective incidence statement. 
The predicates hd(Ai), gd{Gi) are the hypotheses of the statement and the pred
icate h^(C) is called the conclusion of the statemen.. A projective incidence 
statement is called open if there is a configuration X in J"* -1 fulfilling its hy
pothese.. 

The task of our theorem prover is to check whether a given open projective 
incidence statement is true or not. 

We now introduce brackets as formal expressions representing the d x d sub-
determinants of our configuration matrix X. For a d-tuple (ai ,e i2 , . . . , ad) € E 
we abbreviate: 

[01,02..a -,ad]x '•— d e t ( x 0 l , x 0 j , . . . , x a - ) . 

The values of the brackets of a given configuration X are not independent from 
each other. For instance they satisfy the alternating determinant rules 

[a7r(i), ••• 1 air(d)]X = signC71")!0! > • . • • ad}x (*) 

for every permutation ir € Sj. Another special dependence among the brackets, 
which will play a crucial role for our considerations, is expressed in the next lemma. 

LEMMA 1.3. For every configuration X = {xj, , , xn} €• (IR-n) and every (d+2) 
elements ai,..., a.d-2, 6, c, e, / € { 1 , . . . , n} we have. 

[GJ, . . . ,ad_2,6, c]x[ai> • , •>fl(i-2,e,/].x 

+ [ a i , . . . , arf-2, ^e]x[ai)---i ad_2, c, f]x 

—[ai,..,aa<f_2,&, f]x[aii • • -»a(f-2iC, e]x = 0 

PROOF: The lemma is simply a special case of the general Grassmann-Pliicker-
relations as described in [37]. D 

The next lemma will associate to any predicate h(A) or h*(A) a set of expres
sions of the form: 

[.-•Jxl- • •x = [•••]x[••-]x. 

Such an expression will be called a bi-quadratic equation within the set of brackets. 
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1. Bi-quadralic expressions 

LEMMA 1.4. If for a conßguration X := (a:i,.x.,xn) € (H ) n the statement 
hd(Axx holds then we have: 

[CLi,. . . ,a<f_2, 6, e]^[o.i5 . . . ,Cld~2icif]x = [fll, • ••• ad -2>&> , ]x[< 1 l5 . a i - _ 2 , > e ] x 

for any (ai,..., a<-2) 6 A(A, d - 2), 6, c € A — {ai,.,., ad-2} and e, f £ E - A. 
Furthermoee if hd(A) holds then all brackets in the above expression are non-zero. 

PROOF: The first part of the statement is simply a consequence of Lemma 1.3 and 
the fact that the bracket [ a i , . . . , ad-,, b, c]x vanishes whenever hd(A)x is true. 

The second part of the lemma is simply a reformulation of the fact that 
whenever hd(Axx 1S true the points indexed by elements of E — A do not lie in 
the hyperplane spanned by the points indexed by elements of A. D 

Conversely we have: 

LEMMA 1.5. If for a conßguraiion X := (xi,..., xn) € (JR. )" we have 

[fll, . , . ,ar f_2, 6, e]x[Oii . , . ,<2rf_2,c, f]x - [fllj • • • • a r f - 2 ) ^ & / ] x [ f l l i , • •iad-2dc-ie\x 

for (ai,..., ad-)) G A(i3, d — 2) and &, c, e, / € E — { a i , . . . . ,d-2} }ten we eave 
either /?^({aj,.. . ,a,f_2, 6, c}) or /t^({ai>., . ,a«f_2,e, / } ) . 

PROOF: Again, the lemma is simply a consequence of Lemma 1.3. If the sum of 
the last two summands in Lemma 1.3. is zero then also the first summand has to be 
zero as well. In this case at least one of the two statements hd({ai,..., a<-2, b, c}) 
or h;j{aii • . . , Qrf-2, e, / } ) is true. D 

A pair of brackets ([ai,.,., aj\x 1 [b\, • • •• ,d]x ) )i called comparable if 

| { a i , . . .,ad} D {6 j , . . .,bd}\ = d - 2. 

Notice that the set of points in the two alternative conclusions in Lemma 1.5 form 
a pair of comparable brackets. 
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1. Bi-quadratic expressions 

Using Lemma 1.4 and Lemma 1.5 we can now sketch how the mechanical 
prover will work in principle: 

Finding a prove for the projective incidence statement: 

(h^Ai)-..., /i<f(Afc),<7J((?I), . . .,gd(Gi)) =̂ - h^(C) 

can be subdivided into three steps: 

1. T rans l a t e the hypotheses hd{Ai),,.., h^Ak) i n to a se t A of b i 
quadra t i c equat ions using Lemma 1.4. 

2 . T rans l a t e any comparable p a i r of bracke ts ([G],[C]), where gd(G) i s a 
known non-degeneracy, i n to t h e b i - q u a d r a t i c equat ion suggested by 
Lemma 1.5. Col lec t t hese b i - q u a d r a t i c equat ions in a s e t Q. 

3 . Check whether one of the equat ions in Q can be concluded a l g e 
b r a i c a l l y from t h e equat ions in A. If so , t he p r o j e c t i v e inc idence 
theorem i s proved. 

Now we are going to explain how to carry out step three of the above pro
cedure. For this we linearize the problem in the same spirit as it was done in 
[2], where we the oriented matroid case was considered. To make the algorithmic 
and algebraic background more transparent, we are going to study the structure 
detached from the concrete application to our bracket calculations. We therefore 
replace our brackets by variables xx,..., x m and think of bi-quadratic equations 
xaXf, = xcxt in terms of rational functions ~^-i = 1. Let us start with some 
definitions. 

DEFINITION 1.6. For given formal variables x j , . . . , xm the 'Z-module of rational 
monomials M(x\,,.., x m ) is deßned by: 

M(x\,.. .:xm? := < Xj" • x 2
s • • -xm

m J ( o j , , . . . , : m ) 6 TL } . 

The module addition corresponds to the multiphcation of two monomials, and the 
module multiplication by an integral scalar X corresponds to taking the X-th power 
of a monomial. 

Notice that every bi-quadratic equation can be written in the form a = ± 1 
where a € M(xj,..., xm) is a suitable rational monomial in the brackets. The next 
lemma states explicitly the isomorphism between M(xi,..., xm) and the ZS-modul 
%m. The proof is trivial. 
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1. Bi-qiiadraiic expressions 

LEMMA 1.7. A module homomorplusm f between M(xi.. ,.,x)) and the 7L-
module %m is given by: 

j M M\Xi,.*2 ,xm) —* IL 

° x° ••nT l~( (.al5a2> • • -jöa)-

Now assume that a set of k equations of the form a; = <7; for 0 < i < k is 
given, where a,- € M(x\,..., xm) and cc,- € {—1, +1}- The fact that aQ = o"o can be 
deduced from the rest of the equalities, corresponds to the existence of a suitable 
linear combination of the lattice points / ( a , ) , as the next theorem shows: 

THEOREM 1.8. Assume that a; G M(xj,...x £*) and <7; € {—1, +1} for 0 < i < k 
are given and we have a linear combinaiion of the form 

k 

aof{ao) = / v<^i/(fli); &•€TL 
i=i 

where OQ is an odd number. In this case for any (;i' ' ,.. . , x r o ) € lFtm fulfilling 
X{ ̂  0 for all 1 < i < m and fulßlling a,- = a,- for all 1 < i < k we have: 

a0 = (-1)/ with ß:= 2J ««• 
• € { x > — . * } 

Notice that if we have a linear combination as in the Theorem above we can 
conclude the sign of ÜQ using our information about the remaining monomials 
d j , . , . ,CI j fc . 

PROOF: Assume that the requirements of the theorem are fulfilled. In this case 
we have: 

«o°:=rR-
t'=i 

In the case that we have values x\,..., xm G R fulfilling: 
Oj = a,- -or 1 < i < kk 

we obtain: 

Q,ao *= I I <T̂ 'i 
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1. Bi-quadratic expressions 

Since we had c,- € {—1, +1} for 1 < * < k and ao was an odd integer we ebtainn 

This proves the theorem. D 

Theorem 1.8 gives us the main key how to conclude a certain bi-quadratic 
equation ÜQ = <TQ from others. One only has to be sure that there is a linear 
combination of the required form where ao is odd. After such a suitable linear 
combination is given it must be explicitly checked whether a0 := (—1)^ = <To- If 
so the equation ao = OQ can be concluded. Notice that it is essential to have «o 
an odd number. If a0 was even one would still obtain a0 = i l , but there would 
be no control over the sign. 

It remains to develop a procedure that explicitly produces a suitable linear 
dependency if one exists. In principle this can be done by calculating an explicit 
lattice basis for the lattice spanned by the points / ( a j ) , . . . , / (a*) (compare [21]). 
Here we prefer a way that turns out to be of less algorithmic effort. 

In general the vector space V spanned by / ( a i ) , , . . , / (a*) does not have the 
full rank k. There may be many ways to express ao/(ao) as a linear combination 
of the rest of the terms. In some of them a0 may be odd, in some of them ao 
may be even. In order to get a procedure that decides whether there is a linear 
combination with odd «0 we introduce a special basis of s p a n ( / ( a ! ) , . . . , / (a*)) . 
We construct a basis {fej5..., 6/} C {/(ax) , . . . , / (a*)} with the following property: 

Whenever there exist a o , . . . , a t € 2Z where ao is odd and 

k 

Then there also exist /?o, • •., ßi € TL where ßa iisoddnd 

l 

Such a basis 6 j , . . . , 6j will be called rooted for / ( a i ) , • • •• f(ak)- II should be 
mentioned that b\,,.., b{ is not yet a lattice basis for the lattice spanned by the 
points /(fl i) , . . . , f{a>k). The following algorithm will produce a rooted basis for 
any given set of vectors u j j . . . , ujt € Ui . 
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1. Bi- quadratic expressions 

ALGORITHM 1.9. 

INPUT: Vectors v\,.,vk v* € 2Sm . 

OUTPUT: Rooted basis 61,..., b( € {ui,..-, vjt} of Vi,...u j * . 

1. £? := 0; V :={ui,..., ujt}; 
2. FOR i := 1 TO f DO 

3. IF v{ e span(ß) THEN 
BEGIN 

4. PiCK linear combmation ßvi = 2~ij=iPjvj 
such that /?,/?j are integral and gcd(ß,/ßi,...,,\B\ß = 1 » 

5. IF /? is even THEN 
BEGIN 

6. Pick j such that ßj is odd; 

7. B := {B — \bj}) U u,--
END 

8. ELSE 

9. B :B B U Vi'. 

10 .OUTPUT(ß) ; 

THEOREM 1.10. Algorithm 1.9 is correct and produces a rooted basis for the 
vectors v j , . . . ,u*. 

PROOF: First we want to state the correctness of the algorithm. The only critical 
steps are step 4 and step 6. Step 4 is correct since whenever Wj is contained 
in span(ß) then there exists a linear combination as required. Moreover, the 
linear combination is unique since Vi,.,., vmi are linearly independent and the 
greatest common divisor of /?, ß\..,., ß\ß\ was chosen to be 1. It can be computed 
easily, using any algorithm that is able to solve a system of linear equations. In 
Step 6. there is always at least one odd ßi since the greatest common divisor of 
/?,/?!,ß\ß\ß\ß\ was chosen to be 1. 

It remains to show that B := { 6 1 , . . . , 6/} is indeed a rooted basis for v\,.,., vt~. 
Assume that for v € Z m there is an integral linear combination 

k 

au = y^ aivi> (*) 
» = 1 

Where a is odd. We have to prove that there is also an integral linear combination 

/ 
ßv=^ßibi, 

t = l 
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1. Bi-quadratic expressions 

where ß is odd. According to the choice made by our algorithm we can express 
any Vi as a linear combination 

l 

7«-».- = ]C7<i,j)&;, (**) 

where the 7,- are odd integers. Multiplying the linear combination (*) by JJr__1 7r 
and applying (**) we obtain: 

k 

(ri7r)at; 

k k 

k I 

= Eaai' II 7r'EWi) 
« = 1 ' •€{ l , . . . ,*} j = l 

Since a, 7 1 , . . . , 7c are odd, the product of them is odd as well. This implies that 
the above equation is the desired linear combination. D 

Using the concept of rooted bases it is now easy to decide whether a linear 
combination as required for Theorem 1.8 exists. The following algorithm is a more 
detailed version of step three of the our general outline of the prover given before. 
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1. Bi-quadratic expressions 

ALGORITHM l l l l . 

INPUT: Equations ao = ao , . • . i a^ = cj. with a* € M\X\,...,.m) 
and <7i G e{l,+l1} 

OUTPUT: If "CONFIRMED" is returned then for non-zero xj... .,xm € H. 

the validity of a-j = a-\ upto au = o* implies the 
validity of a0 = aQ . 

1. Compute a rooted basis oj,..., 0/ for /(cti),.... ,/a*) 
using Algorithm 9.11; 

2. IF /(ao) € span(6i,..., &/) THEN 
BEGIN 

3. Pick a linear combination p/(a0) = /' ̂ j—\ Pjbj 
such that ß, ßj are integral and gcd(/3, ,i,..,, ßi) = 11 

4. 5 := y);e{i i} ßi 

5. IF ( - l ) a := aQ and ß i s odd THEN 
6 . OUTPUTT"CONFIRMED""; 

END; 

PROOF OF THE CORRECTNESS OF ALGORITHM l . l l : Similar to Algorithm 1.9 
the only critical step is Step three. This step is correct since whenever f(a)) is 
contained in span(&ii,. . , 6j) then there exists a unique linear combination where 
gcd(ß, /Si i , . . , ßi) — 1 as required. It can be computed easily, using any algorithm 
that is able to solve a system of linear equations. If "CONFIRMED" is returned by 
the algorithm then by Theorem 9.10 for any X j , . . . , xm € R where x, ^ 0 for all 
1 < i < m and ÖJ = Cj for all 1 < i < k is fulfilled, also the equation a0 = o"0 is 
fulfilled. • 

Algorithm 1.11 can be used as an explicit procedure to carry out the check 
mentioned in step three of the general outline of the prover as sketched before. To 
finish the details of this algorithm we will finally explicitly describe the content of 
the sets A and Q mentioned in step one and step two. 

K - / \ *, , 
I /id(-Ai),...k /id(Afc), </<f(Gi),..., <7d(G/) 1 ̂ - hjdC) 

is the statement that should be proved we obtain the following assignments. The 
set A should collect all bi-quadratic equations corresponding to the hypotheses 
hAA\),,.., Arf(Ajt) of the projective incidence statement. Assume that the state
ment works on the set of points E in rank d. We can express the bi-quadratic 
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1. Bi-quadratic expressions 

equations as rational monomials over M(A(E, d)). Therefore let a[ai,.,., a<j] be 
the sign of the permutation of ( a i , . . . , a&) and define: 

r fa, 6,c][a,c,/j r . r . r . r . 

a € A(A,-, d - 2); 6, c € -A,- - {aj,.,., a«j_2}| e, / € £7 - A,- } 

and 

Notice that all variables (i.e. brackets) occurring in the monomials are by definition 
non-zero, as required for Algorithm 1.11. 

The set Q of bi-quadratic equations corresponding to the conclusion h^{A) 
can be defined as follows. First define the set of brackets Q that are known to be 
non-degenerate by: 

t 
£ '•— {G\}U -- • U{G,} U j N [a, ]] a € A(A;,d— )); e€Ü7 - A{>. 

Then define the set Q of bi-quadratic equations corresponding to the conclusion 
by: 

f [a,be e][a, c, f] . , r , r ir , 
Q := 1T—TTT? J = a\-a->6' e J a l a ' c ' J J^t0'^> / J t a ' >̂ eJ 

[G] € £/; (IC7J, [G]) are comparable and 

[C]:= [ a 1 , . . . ,aj_2,c,6]; [G] := [ax,.. . ,0^-2 , e , / ] J. 

The description of the geometric prover was given in a way that the main 
ideas become transparent. No attention was paid on the algorithmic efficiency 
of the developed algorithms. Indeed many of the computational steps can be 
speeded up in concrete implementations. For example, the set A where all the 
bi-quadratic equations corresponding to the hypotheses were collected is much 
too large. Reduction methods as introduced in Corollary 5.10. can be applied 
reducing the number of bi-quadratic equations involved. Also the rooted basis 
has to be computed only once when proving a theorem. None the less, even for 
the version of the algorithm described above it is clear that for fixed rank the 
number of arithmetic steps necessary to carry out the calculations is bounded by 
a polynomial in the number of points involved. 

15 



2. A catalogue of examples 

2. A catalogue of examples 

In this chapter we want to give a collection of examples of bi-quadratic final 
polynomial-proves for projective incidence statements. The first part of this chap
ter is dedicated to results found by a PASCAL implementation of the mechanical 
theorem prover as described in the last chapter. The implementation is able to 
handle incidence statements in the real projective plane. Besides the elementary 
incidences of the form three points are collinear, the program is also able to handle 
more complicated incidence properties like line(a, b), line(c, d), line(e, f) meet in 
a common point, or like six points lie on a common conic. It will be described 
below how this incidence statements can be managed. Among the results there 
will be proves for theorems like Pappos' Theorem, Desargues' Theorem, Saam's 
Theorem and lot of others. 

After this we will give some bi-quadratic final polynomials for incidence the
orems in higher dimensions. Most of these results where found by hand. Among 
the results there will be proves for the bundle condition, the sixteen point theorem 
and certain non-embedability proofs for some tori. 

In the third part of this chapter, we will describe some infinite classes of 
projective incidence theorems that can be proved completely using bi-quadratic 
final polynomials. Among these results there will be a non-realizability proof for 
the minor minimal non-realizability class of oriented matroids given by J. Bokowski 
and B. Sturmfels. 

We now start with a description of the implementation of the prover. The 
prover was developed especially for the planar case. The input consists of a certain 
set of hypotheses describing the geometric situation of the configuration, together 
with one conclusion. After the hypotheses are read and translated into a suitable 
set of rational monomial equations, a rooted basis is calculated as described in 
the last chapter. Then it is checked whether there exists a bi-quadratic final 
polynomial that proves that the conclusion is a consequence of the hypotheses. 

It is assumed that the configuration consists of points belonging to a set E. 
The basic predicates used to describe the hypotheses of a geometric situation are 
the following four: 

16 



2. A catalogue of examples 

The points in A are collinear and 

the points in E — A do not lle on the llne corresponding to A. 

The points in A are in general position. 

m((a, 6), (c, d), (e, / ) ) : 

The three lines (a, b), (c, d), (e, / ) are concurrent and diisinct. 

c(a, 6, c, d, e, / ) : 

the six points a, 6, c, d, e, / lie on a common conic 

and no three of the points are collinear. 

The conclusions are described by the predicates: 

h*(A) = 

The points in A are collinear. 

m*((a, 6)),c, d)) (e, / ) ) : 

The three lines (a, b), (c, d), (e, / ) have one point in ccmmon. 

c*(a,bcc,d,e,f) : 

the six points a, b, c, <i, e, / lie on a common conic. 

We now explain how the predicates m((a, 6), (c, d), (e, / ) ) , m*((a, fe), (c, d), (e, / ) ) , 
c(a, b, c, d, e, / ) and c*(a, b, c, d, e, / ) can be expressed as rational monomial equa
tions in the brackets. In correspondence to Lemma 1.4 we have: 

LEMMA 2.1 . If for a configuration X := ( i x , . . . , x n ) € (H ) n tie statement 
m ( ( a i> &i)i (a2i &2)-) (°3> "3))x holds then we have 

[at-, 6i, â t] x [aj , bj, bic] x = [a«, 6;, &jt] x [aj , fy»a*] x 

and 

[aii »li r 2JAl a 2) »25 • s x jx l a 3 t »3? ^JX = ~" lal> &1» r3JXla2j °2, •Si]x[ö3, O33 #2JX 

for any {i,j, k} = {1,2,3} anrf r, s,t € {«ib}. .Furtthermore ail brackets in the 
above expressions are non-zero. 
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2. A catalogue of examples 

PROOF: Since any bracket of the above expressions is of the form [a,-, 6,--p], where 
i £ {1,2,3} and p € {ai,a27a3j1,fe2, ^3} — {a,-,&i}, and the three lUnes (aj,&i), 
(03,62)» (a3> ^3) are assumed to be distinct, it is clear that none of the brackets is 
zero. 

We now may assume that a configuration X is given such that the three lines 
(oi> ^2)7 (a2> ^2)5 (o3> ̂ 3) meet in a common point x0. We first prove the validity öf 
the second equation of the lemma. Therefore we assume w.l.o.g r = s = t := a. 
We have to prove: 

[a1}*> l ja2]A'[a2, 022a3jA't<I35 » 3 , a l J X = —\al-, »lj ,z]x\a2, ,25
al]x[a3i "3i,2\X-

Since (ai,&,-,0) is collinear for i = l , . . . , 3 we have [ai,6j,0]x = [«2>ft2i0]X = 
[0,3, 63,0]x — 0 this implies the following three bi-quadratic equations: 

[aii Oi,a2]x[O'i,0,a3]x = [ai, Di»a3]x[ai>0> a,2]x 

[a2,62,a3]x[a2,0, a x ] x = [a,i "2-,al\x[a2i^iO-3\X 

[a3 , &3> a l ]x[<Z3,0,«2]x = [«3, ^ 3 5
a 2 j x [ a 3 ) 0 > a i ] x -

Multiplying all left and right sides and canceling pairs that occur on both sides 
gives the desired result. 

To prove the first equation we may assume w.l.o.g that i := 1,j := 2, k := 3. 
We have to prove: 

[ai> &l5a3Jx[ü2> &2x &3M = [aly ^l , ^ 3 ] x [ " 2 , ^22a3JX-

Using the second equation of the lemma, we obtain: 

[<2l, bi,a,2]x[a2,&2»a3]x[a3) &3,a1]x = ~ [ a l i &1> a3JX [a25 &2> OlJX [a3? ^3>a2jX a n d 

[ai. &i ,63]x[a2i & 2 , a i ] x [ a 3 5 0 3 , a 2 ] x = ~[ali O l i a2 ]x [ö2 )02 , 0 3 j x [ a 3 , 03 5 f l*ix-

Multiplying all left and right sides and canceling out pairs that occur on both sides 
gives the desired result. D 

Indeed, there are more direct ways to prove the above lemma. We used 
this approach since it implies that all calculations could be carried out on the 
bi-quadratic equation level after a suitable point XQ had been added. 

Conversely to Lemma 2.1 we have 

LEMMA 2.2. If for a conGgiiration X := ( x i , . . . , x6) G (JR. )6 we have 

[l,2,5]x[3,4,6]x = [l,2,6]x[3,4,5]x 

where xi ^ x2, x3 ^ x4 and x5 ^ x6 then the lines (1,2),(3,4),(5,6) have one 
point in common (i.e. we have m*((l ,2) , (3,4), (5,6))). 
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2. A catalogue of examples 

PROOF: Again the proof can be done purely on the bi-quadratic equation level. 
Here we give an alternative proof based on the Grassmann algebra representation 
of the configuration (compare [38]). The Grassmann algebra expression (1 V 2) A 
(3 V 4) A (5 V 6) vanishes if and only if the three lines are not in general position 
(i.e. if they either meet in a point or at least two of the lines agree). Expanding 
this term into a bracket expression we get: 

(1 V 2) A (3 V 4) A (5 V 6) = [1,2,5][3,4,6] - [1,2,6][3,4,5]. 

This proves the theorem. D 

Finally, we want to give a bracket expression to express the fact that six lines 
lie on a common conic. This condition can be found in [40]: 

LEMMA 2.3. If for a configuration X := ( i i , . . , , i 6 ) € ( H ) the six points 
i j , i 2 , . . . , i 6 Ü e o n a common conic (i.e. c*(l ,2,3,4,5,6) is true) then: 

[l ,2,3]x[l,5,6]x[4,2,6]x[4,5,3]x = [4,5,6]^[4,2,3]x[[l 5,3]^[1,2,6]x. 

If no three of the points are collinear all of the above brackets are non-zero. 

We now start with the descriptions of the examples. 
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EXAMPLE 1.: P A P P O S ' T H E O R E M 

For all points 1,2,3,4,5,6,7 in P 2 we have: 

h(236), h(137), m((12)(46)(57)), m((14)(67)(25)) =>• /i*(345) 

Figure 1. 

The following bi-quadratic final polynomial was produced by the proven 

[124][567] = -[126] [457] 
[145][267] = -[124][567] 
[123][347] = [134][237] 
[126][237] = [123][267] 

<== m( [12 ] , [46 ] , [57 ] ) 
<== m( [14 ] , [67 ] , [25 ] ) 
<== h(137) 
<== h(236) 

[145][347] = [134][457] ==> h*(345) 

Multiplying left and right sides of the first 4 bi-quadratic equations, and canceling 
brackets that occur on both sides, implies the last equation. 
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EXAMPLE 2.: D E S A R G U E S ' T H E O R E M 

For all points 1,2,3,4,5,6,7,8 in P we have: 

Ä(123), /t(148), /i(356), m((16)(47)(25)), m((42)(57)(38)) =£• /t*(678) 

Figure 2. 

The following bi-quadratic final polynomial was produced by the proven 

[125][467] 
[234][578] 
[124][235] 
[147][248] 
[256][357] 

-[147][256] 
-[248][357] 

[125][234] 
[124][478] 
[235][567] 

<== m( [16 ] , [47 ] , [25 ] ) 
<== m( [42 ] , [57 ] , [38 ] ) 
<== h(123) 
<== h(148) 
<== h(356) 

[467][578] = [478][567] ==> h*(678) 

Multiplying left and right sides of the first 5 bi-quadratic equations, and canceling 
brackets that occur on both sides, implies the last equation. 
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EXAMPLE 3. : P E R M U T A T I O N T H E O R E M 

The following incidence theorem is consequence of the so called pprmutation 
theorem (compare [19]): 

If a, b, c, d are four points on a line L, then there exists a projectivity: 

L(a, 6, c, d) ~ L(d, c, 6, a) 

The oriented version of the corresponding incidence theorem occured as one under
lying non-realizable structure in the classification of arrangements with 10 points 
in the plane [5]. 

For all points 1,2,3,4,5,6 in P we have: 

m((16)(34)(25)), m((26)(34)(15)), m((12)(46)(35)) =S> m*((12)(36)(45)) 

F igure 3 . 

The following bi-quadratic final polynomial was produced by the prover: 

[125][346] = [134][256] 
[134][256] = -[126][345] 
[123][456] = -[125][346] 

<== m( [16 ] , [34 ] , [25 ] ) 
<== m( [26 ] , [34 ] , [15 ] ) 
<== m( [12 ] , [46 ] , [35 ] ) 

[123][456] = [126][345] ==> m**([12][36] , [45]) 

Multiplying left and right sides of the first 3 bi-quadratic equations, and canceling 
brackets that occur on both sides, implies the last equation. 
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EXAMPLE 4.: A N O T H E R 10-POINT I N C I D E N C E T H E O R E M 

This is another example of an incidence theorem that occured as one under
lying non-realizable structure in the classification if arrangements with 10 points 
in the plane [5]. 

For all points 1,2,3,4,5,6,7,8 in P 2 we have: 

/i(147), Ä(257), / i (654) , Ä(348), h(67S) 

m((24)(18)(36)), m((26)(37)(58)) =$• /i*(123) 

.)• 4 . 

T8 

7 

F igure 4. 

The following bi-quadratic final polynomial was produced by the prover: 

[148][236] = - [128][346] 
[267][358] = [236][578] 
[146][157] = [167][145] 
[124][178] = [127][148] 
[127][578] = [157][278] 
[138][345] = - [134][358] 
[145][346] = [146][345] 
[167][278] = [178][267] 

<== m( [24 ] , [18 ] , [36 ] ) 
<== m( [26 ] , [37 ] , [58 ] ) 
<== h( l47) 
< " h(147) 
<== h(257) 
<== h(348) 
<== h(654) 
<== h(678) 

[124][138] = [128][134] —> h*(123) 

Multiplying left and right sides of the first 8 bi-quadratic equations, and canceling 
brackets that occur on both sides, implies the last equation. 
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EXAMPLE 5.: H A R M O N I C P O I N T S 

The well known statement that if a, 6, c, d is a harmonic quadruple of points 
on a line, the point d is uniquely determined by the other three, translates into 
the following incidence theorem. 

For all points 1,2,3,4,5,6,7,8,9 in P we have: 

ft(136), /i(234), /i(456), /i(479), h(678) 

m((14)(35)(26)), m((48)(57)(69)) =» m*((46)(12)(89)) 

F igure 5. 

The following bi-quadratic final polynomial was produced by the prover: 

[145] [236] • -[134][256] 
[469][578] = -[457][689] 
[126][134] = -[123][146] 
[123][246] *= [124][236] 
[146][256] = [156][246] 
[156][457] = [145][567] 
[467][489] = -[469][478] 
[478][567] = [467][578] 

<— m( [14] , [35] , [26] ) 
<== m( [48 ] , [57 ] , [ 60 ] ) 
<== h(136) 
<— h(234) 
<== h(456) 
<== h(456) 
<== h(479) 
<== h(678) 

[126][489] = [124][689] ==> m**[46]][12] , [89]) 

Multiplying left and right sides of the first 8 bi-quadratic equations, and canceling 
brackets that occur on both sides, implies the last equation. 
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EXAMPLE 6.: C O M P L E T E QUADRILATERAL 

The last example can be considered as a special case of the following fact: 

If a,b,cd d, e and f are the points of intersection of the sides of a complete quadri
lateral with a line, then f is uniquely determined by a, 6, c, d and e. 

Here is the corresponding incidence theorem: 

For all points 1,2,3,4,5,6,7,8,9 in P2 we have: 

/i(456), m((14)(25)(36)), m((74)(85)(96)) 

m((45)(12)(78)), m((46)(12)(78)), m((45)(23)(89)) 

m((46)(23)(89)) =$• m*((46)(13)(79)) 

F igure 6. 

The following bi-quadratic final polynomial was produced by the prover: 

[125] [134][236] = 
[478][589][679] • 

[124][578] = 
[235][489] = 
[234][689] = 

[124][136][235] 
[479][578][689] 
[125][478] 
[234][589] 
[236][489] 

<== m( [14 ] , [25 ] , [36 ] ) 
<== m( [74 ] , [85 ] , [96 ] ) 
<== m( [45 ] , [12 ] , [78 ] ) 
<-- m( [45 ] , [23 ] , [ 89 ] ) 
<== m( [46 ] , [23 ] , [89 ] ) 

[134][679] = [136][479] ==> m**(466][13] ,[79]) 

Multiplying left and right sides of the first 5 bi-quadratic equations, and canceling 
brackets that occur on both sides, implies the last equation. 
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EXAMPLE 7.: S A A M ' S T H E O R E M 

The following projective incidence theorem is due to Saam [29], [30]. It is 
the smallest representative of an infinite class of projective incidence theorems. A 
proof for the next larger representative was also found by the prover. It is still an 
open questions whether all representatives admit a bi-quadratic final polynomial-
proof. An alternative algebraic proof of this representative can be found in [32]. 
For all points 1,2,3,4,5,6,7,8,9, A, B in P3 we have: 

m((17)(26)(i?4)), m((28)(37)(2?5)) 

m((39)(48)(I?l)), m((4A)(59)(2?2)) 

/i(16I?), h(27B,, h(3SB), h(49B,, h(5AB) =>• m*((56)(lA)(i?3)) 

Figure 7. 

T h e following bi-quadrat ic final polynomial was produced by the prover: 

[127] [14B][26B] = [126][17B][24B] <-- m( [ 1 7 ] , [ 2 6 ] , [ B 4 ] ) 
[237] [28B][35B] = [238][25B][37B] <== m ( [ 2 8 ] , [ 3 7 ] , [ B 5 ] ) 

[14B][348] [39B] = [13B][349][48B] <== m ( [ 3 9 ] , [ 4 8 ] , [ B 1 ] ) 

[25B][459][4AB] = [24B][45A][59B] <-- m ( [ 4 A ] , [ 5 9 ] , [ B 2 ] ) 
[156][26B] = [126][56B] <== h(16B) 
[127] [37B] = - [ 1 7 B ] [ 2 3 7 ] <== h(27B) 
[48B][238] = - [ 3 4 8 ] [ 2 8 B ] <== h(38B) 
[59B][349] = - [ 4 5 9 ] [ 3 9 B ] <== h(49B) 
[45A][3AB] = [3AB][35A] <== h(5AB) 

[35A][56B] = [35B][56A] <== h(5AB) 

[156] [3AB] = -[13B][56A] ==> m* * [56] , [1A] , [B3] ) 
Multiplying left and right sides of the first 10 bi-quadratic equations, and canceling 
brackets that occur on both sides, implies the last equation. 
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EXAMPLE 8.: A S E Q U E N C E O F P E R S P E C T I V I T I E S 

The following" example is one representative of an infinite sequence of incidence 
theorems given by A. Saam in [30]. The theorems state that the composition 
of a certain sequence of perspectivities is the identity. A proof for the whole 
class of theorems is given in Example 20. The proof for this incidence theorem 
was produced automatically; the CPU-time was about 10 minutes on an ATArtl 
Computer. The final polynomial is given on the next page. 
For all points 1,2,3,4,5,6,7,8,9, A, B, C, D, E, F, G, H in P we have: 

/i(123), /i(345), h(567), /i(789), h(9AB,, h(BCD), h{DEF), hhFGl) 

m((24:)(£G)(Hl)) m((2G)(46)(3tlr)), m((24)(68)(5if)) 

m((46)(8A)(7F)), m((68)(AC)(9H)), m((A8)(CE)(BH)) 

m((AC)(EG)(DH)) =£• m*{(2G){EC){FH)) 

Figure 8. 

27 



V 

I—I I—I I—I I—I p ~ l I—I I—I 

••ü 

O 

a 

13 

a 
'o 
u 

'•+3 
CO 

•8 
CO 

cr 
bO 

ri S IS EC S 33 CC 
« (O U) N 9) n Q 
l_J «_J l_J l__l l_l l_l L_l 

«* * •* •» * •» «* 

a co S 00 o w a 
W f O 0 * O W 

^ U ^ < O C 0 C 0 U ( O Ü C 5 W W N N O ) > ) f f l D Q Q . i 4 [ i 4 
Ol CN CN *& CD ^J «**J CN ft[ (jti ^* ^* (O CD 00 0C <C **! O W W 

ii t i it ii n ii ii ii ii ii n ii n ii ii i i a i i it i i i i 
n II II II II ii II II II II II it II it it II II ii ii II II 

v v v v v v v v v v v v v v v v v v v v v 

II II II II II II II II H II II II II II II II H II I I II II 

U I ^W I O O I a I ü I I I NC I r l"""1( I N l I I I 0 1 I I O 1 I N O I O < I Ü D I 

i H M M < ) l < O 0 1 < < ' r t r r l ( < ) l O ^ < O N N I 1 0 l < n r ( n 

CN 

A 
II 

w 
u 

CN 

PC 
w 
ü 

o 
CN 

bO 

»—I 

o 

CO 

d 
o 

'•§ 
2, -• 
V O 
o «.3 

V» cd 

ca 3 

i 3 <u 
er1 «j 

f CO 

V ß 
Xt • **^ 

CO 

*§ 

00 

rs i-ö 
CO -+£ 

+» ° 
i-d i-Q 

.SP d 
>H 0 

^ 9 
^ 

.3 -d 

a, 15 

>«5 -Q 

I 



E X A M P L E 9.: P A S C A L ' S T H E O R E M 

Pascal's Theorem is a well known generalization of Pappos' Theorem. It can 
be formulated as follows: 

If (a, 6, c, d, e, /) is a hexagon where the six vertices lie on a conic, then the inter
sections of opposite sides lie an a common line. 

The following theorem is a slightly more special version, since the conic is 
assumed not to degenerate into two straight lines. 

For all points 1,2,3,4,5,6,7,8,9 m P we have: 

/i(175), /i(186), h(274), /i(296), /i(384), /i(395), c(123456) =» /i*(789) 

5 

Figure 9. 

The following bi-quadratic final polynomial was produced by the prover: 

[125] [136][246][345] = [126][135][245][346] <== C(123456) 
[159][257] » -[125][579] <== h(175) 
[126][368] » [136][268] <== h(186) 
[245][279] = -[249][257] <== h(274) 
[249][268] = -[246][289] <== h(296) 
[346][358] = [345][368] <== h(384) 
[135][589] = -[159][358] <— h(395) 

[279][589] » [289][579] —> h*(789) 

Multiplying left and right sides of the first 7 bi-quadratic equations, and 
brackets that occur on both sides, implies the last equation. 

canceling 
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EXAMPLE 10.: A N O N - R E A L I Z A B L E I O 3 - C O N F I G U R A T I O N 

Among the 11 combinatorial types of IO3 configurations there is one non-
realizable one, namely the one with the following triples of points collinear (com
pare [25]): 

[136], [148], [235], [247], [129], [689], [579], [34.A], [56.A], [78A] 

The nonrealizability can be stated as follows (here the conclusion forces a complete 
collaps of the configuration): 

For all points 1,2,3,4,5,6,7,8,9, A in P 2 we have: 

/i(129), /i(136), /i(148), h(235), /i(247), h(34:A) 

h(579), h(56A), h(689), h(7SA) =̂> h*(512) 

^ — ^ \ 

8 

Figure 10. 

The following bi-quadratic final polynomial was produced by the prover: 
[128][179] = [127][189] <== h(129) 
[146][13A] = -[134][16A] <== h(136) 
[124][168] - - [128][146] <== h(148) 
[234][25A] = -[245][23A] <== h(235) 
[127][245] = -[124][257] <== h(247) 
[134][23A] = [13A][234] <== h(34A) 
[16A][57A] = [15A][67A] <== h(34A) 
[157][789] - - [179][578] <== h(579) 
[189][678] = -[168][789] <== h(689) 
[578] [67A] = [57A] [678] <== h(78A) 

[157][25A] = [15A][257] ==> h*(512) 

Multiplying left and right sides of the first 10 bi-quadratic equations, and 
brackets that occur on both sides, implies the last equation. 

canceling 
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EXAMPLE 11. : B U N D L E CONDITION 

The following Examples all take place in projective 3-space. The most easy 
incidence theorem is the so called bundle condition (also known as Veblen- Young 
axiom): 

Let l\, ?2) h, ,I4befur lines si P . .Ifive eairs sf lines sre eoplanar rhen the eixth 
pair is also coplanar. 

Assuming that the lines are spanned by pairs of points (1,5), (2,6), (3,7), (4,8) 
the theorem can be stated as follows: 

For all points 1,2,3,4,5,6,7,8 in P 3 we have: 

/i(1256), /t(1357), /t(1458), /t(2367), /t(2468) =£• /t*(3478) 

Figure 11. 

The following bi-quadratic final polynomial implies the statement: 

[1235][1246] = 
[1327][1345] = 
[1425] [1438] » 
[2316][2347] = 
[2418][2436] = 

[1236][1245] 
[1325][1347] 
[1428][1435] 
[2317][2346] 
[2416][2438] 

<== h(1256) 
<=- h(1357) 
<-= h(1458) 
<== h(2367) 
<=- h(2468) 

[3418] [3427] = [3417] [3428] «=> h*(3478) 

Multiplying left and right sides of the first 5 bi-quadratic equations, and canceling 
brackets that occur on both sides, implies the last equation. 
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EXAMPLE 12.: S I X T E E N - P O I N T T H E O R E M I 

The following theorem is known as the sixteen-point theorem (compare [22]): 

Given 8 lines 01,02,03,04, 6j, &&2 &3& 4̂ K* w P IIfifteen nf the eairs sa,-,6j) )re 
coplanar the sixteenth pair is also coplanar. 

Using the assumed incidences among the lines one can parameterize the lines 
using only 8 points. Up to isomorphism there are two ways to do this. Here is the 
first one that can also be interpreted as a non-realizability statement for a certain 
torus with 8 vertices (compare [3], [4): 

For all points 1,2,3,4,5,6,7,8 in P 3 we have: 

M1256), /i(2367), /i(3456), /i(4167), /i(3478), /i(4185), /i(1278) =• /i*(2385) 

2 3 S 

6, 

i—4—4 

Figure 12. 

[2351][2384] = [2354][2381] ==>h*(8253) 
Multiplying left and right sides of the first 7 bi-quadratic equations, and 
brackets that occur on both sides, implies the last equation. 

XM 

The following bi-quadratic final polynomial implies the statement: 
[1253][1264] » [1254] [1263] <=as h(1526) 
[2361][2374] = [2364][2371] <== h(2637) 
[3451][3462] « [3452][3461] <=ss h(6453) 
[1463][1472] - [1462][1473] <== h(6471) 
[3471][3482] = [3472][3481] <== h(4837) 
[1452][1483] = [1453][1482] <— h(4815) 
[1273][1284] = [1274][1283] <== h(827l) 

cancehng 
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EXAMPLE 13.: S I X T E E N - P O I N T THEOREM II 

This is the second combinatorial way to express the sixteen-point theorem as 
an incidence theorem on 8 points in projective 3-space. Again, the structure can be 
interpreted as the nonrealizability of a suitable torus. It should be mentioned that 
the oriented versions of the last three examples as non-realizable oriented matroids 
are the only non-realizable structures for uniform rank 4 oriented matroids with 8 
points [3], [4]. 

For all points 1,2,3,4,5,6,7,8 in P we have: 

A(1245), &(2356), /i(3467), ^(4578), A(5681), ^(6712), /i(7823) => h*(8134) 

*I51617I *I % £ £ 1 

Figure 13. 

The following bi-quadratic final polynomial implies the statement: 
[4218][4256] = [4216][4258] <== h(1245) 
[2658][2634] = [2654][2638] <== h(2356) 
[6438][6472] = [6432][6478] <== h(3467) 
[4876][4852] = [4872][4856] <== h(4578) 
[8654][8612] = [8652][8614] <== h(5681) 
[6214][6278] = [6218][6274] <== h(6712) 
[2874][2836] = [2876][2834] <== h(7823) 

[8436][8412] = [8432][8416] ==> h*(8134) 
Multiplying left and right sides of the first 7 bi-quadratic equations, and canceling 
brackets that occur on both sides, implies the last equation. 
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EXAMPLE 14.: A N O N - R E A L I Z A B L E T O R U S 

As a last example in projective 3-space, we give an incidence theorem that 
also can be expressed as the non-realizability of a suitable torus (compare {7]). An 
alternative geometric proof is due to D. Ljubic: 

For all points 1,2,3,4,5,6,7,8,9 in P we have: 

/i(1245), /i(2356), /i(3164), /i(4578) 

/t(5689), /t(6497), /i(7812), /i(8923) => /i*(9741) 

1 , 2 

ö 

-̂ 4-

3 

— # - I 

•i > 

Figure 14. 

The following bi-quadratic final polynomial implies the statement: 
[1427][1458] = [1428][1457] <== h(1245) 
[2538][2569] = [2539][2568] <— h(2356) 
[3619][3647] • [3617][3649] <== h(3164) 
[4571][4586] = [4576][4581] <== h(4578) 
[5682][5694] = [5684][5692] <— h(5689) 
[6493][6475] = [6495][6473] <== h(6497) 
[1273][1284] = [1274][1283] <== h(7812) 
[2381][2395] = [2385][2391] <== h(8923) 

[3196][3172] = [3192][3176] ==>h*(9741) 
Multiplying left and right sides of the first 8 bi-quadratic equations, and canceling 
brackets that occur on both sides, implies the last equation. 

4 4 
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EXAMPLE 15.: T H E G O O D M A N / P O L L A C K N-STAR 

Let us close this chapter with two examples of infinite classes of projective 
incidence theorems. The first one is the n-star which is due to E. Goodman and 
R. Pollack [20]. An oriented version of this class was used by J. Bokowski and 
B. Sturmfels [8] as a minor minimal class of non-realizable oriented matroids. It 
was a longstanding question whether a bi-quadratic final polynomial for the whole 
class exists. 
For any n > 5 and all points Aj,..., An, C , i ) i n r we have: 

/i(An_2Aii?), h(An-iAnB), h(An-xAzC). h{A„A\C\ 

m((AA Aj)(A2 Aj$)(BC)), m((A2As)(AzA^)(BC)),..., 

m((An_3An)(An_2A n_i)(i?C)) => m '((AnA3)(A\A2)(BC)) 

Figure 15. 
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The following sequence of bi-quadratic equations is in one-to-one correspondence 
to the sequence of.hypotheses: 

[BAn-.2C][BAiAn-i] = [B An_2An-\][BA\C] 

[An-\AnAi][An-\BAn-2\ = \A-n~\B Ai\[An-\AAAn-i\ 

[CAn-iB)[C AzAn\ = [CAn_1.(4.n][C.A2.B] 

[A„A1A2][A„CA„_i] = [AnC^n-AnA^An-i] 

[A2A3A4][Z?CA]] = [A2A3Ai][i?CA4] 

[A3A4A5][BCA2] = [A[A4A2KJBCA5] 

[Ar,_2An_1A„][BCAn_3] = [A7l_2An_1An_3][BCAn] 

[AiA2A3J[BCAn] = [AiA2An][BCA3] 

Multiplying left and right sides of the first n + 3 bi-quadratic equations and can
celing out brackets that occur on both sides implies the last equation. 
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EXAMPLE 16.: A S E Q U E N C E O F P E R S P E C T I V I T I E S 

The following example is the infinite class of incidence theorems corresponding 
to Example 7. This class was mentioned in [30]. In the sequel the indices are 
counted modulo n. 
For any even n > 4 and all points A\,..., -A„, B\,..., Bn, O in P we have: 

[ m((BiB2)(BzB^)(A30))^ m{{B2Bz){B^B^){AiO))^..., 

m((B -\B )(BiB2)(A\0)),m((BnBi)(B2Bz)(A20)), 

h(AiB\A2),h(A2B2A3),,..,h(An-iA-iiAn) => h*(AnBnAi) 

Figure 16. 
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T h e following sequence of four hypotheses: 

m((5 j5 ,+ i ) (5 j4 .2-Bt+3)(^ i+20)) ,m(( i?^ i5 i+2)( -D | - | -3 J Öi+4)(^-+30)) , 

h(Bi+i A,+i A,+2), h(Bi+2-Ai+2 -A«+3) 

corresponds to the sequence of bi-quadrat ic equations given below: 

[BiB{+iAi+2][Bi+2Bi+30] = [BiBi+\0][Bi+2Bi+3-A.i+2] 

[•öi+3-^t+4-^»+3][J^«+l-^«+2Ö] = [Bi+[Bi+40][Bi+iBi+2Äi+3] 

[Bi+\Ai+iBi][Bi+iAi+2]i+2] = [Bi+iBi+ABi+2][Bi+iAi+2Bi] 

[•Si+2-4»+2-Si+3][-ßi+2-4i+3-ß|'+l] = [-ß«+2-At+2-ßi+l][-^«+2J4-t-|-3-öt-f3] 

Taking this collection for i = 1 , 3 , 5 , . . . , n — 1 forms a bi iquadrat ic ffnal polynomial 
for the incidence theorem. Any equat ion can be deduced from t h e remaining 
equations. 
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