TY - GEN A1 - Berthold, Timo A1 - Witzig, Jakob T1 - Conflict Analysis for MINLP N2 - The generalization of MIP techniques to deal with nonlinear, potentially non-convex, constraints have been a fruitful direction of research for computational MINLP in the last decade. In this paper, we follow that path in order to extend another essential subroutine of modern MIP solvers towards the case of nonlinear optimization: the analysis of infeasible subproblems for learning additional valid constraints. To this end, we derive two different strategies, geared towards two different solution approaches. These are using local dual proofs of infeasibility for LP-based branch-and-bound and the creation of nonlinear dual proofs for NLP-based branch-and-bound, respectively. We discuss implementation details of both approaches and present an extensive computational study, showing that both techniques can significantly enhance performance when solving MINLPs to global optimality. T3 - ZIB-Report - 20-20 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78964 SN - 1438-0064 ER - TY - GEN A1 - Gamrath, Gerald A1 - Anderson, Daniel A1 - Bestuzheva, Ksenia A1 - Chen, Wei-Kun A1 - Eifler, Leon A1 - Gasse, Maxime A1 - Gemander, Patrick A1 - Gleixner, Ambros A1 - Gottwald, Leona A1 - Halbig, Katrin A1 - Hendel, Gregor A1 - Hojny, Christopher A1 - Koch, Thorsten A1 - Le Bodic, Pierre A1 - Maher, Stephen J. A1 - Matter, Frederic A1 - Miltenberger, Matthias A1 - Mühmer, Erik A1 - Müller, Benjamin A1 - Pfetsch, Marc A1 - Schlösser, Franziska A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Tawfik, Christine A1 - Vigerske, Stefan A1 - Wegscheider, Fabian A1 - Weninger, Dieter A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 7.0 N2 - The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming frame- work SCIP. This paper discusses enhancements and extensions contained in version 7.0 of the SCIP Optimization Suite. The new version features the parallel presolving library PaPILO as a new addition to the suite. PaPILO 1.0 simplifies mixed-integer linear op- timization problems and can be used stand-alone or integrated into SCIP via a presolver plugin. SCIP 7.0 provides additional support for decomposition algorithms. Besides im- provements in the Benders’ decomposition solver of SCIP, user-defined decomposition structures can be read, which are used by the automated Benders’ decomposition solver and two primal heuristics. Additionally, SCIP 7.0 comes with a tree size estimation that is used to predict the completion of the overall solving process and potentially trigger restarts. Moreover, substantial performance improvements of the MIP core were achieved by new developments in presolving, primal heuristics, branching rules, conflict analysis, and symmetry handling. Last, not least, the report presents updates to other components and extensions of the SCIP Optimization Suite, in particular, the LP solver SoPlex and the mixed-integer semidefinite programming solver SCIP-SDP. T3 - ZIB-Report - 20-10 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78023 SN - 1438-0064 ER - TY - GEN A1 - Witzig, Jakob A1 - Berthold, Timo T1 - Conflict-Free Learning for Mixed Integer Programming N2 - Conflict learning plays an important role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. A major step for MIP conflict learning is to aggregate the LP relaxation of an infeasible subproblem to a single globally valid constraint, the dual proof, that proves infeasibility within the local bounds. Among others, one way of learning is to add these constraints to the problem formulation for the remainder of the search. We suggest to not restrict this procedure to infeasible subproblems, but to also use global proof constraints from subproblems that are not (yet) infeasible, but can be expected to be pruned soon. As a special case, we also consider learning from integer feasible LP solutions. First experiments of this conflict-free learning strategy show promising results on the MIPLIB2017 benchmark set. T3 - ZIB-Report - 19-59 KW - mixed integer programming KW - conflict analysis KW - dual proof analysis KW - no-good learning KW - solution learning Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-75338 SN - 1438-0064 ER - TY - GEN A1 - Gleixner, Ambros A1 - Steffy, Daniel T1 - Linear Programming using Limited-Precision Oracles N2 - Since the elimination algorithm of Fourier and Motzkin, many different methods have been developed for solving linear programs. When analyzing the time complexity of LP algorithms, it is typically either assumed that calculations are performed exactly and bounds are derived on the number of elementary arithmetic operations necessary, or the cost of all arithmetic operations is considered through a bit-complexity analysis. Yet in practice, implementations typically use limited-precision arithmetic. In this paper we introduce the idea of a limited-precision LP oracle and study how such an oracle could be used within a larger framework to compute exact precision solutions to LPs. Under mild assumptions, it is shown that a polynomial number of calls to such an oracle and a polynomial number of bit operations, is sufficient to compute an exact solution to an LP. This work provides a foundation for understanding and analyzing the behavior of the methods that are currently most effective in practice for solving LPs exactly. T3 - ZIB-Report - 19-57 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-75316 SN - 1438-0064 ER - TY - GEN A1 - Witzig, Jakob A1 - Berthold, Timo A1 - Heinz, Stefan T1 - Computational Aspects of Infeasibility Analysis in Mixed Integer Programming N2 - The analysis of infeasible subproblems plays an important role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications, obtained by domain propagation, that led to infeasibility. The result of this analysis is one or more sets of contradicting variable bounds from which so-called conflict constraints can be generated. This concept is called conflict graph analysis and has its origin in solving satisfiability problems and is similarly used in constraint programming. The second concept is to analyze infeasible linear programming (LP) relaxations. Every ray of the dual LP provides a set of multipliers that can be used to generate a single new globally valid linear constraint. This method is called dual proof analysis. The main contribution of this paper is twofold. Firstly, we present three enhancements of dual proof analysis: presolving via variable cancellation, strengthening by applying mixed integer rounding functions, and a filtering mechanism. Further, we provide an intense computational study evaluating the impact of every presented component regarding dual proof analysis. Secondly, this paper presents the first integrated approach to use both conflict graph and dual proof analysis simultaneously within a single MIP solution process. All experiments are carried out on general MIP instances from the standard public test set MIPLIB 2017; the presented algorithms have been implemented within the non-commercial MIP solver SCIP and the commercial MIP solver FICO Xpress. T3 - ZIB-Report - 19-54 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74962 SN - 1438-0064 ER - TY - GEN A1 - Rehfeldt, Daniel A1 - Hobbie, Hannes A1 - Schönheit, David A1 - Gleixner, Ambros A1 - Koch, Thorsten A1 - Möst, Dominik T1 - A massively parallel interior-point solver for linear energy system models with block structure N2 - Linear energy system models are often a crucial component of system design and operations, as well as energy policy consulting. Such models can lead to large-scale linear programs, which can be intractable even for state-of-the-art commercial solvers|already the available memory on a desktop machine might not be sufficient. Against this backdrop, this article introduces an interior-point solver that exploits common structures of linear energy system models to efficiently run in parallel on distributed memory systems. The solver is designed for linear programs with doubly bordered block-diagonal constraint matrix and makes use of a Schur complement based decomposition. Special effort has been put into handling large numbers of linking constraints and variables as commonly observed in energy system models. In order to handle this strong linkage, a distributed preconditioning of the Schur complement is used. In addition, the solver features a number of more generic techniques such as parallel matrix scaling and structure-preserving presolving. The implementation is based on the existing parallel interior-point solver PIPS-IPM. We evaluate the computational performance on energy system models with up to 700 million non-zero entries in the constraint matrix, and with more than 200 million columns and 250 million rows. This article mainly concentrates on the energy system model ELMOD, which is a linear optimization model representing the European electricity markets by the use of a nodal pricing market clearing. It has been widely applied in the literature on energy system analyses during the recent years. However, it will be demonstrated that the new solver is also applicable to other energy system models. T3 - ZIB-Report - 19-41 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74321 SN - 1438-0064 N1 - In the meantime, this report got published as a journal article: https://opus4.kobv.de/opus4-zib/frontdoor/index/index/searchtype/authorsearch/author/Hannes+Hobbie/docId/8191/start/1/rows/10 Please use this journal reference when citing this work. ER - TY - GEN A1 - Gleixner, Ambros A1 - Kempke, Nils-Christian A1 - Koch, Thorsten A1 - Rehfeldt, Daniel A1 - Uslu, Svenja T1 - First Experiments with Structure-Aware Presolving for a Parallel Interior-Point Method N2 - In linear optimization, matrix structure can often be exploited algorithmically. However, beneficial presolving reductions sometimes destroy the special structure of a given problem. In this article, we discuss structure-aware implementations of presolving as part of a parallel interior-point method to solve linear programs with block-diagonal structure, including both linking variables and linking constraints. While presolving reductions are often mathematically simple, their implementation in a high-performance computing environment is a complex endeavor. We report results on impact, performance, and scalability of the resulting presolving routines on real-world energy system models with up to 700 million nonzero entries in the constraint matrix. T3 - ZIB-Report - 19-39 KW - block structure KW - energy system models KW - interior-point method KW - high performance computing KW - linear programming KW - parallelization KW - presolving KW - preprocessing Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74084 SN - 1438-0064 ER - TY - GEN A1 - Serrano, Felipe T1 - Visible points, the separation problem, and applications to MINLP N2 - In this paper we introduce a technique to produce tighter cutting planes for mixed-integer non-linear programs. Usually, a cutting plane is generated to cut off a specific infeasible point. The underlying idea is to use the infeasible point to restrict the feasible region in order to obtain a tighter domain. To ensure validity, we require that every valid cut separating the infeasible point from the restricted feasible region is still valid for the original feasible region. We translate this requirement in terms of the separation problem and the reverse polar. In particular, if the reverse polar of the restricted feasible region is the same as the reverse polar of the feasible region, then any cut valid for the restricted feasible region that \emph{separates} the infeasible point, is valid for the feasible region. We show that the reverse polar of the \emph{visible points} of the feasible region from the infeasible point coincides with the reverse polar of the feasible region. In the special where the feasible region is described by a single non-convex constraint intersected with a convex set we provide a characterization of the visible points. Furthermore, when the non-convex constraint is quadratic the characterization is particularly simple. We also provide an extended formulation for a relaxation of the visible points when the non-convex constraint is a general polynomial. Finally, we give some conditions under which for a given set there is an inclusion-wise smallest set, in some predefined family of sets, whose reverse polars coincide. T3 - ZIB-Report - 19-38 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-74016 SN - 1438-0064 ER - TY - GEN A1 - Serrano, Felipe A1 - Schwarz, Robert A1 - Gleixner, Ambros T1 - On the Relation between the Extended Supporting Hyperplane Algorithm and Kelley’s Cutting Plane Algorithm N2 - Recently, Kronqvist et al. (2016) rediscovered the supporting hyperplane algorithm of Veinott (1967) and demonstrated its computational benefits for solving convex mixed-integer nonlinear programs. In this paper we derive the algorithm from a geometric point of view. This enables us to show that the supporting hyperplane algorithm is equivalent to Kelley's cutting plane algorithm applied to a particular reformulation of the problem. As a result, we extend the applicability of the supporting hyperplane algorithm to convex problems represented by general, not necessarily convex, differentiable functions that satisfy a mild condition. T3 - ZIB-Report - 19-18 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73253 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Gamrath, Gerald A1 - Salvagnin, Domenico T1 - Exploiting Dual Degeneracy in Branching N2 - Branch-and-bound methods for mixed-integer programming (MIP) are traditionally based on solving a linear programming (LP) relaxation and branching on a variable which takes a fractional value in the (single) computed relaxation optimum. In this paper, we study branching strategies for mixed-integer programs that exploit the knowledge of multiple alternative optimal solutions (a cloud ) of the current LP relaxation. These strategies naturally extend common methods like most infeasible branching, strong branching, pseudocost branching, and their hybrids, but we also propose a novel branching rule called cloud diameter branching. We show that dual degeneracy, a requirement for alternative LP optima, is present for many instances from common MIP test sets. Computational experiments show significant improvements in the quality of branching decisions as well as reduced branching effort when using our modifications of existing branching rules. We discuss different ways to generate a cloud of solutions and present extensive computational results showing that through a careful implementation, cloud modifications can speed up full strong branching by more than 10 % on standard test sets. Additionally, by exploiting degeneracy, we are also able to improve the state-of-the-art hybrid branching rule and reduce the solving time on affected instances by almost 20 % on average. T3 - ZIB-Report - 19-17 KW - mixed integer programming KW - branching rule KW - search strategy KW - dual degeneracy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73028 SN - 1438-0064 ER - TY - GEN A1 - Müller, Benjamin A1 - Serrano, Felipe A1 - Gleixner, Ambros T1 - Using two-dimensional Projections for Stronger Separation and Propagation of Bilinear Terms N2 - One of the most fundamental ingredients in mixed-integer nonlinear programming solvers is the well- known McCormick relaxation for a product of two variables x and y over a box-constrained domain. The starting point of this paper is the fact that the convex hull of the graph of xy can be much tighter when computed over a strict, non-rectangular subset of the box. In order to exploit this in practice, we propose to compute valid linear inequalities for the projection of the feasible region onto the x-y-space by solving a sequence of linear programs akin to optimization-based bound tightening. These valid inequalities allow us to employ results from the literature to strengthen the classical McCormick relaxation. As a consequence, we obtain a stronger convexification procedure that exploits problem structure and can benefit from supplementary information obtained during the branch-and bound algorithm such as an objective cutoff. We complement this by a new bound tightening procedure that efficiently computes the best possible bounds for x, y, and xy over the available projections. Our computational evaluation using the academic solver SCIP exhibit that the proposed methods are applicable to a large portion of the public test library MINLPLib and help to improve performance significantly. T3 - ZIB-Report - 19-15 KW - mixed-integer quadratically constrained programs KW - nonconvex KW - global optimization KW - separation KW - propagation KW - projection KW - bilinear terms Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-72759 SN - 1438-0064 ER - TY - GEN A1 - Anderson, Daniel A1 - Hendel, Gregor A1 - Le Bodic, Pierre A1 - Viernickel, Jan Merlin T1 - Clairvoyant Restarts in Branch-and-Bound Search Using Online Tree-Size Estimation N2 - We propose a simple and general online method to measure the search progress within the Branch-and-Bound algorithm, from which we estimate the size of the remaining search tree. We then show how this information can help solvers algorithmically at runtime by designing a restart strategy for Mixed-Integer Programming (MIP) solvers that decides whether to restart the search based on the current estimate of the number of remaining nodes in the tree. We refer to this type of algorithm as clairvoyant. Our clairvoyant restart strategy outperforms a state-of-the-art solver on a large set of publicly available MIP benchmark instances. It is implemented in the MIP solver SCIP and will be available in future releases. T3 - ZIB-Report - 19-11 KW - Mixed-Integer Programming solvers KW - Restart KW - Progress measures KW - tree-size estimates Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-72653 SN - 1438-0064 ER - TY - GEN A1 - Witzig, Jakob A1 - Gleixner, Ambros T1 - Conflict-Driven Heuristics for Mixed Integer Programming N2 - Two essential ingredients of modern mixed-integer programming (MIP) solvers are diving heuristics that simulate a partial depth-first search in a branch-and-bound search tree and conflict analysis of infeasible subproblems to learn valid constraints. So far, these techniques have mostly been studied independently: primal heuristics under the aspect of finding high-quality feasible solutions early during the solving process and conflict analysis for fathoming nodes of the search tree and improving the dual bound. Here, we combine both concepts in two different ways. First, we develop a diving heuristic that targets the generation of valid conflict constraints from the Farkas dual. We show that in the primal this is equivalent to the optimistic strategy of diving towards the best bound with respect to the objective function. Secondly, we use information derived from conflict analysis to enhance the search of a diving heuristic akin to classical coefficient diving. The computational performance of both methods is evaluated using an implementation in the source-open MIP solver SCIP. Experiments are carried out on publicly available test sets including Miplib 2010 and Cor@l. T3 - ZIB-Report - 19-08 KW - mixed integer programming; primal heuristics; conflict analysis; branch-and-bound Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-72204 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Stuckey, Peter A1 - Witzig, Jakob T1 - Local Rapid Learning for Integer Programs N2 - Conflict learning algorithms are an important component of modern MIP and CP solvers. But strong conflict information is typically gained by depth-first search. While this is the natural mode for CP solving, it is not for MIP solving. Rapid Learning is a hybrid CP/MIP approach where CP search is applied at the root to learn information to support the remaining MIP solve. This has been demonstrated to be beneficial for binary programs. In this paper, we extend the idea of Rapid Learning to integer programs, where not all variables are restricted to the domain {0, 1}, and rather than just running a rapid CP search at the root, we will apply it repeatedly at local search nodes within the MIP search tree. To do so efficiently, we present six heuristic criteria to predict the chance for local Rapid Learning to be successful. Our computational experiments indicate that our extended Rapid Learning algorithm significantly speeds up MIP search and is particularly beneficial on highly dual degenerate problems. T3 - ZIB-Report - 18-56 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-71190 SN - 1438-0064 ER - TY - GEN A1 - Witzig, Jakob A1 - Berthold, Timo A1 - Heinz, Stefan T1 - A Status Report on Conflict Analysis in Mixed Integer Nonlinear Programming N2 - Mixed integer nonlinear programs (MINLPs) are arguably among the hardest optimization problems, with a wide range of applications. MINLP solvers that are based on linear relaxations and spatial branching work similar as mixed integer programming (MIP) solvers in the sense that they are based on a branch-and-cut algorithm, enhanced by various heuristics, domain propagation, and presolving techniques. However, the analysis of infeasible subproblems, which is an important component of most major MIP solvers, has been hardly studied in the context of MINLPs. There are two main approaches for infeasibility analysis in MIP solvers: conflict graph analysis, which originates from artificial intelligence and constraint programming, and dual ray analysis. The main contribution of this short paper is twofold. Firstly, we present the first computational study regarding the impact of dual ray analysis on convex and nonconvex MINLPs. In that context, we introduce a modified generation of infeasibility proofs that incorporates linearization cuts that are only locally valid. Secondly, we describe an extension of conflict analysis that works directly with the nonlinear relaxation of convex MINLPs instead of considering a linear relaxation. This is work-in-progress, and this short paper is meant to present first theoretical considerations without a computational study for that part. T3 - ZIB-Report - 18-57 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-71170 SN - 1438-0064 ER - TY - GEN A1 - Hendel, Gregor T1 - Adaptive Large Neighborhood Search for Mixed Integer Programming N2 - Large Neighborhood Search (LNS) heuristics are among the most powerful but also most expensive heuristics for mixed integer programs (MIP). Ideally, a solver learns adaptively which LNS heuristics work best for the MIP problem at hand in order to concentrate its limited computational budget. To this end, this work introduces Adaptive Large Neighborhood Search (ALNS) for MIP, a primal heuristic that acts a framework for eight popular LNS heuristics such as Local Branching and Relaxation Induced Neighborhood Search (RINS). We distinguish the available LNS heuristics by their individual search domains, which we call neighborhoods. The decision which neighborhood should be executed is guided by selection strategies for the multi armed bandit problem, a related optimization problem during which suitable actions have to be chosen to maximize a reward function. In this paper, we propose an LNS-specific reward function to learn to distinguish between the available neighborhoods based on successful calls and failures. A second, algorithmic enhancement is a generic variable fixing priorization, which ALNS employs to adjust the subproblem complexity as needed. This is particularly useful for some neighborhoods which do not fix variables by themselves. The proposed primal heuristic has been implemented within the MIP solver SCIP. An extensive computational study is conducted to compare different LNS strategies within our ALNS framework on a large set of publicly available MIP instances from the MIPLIB and Coral benchmark sets. The results of this simulation are used to calibrate the parameters of the bandit selection strategies. A second computational experiment shows the computational benefits of the proposed ALNS framework within the MIP solver SCIP. T3 - ZIB-Report - 18-60 KW - mixed integer programming KW - primal heuristics KW - large neighborhood search KW - multi armed bandit problem Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-71167 SN - 1438-0064 ER - TY - GEN A1 - Serrano, Felipe T1 - Intersection cuts for factorable MINLP N2 - Given a factorable function f, we propose a procedure that constructs a concave underestimor of f that is tight at a given point. These underestimators can be used to generate intersection cuts. A peculiarity of these underestimators is that they do not rely on a bounded domain. We propose a strengthening procedure for the intersection cuts that exploits the bounds of the domain. Finally, we propose an extension of monoidal strengthening to take advantage of the integrality of the non-basic variables. T3 - ZIB-Report - 18-59 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-71105 SN - 1438-0064 ER - TY - GEN A1 - Eifler, Leon A1 - Gleixner, Ambros A1 - Pulaj, Jonad T1 - Chvátal’s Conjecture Holds for Ground Sets of Seven Elements N2 - We establish a general computational framework for Chvátal’s conjecture based on exact rational integer programming. As a result we prove Chvátal’s conjecture holds for all downsets whose union of sets contains seven elements or less. The computational proof relies on an exact branch-and-bound certificate that allows for elementary verification and is independent of the integer programming solver used. T3 - ZIB-Report - 18-49 KW - extremal combinatorics KW - exact rational integer programming Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-70240 SN - 1438-0064 ER - TY - GEN A1 - Hendel, Gregor A1 - Miltenberger, Matthias A1 - Witzig, Jakob T1 - Adaptive Algorithmic Behavior for Solving Mixed Integer Programs Using Bandit Algorithms N2 - State-of-the-art solvers for mixed integer programs (MIP) govern a variety of algorithmic components. Ideally, the solver adaptively learns to concentrate its computational budget on those components that perform well on a particular problem, especially if they are time consuming. We focus on three such algorithms, namely the classes of large neighborhood search and diving heuristics as well as Simplex pricing strategies. For each class we propose a selection strategy that is updated based on the observed runtime behavior, aiming to ultimately select only the best algorithms for a given instance. We review several common strategies for such a selection scenario under uncertainty, also known as Multi Armed Bandit Problem. In order to apply those bandit strategies, we carefully design reward functions to rank and compare each individual heuristic or pricing algorithm within its respective class. Finally, we discuss the computational benefits of using the proposed adaptive selection within the \scip Optimization Suite on publicly available MIP instances. T3 - ZIB-Report - 18-36 KW - mixed integer programming KW - primal heuristics KW - multi armed bandit Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-69563 SN - 1438-0064 ER - TY - GEN A1 - Gleixner, Ambros A1 - Bastubbe, Michael A1 - Eifler, Leon A1 - Gally, Tristan A1 - Gamrath, Gerald A1 - Gottwald, Robert Lion A1 - Hendel, Gregor A1 - Hojny, Christopher A1 - Koch, Thorsten A1 - Lübbecke, Marco A1 - Maher, Stephen J. A1 - Miltenberger, Matthias A1 - Müller, Benjamin A1 - Pfetsch, Marc A1 - Puchert, Christian A1 - Rehfeldt, Daniel A1 - Schlösser, Franziska A1 - Schubert, Christoph A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Viernickel, Jan Merlin A1 - Walter, Matthias A1 - Wegscheider, Fabian A1 - Witt, Jonas T. A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 6.0 N2 - The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 6.0 of the SCIP Optimization Suite. Besides performance improvements of the MIP and MINLP core achieved by new primal heuristics and a new selection criterion for cutting planes, one focus of this release are decomposition algorithms. Both SCIP and the automatic decomposition solver GCG now include advanced functionality for performing Benders’ decomposition in a generic framework. GCG’s detection loop for structured matrices and the coordination of pricing routines for Dantzig-Wolfe decomposition has been significantly revised for greater flexibility. Two SCIP extensions have been added to solve the recursive circle packing problem by a problem-specific column generation scheme and to demonstrate the use of the new Benders’ framework for stochastic capacitated facility location. Last, not least, the report presents updates and additions to the other components and extensions of the SCIP Optimization Suite: the LP solver SoPlex, the modeling language Zimpl, the parallelization framework UG, the Steiner tree solver SCIP-Jack, and the mixed-integer semidefinite programming solver SCIP-SDP. T3 - ZIB-Report - 18-26 KW - constraint integer programming KW - linear programming KW - mixed-integer linear programming KW - mixed-integer nonlinear programming KW - optimization solver KW - branch-and-cut KW - branch-and-price KW - column generation framework KW - parallelization KW - mixed-integer semidefinite programming KW - Steiner tree optimization Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-69361 SN - 1438-0064 ER - TY - GEN A1 - Georges, Alexander A1 - Gleixner, Ambros A1 - Gojic, Gorana A1 - Gottwald, Robert Lion A1 - Haley, David A1 - Hendel, Gregor A1 - Matejczyk, Bartlomiej T1 - Feature-Based Algorithm Selection for Mixed Integer Programming N2 - Mixed integer programming is a versatile and valuable optimization tool. However, solving specific problem instances can be computationally demanding even for cutting-edge solvers. Such long running times are often significantly reduced by an appropriate change of the solver's parameters. In this paper we investigate "algorithm selection", the task of choosing among a set of algorithms the ones that are likely to perform best for a particular instance. In our case, we treat different parameter settings of the MIP solver SCIP as different algorithms to choose from. Two peculiarities of the MIP solving process have our special attention. We address the well-known problem of performance variability by using multiple random seeds. Besides solving time, primal dual integrals are recorded as a second performance measure in order to distinguish solvers that timed out. We collected feature and performance data for a large set of publicly available MIP instances. The algorithm selection problem is addressed by several popular, feature-based methods, which have been partly extended for our purpose. Finally, an analysis of the feature space and performance results of the selected algorithms are presented. T3 - ZIB-Report - 18-17 KW - algorithm selection KW - mixed integer programming Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-68362 SN - 1438-0064 ER - TY - GEN A1 - Weber, Tobias A1 - Sager, Sebastian A1 - Gleixner, Ambros T1 - Solving Quadratic Programs to High Precision using Scaled Iterative Refinement N2 - Quadratic optimization problems (QPs) are ubiquitous, and solution algorithms have matured to a reliable technology. However, the precision of solutions is usually limited due to the underlying floating-point operations. This may cause inconveniences when solutions are used for rigorous reasoning. We contribute on three levels to overcome this issue. First, we present a novel refinement algorithm to solve QPs to arbitrary precision. It iteratively solves refined QPs, assuming a floating-point QP solver oracle. We prove linear convergence of residuals and primal errors. Second, we provide an efficient implementation, based on SoPlex and qpOASES that is publicly available in source code. Third, we give precise reference solutions for the Maros and Mészáros benchmark library. T3 - ZIB-Report - 18-04 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-68152 SN - 1438-0064 ER - TY - GEN A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - SCIP-Jack—a solver for STP and variants with parallelization extensions: An update N2 - The Steiner tree problem in graphs is a classical problem that commonly arises in practical applications as one of many variants. Although the different Steiner tree problem variants are usually strongly related, solution approaches employed so far have been prevalently problem-specific. Against this backdrop, the solver SCIP-Jack was created as a general-purpose framework that can be used to solve the classical Steiner tree problem and 11 of its variants. This versatility is achieved by transforming various problem variants into a general form and solving them by using a state-of-the-art MIP-framework. Furthermore, SCIP-Jack includes various newly developed algorithmic components such as preprocessing routines and heuristics. The result is a high-performance solver that can be employed in massively parallel environments and is capable of solving previously unsolved instances. After the introduction of SCIP-Jack at the 2014 DIMACS Challenge on Steiner problems, the overall performance of the solver has considerably improved. This article provides an overview on the current state. T3 - ZIB-Report - 18-05 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-66416 SN - 1438-0064 ER - TY - GEN A1 - Gleixner, Ambros A1 - Eifler, Leon A1 - Gally, Tristan A1 - Gamrath, Gerald A1 - Gemander, Patrick A1 - Gottwald, Robert Lion A1 - Hendel, Gregor A1 - Hojny, Christopher A1 - Koch, Thorsten A1 - Miltenberger, Matthias A1 - Müller, Benjamin A1 - Pfetsch, Marc A1 - Puchert, Christian A1 - Rehfeldt, Daniel A1 - Schlösser, Franziska A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Viernickel, Jan Merlin A1 - Vigerske, Stefan A1 - Weninger, Dieter A1 - Witt, Jonas T. A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 5.0 N2 - This article describes new features and enhanced algorithms made available in version 5.0 of the SCIP Optimization Suite. In its central component, the constraint integer programming solver SCIP, remarkable performance improvements have been achieved for solving mixed-integer linear and nonlinear programs. On MIPs, SCIP 5.0 is about 41 % faster than SCIP 4.0 and over twice as fast on instances that take at least 100 seconds to solve. For MINLP, SCIP 5.0 is about 17 % faster overall and 23 % faster on instances that take at least 100 seconds to solve. This boost is due to algorithmic advances in several parts of the solver such as cutting plane generation and management, a new adaptive coordination of large neighborhood search heuristics, symmetry handling, and strengthened McCormick relaxations for bilinear terms in MINLPs. Besides discussing the theoretical background and the implementational aspects of these developments, the report describes recent additions for the other software packages connected to SCIP, in particular for the LP solver SoPlex, the Steiner tree solver SCIP-Jack, the MISDP solver SCIP-SDP, and the parallelization framework UG. T3 - ZIB-Report - 17-61 KW - constraint integer programming KW - linear programming KW - mixed-integer linear programming KW - mixed-integer nonlinear programming KW - optimization solver KW - branch-and-cut KW - branch-and-price KW - column generation framework KW - parallelization KW - mixed-integer semidefinite programming KW - Steiner tree optimization Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-66297 SN - 1438-0064 ER - TY - GEN A1 - Breuer, Thomas A1 - Bussieck, Michael A1 - Cao, Karl-Kien A1 - Cebulla, Felix A1 - Fiand, Frederik A1 - Gils, Hans Christian A1 - Gleixner, Ambros A1 - Khabi, Dmitry A1 - Koch, Thorsten A1 - Rehfeldt, Daniel A1 - Wetzel, Manuel T1 - Optimizing Large-Scale Linear Energy System Problems with Block Diagonal Structure by Using Parallel Interior-Point Methods N2 - Current linear energy system models (ESM) acquiring to provide sufficient detail and reliability frequently bring along problems of both high intricacy and increasing scale. Unfortunately, the size and complexity of these problems often prove to be intractable even for commercial state-of-the-art linear programming solvers. This article describes an interdisciplinary approach to exploit the intrinsic structure of these large-scale linear problems to be able to solve them on massively parallel high-performance computers. A key aspect are extensions to the parallel interior-point solver PIPS-IPM originally developed for stochastic optimization problems. Furthermore, a newly developed GAMS interface to the solver as well as some GAMS language extensions to model block-structured problems will be described. T3 - ZIB-Report - 17-75 KW - energy system models KW - interior-point methods KW - high-performance computing Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-66183 SN - 1438-0064 ER - TY - GEN A1 - Witzig, Jakob T1 - Conflict Driven Diving for Mixed Integer Programming N2 - The analysis of infeasibility plays an important role in solving satisfiability problems (SAT) and mixed integer programs (MIPs). In mixed integer programming, this procedure is called conflict analysis. So far, modern MIP solvers use conflict analysis only for propagation and improving the dual bound, i.e., fathoming nodes that cannot contain feasible solutions. In this short paper, we present a new approach which uses conflict information to improve the primal bound during a MIP solve. To derive new improving primal solutions we use a conflict driven diving heuristic called conflict diving that uses the information obtained by conflict analysis. Conflict diving pursues a twofold strategy. By using conflict information the new diving approach is guided into parts of the search space that are usually not explored by other diving heuristics. At the same time, conflict diving has a fail-fast-strategy to reduce the time spent if it cannot find a new primal solution. As a byproduct, additional valid conflict constraints can be derived, from which a MIP solver can gain benefit to improve the dual bound as well. To show the added-value of conflict diving within a MIP solver, conflict diving has been implemented within the non-commercial MIP solver SCIP. Experiments are carried out on general MIP instances from standard public test sets, like MIPLIB2010 or Cor@l. T3 - ZIB-Report - 17-69 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-66116 SN - 1438-0064 ER - TY - GEN A1 - Munguia, Lluis-Miquel A1 - Oxberry, Geoffrey A1 - Rajan, Deepak A1 - Shinano, Yuji T1 - Parallel PIPS-SBB: Multi-Level Parallelism For Stochastic Mixed-Integer Programs N2 - PIPS-SBB is a distributed-memory parallel solver with a scalable data distribution paradigm. It is designed to solve MIPs with a dual-block angular structure, which is characteristic of deterministic-equivalent Stochastic Mixed-Integer Programs (SMIPs). In this paper, we present two different parallelizations of Branch & Bound (B&B), implementing both as extensions of PIPS-SBB, thus adding an additional layer of parallelism. In the first of the proposed frameworks, PIPS-PSBB, the coordination and load-balancing of the different optimization workers is done in a decentralized fashion. This new framework is designed to ensure all available cores are processing the most promising parts of the B&B tree. The second, ug[PIPS-SBB,MPI], is a parallel implementation using the Ubiquity Generator (UG), a universal framework for parallelizing B&B tree search that has been successfully applied to other MIP solvers. We show the effects of leveraging multiple levels of parallelism in potentially improving scaling performance beyond thousands of cores. T3 - ZIB-Report - 17-58 KW - PIPS-SBB, UG, Parallel Branch and Bound Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-65517 SN - 1438-0064 IS - ZIB-Report 17-58 ER - TY - GEN A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - Generalized preprocessing techniques for Steiner tree and maximum-weight connected subgraph problems N2 - This article introduces new preprocessing techniques for the Steiner tree problem in graphs and one of its most popular relatives, the maximum-weight connected subgraph problem. Several of the techniques generalize previous results from the literature. The correctness of the new methods is shown, but also their NP-hardness is demonstrated. Despite this pessimistic worst-case complexity, several relaxations are discussed that are expected to allow for a strong practical efficiency of these techniques in strengthening both exact and heuristic solving approaches. T3 - ZIB-Report - 17-57 KW - Steiner tree KW - maximum-weight connected subgraph Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-65439 SN - 1438-0064 ER - TY - GEN A1 - Gamrath, Gerald A1 - Berthold, Timo A1 - Heinz, Stefan A1 - Winkler, Michael T1 - Structure-driven fix-and-propagate heuristics for mixed integer programming N2 - Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They often provide good feasible solutions early in the solving process and help to solve instances to optimality faster. In this paper, we present a scheme for primal start heuristics that can be executed without previous knowledge of an LP solution or a previously found integer feasible solution. It uses global structures available within MIP solvers to iteratively fix integer variables and propagate these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. If sufficiently many variables can be fixed that way, the resulting problem is solved as an LP and the solution is rounded. If the rounded solution did not provide a feasible solution already, a sub-MIP is solved for the neighborhood defined by the variable fixings performed in the first phase. The global structures help to define a neighborhood that is with high probability significantly easier to process while (hopefully) still containing good feasible solutions. We present three primal heuristics that use this scheme based on different global structures. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about three out of five instances and therewith help to improve several performance measures for MIP solvers, including the primal integral and the average solving time. T3 - ZIB-Report - 17-56 KW - mixed-integer programming KW - primal heuristics KW - fix-and-propagate KW - large neighborhood search KW - domain propagation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-65387 SN - 1438-0064 ER - TY - GEN A1 - Gamrath, Gerald A1 - Schubert, Christoph T1 - Measuring the impact of branching rules for mixed-integer programming N2 - Branching rules are an integral component of the branch-and-bound algorithm typically used to solve mixed-integer programs and subject to intense research. Different approaches for branching are typically compared based on the solving time as well as the size of the branch-and-bound tree needed to prove optimality. The latter, however, has some flaws when it comes to sophisticated branching rules that do not only try to take a good branching decision, but have additional side-effects. We propose a new measure for the quality of a branching rule that distinguishes tree size reductions obtained by better branching decisions from those obtained by such side-effects. It is evaluated for common branching rules providing new insights in the importance of strong branching. T3 - ZIB-Report - 17-34 KW - mixed-integer programming KW - branch-and-bound KW - branching rule KW - strong branching Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-64722 SN - 1438-0064 ER - TY - GEN A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - Combining NP-Hard Reduction Techniques and Strong Heuristics in an Exact Algorithm for the Maximum-Weight Connected Subgraph Problem N2 - Borne out of a surprising variety of practical applications, the maximum-weight connected subgraph problem has attracted considerable interest during the past years. This interest has not only led to notable research on theoretical properties, but has also brought about several (exact) solvers-with steadily increasing performance. Continuing along this path, the following article introduces several new algorithms such as reduction techniques and heuristics and describes their integration into an exact solver. The new methods are evaluated with respect to both their theoretical and practical properties. Notably, the new exact framework allows to solve common problem instances from the literature faster than all previous approaches. Moreover, one large-scale benchmark instance from the 11th DIMACS Challenge can be solved for the first time to optimality and the primal-dual gap for two other ones can be significantly reduced. T3 - ZIB-Report - 17-45 KW - maximum-weight connected subgraph Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-64699 SN - 1438-0064 ER - TY - GEN A1 - Miltenberger, Matthias A1 - Ralphs, Ted A1 - Steffy, Daniel T1 - Exploring the Numerics of Branch-and-Cut for Mixed Integer Linear Optimization T2 - Operations Research Proceedings 2017 N2 - We investigate how the numerical properties of the LP relaxations evolve throughout the solution procedure in a solver employing the branch-and-cut algorithm. The long-term goal of this work is to determine whether the effect on the numerical conditioning of the LP relaxations resulting from the branching and cutting operations can be effectively predicted and whether such predictions can be used to make better algorithmic choices. In a first step towards this goal, we discuss here the numerical behavior of an existing solver in order to determine whether our intuitive understanding of this behavior is correct. T3 - ZIB-Report - 17-43 KW - Mixed Integer Programming KW - Linear Programming KW - Algorithm Analysis Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-64645 SN - 1438-0064 ER - TY - GEN A1 - Schade, Stanley A1 - Schlechte, Thomas A1 - Witzig, Jakob T1 - Structure-based Decomposition for Pattern-Detection for Railway Timetables N2 - We consider the problem of pattern detection in large scale railway timetables. This problem arises in rolling stock optimization planning in order to identify invariant sections of the timetable for which a cyclic rotation plan is adequate. We propose a dual reduction technique which leads to an decomposition and enumeration method. Computational results for real world instances demonstrate that the method is able to produce optimal solutions as fast as standard MIP solvers. T3 - ZIB-Report - 17-40 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-64525 SN - 1438-0064 ER - TY - GEN A1 - Berthold, Timo A1 - Perregaard, Michael A1 - Mészáros, Csaba T1 - Four good reasons to use an Interior Point solver within a MIP solver N2 - "Interior point algorithms are a good choice for solving pure LPs or QPs, but when you solve MIPs, all you need is a dual simplex." This is the common conception which disregards that an interior point solution provides some unique structural insight into the problem at hand. In this paper, we will discuss some of the benefits that an interior point solver brings to the solution of difficult MIPs within FICO Xpress. This includes many different components of the MIP solver such as branching variable selection, primal heuristics, preprocessing, and of course the solution of the LP relaxation. T3 - ZIB-Report - 17-42 KW - mixed integer programming KW - interior point algorithm KW - Newton barrier method KW - analytic center Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-64599 SN - 1438-0064 ER - TY - GEN A1 - Müller, Benjamin A1 - Kuhlmann, Renke A1 - Vigerske, Stefan T1 - On the performance of NLP solvers within global MINLP solvers N2 - Solving mixed-integer nonlinear programs (MINLPs) to global optimality efficiently requires fast solvers for continuous sub-problems. These appear in, e.g., primal heuristics, convex relaxations, and bound tightening methods. Two of the best performing algorithms for these sub-problems are Sequential Quadratic Programming (SQP) and Interior Point Methods. In this paper we study the impact of different SQP and Interior Point implementations on important MINLP solver components that solve a sequence of similar NLPs. We use the constraint integer programming framework SCIP for our computational studies. T3 - ZIB-Report - 17-35 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-64504 SN - 1438-0064 ER - TY - GEN A1 - Ralphs, Ted A1 - Shinano, Yuji A1 - Berthold, Timo A1 - Koch, Thorsten T1 - Parallel Solvers for Mixed Integer Linear Programming N2 - In this article, we introduce parallel mixed integer linear programming (MILP) solvers. MILP solving algorithms have been improved tremendously in the last two decades. Currently, commercial MILP solvers are known as a strong optimization tool. Parallel MILP solver development has started in 1990s. However, since the improvements of solving algorithms have much impact to solve MILP problems than application of parallel computing, there were not many visible successes. With the spread of multi-core CPUs, current state-of-the-art MILP solvers have parallel implementations and researches to apply parallelism in the solving algorithm also getting popular. We summarize current existing parallel MILP solver architectures. T3 - ZIB-Report - 16-74 KW - parallel computing KW - integer programming KW - branch-and-bound KW - supercomputing Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-62239 SN - 1438-0064 ER - TY - GEN A1 - Maher, Stephen J. A1 - Fischer, Tobias A1 - Gally, Tristan A1 - Gamrath, Gerald A1 - Gleixner, Ambros A1 - Gottwald, Robert Lion A1 - Hendel, Gregor A1 - Koch, Thorsten A1 - Lübbecke, Marco A1 - Miltenberger, Matthias A1 - Müller, Benjamin A1 - Pfetsch, Marc A1 - Puchert, Christian A1 - Rehfeldt, Daniel A1 - Schenker, Sebastian A1 - Schwarz, Robert A1 - Serrano, Felipe A1 - Shinano, Yuji A1 - Weninger, Dieter A1 - Witt, Jonas T. A1 - Witzig, Jakob T1 - The SCIP Optimization Suite 4.0 N2 - The SCIP Optimization Suite is a powerful collection of optimization software that consists of the branch-cut-and-price framework and mixed-integer programming solver SCIP, the linear programming solver SoPlex, the modeling language Zimpl, the parallelization framework UG, and the generic branch-cut-and-price solver GCG. Additionally, it features the extensions SCIP-Jack for solving Steiner tree problems, PolySCIP for solving multi-objective problems, and SCIP-SDP for solving mixed-integer semidefinite programs. The SCIP Optimization Suite has been continuously developed and has now reached version 4.0. The goal of this report is to present the recent changes to the collection. We not only describe the theoretical basis, but focus on implementation aspects and their computational consequences. T3 - ZIB-Report - 17-12 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-62170 SN - 1438-0064 ER - TY - GEN A1 - Gleixner, Ambros A1 - Maher, Stephen J. A1 - Müller, Benjamin A1 - Pedroso, João Pedro T1 - Exact Methods for Recursive Circle Packing N2 - Packing rings into a minimum number of rectangles is an optimization problem which appears naturally in the logistics operations of the tube industry. It encompasses two major difficulties, namely the positioning of rings in rectangles and the recursive packing of rings into other rings. This problem is known as the Recursive Circle Packing Problem (RCPP). We present the first dedicated method for solving RCPP that provides strong dual bounds based on an exact Dantzig–Wolfe reformulation of a nonconvex mixed-integer nonlinear programming formulation. The key idea of this reformulation is to break symmetry on each recursion level by enumerating one-level packings, i.e., packings of circles into other circles, and by dynamically generating packings of circles into rectangles. We use column generation techniques to design a “price-and-verify” algorithm that solves this reformulation to global optimality. Extensive computational experiments on a large test set show that our method not only computes tight dual bounds, but often produces primal solutions better than those computed by heuristics from the literature. T3 - ZIB-Report - 17-07 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-62039 ER - TY - GEN A1 - Berthold, Timo A1 - Hendel, Gregor A1 - Koch, Thorsten T1 - The Three Phases of MIP Solving N2 - Modern MIP solvers employ dozens of auxiliary algorithmic components to support the branch-and-bound search in finding and improving primal solutions and in strengthening the dual bound. Typically, all components are tuned to minimize the average running time to prove optimality. In this article, we take a different look at the run of a MIP solver. We argue that the solution process consists of three different phases, namely achieving feasibility, improving the incumbent solution, and proving optimality. We first show that the entire solving process can be improved by adapting the search strategy with respect to the phase-specific aims using different control tunings. Afterwards, we provide criteria to predict the transition between the individual phases and evaluate the performance impact of altering the algorithmic behavior of the MIP solver SCIP at the predicted phase transition points. T3 - ZIB-Report - 16-78 KW - optimization software KW - mixed-integer programming KW - branch-and-bound KW - adaptive search behavior KW - optimality prediction Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-61607 SN - 1438-0064 ER - TY - GEN A1 - Gottwald, Robert Lion A1 - Maher, Stephen J. A1 - Shinano, Yuji T1 - Distributed domain propagation N2 - Portfolio parallelization is an approach that runs several solver instances in parallel and terminates when one of them succeeds in solving the problem. Despite it's simplicity portfolio parallelization has been shown to perform well for modern mixed-integer programming (MIP) and boolean satisfiability problem (SAT) solvers. Domain propagation has also been shown to be a simple technique in modern MIP and SAT solvers that effectively finds additional domain reductions after a variables domain has been reduced. This paper investigates the impact of distributed domain propagation in modern MIP solvers that employ portfolio parallelization. Computational experiments were conducted for two implementations of this parallelization approach. While both share global variable bounds and solutions they communicate differently. In one implementation the communication is performed only at designated points in the solving process and in the other it is performed completely asynchronously. Computational experiments show a positive performance impact of communicating global variable bounds and provide valuable insights in communication strategies for parallel solvers. T3 - ZIB-Report - 16-71 KW - mixed integer programming KW - parallelization KW - domain propagation KW - portfolio solvers Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-61380 SN - 1438-0064 ER - TY - GEN A1 - Maher, Stephen J. A1 - Miltenberger, Matthias A1 - Pedroso, João Pedro A1 - Rehfeldt, Daniel A1 - Schwarz, Robert A1 - Serrano, Felipe T1 - PySCIPOpt: Mathematical Programming in Python with the SCIP Optimization Suite N2 - SCIP is a solver for a wide variety of mathematical optimization problems. It is written in C and extendable due to its plug-in based design. However, dealing with all C specifics when extending SCIP can be detrimental to development and testing of new ideas. This paper attempts to provide a remedy by introducing PySCIPOpt, a Python interface to SCIP that enables users to write new SCIP code entirely in Python. We demonstrate how to intuitively model mixed-integer linear and quadratic optimization problems and moreover provide examples on how new Python plug-ins can be added to SCIP. T3 - ZIB-Report - 16-64 KW - SCIP, Mathematical optimization, Python, Modeling Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-61348 SN - 1438-0064 ER - TY - GEN A1 - Gamrath, Gerald A1 - Gleixner, Ambros A1 - Koch, Thorsten A1 - Miltenberger, Matthias A1 - Kniasew, Dimitri A1 - Schlögel, Dominik A1 - Martin, Alexander A1 - Weninger, Dieter T1 - Tackling Industrial-Scale Supply Chain Problems by Mixed-Integer Programming N2 - SAP's decision support systems for optimized supply network planning rely on mixed-integer programming as the core engine to compute optimal or near-optimal solutions. The modeling flexibility and the optimality guarantees provided by mixed-integer programming greatly aid the design of a robust and future-proof decision support system for a large and diverse customer base. In this paper we describe our coordinated efforts to ensure that the performance of the underlying solution algorithms matches the complexity of the large supply chain problems and tight time limits encountered in practice. T3 - ZIB-Report - 16-45 KW - supply chain management, supply network optimization, mixed-integer linear programming, primal heuristics, numerical stability, large-scale optimization Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-61107 SN - 1438-0064 ER - TY - GEN A1 - Witzig, Jakob A1 - Berthold, Timo A1 - Heinz, Stefan T1 - Experiments with Conflict Analysis in Mixed Integer Programming N2 - The analysis of infeasible subproblems plays an import role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications obtained by domain propagation that led to infeasibility. The result of the analysis is one or more sets of contradicting variable bounds from which so-called conflict constraints can be generated. This concept has its origin in solving satisfiability problems and is similarly used in constraint programming. The second concept is to analyze infeasible linear programming (LP) relaxations. The dual LP solution provides a set of multipliers that can be used to generate a single new globally valid linear constraint. The main contribution of this short paper is an empirical evaluation of two ways to combine both approaches. Experiments are carried out on general MIP instances from standard public test sets such as Miplib2010; the presented algorithms have been implemented within the non-commercial MIP solver SCIP. Moreover, we present a pool-based approach to manage conflicts which addresses the way a MIP solver traverses the search tree better than aging strategies known from SAT solving. T3 - ZIB-Report - 16-63 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-61087 SN - 1438-0064 ER - TY - GEN A1 - Cheung, Kevin K. H. A1 - Gleixner, Ambros A1 - Steffy, Daniel T1 - Verifying Integer Programming Results N2 - Software for mixed-integer linear programming can return incorrect results for a number of reasons, one being the use of inexact floating-point arithmetic. Even solvers that employ exact arithmetic may suffer from programming or algorithmic errors, motivating the desire for a way to produce independently verifiable certificates of claimed results. Due to the complex nature of state-of-the-art MILP solution algorithms, the ideal form of such a certificate is not entirely clear. This paper proposes such a certificate format, illustrating its capabilities and structure through examples. The certificate format is designed with simplicity in mind and is composed of a list of statements that can be sequentially verified using a limited number of simple yet powerful inference rules. We present a supplementary verification tool for compressing and checking these certificates independently of how they were created. We report computational results on a selection of mixed-integer linear programming instances from the literature. To this end, we have extended the exact rational version of the MIP solver SCIP to produce such certificates. T3 - ZIB-Report - 16-58 KW - correctness, verification, proof, certificate, optimality, infeasibility, mixed-integer linear programming Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-61044 SN - 1438-0064 ER - TY - GEN A1 - Pulaj, Jonad T1 - Cutting Planes for Families Implying Frankl's Conjecture N2 - We find previously unknown families which imply Frankl’s conjecture using an algorithmic framework. The conjecture states that for any non-empty union-closed (or Frankl) family there exists an element in at least half of the sets. Poonen’s Theorem characterizes the existence of weights which determine whether a given Frankl family implies the conjecture for all Frankl families which contain it. A Frankl family is Non–Frankl-Complete (Non–FC), if it does not imply the conjecture in its elements for some Frankl family that contains it. We design a cutting-plane method that computes the explicit weights which imply the existence conditions of Poonen’s Theorem. This method allows us to find a counterexample to a ten-year-old conjecture by R. Morris about the structure of generators for Non–FC-families. T3 - ZIB-Report - 16-51 KW - extremal combinatorics, extremal set theory, cutting plane, exact integer programming Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-60626 SN - 1438-0064 ER - TY - GEN A1 - Rehfeldt, Daniel A1 - Koch, Thorsten A1 - Maher, Stephen J. T1 - Reduction Techniques for the Prize-Collecting Steiner Tree Problem and the Maximum-Weight Connected Subgraph Problem N2 - The concept of reduction has frequently distinguished itself as a pivotal ingredient of exact solving approaches for the Steiner tree problem in graphs. In this paper we broaden the focus and consider reduction techniques for three Steiner problem variants that have been extensively discussed in the literature and entail various practical applications: The prize-collecting Steiner tree problem, the rooted prize-collecting Steiner tree problem and the maximum-weight connected subgraph problem. By introducing and subsequently deploying numerous new reduction methods, we are able to drastically decrease the size of a large number of benchmark instances, already solving more than 90 percent of them to optimality. Furthermore, we demonstrate the impact of these techniques on exact solving, using the example of the state-of-the-art Steiner problem solver SCIP-Jack. T3 - ZIB-Report - 16-47 KW - Steiner tree problems KW - reduction techniques KW - prize-collecting Steiner tree problem KW - maximum-weight connected subgraph problem Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-60420 SN - 1438-0064 ER - TY - GEN A1 - Achterberg, Tobias A1 - Bixby, Robert E. A1 - Gu, Zonghao A1 - Rothberg, Edward A1 - Weninger, Dieter T1 - Presolve Reductions in Mixed Integer Programming N2 - Mixed integer programming has become a very powerful tool for modeling and solving real-world planning and scheduling problems, with the breadth of applications appearing to be almost unlimited. A critical component in the solution of these mixed-integer programs is a set of routines commonly referred to as presolve. Presolve can be viewed as a collection of preprocessing techniques that reduce the size of and, more importantly, improve the ``strength'' of the given model formulation, that is, the degree to which the constraints of the formulation accurately describe the underlying polyhedron of integer-feasible solutions. As our computational results will show, presolve is a key factor in the speed with which we can solve mixed-integer programs, and is often the difference between a model being intractable and solvable, in some cases easily solvable. In this paper we describe the presolve functionality in the Gurobi commercial mixed-integer programming code. This includes an overview, or taxonomy of the different methods that are employed, as well as more-detailed descriptions of several of the techniques, with some of them appearing, to our knowledge, for the first time in the literature. T3 - ZIB-Report - 16-44 KW - integer programming KW - presolving KW - Gurobi Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-60370 SN - 1438-0064 ER - TY - GEN A1 - Gamrath, Gerald A1 - Koch, Thorsten A1 - Maher, Stephen J. A1 - Rehfeldt, Daniel A1 - Shinano, Yuji T1 - SCIP-Jack – A solver for STP and variants with parallelization extensions N2 - The Steiner tree problem in graphs is a classical problem that commonly arises in practical applications as one of many variants. While often a strong relationship between different Steiner tree problem variants can be observed, solution approaches employed so far have been prevalently problem-specific. In contrast, this paper introduces a general-purpose solver that can be used to solve both the classical Steiner tree problem and many of its variants without modification. This versatility is achieved by transforming various problem variants into a general form and solving them by using a state-of-the-art MIP-framework. The result is a high-performance solver that can be employed in massively parallel environments and is capable of solving previously unsolved instances. T3 - ZIB-Report - 16-41 KW - Steiner tree problem KW - SCIP-Jack KW - Steiner tree variants KW - maximum-weight connected subgraph KW - prize-collecting Steiner tree Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-60170 SN - 1438-0064 ER - TY - GEN A1 - Rehfeldt, Daniel A1 - Koch, Thorsten T1 - Transformations for the Prize-Collecting Steiner Tree Problem and the Maximum-Weight Connected Subgraph Problem to SAP N2 - Transformations of Steiner tree problem variants have been frequently discussed in the literature. Besides allowing to easily transfer complexity results, they constitute a central pillar of exact state-of-the-art solvers for well-known variants such as the Steiner tree problem in graphs. In this paper transformations for both the prize-collecting Steiner tree problem and the maximum-weight connected subgraph problem to the Steiner arborescence problem are introduced for the first time. Furthermore, we demonstrate the considerable implications for practical solving approaches, including the computation of strong upper and lower bounds. T3 - ZIB-Report - 16-36 KW - graph transformation KW - Steiner tree problems KW - prize-collecting Steiner tree problem KW - maximum-weight connected subgraph problem Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-59777 SN - 1438-0064 ER - TY - GEN A1 - Vigerske, Stefan A1 - Gleixner, Ambros T1 - SCIP: Global Optimization of Mixed-Integer Nonlinear Programs in a Branch-and-Cut Framework N2 - This paper describes the extensions that were added to the constraint integer programming framework SCIP in order to enable it to solve convex and nonconvex mixed-integer nonlinear programs (MINLPs) to global optimality. SCIP implements a spatial branch-and-bound algorithm based on a linear outer-approximation, which is computed by convex over- and underestimation of nonconvex functions. An expression graph representation of nonlinear constraints allows for bound tightening, structure analysis, and reformulation. Primal heuristics are employed throughout the solving process to find feasible solutions early. We provide insights into the performance impact of individual MINLP solver components via a detailed computational study over a large and heterogeneous test set. T3 - ZIB-Report - 16-24 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-59377 SN - 1438-0064 ER -